

Ubuntu_03.book Page ii Monday, March 5, 2007 5:54 PM

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

ADVANCE PRAISE FOR THE BOOK OF POSTFIX

“While many technical books are little more than recycled product documen-
tation, Koetter and Hildebrandt provide fantastic insight into the fundamentals
of Postfix. After building the solid understanding for the reader, they tackle
many of Postfix’s more advanced features. I put the book down feeling that,
if other mail programs had books like this, the technology would be better
understood.”
–TOM THOMAS, AUTHOR OF NETWORK SECURITY FIRST-STEP (CISCO PRESS)

“As Postfix grows in distribution and adds new features, it’s increasingly necessary
to have a comprehensive guide that administrators can consult for deploying and
maintaining their Postfix installations. Patrick Koetter and Ralf Hildebrandt are
experts who have been dedicated to Postfix since the very beginning, and their
book answers this critical need.”
–LUTZ JÄNICKE, CREATOR AND MAINTAINER OF THE TLS PATCH FOR POSTFIX

“What most impressed me about Ralf and Patrick’s book was the way it makes
difficult, complex concepts simple to understand. The authors clearly know their
subject inside and out and present it in an easy-to-follow format. They haven’t
missed anything.”
–TOBIAS OETIKER, INVENTOR OF ROUND ROBIN DATABASE TOOL (RRDTOOL) AND
MULTI ROUTER TRAFFIC GRAPHER (MRTG)

“This book, with its many practical examples and clear explanations, is like
having a Postfix expert at your side.”
–DAVID SCHWEIKERT, AUTHOR OF POSTGREY (A POSTFIX GREYLISTING POLICY SERVER)

“I recommend this book for anyone using Postfix, especially those planning to
integrate the AMaViS virus scanning.”
–RAINER LINK, FOUNDER OF OPENANTIVIRUS.ORG

“It’s a must-have resource for anybody interested in using and understanding
Postfix, from the home user to the administrator of the largest mail systems
today.”
–DR. LIVIU DAIA, SENIOR RESEARCHER AT THE INSTITUTE OF MATHEMATICS OF THE
ROMANIAN ACADEMY
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

THE BOOK OF™
POSTFIX
S t a t e - o f - t h e - A r t

M e s s a g e T r a n s p o r t

by Ralf Hi ldebrandt
and Patr ick Koet ter

San Francisco

®

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

THE BOOK OF POSTFIX. Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

 Printed on recycled paper in the United States of America

1 2 3 4 5 6 7 8 9 10 – 07 06 05 04

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. The Book of is a
trademark of No Starch Press, Inc. Other product and company names mentioned herein may be the trademarks of
their respective owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

Publisher: William Pollock
Managing Editor: Karol Jurado
Production Manager: Susan Berge
Cover and Interior Design: Octopod Studios
Developmental Editor: Brian Ward
Technical Reviewer: Brian Ward
Copyeditor: Andy Carroll
Compositor: Riley Hoffman
Proofreader: Stephanie Provines
Indexer: Kevin Broccoli

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; http://www.nostarch.com

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

Library of Congress Cataloging-in-Publication Data

Hildebrandt, Ralf.
The book of Postfix : state-of-the-art message transport / Ralf Hildebrandt and Patrick Koetter.

p. cm.
ISBN 1-59327-001-1

1. Postfix (Computer file). 2. Electronic mail systems--Computer programs. 3. Internet. I. Koetter,
Patrick. II. Title.

TK5105.74.P66H55 2005
005.7'13--dc22

2003017563
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

To those who like good software
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

A B O U T T H E A U T H O R S

Ralf Hildebrandt and Patrick Koetter are active and well-known figures in
the Postfix community. Hildebrandt is a manager technics for T-Systems,
a German information and communications technology (ICT) solutions
company. Koetter is an information architect running his own company
consulting and developing corporate communication for customers in
Europe and Africa. Both have spoken about Postfix at industry conferences
and hacker conventions and contribute regularly to a number of open
source mailing lists.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

A C K N O W L E D G M E N T S

There are a lot of people we need to thank for this book, so we’ll each give
our lists.

Ralf Hildebrandt

One thing I noticed while writing this book was how little I knew about how
Postfix works “under the hood.” I knew how it behaved, but not exactly why,
at least not in every single component and corner-case. In some cases I didn’t
know much, in other areas I found my knowledge (or lack thereof) to be
wrong. I had to RTFM and ask a lot of questions on the helpful postfix-users
mailing list to get the details. This book will not be able to replace the
experience of running Postfix for more than five years, but it will lead you
closer to mastering it.

Admittedly, when I started with Unix in ’94, the Internet was a much
safer place than it is now. There wasn’t any spam! I only got to know Postfix
because Sendmail kept crashing on me. After a brief interlude with qmail, I
found Postfix and stuck with it. I never looked back.

When Bill approached me and asked if I wanted to write a book about
Postfix, I hesitated at first. I needed a co-author, since the sheer amount of
work to be done was far too much for one person. At that time, Patrick was
cursing SASL on the list and vowed to write a SASL-HOWTO if he ever got it
working. He did, and I read the HOWTO, liked it, and asked him for his co-
authorship.

As it turns out, the amount of work was too much even for two people, so
Brian Ward joined us as a technical editor, adding valuable experience in
areas where we lacked it.

Without the help of Wietse Venema, Vi(c|k)tor Duchovni, Lutz Jänicke,
Andreas Winkelmann, and Peter Bieringer, this book would have never
reached its present state, so they’re in for a free copy. Not that they need it,
but it sure makes a great gift. A big thanks and love go to my wife Constanze
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

who endured my frequent “But I still have to write a chapter now!” excuses
and thus made it possible to finish the book instead of letting it become
vaporware. Oh yeah, and when reading Patrick’s comments, please keep in
mind that I’m only slightly crazy.

Patrick Koetter

Years will pass before the Internet provides us with all the services we want it
to have. Just as with any other new medium, the immediate impulse of those
who provide services is to push growth, especially in the quantity of content
and services. The quality of the service and its functionalities usually has to
stand back—at least until the service starts to pay off. In the meantime it is
exposed to people who like to abuse and destroy things rather than promote
and expand them.

This has happened to email and this is where Postfix comes in, and really
does provide a new dimension of quality.

When I went out to get myself an SMTP server, I was shocked that
Sendmail seemed to require a diploma of some sort, especially to figure out
the macros. So I looked around for other software. To cut it short: I fell in
love with Postfix.

Postfix showed me that it’s possible to have complex software configured
with a simple, clear, and structured syntax. If you know SMTP, you already
know most of the important details of configuring Postfix. I didn’t really know
SMTP when Ralf asked me to write the book with him. This book required
me to learn more than I had expected and to correct misunderstandings.

I am very proud that this book gives me the opportunity to hand over
what I know about computers and email today. Hopefully this book will get
you well on your way to using Postfix creatively. Creativity grows the best
when there is knowledge.

This book would not have seen the light without the knowledge, curiosity,
and support of Wietse Venema, Vi(c|k)tor Duchovni, Liviu Daia, Lutz Jänicke,
Florian Kirstein, Walter Steinsdorfer, Roland Rollinger, Tom Thomas, Alexey
Melnikov, Andreas Winkelmann, Eric “cybertime hostmaster,” and the users of
the Postfix mailing list; their questions and problems told us what was missing
when we thought everything had been said.

Most importantly, I need to thank Ralf, whose knowledge about Postfix is
outclassed only by his sassy use of computers. He’s like a duck taking to water
in this respect. It was Ralf who chose me to be his companion on this adven-
ture called The Book of Postfix, and I’m indebted to this crazy guy who became
a close friend as we wrote this book.

The book has been a great challenge, not only to me, but also to my wife
Birgit; her trust in me carried me through the countless lines of this book.
It’s a great privilege to be asked to do something that you’ve set your heart
on. It’s a godsend to have somebody like Birgit at your side when you finally
do it.
viii Acknow ledgments

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

B R I E F C O N T E N T S

About This Book
xxv

Chapter 1
An Introduction to Postfix

1

Part I: Basics

Chapter 2
Preparing Your Host and

Environment
7

Chapter 3
Mail Server for a Single Domain

17

Chapter 4
Dial-up Mail Server
for a Single Domain

29

Chapter 5
Anatomy of Postfix

35

Part II: Content Control

Chapter 6
A Postmaster’s Primer to Email

55

Chapter 7
How Message Transfer

Restrictions Work
69

Chapter 8
Using Message Transfer

Restrictions
81

Chapter 9
How Built-in Content

Filters Work
111
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Chapter 10
Using Built-in Content Filters

117

Chapter 11
How External Content

Filters Work
129

Chapter 12
Using External Content Filters

141

Part III: Advanced
Configurations

Chapter 13
Mail Gateways

169

Chapter 14
A Mail Server

for Multiple Domains
189

Chapter 15
Understanding SMTP

Authentication
217

Chapter 16
SMTP Authentication

247

Chapter 17
Understanding

Transport Layer Security
267

Chapter 18
Using Transport Layer Security

279

Chapter 19
A Company Mail Server

313

Chapter 20
Running Postfix in a chroot

Environment
369

Part IV: Tuning Postfix

Chapter 21
Remote Client Concurrency
and Request Rate Limiting

379

Chapter 22
Performance Tuning

387
x Bri ef Conten t s

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Appendices

Appendix A
Installing Postfix

407

Appendix B
Troubleshooting Postfix

419

Appendix C
CIDR and SMTP Standards

Reference
435

Glossary
441

Index
449
Brie f Con ten t s xi
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

C O N T E N T S I N D E T A I L

ABOUT THIS BOOK xxv

Additional Resources ... xxvi
Postfix Documentation, How-tos, and FAQs ...xxvi
Mailing Lists ..xxvi

Conventions Used in This Book .. xxvii
Domains and Names Used in This Book .. xxvii

The Local Domain.. xxviii
Our Provider... xxviii

Scripts ... xxviii
Comments .. xxviii

1
AN INTRODUCTION TO POSTFIX 1

PART I: BASICS

2
PREPARING YOUR HOST AND ENVIRONMENT 7

Hostname .. 8
Connectivity .. 8

TCP Port 25 .. 8
System Time and Timestamps ... 9
Syslog .. 10
Name Resolution (DNS) .. 11
DNS for Mail Servers .. 13

A Records .. 13
PTR Records .. 14
MX Records .. 15

3
MAIL SERVER FOR A SINGLE DOMAIN 17

The Minimum Configuration .. 17
Configuring Postfix ... 18

Setting the Hostname in the smtpd Banner .. 18
Setting the Domain Mail Is Accepted For .. 19
Setting the Domain to Be Appended to Outgoing Messages 20
Mapping Mail Sent to root to a Different Mailbox ... 21
Starting Postfix and Testing Mail Delivery to root ... 22
Mapping Email Addresses to Usernames .. 25
Setting Permissions to Make Postfix Relay Email from Your Network 26
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

4
DIAL-UP MAIL SERVER FOR A SINGLE DOMAIN 29

Disabling DNS Resolution ... 31
Adjusting Relay Permissions ... 31
Setting the ISP Relay Host .. 32
Deferring Message Transport ... 32
Triggering Message Delivery ... 33
Configuring Relay Permissions for a Relay Host .. 34

POP-before-SMTP .. 34
SMTP Authentication .. 34

5
ANATOMY OF POSTFIX 35

Postfix Daemons ... 37
Postfix Queues ... 42
Maps .. 43

Map Types ... 44
How Postfix Queries Maps ... 47

External Sources .. 47
Command-Line Utilities .. 48

postfix ... 48
postalias .. 48
postcat ... 48
postmap ... 48
postdrop .. 49
postkick ... 49
postlock ... 50
postlog .. 50
postqueue .. 50
postsuper ... 51

PART II: CONTENT CONTROL

6
A POSTMASTER’S PRIMER TO EMAIL 55

Message Transport Basics ... 55
Why Do You Need to Know This? ... 56

Controlling the SMTP Communication (Envelope) .. 57
Controlling the Message Content .. 61

Headers ... 63
Body ... 64
Attachments .. 65
xiv Content s i n De ta i l

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

7
HOW MESSAGE TRANSFER RESTRICTIONS WORK 69

Restriction Triggers ... 70
Restriction Types .. 71

Generic Restrictions ... 71
Switchable Restrictions ... 72
Customizable Restrictions ... 72
Additional UCE Control Parameters ... 73
Application Ranges ... 74

Building Restrictions .. 74
Notation .. 74
Moment of Evaluation .. 75
Influence of Actions on Restriction Evaluation .. 75
Slowing Down Bad Clients ... 77

Restriction Classes .. 79

8
USING MESSAGE TRANSFER RESTRICTIONS 81

How to Build and Test Restrictions .. 81
Simulating the Impact of Restrictions .. 82
Making Restrictions Effective Immediately ... 83

Restriction Defaults ... 84
Requiring RFC Conformance .. 84

Restricting the Hostname in HELO/EHLO .. 85
Restricting the Envelope Sender ... 87
Restricting the Envelope Recipient .. 88

Maintaining RFC Conformance .. 91
Empty Envelope Sender .. 92
Special Role Accounts .. 92

Processing Order for RFC Restrictions ... 93
Antispam Measures .. 94

Preventing Obvious Forgeries ... 94
Bogus Nameserver Records .. 95
Bounces to Multiple Recipients .. 97
Using DNS Blacklists ... 98
Verifying the Sender .. 103
Restriction Process Order .. 107

Uses for Restriction Classes .. 108

9
HOW BUILT- IN CONTENT FILTERS WORK 111

How Do Checks Work? .. 112
Applying Checks to Separate Message Sections .. 112

What’s So Special about These Parameters? .. 113
When Does Postfix Apply Checks? ... 114
What Actions Can Checks Invoke? ... 115
Conten ts i n Detai l xv
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

10
USING BUILT- IN CONTENT FILTERS 117

Checking Postfix for Checks Support ... 118
Building Postfix with PCRE Map Support .. 118

Safely Implementing Header or Body Filtering .. 119
Adding a Regular Expression and Setting a WARN Action 119
Creating a Test Pattern ... 119
Does the Regular Expression Match the Test Pattern? 119
Setting the Check in the Main Configuration ... 120
Testing with Real Mail .. 120

Checking Headers .. 120
Rejecting Messages ... 121
Holding Delivery ... 122
Removing Headers .. 122
Discarding Messages ... 122
Redirecting Messages .. 123
Filtering Messages ... 123

Checking MIME Headers .. 124
Checking Headers in Attached Messages .. 125
Checking the Body ... 126

11
HOW EXTERNAL CONTENT FILTERS WORK 129

When Is the Best Moment to Filter Content? ... 130
Filters and Address Rewriting .. 131

content_filter: Queuing First, Filtering Later .. 132
Filter-Delegation Daemons .. 134
The Basics of Configuring content_filter .. 135

smtpd_proxy_filter: Filtering First, Queuing Later .. 137
Considerations for Proxy Filters ... 139
The Basics of Configuring smtpd_proxy_filter .. 139

12
USING EXTERNAL CONTENT FILTERS 141

Appending Disclaimers to Messages with a Script .. 142
Installing alterMIME and Creating the Filter Script 143
Configuring Postfix for the Disclaimer Script ... 145
Testing the Filter .. 146

Scanning for Viruses with content_filter and amavisd-new .. 148
Installing amavisd-new ... 149
Testing amavisd-new .. 150
Optimizing amavisd-new Performance ... 154
Configuring Postfix to Use amavisd-new ... 157
Testing the Postfix amavisd-new Filter ... 160

Scanning for Viruses with smtpd_proxy_filter and amavisd-new 163
Configuring Postfix to Use amavisd-new with smtpd_proxy_filter 164
xvi Content s i n De ta i l

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

PART III: ADVANCED CONFIGURATIONS

13
MAIL GATEWAYS 169

Basic Setup ... 170
Setting Gateway Relay Permissions ... 170
Setting a Relay Domain on the Gateway .. 171
Setting the Internal Mail Host on the Gateway .. 171
Defining Relay Recipients ... 171

Advanced Gateway Setup ... 172
Improving Security on the Mail Gateway .. 173
Using Postfix with Microsoft Exchange Server ... 174
Configuring Exchange and Postfix Communication 185

NAT Setup .. 187

14
A MAIL SERVER FOR MULTIPLE DOMAINS 189

Virtual Alias Domains ... 189
Setting the Virtual Alias Domain Name .. 190
Creating a Recipient Address Map .. 190
Configuring Postfix to Receive Mail for Virtual Alias Domains 191
Testing Virtual Alias Domain Settings ... 191
Advanced Mappings ... 192

Virtual Mailbox Domains ... 194
Checking Postfix for Virtual Delivery Agent Support 195
Basic Configuration ... 195
Advanced Configuration .. 199

Database-Driven Virtual Mailbox Domains ... 203
Checking Postfix for MySQL Map Support .. 204
Building Postfix to Support MySQL Maps ... 205
Configuring the Database .. 205
Configuring Postfix to Use the Database ... 208
Testing Database-Driven Virtual Mailbox Domains 212

15
UNDERSTANDING SMTP AUTHENTICATION 217

The Architecture and Configuration of Cyrus SASL ... 218
Which Approach Is Best? ... 220

SASL: The Simple Authentication and Security Layer ... 221
Authentication Interface .. 222
SMTP AUTH Mechanisms ... 223
Authentication Methods (Password-Verification Services) 225
Authentication Backends .. 225

Planning Server-Side SMTP Authentication ... 226
Finding Clients and Their Supported Mechanisms .. 226
Defining the Authentication Backend and Password-Verification Service 228
Conten t s in Detai l xvii
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Installing and Configuring Cyrus SASL .. 229
Installing Cyrus SASL ... 229
Creating the Postfix Application Configuration File 230
Configuring Logging and the Log Level .. 231
Setting the Password-Verification Service .. 231
Selecting SMTP AUTH Mechanisms ... 232
Configuring saslauthd .. 232
Configuring Auxiliary Plug-ins (auxprop) .. 236
Testing the Authentication ... 242

The Future of SMTP AUTH ... 245

16
SMTP AUTHENTICATION 247

Checking Postfix for SMTP AUTH Support .. 247
Adding SMTP AUTH Support to Postfix .. 248
Server-Side SMTP Authentication .. 249

Enabling and Configuring the Server ... 250
Testing Server-Side SMTP AUTH .. 254
Advanced Server Settings ... 258

Client-Side SMTP Authentication ... 259
AUTH for the Postfix SMTP Client .. 260
Testing Client-Side SMTP AUTH ... 263
The lmtp Client .. 265

17
UNDERSTANDING TRANSPORT LAYER SECURITY 267

TLS Basics ... 268
How TLS Works .. 269

Understanding Certificates .. 270
How to Establish Trust .. 270
Which Certification Authority Suits Your Needs? ... 271

Creating Certificates ... 271
Required Information ... 271
Creating the CA Certificate .. 272
Distributing and Installing the CA Certificate ... 273
Creating Your Server’s Certificate ... 276
Signing Your Server’s Certificate ... 277
Preparing Certificates for Use in Postfix .. 278

18
USING TRANSPORT LAYER SECURITY 279

Checking Postfix for TLS Support .. 279
Building Postfix with TLS Support .. 281

Building and Installing OpenSSL from Source Code 282
Building Postfix with TLS ... 282
xviii Conten t s in Deta i l

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Server-Side TLS .. 283
Basic Server Configuration ... 284
Server Performance Tuning ... 290
Server-Side Measures to Secure the SMTP AUTH Handshake 292
Server-Side Certificate-Based Relaying ... 298
Tightening the TLS Server ... 302

Client-Side TLS ... 302
Basic Client Configuration .. 303
Selective TLS Use ... 307
Client Performance Tuning .. 308
Securing Client SMTP AUTH ... 309
Client-Side Certificate-Based Relaying .. 309
Tightening Client-Side TLS .. 311

19
A COMPANY MAIL SERVER 313

Conceptual Overview ... 314
The LDAP Directory Structure .. 315

Choosing Attributes in a Postfix Schema ... 316
Branch Design .. 317
Building User Objects .. 318
Creating List Objects ... 319
Adding Attributes for the Remaining Servers ... 320

Basic Configuration .. 321
Configuring Cyrus SASL ... 321
Configuring OpenLDAP .. 322
Configuring Postfix and LDAP ... 325
Configuring Courier Maildrop .. 333
Configuring Courier IMAP .. 343

Advanced Configuration ... 348
Expanding the Directory ... 349
Adding Authentication to Servers .. 350
Protecting Directory Data ... 356
Encrypting LDAP Queries ... 358
Enforcing Valid Sender Addresses ... 365

20
RUNNING POSTFIX IN A CHROOT ENVIRONMENT 369

How Does a chroot Jail Work? .. 370
Basic Principles of a chroot Setup .. 370
Technical Implementation ... 371

How Does chroot Affect Postfix? ... 371
Helper Scripts for chroot .. 372
chrooted Daemons .. 372
chroot Libraries, Configuration Files, and Other Files 374

Overcoming chroot Restrictions .. 375
Content s i n De ta i l xix
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

PART IV: TUNING POSTFIX

21
REMOTE CLIENT CONCURRENCY
AND REQUEST RATE LIMITING 379

The Basics of Rate Limiting ... 379
Gathering Rate Statistics ... 380

Running the anvil Daemon .. 381
Changing the anvil Log Interval ... 381

Limiting Client-Connection Frequency .. 382
Testing Client-Connection Rate Limits .. 382

Restricting Simultaneous Client Connections ... 384
Testing Simultaneous Client-Connection Limits ... 384

Exempting Clients from Limits ... 386

22
PERFORMANCE TUNING 387

Basic Enhancements ... 387
Speeding Up DNS Lookups .. 388
Confirming That Your Server Is Not Listed as an Open Relay 389
Refusing Messages to Nonexistent Users .. 390
Blocking Messages from Blacklisted Networks .. 391
Refusing Messages from Unknown Sender Domains 391
Reducing the Retransmission Attempt Frequency .. 392

Finding Bottlenecks ... 392
Incoming Queue Bottlenecks ... 393
Maildrop Queue Bottlenecks ... 395
Deferred Queue Bottlenecks .. 396
Active Queue Bottlenecks ... 397
Asynchronous Bounce Queue Congestion Inequality 399
Using Fallback Relays ... 401

Tuning for Higher Throughput .. 402
Configuring an Alternative Transport .. 403

APPENDICES

A
INSTALLING POSTFIX 407

The Postfix Source Code ... 407
Applying Patches .. 408
Building and Installing from Source Code ... 408
Starting and Stopping Postfix .. 409
xx Conten t s in Detai l

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Installing Postfix on Debian Linux .. 410
Installing Postfix .. 410
Starting and Stopping Postfix .. 411
Installing an Update .. 411
Building from a Debian Source Package .. 411

Installing Postfix on Red Hat Linux .. 413
Getting Postfix for Red Hat Linux ... 413
Building an RPM from an SRPM .. 414
Switching to Postfix .. 417
Removing the Sendmail MTA .. 417
Starting and Stopping Postfix in Red Hat Linux .. 417

B
TROUBLESHOOTING POSTFIX 419

Problems Starting Postfix and Viewing the Log ... 419
Connecting to Postfix .. 423

Checking the Network ... 423
Verifying the Listening Process .. 424

Getting Postfix to Use Your Configuration Settings .. 425
Reporting Postfix Problems ... 425
Getting More Logging Information .. 426

Client-Specific Logging ... 426
Logging and qmgr ... 427

Other Configuration Errors .. 427
Intricacies of the chroot Jail ... 428
Solving Filesystem Problems ... 428
Library Hell .. 429
Daemon Inconsistencies .. 429

Fork Hell .. 430
Stress-Testing Postfix ... 430

Disk I/O .. 432
Too Many Connections .. 433

C
CIDR AND SMTP STANDARDS REFERENCE 435

Subnets in CIDR Notation .. 435
Server Response Codes ... 437

GLOSSARY 441

INDEX 449
Content s i n De ta i l xxi
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Using words to describe magic is like using a screwdriver to cut roast beef.
—Tom Robbins
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

A B O U T T H I S B O O K

This book is a step-by-step guide to Postfix.
You start as a beginner, and when you make

it to the end, you’ll hopefully be an expert.
The individual chapters come in three types:

tutorials, theory, and Postfix practice. The tutorials
are primers that help you understand the subject before
you try to implement a solution in Postfix. Theory-
oriented chapters tell you how Postfix deals with the
subject. Practice chapters show you exactly how to go
from theory to a working installation.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

We have split the book into four parts that separate major steps in
learning how to run Postfix:

Basics
Part I of the book shows you the basics of Postfix. You will learn how
to configure Postfix for a single domain and for a dial-up server. You’ll
also see the anatomy of Postfix from a distance and find out what tools
it provides.

Content Control
Postfix allows you to significantly control the message flow on your sys-
tem. Part II starts out by showing you how SMTP communication works
and explains the format of email. From there, you’ll see how Postfix can
control the various aspects of message handling.

Advanced Configurations
Postfix often interacts with other third-party applications, such as SQL
servers, Cyrus SASL, OpenSSL, and OpenLDAP. The chapters in Part III
show you how to do it.

Tuning Postfix
Configurable software always leaves room for tuning. Part IV helps you
find bottlenecks in your installation and provides hints that will help
you increase the mail system’s overall performance.

Additional Resources

In addition to The Book of Postfix and the documentation that comes with
Postfix, there are two other resources that you can turn to when looking for
information or help.

Postfix Documentation, How-tos, and FAQs

The Postfix website (http://www.postfix.org/docs.html) has a page that covers
Postfix documentation, how-tos, and FAQs written by the Postfix community.

Mailing Lists

Wietse Venema runs several mailing lists that serve the Postfix community.
You can find information about how to subscribe to the following lists at the
Postfix Mailing Lists page (http://www.postfix.org/lists.html):

postfix-announce@postfix.org
A list for announcements of Postfix releases and updates.

postfix-users@postfix.org
General discussions about experiences with the Postfix mail system.
Postings are unmoderated and for members only.
xxvi About Thi s Book

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

postfix-users-digest@postfix.org
A daily mailing of articles that were sent out via the postfix-users
mailing list.

postfix-devel@postfix.org
A low-traffic list for people interested in Postfix development.

The Postfix community discusses concepts, problems, errors, patches, and
many other topics on the postfix-users@postfix.org list. When you experience a
problem or want to know about anything else related to Postfix, chances are
that you will find the answer browsing through the mailing-list archives. Several
organizations or people host postfix-users@postfix.org archives that can be
accessed with a web browser. A comprehensive list of archives can be found at
the Postfix Mailing Lists page (http://www.postfix.org/lists.html).

Conventions Used in This Book

Monospace type is used for

� Filenames and path names

� Mailing list names and Internet addresses, such as domain names, URLs,
and email addresses

� Daemons, commands, parameter names and values, environment vari-
ables, and command-line options

Monospace italic is used for

� Parameters and placeholders that should be replaced with the appropri-
ate value for your system

� Comments in sample command lines and code examples

Monospace bold is used for

Command lines and options to be typed into a shell window

Monospace bold italic is used to

Highlight specific lines referred to in the discussion

NOTE The $ character represents the regular prompt in command lines; the # character is the
superuser’s shell prompt.

Domains and Names Used in This Book

Because this book is about mail services, we will talk a lot about message
delivery and transport, and we will need to include names of domains,
senders, and recipients in examples. The names that we’ll normally use are
as follows.
About Th is Book xxvii
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

The Local Domain

Throughout the book, we’ll claim the domain example.com as our own. The
mail server will presumably accept (or at least consider) messages for local
users anyuser@example.com and anyuser@mail.example.com. When following
examples to build your own Postfix server, you will need to replace
example.com with the name of your domain.

NOTE Of course, we don’t really own the example.com, example.org, and example.net
domains. The Internet Assigned Numbers Authority (IANA) has reserved them for use
in documentation.

Our Provider

Throughout the book, we’ll use the example-isp.com domain as our ISP’s
domain name.

Scripts

You can find supporting scripts and other helpful information, such as
errata, at http://www.postfix-book.com.

Comments

If you find an error or want to send some other feedback, please send your
comments to comments@postfix-book.com.
xxviii About Th is Book

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

1
A N I N T R O D U C T I O N T O P O S T F I X

Postfix is a message transport agent
(MTA) that transports messages from a

mail user agent (MUA, or mail client) to
a remote mail server with SMTP. An MTA

also accepts messages from remote mail servers
to relay them to other MTAs or deliver them to local
mailboxes. After transmitting or delivering a message,
Postfix’s job ends. Other servers are responsible for
getting the message to the end user. For example,
MTAs, such as POP3 or IMAP servers, hand the
message to an MUA like Mutt, Outlook, or Apple Mail,
where the user can read it.

At first glance, the MTA’s job seems fairly simple, but it isn’t. A message
transport agent is special because it must communicate across network
borders—they transmit content to other networks and accept content for
their own network. Common sense now dictates that anyone running a
network must take precautions to protect their servers and data from attacks,
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

and there is a widespread belief that all you need to do is install a firewall
that controls connections in both directions between local and remote
networks. This is a myth: a firewall is not an application; it’s a concept.

The most popular part of a common firewall implementation is an
application that monitors and restricts connections. Unfortunately, firewalls
normally have no way of evaluating the content exchanged between two
hosts; they control the hosts, ports, and transport layer protocols that are
used in data communication, but they do not restrict communication based
on its content. Analyzing content is a much harder job that must be done by
specialized applications that can decide what to do with the content and
determine whether it is harmful or not. MTAs perform this task for email. In
addition, modern MTAs must be fast, reliable, and secure because they
transport the most popular data on the largest network on the planet: email.

There are many MTAs to choose from, but most of them fall short in one
way or another. For example, one has a brilliant security model, but its
developer base is no longer a small core team, and this is an invitation to
failure and opens doors for security problems. A second MTA is widespread
because it is part of a popular groupware package, but it appears that the
development team spent too much time on the groupware functionality and
forgot to keep up with Internet standards and new challenges from spam and
malicious attackers. Finally there’s an MTA that easily copes with the stan-
dards and has no problems with servicing many users at the same time, but it
has a security record so terrible that you need an expert who can take the
necessary counteractive measures between fixes in order to run it safely.

You don’t need to be an expert to run Postfix; it tries to run as safely as
possible out of the box. Postfix security is rooted in its default configuration
settings. If the basic configuration of an application is safe and complete
enough that you don’t need to change anything, it’s easy to run a safe MTA.
Better still, if you need to change something, Postfix has such a clear,
structured syntax for parameters and options that it is rather easy to change
the default behavior successfully. Furthermore, the Postfix application
design is modular, with each module running at the lowest possible privilege
level required to get the job done. Postfix was designed with security in mind,
starting at a higher level than the code itself.

Postfix performs admirably because it is focused on the core tasks of mail
transport; it doesn’t reinvent the wheel with functionality that other appli-
cations on the system already provide. Postfix gives you the means to plug in
external applications when a related task is outside of the message transport
area. In addition, Postfix uses the full power of Unix to do its work. This tight
integration with the operating system not only makes it easier to access
external applications, but also improves performance.

A look at the modern tasks of mail transport and handling reveals Postfix
to be the very heart of a mail transport suite. In Figure 1-1, you can see that
Postfix is surrounded by specialized applications and tools to help control
content, connections, and relaying.
2 Chapter 1

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 1-1: Postfix: The very heart of a mail transport suite

This book shows you how to configure Postfix for use in a small network,
as a mail relay, as a virus filter, and as a company mail server integrated into a
modern IT architecture. As you progress through the chapters, you will find
theory and tutorials that go far beyond the online manuals, helping you get
the most out of this excellent package.

Postfix

Relay Content

Connection
An Int roduct ion to Pos tf ix 3
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

PART I
B A S I C S

The first part of this book covers the basics of Postfix,
starting with the operating system prerequisites and
how to set up a mail server for a single domain. These
chapters will help you become familiar with the Postfix
configuration file syntax and some of Postfix’s compo-
nent programs and utilities.

Here is an overview of the four chapters in this part of the book:

Preparing Your Host and Environment
Before installing Postfix, you should always verify that your server host
can handle an SMTP server. Chapter 2 shows you how to configure the
operating system so that you can get the most out of Postfix.

Mail Server for a Single Domain
The first step in any new Postfix installation is to create a configuration
that can receive mail for a single domain. In Chapter 3, you will see how
to verify that the system works and how to create a basis for more compli-
cated setups.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Dial-up Mail Server for a Single Domain
You don’t need to significantly modify the single-domain setup to get a
working dial-up configuration. Chapter 4 shows you these small but
important changes.

Anatomy of Postfix
Wietse Venema says that “Postfix is actually a router,” one that routes
messages instead of IP packets. In Chapter 5, you’ll get the big picture of
how the Postfix innards interact.
6 Par t I

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

2
P R E P A R I N G Y O U R H O S T A N D

E N V I R O N M E N T
At first there was nothing. God said, “Let there be
light!” Then there was still nothing, but you could

see it.—Ignacio Schwartz

You’re probably pretty excited because
you just got this book and you can’t wait to

start working with Postfix. However, there
is one thing you should know before you start.

Postfix was built by Wietse Venema, who really knows Unix, and the
Postfix design does not include functionality that Unix provides by default.
Therefore, Postfix expects your system to be set up properly and will only
perform as well as the underlying system.

Don’t skip this chapter because it seems like kiddie stuff. Take the time
to go through the following sections to ensure that your system is in order.
Postfix will reward you for this effort with fast, reliable, and secure services.

Here is the system checklist for Postfix:

� Set your hostname correctly

� Verify your host’s connectivity
� Maintain a reliable system time
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

� Make sure that the syslog service can record Postfix diagnostics
� Configure name resolution for the client

� Configure domain name service (DNS) records for the mail server

Hostname

A mail server must have a fully qualified domain name (FQDN; see RFC 821,
ftp://ftp.rfc-editor.org/in-notes/rfc821.txt) such as mail.example.com to inter-
operate reliably with other systems. Postfix automatically uses the hostname
that you assign to the server when greeting remote mail clients and servers,
unless you manually configure another name.

A fully qualified domain name is also important because Postfix does
more than accept mail from clients—when in client mode, Postfix also
transports messages to other mail servers. Many mail servers check the
hostname that the client announces and do not accept messages if the client
does not provide a fully qualified domain name, and some servers even
check that the FQDN resolves in DNS.

Your operating system sets your system’s hostname at boot time. To see
whether your system already has an FQDN, log in and enter hostname:

$ hostname -f
mail.example.com

If this command does not return a fully qualified domain name, find out
how your system sets the hostname and fix it. However, if your system already
has an FQDN hostname, but you would like Postfix to use a different one,
leave your system’s setting as it is. You’ll override the default using the
myhostname parameter instead.

NOTE The -f option to hostname doesn’t work on Solaris, with the GNU hostname command,
and in some other environments. If your hostname doesn’t work as described here, try
omitting the -f option. If that doesn’t work, consult your manual.

Connectivity

Verify that your machine can reach its network and that hosts on the network
can talk to it. The first part should be easy—if your machine can go online
and access web pages, it is connecting to a network. Incoming connections
are trickier. To test them, you need a client in the network that typical clients
will connect from. If Postfix offers services to the entire Internet, you should
verify connectivity from a host that is completely independent of your server.

TCP Port 25

Make sure that nothing blocks your server’s TCP port 25. If you have a
firewall, make sure that the firewall policy allows incoming and outgoing
connections on port 25. Keep in mind that some Internet service providers
8 Chapter 2

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

(ISPs) block outgoing connections to port 25 on the entire Internet on their
routers unless you ask them to lift the restriction. Some ISPs may refuse to lift
the restriction, preferring that you relay through their mail servers using a
system such as SMTP authentication, described in Chapter 16.

The reason that TCP port 25 must be kept open is that Postfix and other
mail servers listen for connections on it. It is the official IANA port assign-
ment for SMTP (see http://www.iana.org/assignments/port-numbers for a full list).
The IANA is the central registry for assigned numbers in the Internet Proto-
col, such as ports, protocols, enterprise numbers, options, codes, and types.

System Time and Timestamps

Having the correct system time is important when you are tweaking features
and weeding out problems. When you need to go beyond the boundaries of
your system to work out mail problems with other postmasters, a correct
timestamp might be exactly what you need to link actions on your mail
servers with those on servers that you do not control.

Postfix keeps careful track of its actions in mail headers. For example,
have a look at this header:

Received: from mail.example.net (mail.example.net [192.0.34.166])
 by mail.example.com (Postfix) with ESMTP id 6ED90E1C65
 for <recipient@example.com>; Sat, 7 Feb 2004 10:40:55 +0100 (CET)
Reply-To: sender@example.net
From: Sender <sender@example.net>
To: Recipient <recipient@example.com>
Subject: Keep correct system time
Date: Sat, 7 Feb 2004 10:42:01 +0100

Postfix also makes date-related notes in the mail log. Here are some
sample log messages:

Feb 7 2004 10:40:55 mail postfix/pickup[32610]: 6ED90E1C65: uid=501 from=<sender>
Feb 7 2004 10:40:55 mail postfix/cleanup[398]: 6ED90E1C65:
 message-id=<20040416020209.7D62343F30@mail.example.com>

Therefore, you should ensure that you get the best time you can. Don’t
trust your system’s built-in timer; not only does the time kept by the Unix
kernel drift over time, but the chips that motherboard manufacturers use in
their battery-backed clocks are cheap and also drift from the real time. You
cannot expect a local time source to be in sync with the times on other mail
servers.

There are two ways to get an accurate clock. You can use NTP (Network
Time Protocol) to get the time over the network, or use a GPRS (worldwide)
or DCF-77 (in most of Europe) time device to get the time over radio.
However, if you don’t have access to these solutions, you can try using
Prepar ing You r Hos t and Env ironmen t 9
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

clockspeed (http://cr.yp.to/clockspeed.html) as a last resort. This application
uses a hardware tick counter to compensate for a persistently fast or slow
system clock. Given a few time measurements from a reliable source, it
computes and compensates for the clock skew.

NOTE To use an NTP server, you must run an NTP client on your system (such a client comes
with practically every operating system). To use NTP, you must allow incoming and
outgoing User Datagram Protocol (UDP) packets on port 123 on your firewall. If you
don’t know how to configure your NTP client, visit the NTP website (http://
www.ntp.org) for more information.

Syslog

One of the most important places to look for diagnostic messages is the
mail log. Postfix uses the standard Unix logging utility, called syslogd. You
normally configure syslogd through the /etc/syslog.conf file. Here’s a sample
configuration:

Log anything (except mail) of level info or higher.
Don't log private authentication messages!
*.info;mail.none;authpriv.none;cron.none -/var/log/messages
The authpriv file has restricted access.
authpriv.* -/var/log/secure
Log all the mail messages in one place.
mail.* -/var/log/maillog
Log cron stuff
cron.* -/var/log/cron
Everybody gets emergency messages, plus log them on another
machine.
*.emerg *
Save mail and news errors of level err and higher in a
special file.
uucp,news.crit -/var/log/spooler
Save boot messages also to boot.log
local7.* /var/log/boot.log

First, take a look at the first entry, which contains mail.none to keep mail
messages out of /var/log/messages. This is important because you do not want
mail log messages to clutter your general system messages. You can see that
the mail log gets its own entry and file (/var/log/maillog). The hyphen in
front of the filename indicates that syslogd should write the messages to the
file asynchronously, rather than try to force a write to the disk every time a
new log message arrives.

Unfortunately, there are several things that can go wrong with syslogd.
If you don’t seem to be getting any log messages, the very first thing you
should do is make sure that syslogd is actually running. The following
example shows how to run the ps command to look for the daemon.
10 Chapter 2

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

ps auxwww | grep syslog
root 15540 0.0 0.0 1444 524 ? S May21 18:20 syslogd -m 0 �
root 22616 0.0 0.0 1444 452 pts/0 R 18:09 0:00 grep syslog

� The first line of output here shows that syslogd has been running
since May 21.

In addition, make sure that the log files exist and are writable before you
instruct syslogd to write to them. Some implementations of syslogd do not
automatically create files and fail silently if there is a problem with the log
file. The Solaris syslogd is notorious for this.

A very common error is to use spaces instead of tabs to separate the log
type and the log file in the /etc/syslog.conf file. Your syslog.conf should be
written like this:

mail.*<TAB>-/var/log/maillog

Yet another syslogd.conf problem is logging to another network host.
Watch out for an entry like this:

mail.* @loghost

In this case, syslogd is sending all of its logs to loghost, so you should
check the logs on that host instead of the mail server. Make sure that you
actually have such a host. It’s all too common to have logs going to an
unintended host (or into a black hole) due to an errant syslogd.conf file
entry.

Name Resolution (DNS)

Before a mail server such as Postfix can transport a message to a remote
destination, it must locate that destination. On the Internet, you find remote
resources with the domain name service (DNS). A nameserver returns the IP
address of a hostname, and conversely the hostname that corresponds to an
IP address.

Well-functioning DNS is critical to MTA performance. The sooner
Postfix can resolve a target IP address, the sooner it can start to communicate
with the remote mail server and transport a message.

NOTE Poor hostname lookup performance can become a major bottleneck on large mail hubs.
If your server runs into problems, a caching nameserver can help. Set up a caching
nameserver for large mail systems. Be aware that antispam measures can increase the
number of DNS queries that your mail server performs by several factors.

Before you attempt to improve name-resolution performance on your
system, be sure that your operating system correctly resolves remote
Prepari ng Your Hos t and Envi ronmen t 11
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

hostnames by asking your nameserver for the MX record (see the “MX
Records” section, later in this chapter) of postfix-book.com. Try this command:

$ dig postfix-book.com MX

The output should look like this:

; <<>> DiG 9.2.2-P3 <<>> postfix-book.com MX
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 23929
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2
;; QUESTION SECTION:
;postfix-book.com. IN MX
;; ANSWER SECTION:
postfix-book.com. 86400 IN MX 10 mail.postfix-book.com. �
;; AUTHORITY SECTION:
postfix-book.com. 86400 IN NS ns3.ray.net. �
postfix-book.com. 86400 IN NS ns.state-of-mind.de.
;; ADDITIONAL SECTION:
mail.postfix-book.com. 86400 IN A 212.14.92.89
ns.state-of-mind.de. 81566 IN A 212.14.92.88
;; Query time: 58 msec
;; SERVER: 212.18.0.5#53(212.18.0.5)
;; WHEN: Sat Apr 17 03:56:47 2004
;; MSG SIZE rcvd: 145

� This line indicates that mail.postfix-book.com is the mail server that
accepts mail for recipients within the postfix-book.com domain.

� These two lines show that ns3.ray.net and ns.state-of-mind.de are the
authoritative nameservers for postfix-book.com.

NOTE The dig (Domain Information Groper) command is not standard on some outdated
platforms. You can get dig with the BIND distribution at ISC (http://www.isc.org). If
you can’t install dig, you can probably still run the preceding query with host or
nslookup; the latter command is now deprecated.

If the lookup query is successful, Postfix can (in theory) resolve host-
names correctly. If the request is not successful and no hostnames can be
resolved, you need to get DNS sorted out immediately.

One common problem with name resolution is for it not to work
when the server tries to query unavailable nameservers. Check your
/etc/resolv.conf file. Let’s say that it looks like this, where the machine
queries a nameserver on localhost (127.0.0.1), and upon failure it queries
134.169.9.107:

nameserver 127.0.0.1
nameserver 134.169.9.107
12 Chapter 2

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

It’s fine to query localhost if you’re running a caching nameserver.
However, if you don’t have one, this request will take a while to time out.

If you find out later that nameserver queries with dig work, but Postfix
cannot find the host (for example, if you see no route to host in the log),
then it’s likely that you’re running Postfix chrooted, and therefore, it looks at
a different configuration file to determine settings for name resolution. For
example, if your chroot jail is /var/spool/postfix, Postfix will then look at /var/
spool/postfix/etc/resolv.conf. Make sure that the files are consistent by
running cp -p /etc/resolv.conf /var/spool/postfix/etc/resolv.conf, and then
stop and start Postfix.

DNS for Mail Servers

You need to configure your nameserver to tell the rest of the world that your
server is the one that can deliver mail to your domain. Ask your hostmaster
(the person responsible for running the nameserver of your domain) to set
the following entries:

A record
Your mail server must have a fully qualified hostname so that clients can
find out where your server is. An A record maps an FQDN to an IP
address.

PTR record
Your system’s hostname should be reverse-resolvable. Mail servers that
learn your server’s hostname from SMTP communication should be able
to find out if your server is really the one speaking to them.

MX record
MX records let clients know that your server is responsible for mail deliv-
ery for a domain or a certain host.

A Records

The domain name system has different types of records to tell hosts about
resources on the Net. One of the most important is the A record, which maps
hostnames to addresses. A client that sends a hostname to a nameserver
should get the IP address of the host as a response. The following is an
example session that shows that www.example.com is mapped to 192.0.34.166.

$ dig www.example.com A
; <<>> DiG 9.2.1 <<>> www.example.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30122
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 0
;; QUESTION SECTION:
;www.example.com. IN A
Prepari ng Your Hos t and Envi ronmen t 13
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

;; ANSWER SECTION:
www.example.com. 172627 IN A 192.0.34.166
;; AUTHORITY SECTION:
example.com. 21427 IN NS b.iana-servers.net.
example.com. 21427 IN NS a.iana-servers.net.
;; Query time: 1 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Sat Apr 17 16:43:40 2004
;; MSG SIZE rcvd: 97

PTR Records

The counterpart to the A record is the PTR record, which maps addresses to
hostnames. When the client sends an IP address to a nameserver, the
response should be the hostname corresponding to the address, as in this
example:

$ dig -x 192.0.34.166
; <<>> DiG 9.2.1 <<>> -x 192.0.34.166
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 37949
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 5, ADDITIONAL: 0
;; QUESTION SECTION:
;166.34.0.192.in-addr.arpa. IN PTR
;; ANSWER SECTION:
166.34.0.192.in-addr.arpa. 21374 IN PTR www.example.com. 1

;; AUTHORITY SECTION:
34.0.192.in-addr.arpa. 21374 IN NS ns.icann.org.
34.0.192.in-addr.arpa. 21374 IN NS svc00.apnic.net.
34.0.192.in-addr.arpa. 21374 IN NS a.iana-servers.net.
34.0.192.in-addr.arpa. 21374 IN NS b.iana-servers.org.
34.0.192.in-addr.arpa. 21374 IN NS c.iana-servers.net.
;; Query time: 1 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Sat Apr 17 16:44:39 2004
;; MSG SIZE rcvd: 201

CAUTION Now that spammers plague the Internet, reverse-resolution of A records with PTR
records is more important than ever. Many postmasters configure their mail servers to
accept mail only if a reverse lookup for the connecting client succeeds.

However, just because other mail servers reject mail based on reverse lookups
doesn’t mean that you should. This often causes problems because many ISPs do not
delegate reverse name lookup to their customers’ nameservers and will not provide
proper information on their server.
14 Chapter 2

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

MX Records

A nameserver can do more than resolve resources; it can also tell clients
about services offered in a domain. The mail server responsible for a domain
is one of these services. You can configure an MX record to point to the A
record of your mail server.

CAUTION DNS also has a CNAME, an alias that can point to an A record. For example, you
could configure a CNAME record that points www.example.com at srv01.example.com.
Clients that ask for www.example.com would get srv01.example.com as a response.

Do not have your MX record point to one of these aliases. The most common mail
transport protocol (SMTP) requires that the domain name in an email address be either
an A or an MX record. In the preceding example, you could not point an MX record at
www.example.com, but because srv01.example.com has an A record, you could point it
there.

You may specify more than one MX record, and you can also prioritize
mail servers so that clients try servers in a specific order. Here’s an example:

$ dig m-net.de MX
; <<>> DiG 9.2.1 <<>> m-net.de MX
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 3133
;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 2, ADDITIONAL: 0
;; QUESTION SECTION:
;m-net.de. IN MX
;; ANSWER SECTION:
m-net.de. 7200 IN MX 50 mail-in.m-online.net. �
m-net.de. 7200 IN MX 100 mx01.m-online.net. �
m-net.de. 7200 IN MX 100 mx02.m-online.net.
;; AUTHORITY SECTION:
m-net.de. 7200 IN NS ns2.m-online.net.
m-net.de. 7200 IN NS ns1.m-online.net.
;; Query time: 27 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Sat Apr 17 17:07:05 2004
;; MSG SIZE rcvd: 140

� mail-in.m-online.net has the highest priority because it has the lowest
number (50). Clients will try to deliver mail to this mail server first.

� mx01.m-online.net and mx02.m-online.net have the second-highest
priority (100) by number. Clients will try either one of these if the highest-
priority mail exchanger is unavailable.
Prepari ng Your Hos t and Envi ronmen t 15
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

3
M A I L S E R V E R F O R A S I N G L E

D O M A I N

Configuring Postfix for a single domain
takes a matter of minutes. No matter what

configuration you plan to set up, starting with
the following single-domain configuration should

always be your first production step; it will prove that
Postfix works in its most simple setup.

This chapter will introduce you to the minimum configuration
parameters that Postfix needs in order to run, and it will show you how to
map long email addresses to short usernames in a single domain setup.

The Minimum Configuration

We will set up Postfix to accept email for a single domain, and Postfix should
deliver emails with different mail addresses within this domain to different
mailboxes.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Postfix should handle mail for this one domain only, and we’ll show the
minimum set of configuration changes that need to be applied against a
vanilla installation. A typical network architecture for a minimum config-
uration is shown in Figure 3-1.

Figure 3-1: A single-domain Postfix network

The mail server is connected permanently to the Internet and has a static
IP address. Forward (A record) and reverse DNS records that match the IP
address of the mail server have been provided.

A basic setup has basic requirements. Make sure you have properly
configured your host, as described in Chapter 2.

Configuring Postfix

In this chapter, we will configure Postfix to receive mail for a single domain.
Our machine will be named mail.example.com, and our domain is example.com.
We will follow these steps:

1. Configure Postfix to greet mail clients with the correct hostname.

2. Configure Postfix to accept mail for the domain example.com.

3. Configure Postfix to append example.com to mail sent with a bare
username.

4. Configure Postfix to deliver mail addressed to root to a different
mailbox.

5. Configure Postfix to deliver mail sent to email addresses to the
appropriate usernames.

6. Set permissions to make Postfix relay email from your network.

Setting the Hostname in the smtpd Banner

When mail clients and servers meet, they greet each other with their DNS
hostnames. The first thing we do is to configure the name that Postfix will
use when it introduces itself to a mail client. If your hostname is the same as

LAN

Workstation

Sw
itch Mail server

Internet

Workstation

Mail server

Mail server
18 Chapter 3

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

the name you want Postfix to use to greet mail clients, then you are lucky:
there is nothing to change. On the other hand, if your system’s hostname is set
to www.example.com, and you run Postfix on the same machine and want it to
greet mail clients with mail.example.com as the hostname, you can easily
achieve that.

CAUTION When Postfix transports messages to other mail servers, it acts as a mail client. While
introducing itself to the mail server, it uses the myhostname parameter as the HELO
name by default. Some mail servers are configured to reject mail if the HELO name and
the reverse-resolvable FQDN of the server do not match. Either make sure that the host-
name you set for Postfix matches the hostname of your server’s IP, or set smtp_helo_name
to match your official FQDN in the DNS namespace.

There are two ways to achieve a different hostname, either by setting the
myhostname parameter or by setting the mydomain parameter.

Setting myhostname

Setting myhostname is done by editing /etc/postfix/main.cf. Use your favorite
editor to open the file and search for myhostname. Then add your intended
hostname as the FQDN hostname:

myhostname = mail.example.com

As soon as you have set myhostname, Postfix is able to automatically derive
mydomain. Postfix simply strips off everything up to and including the first dot.
Because we have set myhostname to be mail.example.com, Postfix will derive
mydomain to be example.com—just what we need.

Setting mydomain

Instead of setting myhostname, you can set only mydomain. This alternative can be
very handy if you have a configuration that needs to be copied to multiple
machines.

mydomain = example.com

As soon as you have set mydomain, Postfix is able to create myhostname by
concatenating the output from the uname -n command of this specific host
with mydomain. This means that if your main.cf only sets mydomain explicitly, and
you copy the file to another host within the same domain (example.com in our
example), Postfix will complete the correct hostname by itself.

Setting the Domain Mail Is Accepted For
Postfix will relay host for local clients, meaning it will accept mail for
domains for which it is not configured as final or relay destination. In a
single-domain setup, all you need to do is to set the mydestination parameter.
(Procedures for setting Postfix up to relay mail for more than one domain
are discussed in Chapters 13 and 14.)
Mai l Se rve r for a S ingle Domain 19
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

NOTE When you set mydestination, you can hard-code the destination (for example,
mydestination = mail.example.com) or you can use the values from parameters
that have already been set in Postfix using the $parameter notation. Hard-coding
makes it awkward to change configurations because there are many parameters to edit,
and considering typos and other potential human errors, this is a failure-prone setup.
We do not recommend hard-coding.

Our goal in this chapter is to make Postfix accept any mail that is
destined for example.com. Because we already have provided this value in
mydomain, we can simply refer to it when we set mydestination in main.cf:

mydestination = $mydomain

If you want to take this further and you want Postfix to accept mail for
the hostname you have set in myhostname, then you simply add that parameter
to mydestination:

mydestination = $mydomain, $myhostname

As you can see, values are added in a comma-separated list, and the list
ends without a comma. To take this another step further, you can also add
www.example.com and ftp.example.com by expanding the list with a combination
of host and $mydomain:

mydestination =
 $mydomain,
 $myhostname,
 www.$mydomain,
 ftp.$mydomain

This example also introduces another form of notation. If you need to
add many values to a parameter, you can set each on a separate line, but each
subsequent line must start with some whitespace (otherwise Postfix will not
recognize the value). You can verify this in a shell window by checking the
output of postconf mydestination, just to be sure.

This format can be used for any parameter within Postfix that takes more
than one value.

Setting the Domain to Be Appended to Outgoing Messages

When a local service, such as cron or at, or a command-line mail client sends
mail, it usually does not supply a complete sender or recipient address, but
just bare usernames. Although this is okay as long as the recipient is local, it
becomes a problem when the message is sent off to another host. It takes
quite some time to track which host the mail came from, and the receiving
mail server will not be able to bounce the mail back if the mail’s recipient
does not exist on the target host.
20 Chapter 3

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Postfix provides a parameter whose value is appended to senders or
recipients that are specified in a non–fully qualified form: myorigin. Again, we
can reuse parameters that already have been set within main.cf:

myorigin = $mydomain

As soon as you have enabled this setting, Postfix will append the value in
mydomain to any address that has not been fully qualified. For example, a
message produced by a cron job and sent as root would be set to
root@$mdomain, which in our case would become root@example.com.

If you do not set myorigin manually, it will default to myhostname, which
comes in handy if you run various hosts whose root messages should be
delivered to one role account at a central server. This way you will always
know the hostname the message came from; a cron job sent as root, for
example, would be modified by Postfix to be sent as root@$myhostname, which
in our case would be root@mail.example.com.

Mapping Mail Sent to root to a Different Mailbox

Postfix will deliver mail to any local user directly, even root, but Postfix won’t
give root privileges to external programs during delivery. This means you
cannot use local delivery agents (LDAs) such as procmail or maildrop to
deliver mail for root, because Postfix won’t run those programs as root, but
instead will run them with default_privs, which default to the privileges of the
user nobody. This is a security precaution designed to never compromise the
superuser account by running a vulnerable external program as root. This
does not mean that it is impossible to deliver mail that is meant for root,
though. The solution is to create a different user on your machine with
normal, low privileges, and have mail meant for root delivered to this
account instead.

In our examples we use admin as the account from which we start
administration of our host.1 To make Postfix deliver mail for root to admin,
simply open /etc/postfix/aliases, which the Postfix installation installs by
default,2 and change postfix to admin so that it reads as follows:

root: admin

NOTE If you choose to use admin for this purpose, you must also delete the aliases file entry
that sends admin mail to root. Otherwise you will create a loop.

1 Just recently a virus/worm used the sender address admin@$mydomain to spread itself through the
Internet. The name admin may not be a good choice for a user account.
2 The aliases file that comes along with Postfix contains all the addresses that are required by
various RFCs on a mail server. The aliases file itself will give you hints about where to find more
information on these requirements.
Mai l Se rve r for a S ingle Domain 21
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Once you have edited /etc/postfix/aliases3 and added the username you
prefer, you must create an indexed version, usually /etc/postfix/aliases.db,
in order to speed up the lookup process for Postfix. This is done by running
either postalias on the /etc/postfix/aliases or newaliases without parameters.
To get used to the tools that Postfix brings along, run this command:

postalias hash:/etc/postfix/aliases

CAUTION Postfix will not use any changes in your aliases file until you have updated the
indexed version, as it only reads from that file.

Starting Postfix and Testing Mail Delivery to root

It’s time to run the first tests. In the previous sections we added or changed a
number of settings, and if we go further without verifying that things are
okay to this point, we will probably have trouble if we need to trace an error.

Start Postfix

Before we start sending mail, we must start Postfix. All you need to enter is
postfix start and Postfix will reply with the following message:

postfix start
postfix/postfix-script: starting the Postfix mail system

If you get the following message, then Postfix was already up and
running:

postfix start
postfix/postfix-script: fatal: the Postfix mail system is already running

If Postfix was running when you made changes to its configuration, those
changes won’t have been noticed by Postfix. You could stop and start Postfix
to make it reread the configuration, but there is a far more elegant way of
doing this. Simply type postfix reload:

postfix reload
postfix/postfix-script: refreshing the Postfix mail system

This way, Postfix reloads only the configuration, which takes less time
and will not interrupt Postfix’s service to the clients.

3 The input and output file formats are expected to be compatible with Sendmail version 8 and
to be suitable for use as NIS maps.
22 Chapter 3

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Send Test Mail

Now that Postfix is started, we can run the first test: deliver mail sent to root
to its mailbox. There are two very simple ways to do this: send mail from the
command line, or send mail from a telnet session. Both approaches have the
advantage of excluding the influence of other applications, such as complex
GUI mail clients, and letting you focus on Postfix, in case an error turns up.

Sending Mail Using Postfix’s sendmail Binary

The most simple, reliable test is to use sendmail to test basic functionality,
because no components outside of Postfix will be involved. This command-
line utility is called sendmail for backward compatibility—many applications
on Unix systems that send email have the path to the sendmail binary, /usr/
sbin/sendmail or /usr/lib/sendmail, hard-coded in them. This is also where
Postfix puts its own sendmail binary, in order to offer a smooth switch
transition from Sendmail to Postfix.4

Type the following command to send mail to root:

echo foo | /usr/sbin/sendmail -f root root && tail -f /var/log/maillog

This will send the text foo to root with an envelope sender of root, and it
will open your mail log to check on its delivery status:

Aug 20 21:56:42 mail postfix/pickup[5160]: 848AD7247: uid=0 from=<root>
Aug 20 21:56:42 mail postfix/cleanup[5340]: 848AD7247:

message-id=<20030820195642.848AD7247@mail.example.com>
Aug 20 21:56:42 mail postfix/nqmgr[5161]: 848AD7247:

from=<root@mail.example.com>, size=306, nrcpt=1 (queue active)
Aug 20 21:56:42 mail postfix/local[5343]: 848AD7247:

to=<admin@mail.example.com>, orig_to=<root>, relay=local, delay=0,
status=sent (mailbox)

As you can see from the mail log, Postfix was able to send the message to
the mailbox. You can check this by running less /var/mail/admin:

From root@mail.example.com Wed Aug 20 21:56:42 2003
Return-Path: <root@mail.example.com>
X-Original-To: root
Delivered-To: admin@mail.example.com
Received: by mail.example.com (Postfix, from userid 0)
 id 848AD7247; Wed, 20 Aug 2003 21:56:42 +0200 (CEST)
Message-Id: <20030820195642.848AD7247@mail.example.com>
Date: Wed, 20 Aug 2003 21:56:42 +0200 (CEST)
From: root@mail.example.com (root)
To: undisclosed-recipients:;

foo

4 There’s one hook: If you migrate from Sendmail to Postfix, you may end up with two sendmail
binaries: The one that Postfix installed and the one that’s left over from the real Sendmail. You
must only use the one Postfix installed.
Mai l Se rve r for a S ingle Domain 23
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

NOTE If you are unsure where to look for the mailbox, type postconf mail_spool_directory.
This will tell you where Postfix delivers the mail.

So far so good. Postfix is able to deal with its own applications.

Sending Mail from the Command Line

Next we will verify that we are able to send mail from an MUA on localhost to
root. This is the second-simplest test case there is:

mail admin
Subject: Test from command line
This is a test mail from command line.
.

TIP In case you are not familiar with the mail program, here’s how to use it:

1. Enter mail on the command line.

2. Enter the name of the account that you want to send mail to, and press RETURN.

3. When prompted, enter a subject and press RETURN.

4. Enter the text of the message.

5. To send the message, start a new blank line, enter a single period (.), and press
RETURN.

To verify that the mail was sent, run less /var/mail/admin once more:

less /var/mail/admin
From root@mail.example.com Wed Aug 20 20:55:11 2003
Return-Path: <root@mail.example.com>
X-Original-To: admin
Delivered-To: admin@mail.example.com
Received: by mail.example.com (Postfix, from userid 0)
 id 37DE07247; Wed, 20 Aug 2003 20:55:11 +0200 (CEST)
To: admin@mail.example.com
Subject: Test from command line
Message-Id: <20030820185511.37DE07247@mail.example.com>
Date: Wed, 20 Aug 2003 20:55:11 +0200 (CEST)
From: root@mail.example.com (root)

This is a test mail from command line.

The message was delivered, and we have proven that local users can send
mail to other local users. Now it’s time to check whether mail can be sent to
admin from a remote user.

Sending Mail through a Telnet Session

The simplest mail client is a telnet client that connects to the SMTP port
(port 25). We’ll be doing it the hard way, because we want to exclude side
effects that might be introduced by other more comfortable (and more
buggy) mail clients. Here’s how you send a mail message with telnet.
24 Chapter 3

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

telnet mail.example.com 25
Trying 172.16.0.1...
Connected to mail.example.com.
Escape character is '^]'.
220 mail.example.com ESMTP Postfix
HELO client.example.com
250 mail.example.com
MAIL FROM: <test@client.example.com>
250 Ok
RCPT TO: <root@example.com>
250 Ok
DATA
354 End data with <CR><LF>.<CR><LF>
Test mail from a telnet session.
.
250 Ok: queued as 69F1A7247
QUIT
221 Bye

And for the last time, check delivery with less /var/mail/admin:

From test@client.example.com Wed Aug 20 21:25:16 2003
Return-Path: <test@client.example.com>
X-Original-To: root@example.com
Delivered-To: admin@mail.example.com
Received: from client.example.com (mail.example.com [172.16.0.1])
 by mail.example.com (Postfix) with SMTP id 2D89A7251
 for <root@example.com>; Wed, 20 Aug 2003 21:24:59 +0200 (CEST)
Message-Id: <20030820192459.2D89A7251@mail.example.com>
Date: Wed, 20 Aug 2003 21:24:59 +0200 (CEST)
From: test@client.example.com
To: undisclosed-recipients:;

Test mail from a telnet session.

This message was delivered too, and we have proven that Postfix accepts
messages that are sent from remote users to local users and that Postfix is
able to deliver them.

Mapping Email Addresses to Usernames
Now that we have successfully set up the basics, it is time to configure email
addresses that are a little more sophisticated. By default, Postfix will only
deliver email to usernames on your mail server. However, usernames (such
as y0000247), which are also often used for authentication when a user wants
to retrieve mail, rarely match the names people use when they communicate
with each other (such as john.doe@example.com). To make Postfix receive and
deliver email for names used in the real world to existing accounts, you need
to create aliases that point to the destinations Postfix is to deliver the
messages to.
Mai l Se rve r for a S ingle Domain 25
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Creating Aliases

Let’s assume that you have a new colleague at Example Inc. whose name is
John Doe, and it’s your job to provide him with an email account. John works
in the sales department, and he is supposed to receive mail addressed to
john@example.com, john.doe@example.com, and doe@example.com in one mailbox, as
well as any mail that is sent to sales@example.com, where he works together with
Silvia and Karol, who both receive any mail that goes to <sales@example.com>.
John already has been provided the account john, with which he can access
his files.

What you must do now is map these alias names (john@example.com,
sales@example.com, and so on) to his local username. This is done by creating
entries in /etc/postfix/aliases. In John’s case, you only have to create three
entries, although four mappings are required. The one you don’t have to
create is <john@example.com>, as any mail that is sent to that address will be
delivered to the username john, which is John’s account. You would need to
add the following entries to /etc/postfix/aliases:

users
john.doe: john
doe: john
groups
sales: silvia, karol, john

To complete your task, you will need to run either postalias hash:/etc/
postfix/aliases or newaliases to update your aliases.db file.

NOTE From the preceding listing, you can see that you must specify a localpart on the left
side, followed by a colon and the username on the right side (the localpart of an email
address is everything before the @ sign). Every alias entry can consist of one or more
values separated by commas. You may specify either usernames or email addresses.
Email addresses can point to other users on different hosts, which means that you could
accept mail for a user at your mail server and have it delivered to a totally different
address. Further information can be found in the aliases file itself, or you can run man
5 aliases.

Once you have added as many aliases as you need, it is time to run tests
for those mailboxes, just like the test we made before.

Setting Permissions to Make Postfix Relay Email from Your Network
Open relays are a postmaster’s nightmare. Any Postfix installation is relay safe
by default. In its default configuration, Postfix will relay only messages from
IP addresses inside your network. Postfix knows what the IP addresses of your
network are by checking the interfaces you have configured for your server.

NOTE On a Linux server, Postfix will trust all the subnets the machine’s interfaces are in.
Run ifconfig on Linux to get a list of all subnets Postfix will trust by default.
26 Chapter 3

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

The default settings work as long as your server and the hosts that use
Postfix on it are within the same network range. Chances are that you will
need to alter these settings when your network grows or gets more complex.
You could, for example, decide to run Postfix in a DMZ within an IP range
that differs from the one your internal hosts use. In that situation, Postfix
likely would not allow your clients to relay mail to foreign destinations, and
you would need to configure it to establish correct relay permissions.

Expanding or restricting relay permissions can be done either gener-
ically, by choosing a mynetworks_style that suits your network topography,
or individually, by manually specifying a list of IP addresses or ranges in
Classless Inter-Domain Routing (CIDR) notation (see Appendix C) for
mynetworks.

Both methods require you to change the configuration in main.cf
manually. The administration effort is reasonable for static IP ranges,
because they do not change often.

NOTE The manual administration effort is not reasonable if you want to permit relaying for
hosts with dynamic IP addresses, which change their IP address regularly. Applying
changes manually quickly becomes a tedious task. Chapter 16 explains and shows how
to automate this process.

Generic Network Relay Permissions

Generic relay permissions are set with mynetworks_style by choosing the class,
subnet, or host option.

class

The class option will make Postfix expand relay permissions to the whole
IP class A/B/C networks the server was configured for. For example, if
you ran Postfix on a machine with the IP address 192.0.34.166, and you
enabled mynetworks_style = class, Postfix would trust the whole class C
network, 192.0.34.0/24, and would permit relaying for hosts within this
range.

subnet

The subnet option will make Postfix restrict relay permissions to exactly
the subnetworks for which you configured the server’s network inter-
faces. For example, if you ran Postfix on a machine with the IP address
192.0.34.166/30, and you enabled mynetworks_style = subnet, Postfix would
trust all the hosts exactly within this range.

host

The host option will make Postfix restrict relay permissions to the
server you run Postfix on. For example, if you ran Postfix on a machine
with the IP addresses 192.0.34.166 and 127.0.0.1, and you enabled
mynetworks_style = host, Postfix would trust the hosts only (the IP
addresses 127.0.0.1 and 192.0.34.166).
Mai l Se rve r for a S ingle Domain 27
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Individual Relay Permissions

Individual relay permissions are set with mynetworks by creating a comma-
separated list of all the hosts and networks, in CIDR notation, for which
Postfix is to relay messages.

For example, if you ran Postfix in a network that connected two locations
(192.168.100.0/24 and 192.168.200.0/24), and you wanted it to permit relaying
for all the hosts of the DMZ it stands in (10.0.0.0/30), and also for any of its
own local interfaces (127.0.0.0/8), you would specify a list like this:

mynetworks = 127.0.0.0/8, 192.168.100.0/24, 192.168.200.0/24, 10.0.0.0/30

NOTE If you have many IP addresses and ranges, this kind of listing can become quite
complex within main.cf. Alternatively you can point mynetworks to a separate file
(mynetworks = hash:/etc/postfix/mynetworks) and create the complex listing there.
This file may not contain networks in CIDR notation, though. If you need CIDR
notation, use mynetworks = cidr:/etc/postfix/mynetworks.
28 Chapter 3

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

4
D I A L - U P M A I L S E R V E R F O R A

S I N G L E D O M A I N

Setting up a mail server to use a dial-up
connection requires only minor changes to

a basic Postfix configuration. Dial-up access to
the Internet can cost money (especially in Europe,

where there are connection fees), so you may not want
to run a mail server that initiates a connection for each
outgoing message. Instead, you can have the server
collect a certain number of messages before sending
them, to make the dial-up process cost-effective.

When a dial-up connection goes active, you will want Postfix to relay the
queued messages through your ISP’s relay host. In addition, you may need to
support SMTP authentication. You should also automatically retrieve
messages that could not be delivered to local users while the server was
offline.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

The differences between a dial-up server and the basic Postfix
configuration are as follows:
Connection

Because the mail server is only temporarily connected to the Internet, its
IP address likely changes with every new connection.

DNS resolution
The server cannot look up hostnames when it is offline. Also, the server’s
own DNS information changes with every new connection, so correct
reverse resolution might not be available.

Delivery restriction
Your ISP requires you to use its relay host, and furthermore, the relay
host may only relay messages for authenticated users.

Mail retrieval
Outside mail servers cannot deliver messages directly to your server
because your server isn’t usually online. Your ISP should handle this with a
mail server that holds your mail. When a message is sent to you, your ISP’s
mail server accepts and stores it until you use either a POP/IMAP client or
fetchmail to retrieve the mail and hand it down to your local MTA.

NOTE Mail retrieval with POP/IMAP and fetchmail (http://catb.org/~esr/fetchmail) is
not described in this book.

Figure 4-1 depicts a typical dial-up network. One or more machines
reside in a private network, and any machine that needs to access Internet
services uses your dial-up gateway, which also runs your Postfix server.

Figure 4-1: A typical dial-up network

You will need to perform the following steps to configure Postfix as a
dial-up mail server for a single domain. These steps are described in the
following sections.

1. Disable DNS resolution.

2. Check relay permissions.
3. Set the relay host.

4. Defer message transport.

LAN

Workstation

Sw
itch

Internet

Workstation

Mail serverGateway/
Mail server

ISP
(Mail relay)
30 Chapter 4

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

5. Trigger message delivery.
6. Configure relay permission for the relay host.

NOTE This scenario builds on the setup in Chapter 3. You need to configure and test your
server as described in that chapter. In addition, you should have already configured
your server’s dial-up procedure (http://www.ibiblio.org/pub/Linux/docs/HOWTO/
other-formats/html_single/PPP-HOWTO.html).

Disabling DNS Resolution

When Postfix receives a message to be delivered to a remote domain, it must
look up the MX or A record for the destination domain. Name lookups on
DNS servers normally involve a query leaving your network, meaning that the
server must connect to the Internet.

Because you want to keep dial-up connections to a minimum, you should
instruct Postfix not to look up DNS data until the server goes online. In fact,
Postfix should never look up the remote domains, because you want it to
send messages through your ISP’s relay host, which can figure out where
to send the message itself.

To prevent Postfix from looking up DNS data, set the disable_dns_lookups
parameter in your main.cf file:

disable_dns_lookups = yes

This suppresses DNS MX/A lookups in the smtp(8) client, and A
lookups in the lmtp(8) client; in both cases gethostbyname() is used instead.
You’ll need to keep this in mind when you set the relay host later in this
chapter.

After setting the disable_dns_lookups parameter, reload Postfix to activate
the change.

NOTE This setting does not disable DNS for the smtpd server program. Parameters such as
reject_unknown_sender_domain and permit_mx_backup (see Chapter 8) still work,
regardless of the value of disable_dns_lookups.

Adjusting Relay Permissions

A dial-up server normally has a dynamic IP address that changes whenever
the server connects to the Internet. Therefore, you cannot control relay
permissions for the dial-up server’s network interface unless you manually set
relay permissions every time your server goes online. Also, who in the
Internet would want to relay through a dial-up host other than a spammer?

NOTE Even if your host has only periodic connectivity, you should never allow relay access for
the entire Internet. One of the author’s dial-up mail servers received 56 (failed) relay
attempts within a 30-day period. That’s roughly two a day, and the machine wasn’t
even online 24/7! Fortunately nothing happened because it was relay safe.
Dial -up Mai l Se rve r for a S ingle Domain 31
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Unless you want certain users from the Internet to use your Postfix server
as a relay for some bizarre reason (see Chapter 16), you should restrict
relaying to your local network interface and the loopback interface in your
main.cf file. Here’s how you might do it if your private network were
192.168.0.0/24:

mynetworks = 192.168.0.0/24, 127.0.0.1/8

CAUTION Don’t use mynetworks_style = class to control relay permissions for a dial-up server.
This setting uses all IP address ranges configured for your network interfaces, includ-
ing the network that your server dials in to. Therefore, every client in your ISP’s net-
work would be able to use your mail server to relay messages!

As before, use postfix reload to reload the configuration.

Setting the ISP Relay Host

Before you perform this particular configuration step, you need to deter-
mine your ISP’s mail relay host. Many ISPs block outgoing connections on
TCP port 25 (the SMTP port) for dial-up customers, because spammers
abuse dial-up service trial offers.

NOTE In addition to your ISP’s own requirements, there are plenty of good reasons not to have
Postfix deliver messages directly to the final destination. For example, because a signifi-
cant amount of spam originates from dial-up machines, blacklists have started to list
whole blocks of dial-up networks (analog, ISDN, and DSL) that known spammers use.
Even if your message is not spam, a remote MTA might reject it on the basis of a DUL
(dial-up user list), simply because your mail originates from an IP address range
belonging to a dial-up pool.

For example, if the relay host were relay.example.com, you would use
this line:

relayhost = [relay.example.com]

Placing the relay host’s name or address in square brackets disables MX
lookups for that host.

After the customary postfix reload, you’re ready to move on.

Deferring Message Transport

At this point, Postfix has a configuration that delivers mail to a relay host
without DNS lookups, avoiding any open relay issues. However, the server
still dials up the ISP any time it receives outgoing mail destined for remote
networks. To stop this behavior and make Postfix queue outgoing messages
instead, edit main.cf and tell Postfix to defer the SMTP transport method
with the defer_transports parameter, as shown in the following example.
32 Chapter 4

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

defer_transports = smtp

NOTE If you use UUCP instead of SMTP, you can substitute uucp for smtp.

As usual, execute postfix reload as root after after making this change.
After the reload, Postfix will no longer deliver messages via SMTP until the
defer_transports parameter changes or vanishes. The next section shows how
to use this feature to deliver the messages when your server dials up the ISP.

Triggering Message Delivery

The only remaining task is to instruct Postfix to deliver all queued mail via
SMTP when it connects to the Internet. All you have to do is automatically
reconfigure Postfix when the server goes online and reverting to the original
configuration afterward. You can trigger this with scripts that the system runs
after establishing a connection. On a Linux system running PPP, these
scripts often reside in /etc/ppp/ip-up.d.

Create a script named postfix in this directory to run after the script that
sets resolv.conf. The postfix script looks like this:

start or reload Postfix as needed
if Postfix is running chrooted, copy resolv.conf to the resolv.conf Postfix
uses
cp -p /etc/resolv.conf `postconf -h queue_directory`/etc/resolv.conf �
unset defer_transports and make Postfix note it
postconf -e "defer_transports ="
postfix reload
Force a queue run to unload any mail that is hanging around
postfix flush

� The line involving resolv.conf is relevant only if Postfix is running in a
chroot jail. It assumes that the server alters its resolv.conf file when dialing
up. Postfix also needs to know the current nameservers, so this command
copies the new version to the chroot jail, where Postfix can find it.

Similarly, when the machine goes offline, you want to restore the old
queuing behavior. Create a script named postfix in /etc/ppp/ip-down.d to run
when the connection goes down (again, the line with resolv.conf is necessary
only in a chroot jail):

start or reload Postfix as needed
copy resolv.conf to the resolv.conf Postfix uses (only if Postfix is chrooted)
cp -p /etc/resolv.conf `postconf -h queue_directory`/etc/resolv.conf
set defer_transports and make Postfix note it
postconf -e "defer_transports = smtp"
postfix reload
Dial -up Mai l Se rve r for a S ingle Domain 33
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Configuring Relay Permissions for a Relay Host

Many free mail providers, especially those that offer SMTP client access
along with a web mail interface, require extra validation before they permit
your client to use their relay host. This is necessary because most of their
users connect from other access providers (and, therefore, from other IP
ranges than their own), so they cannot set relay permissions based on IP
addresses. If mail providers opened their mail servers to a wide range of IP
addresses, they would effectively become open relays, and it would be a
matter of minutes before spammers started to use them. Therefore, mail
providers require POP-before-SMTP or SMTP authentication.

POP-before-SMTP
A provider that requires POP-before-SMTP (see Chapter 15) accepts outgoing
relay messages only if you retrieve incoming mail before sending any new
messages. In other words, your machine must authenticate itself with the
provider’s POP3 or IMAP4 server before sending anything. When your host
authenticates, the provider notes your current IP address and allows that IP
address to send messages through its relay within a certain time window.

Postfix is an MTA; it does not speak POP3 and IMAP4. Therefore, Postfix
cannot perform POP-before-SMTP by itself. This is not a problem, because
you can easily configure fetchmail (http://catb.org/~esr/fetchmail) to do it
for you. Fetchmail is a small command-line utility that retrieves mail from
almost any kind of mail system on the Internet. To use it in a POP-before-
SMTP setup, perform these steps:

1. Configure Postfix as described in this chapter.

2. Follow the instructions in the fetchmail documentation to create a work-
ing configuration.

3. Add a trigger that calls fetchmail before reconfiguring Postfix in your
/etc/ppp dial-up script.

This way, your server runs fetchmail (a POP/IMAP client) at least once
before running the Postfix (SMTP) dequeuing phase, so your mail provider
will accept your outgoing messages.

SMTP Authentication
A provider that requires SMTP authentication allows your client or server to
relay messages through their relay host only if it has authenticated itself
during the SMTP dialog. To use SMTP authentication in Postfix, you don’t
need any extra services or programs, so it is preferable to POP-before-SMTP
(especially in cases where you want to send messages but not retrieve
anything).

You can find extensive information on how to configure client-side
SMTP authentication for Postfix in Chapter 16.
34 Chapter 4

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

5
A N A T O M Y O F P O S T F I X

This chapter describes how Postfix works,
what each piece of the system does, and

how these components relate to each
other. After going through this material, you

should have an understanding of Postfix as a
whole, so that you can you focus on individual goals.

Postfix consists of a small number of programs that interact with user
processes (sendmail, postqueue, postsuper, and so on) and a larger number of
programs that run in the background. Only the programs that run in the
background are controlled by the master daemon. The master daemon’s job
is to determine what work there is to do and dispatch the appropriate
program to do the work. This modular design allows for a higher level of
security because each program runs with the lowest privilege set needed to
fulfill its task.

You can think of the whole Postfix system as a router. This may sound
strange at first, but remember that a router’s job is to look at an IP packet,
determine the destination IP address (and possibly the source), and then
choose the right interface to route the packet toward its destination. Postfix
does the same thing with mail (see Figure 5-1), looking at the destination of
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

a message (the envelope recipient) and the source (the envelope sender)
to determine the application that will move the message closer to its final
destination.

Figure 5-1: Postfix works like a router

Now let’s look more closely at the system. A real router usually accepts IP
packets from multiple interfaces, routing them back out through the inter-
faces. The same is true for Postfix; it accepts messages from multiple sources
and then passes the mail on to multiple destinations. A message’s origin may
be the local sendmail binary or an SMTP or QMQP connection. The destina-
tion can be a local mailbox, outgoing SMTP or LMTP, a pipe into a program,
and more. Figure 5-2 shows this view of Postfix.

Figure 5-2: A Postfix “router” accepts and establishes all kinds of connections

The origin and destination of a message seem clear enough, but how
does Postfix pick a delivery method given a destination? A router uses
routing tables that match IP addresses to networks to determine a path.
Postfix does the same thing with email addresses.

In Postfix, lookup tables are called maps. Postfix uses maps not only to
find out where to send mail, but also to impose restrictions on clients,
senders, and recipients, and to check certain patterns in email content.
Figure 5-3 shows where the maps—to name but a few, aliases, virtual, and
transport are shown—fit in.

PostfixEnvelope
sender

Envelope
recipient

Postfix

SMTP

LMTP

local

pipe

SMTP

QMQP

sendmail
36 Chapter 5

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 5-3: Maps are the lookup tables of the Postfix “router”

Postfix Daemons

Figure 5-4 shows an overview of the Postfix daemons and how they fit
together.

NOTE Postfix is constantly under development. The following list of daemons is based on
Postfix 2.1.

master

The master daemon is the supervisor of Postfix, and it oversees all
other Postfix daemons. The master waits for incoming jobs to be
delegated to subordinate daemons. If there is a lot of work to do,
the master can invoke multiple instances of a daemon. You can
configure the number of simultaneous daemon instances, how often
Postfix can reuse them, and a period of inactivity that should elapse
before stopping an instance.

If you have ever worked with the inetd server on a Unix machine,
you will find many similarities between it and the master daemon.

bounce and defer
A mail transfer agent must notify the sender about undeliverable mail.
In Postfix, the bounce and defer daemons handle this task, which is trig-
gered by the queue manager (qmgr). Specifically, the two event types that
cause sender notices are unrecoverable errors and a destination that is
unreachable for an extended period of time. The latter case results in a
delay warning.

Postfix

SMTP

LMTP

local

pipe

SMTP

UUCP

QMQP

sendmail

aliasesvirtualtransport
Anatomy of Pos t f i x 37
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 5-4: The relationships between the Postfix daemons

sendmail

pickup

cleanup
trivial-
rewrite

incoming

active deferred

qmgr resolve

pipe

smtp

qmqpd anvil

bounce/
defer

virtual

lmtp

Legend

process queuemanual input
38 Chapter 5

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

error

The error daemon is a mail delivery agent like local or smtp. It is a deliv-
ery agent that always causes mail to be bounced. Usually you don’t use it
unless you configure a domain as undeliverable by directing mail to the
error delivery agent. If a mail is sent to the error daemon it will inform
the bounce daemon to record that a recipient was undeliverable.

trivial-rewrite

The trivial-rewrite daemon acts upon request by the cleanup daemon in
order to rewrite nonstandard addresses into the standard user@fqdn form.

This daemon also resolves destinations upon request from the queue
manager (qmgr). By default, trivial-rewrite distinguishes only between
local and remote destinations.

showq

The showq daemon lists the Postfix mail queue, and it is the program
behind the mailq (sendmail -bp) command. This daemon is necessary
because the Postfix queue is not world-readable; a non-setuid user pro-
gram cannot list the queue (and Postfix binaries are not setuid).

flush

The flush daemon attempts to clear the mail queue of pending and
deferred messages. By using a per-destination list of queued mail, it
improves the performance of the SMTP Extended Turn (ETRN) request
and its command-line equivalent, sendmail -qR destination. You can main-
tain the list of destinations with the fast_flush_domains parameter in the
main.cf file.

qmgr

The qmgr daemon manages the Postfix queues; it is the heart of the Post-
fix mail system. It distributes delivery tasks to the local, smtp, lmtp, and
pipe daemons. After delegating a job, it submits queue file path-name
information, the message sender address, the target host (if the destina-
tion is remote), and one or more message-recipient addresses to the dae-
mon it delegated the delivery task to.

The qmgr design is a good example of how Postfix handles jobs to
avoid resource starving and to maintain stability. Two things stand out:

� qmgr maintains a small active queue, with just a few messages
pending for delivery. This queue effectively acts as a limited win-
dow for the potentially larger incoming and deferred queues, and it
prevents qmgr from running out of memory under a heavy load.

� If Postfix cannot immediately deliver a message, qmgr moves the
message to the deferred queue. Keeping temporarily undeliverable
messages in a separate queue ensures that a large mail backlog
does not slow down normal queue access.

qmgr uses the bounce and error daemons to bounce mail for recipients
listed in the relocated table that contains contact information for users
or domains that no longer exist on the system.
Anatomy of Pos t f i x 39
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

proxymap

Postfix client processes can get read-only access to maps through the
proxymap daemon. By sharing a single open map among many Postfix dae-
mons, proxymap circumvents chroot restrictions and reduces the number
of open lookup tables.

spawn

The spawn process creates non-Postfix processes on request. It listens on a
TCP port, Unix domain socket, or FIFO connected to the standard
input, output, and error streams. The only use for spawn discussed in this
book is for the Postfix external content filtering system in Chapter 13.

local

As the name suggests, the local daemon is responsible for local mailbox
delivery. The Postfix local daemon can write to mailboxes in the mbox
and Maildir formats. In addition, local can access data in Sendmail-style
alias databases and user .forward files.

NOTE These capabilities make local the counterpart to the Sendmail mail posting agent, and
they both maintain the same user interface.

As an alternative, local can delegate mailbox delivery to a local
delivery agent (LDA) that provides more advanced features, such as
filtering. Two very popular LDAs are procmail (http://www.procmail.org)
and maildrop (http://www.flounder.net/~mrsam/maildrop).

Postfix can run multiple instances of local.
virtual

The virtual daemon, sometimes called the virtual delivery agent, is
a stripped-down version of local that delivers exclusively to mailboxes.
It is the most secure Postfix delivery agent; it does not perform alias
and .forward file expansions.

This delivery agent can deliver mail for multiple domains, making it
especially suitable for hosting several small domains on a single machine
(a so-called POP toaster) without the need for real system or shell
accounts.

smtp

The smtp client is the Postfix client program that transports outbound
messages to remote destinations. It looks up destination mail exchang-
ers, sorts the list by preference, and tries each address until it finds a
server that responds. A busy Postfix system typically has several smtp dae-
mons running at once.

lmtp

The lmtp client communicates with local and remote mailbox servers
with the Local Mail Delivery Protocol (LMTP) defined in RFC 2033
(ftp://ftp.rfc-editor.org/in-notes/rfc2033.txt). It is often used with the
Cyrus IMAP server (http://asg.web.cmu.edu/cyrus/imapd).
40 Chapter 5

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

The advantages of a setup using Postfix’s lmtp client are that Postfix
handles all of the queue management and one Postfix machine can feed
multiple mailbox servers (which need to have an LMTP daemon) over
LMTP. The opposite is also true: several Postfix machines can feed one
mailbox server through lmtp. These mailbox server(s) could, for
example, be running Cyrus IMAP.

pipe

The pipe mailer client is the outbound interface to other mail transport
mechanisms. It invokes programs with parameters and pipes the message
body into their standard input.

pickup

The pickup daemon picks up messages put into the maildrop queue by the
local sendmail user client program. After performing a few sanity checks,
pickup passes messages to the cleanup daemon.

smtpd

The smtpd daemon handles communication with networked mail
clients that deliver messages to Postfix through SMTP. smtpd performs
a number of checks that protect the rest of the Postfix system, and it
can be configured to implement unsolicited commercial email (UCE)
controls (local or network-based blacklists, DNS lookups, other client
requests, and so on). smtpd hands the message down to cleanup.

cleanup

The cleanup daemon is the final processing stage for new messages. It
adds any required missing headers, arranges for address rewriting, and
(optionally) extracts recipient addresses from message headers. The
cleanup daemon inserts the result into the incoming queue and then noti-
fies the queue manager that new mail has arrived.

sendmail

sendmail is a Postfix command that replaces and emulates Eric Allman’s
MTA Sendmail. Its purpose is to provide a Sendmail-compatible inter-
face to applications that will only invoke /usr/sbin/sendmail. It interacts
with the postdrop binary to put mail into the maildrop queue for pickup.

NOTE sendmail is the slowest way to inject mail into the Postfix queue system. If you need to
send a large amount of mail at once, use SMTP instead.

qmqpd

The Postfix QMQP server implements the Quick Mail Queuing Protocol
(QMQP; see http://cr.yp.to/proto/qmqp.html) to make Postfix compatible
with qmail and the ezmlm list manager.

anvil

The Postfix anvil is a preliminary defense against SMTP clients and
denial-of-service attacks that swamp the SMTP server with too many
simultaneous or successive connection attempts. It comes with a whitelist
Anatomy of Pos t f i x 41
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

capability for disabling restrictions for authorized clients. anvil is not
included with Postfix 2.1, but it is available in the Postfix 2.2 experimen-
tal release. anvil will stay experimental until there is enough experience
with Postfix rate limiting.

Postfix Queues

Postfix polls all queues in the directory specified by the queue_directory
parameter in your main.cf file. The queue directory is usually /var/spool/
postfix. Each queue has its own subdirectory with a name identifying the
queue. All messages that Postfix handles stay in these directories until Postfix
delivers them. You can determine the status of a message by its queue:
incoming, maildrop, deferred, active, hold, or corrupt.
incoming

All new messages entering the Postfix queue system get sent to the incom-
ing queue by the cleanup service. New queue files are created with the
postfix user as the owner and an access mode of 0600. As soon as a queue
file is ready for further processing, the cleanup service changes the queue
file mode to 0700 and notifies the queue manager that new mail has
arrived. The queue manager ignores incomplete queue files whose
mode is 0600.

The queue manager scans the incoming queue when moving new
messages into the active queue and makes sure that the active queue
resource limits have not been exceeded. By default, the active queue has
a maximum of 20,000 messages.

CAUTION Once the active queue message limit is reached, the queue manager stops scanning the
incoming and deferred queues.

maildrop

Messages submitted with the sendmail command that have not been sent
to the primary Postfix queues by the pickup service await processing in
the maildrop queue. You can add messages to the maildrop queue even
when Postfix is not running; Postfix will look at them once it is started.

The single-threaded pickup service scans and drains the maildrop
queue periodically, as well as upon notification from the postdrop
program. The postdrop program is a setgid helper that allows the
unprivileged sendmail program to inject mail into the maildrop queue
and notify the pickup service of message arrival. (All messages that enter
the main Postfix queues do so via the cleanup service.)

deferred

If a message still has recipients for which delivery failed for some tran-
sient reason, and the message has been delivered to all the recipients
possible, Postfix places the message into the deferred queue.

The queue manager scans the deferred queue periodically to put
deferred messages back into the active queue. The scan interval is
42 Chapter 5

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

specified with the queue_run_delay configuration parameter. If the deferred
and incoming queue scans happen to take place at the same time, the queue
manager alternates between the two queues on a per-message basis.

active

The active queue is somewhat analogous to an operating system’s pro-
cess run queue. Messages in the active queue are ready to be sent, but
are not necessarily in the process of being sent.

The queue manager is a delivery agent scheduler that works to
ensure fast and fair delivery of mail to all destinations within designated
resource limits.

NOTE Although most Postfix administrators think of the active queue as a directory on disk, the
real active queue is a set of data structures in the memory of the queue manager process.

hold

The administrator can define smtpd access(5) policies and cleanup
header and body checks (see Chapter 10) that cause messages to be
automatically diverted from normal processing and placed indefinitely
in the hold queue. Messages placed in the hold queue stay there until the
administrator intervenes. No periodic delivery attempts are made for
messages in the hold queue. You can run the postsuper command to man-
ually put messages on hold or to release messages from the hold queue
into the deferred queue.

Messages can potentially stay in the hold queue for a time that
exceeds the queue file lifetime set by the maximal_queue_lifetime
parameter (after which undelivered messages are bounced to the
sender). If older messages need to be released from the hold queue, you
can use postsuper -r to move them into the maildrop queue, so that the
message gets a new timestamp and is given more than one opportunity
to be delivered.

NOTE The hold queue doesn’t play much of a role in Postfix performance; monitoring of the
hold queue is typically motivated by tracking spam and malware rather than by perfor-
mance issues.

corrupt The corrupt directory contains damaged queue files. Rather than
discarding these, Postfix stores them here so that the (human) postmas-
ter can inspect them using postcat.

Postfix logs a warning about any corrupt files upon startup.

Maps

Maps are files and databases that Postfix uses to look up information. Maps
have many different purposes, but they all have one thing in common—a
left-hand side (LHS, or key) and a right-hand side (RHS, or value).
Anatomy of Pos t f i x 43
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Here are a few examples of keys and values:

To use a map, you specify a key and get the associated value as a result.

NOTE The keys and values here come from various files and would not make sense in one file.
The preceding list is just an illustration to show that all map entries take the same
basic form.

Map Types

Postfix can use many different kinds of maps. The formats available depend
on the way Postfix was compiled on your particular system. To find out what
formats your Postfix supports, run postconf -m on the command line. You
should get a list of map types:

postconf -m
btree
cdb
cidr
environ
hash
ldap
mysql
nis
pcre
proxy
regexp
sdbm
static
tcp
unix

Indexed Maps (hash, btree, dbm, and So On)

Indexed maps are binary databases built from regular text files with
commands such as newaliases, postalias, and postmap. The binary maps have
an indexed format so that Postfix can quickly retrieve the value associated
with a key. As a further performance improvement, the Postfix daemons
open these maps when starting up, and they do not re-read them unless they
notice a change in the map files in the filesystem. To reload a map, a
daemon exits and a new one is started by the master daemon.

Key Value

postmaster: john

postmaster@example.com john

192.168.254.12 REJECT

spammer@example.com REJECT

/^Subject: your account {25}[a-z]{8}/ REJECT Mimail Virus Detected
44 Chapter 5

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

NOTE If you have indexed maps that change frequently, the daemons using these maps will
restart just as often. Under a heavy load, this can lead to performance problems.

The most common indexed maps are built from the aliases, virtual,
transport, relocated, and sasl_passwd text files. You can identify a map file
because its name is the original file with a suffix that also tells you the index
format. For example, an aliases map file built with the postalias command is
named aliases.db.

NOTE When you create a file in order to build an indexed map from it you don’t have to put
keys in a specific order. The conversion tools and programs that use indexed maps do
not require a specific order for input. In fact, the process of conversion removes the
ordering.

Postfix queries entries in a predefined order specified in the manual pages
for the tables [access(5), transport(5), virtual(5), aliases(5) and canonical(5)].
In other words, each map lookup actually consists of a series of single queries
(derived from the original query) on single keys in the indexed map.

Linear Maps (PCRE, regexp, CIDR, and Flat Files)

Linear maps are regular text files. Postfix reads these files from top to
bottom, making them different from indexed maps. This difference is quite
important, because the first match in the file determines the action that
Postfix will take. Postfix ignores any later entries, whether they match the
query or not.

Consider the following regexp map, where a john.doe@example.com lookup
returns OK, because the first line matches.

/john\.doe@example\.com/ OK
/example\.com/ REJECT

However, if you swap the lines in the regexp map, the other entry
matches first, so the same john.doe@example.com lookup returns REJECT:

/example\.com/ REJECT
/john\.doe@example\.com/ OK

You do not need to convert linear maps to a binary form (in fact, you
can’t do it). The Postfix daemons read them at startup and do not notice any
changes to the map until they are restarted. Typical Postfix linear maps
include header_checks, body_checks, and mime_header_checks (see Chapter 9).

CAUTION As your linear maps grow, it takes longer for the Postfix daemons to process them. This
is especially true with respect to body or header checks, because the cleanup daemon
needs to check every line of the body (up to body_checks_size_limit) and headers
against every line of the map.

This can cause a significant slowdown, especially if you have extensive *_checks
parameters that use regexp or PCRE (Perl-compatible regular expression) type maps in
Anatomy of Pos t f i x 45
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

order to prevent spam from entering the system. When this happens, it’s usually time to
hand complex spam filtering to an external application.

To make the Postfix daemons notice changes in linear maps, run postfix
reload. If the timing is not critical, you can set the max_use parameter to define
a time-to-live for daemons. As soon as a daemon has processed the number
of tasks specified in that parameter, it quits and is restarted by master. Upon
restart, it re-reads all required maps.

Databases (MySQL, PostgreSQL, LDAP)

Postfix treats a database just like an indexed map. The result of a database
query is Match (along with the value returned by the query) or No match. The
principal difference between a database map and an indexed map is that you
do not need to restart a daemon when there is a change to the database.
Postfix does not assume that the postmaster is the only person who can alter
the database.

The drawback to this approach is that the database may not be able to
handle the number of queries gracefully, because Postfix needs to perform at
least three queries for each lookup in a map (see the “How Postfix Queries
Maps” section that follows). Under heavy load, the database backend could
stop working, and your mail service would be vulnerable to a self-induced
meltdown or a denial-of-service attack. This possibility should not prevent
you from using database backends, but you should be aware of the risk.

Database lookups can become a problem for systems with a heavy load,
but this isn’t the only issue to consider—latency can be another problem.
Database queries have a higher latency than indexed maps because Postfix
must connect to the database backend, send the query, and then wait for the
result. With an indexed map, Postfix has only to consult data that is already
loaded in memory.

If your database becomes a bottleneck, and you do not have an
excessively large map, you can insert a map between the database and
Postfix. That is, you can create an indexed map from a complete database
query, and then run Postfix with that map. You need to remember to update
the map as often as necessary, but the proxymap daemon can be used to
significantly reduce the number of concurrent connections.

Determining the Number of Simultaneous Connections to a Database

Postfix daemons (smtpd, smtp, and so on) run with a process limit (set by
default_process_limit) of 100 simultaneous processes. Running at peak load,
there would be 100 concurrent smtpd daemons, each querying the database
backend for one access(5) lookup (e.g., because we use a map for checking if
the client is in our personal blacklist and should then be denied from sending
mail to us).

Remember that one lookup results in at least three queries, so the number
of simultaneous queries to the database would be at least default_process_limit
* 3 (which, in the default configuration, would be 300 queries), while the
46 Chapter 5

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

number of simultaneous connections is default_process_limit. This is only
the number of queries and connections for smtpd daemons; other daemons,
such as local and qmgr, may be working on other jobs, adding to the number
of open connections and simultaneous queries.

How Postfix Queries Maps
Maps can be used for various tasks. Postfix has table-driven mechanisms that
use maps (see access(5), aliases(5), canonical(5), and transport(5)). These
maps can use different lookup mechanisms (LDAP, NIS, SQL, btree, hash,
regexp, cdb, cidr, pcre, and so on).

1. <localpart@domainpart> Matches the specified mail address verbatim.

2. <domainpart> Matches domainpart as the domain part of an email
address. The pattern domainpart also matches subdomains, but
only when the string smtpd_access_maps is listed in the Postfix
parent_domain_matches_subdomains configuration setting. Otherwise,
specify .domainpart (note the initial dot) to match subdomains.

3. <localpart@> Matches all mail addresses with the specified user part
(localpart), no matter what domain they belong to.

4. Fail If the lookups don’t match, Postfix will return no match found, and
the query ends with an error.

NOTE It isn’t possible to look up a null sender address in some lookup table types. By default,
Postfix uses <> as the lookup key for the null sender address. The value is specified with
the smtpd_null_access_lookup_key parameter in the main.cf file.

This order of lookups implies that Postfix performs several lookups for
each query, which isn’t really a problem unless you’re using high-latency
maps like SQL or LDAP maps (and, of course, you should expect that a lot of
lookups will need multiple queries). This is just one thing to remember
before you put all your maps into LDAP and then complain on the postfix-
users mailing list that “Postfix is slow. . . .”

External Sources

Postfix supports information sources that are not built on top of Postfix and
that aren’t even under your direct control, such as blacklists (DNSBL and
RHSBL lists), DNS-based lists, and other external sources. Blacklists are
almost exclusively used in smtpd_*_restrictions parameters in order to reject
mail coming from clients or senders listed in DNSBL- or RHSBL-style lists
(see Chapter 7).

As with any external query, these lookups can fail due to connectivity
problems, denial-of-service attacks against the blacklist servers, and other
problems. In case of a timeout or other failure, Postfix may still accept mail
(bypassing a possible restriction), but it will log an appropriate warning to
the mail log.
Anatomy of Pos t f i x 47
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Command-Line Utilities

Postfix ships with a number of command-line utilities to assist you with
administration tasks. Although they perform different functions (such as
querying maps, examining queue files, dequeuing and requeuing messages,
and changing the configuration), they all have one thing in common—their
names start with “post.”

NOTE These commands can do much more than what is described here. We are focusing on the
options that you will experience in day-to-day operation. If you don’t find what you are
looking for here, the first place to look is the online manual.

postfix
The postfix command stops, starts, and reloads the configuration with the
stop, start, and reload options.

postalias
The postalias command creates an indexed alias map from an alias file. It
works just like the postmap command (described shortly), but it pays special
attention to the notation in an alias file (where a colon separates the key and
value). postalias must be used on alias files.

postcat
The postcat command displays the content of a message in a mail queue.

To read a message in a mail queue, you need its queue ID. Run mailq for
a list of queue IDs. For example, the queue ID of the following message is
F2B9715C0B3:

mailq
F2B9715C0B3 2464 Mon Oct 13 15:29:39 markus.herrmann@example.com

(connect to mail.example.com[217.6.113.151]: Connection timed out)
torsten.hecke@example.net

-- 2 Kbytes in 1 Requests.

After obtaining a queue ID, use it as an option to postcat to see the
contents of the queue file:

postcat -q F2B9715C0B3

postmap

The postmap command’s primary purpose is to build indexed maps from flat
files. For example, to build /etc/postfix/virtual.db from /etc/postfix/virtual,
run the following command.
48 Chapter 5

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

postmap hash:/etc/postfix/virtual

The postmap command can do more. Among its most useful features is
the ability to test any kind of map that your Postfix installation supports. This
is extremely helpful when debugging a configuration where lookups to the
maps appear to fail, and you are unsure whether the key and value are
actually visible to Postfix.

Debugging an Entry in a Lookup Table

To determine whether Postfix can find an entry in a map, use postmap -q. For
example, the following command returns the value assigned to the key
<sender@example.com> in the map /etc/postfix/sender_access (type hash):

postmap -q sender@example.com hash:/etc/postfix/sender_access
OK

It’s important to note that postmap does not look for the terms <sender@>,
<example.com>, and <com>, even though these terms are in the access(5) manual
page. You need to perform those lookups manually:

postmap -q sender@ hash:/etc/postfix/sender_access
postmap -q example.com hash:/etc/postfix/sender_access
postmap -q com hash:/etc/postfix/sender_access

postdrop

The postdrop command reads mail from the standard input and drops the
result into the maildrop directory. This program works in conjunction with
the sendmail utility.

postkick

The postkick command sends a request to a Postfix daemon through a local
transport channel, making Postfix interprocess communication accessible to
shell scripts and other programs.

NOTE The postkick command sends messages to Postfix daemon processes. This requires that
Postfix is running.

Requeuing a Message

The following advanced postkick example shows how to requeue a message
for immediate redelivery:

cat queueidlist | postsuper -r -
postkick public pickup W
Anatomy of Pos t f i x 49
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

This sequence of commands moves all selected messages listed in
queueidlist to the maildrop queue with the postsuper -r - command, where the
pickup daemon would process them like any other piece of mail. By doing this,
you reset the content filter to the setting appropriate for local submission and
add an extra Received: header.

The postkick command requests an immediate maildrop queue scan.
Otherwise, the messages would stay in the maildrop queue for a maximum of
60 seconds. The pickup daemon submits the message to the cleanup daemon,
where it gets a new queueid and is deposited into the incoming queue. The
whole point is to move the message to the active queue as quickly as possible.

postlock
The postlock command gives you exclusive access to mbox files that Postfix
writes, and then it runs a command while holding the lock. The lock you get
from postlock is compatible with the Postfix local delivery agent. Postfix does
not touch the file while your command executes. Here is an example:

postlock /var/mail/user from

CAUTION Try to avoid any commands that might require a CTRL-C to terminate. Interrupting
postlock does not guarantee that the lock will go away; you may need to remove a lock
file to deliver to the mailbox again. To see if there is a lingering lock file, run postlock
without a command. If this hangs and eventually times out, you probably have a left-
over lock.

postlog
The postlog command allows external programs, such as shell scripts, to write
messages to the mail log. This is a Postfix-compatible logging interface; by
default, it logs the text from the command line as a single record. Here’s a
very simple example:

postlog This is a test
postlog: This is a test
grep "This is a test" /var/log/mail.log
Feb 20 11:50:16 mail postlog: This is a test

postqueue
The postqueue command is a user interface to Postfix queues, giving you
functionality that is traditionally available with the sendmail command.

� The -f parameter makes postqueue request the queue manager to deliver
all queued mail (flush), regardless of destination. This is equivalent to
postfix flush or sendmail -q:

postqueue -f
50 Chapter 5

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

� The -p parameter makes postqueue print the contents of the queue. It is
equivalent to mailq:

postqueue -p

� The -s domain parameter makes postqueue attempt to deliver all queued
mail bound for domain. This is equivalent to sendmail -q domain:

postqueue -s example.com

NOTE The postqueue command sends messages to Postfix daemon processes. This requires that
Postfix is running.

postsuper
The postsuper command maintains jobs inside Postfix queues. Unlike postqueue,
this command is restricted to the superuser, and it can run while Postfix is
down. Some postsuper features are needed to check the queue before daemon
processes are started. Table 5-1 shows what the postsuper command can do.

One of the most frequent uses of postsuper is deleting a message
from the mail queue with postsuper -d queueid. Doing this manually is
tedious, especially when deleting many files. The following Perl script
(delete_from_mailq) makes it easier:

#!/usr/bin/perl
$REGEXP = shift || die "no email-address given (regexp-style, e.g. bl.*\
@yahoo.com)!";
@data = qx</usr/sbin/postqueue -p>;
for (@data) {
 if (/^(\w+)(*|\!)?\s/) {
 $queue_id = $1;
 }
 if($queue_id) {
 if (/$REGEXP/i) {
 $Q{$queue_id} = 1;
 $queue_id = "";
 }

Table 5-1: Capabilities of the postsuper Command

Option Action

-d Delete a message with the named queue ID from the named mail queue(s)

-h Place a message on hold so that no attempt is made to deliver it

-H Release mail currently on hold

-p Purge temporary files left over from crashes

-r Requeue messages with a named queue ID from a named mail queue

-s Check and repair the queue structure
Anatomy of Pos t f i x 51
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

 }
}
#open(POSTSUPER,"|cat") || die "couldn't open postsuper" ;
open(POSTSUPER,"|postsuper -d -") || die "couldn't open postsuper" ;
foreach (keys %Q) {
 print POSTSUPER "$_\n";
};
close(POSTSUPER);

Here’s how you’d use it:

mailq
C73A015C095 7509 Mon Oct 13 14:56:17 MAILER-DAEMON
 (connect to mx5.ancientaward.com[64.156.166.211]: Connection refused)

National_Nosepicking_Month@mx5.ancientaward.com

Notice that the sender is identified as <MAILER-DAEMON> here. To remove
these bounces, run delete-from-mailq as root:

delete-from-mailq MAILER-DAEMON
postsuper: C73A015C095: removed
postsuper: Deleted: 1 message
52 Chapter 5

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

PART II
C O N T E N T C O N T R O L

Postfix comes with three feature sets that control how
messages can enter and leave the mail system. With
these features, you can manage message flow based on
the SMTP dialog and message content, or you can
delegate the content management to external applica-
tions. These three types of features fall into three
distinct groups of configuration parameters:
restrictions, checks, and filters.
A Postmaster’s Primer to Email

Content control requires knowledge about the content. You have to
know what must, should, and may be in an email to apply restrictions,
checks, and filters effectively. Read Chapter 6 to get an insight on email
content.

How Message Transfer Restrictions Work
Restrictions control SMTP communication. Chapter 7 will explain
how restrictions work. Take your time reading it; it will make imple-
menting restrictions a lot easier.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Using Message Transfer Restrictions
In Chapter 8 we show you how to bring restrictions to life. All of them
can be used almost immediately.

How Built-in Content Filters Work
Checks do their work based on message content. But how do they work?
Chapter 9 introduces you to checks and tells you all about the theory of
checks.

Using Built-in Content Filters
Chapter 10 contains a bunch of assorted examples to get you going
right away.

How External Content Filters Work
External content filters delegate SMTP communication management
and content control to external applications. To understand how
Postfix processes messages that go through external content filters,
read Chapter 11.

Using External Content Filters
Need some examples of how to implement external content filters?
Read Chapter 12 to find examples you can actually get your hands on.
54 Par t I I

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

6
A P O S T M A S T E R ’ S P R I M E R T O

E M A I L

The terms envelope, header, body, and
attachment all relate to some part of the

data that MTAs exchange. If you know what
they mean, you will understand the parts of

messages that the Postfix content control parameters
affect. It’s also handy that the Postfix parameter names
and syntax are derived from the RFCs.

This chapter is a primer to content control. Read it carefully, and take
some time to let the terminology and concepts sink in. After you get a grasp
of the basics, you will have no trouble attaining efficient content control.

Message Transport Basics

Message transport involves two major parts: the SMTP communication that
handles the transport and the data that is transported (which most people
refer to as the “email” or “message”). The terms used to describe message
transport weren’t invented out of the blue; they were adopted from an
ancient but well-known and established system that people in earlier
centuries referred to as “mail.”
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

When dealing with the regular postal system, the terms messenger,
envelope, header, body, and attachment all have well-known meanings. These
terms are technical terms when referring to email. Figure 6-1 compares a
regular letter to an email, and you can identify the following parts:

Messenger
In regular mail, the messenger is called the postman or letter carrier. In
email, the messenger is the client.

Envelope
In email, just as with regular letters, the envelope serves as a wrapper that
explains how the content is to be delivered. On the envelope, you find
the envelope sender and the envelope recipient.

Header
The header gives you metadata (information) about a message. Just as in
a real letter, the header gives you information about the sender (the
From: header), the intended recipient (To:), the originating date and
time (Date:), and the subject (Subject:). Furthermore, the Received:
headers in an email message tell you the path of a message and how long
it took to transmit.

Body
The body of an email message contains the actual content, just as in a
letter.

Attachments
If there are attachments inside an email message, this fact will be noted
in the body; just as it would in a real letter. Attachments are optional and
can be in a variety of formats.

Why Do You Need to Know This?

This may sound a bit theoretical, so far; what does all of this have to do with
running Postfix? First, there is typically more information in an email
message than in a letter. You need to know what the extra pieces are, as well
as in which part of the message these pieces appear. Also, Postfix has three
distinct parameter groups for controlling content that relate directly to
different parts of messages:

smtpd_*_restrictions

The smtpd_*_restrictions parameters control the client connection and
envelope during message transport.

*_checks

The *_checks parameters oversee the header, body, and attachments.

Filters
Postfix uses filters to delegate tasks to other (external) screening applica-
tions. Filters are general-purpose; they can control every part of the mes-
sage, from the envelope to attachments.
56 Chapter 6

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 6-1: Comparing a regular letter to an email

Each one of these parameters has a great number of options; if you don’t
know what part of a message triggers a particular parameter, your content
control won’t work.

Controlling the SMTP Communication (Envelope)

SMTP communication involves two components: the client (the machine
that’s connecting to the server providing the SMTP service), and the
envelope that the client hands over. It’s easiest to see this by using the
telnet program on your machine to connect to your server.

Mail Email

Postman

Envelope

“Hi, I have a letter for you.”

Envelope

Client

HELO client.example.com

Sender
location

Recipient
location

Letter Email

Sender
location

Recipient
location

Date

Dear Recipient,

Attached to this letter you can find
your new credit card . . .

MAIL FROM:<sender@example.com>
250-OK
RCPT TO:<recipient@example.org>
250-OK
DATA
354 End data with <CR><LF>.<CR><LF>

FROM: Sender <sender@example.com>
TO: Recipient <recipient@example.org>
Date: Sun, 11 Apr 2004 22:36:51 +0200
Subject: Mail and email

Dear Recipient,

Attached to this email you can find
your new certificate.

--2oS5YaxWCcQjTEyO
Content-Type: application/zip
Content-Description: Attachment
Content-Disposition: attachment; filename="certificate.zip"
Content-Transfer-Encoding: base64

UEsDBAoAAAAAAK61/S6mUZzNDAA3SY/VXgEAPQB9AFBcH
RhY2htZW50IQpQSmECFwMKAAAAAACutf0uplGczQwAAAAF
MAAAADgANAAAAAAABAAAAtIEAAAAAYXRoYWNobWVudC5
0eHRVVAUAA+fcJj9VeAAAUEsFBgAAAAABAAEASQAAAEoAA

--2oS5YaxWCcQjTEyO--

4242 3232 5151 6161

RECIPIENT NAME
A Postmas ter ’s Prime r to Email 57
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Here’s a sample communication. Start by connecting to port 25 of your
mail server on the command line:

$ telnet mail.example.com 25
220 mail.example.com

The 220 code that is returned from the server confirms the hostname of
the server. Now, introduce yourself to the server like this:

HELO client.example.com
250 mail.example.com

You can perform the handshake with a HELO (for SMTP) or EHLO (for
ESMTP) command, with your client’s hostname as a parameter. If the
command is successful, you should get a 250 return code followed by the
server’s hostname.

Let’s send some mail now. The MAIL command constructs an envelope,
starting with the envelope’s sender. If the server accepts the sender, you will
get another 250 return code:

MAIL FROM:<sender@example.com>
250 Ok

The next step in building the envelope is to use the RCPT command to
specify an envelope recipient. You can enter more than one recipient:

RCPT TO:<recipient@example.com>
250 Ok
RCPT TO:<recipient_2@example.com>
250 Ok

NOTE Keep in mind that the envelope sender and envelope recipient are often different from
the sender and recipient given in the message header (which is specified as part of the
DATA command sequence that you’re about to see). If you confuse the various senders
and recipients, your content control can fail.

To send the actual message (including all additional headers, such as
Subject, To, and Date), use the DATA command:

DATA
354 End data with <CR><LF>.<CR><LF>
Subject: message
...

This is the message
...
.
250 Ok: queued as 92933E1C66
QUIT
58 Chapter 6

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Here is a rundown of the things that you have just seen, as defined in the
electronic mail RFCs:

Client
The client is the machine sending mail; Postfix will either log hostname
and IP, or “unknown” (if the hostname cannot be determined using
DNS lookups). Postfix gets the client IP address from the kernel’s TCP/
IP stack, and gets the name from DNS or /etc/hosts before SMTP com-
munication takes place. This allows Postfix to impose restrictions if the
client’s IP address and the hostname during SMTP communication
don’t match.

Postfix always logs the client IP address and hostname (if available)
in the mail log, and it also includes this information in the final message
header.

HELO/EHLO statement
A client must introduce itself to the mail server with two pieces of infor-
mation: service type and hostname.

The first part of the introduction statement is the service type that
the client requests. HELO specifies normal service as defined by RFC 821
(ftp://ftp.rfc-editor.org/in-notes/rfc821.txt), and EHLO requests
extended service as defined in RFC 2821 (ftp://ftp.rfc-editor.org/in-
notes/rfc2821.txt).

Following the service type is the client identity. The client is
supposed to submit its fully qualified hostname.

Envelope
The envelope must contain at least two different items: exactly one enve-
lope sender and at least one envelope recipient. The client sends the
envelope by transmitting the envelope sender first and follows up with
the envelope recipients.

If there is more than one envelope recipient, the client must submit
them one after another, beginning each envelope recipient with a new
line and waiting for the server’s response after each submission.1 It’s the
server’s job to permit delivery to some or all recipients.

Envelope sender
The envelope sender is the sender that Postfix replies to in the case of an
error, such as a delay or bounce notice.

Envelope recipient
The envelope recipient specifies the message’s intended recipient(s). A
single message may have multiple envelope recipients (for example, a
message to several subscribers of a mailing list).

A mail server requires at least one envelope recipient (otherwise it
has no one to deliver the message to). Therefore, a client may not use an
empty envelope recipient (<>).

1 ESMTP command pipelining is the exception to this rule.
A Postmas ter ’s Prime r to Email 59
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

CAUTION Don’t look at the recipient specified in the To header when you want to restrict messages
to a recipient. Messages go to the recipients defined in the envelope, not the message
header.

Nearly all of the data from the preceding list can be forged, so Postfix
offers ways to restrict forgery with the smtpd_*_restrictions parameters, which
address the following questions:

1. Where does the client come from?

2. Who does the client pretend to be?

3. Does the client have special privileges?

4. Who is the sender?

5. Who are the recipients?

Postfix also tries to get the answers to these more difficult questions:

1. Does the client provide Postfix with information in an appropriate
manner?

2. Does the client provide the information in an appropriate order?

3. Does the client provide all of the information?

4. If the client does not provide all of the appropriate information, will the
client attempt to send the message?

5. Is it possible to tell whether the information is correct?

6. If it is possible, is the client lying?

Postfix can get the answers to these questions by inspecting the envelope
of a message and how the SMTP dialog took place. When Postfix rejects a
message with SMTP envelope restrictions, it rejects the message before it is
received. Therefore, Postfix will not send an “undeliverable mail” notification
to the sender address. That remains the responsibility of the client.

NOTE If Postfix refuses a message based on an SMTP envelope restriction, Postfix does not
have to bounce it because Postfix preempted the client. This helps to save system
resources, keeping traffic low, and can be particularly handy if Postfix is under a heavy
spam attack that would require thousands of bounces if the messages were initially
accepted for further transport.

You can learn what restrictions Postfix has and how they work in
Chapter 7. Chapter 8 contains several examples that you can use in your
own configuration.
60 Chapter 6

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Controlling the Message Content

An email message consists of a header and body. The body may also contain
one or more attachments in the form of a file or another message encap-
sulated within the main message. Figure 6-2 shows a high-level view of a
simple message with an attachment.

Figure 6-2: An email message with an attachment

Figure 6-3 shows a message with another message as an attachment.

Figure 6-3: An email message with another message as an attachment

Email content

Header

Body

Attachment header

Attachment body

Email content

Header

Body

Attachment header

Attachment body

Attached RFC822 message header

Attached RFC822 message body
A Postmas ter ’s Prime r to Email 61
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

You can identify these parts by looking at the message with a plaintext
viewer or editor. For example, here is a message with a file attachment:

Return-Path: <sender@example.com> �
X-Original-To: recipient@example.com
Delivered-To: recipient@example.com
Received: by mail.example.com (Postfix)
 id 9F71443F50; Mon, 26 Apr 2004 01:32:59 +0200 (CEST)
Delivered-To: recipient@example.com
Received: by mail.example.com (Postfix, from userid 500)
 id 2F23043F4F; Mon, 26 Apr 2004 01:32:59 +0200 (CEST)
Date: Mon, 26 Apr 2004 01:32:58 +0200
From: Sender <sender@example.com>
To: Recipient <recipient@example.com>
Subject: Elements of email content
Message-ID: <20040425233258.GA22383@mail.example.com>
Mime-Version: 1.0
Content-Type: multipart/mixed; boundary="/9DWx/yDrRhgMJTb"
Content-Disposition: inline
User-Agent: Mutt/1.5.4i

--/9DWx/yDrRhgMJTb �
Content-Type: text/plain; charset=us-ascii
Content-Disposition: inline

A blank line separates the body of a message from the headers. MIME-
encoded text and MIME-encoded attachments may appear in the body.

You may attach one or more files, including another email message.
A message within another message includes its own header and body.
Therefore, you may have nested headers.

Hope this helps,

sender

--/9DWx/yDrRhgMJTb �
Content-Type: application/x-zip-compressed
Content-Disposition: attachment; filename="attachment.zip"
Content-Transfer-Encoding: base64

UEsDBAoAAAAAAIILmjBOMx1uCwAAAAsAAAAOAAAAYXR0YWNobWVudC50eHRhdHRhY2htZW50
ClBLAQIUAAoAAAAAAIILmjBOMx1uCwAAAAsAAAAOAAAAAAAAAAEAIAC2gQAAAABhdHRhY2ht
ZW50LnR4dFBLBQYAAAAAAQABADwAAAA3AAAAAAA=

--/9DWx/yDrRhgMJTb--
62 Chapter 6

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

The parts of the email are as follows:

� Email headers

� Start of email body

� Start of attachment

Postfix can perform checks on each of these pieces (header_checks,
body_checks, mime_header_checks) separately. To check them effectively, you
need to know the required, recommended, and optional pieces that a
message may contain.

Headers

The header carries meta-information about the message body, such as the
character encoding and transmission date. RFC 2822 (ftp://ftp.rfc-
editor.org/in-notes/rfc2822.txt) splits header elements into required and
recommended categories.

NOTE Header fields are not required to occur in any particular order. It is recommended,
though, that if they are present, headers be sent in the order Return-Path, Received,
Date, From, Subject, Sender, To, Cc, and so on. You’ll find further information about
headers in Reading Email Headers (http://www.stopspam.org/email/headers.html).

Required Headers

There are two required header elements:

Date
The date field normally specifies the date and time that the message was
composed and sent. If the sender’s client omits this header, Postfix adds it.

From
This field contains the identity of the person(s) who sent this message.
If the sender’s client omits this header, Postfix adds it.

Recommended Headers

These are the recommended header elements:

Message-Id
This field contains a unique identifier that refers to the current version
of the current message. The client generates the message ID and guaran-
tees its uniqueness. In addition, the message ID is intended to be read by
a machine, and it may not necessarily mean anything to humans.
Because a message ID corresponds to exactly one instance of a particular
message, any subsequent revisions of the message should get new mes-
sage IDs.

If the sender’s client omits this header, Postfix adds it.
A Postmas ter ’s Prime r to Email 63
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

To
This field contains the identity of the primary recipients of the message.
If the sender’s client omits this header, Postfix adds the value of the
undisclosed_recipients_header configuration parameter.

Subject
This field should contain a very brief description of the message.

Cc
This field contains the identity of any secondary recipients of the message.

Reply-To
This field indicates where the recipient’s client should send responses to
the message.

Content-type
This field is defined in RFC 1049 (ftp://ftp.rfc-editor.org/in-notes/
rfc1049.txt), and it indicates the structure of the message body.

MIME-Version
If this header field is present, the body of the message was (supposedly)
composed in compliance with RFC 1521 (ftp://ftp.rfc-editor.org/in-
notes/rfc1521.txt).

Received
Each transport agent that encounters a message adds one of these header
lines to indicate where, when, and how the message arrived. The infor-
mation in these fields can be useful for tracing transport problems.

Return-Path
This header indicates the envelope sender and is used to identify a path
back to the originator. The mail server inserts this field upon delivery
from a local delivery agent, such as the local daemon.

Optional Headers (X-Headers)

X-header is a generic term for an extension header field with a name that
starts with a capital X and a hyphen. X-headers are meant to be nonstandard
and to provide information only, and conversely, any nonstandard infor-
mative header should be an X-header.

Here are a few sample X-headers (there are, of course, millions more):

X-Mailer: Ximian Evolution 1.4.3
X-Priority: 3
X-Spam-Checker-Version: SpamAssassin 2.53 (1.174.2.15-2003-03-30-exp)
X-Original-To: recipient@example.com

Body

The body carries the message and must occur after the header section. The
body may be in plaintext or an encoded form. The body may also contain
64 Chapter 6

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

attachments encoded in a form that does not get mangled when trans-
ported across the Internet (in old days, many MTAs were not eight-bit
clean; stripping off the eighth bit of a binary file corrupts it).

Attachments

Attachments are files converted into a text-only representation (printable
characters only) suitable for sending as email. There are several pieces in the
attachment puzzle, and they’re explained in the following subsections.

MIME Encodings

MIME stands for Multipurpose Internet Mail Extensions, and it is a system
for redefining the format of messages, as described in RFC 2045 (http://
www.rfc-editor.org/rfc/rfc2045.txt). Two common MIME encodings for
binary files are quoted-printable and base64:

quoted-printable
The quoted-printable encoding is intended to represent data that largely
consists of octets that correspond to printable characters in the US-
ASCII character set. It encodes the data in such a way that the resulting
octets are unlikely to be modified by mail transport.

base64
base64 is a data-encoding scheme defined in RFC 1421 (ftp://ftp.rfc-
editor.org/in-notes/rfc1421.txt) and RFC 2045 (ftp://ftp.rfc-editor.org/
in-notes/rfc2045.txt) to convert binary-encoded data to printable ASCII
characters. It is essentially a MIME-content transfer encoding for use in
Internet email that uses only alphanumeric characters (A–Z, a–z, the
numerals 0–9) and the “+” and “/” symbols, with the “=” symbol as a spe-
cial suffix code. Command-line utilities for manually encoding and
decoding base64 include mpack, munpack, and uudeview.

All halfway modern MUAs are MIME-aware, and attachments will usually
be sent base64-encoded only.

Encoding Processor

The MUA performs the task of encoding the binary attachment, and it also
automatically creates the MIME structure required to embed the mail text
and the encoded attachments in a form understood by other MIME-capable
MUAs. This form requires the following headers in the message:

MIME-Version
The presence of this header indicates that the message is MIME-
formatted. The value is normally 1.0, so the header usually looks
like this:

MIME-Version: 1.0
A Postmas ter ’s Prime r to Email 65
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Content-type
This header indicates the type and subtype of the message content. Here
is an example:

Content-type: text/plain

The combination of type (text, in this example) and subtype (plain)
is generally called a MIME type, so the MIME type is text/plain in this
example.

A large number of file formats have registered MIME types. IANA
runs an archive listing the registered types (ftp://ftp.isi.edu/in-notes/
iana/assignments/media-types). In addition, all text types have an
additional optional charset parameter that indicates the character
encoding. A very large number of character encodings have registered
MIME charset names.

Content Types

This section lists some of the MIME types that you are likely to encounter. In
addition, the multipart-mime-message MIME type allows messages to consist
of several different pieces arranged in a treelike structure, where the leaf
nodes have a non-multipart content type and non-leaf nodes are any of a
variety of multipart types. The MIME mechanism supports the following
types (among others):

text/plain

Simple text messages use text/plain; it is the default value for the
Content-type header.

multipart/mixed

This type indicates text plus attachments (multipart/mixed with a text/
plain part and other non-text parts). A MIME message with an attached
file generally indicates the file’s original name with a Content-disposi-
tion header, so the type of file is indicated both by the MIME content
type and the (usually OS-specific) filename extension.

Viruses often send themselves as files where the Content-type and
the Content-disposition headers indicate different file types.

message/rfc822

This is a reply with the original message attached (multipart/mixed with a
text/plain part and with the original message as a message/rfc822 part).
Postfix generates bounces this way (the message/rfc822 attachment is the
original message that was bounced).
66 Chapter 6

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

multipart/alternative

This type indicates content with two alternative viewing methods, such as
a message sent in both plaintext and another format, such as HTML (the
same content in text/plain and text/html forms). Outlook Express uses
this content type by default, because it sends mail both as HTML and
plaintext at the same time.

Encoding Structure

A MIME multipart message contains a boundary, noted as boundary in the
mail, in the Content-type header, and this boundary should not occur in
any of the parts. Instead, it should appear between the parts, and at the
beginning and end of the body of the message. The following example
illustrates a sample multipart message:

Return-Path: <sender@example.com>
X-Original-To: recipient@example.com
Delivered-To: recipient@example.com
Received: by mail.example.com (Postfix)
 id 9F71443F50; Mon, 26 Apr 2004 01:32:59 +0200 (CEST)
Delivered-To: root@example.com
Received: by mail.example.com (Postfix, from userid 500)
 id 2F23043F4F; Mon, 26 Apr 2004 01:32:59 +0200 (CEST)
Date: Mon, 26 Apr 2004 01:32:58 +0200
From: Sender <sender@example.com>
To: Recipient <recipient@example.com>
Subject: Elements of email content
Message-ID: <20040425233258.GA22383@mail.example.com>
Mime-Version: 1.0 �
Content-Type: multipart/mixed; boundary="/9DWx/yDrRhgMJTb" �
Content-Disposition: inline
User-Agent: Mutt/1.5.4i

--/9DWx/yDrRhgMJTb �
Content-Type: text/plain; charset=us-ascii �
Content-Disposition: inline

A blank line separates the body of a message from the headers. MIME-
encoded text and MIME-encoded attachments may appear in the body.

You may attach one or more files, including another email message.
A message within another message includes its own header and body.
Therefore, you may have nested headers.
A Postmas ter ’s Prime r to Email 67
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Hope this helps,

sender

--/9DWx/yDrRhgMJTb �
Content-Type: application/x-zip-compressed �
Content-Disposition: attachment; filename="attachment.zip"
Content-Transfer-Encoding: base64 �

UEsDBAoAAAAAAIILmjBOMx1uCwAAAAsAAAAOAAAAYXR0YWNobWVudC50eHRhdHRhY2htZW50
ClBLAQIUAAoAAAAAAIILmjBOMx1uCwAAAAsAAAAOAAAAAAAAAAEAIAC2gQAAAABhdHRhY2ht
ZW50LnR4dFBLBQYAAAAAAQABADwAAAA3AAAAAAA=

--/9DWx/yDrRhgMJTb-- �

The parts of the message are as follows:

� This is the MIME version header.

� This is the header containing the content type and the boundary
string used to separate the different parts of the message.

� The first appearance of the boundary string. A new part of the multi-
part message begins here.

� This part is plaintext.

� This is the second appearance of the boundary string, indicating that
the previous part is complete and a new part of the multipart message
begins here.

� The new part is a Zip format file.

� The Zip file is encoded in base64 format.

� This is the final use of the boundary string, indicating the end of the
part and message.
68 Chapter 6

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

7
H O W M E S S A G E T R A N S F E R

R E S T R I C T I O N S W O R K
To know what can be restricted, one needs to know

what “what” is and what it should be. . . .
—Patrick, in an attempt to understand Ralf while

he explained restrictions

This chapter explains the theory of restric-
tions. Restrictions allow your mail server to

accept or reject incoming messages by
inspecting the SMTP communication that takes

place between client and server. The information
gained from this dialog enables Postfix to impose or
lift restrictions on the client, sender, and recipient.

Although the word “restrict” usually means that you’re limiting
something, the term “restriction” can also mean the exact opposite in
Postfix; you can configure restrictions to explicitly allow something.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Restriction Triggers

Restrictions are powerful tools. To use them effectively, you need to under-
stand SMTP communication and the features that Postfix provides to analyze
this communication. You have already seen how SMTP communication takes
place in Chapter 6. We’ll look at it from a different perspective here; this
time we’re interested in the stages of SMTP communication as defined by
the commands given by the client. Figure 7-1 outlines these stages.

Figure 7-1: Stages of SMTP communication and typical client input

Each new stage in Figure 7-1 marks a moment when the Postfix smtpd
daemon learns another bit of information about the client and the message
that it wants to transmit. Postfix uses these stages to trigger restrictions, and
each stage has its own restriction parameter named after the active daemon,
the name of the stage, and purpose. That’s why restriction triggers follow this
template: smtpd_stagename_restrictions.

Here is a list of all restriction triggers and their default behavior:

smtpd_client_restrictions

This trigger applies to the client’s IP address or its hostname or both. By
default, Postfix allows any client to connect.

smtpd_helo_restrictions

This trigger applies to the client’s HELO/EHLO argument and the client’s
IP address or hostname or both. The default is to allow any HELO/EHLO
argument.

smtpd_sender_restrictions

This is the first trigger set that restricts parts of the envelope. Postfix
applies it to the envelope sender, the HELO/EHLO argument, and the client.
The default is to allow any envelope sender to send messages.

$ telnet mailserver.example.com 25
220 mailserver.example.com ESMTP Postfix
HELO client.example.com
250-mailserver.example.com
MAIL FROM:<sender@example.com>
250 Ok
RCPT TO:<recipient@example.com>
250 Ok
DATA
354 End data with <CR><LF>.<CR><LF>
From: "Sender" <sender@example.com>
To: "Recipient" <recipient@example.com>
Date: Sat, 17 May 2003 15:24:43 +0200

Here comes the mail content . . .
.
250 Ok: queued as 0EAFFE1C65
QUIT
221 Bye

DATA

Client

HELO/EHLO hostname

Envelope sender

Envelope recipient(s)

{
{
{
{

{

70 Chapter 7

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

smtpd_recipient_restrictions

This trigger applies to the envelope recipient(s), the envelope sender,
the HELO/EHLO argument, and client IP address or hostname or both. The
default setting in Postfix is to permit any recipient for clients that belong
to the mynetworks configuration parameter, but otherwise to allow only
recipient domains in relay_domains and recipient domains in mydomains.
This protects Postfix from becoming an open relay.

smtpd_data_restrictions

This trigger detects clients that send mail content before Postfix has
replied to the DATA command. Postfix does this by tracing the DATA com-
mand when the client sends the command to the server. There is no
restriction by default.

smtpd_etrn_restrictions

This special trigger can restrict clients that may request Postfix to flush the
mail queue. The default is to allow any client to issue the ETRN command.

Each restriction trigger corresponds to a set of restrictions; you can think
of the triggers as empty boxes. To get any use out of them, you need to put
stuff (restrictions) inside.

Restriction Types

Postfix has several kinds of restrictions that can be arranged into four distinct
groups:

� Generic restrictions

� Switchable restrictions

� Customizable restrictions

� Additional UCE control parameters

Generic Restrictions

The first group of restrictions do not check anything in the SMTP dialog;
they simply carry out a command:
permit

Allows a request.
defer

Defers (delays) a request.
reject

Rejects a request.
warn_if_reject

Assists with later restrictions; if a restriction after the warn_if_reject
decides to reject a request, Postfix doesn’t actually reject the message,
but rather, prints a reject_warning message to the log.
How Message Trans fe r Res t r i ct ions Work 71
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

reject_unauth_pipelining

Rejects the request when the client sends SMTP commands ahead of
time without knowing that Postfix actually supports ESMTP command
pipelining. This stops bulk mail software that improperly uses ESMTP
command pipelining from speeding up deliveries.

Switchable Restrictions

The second kind of restriction works just like switches. You turn them on or
off, and once activated, they see if a certain condition has been met. Here’s
an incomplete list:

smtpd_helo_required

This restriction requires clients to send a HELO (or EHLO) command at the
beginning of an SMTP session. Both RFC 821 and RFC 2821 require the
HELO/EHLO.

strict_rfc821_envelopes

This restriction adjusts the Postfix tolerance for errors in addresses
given in MAIL FROM or RCPT TO commands. Unfortunately, the widely
used Sendmail program permits quite a bit of nonstandard behavior,
and as a result, there is a lot of software that expects to get away with it.
Being strict here stops some unwanted mail, but it can also block legiti-
mate mail from poorly written clients.

disable_vrfy_command

The SMTP VRFY command allows clients to verify that a recipient exists.
This restriction allows you to disable the VRFY command.

allow_percent_hack

This restriction controls rewrites of the form user%domain to user@domain.
swap_bangpath

This restriction controls rewrites of the form site!user to user@site. This
is necessary if your machine is connected to a UUCP network.

Customizable Restrictions

Customizable restrictions are maps that work like filters. In each map entry,
the key is a filter and the value is the action to take if the filter matches (refer
to the section “Generic Restrictions” for a list of valid actions). Here are a few
kinds of customizable restrictions:

HELO (EHLO) hostname restrictions
These restrictions limit the hostnames that clients may send with the HELO
or EHLO command.

Client hostname/address restrictions
These limit the clients that may establish SMTP connections to the mail
server.
72 Chapter 7

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Sender address restrictions
These limit the sender addresses (envelope senders) that Postfix accepts
for MAIL FROM commands.

Recipient address restrictions
These restrictions limit the recipient addresses (envelope recipients)
that Postfix accepts for RCPT TO commands.

ETRN command restrictions
These limit the clients that may issue ETRN commands.

Header filtering
This filtering limits what is allowed in message headers. Patterns are
applied to entire logical message headers even when a logical header
spans multiple physical lines of text.

Body filtering
This filtering restricts the text that may appear in message body lines.

DNSBL-style blacklists
These blacklists restrict connections from IP addresses (clients) that
appear in DNSBL blacklists.

RHSBL-style blacklists
These blacklists disallow sender domains (as part of the envelope
sender) that appear in RHSBL blacklists.

Additional UCE Control Parameters

The set of additional UCE control parameters support other restrictions or
features that are not part of Postfix’s default functional range. Here are just a
few of the restrictions available:
default_rbl_reply

Creates a default reply template to be used when an SMTP client request
is blocked by a reject_rbl_client or reject_rhsbl_sender restriction.

permit_mx_backup_networks

Limits the use of the permit_mx_backup relay control feature to destinations
whose primary MX hosts match a list of network blocks.

rbl_reply_maps

Specifies lookup tables with DNSBL reply templates indexed by DNSBL
domain name. If no template is found, Postfix uses the default_rbl_reply
template instead.

relay_domains

Instructs Postfix to accept mail for these domains, even though this
server isn’t the final destination.

smtpd_sender_login_maps

Specifies a user that is allowed to use a specific MAIL FROM address (enve-
lope sender). To use this restriction, Postfix must know a username, so
the client must identify itself with SMTP authentication.
How Message Trans fe r Res t r i ct ions Work 73
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Application Ranges

The key to using restrictions correctly is to understand what stage of the
communication you can apply them to. Some restrictions don’t make sense
in certain stages. Table 7-1 lists restrictions by stage.

Building Restrictions

Restrictions can become quite complex, and you can break your mail server
in subtle (and not so subtle) ways by trying to tweak them without knowing
what you’re doing. Keep the following rules in mind when building your
restrictions:

� Sloppy notation will render your restriction useless.

� The stage of evaluation makes a difference.

� The order of appearance within a restriction trigger is important. Pre-
ceding actions influence how further restrictions are evaluated.

Notation

As we mentioned earlier, restriction triggers are like empty boxes. However,
filling them does not mean you just throw restrictions in and you’re done.

Table 7-1: Range of Application

Stage Restriction

Client (IP address and/or hostname) check_client_access

reject_rbl_client

reject_rhsbl_client

reject_unknown_client

HELO/EHLO hostname check_helo_access

permit_naked_ip_address
reject_invalid_hostname

reject_non_fqdn_hostname

reject_unknown_hostname

Envelope sender check_sender_access

reject_non_fqdn_sender

reject_rhsbl_sender
reject_unknown_sender_domain

reject_unverified_sender

Envelope recipient check_recipient_access
permit_auth_destination

permit_mx_backup

reject_non_fqdn_recipient

reject_unauth_destination
reject_unknown_recipient_domain

reject_unverified_recipient

DATA reject_unauth_pipelining
74 Chapter 7

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

restriction_trigger = conditional_restriction, customizable_restriction \
maptype:/path/to/the/map, general_restriction

Because a single restriction can easily exceed the reasonable width of a
line, you can add whitespace to the beginning of each line that continues the
preceding line so that Postfix will recognize the lines as a single parameter
setting.

Furthermore, the commas separating the preceding restrictions are
optional. Therefore, the following is equivalent to the preceding example
(and much easier to read).

restriction_trigger =
conditional_restriction
customizable_restriction maptype:/path/to/the/map
general_restriction

Moment of Evaluation

In general, Postfix does not evaluate and execute the restrictions based on a
restriction trigger immediately after the corresponding SMTP communi-
cation step takes place. Instead, Postfix waits until the client sends the first
envelope recipient. This delay exists because some mail clients keep trying
to submit their message if the server rejects a command before they have
finished sending at least one envelope recipient.

You can override this default by setting the smtpd_delay_reject parameter
to no.

However, even though it is possible to track down these clients and build
an exception list to ensure that they will not be interrupted, the best practice
is to wait until all steps have been finished and set the restrictions to take
effect after that. Not only do you reduce the complexity of your mail system,
but you also collect more data about the mail delivery attempt.

To get an idea of how smtpd_delay_reject influences the evaluation of
restrictions, have a look at Figure 7-2.

Influence of Actions on Restriction Evaluation

As described in the section “Customizable Restrictions,” customizable
restrictions use maps. When Postfix looks up a key in a restriction map,
Postfix executes the value that corresponds to that key. A map could look
like this:

10.0.0.1 PERMIT Private IP from VPN transfer tunnel
172.16.0 REJECT Private IP address cannot come from outside
168.100.1.3 DUNNO
192.0.34.166 OK
How Message Trans fe r Res t r i ct ions Work 75
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 7-2: Influence of smtpd_delay_reject on restriction evaluation

The preceding map contains four different actions for customizable
restrictions: PERMIT, REJECT, DUNNO, and OK. These values tell Postfix what to do
with a client, sender, or recipient. Although there are several actions (see the
access(5) manual page), these are the most common:

OK

There are no objections against the client and the message. Postfix stops
evaluating restrictions in the current set of restrictions and moves to the
next set.

PERMIT

Equivalent to OK.
REJECT

Reject the message immediately, ignoring any further restrictions.
The message is ultimately rejected.

DUNNO

Stop evaluating the current restriction, but proceed to the next restric-
tion in the current set of restrictions.

The order of restrictions within a set is important, because the first
match that returns OK or REJECT immediately halts the evaluation of
restrictions in the current set (with REJECT meaning that a client, sender,
or recipient is ultimately rejected) Postfix reads and applies restrictions
from top to bottom, or left to right if you write them in a single line. This
is why it’s easier to use the multiline notation for complicated restrictions.
Imagine trying to read this restriction if it were all on one line!

$ telnet mailserver.example.com 25
220 mailserver.example.com ESMTP Postfix
HELO client.example.com
250-mailserver.example.com
MAIL FROM:<sender@example.com>
250 Ok
RCPT TO:<recipient@example.com>
250 Ok
DATA
354 End data with <CR><LF>.<CR><LF>
From: "Sender" <sender@example.com>
To: "Recipient" <recipient@example.com>
Date: Sat, 17 May 2003 15:24:43 +0200

Here comes the mail content . . .
.
250 Ok: queued as 0EAFFE1C65
QUIT
221 Bye

smtpd_client_restrictions,
smtpd_helo_restrictions,
smtpd_sender_restrictions,
smtpd_recipient_restrictions

If smtpd_delay_reject = yes . . .

smtpd_data_restrictions

smtpd_client_restrictions

smtpd_helo_restrictions

smtpd_sender_restrictions

smtpd_recipient_restrictions}

If smtpd_delay_reject = no . . .

smtpd_data_restrictions
76 Chapter 7

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

smtpd_recipient_restrictions =
 check_recipient_access hash:/etc/postfix/recipients_restrictions,
 permit_sasl_authenticated,
 permit_mynetworks,
 reject_unauth_destination,
 reject_unauth_pipelining,
 reject_rbl_client relays.ordb.org
 permit

Figure 7-3 illustrates the restriction evaluation process and shows the
action for each of the four values.

Slowing Down Bad Clients

Any client that causes a number of errors when talking to smtpd (for example,
by triggering a REJECT in a restriction or causing a syntax error in arguments)
causes smtpd to make a short pause before accepting further commands in
that session. This serves as a defense against runaway client software.

You can tune this with several parameters. The smtpd_error_sleep_time
parameter specifies the number of seconds to pause after each mistake (the
default is one second). The smtpd_soft_error_limit parameter serves as a kind
of tarpitting mechanism; when a remote SMTP client makes several mistakes,
the Postfix SMTP server can insert additional delays before responding.
Finally, you can abort the session based on the smtpd_hard_error_limit
parameter.

These three parameters work together as follows:

� If a client causes errors and the total number of errors in the current
SMTP session is below the value of smtpd_soft_error_limit, each error
causes a delay of smtpd_error_sleep_time.

� If a client causes errors and the total number of errors in the SMTP ses-
sion exceeds smtpd_soft_error_limit, each error causes a delay of the
number of errors above the smtpd_soft_error_limit in seconds.

� If a client’s number of errors exceeds smtpd_hard_error_limit, Postfix ter-
minates the session.

For example, let’s say that you configure the parameters as follows:

smtpd_soft_error_limit = 5
smtpd_hard_error_limit = 10
smtpd_error_sleep_time = 1s

If a client causes 11 errors in a single session, Postfix pauses for 1, 1,
1, 1, 1, 2, 3, 4, 5, and 6 seconds, respectively, and upon the 11th error, it
disconnects.
How Message Trans fe r Res t r i ct ions Work 77
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 7-3: The restriction evaluation process

DUNNO

OK, PERMIT

REJECT

REJECT

REJECT

restriction f

default restriction
OK, PERMIT

OK, PERMIT

DUNNO

DUNNO

OK, PERMIT

REJECT

REJECT

REJECT

restriction c

restriction d

default restriction
OK, PERMIT

OK, PERMIT

DUNNO

DUNNO

Mail client SMTP

OK, PERMIT

REJECT

REJECT

REJECT

restriction a

smtpd_client_restrictions

restriction b

default restriction

smtpd_sender_restrictions

smtpd_..._restrictions

OK, PERMIT

OK, PERMIT
78 Chapter 7

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Restriction Classes

A restriction class is a special form of restriction trigger that is not predefined
or bound to any particular stage of SMTP communication. You define them
as you need them, and you trigger them by referring to them in maps of
customizable restrictions.

For example, let’s say that you have a customizable restriction map
for checking envelope sender addresses, and you want to trigger another
set of restrictions if the envelope sender matches example.com. In this
case, you want to put this new set of restrictions in a new class named
check_if_example.com_sender. First, declare the new class in your main.cf file.

smtpd_restriction_classes =
 check_if_example.com_sender

Now, also in main.cf, add some restrictions to your new class:

check_if_example.com_sender =
 check_sender_access hash:/etc/postfix/bounces
 check_sender_access hash:/etc/postfix/valid_example.com_senders
 check_sender_access regexp:/etc/postfix/nice_reject.regexp

As you can see, these new restrictions examine the envelope sender
(although they could be anything appropriate for the current stage of the
SMTP dialog).

Don’t worry about the maps in these restrictions; you’ll see how to define
them later. We’re still missing an important part, though. How do you
activate check_if_example.com_sender?

To do this, you need a check_sender_access restriction in your
smtpd_*_restrictions set. Let’s say that you already have this set to the
following map that accepts senders from foo.com and rejects those from
bar.org (see the section “Influence of Actions on Restriction Evaluation”
earlier in this chapter for valid actions):

foo.com OK
bar.org REJECT

To add the new restriction class, augment the map as follows:

foo.com OK
bar.org REJECT
example.com check_if_example.com_sender

As you can see, the key to using restriction classes is finding the correct
place to insert them in a customizable restriction’s map.
How Message Trans fe r Res t r i ct ions Work 79
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

8
U S I N G M E S S A G E T R A N S F E R

R E S T R I C T I O N S
Junk mail is war. RFCs do not apply.

—Wietse Venema

Restrictions control the message flow,
making decisions based on what the client

transmits during the SMTP dialog. The
number of situations in which restrictions can

be used is seemingly immeasurable, so instead of
listing all restrictions and all possible options available
for those restrictions, this chapter describes the scenarios that frequently
come up on the Postfix mailing list and in everyday use. For each scenario,
we’ll discuss the restrictions and options in depth to show you how to imple-
ment them and help you understand why they are implemented as they are.

How to Build and Test Restrictions

Before you start modifying the default restrictions, you should know exactly
what you are trying to restrict. This isn’t very difficult when you only toggle
Boolean restrictions on or off, but it can get trickier if you want to restrict
email from hosts that try to disguise their origin.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

A common adage on the Postfix mailing list is “The log is your friend.” It
might seem difficult to imagine a mail log as a friend, but the log really
comes in handy when gathering information for restricting email flow.
Simply put, the mail log holds most of the information needed to build
effective restrictions. Take a look at this series of log entries for an incoming
message:

Apr 14 21:14:48 mail postfix/smtpd[31840]: 4F2A643F30:
client=unknown[172.16.0.1] �

Apr 14 21:14:48 mail postfix/cleanup[31842]: 4F2A643F30:
message-id=<002101c42254$792c2530$010010ac@stateofmind.de> �

Apr 14 21:14:48 mail postfix/nqmgr[31836]: 4F2A643F30:
from=<test@example.com>, �
size=666, nrcpt=1 � (queue active)

Apr 14 21:14:48 mail postfix/smtpd[31840]: disconnect from unknown[172.16.0.1]
Apr 14 21:14:48 mail postfix/smtp[31844]: 4F2A643F30: to=<p@state-of-mind.de>, �

relay=mail.state-of-mind.de[212.14.92.89], �
delay=0, status=sent (250 Ok: queued as 97E70E1C65) �

The parts of the message are as follows:

� The client (IP and hostname) that delivered the message

� The Message-Id header

� The envelope sender (MAIL FROM command in SMTP dialog)

� The number of recipients

� The envelope recipient(s) (RCPT TO command in SMTP dialog)

� Where the message went

� The queue ID that the remote Postfix server assigned to the message

If your job is to restrict the transport of a message, and you need some
more information to figure out what you’re dealing with, the log is the place
to get to know your “opponent.”

Simulating the Impact of Restrictions
A good set of restrictions is rarely achieved on the first try. To get what you
need, you typically have to go through several iterations of trial and error. To
test your restrictions, you will need messages to run your restrictions against,
and chances are that you do not have a test machine at your service and must
develop your restrictions on the production server. Unfortunately, this
presents the risk of having false positives and losing important email.

To solve this problem, Postfix has a warn_if_reject parameter for testing
restrictions, which is similar to the WARN action in checks. By prepending this
parameter to a restriction that you want to test, Postfix just logs the effect of
the restriction, but does not reject the mail. Here’s how you might use it to
test reject_unknown_sender_domain.
82 Chapter 8

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

smtpd_recipient_restrictions =
 permit_mynetworks
 reject_unauth_destination
 warn_if_reject reject_unknown_sender_domain
 permit

As soon as you set this parameter up, the mail log reports the “simulated”
rejection like this:

Jun 25 16:10:52 mail postfix/smtpd[32511]: 8075015C02F: reject_warning: RCPT
from sccrmhc11.comcast.net[204.127.202.55]: 550 <DickinsL@newfaces.gr>:
Sender address rejected: Domain not found; from=<DickinsL@newfaces.gr>
to=<example@charite.de> proto=ESMTP helo=<sccrmhc11.attbi.com>

After you’re sure that the restriction works, you can remove the
warn_if_reject parameter from your restriction. Further log entries will
inform you that the restriction was successful by logging rejected messages:

Jun 25 16:11:23 mail postfix/smtpd[32511]: 8075015C02F: reject: RCPT from
sccrmhc11.comcast.net[204.127.202.55]: 550 <DickinsL@newfaces.gr>: Sender
address rejected: Domain not found; from=<DickinsL@newfaces.gr>
to=<recipient@example.com> proto=ESMTP helo=<sccrmhc11.attbi.com>

Making Restrictions Effective Immediately

Postfix consists of several different daemons that load their configuration
data upon startup. Some of the daemons run only for a short time and
terminate in order to avoid excess resource utilization. However, other
daemons do not restart unless you tell Postfix to do so.

These long-running daemons, qmgr and nqmgr (it’s called nqmgr in older
versions only, the new versions of Postfix use the new queuemanger by
default, but in that case it’s named qmgr—with the old queuemanager being
oqmgr), play an important role in restricting email flow and will not notice
configuration changes until the whole system restarts or you intervene
manually. Therefore, you need to remember that whenever you change
main.cf or master.cf, you must issue a postfix reload command to make the
queue manager reload the configuration.

NOTE Theoretically, the changes will be picked up over time, because daemons will die and be
reborn after max_use uses. Except, of course, in the case of qmgr, which never dies.
Changes in options for qmgr always require a postfix reload. Allowing the changes to
be adopted over time, however, can lead to some daemons using the old configuration
while the others use the new configuration, which may not be ideal.
Using Message T ransfer Res tr ic ti ons 83
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Restriction Defaults

Postfix comes with a safe set of default restrictions that prevent your machine
from becoming an open relay (or third-party mail relay). You can find out
what the default restrictions are by telling postconf to print out the default
settings for smtpd_recipient_restrictions like this:

postconf -d smtpd_recipient_restrictions
smtpd_recipient_restrictions = permit_mynetworks, reject_unauth_destination

Postfix evaluates restrictions in the order that they’re listed. In this case,
if a client wants to relay a message, Postfix checks whether the connection
came from a host within mynetworks. If that’s the case (if the evaluation of
permit_mynetworks returns OK), Postfix accepts the message for delivery.

If the client does not come from mynetworks, Postfix evaluates
reject_unauth_destination. This restriction defeats relaying attempts by
checking whether the message recipient is inside the final destination and
relay domains that you configured for Postfix. If the recipient is not within
those domains, reject_unauth_destination returns REJECT, and Postfix tells the
client that it may not relay.

If Postfix feels responsible for the message destination, reject_unauth_
destination returns DUNNO, and Postfix evaluates the next restriction. How-
ever, there are no more restrictions in the list, so Postfix assumes an implied
default of permit and accepts the message.

These two restrictions are the basics that protect your server from being
an open relay, but they do not protect your users from spam, nor do they tell
clients connecting to your server to behave properly. The rest of this chapter
shows you how to make restrictions tougher.

Requiring RFC Conformance

Requiring proper behavior (conformance to the RFCs) from local and
remote clients is the first step in running a tight ship. Not only does this
ensure that your mail server circulates valid messages to other mail servers,
but it also requires remote clients to behave properly. This can be useful in
defending against spammers, who are always in a hurry, skirt the rules, and
disguise identifying information.

This section shows you how to impose restrictions on the hostname,
envelope sender, and envelope recipient to achieve RFC conformance.

NOTE The restrictions you see in here will not be used in main.cf in the order they are
explained. This is intentional, and you’ll see why in the section “Processing Order for
RFC Restrictions” later in this chapter. For the moment, just add the restrictions as they
appear in the example listings.
84 Chapter 8

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Restricting the Hostname in HELO/EHLO

A good place to start is to have Postfix insist that clients introduce themselves
properly when they want to send messages to or through your server. There
are a number of restrictions that you can impose on the HELO/EHLO part of
the SMTP dialog, from simply requiring that clients send a hostname to
requiring that they send a valid hostname.

Requiring a Hostname

The Postfix smtpd_helo_required parameter requires all clients to issue either a
HELO or an EHLO statement when starting SMTP communication. Both RFC 821
(ftp://ftp.rfc-editor.org/in-notes/rfc821.txt) and RFC 2821 (ftp://ftp.rfc-
editor.org/in-notes/rfc2821.txt) mandate this handshake, but Postfix sets the
parameter to no by default. Enable it by adding the following line to your
main.cf file:

smtpd_helo_required = yes

After a configuration reload, Postfix will refuse messages from any client
that does not introduce itself properly. You can test this by connecting to
your server and trying to initiate a message transmission without the HELO
statement. Here’s how Postfix should interact when requiring a hostname:

$ telnet mail.example.com 25
220 mail.example.com ESMTP Postfix
MAIL FROM: <sender@example.com>
503 Error: send HELO/EHLO first
QUIT
221 Bye

Requiring an FQDN

The HELO/EHLO statement is nice, but clients are also required to submit
their full hostname along with the handshake (for example, HELO
client.example.com). Furthermore, the RFCs mandate that the hostname
be a fully qualified domain name (FQDN).

NOTE An FQDN does not necessarily exist in domain name service (DNS) records.

Postfix will refuse messages from any client that does not submit an
FQDN hostname if you set the reject_non_fqdn_hostname option inside
smtpd_recipient_restrictions.

CAUTION Be careful with this restriction. Some mail clients, such as Microsoft Outlook, use only
the localpart of the name (e.g., client) by default, unless you configure the operating
system to provide an FQDN hostname for its applications.
Using Message T ransfer Res tr ic ti ons 85
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

When you add reject_non_fqdn_hostname to your list of smtpd_recipient_
restrictions, it should look something like this in your main.cf file:

smtpd_recipient_restrictions =
 permit_mynetworks
 reject_unauth_destination
 reject_non_fqdn_hostname
 permit

Test the restriction by connecting to your mail server and issuing a
simple hostname, as in this example:

$ telnet mail.example.com 25
220 mail.example.com ESMTP Postfix
HELO client
250 mail.example.com
MAIL FROM: <sender@example.com>
250 Ok
RCPT TO: <recipient@example.com>
504 <client>: Helo command rejected: need fully-qualified hostname
QUIT
221 Bye

Rejecting Invalid Characters in the Hostname

The RFCs say that hostnames sent with the HELO/EHLO statement should not
only be FQDNs, but the characters used to build the hostnames must also
obey the requirements of the domain name system. A valid domain name
must contain at least the following elements:

� A top level domain (TLD), such as “com”

� A domain name, such as “example”

� A dot (.) separating the TLD and domain name

Any other hostname is not likely to resolve properly, making interaction
between the client and the server difficult, if not impossible. You can tell
Postfix not to speak with such clients by using the reject_invalid_hostname
option in smtpd_recipient_restrictions. Here’s an example of where you
might put it:

smtpd_recipient_restrictions =
 permit_mynetworks
 reject_unauth_destination
 reject_non_fqdn_hostname
 reject_invalid_hostname
 permit

As before, test this by connecting from a remote host to your mail server
and issuing an invalid hostname. The client introduces itself as “.” in the
following sample session.
86 Chapter 8

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

$ telnet mail.example.com 25
220 mail.example.com ESMTP Postfix
HELO .
250-mail.example.com
MAIL FROM:<sender@example.com>
250 Ok
RCPT TO:<recipient@example.com>
501 <.>: Helo command rejected: Invalid name
QUIT
221 Bye

Restricting the Envelope Sender
The envelope sender must also contain an FQDN in the domain part, and
the envelope must belong to an existing domain. Envelope senders such as
sender and sender@example do not include the FQDN domain part. An example
of a complete envelope server is sender@example.com. Invalid addresses can
cause great confusion because the sender address of the message looks as if it
originated from the server. There are two things that can go wrong:

� An MTA that needs to bounce a message with an incomplete envelope
sender would bounce to local users. The bounce wouldn’t make it to the
original sender.

� Postfix could try to “fix” the invalid address, creating an even worse situa-
tion. Because Postfix knows that the envelope sender must be an FQDN,
it would run the trivial-rewrite daemon to canonicalize these email
addresses by adding $myorigin to sender (resulting in sender@$myorigin)
and $mydomain to sender@example (resulting in sender@example.$mydomain).
Therefore, the envelope sender for messages coming from a remote
server would be completely incorrect.

To prevent this, add the reject_non_fqdn_sender option to smtpd_recipient_
restrictions, as in this example:

smtpd_recipient_restrictions =
 reject_non_fqdn_sender
 permit_mynetworks
 reject_unauth_destination
 reject_non_fqdn_hostname
 reject_invalid_hostname
 permit

Test this by connecting from a remote machine to your mail server and
issuing an incorrect envelope sender. This example shows how the restric-
tion will make Postfix reject messages from such a sender:

$ telnet mail.example.com 25
220 mail.example.com ESMTP Postfix
HELO client.example.com
Using Message T ransfer Res tr ic ti ons 87
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

250 mail.example.com
MAIL FROM: <sender>
250 Ok
RCPT TO: <recipient@example.com>
504 <sender>: Sender address rejected: need fully-qualified address

Mail from Nonexistent Domains

A responsible mail server does not accept messages from sender domains
that do not exist, because it cannot contact the sender in the nonexistent
domain if there is a delivery failure. Other configurations would cause a
double bounce as soon as the MTA tried to notify the sender, and a message
with a nonexistent sender domain would end up in the postmaster’s
mailbox.

NOTE Mail servers have to deal with nonexistent domains because users sometimes mistype
their mail addresses when configuring mail clients; spammers also use nonexistent
domains to hide their origin.

To protect recipients and postmasters from double bounces and ill-
formed messages, add the reject_unknown_sender_domain option to your smtpd_
recipient_restrictions configuration. For example, you can place it as follows:

smtpd_recipient_restrictions =
 reject_unknown_sender_domain
 permit_mynetworks
 reject_unauth_destination
 reject_non_fqdn_hostname
 reject_invalid_hostname
 permit

The following example shows how you might test the restriction (you’re
looking for the 450 error code that Postfix sends as a response to the MAIL
FROM command):

$ telnet mail.example.com 25
220 mail.example.com ESMTP Postfix
HELO client.example.com
250 mail.example.com
MAIL FROM: <sender@domain.invalid>
250 Ok
RCPT TO: <recipient@example.com>
450 <sender@domain.invalid>: Sender address rejected: Domain not found

Restricting the Envelope Recipient

As a final step in forcing incoming connections to adhere to the RFCs, you
can reject any message that has a nonexistent domain or user in the envelope
recipient.
88 Chapter 8

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

A mail server shouldn’t accept any message for a domain that does not
exist, because there is no way to deliver such a message. If the mail server
accepts a message and bounces it back later, the user might think something
is wrong with the mail server because it initially accepted the message.

Configuring your mailer to reject messages to nonexistent domains
passes the problem back to the client or the user, where it originated. To set
this up in Postfix, use the reject_unknown_recipient_domain option inside your
smtpd_recipient_restrictions set, like this:

smtpd_recipient_restrictions =
 reject_unknown_recipient_domain
 permit_mynetworks
 reject_unauth_destination
 reject_non_fqdn_hostname
 reject_invalid_hostname
 permit

As usual, you can test it by sending a nonexistent recipient domain in a
manual connection to the server. Here’s an example where Postfix rejects a
message because invalid.domain is not a valid domain:

$ telnet mail.example.com 25
220 mail.example.com ESMTP Postfix
HELO client.example.com
250 mail.example.com
MAIL FROM: <sender@example.com>
250 Ok
RCPT TO: <recipient@domain.invalid>
450 <recipient@domain.invalid>: Recipient address rejected: Domain not found

Mail to Unknown Recipients

You can configure Postfix to deliver messages for an unknown user in your
domain to the postmaster. At first glance, this might seem like a good idea
because the postmaster can examine and manually deliver these messages
whenever possible.

Although this would theoretically constitute excellent customer service,
setting up a default delivery target would probably result in a denial-of-
service (DoS) attack on your mail server as soon as it became the target of a
spammer’s or worm’s dictionary attack. In such an attack, the attacker
attempts to deliver a message to existing recipients by sending messages to
addresses using all possible combinations of letters. For example, the
attacker could start with aa@yourdomain.com, then try ab@yourdomain.com, and go
on through all two-letter combinations until reaching zz@yourdomain.com.

Not only is it difficult to winnow out the valid messages from the mess
created by this kind of attack, but the server is also exposed to the risk of
consuming too much bandwidth, CPU time, memory, and disk space, until
your server finally caves in and stops servicing message transmission requests.
For example, the Sobig.F virus overloaded many mail servers in August 2003.
Using Message T ransfer Res tr ic ti ons 89
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Keep in mind that Postfix tries to provide the most reliable service pos-
sible. Reliability implies consistency, and that’s why it rejects mail addressed
to unknown users by default, without any manual intervention. This is great
for a stand-alone Postfix installation, but it’s also useful for a Postfix server
running on a smart host that protects other mail servers.

Postfix determines the validity of recipients by consulting maps. There
are two configuration parameters that tell Postfix where to find this infor-
mation: local_recipient_maps and relay_recipient_maps. Both parameters
expect one or more maps that contain valid recipients. The local_recipient_
maps parameter defines valid local recipients, as shown in this example, which
defines recipients in the Unix password file and alias maps:

postconf -d local_recipient_maps
local_recipient_maps = proxy:unix:passwd.byname $alias_maps

On the other hand, relay_recipient_maps defines recipients for when
Postfix is relaying messages to a final destination (such as a mailbox server):

postconf -d relay_recipient_maps
relay_recipient_maps = hash:/etc/postfix/relay_recipients

When using relay_recipient_maps, take special care that Postfix knows
all valid recipients for its relay target(s). If the destination happens to be
a Microsoft Exchange server, consult Chapter 13 on how to extract the
user map.

CAUTION The use of luser_relay disables the local_recipient_maps parameter because it makes
all local recipients valid. Likewise, a catchall wildcard entry in your virtual_alias_
maps entries disables rejection of mail to nonexistent recipients because the wildcard
renders all recipients valid. For example, the following map entry makes all recipients
in example.com valid:

@example.com catchall@localhost

Mail to Unqualified Recipient Names

An address that is not fully qualified, such as recipient, contains the localpart
of the email address. It’s okay to accept these addresses for local recipients
on a machine that receives mail for a single domain, but it is a big problem as
soon as your mail server receives messages for another domain.

This is because the localpart leaves too much room for interpretation
when standing on its own.

Let’s say that you’re an ISP for both example.com and example.net, two
competing businesses. If you get a message for sales, where does that go to?
Should it go to sales@example.com or to sales@example.net if email services for
both are hosted on the same machine?
90 Chapter 8

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

This is why you should reject addresses that aren’t fully qualified. Don’t
assume responsibility for something you shouldn’t have anything to do with.
It’s the sender’s job to prepare the message for proper transmission, and this
means specifying a unique recipient.

NOTE There’s just one exception: You must accept mail for postmaster in non-FQDN form.
The address postmaster is exempt from all recipient restrictions (including delayed
client/helo/sender restrictions), not just reject_non_fqdn_recipient.

Postfix rejects messages to non-FQDN recipients as soon as you add the
reject_non_fqdn_recipient option to the smtpd_recipient_restrictions
parameter, as in this example:

smtpd_recipient_restrictions =

 reject_non_fqdn_recipient
 reject_unknown_recipient_domain

 permit_mynetworks

 reject_unauth_destination

 reject_non_fqdn_hostname

 reject_invalid_hostname

 permit

Test it by connecting to your mail server from a remote host and
providing an incomplete envelope recipient. A session such as the following
should be sufficient to verify that the restriction works:

$ telnet mail.example.com 25
220 mail.example.com ESMTP Postfix

HELO client.example.com
250 mail.example.com

MAIL FROM: <sender@example.com>
250 Ok

RCPT To: <recipient>

504 <recipient>: Recipient address rejected: need fully-qualified address

Maintaining RFC Conformance

You have probably noticed in this chapter that restrictions can become fairly
complex. The dark side of restrictions is that the more complex they become,
the higher the chance that you will specify one that makes your mail system
malfunction (if not rendering it completely useless) by rejecting content that
you must accept under all circumstances. The following sections show you
how to avoid inadvertently locking some or all senders out. This is important,
because you can accidentally exclude the senders that might be able to tell
you that something is wrong with your configuration.
Using Message T ransfer Res tr ic ti ons 91
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Empty Envelope Sender

First, never block the empty envelope sender (<>). This address belongs to
MAILER-DAEMON, and the mail server uses it when sending bounces and
status notifications. If you block it, remote servers can’t tell your users if
something goes wrong with messages they send.

CAUTION Blacklists, such as dsn.rfc-ignorant.org, list mail servers that categorically block empty
envelope senders, so mail servers that use these blacklists won’t accept mail from such
servers. (This is discussed later in the “Rejecting Blacklisted Sender Domains” section).

All you need to do is treat the empty envelope sender as any other valid
recipient and build good (antispam) restrictions to protect your recipients.
Let the restrictions do the work, and if a message with an empty envelope
sender comes in, accept it. After all, any sender address could be fake. . . .

Special Role Accounts

There are two addresses for which you must always accept messages on a mail
server; they are required to run an RFC-compliant mail server:

postmaster

Always accept mail for postmaster; it’s the clearinghouse for mail-related
problems. Users must be able to contact the postmaster if they need help
with mail (see RFC 2821 at http://www.rfc-editor.org/rfc/rfc2821.txt).

abuse

Accepting mail for abuse ensures that users can tell you of potential mail
abuse originating from your mail server (see RFC 2142 at http://www.rfc-
editor.org/rfc/rfc2142.txt).

Optionally, you should accept messages for the following addresses if you
run certain servers (see RFC 2142; http://www.rfc-editor.org/rfc/rfc2142.txt):

webmaster

Accept mail for webmaster if you run a web server.
hostmaster

Accept mail for hostmaster if you run a nameserver.

You can accept messages for these recipients by using the check_
recipient_access parameter in combination with a map, such as /etc/postfix/
roleaccount_exceptions, that lists the recipients that are to accept messages.
The map might look like this (the OK value for each map key tells Postfix that
it’s fine to accept messages for this recipient regardless of recipient
restrictions):

addresses that you must always accept
postmaster@ OK
abuse@ OK
92 Chapter 8

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

addresses that you should accept if you run DNS and WWW servers
hostmaster@ OK
webmaster@ OK

After setting up this file, convert it to a map with the postmap hash:/etc/
postfix/roleaccount_exceptions command. Then, specify the map as a
parameter to the check_recipient_access setting in your list of restrictions in
main.cf. Here’s an example setting:

smtpd_recipient_restrictions =
reject_non_fqdn_recipient
reject_non_fqdn_sender
reject_unknown_sender_domain
reject_unknown_recipient_domain
permit_mynetworks
reject_unauth_destination
check_recipient_access hash:/etc/postfix/roleaccount_exceptions
permit

After reloading Postfix, you’re safe to proceed building more complex
rules. The map with the exceptions is being queried after Postfix has
checked for unauthorized relaying; thus it’s safe to specify postmaster@.

Processing Order for RFC Restrictions

You might have noticed by now that the options added to smtpd_recipient_
restrictions in the preceding sections weren’t specified in the same order as
the sections themselves. This is because the restriction options can interfere
with each other if they aren’t in the proper order. Have a look at the
following listing:

smtpd_recipient_restrictions =
 reject_non_fqdn_recipient
 reject_non_fqdn_sender
 reject_unknown_sender_domain
 reject_unknown_recipient_domain
 permit_mynetworks
 reject_unauth_destination
 check_recipient_access hash:/etc/postfix/roleaccount_exceptions
 reject_non_fqdn_hostname
 reject_invalid_hostname
 permit

The permit_mynetworks option denotes an important boundary between
clients on your internal network and clients outside. Options that appear up
to and including this point apply to both internal and external clients, but
those below permit_mynetworks apply to external clients only.
Using Message T ransfer Res tr ic ti ons 93
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

The options that precede permit_mynetworks require basic RFC confor-
mance from all clients, whether they are inside or outside your network.

The reject_unauth_destination option prevents your server from becoming
an open relay. It’s best not to specify any options that will allow messages to go
through before you specify permit_mynetworks. After that it is good to follow up
with reject_unauth_destination as soon as possible to make sure that there is no
way an unauthorized host can use your server as an open relay.

Checks for SMTP AUTH should go between reject_unauth_destination
and permit_mynetworks. Then, before specifying any more rejection options,
use check_recipient_access to enable unconditional delivery to the special role
mailboxes on your system.

Finally, after rejecting possible multiple-recipient spam bounce attempts
and bogus envelope-recipient hostnames, you can accept messages with the
permit option.

Antispam Measures
Spammers need to disguise their messages’ origin unless they want to be
taken to court. Usually they will fake the envelope sender or try to lull the
receiving server to sleep by telling it their client is to be trusted—that it
belongs to the local network. Restrictions can check and reject such
messages. Furthermore, they can query blacklists, where spammers and
other parties you don’t want to receive messages from are listed. The
following section shows you how to put such restrictions into effect.

Preventing Obvious Forgeries
Some spam software tries to disguise message origin by using your mail server’s
hostname as its own in the HELO/EHLO greeting. To Postfix, this seems like a
paradox, because the only host that is allowed to use the server hostname is the
host itself. However, Postfix would never connect to its smtpd daemon to send
mail to itself unless it were configured incorrectly and a mail loop was created.

Adding these restrictions behind permit_mynetworks will make them apply
only to external clients and not to proxy filters or local clients with incom-
plete SMTP implementations.

Therefore, you can safely decline SMTP communication with any client
that greets your mail server with the mail server’s hostname. To do this, first
create a map file called /etc/postfix/helo_checks that contains variations on
your hostname. Here are some examples that cover the hostname, the host’s
IP address, and the bracketed IP address that clients outside of the mail
server should not use:

/^mail\.example\.com$/ 550 Don't use my hostname
/^192\.0\.34\.166$/ 550 Don't use my IP address
/^\[192\.0\.34\.166\]$/ 550 Don't use my IP address

According to RFC 2821, an IP address all by itself is not a valid argument
to the HELO handshake request. An IP address is allowed, as long as it is
94 Chapter 8

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

specified as [ipv4address] (enclosed in angular brackets) or as an IPv6 address,
[ipv6:ipv6address], also enclosed in angular brackets. To be strict and refuse
service to any client that sends an unbracketed IP address, add this line:

/^[0-9.]+$/ 550 Your client is not RFC 2821 compliant

To put the map in action, specify it (and its type) as an argument to the
check_helo_access option in your smtpd_recipient_restrictions parameter.
Here’s how it might look:

smtpd_recipient_restrictions =
 reject_non_fqdn_recipient
 reject_non_fqdn_sender
 reject_unknown_sender_domain
 reject_unknown_recipient_domain
 permit_mynetworks
 reject_unauth_destination
 check_recipient_access hash:/etc/postfix/roleaccount_exceptions
 reject_non_fqdn_hostname
 reject_invalid_hostname
 check_helo_access pcre:/etc/postfix/helo_checks
 permit

To test this, connect to your mail server and issue your own name in the
HELO greeting. You should get a rejection, as shown in this example session:

$ telnet mail.example.com 25
220 mail.example.com ESMTP Postfix
HELO mail.example.com
250 mail.example.com
MAIL FROM: <sender@example.com>
250 Ok
RCPT TO: <recipient@example.com>
550 <mail.example.com>: Helo command rejected: Don't use my hostname
QUIT
221 Bye

Bogus Nameserver Records
Postfix can reject messages if there is evidence that the nameserver records
for the HELO domain, sender domain and recipient domain are forged or
do not allow correct message transport. Here are some questionable things
you might see in DNS records:

Bogus networks
Some mail servers claim to be from networks that Postfix cannot reach,
including those of private IP networks that you’re not using (see RFC
1918, ftp://ftp.rfc-editor.org/in-notes/rfc1918.txt), the loopback
network, broadcast addresses, and multicast networks.
Using Message T ransfer Res tr ic ti ons 95
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Spam havens
Spam havens are networks known to be owned by spammers or those
that provide services to spammers. It’s possible to reject all messages
from such domains. You can look up spam havens or spam operations
on ROKSO (the Register of Known Spam Operations, http://www.spam-
haus.org/rokso/index.lasso).

Wildcard MTAs
Wildcard MTAs claim to be responsible for any domain, even for those
that do not exist. Normally, this wouldn’t be a problem, because you
can refuse access involving unknown sender and recipient domains.
Unfortunately, some domain registries got the bright idea that they
could redirect unknown domain names to their own domain. This pro-
vides a valid A record to unknown domains, and therefore renders the
restriction options reject_unknown_sender_domain and reject_unknown_
recipient_domain useless.

NOTE The first domain registry to redirect unknown domains was VeriSign (http://
www.verisign.com) in 2003. VeriSign abused its power over the .net and .com
namespaces and redirected all nonexistent .com and .net domains to its own site
(sitefinder.verisign.com). In addition, VeriSign set up its own mail service for
unknown domains, which made it impossible to reject messages from unknown
domains. This is an open invitation to spammers, and you can reject messages from
wildcard MTAs blocking the MX host in wildcard domains.

All of the preceding setups either provide bogus nameserver records
or support spammers. To reject mail from such domains and networks,
you can create a map file called /etc/postfix/bogus_mx that holds the IP
addresses in nameserver records along with the type of response that you
want to give to them (see Appendix C for a full list of responses). Here’s
an example map file:

bogus networks
0.0.0.0/8 550 Mail server in broadcast network
10.0.0.0/8 550 No route to your RFC 1918 network
127.0.0.0/8 550 Mail server in loopback network
224.0.0.0/4 550 Mail server in class D multicast network
192.168.0.0/16 550 No route to your RFC 1918 network
spam havens
69.6.0.0/18 550 REJECT Listed on Register Of Known Spam Operations �
wild-card MTA
64.94.110.11/32 550 REJECT VeriSign Domain wildcard �

� This network was listed on spamhaus.org (http://www.spamhaus.org/sbl/
sbl.lasso?query=SBL6636) as a network known to originate spam when we
wrote the book.

� This host was known to act as a wildcard MTA at the time of this writing.
96 Chapter 8

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Since we’re editing a CIDR type map, which is a sequential map type (see
Chapter 5), you need not and cannot convert it using postmap. Postfix will use
the file as is. Simply add the check_sender_mx_access option with the map as an
argument to our smtpd_recipient_restrictions parameter. It might look like this:

smtpd_recipient_restrictions =
 reject_non_fqdn_recipient
 reject_non_fqdn_sender
 reject_unknown_sender_domain
 reject_unknown_recipient_domain
 permit_mynetworks
 reject_unauth_destination
 check_recipient_access hash:/etc/postfix/roleaccount_exceptions
 reject_non_fqdn_hostname
 reject_invalid_hostname
 check_helo_access pcre:/etc/postfix/helo_checks
 check_sender_mx_access cidr:/etc/postfix/bogus_mx
 permit

The restriction takes effect after reloading Postfix. You can see the
restriction’s effect in the mail log:

Sep 17 12:19:23 mail postfix/smtpd[3323]: A003D15C021: reject: RCPT from
unknown[61.238.134.162]:
554 <recipient@example.com>: Sender address rejected: VeriSign Domain
wildcard;
from=<alli.k_lacey_mq@joymail.com> to=<recipient@example.com> proto=ESMTP
helo=<example.com>

You can check on the IP address with the host command:

host -t mx joymail.com
host -t a joymail.com
joymail.com has address 64.94.110.11

NOTE This domain actually exists now; it looks like it was registered in October of 2003.

Bounces to Multiple Recipients
In the “Empty Envelope Sender” section, you learned that you should not
block empty envelope senders. There is one exception to this rule—you
should block mail with an empty envelope sender sent to multiple recipients,
because there is currently no known legitimate use of multi-recipient status
notifications, so any such messages are likely to be illegitimate.

To reject messages from an empty envelope sender to multiple recip-
ients, add the reject_multi_recipient_bounce option to your smtpd_recipient_
restrictions list. It can appear just about anywhere in the restriction list, but
the following is an example where it appears in the smtpd_data_restrictions.
Using Message T ransfer Res tr ic ti ons 97
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

smtpd_data_restrictions =
 reject_multi_recipient_bounce

As stated in the documentation, reject_multi_recipient_bounce can be
used reliably only in smtpd_data_restrictions, when all the recipients are
known.

You can test this with a manual connection, just as you did for earlier
restriction options. Submitting an empty envelope sender and multiple
recipients should result in a refusal of service, as shown in the following
session:

$ telnet localhost 25
220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com

250-PIPELINING

250-SIZE 10240000

250-VRFY

250-ETRN

250 8BITMIME

MAIL FROM:<>
250 Ok

RCPT TO: <recipient1@example.com>
RCPT TO: <recipient2@example.com>
550 : Recipient address rejected: Multi-recipient bounce
QUIT

221 Bye

Using DNS Blacklists

A blacklist DNS server is a server that tells you about resources (such as IP
addresses, envelope senders, and domains) that are probably untrustworthy.
Blacklists can be very useful for blocking mail sent from clients to your server
if you choose the right blacklist. However, picking the wrong blacklist might
result in your server refusing mail that you may consider legitimate. Be sure
to check a blacklist’s policy before using it. Any site running a blacklist
should list the criteria that it applies when blacklisting a resource, and it
should publish and provide a straightforward procedure for removing
resources that no longer need to be blacklisted.

If you’re looking for a blacklist, one place to start is dmoz.org (http://
dmoz.org/Computers/Internet/Abuse/Spam/Blacklists).
98 Chapter 8

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

CAUTION All blacklists are based on the domain name service, meaning that Postfix must per-
form DNS lookups. Uncached DNS lookups can take up to a second, and if they time
out, the rate at which the server can accept messages will drop considerably. Therefore,
blacklist checks are relatively expensive in terms of latency. You should always use them
as a last resort in your list of restriction options.

Rejecting Blacklisted Clients

You can reject blacklisted clients using DNSBL (DNS-based Blackhole List)
blacklists. Postfix has a reject_rbl_client restriction option that takes the
FQDN hostname of the blacklist server as an argument. Here’s an example
of the option in use:

smtpd_recipient_restrictions =
reject_non_fqdn_recipient
 reject_non_fqdn_sender
 reject_unknown_sender_domain
 reject_unknown_recipient_domain
 permit_mynetworks
 reject_unauth_destination
 check_recipient_access hash:/etc/postfix/roleaccount_exceptions
 reject_non_fqdn_hostname
 reject_invalid_hostname
 check_helo_access pcre:/etc/postfix/helo_checks
 reject_rbl_client relays.ordb.org
 permit

After reloading Postfix, the new option takes effect.

NOTE To see if a client is listed in a DNSBL list, invert the order of the four octets of the cli-
ent’s IP address (that is, change a.b.c.d to d.c.b.a), append rbl.domain (such as
relays.ordb.org), and look up the result. If the host is blacklisted, you will get a
response pointing to the original IP address, as in this example:

$ host 2.0.0.127.relays.ordb.org
2.0.0.127.relays.ordb.org A 127.0.0.2

Multivalue Results

Postfix can handle this additional information (a host isn’t just listed, but the
IP address returned makes it possible to distinguish why it is listed). For
example, the following configuration rejects messages from any host that
maps to an A record of 127.0.0.2 in our imaginary domain.tld blacklist:

reject_rbl_client domain.tld=127.0.0.2
Using Message T ransfer Res tr ic ti ons 99
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Rejecting Blacklisted Sender Domains

In addition to restricting mail from IP addresses, you can block mail from
blacklisted sender domains. This kind of blacklist is called a right-hand-side
blacklist (RHSBL). Configuring Postfix for an RHSBL involves the same
procedure. The example in this section uses a special blacklist at dsn.rfc-
ignorant.org:

www.rfc-ignorant.org mission statement:

We maintain a number of lists (at present dsn, abuse,
postmaster, bogusmx and whois) which contain domains whose
administrators choose not to obey the RFCs, the building
block “rules” of the net.

It is important to note that NOTHING requires ANYONE to
comply with an RFC (pedantically a “Request for
Comments”), however, the “cooperative interoperability”
the net has enjoyed is based upon everyone having the same
“rule book” and following it. A listing here simply implies
that a site has chosen not to implement the conditions
described in a particular RFC. It is, of course, up to other
sites to decide for themselves whether or not they wish to
communicate with sites that have not chosen to implement,
say, RFC2142, and have a working <abuse@domain> address.

—dredd, www.rfc-ignorant.org

There are many MTAs that do not accept mail in the ways that the RFCs
mandate (for example, they might refuse an empty envelope sender), for a
number of erroneous reasons, including these:

� bogus mail from anonymous senders not allowed

� empty sender disallowed (to combat the spam problem)

Comment to these error messages of non–RFC-compliant mail servers:
Anybody can forge anybody’s email address. You could be sending out email
as president@whitehouse.gov, and it would be just as anonymous as an empty
envelope sender.

Spam can be sent with arbitrary senders, but bounces can only be sent
with the empty envelope sender.

Any mail server that blocks empty envelope senders prohibits its users
from knowing that their mail may have been rejected by another mail server,
because their server blocks the bounce sent by the other RFC-compliant
server, which uses an empty envelope sender, just as described in the RFC:

RFC 2821 explicitly states that an MTA must accept mail with an empty
return path (envelope sender), because “the use of the empty sender when
sending a bounce prevents an undeliverable bounce from looping between
two systems.”
100 Chap te r 8

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Postfix has a reject_rhsbl_sender restriction option that strips the local-
part from any email address and uses the domain to query a blacklist (such
as dsn.rfc-ignorant.org). If the client’s envelope sender domain is in the
blacklist, Postfix rejects the incoming message. Like other blacklist options,
you should place this option at the end of the list, as in this example:

smtpd_recipient_restrictions =
 reject_non_fqdn_recipient
 reject_non_fqdn_sender
 reject_unknown_sender_domain
 reject_unknown_recipient_domain
 permit_mynetworks
 reject_unauth_destination
 reject_multi_recipient_bounce
 reject_rbl_client relays.ordb.org
 check_recipient_access hash:/etc/postfix/roleaccount_exceptions
 reject_non_fqdn_hostname
 reject_invalid_hostname
 check_helo_access pcre:/etc/postfix/helo_checks
 reject_rhsbl_sender dsn.rfc-ignorant.org
 permit

A reload puts the change in effect, and you can test this by connecting to
your server and using an envelope sender from a domain listed at dsn.rfc-
ignorant.org, as in this example (sender@example.com is the official test address):

$ telnet localhost 25
220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250 8BITMIME
MAIL FROM:<sender@example.com>
250 Ok
RCPT TO: <recipient@example.com>
554 Service unavailable; Sender address [sender@example.com] blocked \
 using dsn.rfc-ignorant.org; Not supporting null originator (DSN)
QUIT
221 Bye

Manual Blacklist Check

Checking a domain in an RHSBL is similar to the procedure for checking an
IP address, except that you don’t have to reverse the order of any elements.
Simply append the blacklist server name to the domain that you want to
check, and do a DNS lookup.
Using Message Trans fer Res t r i ct ions 101
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

The following is a check for a domain that’s not in the blacklist:

$ host postfix-book.com.dsn.rfc-ignorant.org
Host postfix-book.com.dsn.rfc-ignorant.org not found: 3(NXDOMAIN)

A blacklisted domain will look like this:

$ host example.com.dsn.rfc-ignorant.org
example.com.dsn.rfc-ignorant.org has address 127.0.0.2

Exceptions for Blacklisted Sender Domains

If you want to reject mail from mail servers that do not follow the rules,
but you need to maintain communication with a particular domain that
would otherwise be rejected by your restrictions, you can create a list of
exceptions. Use the check_sender_access option with a map to implement
the exception.

First, create a file such as /etc/postfix/rhsbl_sender_exceptions containing
users and domains you want to accept messages from. For example, the
following file permits mail from all users from example.com and for the single
user sender@example.org:

example.com OK
sender@example.org OK

With this file in place, use postmap hash:/etc/postfix/rhsbl_sender_
exceptions to build the map. Then add the check_sender_access option
immediately before the reject_rhsbl_sender option, as in this example:

smtpd_recipient_restrictions =

 reject_non_fqdn_recipient

 reject_non_fqdn_sender

 reject_unknown_sender_domain

 reject_unknown_recipient_domain

 permit_mynetworks

 reject_unauth_destination

 reject_multi_recipient_bounce

 reject_rbl_client relays.ordb.org

 check_recipient_access hash:/etc/postfix/roleaccount_exceptions

 reject_non_fqdn_hostname

 reject_invalid_hostname

 check_helo_access pcre:/etc/postfix/helo_checks

 check_sender_access hash:/etc/postfix/rhsbl_sender_exceptions
 reject_rhsbl_sender dsn.rfc-ignorant.org

 permit
102 Chap te r 8

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

NOTE This example used check_sender_access, but here is the full list of exception options:

� check_sender_access

� check_client_access

� check_helo_access

� check_recipient_access

 You already saw check_helo_access in the section “Preventing Obvious
Forgeries.” The Postfix documentation explains the remaining two.

Verifying the Sender
The crown jewel of the Postfix antispam tools is sender address verification,
which verifies that the envelope sender exists in the sender’s domain: if the
sender does not exist, Postfix does not accept the message.

Unfortunately, this feature is expensive because the verification process
takes time and consumes additional system resources. These are the steps
involved:

1. A client submits an envelope sender.

2. Postfix generates and queues a probe message to the envelope sender.

3. Postfix looks up the MX or A record of the envelope sender’s domain.

4. Postfix tries to connect to the sender’s mail server. If it cannot connect
to the remote server, smtpd defers the decision of whether to accept the
message by returning a temporary error code of 450 to the client. Mean-
while, Postfix keeps trying to verify the address.

5. Postfix initiates an SMTP session with the remote server.

6. Postfix submits the earlier envelope sender as the envelope recipient to
the remote mail server.

7. Based on the remote server’s response, Postfix can do one of two things:

• If the remote mail server accepts the recipient (the original envelope
sender), Postfix disconnects, destroys the probe message, and accepts
the message from the original client.

• If the remote mail server rejects the recipient (the original envelope
sender), Postfix disconnects, destroys the probe message, and rejects
the message from the client.

With address verification active, normal mail will suffer a short delay of
up to nine seconds while Postfix checks the address for the first time.
However, Postfix caches the status of an address, so subsequent messages
have no delay.

If the verification process takes longer than nine seconds, smtpd rejects
the mail from the client (sending machine) with a 450 reply. Normal mail
clients will connect again after some delay, but hijacked proxies won’t,
because they’re just relaying SMTP commands, and the person who’s
controlling the proxy won’t want to waste any more time with the address.
Using Message Trans fer Res t r i ct ions 103
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Sender-Address Verification Configuration

To enable sender-address verification, add the reject_unverified_sender
option to your smtpd_recipient_restrictions parameter, as shown in this
example:

smtpd_recipient_restrictions =
 reject_non_fqdn_recipient
 reject_non_fqdn_sender
 reject_unknown_sender_domain
 reject_unknown_recipient_domain
 permit_mynetworks
 reject_unauth_destination
 reject_multi_recipient_bounce
 reject_rbl_client relays.ordb.org
 check_recipient_access hash:/etc/postfix/roleaccount_exceptions
 reject_non_fqdn_hostname
 reject_invalid_hostname
 check_helo_access pcre:/etc/postfix/helo_checks
 check_sender_access hash:/etc/postfix/rhsbl_sender_exceptions
 reject_rhsbl_sender dsn.rfc-ignorant.org
 reject_unverified_sender
 permit

There are several options other than reject_unverified_sender that you
can add to your restrictions. However, the parameters come with reasonable
defaults, and they serve to tune sender-address verification rather than
configure it. The following subsections describe the most common changes
to sender-address verification behavior. You can find additional tuning
parameters in the ADDRESS_VERIFICATION_README file that comes with your
Postfix installation.

The Probe’s Envelope Sender

When Postfix generates the probe message to verify the sender in question, it
must introduce itself to the remote server with an envelope sender of its own.
You can configure this address with the address_verify_sender parameter. The
default is postmaster@$myorigin.

If you’d like to set a different probe-envelope sender, add the address_
verify_sender parameter to main.cf, as in this example:

address_verify_sender = sender@example.com

Of course, this sender must exist, because other servers might use the
same sender-address verification against you.

NOTE The recipient address specified as a parameter for the address_verify_sender is exempt
from any restrictions.
104 Chap te r 8

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Caching

By default, Postfix keeps verified senders in memory. If you reload or restart
Postfix, you will lose them, unless you specify an optional database to perma-
nently store the addresses. To use a database, set the address_verify_map
parameter to a database path (make sure that you pick a filesystem that has
plenty of space). Here’s an example:

address_verify_map = btree:/var/spool/postfix/verified_senders

After a reload, Postfix creates the database and proceeds to add both
positive and negative verifications. If you want to disable collecting the
negative verifications, set the address_verify_negative_cache parameter in
main.cf as follows:

address_verify_negative_cache = no

Selective Sender-Address Verification

As the load on your mail server increases, sender-address verification is
more likely to become a bottleneck. At this point, you should switch to
selective sender-address verification.

Selective sender-address verification works by creating a map of
common envelope sender domains that spammers typically use. If
an incoming envelope sender domain is in the map, Postfix verifies the
sender, but otherwise it does not bother. Create a map file such as /etc/
postfix/common_spam_senderdomains, and set the reject_unverified_sender
parameter as the action to be taken if the envelope sender matches the
domain. Here’s an example of how such a file looks:

hotmail.com reject_unverified_sender
web.de reject_unverified_sender
msn.com reject_unverified_sender
mail.ru reject_unverified_sender

The access(5) manual page explains that the right side of this map is the
name of a valid restriction or smtpd_restriction_class. In this example, Postfix
does one of two things when a client initiates message transmission:

� If the sender’s domain matches an entry in common_spam_senderdomains,
the map lookup returns reject_unverified_sender, so Postfix verifies the
envelope sender. If it’s valid, reject_unverified_sender returns DUNNO, and
Postfix evaluates the next restriction. If the address is invalid, Postfix
rejects the message.

� If the sender domain does not match anything in common_spam_
senderdomains, the map lookup fails, the selective evaluator returns
DUNNO, and Postfix evaluates the next restriction without verifying the
sender address.
Using Message Trans fer Res t r i ct ions 105
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

After creating the map, convert it to a database using the postmap hash:/
etc/postfix/common_spam_senderdomains command. Finally, replace the existing
reject_unverified_sender option with the check_sender_access option and map
argument. Here’s an example that uses the hash:/etc/postfix/common_spam_
senderdomains map:

smtpd_recipient_restrictions =
 reject_non_fqdn_recipient
 reject_non_fqdn_sender
 reject_unknown_sender_domain
 reject_unknown_recipient_domain
 permit_mynetworks
 reject_unauth_destination
 reject_multi_recipient_bounce
 check_recipient_access hash:/etc/postfix/roleaccount_exceptions
 reject_non_fqdn_hostname
 reject_invalid_hostname
 check_helo_access pcre:/etc/postfix/helo_checks
 check_sender_access hash:/etc/postfix/rhsbl_sender_exceptions
 reject_rhsbl_sender dsn.rfc-ignorant.org
 check_sender_access hash:/etc/postfix/common_spam_senderdomains
 permit

You can take this one step further and introduce criteria other than the
envelope sender, such as content. Create another map named common_spam_
senderdomain_keywords that includes domain name keywords to trigger sender-
address verification, such as this example:

/sex/ reject_unverified_sender
/girl/ reject_unverified_sender
/sell/ reject_unverified_sender
/sale/ reject_unverified_sender
/offer/ reject_unverified_sender
/power/ reject_unverified_sender

Then add another check_sender_access option pointing to the map:

smtpd_recipient_restrictions =
 reject_non_fqdn_recipient
 reject_non_fqdn_sender
 reject_unknown_sender_domain
 reject_unknown_recipient_domain
 permit_mynetworks
 reject_unauth_destination
 reject_multi_recipient_bounce
 check_recipient_access hash:/etc/postfix/roleaccount_exceptions
 reject_non_fqdn_hostname
 reject_invalid_hostname
 check_helo_access pcre:/etc/postfix/helo_checks
106 Chap te r 8

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

 check_sender_access hash:/etc/postfix/rhsbl_sender_exceptions
 reject_rhsbl_sender dsn.rfc-ignorant.org
 check_sender_access hash:/etc/postfix/common_spam_senderdomains
 check_sender_access regexp:/etc/postfix/common_spam_senderdomain_keywords
 permit

Restriction Process Order
Antispam protection is expensive from a system resource point of view. The
following restriction listing shows how to order antispam options.

smtpd_recipient_restrictions =
 reject_non_fqdn_recipient
 reject_non_fqdn_sender
 reject_unknown_sender_domain
 reject_unknown_recipient_domain
 permit_mynetworks �
 (permit_sasl_authenticated)
 (pop-before-smtp)
 reject_unauth_destination
 check_recipient_access hash:/etc/postfix/roleaccount_exceptions
 check_helo_access pcre:/etc/postfix/helo_checks �
 reject_non_fqdn_hostname
 reject_invalid_hostname
 check_sender_mx_access cidr:/etc/postfix/bogus_mx �
 check_sender_access hash:/etc/postfix/rhsbl_sender_exceptions �
 reject_rhsbl_sender dsn.rfc-ignorant.org �
 check_sender_access hash:/etc/postfix/common_spam_senderdomains �

check_sender_access regexp:/etc/postfix/common_spam_senderdomain_keywords
 permit

General rules to order “cheap” before “expensive” restrictions:

� Place all antispam options after permit_mynetworks so that they apply to
external clients (clients not listed in mynetworks) only.

� You can reject any client that uses your server’s hostname without any
further investigation. It doesn’t matter if they use a non-FQDN hostname
or an invalid hostname.

� This option marks the beginning of expensive restrictions.
check_sender_mx_access requires one or two DNS lookups. If you’re run-
ning a caching nameserver, you can resolve DNS queries locally.

� This map goes in front of the blacklist option because it contains
exceptions for users and domains that might otherwise be rejected.

� This option is expensive, requiring a query to a remote system (the
DNS server for dsn.rfc-ignorant.org) that might be under a heavy load
or temporarily out of order. That’s why it comes close to the end of the
restriction option list.
Using Message Trans fer Res t r i ct ions 107
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

� The two most expensive actions come last. If triggered, Postfix must
create a dummy message, attempt to deliver it, and register the result.
Very expensive. Therefore, it is a last resort.

Uses for Restriction Classes

The example to follow in this section restricts envelope senders in two ways.
First, it requires that mail from the outside not have a sender address inside
your domain; and second, it states that mail from inside clients must contain
a sender address inside your domain.

The idea is to let Postfix first check to see if an incoming client
connection is from your network:

1. If the client is on your network, Postfix sends the client to a restriction
class. This class contains a check for the envelope sender address.

• If the envelope sender matches your domain wildcard, the check
returns OK. Postfix stops evaluating restrictions and allows the client to
proceed.

• If the envelope sender does not match the domain wildcard, the next
restriction option is reject, so Postfix refuses service to the client.

2. If the client does not belong to your network, Postfix does not use the
restriction class. Instead, it moves along to the next restriction option,
which checks the envelope sender address.

• If the client uses your domain as part of the envelope sender, Postfix
refuses service.

• If the client does not use your domain as part of the envelope sender,
it passes the test and moves along to the next restriction.

To implement what we just wrote about, create a map file containing a
list of IP addresses and networks inside your network. You can name the file
/etc/postfix/internal_networks; it should look like this:

192.0.34 has_our_domain_as_sender
192.168 has_our_domain_as_sender
192.168.1 has_our_domain_as_sender

Then, create another map file named /etc/postfix/our_domain_as_sender
containing your domain wildcard and the empty envelope sender (remem-
ber that your server should accept this without question); this is the list of
envelope sender domains that internal clients may use. The map file will look
like this:

example.com OK
<> OK
108 Chap te r 8

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Now, create a map file that contains the domains that external clients
may not use in their envelope sender. For this example, we’ll use the
filename /etc/postfix/not_our_domain_as_sender, containing just one line:

example.com 554 Do not use my domain in your envelope sender

After creating maps for these two map files with the postmap command,
set the restriction class and the required restriction options in your main.cf
file:

smtpd_restriction_classes =
 has_our_domain_as_sender
has_our_domain_as_sender =
 check_sender_access hash:/etc/postfix/our_domain_as_sender
 reject
smtpd_recipient_restrictions =
 check_client_access hash:/etc/postfix/internal_networks
 check_sender_access hash:/etc/postfix/not_our_domain_as_sender
 reject_unauth_destination
 ...
 permit

As usual, you will need to reload the Postfix configuration to put the
changes into effect.
Using Message Trans fer Res t r i ct ions 109
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

9
H O W B U I L T - I N C O N T E N T

F I L T E R S W O R K

Checks examine the content of a message
and execute a predefined action based

on the content. This chapter shows you the
checks that are available and what actions Postfix

provides for enforcing content control.
Checks complement restrictions. Whereas restrictions supervise the SMTP

dialog, checks control the content of a message. At first, though, you might
see checks as being very different from restrictions. Checks are easy to
enable, but the syntax used to create search patterns can become rather
complicated because checks use regular expressions to define search
patterns.

Because Postfix focuses on being an MTA, the built-in checks are not
designed to replace a full-featured content scanner; rather, they provide the
means for simple tasks. Here are some of the things you can do with checks:

� Block messages generated by certain programs, such as your SAP mail
gateway.

� Block messages with specific subject lines.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

� Weed out messages containing potentially harmful attachments.

� Remove pieces of information from message headers.

NOTE If you have never worked with regular expressions before, you may need to spend some
time learning the basics. Mastering Regular Expressions, 2nd Edition by Jeffrey
E.F. Friedl is an excellent book on the subject.

How Do Checks Work?

Checks scan messages for a set of search patterns. If a pattern matches any
content in a message, an action is taken. Postfix can apply separate filters to
distinct sections of a message; the sections currently supported by Postfix are
as follows:

� Message headers

� MIME headers

� Message body parts, including attachments

� Message headers of attached messages

To create a set of checks, you define separate search patterns using
separate maps, and then assign these maps to the different check parameters
that apply to different sections. Postfix uses the maps with a built-in MIME
parser to examine the content of a message. The parser works like the egrep
command; it can only recognize plaintext words one line at a time. Here’s
how the process works:

1. The parser steps through a message line by line.

2. The parser decides which message section the current line belongs to.

3. If a check exists for the section, Postfix uses the assigned map to search
the message for matching patterns.

4. If the search pattern matches, Postfix triggers an action, and the execu-
tion of other checks is discontinued. Therefore, the first match “wins.”

As you might have guessed by now, checks are CPU-intensive, and you
can also see that the order of search patterns in a map can become crucial,
because an earlier match causes the check process to use less CPU time.

Applying Checks to Separate Message Sections

Postfix uses a separate configuration parameter for each message section it
knows. The check parameters are as follows (note that they are not enabled
in the main.cf file by default).
112 Chap te r 9

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

header_checks

These apply to the message header—that is, to everything from the first
line of the message to the first blank line. This also includes headers that
span multiple physical lines.

body_checks

These apply to the message body; the parser considers the body to be
everything between headers.

CAUTION Extensive body_checks commands can be very CPU-intensive, slowing down your
machine noticeably, because a body check scans every line of a body segment and com-
pares the line to every regular expression that you define in the body_checks map.

To prevent excessive CPU overload, Postfix checks only the first 51,200 bytes of the
current body segment by default. You can increase this limit with the body_checks_
size_limit parameter. You can also handle an increased load by delegating the content
inspection to a different application on a separate machine by using the content_filter
feature described in Chapter 11.

mime_header_checks

These apply to MIME headers in the top-level message headers, MIME
entity headers, and to MIME headers in nested message RFC 822 mes-
sage headers (see Figure 6-3).

nested_header_checks

These apply to headers of attached email messages except MIME head-
ers. These checks work only on the headers of nested message/rfc822 mes-
sages, except for the MIME headers listed for mime_header_checks above.

What’s So Special about These Parameters?

Postfix 2.x handles the body of a message as n body segments, and each
section is marked with a MIME header. This MIME processing is enabled by
default, but you can disable it using disable_mime_input_processing = yes in
your main.cf file.

The MIME parser makes a decision for each line it reads: Does the line
belong to a header or to a body segment? Postfix applies checks based on this
decision. If a message segment has mail headers (that is, if it is an attached
message of type message/rfc822), those headers are evaluated by
nested_header_checks.

Anything within a segment after these nested headers is evaluated by
body_checks, up to the limit specified by the body_checks_size_limit parameter.
For example, if you have a message with five 100KB MIME segments (or
attachments), Postfix checks the first body_checks_size_limit of each segment.

Postfix uses mime_header_checks to evaluate each MIME header (the start
of every new segment). If there are mail headers after any MIME header,
they are evaluated by nested_header_checks on every segment.
How Bui l t - in Con ten t Fi l ter s Work 113
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 9-1 shows which checks are applied to each line of a message.

Figure 9-1: Postfix decides on every line of the message which check to apply

When Does Postfix Apply Checks?

A client transports a message after successfully completing the initial SMTP
dialog. Thus, Postfix processes *_checks after the smtpd_*_restrictions have
been processed. Figure 9-2 shows when the Postfix cleanup daemon takes care
of checks.

Figure 9-2: Checks are applied after restrictions and only to the content of the message

FROM: Sender <sender@example.com>
TO: Recipient <recipient@example.org>
Date: Sun, 11 Apr 2004 22:36:51 +0200
Subject: Mail and email

Dear Recipient,

Attached to this email you can find your
new certificate.

--2oS5YaxWCcQjTEyO
Content-Type: application/zip
Content-Description: Attachment
Content-Disposition: attachment; filename="certificate.zip"
Content-Transfer-Encoding: base64

UEsDBAoAAAAAAK61/S6mUZzNDAA3SY/VXgEAPQB9AFBcH
RhY2htZW50IQpQSmECFwMKAAAAAACutf0uplGczQwAAAAF
MAAAADgANAAAAAAABAAAAtIEAAAAAYXRoYWNobWVudC5
0eHRVVAUAA+fcJj9VeAAAUEsFBgAAAAABAAEASQAAAEoAA
--2oS5YaxWCcQjTEy0--

header_checks

body_checks

mime_header_checks

body_checks

{
{

{
{

$ telnet mail.example.com 25

220 mail.example.com ESMTP Postfix
HELO client.example.com
250-mail.example.com
MAIL FROM:<sender@example.com>
250 Ok
RCPT TO:<recipient@example.com>
250 Ok

DATA

354 End data with <CR><LF>.<CR><LF>

From: "Sender" <sender@example.com>
To: "Recipient" <recipient@example.com>
Date: Sat, 17 May 2003 15:24:43 +0200

Here comes the mail content. . . .

250 Ok: queued as oEAFFE1C65

QUIT

221 Bye

body_checks,
mime_header_checks,

nested_header_checks

{header_checks
114 Chap te r 9

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

What Actions Can Checks Invoke?

You can define only one action per search pattern. Postfix currently supports
these actions:

REJECT [optional text...]

Declines acceptance of the message. The optional text will be sent back
to the client trying to deliver the message. Postfix will also record the text
in the mail log.

IGNORE

Removes the line in the message that matches the search pattern in
the check.

WARN [optional text...]

Causes Postfix to write a notice to the mail log. If there is optional
text, Postfix logs it as well. Postfix will deliver the message without any
modification.

HOLD [optional text...]

Places the message in the hold queue until the postmaster picks it up
and decides what to do with it. Postfix logs the matched header/body
line with the optional text.

DISCARD [optional text...]

Tells the mail client that the message has been successfully delivered,
but silently deletes the message instead of transporting it to the final
destination. If there is optional text, Postfix logs it together with the
matched text in the mail log.

FILTER transport:nexthop

Sends the message to a filter (a service defined in master.cf that trans-
ports the message to another processing system, such as a virus scanner).
You will learn more about defining filters in Chapter 11.

REDIRECT user@domain

Reroutes the message to the address specified instead of to the original
recipient(s), and it overrides any FILTER action.
How Bui l t - in Con ten t Fi l ter s Work 115
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

10
U S I N G B U I L T - I N C O N T E N T

F I L T E R S

Postfix can examine the content of a
message with tables of patterns and

actions, as described in Chapter 9. This
chapter shows you how to implement these

patterns and actions. Keep in mind that checks are
for simple content filtering. For more complicated
tasks, refer to Chapter 11.

Checks look for characters in a message and can also modify a message.
The names of the configuration parameters that enable checks end with
_checks, and whether you use header_checks, body_checks, mime_header_checks,
or nested_header_checks, all follow the same scheme:

1. Postfix examines a message line by line against a map of patterns made
out of regular expressions (regexps) or Perl regular expressions (PCREs).

2. If a line matches the regular expression, Postfix takes the action defined
for the expression and examines the next line of input.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

CAUTION This chapter’s examples make heavy use of the line continuation syntax that Postfix
offers to improve readability on paper. Namely, a line starting with whitespace charac-
ters continues the preceding line.

Checking Postfix for Checks Support
Postfix supports header or body filtering by default, but because it may use
regexp and/or PCRE maps, you should find out whether Postfix supports
both types or only regexps. To check which maps your Postfix supports, run
postconf -m to report all the map types your system supports. The Postfix
package in the following example supports both regexp and PCRE, among
several other maps:

$ postconf -m

btree
cidr
environ
hash
nis
pcre
proxy
regexp
static
tcp
unix

All systems should support regexp tables by default. If your system has
performance problems when it uses regexp-style maps (or even worse, if your
system uses a buggy regexp implementation), you can install the PCRE
libraries and headers and rebuild Postfix with PCRE support.

Building Postfix with PCRE Map Support
To build Postfix with PCRE support, you need the PCRE libraries and header
files. You can get them in a development package from your distribution, or
you can download the PCRE source code at http://www.pcre.org and install it
by hand.

Configure Postfix with PCRE support by adding -DHAS_PCRE and a -I
preprocessor flag for the PCRE include directory to CCARGS, and the PCRE
library and path flags to AUXLIBS. For example, let’s say that pcre.h is in /usr/
local/include, and pcre.a is in /usr/local/lib:

$ CCARGS="-DHAS_PCRE -I/usr/local/include" \
 AUXLIBS="-L/usr/local/lib -lpcre" \
 make makefiles
$ make

NOTE Solaris needs -R/usr/local/lib as well.
118 Chap te r 10

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Safely Implementing Header or Body Filtering

Regular expressions can get to be quite complicated, and you might end up
with a pattern that doesn’t work, that matches more than you intended, or
that you just don’t understand anymore.

To help you debug patterns, Postfix offers the WARN action. If you use this
action on the right side of your pattern, Postfix delivers the message if the
expression matches, and it also writes a note to the mail log. After you’re sure
that your pattern works, you can safely change WARN to the desired action.

The safe procedure for adding checks is as follows:

1. Add your pattern to the map with WARN as the action.

2. Create a file that contains an expression that matches your filter pattern.

3. Verify that the pattern in the map matches the test pattern.

4. Set the check in the main Postfix configuration file.

5. Test it with real mail.

Adding a Regular Expression and Setting a WARN Action
The first step is to add the pattern you want to check to a map, and to define
a WARN action for when the content of a message matches the test pattern. The
example we’ll use in this section tests for a filter pattern in a Subject header,
but you can use the procedure described here for other headers and other
*_checks parameters.

Add the filter pattern to the /etc/postfix/header_checks file. This file
holds the map for header_checks. Here’s an example:

/^Subject: FWD: Look at pack from Microsoft/
 WARN Unhelpful virus warning

Creating a Test Pattern
All you need to do to create a test pattern is put a matching message in a file
such as /tmp/testpattern. The following will do for this example:

From: dingdong@example.com
Subject: FWD: Look at pack from Microsoft
blah blah

Does the Regular Expression Match the Test Pattern?
Test your filter pattern by feeding the checks map and the test pattern to
postmap. For example, run this command:

$ postmap -q - regexp:/etc/postfix/header_checks < /tmp/testpattern
Using Bui l t - in Con ten t Fi l ter s 119
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

If it works, the command should print the matching line in the test
pattern, like this:

Subject: FWD: Look at pack from Microsoft WARN Unhelpful virus warning

If the pattern doesn’t match, the postmap command doesn’t print
anything.

Setting the Check in the Main Configuration

If everything looks good so far, you can edit your main.cf file to use the file
containing the header_checks you just created and tested:

header_checks = regexp:/etc/postfix/header_checks

Reload Postfix and send a test message containing the same test pattern.

Testing with Real Mail

To test the filter with real mail, feed your earlier test pattern to Postfix. This
command will do it:

$ /usr/sbin/sendmail recipient@example.com < /tmp/testpattern

Now, examine your mail log to verify that Postfix logged the warning for
the test pattern. The second line in the following log excerpt is the warning
message:

Mar 30 17:17:52 mail postfix/pickup[2455]: 53CAB633B3: uid=7945 from=<sender@example.com>
Mar 30 17:17:52 mail postfix/cleanup[2461]: 53CAB633B3: warning: header Subject: FWD: Look at

pack from Microsoft from local; from=<sender@example.com> to=<recipient@example.com>:
Unhelpful virus warning

Mar 30 17:17:52 mail postfix/cleanup[2461]: 53CAB633B3:
message-id=<20040330151752.53CAB633B3@mail.example.com>

Mar 30 17:17:52 mail postfix/qmgr[2456]: 53CAB633B3: from=<sender@example.com>, size=346,
nrcpt=1 (queue active)

After you’re confident that your filter pattern works, you can safely
change the action from WARN to an action that actually does something, such
as REJECT or DISCARD.

Checking Headers

Postfix can perform a variety of actions with header_checks, such as rejecting
or holding messages, removing headers, or discarding, redirecting, or
filtering messages. This section discusses how to implement those actions.
120 Chap te r 10

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Rejecting Messages

Postfix can reject messages using the REJECT action. You can use this action to
block messages that match a pattern, such as those that contain a particular
Subject header.

The rejection prevents the messages from entering your system, and
therefore keeps them away from a computationally expensive virus checker,
spam detector, or (possibly worse) your users. We’ll look at a few examples.

This pattern rejects useless virus warnings generated by ScanMail (which
always warns the sender, even if the virus fakes the sender address):

/^Subject: ScanMail Message: To Sender, sensitive content found and action/
 REJECT Unhelpful virus warning

If you’d like to block messages with an incorrect Undisclosed-recipients
header, you can use the following pattern. This matches the situation where
To: <Undisclosed Recipients> occurs in the headers (with or without the
brackets, with or without the final “s” at the end). (A correct Undisclosed-
recipients header would be To: undisclosed-recipients:;.)

/^To:.*<?Undisclosed Recipients?>?$/
 REJECT Wrong undisclosed recipients header

This pattern is best described by its comment and accompanying message:

#
Spam that contains Subject: something 565876
#
/^Subject:.*[[:space:].]{5,}\(?#?[[:digit:]]{2,}\)?$/
 REJECT More than 5 whitespaces and a number follow the Subject:

We’ve never seen To:...<> in headers of a valid message:

/^To:.*<>/
 REJECT To: <> in headers

Finally, some subject lines are just dead ringers for fraud spam. You
should get the idea from these four patterns. (Using different numbers for
each warning message makes it easier to debug false positives.)

#
Certain Subject lines are indicative of fraud spam.
#
/^Subject:.*is NOT being SEEN/ REJECT fraud spam #1
/^Subject:.*URGENT BUSINESS RELATIONSHIP/ REJECT fraud spam #2
/^Subject:.*Confidential Proposal/ REJECT fraud spam #3
/^Subject: SEX-FLATRATE/ REJECT fraud spam #4
Using Bui l t - in Con ten t Fi l ter s 121
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Holding Delivery

Postfix can hold the delivery of messages with the HOLD action. You can use
this to put suspicious messages “on hold” for further inspection. To look at
the messages, use postcat, and to let a message through, use postsuper -H. If
you’d like to delete a message from the Postfix queue, use postsuper -d.

Here’s a pattern that matches any message containing a Subject header
starting with Subject: [listname]. One use of this to hold mail to all users from
internal mailing lists until the after-business hours, when the system is not in
full use:

/^Subject: \[listname\]/
 HOLD

Here’s a pattern that holds messages using a lone carriage return in
MIME headers. Most of these messages are viruses and spam, with the few
exceptions being from broken Windows installations of SquirrelMail:

/\r/
 HOLD Lone CR in headers indicates virus or spam!

Removing Headers

If you’d like to remove lines from headers, use the IGNORE action. You can use
this to hide information written to headers, such as the kind of MUA you use,
or to prune the Received headers that your internal mail servers, firewalls, or
virus scanners might add. Here’s one that removes the Received headers
added by a program Postfix had delegated the email to do something with it
by means of the content_filter directive (for example, from amavisd-new):

/^Received: from localhost/
 IGNORE

Here’s another that removes the Sender header—some versions of
Outlook behave strangely when replying to a message that contains this
header:

/^Sender:/
 IGNORE

Discarding Messages

Postfix can silently discard messages using the DISCARD action. For example,
you might want messages with a certain subject line to be removed without
anybody taking notice. Here’s a silly example.
122 Chap te r 10

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

/^Subject:.*deadbeef/
 DISCARD No dead meat!

When Postfix discards a message, it logs the action as usual. For example,
you might see this in your mail log:

Apr 9 23:14:28 mail postfix/cleanup[11580]: BB92B15C009: discard: header Subject: deadbeef
 from client.example.com[10.0.0.1]; from=<sender@example.com> to=<recipient@example.com>
 proto=ESMTP helo=<client.example.com>: No dead meat!

Redirecting Messages

Postfix can reroute messages to another recipient using the REDIRECT action if
a pattern in the headers and the body matches. Here’s an example that gets
the point across (though we really don’t recommend it):

/Subject:.*deadbeef/
 REDIRECT bigbrotheriswatchingyou@example.com

In the mail log, a redirected message will look like this:

Apr 9 23:20:38 mail postfix/smtpd[11873]: 9305215C009: client=client.example.com[10.0.0.1]
Apr 9 23:20:38 mail postfix/cleanup[11865]: 9305215C009: redirect: header Subject: deadbeef

from client.example.com[10.0.0.1]; from=<sender@example.com> to=<recipient@example.com>
proto=ESMTP helo=<client.example.com>: bigbrotheriswatchingyou@example.com

Apr 9 23:20:38 mail postfix/cleanup[11865]: 9305215C009:
message-id=<20040409212038.GK3406@example.com>

Apr 9 23:20:38 mail postfix/qmgr[11857]: 9305215C009: from=<sender@example.com>, size=1111,
nrcpt=1 (queue active)

Apr 9 23:21:08 mail postfix/smtp[11874]: 9305215C009:
to=<bigbrotheriswatchingyou@example.com>,
orig_to=<recipient@example.com>, relay=none, delay=30, status=deferred (connect to example.com
[192.0.34.166]: Connection timed out)

Filtering Messages

Postfix can route messages to a content_filter (see Chapter 11) using the
FILTER action. For example, you can redirect certain classes of mail to
different kinds of transports based upon their headers.

This action overrides content_filter settings in your main.cf file and
requires you to make sure that the same *_checks are not being used at
reinjection after the filter. Header_checks and body_checks must be turned off
in the second cleanup server, or you will create a loop! See Chapter 12 for
more information on dealing with this problem (look for no_header_body_checks
and receive_override_options). The first of the following patterns doesn’t send
a message to a filter, and the second one does.
Using Bui l t - in Con ten t Fi l ter s 123
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

/^To:.*@example\.org/ FILTER nofilter:dummy
/^To:.*@example\.com/ FILTER virusfilter:dummy

NOTE Keep in mind that this is just an example. You should not use it on a production
server! One message destined to recipients in both domains would match the first regu-
lar expression and would thus never be filtered (the first match wins); the second action
would never be taken.

Filtered messages produce these sorts of messages in the mail log:

Apr 9 23:34:12 mail postfix/cleanup[12543]: 2B97315C00D: filter: header To:
nofilter@example.comorg from client.example.com[10.0.0.1]; from=<sender@example.com>
to=<nofilter@example.comorg> proto=ESMTP helo=<client.example.com>: nofilter:dummy

Apr 9 23:38:00 mail postfix/cleanup[12543]: 2299815C00E: filter: header To:
virusfilter@example.com from client.example.com[10.0.0.1]; from=<sender@example.com>
to=<virusfilter@example.com> proto=ESMTP helo=<client.example.com>: virusfilter:dummy

Checking MIME Headers

MIME headers apply to files attached to a message. By default, the
header_checks map is used for scanning MIME headers for patterns, unless
you define a separate map and tell Postfix to use it with the mime_header_checks
parameter.

NOTE It makes sense to define separate maps when you want to keep your mime_header_checks
map small as possible, only using the MIME header patterns if Postfix detects that
there’s an attachment within the message.

First you need to create a map file to hold your MIME header patterns.
Let’s say you pick /etc/postfix/mime_header_checks, and it contains the
following checks:

Files blocked by their suffix
/name=\"(.*)\.(386|bat|bin|chm|cmd|com|do|exe|hta|jse|lnk|msi|ole)\"$/
 REJECT Unwanted type of attachment $1.$2
/name=\"(.*)\.(pif|reg|rm|scr|shb|shm|shs|sys|vbe|vbs|vxd|xl|xsl)\"$/
 REJECT Unwanted type of attachment $1.$2

In this example, Postfix looks for MIME headers that contain name="
followed by an arbitrary number of characters, followed by a literal dot (.).
A large submatch enclosed in parentheses follows, which contains several
prohibited extensions separated by a vertical bar (|). The regular expression
ends with the literal quote (\"), which also must be at the end of the line ($).

The action on the right side makes use of the optional text behind the
REJECT. In this example, the two submatches are being referenced with $1 (for
the first submatch—(.*)) and $2 (for the file extension).
124 Chap te r 10

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

So, if somebody sends an attachment named image.pif, then the mime
header line in the mail looks somewhat like this:

filename="image.pif"

and the error message constructed from this will be

Unwanted type of attachment image.pif

because $1 equals image, and $2 equals pif.
Now add the mime_header_checks parameter to main.cf file, giving it the

path to your map:

mime_header_checks = pcre:/etc/postfix/mime_header_checks

After reloading Postfix, the mime_header_checks parameter becomes
effective.

Checking Headers in Attached Messages

Postfix can apply separate actions to headers that appear in messages that are
attached to a message. By default, any header_checks parameter will take care
of these, but if you want to create a separate map (to save CPU cycles or to
create exceptions), you can use the nested_header_checks parameter to define
a separate map.

Like the other kinds of checks, you should create a separate map file,
such as /etc/postfix/nested_header_checks, to hold your checks. Here’s a
sample that logs a message ID in a nested header:

/^Message-Id:/ WARN Nested Message-Id:

Now, add the nested_header_checks parameter to your main.cf file:

nested_header_checks = pcre:/etc/postfix/nested_header_checks

After reloading Postfix, you should be able to find log entries like
this one:

Apr 14 13:17:55 mail postfix/cleanup[32397]: 59C3115C02A: warning: header Message-ID:
<DIDL27HL1L4H87CA@example.com> from mgate22.so-net.ne.jp[210.139.254.169];
from=<> to=<recipient@example.com> proto=ESMTP helo=<mgate22.so-net.ne.jp>: Nested Message-Id:

NOTE The example in this section isn’t really useful, because neither we nor the mailing list
could come up with a real-world scenario. If you need nested_header_checks, you’ll
probably know it.
Using Bui l t - in Con ten t Fi l ter s 125
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Checking the Body

Scanning body parts is useful when you need to detect a pattern inside a
body part in order to raise an action. Like the other checks, you examine the
content for a given pattern using the body_checks parameter in combination
with a map that holds patterns and appropriate actions.

CAUTION Body checks apply to all messages, both incoming and outgoing, and to all senders
and recipients. Therefore, they also apply to mail sent to abuse and postmaster.

If you implement a check for spam, people complaining about spam that was
supposedly sent from your networks cannot reach abuse and postmaster if their
complaints contain the original spam that they received. You cannot override checks
for certain users in the current version of Postfix.

Start out with the usual map file, such as /etc/postfix/body_checks. Here
are some patterns and actions:

Skip over base 64 encoded blocks. This saves lots of CPU cycles.
Expressions by Liviu Daia, amended by Victor Duchovni.
~^[[:alnum:]+/]{60,}\s*$~ OK

The preceding pattern matches base64-encoded blocks. Note that a tilde
(~) instead of the usual slash (/) is being used to delimit the regular expres-
sion, making it unnecessary to escape the slash within the regular expression.

Here are some patterns that contain known and unique patterns of spam
messages; Postfix will reject them:

SPAM
/(AS SEEN ON NATIONAL TV|READ THIS E-MAIL TO THE END)/
 REJECT Spam #1
/We are shanghai longsun electrical alloy/
 REJECT Chinese spammer from hell
/Do you want EVERYONE to know your business/
 REJECT Spam #2
/(Zainab|San?ni) Abacha/
 REJECT Nigeria spam
/MILITARY HEAD OF STATE IN NIGERIA/
 REJECT Nigeria fraud spam
/antivirus\.5xx\.net/
 REJECT Virus hoax (0190-dialer)
/MOSE CHUKWU/
 REJECT Business fraud spam #1
/Ahmed Kabbah/
 REJECT Business fraud spam #2
/Godwin Igbunu/
 REJECT Business fraud spam #3
/I PRESUME THIS EMAIL WILL NOT BE A SURPRISE TO YOU/
 REJECT Business fraud spam #4
126 Chap te r 10

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

/http:\/\/www\.a1-opportunity4u\.com\/euro2/
 REJECT Business fraud spam #5
/http:\/\/66.151.240.30\//
 REJECT Spam of the worst kind
/http:\/\/members.tripod.com.br\/lev3irkd/
 REJECT Spam of the worst kind II

Messages containing the following patterns will be rejected; the envelope
sender will receive a bounce message pointing toward a hoax database.

Hoaxes
/jdbgmgr\.exe/
 REJECT Virus hoax!
/ready to dictate a war/
 REJECT Hoax: http://www.tu-berlin.de/www/software/hoax/unicwash.shtml
/inquiries@un\.org/
 REJECT Hoax: http://www.tu-berlin.de/www/software/hoax/unicwash.shtml
/UNO is ready to receive signatures/
 REJECT Hoax: http://www.tu-berlin.de/www/software/hoax/unicwash.shtml
/Third World War/
 REJECT Hoax: http://www.tu-berlin.de/www/software/hoax/unicwash.shtml

Sometimes you might want to use body_checks as an immediate measure
to reject malicious messages if your mail virus scanner does not recognize the
virus yet. Remember to remove the pattern as soon as your scanner can deal
with the virus:

Virus
Win32.Netsky.V
/The processing of this message can take a few minutes\.\.\./
 REJECT Win32.Netsky.V
/Converting message. Please wait\.\.\./
 REJECT Win32.Netsky.V
/Please wait while loading failed message\.\.\./
 REJECT Win32.Netsky.V
/Please wait while converting the message\.\.\./
 REJECT Win32.Netsky.V

After you have your map file in place, add the body_checks parameter to
your main.cf file:

body_checks = regexp:/etc/postfix/body_checks

As before, you need to reload Postfix to activate the body checks.
Using Bui l t - in Con ten t Fi l ter s 127
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

11
H O W E X T E R N A L C O N T E N T

F I L T E R S W O R K
Be liberal in what you accept, and conservative in

what you send.
—Jon Postel, Internet pioneer (1943–1998)

The built-in filters described in the pre-
vious chapters are meant to solve simple

problems; more sophisticated filtering has to
be delegated to external software.

You can make Postfix run content-inspection applications before or after
it queues messages. When mail is filtered before it is queued, Postfix can
leave the responsibility for notifying the sender with the client. When mail is
filtered after it is queued, responsibility is with Postfix.

This chapter outlines the process of delegation. You’ll see how to
configure the Postfix daemon architecture to send messages to external
filtering mechanisms and how to let them reenter the Postfix system for final
delivery once they’ve been successfully filtered.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

External content filters pick up where built-in header and body filters
leave off; not only do they allow external applications to inspect and reject
messages, but they also allow the applications to modify message content.
These are some typical tasks for filters:

� Adding disclaimers

� Scanning for viruses and worms

� Detecting spam

� Archiving mail

Postfix has two filter mechanisms named content_filter and smtpd_proxy_
filter that are similar in spirit, but differ in their capabilities and the way
they process content. Table 11-1 lists the differences between the two filter
types.

This chapter explains these differences in detail and will help you decide
which filter type best fits your situation.

When Is the Best Moment to Filter Content?

The RFC Internet standards say that a mail server must decide whether to
accept or reject a message no later than the DATA stage of the SMTP dialog.
Unfortunately, this leaves little time for a mail server to inspect the content
of a message, because mail clients implement a relatively short timeout to
protect against getting stuck communicating with a malfunctioning mail
server. For example, the Postfix SMTP client timeout is defined by the
smtp_data_done_timeout parameter, which is very tolerant and defaults to 600s.

If the mail server finishes looking at the content before the client runs into
the timeout, everything works fine, because the server can notify the client of
its decision about accepting the message. However, if the server is too slow,
the client goes away and tries again later, and chances are that the next
attempt will be just as unsuccessful.

The Postfix content_filter implementation avoids hiccups by processing
content inspection differently:

1. The mail client sends the content during the DATA stage.

2. The Postfix server accepts and queues the message. The client presumes
that transmission was successful.

Table 11-1: Filter Differences

Filter Name Transports Rejection Behavior

content_filter smtp, lmtp, pipe Rejects after queuing
smtpd_proxy_filter smtp Rejects before queuing
130 Chap te r 11

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

3. The queue manager inspects the mail and schedules delivery according
to the content_filter entry.

4. Postfix hands the message to an external application.

5. The external application takes responsibility for delivering the
message. The external application could do any of the following
with the message:

• Accept the message and hand it back to Postfix for delivery.

• Accept the message and hand it to another application or server.

• Drop or bounce the message.

The second filter (smtpd_proxy_filter) handles mail differently:

1. The mail client sends the content during the DATA stage.

2. The Postfix smtpd daemon proxies the SMTP commands and the content
to an external application.

3. The external application sends SMTP responses back to the Postfix smtpd
daemon, and smtpd then passes them on to the mail client.

This filter may have problems with mail client timeouts and does not
scale to many concurrent mail client connections. This is because the
smtpd_proxy_filter has no queue mechanism to schedule content filtering.
Without a queue mechanism, the external application needs to start work
immediately on each message that Postfix receives. As a result, you can have a
severe slowdown if the external application cannot get its work done as
quickly as messages come in. This is likely to be a problem with spam
detection or virus scanning applications, which often require time-
consuming unpacking and decoding of attachments.

Both approaches have disadvantages:

� content_filter generates extra traffic because Postfix initially accepts
messages before processing. This could result in a bounce later on, if the
filter application decides to reject the message.

� smtpd_proxy_filter rejects unwanted content early on, but it does not
scale well and may not be fast enough to get the job done.

Filters and Address Rewriting

When rewriting addresses in the mail header, you need to think about where
to apply filters. In particular, you need to decide whether to make Postfix
rewrite addresses (e.g., due to virtual_alias_maps) before or after filtering.

If you choose to rewrite addresses before filtering, you run the risk of
using internal addresses for bounces and warnings. For example, a warning
caused by a message to moe_helden@example.com might be bounced with an
address such as mh123@mailbox.example.com.
How External Con tent F i l te rs Work 131
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Therefore, it is our view that you should make Postfix rewrite addresses
(by means of virtual_alias_maps or canonical_maps) after reinjecting mail back
into the Postfix queue for final delivery. This allows an external application
(such as a virus scanner) to see the original recipients and generate appro-
priate warnings before Postfix rewrites the addresses.

There are two ways to disable address mapping (virtual alias expansion,
canonical mapping, address masquerading, and so on) before filtering. One
way is to set the following option in main.cf:

receive_override_options = no_address_mappings

You can also turn off address rewriting in master.cf just for the daemon
that accepts the mail from the network (which is usually smtpd):

smtp inet n - n - - smtpd
 -o content_filter=foo:[127.0.0.1]:54321
 -o receive_override_options=no_address_mappings
 ...

After the filter processes the message, the message is usually reinjected
into the Postfix queue. This is the right time to perform address manipu-
lation, and to do this, you will need an additional smtpd that accepts filtered
mail. Instead of using the receive_override_options=no_address_mappings setting,
this extra smtpd will use receive_override_options=no_unknown_recipient_checks.
You’ll see more details about content_filter and smtpd_proxy_filter in the
following sections.

content_filter: Queuing First, Filtering Later

To configure a mailer with the content_filter mechanism, you normally
need two smtpd instances (see Figure 11-1). The first smtpd accepts unfiltered
messages and uses content_filter to delegate messages to the external
filtering application. The second smtpd instance listens for connections from
the external application so that messages can reenter the Postfix queue
system for further treatment.

CAUTION Do not configure the second instance to run the content_filter application that the
first instance runs. This would create an infinite loop, where Postfix would send the
message to the filtering application, and the message would come back into the Postfix
queue at the same place as before.
132 Chap te r 11

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 11-1: Delivery process using content_filter

Internet

Mail server

Postfix Filter software

uucp tcp

Internet

cleanup

smtpd
with

content_filter

smtpd
without

content_filter

Filter

Mail server/
Mail client

smtplocalpipe

Mail server Mail server

Mailbox

qmgr
How External Con tent F i l te rs Work 133
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Here’s how it works:

1. The smtpd configured with content_filter hands a message to the queue
manager.

2. The queue manager gives the message either to smtp, lmtp, or a pipe in
order to deliver it to the external filter application.

NOTE Figure 11-1 shows one of the possible three scenarios where qmgr hands mail over to smtp.

3. The external filter application takes control of the message and pro-
cesses it.

4. If the filter program reinjects the message back into Postfix, it connects
to a Postfix smtpd configured to not use content_filter.

5. The second smtpd hands the message to the queue manager.

6. Postfix delivers the message locally or transports it to another mail server.

In addition to the message, Postfix can send extra information to the
external filter application to assist it. The exact information depends on the
daemon (lmtp, smtp, or pipe) that Postfix invokes to send the message to the
application.

Filter-Delegation Daemons
When using content_filter, you have three basic daemons at your disposal for
delegating mail to an external filter application. The daemons differ in what
they can do and transmit. Here is an overview:

pipe

The pipe daemon sends messages to scripts and other executable pro-
grams. They can trigger nearly any imaginable action, from archiving
messages to performing other kinds of automated work on the message
content, such as virus detection.

The open-ended range of tasks that these programs perform makes
it necessary to pass several arguments and flags to a filter program along
with the message. You can read about these arguments in the pipe(8)
manual page.

smtp

You can use the Postfix smtp daemon to transmit a message to a filter
application with SMTP or ESMTP (for example, to another MTA). The
information that you can send along with the message is limited by the
protocol; the smtp(8) manual page has more details.

lmtp

The Postfix lmtp daemon is also available to send messages to filter pro-
grams via the LMTP protocol. As with the SMTP client, the LMTP proto-
col limits the amount of extra information that you can transmit along
with the message, and you can read about it in the lmtp(8) manual page.
134 Chap te r 11

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

NOTE Unlike the Postfix SMTP client, which currently does not implement Delivery Status
Notification (DSN) to generate separate notifications, the LMTP protocol allows a
server to send per-recipient status reports for a message (that is, reports on whether the
message has been rejected or accepted for each recipient). This makes it possible to avoid
confusing status notifications for multiple recipients when the message goes through for
some recipients, but not for others.

The Basics of Configuring content_filter

To send messages to an external filter program using content_filter, you
need to modify the behavior of all of the daemons that handle incoming
mail. In particular, you need to do the following:

1. Define a transport as content_filter in your main.cf file.

2. Configure the transport in your master.cf file.

3. Configure an additional reinjection path in master.cf if you want to send
the message back to the Postfix queue after filtering.

Defining the Transport

To tell Postfix that it must hand over messages to an external application, use
the content_filter in your main.cf file. You must tell Postfix to transport all
messages to a (to-be-created) Postfix service that waits to hand over messages
to a filter application. For example, the following line tells Postfix to send
messages to a transport named foo, via port 54321 on localhost (127.0.0.1).
Remember that the square brackets prevent Postfix from looking up an MX
record for 127.0.0.1:

content_filter = foo:[127.0.0.1]:54321

Configuring the Transport

Next you need to configure the transport service that you just created in
main.cf. The transport service configuration file is master.cf, because it’s the
master daemon that needs to know about all of the services available. For a
new transport service, you need to give the master daemon the following
information:

1. The name of the service.

2. The name of the Postfix daemon program that will carry out the transport.

3. Options and other information that the program needs to do its job.

Here’s an example that builds on the foo transport:

#===
service type private unpriv chroot wakeup maxproc command
(yes) (yes) (yes) (never) (100)
How External Con tent F i l te rs Work 135
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

==
...
foo unix - - n - 2 smtp
 -o smtp_data_done_timeout=1200s
 -o disable_dns_lookups=yes
...

The line that begins with foo is the essential transport configuration,
containing eight columns. The first column must match the transport name
that you defined in main.cf. The command column contains the command
that will send the message to the filter application (here, it’s the Postfix
SMTP client). The subsequent two lines are options to the command.

CAUTION Command Option Syntax: When listing additional command parameters, add
whitespace to the beginning of every new line that contains the parameters, because a
line that starts with whitespace continues a logical line. However, you should trim
whitespace between parameters and values (such as between smtp_data_done_timeout
and 1200s); otherwise the master daemon will not recognize your additions.

So far, so good—you can transmit messages to external applications.
However, if the application is to give the message back to Postfix, you need to
configure a reinjection path.

Configuring an Additional Reinjection Path

A reinjection path is simply a local Postfix injection method (such as SMTP,
LMTP, or local submission via sendmail) that doesn’t use content_filter. It’s
usually another instance of the smtpd daemon that runs with special options
to override global parameters set in the main.cf file. For example, if you
wanted an additional smtpd reinjection path daemon to listen on port 10025,
you could put the following in your master.cf file:

#===
service type private unpriv chroot wakeup maxproc command
(yes) (yes) (yes) (never) (100)
==
...
127.0.0.1:10025 inet n - n - - smtpd
 -o content_filter=
 -o receive_override_options=no_unknown_recipient_checks
 -o smtpd_recipient_restrictions=permit_mynetworks,reject
 -o mynetworks=127.0.0.0/8
 ...

Notice that the transport type is inet this time, for an Internet transport
(the preceding example was a Unix domain socket transport type).
136 Chap te r 11

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

You can specify Internet services as host:port without defining the
transport in the main.cf file first (the host can be a hostname or an IP address
defined in /etc/hosts, whereas the port can be a number or the name of a
services defined in the /etc/services file).

You can omit host:, but this makes the service available on all network
interfaces as defined in inet_interfaces. In order to minimize your risk of
creating an open relay with your reinjection path, you should restrict the
listening network interfaces to just the ones you need, and in this case you
need only localhost/127.0.0.1.

There are additional command options:

� The explicitly empty content_filter setting disables the filter transport in
the main.cf file, so that you don’t run into an infinite loop of filtering.

� The receive_override_options setting disables recipient checking for
local_recipient_maps and relay_recipient_maps—because these checks have
already been performed by the smtpd daemon that accepted the mail
from the Internet, there’s no need to perform them a second time.

� The final two parameters work together, first allowing mail only from the
mynetworks parameter, and then explicitly setting the mynetworks parame-
ter to 127.0.0.0/8. This is an additional safeguard against external hosts
trying to access your reinjection path as an open relay.

smtpd_proxy_filter: Filtering First, Queuing Later

To use the smtpd_proxy_filter mechanism, you need to modify the existing
smtpd daemon (the before-filter smtpd) to proxy connections from mail clients
to the external filter program (see Figure 11-2).

NOTE The Postfix smtpd protects the external application by weeding out potentially nasty
stuff such as pipelining, long arguments, and odd characters that may come in from
the connection.

Depending on the filter application you use and its purpose, you may
also have to create a second smtpd instance (an after-filter smtpd) that listens
for messages sent back by the external filter application.

Here’s how it works:

1. The before-filter smtpd daemon connects to the external application.

2. The smtpd daemon proxies the incoming SMTP commands and data to
the external application.

3. The external filter application keeps the connection open as it processes
the message content.

4. If the filter application accepts the message, it can inject it into an after-
filter smtpd daemon or send it to another application.
How External Con tent F i l te rs Work 137
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

5. After deciding whether to accept or reject the message, the external fil-
ter application sends SMTP responses (such as 250 OK or 554 Reject) to
the before-filter smtpd.

6. The before-filter smtpd daemon proxies these responses to the originat-
ing mail client.

Figure 11-2: Delivery process with a pass-through proxy

Internet

Mail server

Postfix Filter software

uucp tcp

Internet

before-filter
smtpd

Filter

Mail server/
Mail client

smtplocalpipe

Mail server Mail server

Mailbox

cleanup after-filter
smtpd
138 Chap te r 11

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Considerations for Proxy Filters

When working with smtpd_proxy_filter, keep the following points in mind:

ESMTP communication
When sending a message into the filter, Postfix speaks ESMTP, but it
does not use command pipelining. The Postfix smtpd generates its own
EHLO, XFORWARD (for logging the remote client IP address instead of
localhost[127.0.0.1]), DATA, and QUIT commands. Otherwise, Postfix just
forwards unmodified copies of the MAIL FROM and RCPT TO commands that
the before-filter smtpd got from the remote mail client.

External application requirements
The filter (which must speak SMTP) should accept the same MAIL FROM
and RCPT TO command syntax as the Postfix smtpd.

Content reinjection
The filter application is expected to pass unmodified SMTP commands
from the before-filter smtpd to an after-filter Postfix smtpd (which usually
listens on a nonstandard port for reinjection on a path that is not subject
to the same filter; this is similar to the case of the content_filter mecha-
nism discussed earlier in this chapter).

Rejecting content
If the filter rejects content, it should send a negative SMTP response
(5xx code) back to the before-filter Postfix smtpd and then abort the con-
nection with the after-filter Postfix smtpd without completing the SMTP
conversation with the after-filter Postfix smtpd. Otherwise, the after-filter
smtpd may accidentally deliver a message.

The Basics of Configuring smtpd_proxy_filter

To send messages to an external filter using smtpd_proxy_filter, you need
to modify the behavior of the smtpd daemon. The following two steps are
necessary:

1. Modify the existing smtpd. At this point, we’ll refer to this daemon as
the before-filter smtpd.

2. Configure an additional smtpd instance to reinject mail back into the
Postfix queue; this is the after-filter smtpd.

Modifying the Existing smtpd (Before-Filter smtpd)

To make the existing smtpd proxy connections to a filter application, append
an smtpd_proxy_filter parameter to the smtpd service in your master.cf file. You
must provide the IP address or FQDN and the port of the proxy.
How External Con tent F i l te rs Work 139
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Here’s an example that uses port 10024 on localhost:

#===
service type private unpriv chroot wakeup maxproc command
(yes) (yes) (yes) (never) (100)
==
...
smtp inet n - n - 20 smtpd
 -o smtpd_proxy_filter=localhost:10024

Configuring an Additional smtpd Reinjection Instance (After-Filter smtpd)

To create another instance of smtpd that accepts filtered messages on
localhost, you need to add another line to your master.cf file. This will be
similar to the default smtpd, but it will listen on a different port and should
not have the same proxy filter option as the before-filter smtpd. Here’s an
example for an after-filter smtpd that listens on port 10025:

#===
service type private unpriv chroot wakeup maxproc command
(yes) (yes) (yes) (never) (100)
==
...
127.0.0.1:10025 inet n - n - - smtpd

-o smtpd_authorized_xforward_hosts=127.0.0.0/8
-o smtpd_client_restrictions=
-o smtpd_helo_restrictions=
-o smtpd_sender_restrictions=
-o smtpd_recipient_restrictions=permit_mynetworks,reject
-o mynetworks=127.0.0.0/8
-o receive_override_options=no_unknown_recipient_checks
-o content_filter=
140 Chap te r 11

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

12
U S I N G E X T E R N A L C O N T E N T

F I L T E R S
I know where to get it, if you want it.

—Jailer #1 in Monty Python’s Life of Brian

Each tool has its purpose. Imagine you
try to develop a hammer that can also be

used for polishing. Most likely, you end up
with a bad hammer and a bad polisher. That’s

the reason Postfix does not do spam filtering, mail
archiving, or sanitizing mail. Instead it gives you the
opportunity to plug the best external filter that is available into the best MTA
that is available. In the previous chapters, you saw that Postfix offers slightly
different approaches for filtering mail that differ in when they process
incoming messages. This chapter addresses the practice of these approaches.

In particular, you will see how to append disclaimers to messages by
piping messages to a script and how to scan messages for viruses using either
content_filter or smtpd_proxy_filter to send them off to amavisd-new.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Appending Disclaimers to Messages with a Script

Among the countless things that you can do with a content_filter script is add
a disclaimer to all outgoing messages. The following example uses alterMIME,
a small program that is used to alter mime-encoded mail, in a script to add a
disclaimer to every message that is sent from internal clients. Figure 12-1 shows
you how alterMIME will be integrated into the message transport process.

Figure 12-1: AlterMIME integration into Postfix

To add disclaimers to outbound messages without touching inbound
and local messages, you need to separate the traffic for each direction. Let’s
say that your mail server has separate network interfaces for your internal
and external networks. This means you need to create three separate
instances of smtpd and bind them to the localhost, internal, and external
network interfaces. The following example shows you how a message
transport from your internal network to a remote destination would be
processed if you created separate instances of smtpd for separate network
interfaces.

Internal
mail client

Server

External
mail client

Postfix

Internal
smtpd

Local
smtpd

External
smtpd

Local
mail client

qmgr

alterMIME
142 Chap te r 12

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

1. When a message leaves your network, a mail client connects to the smtpd
instance listening on the internal interface.

2. This internal smtpd accepts the message and sends it to qmgr.

3. qmgr sends the message to the content_filter service.

4. The content_filter service uses the pipe daemon to feed the message to
the script.

5. The script adds a disclaimer.

6. The script reinjects the message to the smtpd instance listening on the
local network interface.

7. The local smtpd sends the reinjected message to qmgr.

8. qmgr sends the message to smtp and out to the Internet.

Before you configure the transport, however, you must create the script
that will invoke alterMIME from Postfix.

Installing alterMIME and Creating the Filter Script

The script will run alterMIME (http://www.pldaniels.com/altermime) to modify
the outgoing message. If you don’t have alterMIME (and you don’t have a
binary package for your operating system), download it, unpack it, change
into your source directory, and run make and make install. This should leave
you with an alterMIME executable in /usr/local/bin/altermime.

Creating the alterMIME Environment

You should run alterMIME as an unprivileged system user. For example, if
you would like to use the filter username on your machine, you could run
these commands to create the user:

groupadd filter
useradd -d /var/spool/altermime -G filter filter

Creating a Script Directory

It’s not a very good idea to clutter up your /etc/postfix directory with a
bunch of scripts. Create a separate subdirectory as the superuser to store
your scripts, and make the subdirectory accessible to filter and root only.

For example, the following command sequence creates a directory with
the correct permissions and ownership:

mkdir /etc/postfix/filter
chown root /etc/postfix/filter
chgrp filter /etc/postfix/filter
chmod 770 /etc/postfix/filter
Using Ex terna l Con ten t Fi l t er s 143
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Creating the Script

The following script, named /etc/postfix/filter/add_disclaimer.sh, invokes
alterMIME on an incoming message from Postfix (sent from the pipe
daemon). The alterMIME program adds a disclaimer to the message and
reinjects it back into the Postfix queue. AlterMIME requires a location to
write a temporary file; it cannot operate on stdin.

#!/bin/sh
System dependent settings
ALTERMIME=/usr/local/bin/altermime
ALTERMIME_DIR=/var/spool/altermime
SENDMAIL=/usr/sbin/sendmail
Exit codes of commands invoked by Postfix are expected
to follow the conventions defined in <sysexits.h>.
TEMPFAIL=75
UNAVAILABLE=69
Change in to alterMIME's working directory and
notify Postfix if 'cd' fails.
cd $ALTERMIME_DIR || { echo $ALTERMIME_DIR does not exist; exit $TEMPFAIL; }
Clean up when done or when aborting.
trap "rm -f in.$$" 0 1 2 3 15
Write mail to a temporary file
Notify Postfix if this fails
cat >in.$$ || { echo Cannot write to $ALTERMIME_DIR; exit $TEMPFAIL; }
Call alterMIME, hand over the message and
tell alterMIME what to do with it
$ALTERMIME --input=in.$$ \

--disclaimer=/etc/postfix/filter/disclaimer.txt \
--disclaimer-html=/etc/postfix/filter/disclaimer.txt \
--xheader="X-Copyrighted-Material: Please visit http:// \
www.example.com/message_disclaimer.html" || \

 { echo Message content rejected; exit $UNAVAILABLE; }
Call sendmail to reinject the message into Postfix
$SENDMAIL -i "$@" <in.$$
Use sendmail's EXIT STATUS to tell Postfix
how things went.
exit $?

After creating the script, give write access only to root, but give execute
permission to the filter user:

chown root add_disclaimer.sh
chgrp filter add_disclaimer.sh
chmod 750 add_disclaimer.sh

Of course, now you need to create the disclaimer referenced in the
script.
144 Chap te r 12

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Creating the Disclaimer

If you already have a disclaimer, put the text in /etc/postfix/filter/
disclaimer.txt. If you’re still looking for the right disclaimer, you may want to
visit emaildisclaimers.com (http://www.emaildisclaimers.com), a site dedicated
to disclaimers and related email law. This example just uses the following
dummy text (from http://www.lipsum.com):

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nam commodo
lobortis magna. Quisque neque. Etiam aliquam. Nulla tempor vestibulum.

With the text in place, permit only the filter group to read your disclaimer:

chgrp filter disclaimer.txt
chmod 640 disclaimer.txt

This wraps up the filter script. Now you have to configure Postfix to use
the script.

Configuring Postfix for the Disclaimer Script
Configuring Postfix to invoke the script is a two-step process:

1. Define a content_filter parameter for the proper smtpd in the
master.cf file.

2. Define the transport in the master.cf file.

Defining the content_filter Parameter

As explained in Chapter 11, you would now add the content_filter parameter
to main.cf and specify a transport name. However, this would globally specify
a content_filter, and the filter would apply to all processes that handle
incoming mail. You don’t want that to happen in this particular example,
though, because you want to apply the filter only to messages that come from
the internal network interface.

To assign the filter to messages coming from the internal network
interface only, you will add the content_filter only to the single smtpd instance
in the master.cf file. The address of the internal interface in the following
example of master.cf is 172.16.0.1:

127.0.0.1:smtp inet n - n - - smtpd �
172.16.0.1:smtp inet n - n - - smtpd �
 -o content_filter=disclaimer:
192.0.34.166:smtp inet n - n - - smtpd �

� This is the local smtpd instance.
� This is the smtpd instance that listens on the internal network interface.
� This is the smtpd instance that listens to the external network.
Notice that the name of the filter transport is disclaimer; this is not the

script name. You’ll define this transport in the next section.
Using Ex terna l Con ten t Fi l t er s 145
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Defining the Transport

You now need to define the disclaimer transport in the master.cf file. Create
an instance of the pipe transport that runs the add_disclaimer.sh script. Here’s
how you would do it with the script shown earlier in this chapter:

disclaimer unix - n n - - pipe
 flags=Rq user=filter argv=/etc/postfix/filter/add_disclaimer.sh -f ${sender} -- ${recipient}

This definition runs the pipe daemon as the filter user, calling
add_disclaimer.sh when fed a message. It also passes the envelope sender
and envelope recipient to the script. The R flag prepends a Return-Path
message header with the envelope sender address, and the q flag quotes
whitespace and other special characters in the command-line $sender and
$recipient arguments.

NOTE The pipe(8) manual page contains a full list of flags and options.

Testing the Filter

To test the filter, you will need to perform the following steps, which are
discussed in the following sections:

1. Send mail to a remote user through the internal network interface.

2. Check the mail log for filter actions.

3. Check the sent message for a disclaimer.

Sending Mail to a Remote User

To generate a message for Postfix to send to the filter, use telnet to connect
to the internal network interface (where the smtpd instance should use the
filter). Here’s an example session:

$ telnet 172.16.0.1 25
Trying 172.16.0.1...
Connected to 172.16.0.1.
Escape character is '^]'.
220 mail.example.com ESMTP Postfix
HELO client.example.com
250 mail.example.com
MAIL FROM: <sender@example.com>
250 Ok
RCPT TO: <recipient@remote-example.com>
250 Ok
DATA
354 End data with <CR><LF>.<CR><LF>
FROM: Sender <sender@example.com>
TO: Recipient <recipient@remote-example.com>
146 Chap te r 12

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Subject: Testing disclaimer
This is a test. There should be text at the bottom of this message
added by a disclaimer script.
.
250 Ok: queued as 3C4D043F2F
QUIT
221 Bye

Checking the Mail Log

The mail log should contain evidence of filter action, as in this example:

Mar 12 01:59:53 mail postfix/smtpd[30206]: connect from client.example.com[172.16.0.2]
Mar 12 02:00:21 mail postfix/smtpd[30206]: 3C4D043F2F: client=client.example.com[172.16.0.2]
Mar 12 02:01:53 mail postfix/cleanup[30209]: 3C4D043F2F:

message-id=<20040312010021.3C4D043F2F@mail.example.com>
Mar 12 02:01:53 mail postfix/nqmgr[30193]: 3C4D043F2F: from=<sender@example.com>, size=444,

nrcpt=1 (queue active)
Mar 12 02:01:53 mail postfix/pipe[30213]: 3C4D043F2F: to=<recipient@remote-example.com>,

relay=disclaimer, delay=92, status=sent (mail.example.com) �
Mar 12 02:01:53 mail postfix/pickup[30192]: 8421143F2F: uid=100 from=<sender@example.com> �
Mar 12 02:01:53 mail postfix/cleanup[30209]: 8421143F2F:

message-id=<20040312010021.3C4D043F2F@mail.example.com>
Mar 12 02:01:53 mail postfix/nqmgr[30193]: 8421143F2F: from=<sender@example.com>, size=977,

nrcpt=1 (queue active)
Mar 12 02:01:55 mail postfix/smtpd[30206]: disconnect from client.example.com[172.16.0.2]
Mar 12 02:02:03 mail postfix/smtp[30220]: 8421143F2F: to=<recipient@remote-example.com>,

relay=mail.remote-example.com[212.14.92.89], delay=10, status=sent (250 Ok: queued as
56851E1C65) �

� The pipe daemon uses the disclaimer transport to send the message to
the script.

� The script reinjects the message with the original envelope sender.
� The smtp daemon successfully delivers the message to the envelope

recipient.

Checking the Message for a Disclaimer

As a final (and somewhat obvious) test, retrieve the message and see if it
contains the X-header and the disclaimer that alterMIME is supposed to add
on outgoing messages. You can see both in the following example:

Return-Path: <sender@example.com>
X-Original-To: recipient@remote-example.com
Delivered-To: recipient@remote-example.com
Received: from mail.example.com (mail.example.com [192.0.34.166])

by mail.remote-example.com (Postfix) with ESMTP id 56851E1C65
for <recipient@remote-example.com>; Fri, 12 Mar 2004 02:01:25 +0100 (CET)
Using Ex terna l Con ten t Fi l t er s 147
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Received: by mail.example.com (Postfix, from userid 100)
id 8421143F2F; Fri, 12 Mar 2004 02:01:53 +0100 (CET)

Received: from client.example.com (client.example.com [172.16.0.2])by
mail.example.com+(Postfix) with SMTP id 3C4D043F2Ffor
<recipient@remote-example.com>; Fri, 12 Mar 2004+02:00:21 +0100 (CET)

From: Sender <sender@example.com>
To: Recipient <recipient@remote-example.com>
Subject: Testing disclaimer
Message-Id: <20040312010021.3C4D043F2F@mail.example.com>
Date: Fri, 12 Mar 2004 02:00:21 +0100 (CET)
X-Copyrighted-Material: Please visit http://www.example.com/
message_disclaimer.html

This is a test. There should be text at the bottom of this message
added by a disclaimer script.
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nam commodo
lobortis magna. Quisque neque. Etiam aliquam. Nulla tempor vestibulum.

Scanning for Viruses with content_filter and amavisd-new

This section describes an advanced use of content_filter described in
Chapter 11—how to integrate the popular program amavisd-new into
Postfix. amavisd-new links an MTA and one or more virus scanners or spam-
detection programs, such as SpamAssassin. It is actively developed and is
recommended by many postmasters on the Postfix mailing list.

NOTE To get virus-scanning functionality, you need to have at least one supported virus
scanner installed in addition to amavisd-new; check the documentation for a survey of
the supported products.

Figure 12-2 illustrates how Postfix and amavisd-new work together with
other applications such as spam detectors and virus scanners. Here’s the
message flow:

1. A mail client sends a message to Postfix.

2. smtpd accepts the message.

3. smtpd sends the message to qmgr.

4. qmgr sends the message to amavisd-new.

5. amavisd-new sends the message to other applications (virus scanners in
this example).

6. amavisd-new reinjects the message into the local smtpd.

7. The local smtpd sends the message to qmgr.

8. qmgr either bounces or delivers the message.
148 Chap te r 12

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 12-2: amavisd-new integration with Postfix using content_filter

Installing amavisd-new
To get amavisd-new, download it from one of the mirrors mentioned on the
amavisd-new website (http://www.ijs.si/software/amavisd). After unpacking
the archive, follow the steps in the INSTALL file to install amavisd-new for
Postfix.

You should also read the README.postfix (http://www.ijs.si/software/
amavisd/README.postfix) file for up-to-date instructions and notes specific to
Postfix.

TIP You need to build only the daemon version of amavisd-new. The helper applications,
such as amavis(.c) and amavisd-milter(.c), are not necessary for use with Postfix.

Installing Perl Modules for amavisd-new from CPAN

amavisd-new needs a number of Perl modules to work correctly, and the
INSTALL document in amavisd-new’s SOURCE directory contains a full list of
these modules. When installing the modules, you usually have the choice
between choosing a package provided by the makers of your distribution or
directly downloading the modules from CPAN (the Comprehensive Perl
Archive Network, at http://www.cpan.org).

Server

Mail client

Postfix

smtpd with
content_filter

local smtpd
without

content_filter

amavisd-new

qmgr

Antispam Virus
scanner 1

Virus
scanner 2
Using Ex terna l Con ten t Fi l t er s 149
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

NOTE CPAN is generally the best source for the most recent modules, but you may want to
choose your operating system’s packages for consistency instead.

To install modules such as Compress::Zlib from CPAN, you need to run
Perl with the CPAN module as follows:

perl -MCPAN -e shell;
cpan shell -- CPAN exploration and modules installation (v1.76)
ReadLine support enabled
cpan> install Compress::Zlib
Running install for module Compress::Zlib
Running make for P/PM/PMQS/Compress-Zlib-1.33.tar.gz
Fetching with LWP:
 ftp://ftp-stud.fht-esslingen.de/pub/Mirrors/CPAN/authors/id/P/PM/PMQS/
Compress-Zlib-1.33.tar.gz
CPAN: Digest::MD5 loaded ok
Fetching with LWP:
 ftp://ftp-stud.fht-esslingen.de/pub/Mirrors/CPAN/authors/id/P/PM/PMQS/
CHECKSUMS
Checksum for /root/.cpan/sources/authors/id/P/PM/PMQS/Compress-Zlib-
1.33.tar.gz ok
Scanning cache /root/.cpan/build for sizes
Compress-Zlib-1.33/
... lots of building output ...
All tests successful, 1 test skipped.
Files=6, Tests=287, 2 wallclock secs (0.73 cusr + 0.11 csys = 0.84 CPU)
 /usr/bin/make test -- OK
Running make install
Installing /usr/lib/perl5/site_perl/5.6.0/i386-linux/auto/Compress/Zlib/
Zlib.so
Files found in blib/arch: installing files in blib/lib into architecture
dependent library tree
Installing /usr/lib/perl5/site_perl/5.6.0/i386-linux/Compress/Zlib.pm
Installing /usr/man/man3/Compress::Zlib.3pm
Writing /usr/lib/perl5/site_perl/5.6.0/i386-linux/auto/Compress/Zlib/.packlist
Appending installation info to /usr/lib/perl5/site_perl/5.6.0/i386-linux/
perllocal.pod
 /usr/bin/make install -- OK

After getting the modules in place and installing amavisd-new, you
should test it.

Testing amavisd-new

To test amavisd-new in isolation, before attempting to get it interoperating
with Postfix, perform the following steps:

1. Start amavisd-new in debug mode to see if it starts up properly.

2. Perform a network test to see if it listens on a network port.
150 Chap te r 12

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Running amavisd-new in Debug Mode

Invoking amavisd-new in debug mode gives you the answers to the following
questions at once:

� Does it run? All mandatory Perl modules need to be installed for
amavisd-new to start up. If a module is missing, you will get an error
message that indicates the missing module.

� Can you run it as an unprivileged user? amavisd-new requires a new
group (vscan by default) and a user account in this group (also vscan
by default).

� Does it find optional Perl modules that implement additional functional-
ity, such as SpamAssassin, LDAP, and SQL?

� Does it use the proper installation of Perl? If you have more than one
version of Perl installed, you may not have all of the modules installed
for the particular version of Perl that you’re trying to use.

� Does it find auxiliary programs, such as virus scanners?

� Which configuration file is it using? Normally, it’s /etc/amavisd.conf, but
you can override this if you know exactly what you’re doing.

� Can it bind to the ports specified in the configuration file?

For your first attempt, it’s best to start amavisd-new interactively, keeping
it attached to the terminal. To do this, switch to the user vscan and run
amavisd-new with the debug option. This example session shows the output
that you’re looking for:

su - vscan
$ /usr/local/sbin/amavisd debug
Jan 28 11:10:43 mail amavisd[29188]: starting. amavisd at mail amavisd-new-20030616-p6
Jan 28 11:10:43 mail amavisd[29188]: Perl version 5.006 �
Jan 28 11:10:43 mail amavisd[29188]: Module Amavis::Conf 1.15
Jan 28 11:10:43 mail amavisd[29188]: Module Archive::Tar 1.08
Jan 28 11:10:43 mail amavisd[29188]: Module Archive::Zip 1.09
Jan 28 11:10:43 mail amavisd[29188]: Module Compress::Zlib 1.33
Jan 28 11:10:43 mail amavisd[29188]: Module Convert::TNEF 0.17
Jan 28 11:10:43 mail amavisd[29188]: Module Convert::UUlib 1.0
Jan 28 11:10:43 mail amavisd[29188]: Module MIME::Entity 5.404
Jan 28 11:10:43 mail amavisd[29188]: Module MIME::Parser 5.406
Jan 28 11:10:43 mail amavisd[29188]: Module MIME::Tools 5.411
Jan 28 11:10:43 mail amavisd[29188]: Module Mail::Header 1.60
Jan 28 11:10:43 mail amavisd[29188]: Module Mail::Internet 1.60
Jan 28 11:10:43 mail amavisd[29188]: Module Mail::SpamAssassin 2.63
Jan 28 11:10:43 mail amavisd[29188]: Module Net::Cmd 2.24
Jan 28 11:10:43 mail amavisd[29188]: Module Net::DNS 0.40
Jan 28 11:10:43 mail amavisd[29188]: Module Net::SMTP 2.26
Jan 28 11:10:43 mail amavisd[29188]: Module Net::Server 0.86
Jan 28 11:10:43 mail amavisd[29188]: Module Time::HiRes 1.55
Jan 28 11:10:43 mail amavisd[29188]: Module Unix::Syslog 0.99
Using Ex terna l Con ten t Fi l t er s 151
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Jan 28 11:10:43 mail amavisd[29188]: Found myself: /usr/sbin/amavisd -c /etc/amavisd.conf
Jan 28 11:10:43 mail amavisd[29188]: Lookup::SQL code NOT loaded �
Jan 28 11:10:43 mail amavisd[29188]: Lookup::LDAP code NOT loaded
Jan 28 11:10:43 mail amavisd[29188]: AMCL-in protocol code loaded
Jan 28 11:10:43 mail amavisd[29188]: SMTP-in protocol code loaded
Jan 28 11:10:43 mail amavisd[29188]: ANTI-VIRUS code loaded
Jan 28 11:10:43 mail amavisd[29188]: ANTI-SPAM code loaded �
Jan 28 11:10:43 mail amavisd[29188]: Net::Server: 2004/01/28-11:10:43 Amavis (type \

Net::Server::PreForkSimple) starting! pid(29188)
Jan 28 11:10:43 mail amavisd[29188]: Net::Server: Binding to UNIX socket file \

/var/amavis/amavisd.sock using SOCK_STREAM
Jan 28 11:10:43 mail amavisd[29188]: Net::Server: Binding to TCP port 10024 on host 127.0.0.1
Jan 28 11:10:43 mail amavisd[29188]: Net::Server: Setting gid to "54322 54322"
Jan 28 11:10:43 mail amavisd[29188]: Net::Server: Setting uid to "7509"
Jan 28 11:10:43 mail amavisd[29188]: Net::Server: Setting up serialization via flock
Jan 28 11:10:43 mail amavisd[29188]: Found $file at /usr/bin/file
Jan 28 11:10:43 mail amavisd[29188]: Found $arc at /usr/bin/arc
Jan 28 11:10:43 mail amavisd[29188]: Found $gzip at /usr/bin/gzip
Jan 28 11:10:43 mail amavisd[29188]: Found $bzip2 at /usr/bin/bzip2
Jan 28 11:10:43 mail amavisd[29188]: Found $lzop at /usr/local/bin/lzop
Jan 28 11:10:43 mail amavisd[29188]: Found $lha at /usr/bin/lha
Jan 28 11:10:43 mail amavisd[29188]: Found $unarj at /usr/bin/unarj
Jan 28 11:10:43 mail amavisd[29188]: Found $uncompress at /usr/bin/uncompress
Jan 28 11:10:43 mail amavisd[29188]: Found $unfreeze at /usr/local/bin/unfreeze
Jan 28 11:10:43 mail amavisd[29188]: Found $unrar at /usr/bin/rar
Jan 28 11:10:43 mail amavisd[29188]: Found $zoo at /usr/bin/zoo
Jan 28 11:10:43 mail amavisd[29188]: Found $cpio at /bin/cpio �
Jan 28 11:10:43 mail amavisd[29188]: No primary av scanner: KasperskyLab AntiViral Toolkit \

Pro (AVP)
Jan 28 11:10:43 mail amavisd[29188]: No primary av scanner: KasperskyLab AVPDaemonClient
Jan 28 11:10:43 mail amavisd[29188]: No primary av scanner: H+BEDV AntiVir or \

CentralCommand Vexira Antivirus
Jan 28 11:10:43 mail amavisd[29188]: No primary av scanner: Command AntiVirus for Linux
Jan 28 11:10:43 mail amavisd[29188]: No primary av scanner: Symantec CarrierScan via \

Symantec CommandLineScanner
Jan 28 11:10:43 mail amavisd[29188]: No primary av scanner: Symantec AntiVirus Scan Engine
Jan 28 11:10:43 mail amavisd[29188]: No primary av scanner: Dr.Web Antivirus for \

Linux/FreeBSD/Solaris
Jan 28 11:10:43 mail amavisd[29188]: No primary av scanner: F-Secure Antivirus
Jan 28 11:10:43 mail amavisd[29188]: No primary av scanner: CAI InoculateIT
Jan 28 11:10:43 mail amavisd[29188]: No primary av scanner: MkS_Vir for Linux (beta)
Jan 28 11:10:43 mail amavisd[29188]: No primary av scanner: MkS_Vir daemon
Jan 28 11:10:43 mail amavisd[29188]: No primary av scanner: ESET Software NOD32
Jan 28 11:10:43 mail amavisd[29188]: No primary av scanner: ESET Software NOD32 - \

Client/Server Version
Jan 28 11:10:43 mail amavisd[29188]: No primary av scanner: Norman Virus Control v5 / Linux
Jan 28 11:10:43 mail amavisd[29188]: No primary av scanner: Panda Antivirus for Linux
152 Chap te r 12

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Jan 28 11:10:43 mail amavisd[29188]: Found primary av scanner NAI McAfee AntiVirus (uvscan) \
at /usr/local/bin/uvscan �

Jan 28 11:10:43 mail amavisd[29188]: No primary av scanner: VirusBuster
Jan 28 11:10:43 mail amavisd[29188]: No primary av scanner: CyberSoft VFind
Jan 28 11:10:43 mail amavisd[29188]: No primary av scanner: Ikarus AntiVirus for Linux
Jan 28 11:10:43 mail amavisd[29188]: No primary av scanner: BitDefender
Jan 28 11:10:43 mail amavisd[29188]: No secondary av scanner: Clam Antivirus - clamscan
Jan 28 11:10:43 mail amavisd[29188]: No secondary av scanner: FRISK F-Prot Antivirus
Jan 28 11:10:43 mail amavisd[29188]: No secondary av scanner: Trend Micro FileScanner
Jan 28 11:10:43 mail amavisd[29188]: SpamControl: initializing Mail::SpamAssassin �

� This line indicates the Perl version.
� This line and the following one indicate that no SQL or LDAP code is

present.
� This line indicates that the antispam code was loaded; this only

succeeds when SpamAssassin or dspam are present.
� This line and the preceding lines indicate that various external

unpackers have been found—thus enabling amavisd-new to unpack
attachments compressed with these packers.

� This line indicates that McAfee AntiVirus is present.
� At this point, amavisd-new is ready.

Testing Network Connectivity

With the stand-alone amavisd-new still running, you should now see if it
accepts connections. Use telnet sessions to test both of the ESMTP and
LMTP alternatives.

Testing ESMTP Availability

Open a telnet connection to the local port 10024 (the default for amavisd-
new). You should check that it is listening on the port and responds to
ESMTP commands. amavisd-new should respond to an EHLO command with a
set of available commands, as in the following sample session:

telnet localhost 10024
220 [127.0.0.1] ESMTP amavisd-new service ready
EHLO mail.example.com
250-[127.0.0.1]
250-PIPELINING
250-SIZE
250-8BITMIME
250 ENHANCEDSTATUSCODES
QUIT
221 2.0.0 [127.0.0.1] (amavisd) closing transmission channel
Using Ex terna l Con ten t Fi l t er s 153
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Testing LMTP Availability

Next you need to check that amavisd-new is listening on local port 10024
(the amavisd-new default for LMTP) and responds to LMTP commands. You
should be able to run an LHLO command, as in this session:

telnet localhost 10024
220 [127.0.0.1] ESMTP amavisd-new service ready
LHLO mail.example.com
250-[127.0.0.1]
250-PIPELINING
250-SIZE

250-8BITMIME
250 ENHANCEDSTATUSCODES
QUIT

221 2.0.0 [127.0.0.1] (amavisd) closing transmission channel

Optimizing amavisd-new Performance

If you get a lot of mail, you might want to tweak the performance of amavisd-
new. Because it makes heavy use of the filesystem to prepare messages for
further inspection, amavisd-new’s performance can be bound to the speed
and latency of disk I/O. You can significantly optimize the read-write
operation speed by moving this preparation to a RAM disk style of filesystem.
The procedure described in the following sections uses the Linux temporary
filesystem type (tmpfs).

Is This Safe?

You can rest assured that you won’t lose any email during the filtering
process due to the way that you integrate amavisd-new into Postfix. Take a
look at what happens during filtering:

1. Upon receiving a new message, the Postfix queue manager sends a mail
delivery request to a Postfix SMTP or LMTP client; the client transports
the message to amavisd-new.

2. amavisd-new starts working on the message (doing scanning, spam
checking, and so on), but it does not immediately acknowledge that it
received the message.

3. While waiting for amavisd-new, Postfix keeps the message in its queue,
waiting for amavisd-new to tell it that it received the message properly.

4. After amavisd-new finishes its work, it reinjects the message back into the
Postfix queue.

5. The Postfix smtpd that handles the reinjection accepts the message from
amavisd-new.
154 Chap te r 12

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

6. Upon getting the acknowledgement from the reinjecting smtpd, amavisd-
new acknowledges successful transport back to the originating Postfix
lmtp or smtp client, which in turn reports back to the queue manager that
the message is delivered.

As you can see, amavisd-new only tells the prefilter Postfix component
that it got the message after the post-filter smtpd accepts the processed
message. This way, you can never lose mail in amavisd-new.

Sizing tmpfs

To calculate the correct size for tmpfs, consider this: If you run n amavisd-
new instances, and each one accepts messages of at most message_size_limit,
you need this much space:

n * (1 + maximum_expected_expansionfactor) * message_size_limit * 7/8

The expansionfactor is tricky, but a factor of 2 is quite okay (a compressed
message—think *.zip or *.rar files here—may grow to twice the original size).

For example, if you have five amavisd-new instances and a 10MB message
limit, you would get the following result for the size of tmpfs:

5 * (1 + 2) * 10MB * 7/8 = 131.25MB

NOTE Make sure that you have enough physical memory to hold the tmpfs; otherwise, your
machine will start swapping memory out to disk, and you will end up with perfor-
mance that’s worse than a regular filesystem.

Configuring the Optimization

There are a few steps involved in setting up amavisd-new to use tmpfs:

1. Find amavisd-new’s $TEMPBASE parameter.

2. Create a tmpfs filesystem.

3. Stop amavisd-new.

4. Mount the tmpfs filesystem.

5. Start amavisd-new.

6. Make sure that amavisd-new still works.

First, you need to find out where the amavisd-new $TEMPBASE is defined.
This is the mount point for the tmpfs that you will create. The default
$TEMPBASE is $MYHOME, which is /var/amavis by default. To find out for sure, use
grep on your configuration file. This example shows that it is set to $MYHOME:

grep TEMPBASE /etc/amavisd.conf
$TEMPBASE = $MYHOME; # (must be set if other config vars use is)
$ENV{TMPDIR} = $TEMPBASE; # wise, but usually not necessary
 "-f=$TEMPBASE {}", [0,8], [3,4,5,6], qr/infected: ([^\r\n]+)/],
Using Ex terna l Con ten t Fi l t er s 155
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

 # adjusting /var/amavis above to match your $TEMPBASE.
 # directory $TEMPBASE specifies) in the 'Names=' section.

Run another grep to find out what $MYHOME is. In the following example,
you can see that the definition of $MYHOME is commented out, so it uses the
default value:

grep MYHOME /etc/amavisd.conf
$MYHOME serves as a quick default for some other configuration settings.
$MYHOME is not used directly by the program. No trailing slash!
#$MYHOME = '/var/lib/amavis'; # (default is '/var/amavis')
$TEMPBASE = $MYHOME; # (must be set if other config vars use is)
#$TEMPBASE = "$MYHOME/tmp"; # prefer to keep home dir /var/amavis clean?
#$helpers_home = $MYHOME; # (defaults to $MYHOME)
#$daemon_chroot_dir = $MYHOME; # (default is undef, meaning: do not chroot)
#$pid_file = "$MYHOME/amavisd.pid"; # (default is "$MYHOME/amavisd.pid")
#$lock_file = "$MYHOME/amavisd.lock"; # (default is "$MYHOME/amavisd.lock")
#$forward_method = "bsmtp:$MYHOME/out-%i-%n.bsmtp";
$unix_socketname = "$MYHOME/amavisd.sock"; # amavis helper protocol socket
 # (usual setting is $MYHOME/amavisd.sock)
$LOGFILE = "$MYHOME/amavis.log"; # (defaults to empty, no log)
 "{} -ss -i '*' -log=$MYHOME/vbuster.log", [0], [1],

Now you need to create a tmpfs entry in your /etc/fstab file, using the
filesystem size calculated in the previous section (“Sizing tmpfs”). The
following example uses a 150MB size and limits access to a particular user
and group. In this case the user ID is 7509 and the GID is 54322, which match
the user and group vscan in the /etc/passwd and /etc/group files; keep in mind
that your system almost certainly has different numbers, and you will need to
look them up by yourself:

/dev/shm /var/amavis tmpfs defaults,size=150m,mode=700,uid=7509,gid=54322 0 0

Before you mount /var/amavis, make sure to stop amavisd-new with a
command such as this:

/etc/init.d/amavisd-new stop

Next, mount /var/amavis (remember that this is the tmpfs filesystem that
you just defined in /etc/fstab):

mount /var/amavis

Now start amavisd-new again:

/etc/init.d/amavisd-new start
156 Chap te r 12

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Check whether all is well by looking at the logs and examining df -h
output. In the following example, /var/amavis is 100MB, and only 76KB are
currently in use:

df -h /var/amavis
Filesystem Size Used Avail Use% Mounted on
/dev/shm 100M 76k 99M 1% /var/amavis

NOTE Sometimes amavisd-new leaves stale files in its $TEMPBASE directory. To prevent
$TEMPBASE from getting filled with these files, you can stop amavisd-new daily,
remove the stale files, and restart. A daily cron job script such as the following will
get the job done:

#!/bin/bash
/etc/init.d/amavisd stop
rm -Rf /var/amavis/amavis-200*
/etc/init.d/amavisd start

Configuring Postfix to Use amavisd-new

At this point, Postfix and amavisd-new should each run independently of
the other. Therefore, you need to configure Postfix to send messages to
amavisd-new and create another smtpd instance for message reinjection.
The following steps (discussed in the following sections) will integrate
amavisd-new into Postfix:

1. Create a transport.

2. Configure the transport.

3. Configure a reinjection path.

NOTE Because the filtered mail needs a way of getting back into the Postfix queue system with-
out being scanned again, you need a dedicated smtpd that doesn’t use content_filter.
This allows amavisd-new to reinject the mail into the system without generating loops.
Port 25 is already taken, so you can make a copy of smtpd listen to a nonstandard port.
This example uses port 10025 on localhost.

amavisd-new also needs a port to listen on. The default of port 10024 on
localhost is fine.

Creating a Transport Using content_filter in main.cf

The first step in delegating the content processing to an external program is
to define the transport that sends messages to the filtering program. Postfix
uses the content_filter parameter in the main.cf file. The parameter expects a
notation of transportname:nexthop:port.
Using Ex terna l Con ten t Fi l t er s 157
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

In the example we’re working on, amavisd-new is running on the
same machine as Postfix, so you can access it at port 10024 on localhost
(127.0.0.1). You need to define the following content_filter parameter in
the main.cf file to make Postfix connect to amavisd-new:

content_filter = amavisd-new:[127.0.0.1]:10024

Running amavisd-new on a Different Host

If you feel that the filtering load is too much for a single machine, you
can run amavisd-new on one or more machines. The nexthop part of
transportname:nexthop:port allows you to easily specify a different host for
the filter. Consider vscanners.example.com in the following example:

content_filter = amavisd-new:vscanners.example.com:10024

The name vscanners.example.com could be any one of the following:

� One machine (through one A record)

� Multiple machines (through multiple round-robin A records)

� Multiple machines (one or more machines with different priority MX
records)

Defining the Transport in master.cf

Next you need to define the daemon that will connect to amavisd-new and
specify the environment for the daemon. Remember that the daemon can be
smtp, lmtp, or pipe. You saw an example of pipe earlier in this chapter; it’s time
to look at the other two.

Defining an ESMTP Transport

If you want to use the ESMTP protocol to send messages to amavisd-new, add
the following entries to your master.cf file:

#===
service type private unpriv chroot wakeup maxproc command
(yes) (yes) (yes) (never) (100)
==
...
amavisd-new unix - - n - 2 smtp
 -o smtp_data_done_timeout=1200s
 -o disable_dns_lookups=yes

There are a few things to note in the preceding entries:

� The special transport amavisd-new is a copy of the normal smtp transport.
Its name must match the transport name that you gave to the
content_filter parameter that you defined in main.cf.
158 Chap te r 12

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

� amavisd-new is quite resource-hungry. Unless you have a fast machine,
you might want to leave the maximum number of simultaneous
instances at 2.

� The smtp_data_done_timeout parameter is the first of two additional set-
tings that modify this daemon’s behavior. amavisd-new can take a signifi-
cant amount of time to process an incoming message, and increasing the
timeout after smtp sends the message protects Postfix from giving up
before amavisd-new is done.

� Because you are probably dealing only with local machine names at this
point, the disable_dns_lookups parameter disables unnecessary DNS look-
ups for the smtp client.

NOTE You don’t necessarily need a dedicated SMTP transport, because the default smtp
does the job well. However, for performance reasons (and because of the relatively
long amavisd-new timeout), it can make sense to customize a transport just for
amavisd-new.

Defining an LMTP Transport

If you decide to use the LMTP protocol (instead of SMTP) to transport
messages to amavisd-new, add the following entry to your master.cf file:

#===
service type private unpriv chroot wakeup maxproc command
(yes) (yes) (yes) (never) (100)
#===
...
amavisd-new unix - - n - 2 lmtp

-o lmtp_data_done_timeout=1200s
-o disable_dns_lookups=yes

Configuring a Reinjection Path

Finally, you need to create a reinjection path that allows amavisd-new
to feed messages back into the Postfix queue. It’s important that this
reinjection path bypass the amavisd-new transport. Otherwise the message
will get caught in a loop, where Postfix sends the message to amavisd-new,
the mail is reinjected into the Postfix queue, and it is sent back to amavisd-
new again.

A reinjection path that bypasses any previously defined content_filter
parameter looks like this in your master.cf file:

#===
service type private unpriv chroot wakeup maxproc command
(yes) (yes) (yes) (never) (100)
Using Ex terna l Con ten t Fi l t er s 159
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

==
...
127.0.0.1:10025 inet n - n - - smtpd
 -o content_filter=
 -o local_recipient_maps=
 -o relay_recipient_maps=
 -o smtpd_restriction_classes=
 -o smtpd_client_restrictions=
 -o smtpd_helo_restrictions=
 -o smtpd_sender_restrictions=
 -o smtpd_recipient_restrictions=permit_mynetworks,reject
 -o mynetworks=127.0.0.0/8
 -o strict_rfc821_envelopes=yes

Of all the options in the preceding entry, the one that is absolutely
essential is the empty content_filter parameter. This overrides the content_
filter parameter in the main.cf file. The remaining options override other
main.cf parameters, including options to turn off restrictions that make no
sense for a transport listening only on the localhost network interface.

After putting all of the settings in place, you’re ready to test the filter.
Remember that changes in master.cf require you to reload Postfix.

Testing the Postfix amavisd-new Filter

To test that Postfix and amavisd-new work well together, you must verify that
Postfix can send mail to amavisd-new, and that amavisd-new can reinject
messages. Testing involves the following steps:

1. See if Postfix listens on the reinjection path.

2. Send a message to Postfix, checking that it sends the message to amavisd-
new, and that the message comes back into the Postfix queue.

3. See if a virus scanner detects a test pattern.

Checking the Reinjection Path

Once you’ve changed the master.cf file, run the postfix reload operation to
make Postfix read the revised file and then examine the log file for any
complaints. Then, check whether the smtpd reinjection daemon is listening
on localhost, port 10025, as in the following session:

$ telnet 127.0.0.1 10025
220 mail.example.com ESMTP Postfix
EHLO 127.0.0.1
250-mail.example.com
250-PIPELINING
250-SIZE 10240000
160 Chap te r 12

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

250-VRFY
250-ETRN
250-STARTTLS
250-AUTH LOGIN PLAIN DIGEST-MD5 CRAM-MD5
250-XVERP
250 8BITMIME
QUIT
221 Bye

Sending a Test Message to Postfix

Postfix should be able to let an uninfected message pass through the system.
Send a message from the command line, and track it with the log file
messages from Postfix and amavisd-new. For example, you could use the
following command to mail your main.cf file to recipient@example.com:

sendmail -f sender@example.com recipient@example.com < /etc/postfix/main.cf

Then take a look at the log file. The bottom of the file should have a
session that starts like the following, where Postfix assigns a message ID to
the message that you can use to track the message:

Jan 31 10:45:08 mail postfix/pickup[10096]: 2788029AB29: uid=0 from=<sender@example.com>
Jan 31 10:45:08 mail postfix/cleanup[10652]: 2788029AB29:

message-id=<20040131094508.2788029AB29@mail.example.com>

The next set of messages should show Postfix handing the message to
localhost for processing by amavisd-new (unfortunately, Postfix does not log
the port number or the name of the transport):

Jan 31 10:45:08 mail postfix/qmgr[10097]: 2788029AB29: from=<sender@example.com>, size=1271,
nrcpt=1 (queue active)

Jan 31 10:45:08 mail postfix/smtp[10660]: 2788029AB29: to=<recipient@example.com>,
relay=localhost[127.0.0.1], delay=0, status=sent (250 2.6.0 Ok, id=25809-04, from MTA: 250
Ok: queued as 377D829AB2A)

Now amavisd-new scans the message and logs that the message passed:

Jan 31 10:45:08 mail amavis[25809]: (25809-04) Passed, <sender@example.com> ->
<recipient@example.com>, Message-ID: <20040131094508.2788029AB29@mail.example.com>, Hits: -

Next, the message comes back into Postfix from amavisd-new for
reinjection into the queue. Notice that the second smtpd also logs the
message ID:

Jan 31 10:45:08 mail postfix/smtpd[10658]: connect from localhost[127.0.0.1]
Jan 31 10:45:08 mail postfix/smtpd[10658]: 377D829AB2A: client=localhost[127.0.0.1]
Using Ex terna l Con ten t Fi l t er s 161
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Jan 31 10:45:08 mail postfix/cleanup[10652]: 377D829AB2A:
message-id=<20040131094508.2788029AB29@mail.example.com>

Jan 31 10:45:08 mail postfix/qmgr[10097]: 377D829AB2A: from=<sender@example.com>, size=1723,
nrcpt=1 (queue active)

Jan 31 10:45:08 mail postfix/smtpd[10658]: disconnect from localhost[127.0.0.1]

Finally, Postfix relays the message to another host for delivery (it could
also deliver locally, if this server happened to be the final destination):

Jan 31 10:45:08 mail postfix/smtp[10655]: 377D829AB2A: to=<recipient@example.com>,
relay=relayhost[10.0.0.1], delay=0, status=sent (250 OK id=1AmrgY-00073g-00)

Checking a Test Virus Pattern

Your last test is to simulate a message infected by a virus. You can do this by
getting the EICAR test virus pattern (http://www.eicar.org) and sending it to
Postfix. Any virus scanners that don’t have this pattern specifically disabled
should be able to recognize it. For example, the following command should
send a virus to recipient@example.com:

sendmail -f sender@example.com recipient@example.com < eicar.com

The log messages look like they did before, up to the point where
amavisd-new scans the message:

Feb 6 15:48:54 mail postfix/pickup[30051]: 13B9E29AB29: uid=0 from=<sender@example.com>
Feb 6 15:48:54 mail postfix/cleanup[30741]: 13B9E29AB29:

message-id=<20040206144854.13B9E29AB29@mail.example.com>
Feb 6 15:48:54 mail postfix/qmgr[19295]: 13B9E29AB29: from=<sender@example.com>, size=347,

nrcpt=1 (queue active)
Feb 6 15:48:54 mail postfix/smtp[30744]: 13B9E29AB29: to=<recipient@example.com>,

relay=localhost[127.0.0.1], delay=0, status=sent (250 2.5.0 Ok, id=10217-07, BOUNCE)
...
Feb 6 15:48:54 mail amavis[10217]: (10217-07) INFECTED (Eicar-Test-Signature),

<sender@example.com> -> <recipient@example.com>, quarantine virus-20040206-154854-10217-07,
Message-ID: <20040206144854.13B9E29AB29@mail.example.com>, Hits: -

Seeing that the message contains a virus, amavisd-new alerts
virusalert@example.com and bounces the message back to the sender:

Feb 6 15:48:54 mail postfix/smtpd[30747]: connect from localhost[127.0.0.1]
Feb 6 15:48:54 mail postfix/smtpd[30747]: 639A729AB2A: client=localhost[127.0.0.1]
Feb 6 15:48:54 mail postfix/cleanup[30741]: 639A729AB2A: message-id=<VA10217-07@mail>
Feb 6 15:48:54 mail postfix/qmgr[19295]: 639A729AB2A: from=<>, size=1463, nrcpt=1

(queue active)
Feb 6 15:48:54 mail postfix/local[30749]: 639A729AB2A: to=<virusalert@example.com>,

relay=local, delay=0, status=sent (forwarded as 8484829AB2C)
162 Chap te r 12

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Feb 6 15:48:54 mail postfix/smtpd[30747]: disconnect from localhost[127.0.0.1]
...
Feb 6 15:48:54 mail postfix/smtpd[30747]: connect from localhost[127.0.0.1]
Feb 6 15:48:54 mail postfix/smtpd[30747]: 7A2FD29AB2B: client=localhost[127.0.0.1]
Feb 6 15:48:54 mail postfix/cleanup[30741]: 7A2FD29AB2B: message-id=<VS10217-07@mail>
Feb 6 15:48:54 mail postfix/qmgr[19295]: 7A2FD29AB2B: from=<>, size=2554, nrcpt=1

(queue active)
Feb 6 15:48:55 mail postfix/smtp[30744]: 7A2FD29AB2B: to=<sender@example.com>,

relay=relayhost[10.0.0.1], delay=1, status=sent (250 OK id=1Ap7Ho-00014I-00)

Bouncing the message to the sender isn’t a particularly good idea,
because the sender is nearly always forged in current email viruses, but this is
unfortunately the default for amavisd-new.

Scanning for Viruses with smtpd_proxy_filter and amavisd-new

A different and newer approach to content filtering in Postfix is to inspect
incoming messages before queuing them. This type of filter is called
smtpd_proxy_filter. You can use it with amavisd-new, as shown in Figure 12-3.

Figure 12-3: amavisd-new integration with Postfix using smtpd_proxy_filter

Server

Mail client

Postfix

smtpd with
smtpd_proxy

_filter

smtpd without
smtpd_proxy

_filter

amavisd-new

qmgr

Antispam Virus
scanner 1

Virus
scanner 2
Using Ex terna l Con ten t Fi l t er s 163
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

This is how the message would flow if you use smtpd_proxy_filter:

1. A mail client sends a message to a Postfix smtpd.

2. The smtpd (with smtpd_proxy_filter enabled) hands the message to
amavisd-new. Notice that this is different from the case with content_
filter, where the queue manager requests the Postfix lmtp or smtp
client to send the message to amavisd-new.

3. amavisd-new sends the message to other applications (in this example,
to two virus scanners).

4. amavisd-new tells smtpd whether it accepted or rejected the message. If it
accepts the message, it reinjects it back into a second smtpd instance, but
if it rejects the message, it acts according to your configuration.

5. The original smtpd listens to the amavisd-new replay, accepting or reject-
ing the message from the client.

NOTE smtpd_proxy_filter is the smtpd daemon being broken in two parts:

� One part sanitizes the incoming mail with the filter.

� The other part does the queuing.

This section explains how to configure amavisd-new with smtpd_proxy_
filter using the general steps described in Chapter 11. You need to perform
the following steps to integrate amavisd-new with the smtpd_proxy_filter
parameter:

1. Install amavisd-new (described earlier in the chapter in the “Installing
amavisd-new” section).

2. Test amavisd-new (described in the earlier “Testing amavisd-new”
section).

3. Configure Postfix to use amavisd-new.

4. Test the configuration.

Configuring Postfix to Use amavisd-new with smtpd_proxy_filter
The first step is to define the transports the emails should take into the
filtering program. You’ll do these three things:

1. Modify the existing smtpd transport to proxy for amavisd-new.

2. Create an additional smtpd instance to have the mail reinjected into
Postfix, circumventing any global smtpd_proxy_filter parameter.

3. Test the configuration as described in the previous section.

Modifying the Existing smtpd to Proxy

To make smtpd proxy messages to amavisd-new, append the smtpd_proxy_
filter parameter to the existing smtp service in the master.cf file. For
164 Chap te r 12

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

example, the following entry makes smtpd send messages to port 10024 on
localhost (remember that these are the default settings for amavisd-new):

#===
service type private unpriv chroot wakeup maxproc command
(yes) (yes) (yes) (never) (100)
==
...
smtp inet n - n - 20 smtpd
 -o smtpd_proxy_filter=localhost:10024
 -o smtpd_client_connection_count_limit=10

Notice that -o smtpd_client_connection_count_limit=10 prevents one
SMTP client from using up all 20 SMTP server processes defined in the
maxproc column. This limit is not necessary if you receive all mail from a
trusted relay host.

Also, unlike the process used earlier for the content_filter mechanism,
you’re not defining a global parameter in the main.cf file, so it will not be
necessary to explicitly override it in the reinjection transport.

Creating an Additional smtpd Instance for Message Reinjection

To let the messages reenter the Postfix queue on a non-proxying smtpd
instance, you need to add a special instance of smtpd in your master.cf file.
This example creates another instance on port 10025 of localhost:

#===
service type private unpriv chroot wakeup maxproc command
(yes) (yes) (yes) (never) (100)
==
...
127.0.0.1:10025 inet n - n - - smtpd
 -o smtpd_authorized_xforward_hosts=127.0.0.0/8
 -o smtpd_client_restrictions=
 -o smtpd_helo_restrictions=
 -o smtpd_sender_restrictions=
 -o smtpd_recipient_restrictions=permit_mynetworks,reject
 -o mynetworks=127.0.0.0/8
 -o receive_override_options=no_unknown_recipient_checks

The -o smtpd_authorized_xforward_hosts=127.0.0.0/8 parameter allows
the after-filter smtpd to receive remote SMTP client information from the
before-filter smtpd. Specifically, the after-filter smtpd will accept any XFORWARD
commands sent by a host listed in smtpd_authorized_xforward_hosts. This is very
useful for debugging, because the smtpd will use the original client IP address
instead of localhost[127.0.0.1].

The remaining parameters lighten the load on the after-filter smtpd,
because the before-filter smtpd already did this work.
Using Ex terna l Con ten t Fi l t er s 165
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

PART III
A D V A N C E D C O N F I G U R A T I O N S

In this part of the book, you will see common situations
where Postfix interacts with other third-party applica-
tions, such as SQL servers, Cyrus SASL, OpenSSL, and
OpenLDAP. Here is an overview of the chapters in this
section:
Mail Gateways

Mail relays transport messages on behalf of other mail servers or clients.
In most cases, mail relays are exposed to the Internet, while the other
servers sit safely behind a firewall. In Chapter 13, you’ll see how to make
a “smart” host out of a simple mail relay.

A Mail Server for Multiple Domains
Chapter 14 describes the two ways that Postfix can handle mail for multi-
ple domains. In addition, you will see how to configure Postfix to query
an SQL Server instead of looking at static maps.

Understanding SMTP Authentication
SMTP authentication is a system for authenticating mail clients before
they relay messages. Because SMTP authentication in Postfix relies on
the Cyrus SASL software, Chapter 15 shows you how to configure Cyrus
SASL before you can use it with Postfix.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

SMTP Authentication
Continuing the discussion of SMTP authentication, Chapter 16 shows
you how to configure Postfix for server- or client-side authentication
or both.

Understanding Transport Layer Security
Transport Layer Security (TLS) encrypts the communication layer
between Postfix and other hosts. The Postfix implementation of TLS
requires OpenSSL, so Chapter 17 shows you not only how TLS works,
but also how to prepare the required certificates.

Using Transport Layer Security
Chapter 18 shows you how to set up the Postfix server to offer encryption
to other hosts and how to make the Postfix client use it when other serv-
ers offer TLS. You will also see how certificate-based relaying works.

A Company Mail Server
Chapter 19 explains how to configure Postfix to query an LDAP server.
In doing so, you will delegate the job of local delivery to an MDA (mes-
sage delivery agent) and configure a basic Courier IMAP server. In the
end, you will have a complete mail system that gets user data from an
OpenLDAP server.

Running Postfix in a chroot Environment
Chapter 20 shows you how to configure Postfix to run chrooted. It
explains why some daemons must not run chrooted and gives you an
example of how to run Postfix chrooted in combination with SASL.
168 Pa rt I I I

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

13
M A I L G A T E W A Y S

A mail gateway (also called a “smarthost”) is
a server that connects between networks

that are logically separate. Usually, the mail
gateway shows up as the final destination in

DNS records for other mail servers on the
Internet, and those servers have no idea that other
mail servers lie beyond the mail gateway. This chapter
shows you how to set up a mail gateway, and it discusses
the characteristics of a real smarthost.

Companies and ISPs use mail gateways to control SMTP traffic traveling
to and from their network. Usually the network setup permits traffic on port
25 to only reach the mail gateway, and forces clients within the network to
use this machine for outgoing mail. The firewall has the job of blocking the
ports, and Postfix performs the mail gatewaying.

Figure 13-1 shows a groupware server that relays all messages to the mail
gateway and vice versa. The mail gateway protects the groupware server from
outside attacks—clients and servers from outside cannot connect directly to
the groupware server.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 13-1: Postfix as mail relay for a groupware server

TIP You can extend the functionality of a mail gateway by integrating features such as a
virus scanner and a centralized spam filter. In doing so, you protect the groupware not
only from malicious connections, but also from malicious content.

If you provide a relay service to customers, this chapter can help you set up a basic
mail gateway. You can extend its services by adding support for SMTP authentication
(see Chapter 16) and Transport Layer Security (see Chapter 18).

Basic Setup

A basic mail gateway setup allows Postfix to run on an external mail server
and relay mail destined for certain domains to another (internal) mail
server. To create such a mail gateway, you need to perform the following
steps on the relay:

1. Allow the internal server to use the gateway as relay.

2. Set the domains that mail will be relayed to the inside (relay_domains).

3. Set the host that mail will be relayed to (relayhost).

4. Define the recipients mail will be relayed to the inside
(relay_recipient_maps).

Setting Gateway Relay Permissions
Your first step is to permit relaying on the mail gateway for your “hidden”
mail server. Add the internal mail server’s IP address to the list of servers in
the mynetworks parameter. For example, if the internal server’s address is
172.16.1.1, you might put this line in the mail gateway’s main.cf file:

mynetworks = 127.0.0.0/8 172.16.1.1/32

LAN

DMZ

Groupware

Firewall

Mail relay
(Postfix)

Mail server

Mail server

Internet
170 Chap te r 13

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Limit relay access to your mail gateway’s localhost address (127.0.0.1)
and the internal mail server (which is 172.16.1.1 in this example), so that
other hosts inside your network can’t use the gateway as a relay.

Setting a Relay Domain on the Gateway
The next step is to tell Postfix to accept mail from the outer network for a
host on the inner network. Postfix uses the relay_domains parameter to define
a list of domains that it relays for, even if it is not the final destination for
those domains. For example, if you want to relay mail for example.com, use this
setting:

relay_domains = example.com

Setting the Internal Mail Host on the Gateway
Now that the gateway knows that it should accept mail for a certain domain,
you must tell it where to relay incoming messages that are bound for that
domain. You do this by creating a transport map, which is a file such as /etc/
postfix/transport. For example, if you want to relay messages for example.com
to mail.office.example.com, the file might look like this:

example.com smtp:[mail.office.example.com]

In this line, smtp means that Postfix should use the smtp transport type
defined in the master.cf file. The square brackets are important, because
they disable MX lookups for mail.office.example.com. Without the brackets,
Postfix would look for the MX record for mail.office.example.com. Because
this record likely belongs to the server host itself, it would try to deliver the
mail to itself, and incoming messages would loop.

Now you need to create the indexed file with this command:

postmap hash:/etc/postfix/transport

Finally, set the transport_maps parameter in your main.cf file as follows
(and then reload Postfix):

transport_maps = hash:/etc/postfix/transport

Defining Relay Recipients
What makes a gateway “smart”? A regular gateway accepts any message for
any recipient for a relay domain, including invalid recipients that do not
exist on the internal mail server that ultimately delivers the messages.

Considering the sheer amount of spam and malware flying around the
Internet today, and because there may be recipients that are not allowed to
receive messages from the outside (such as shared folders, internal mailing
lists, and perhaps even some real people), a regular gateway can cause
Mail Gateways 171
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

problems because it accepts everything. In particular, it will relay mail, spam,
and viruses to nonexistent and unauthorized accounts.

Also, by accepting mail for a non-existent address, the gateway takes the
responsibility to inform the sender when mail could not be delivered. This
pollutes the mail queue with MAILER-DAEMON messages, and this causes
backscatter mail to people all over the Internet for mail that they did not send.

When Postfix does not accept the mail, that responsibility stays with the
client. When that client is a back-doored Windows PC, then no backscatter
mail will be sent at all.

A smart host knows to separate the wheat from the chaff because it has a
list of valid recipients on the internal servers. Use the relay_recipient_maps param-
eter to define and activate a list of valid users. For example, if your map name is
/etc/postfix/relay_recipients, you would use this line in your main.cf file:

relay_recipient_maps = hash:/etc/postfix/relay_recipients

CAUTION If you define this parameter, the map must provide a list of valid relay recipients.
Otherwise, your gateway won’t have any consistency. If you can’t provide a list, then
disable the map with a setting of relay_recipient_maps =.

Of course, when you tell Postfix where to find a map, you need to
actually provide the list. If you configured your map as in the preceding
example, create a plaintext file named /etc/postfix/relay_recipients
containing valid recipients. For example, the following file enables relaying
for john@example.com and linda@example.com:

john@example.com OK
linda@example.com OK

If you want to explicitly deny relay access to a certain recipient, use an
error code and message such as 554 Delivery not permitted instead of OK.

As with any map, you need to convert the map to the indexed database
type that you defined in the relay_recipient_maps parameter. For example,
run postmap hash:/etc/postfix/relay_recipients to do so.

NOTE It’s simple to set up a list of valid users by hand if you have just a few users on the
remote mail server that change once in a while. More likely than not, though, you’ll
have many users that continuously change, and you may not even know the list of
users. See the “Exporting Valid Recipients from Active Directory” section, later in the
chapter, for a discussion on how to automate the process. In particular, that section
describes how to get a list of valid recipients from a Microsoft Exchange 2003 server.

Advanced Gateway Setup
An advanced gateway not only forwards mail to other servers, but also protects
against local mail attacks and automates the process of updating the list of
valid recipients in the relay domain. The following sections show several
techniques for improving the general mail service provided by your gateway.
172 Chap te r 13

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Improving Security on the Mail Gateway

So far, your Postfix installation relays all messages with an example.com address
to the inner mail server, mail.office.example.com. If that’s the only task that
your smarthost must perform (that is, if your smarthost does not receive mail
for users local to the smarthost), you should disable local delivery so that the
smarthost won’t be vulnerable to malicious messages sent to local users on
the smarthost.

Perform the following steps to disable local delivery:

1. Empty the local destination. The first step is to tell Postfix that it is not a
final destination by setting the mydestination parameter with no destina-
tion, like this:

mydestination =

2. Disable local recipients. Set the local_recipient_maps parameter to noth-
ing so that Postfix will be unable to look up any local recipient:

local_recipient_maps =

3. Forward required local recipients. When you set the empty local_
recipient_maps parameter, messages to all local recipients are disabled.
However, you still need to keep the gateway RFC compliant, so you must
set forwarding addresses for postmaster and abuse that go to your inner
mail server.

Create a map to use as a target for the virtual_alias_maps parameter
(/etc/postfix/virtual will do fine), and add forwarding addresses for
these two recipients on the inner mail server. For example, your map file
might look like this:

postmaster postmaster@example.com
abuse abuse@example.com

Now, build an indexed map from the file with postmap hash:/etc/
postfix/virtual and refer to it in your main.cf file, like this:

virtual_alias_maps = hash:/etc/postfix/virtual

4. Create a local delivery error message. When you disable local delivery, you
should also tell any client that tries to send a message to the smarthost that
you disabled delivery to local recipients. To do this, define a special local
transport with the local_transport parameter that transmits an error mes-
sage. For example, the following line sends all local messages to the error
daemon, which will provide an appropriate error message:

local_transport = error:local mail delivery is disabled
Mail Gateways 173
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

5. Redirect replies to local services. If you’ve followed the steps in the previ-
ous sections, Postfix now will not accept mail for local users other than
postmaster and abuse. However, local services, such as cron, that use Post-
fix to send status reports to administrators and users still send out mail
using sender addresses associated with the hostname of the machine.
This can be confusing, because you cannot reply to these messages.

To prevent users from sending a reply to these applications, change
the value of the myorigin parameter that Postfix appends as the domain
part of email addresses. Set myorigin to a domain that actually has a mail
server and that has mailboxes or aliases for these senders. For example,
if the internal mail server that is the ultimate destination for example.com
can provide this service, you might use this setting:

myorigin = example.com

6. Disabling the local delivery agent. Finally, you can prevent the master
daemon from starting the local delivery agent—this effectively turns off
the local delivery agent because there are no recipients on this machine.
Edit your master.cf file, and comment out the line containing the local
service by placing a hash (#) in front of the line, like this:

==
service type private unpriv chroot wakeup maxproc command + args
(yes) (yes) (yes) (never) (100)
==
smtp inet n - n - - smtpd
local unix - n n - - local
virtual unix - n n - - virtual
lmtp unix - - n - - lmtp
anvil unix - - n - 1 anvil

After you reload Postfix, it will no longer accept messages for local
recipients.

Using Postfix with Microsoft Exchange Server

Microsoft Exchange Server is, without a doubt, a powerful groupware
server, but its security record and stability when under attack is not so hot.
Therefore, many postmasters augment its groupware functionality with a
Postfix gateway. This section discusses how you can provide a Postfix gateway
host with a list of valid recipients and how to automate the procedure.

The easiest and most common solution to making Postfix and Exchange
Server work together is to have the Postfix relay host query the Exchange
Server using LDAP (Lightweight Directory Access Protocol). The relay host
will query the Exchange Server every time a message arrives in order to
174 Chap te r 13

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

determine whether the recipient is valid. However, this approach involves risks
and limitations. The alternative is to have the Exchange Server push the list of
recipients to the Postfix server, which is better in the following respects:

Security
No matter what package you run on your inner mail server, you want to
keep it as far as possible from security threats. That’s why you put it
behind a firewall in the first place. One of the basic rules of security is to
permit only what should be permitted and to deny everything else.

The first impulse of many systems administrators is to have Postfix
use LDAP queries to ask the remote Exchange Server for valid recipients.
To do this, you must open port 389 (TCP/UDP) on the Exchange Server
to permit connections from Postfix. This is relatively easy, but it opens a
port to your internal LAN.

Switching directions is safer, with Exchange providing Postfix with
a list of valid recipients only when the recipient list changes. With the
administrator of the Exchange Server pushing this list to the smarthost
with scp or rsync, you don’t need to open a port from the DMZ to
the LAN.

Performance
LDAP queries are slow compared to the indexed maps that Postfix uses.
If you provide Postfix with a static list of valid recipients, the smarthost
can process messages very quickly.

Stability
A smarthost exists to protect the inner mail server, and it’s counterproduc-
tive when a smarthost under attack brings down the inner server. This can
happen because spammers use dictionary attacks to send messages to a
large number of recipients at once, and this would cause a mail relay using
LDAP to send a large number of queries to the server that it is supposed to
protect, asking about valid recipients. This would slow down (if not dis-
able) the Active Directory and thus Exchange Server, turning a dictionary
attack into a denial-of-service attack. If a mail server is to go down, you
want it to be the smarthost on the outside, not the inner mail server.

In this section you will send valid recipients from an Exchange 2003 Server to
a Postfix mail relay by following these steps:

1. Export a list of all valid recipients.

2. Copy the list to the mail relay.

3. Extract the valid recipients from the list.

4. Create a map of relay recipients.

5. Index the map of relay recipients.

6. Automate the procedure.
Mail Gateways 175
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Exporting Valid Recipients from Active Directory

Microsoft uses the proxyAddresses attribute in its Active Directory to store the
valid recipient addresses for Exchange. An easy way to export proxyAddresses
from Microsoft’s Active Directory is to use csvde, a command-line tool
available on every Exchange Server—it will not require you to use a self-
written script. For example, to export the values for proxyAddresses to a file
named C:\export\example_com_recipients.txt, you can simply use this
command from a Command Prompt window:

C:\> csvde -m -n -g -f "C:\export\example_com_recipients.txt" \
 -r "(|(&(objectClass=user)(objectCategory=person)) \
 (objectClass=groupOfNames) (objectClass=msExchDynamicDistributionList))" \
 -l proxyAddresses

TIP There are thousands of ways to organize and structure an Active Directory, so it can be
difficult to find the object names that you need to export from your Active Directory.

The Exchange installation gives you the option to install several support tools,
including the ADSI Edit module. Add it to your MMC (Microsoft Management
Console). With this in place, running mmc.exe from the command line gives you full
access to the object names in the Active Directory.

The output from the preceding command contains much more
information than Postfix needs. For example, you might get this in the
output file:

DN,proxyAddresses
"CN=Administrator,CN=Users,DC=example,DC=com",smtp:abuse@example.com;SMTP:\

Administrator@example.com; X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;s=Administrator\
;;smtp:postmaster@example.com

"CN=Gast,CN=Users,DC=example,DC=com",
"CN=SUPPORT_388945a0,CN=Users,DC=example,DC=com",
"CN=krbtgt,CN=Users,DC=example,DC=com",
"CN=IUSR_MAIL,CN=Users,DC=example,DC=com",
"CN=IWAM_MAIL,CN=Users,DC=example,DC=com",
"CN=Wilma Pebble,OU=purchasing,DC=example,DC=com",smtp:wilmapebble@example.com;smtp:\

wilma@example.com;smtp:wilma.pebble@example.com;SMTP:w.pebble@example.com;smtp:\
pebble@example.com; X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;s=Pebble\;g=Wilma\;

"CN=Betty McBricker,OU=purchasing,DC=example,DC=com",smtp:mcbricker@example.com;smtp:\
bettymcbricker@example.com;smtp:betty@example.com;smtp:betty.mcbricker@example.com;\
SMTP:b.mcbricker@example.com;X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;\
s=McBricker\;g=Betty\;

"CN=Fred Flintstone,OU=sales,DC=example,DC=com",smtp:fredflintstone@example.com;\
SMTP:fred.flintstone@example.com;smtp:f.flintstone@example.com;smtp:fred@example.com;\
smtp:flintstone@example.com;X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;\
s=Flintstone\;g=Fred\;
176 Chap te r 13

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

"CN=Barney Rubble,OU=sales,DC=example,DC=com",SMTP:barney.rubble@example.com;\
smtp:barneyrubble@example.com; smtp:rubble@example.com;smtp:barney@example.com;smtp:\
b.rubble@example.com;X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;s=Rubble\;g=Barney\;

"CN=Bamm Bamm,OU=it,DC=example,DC=com",smtp:bammbamm@example.com;smtp:\
bamm@example.com;smtp:bamm.bamm@example.com;SMTP:b.bamm@example.com;\
X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;s=Bamm\;g=Bamm\;

"CN=SystemMailbox{C5C3EAFC-A32F-4925-85A5-3C08709DE617},CN=Microsoft Exchange System\
Objects,DC=example,DC=com", SMTP:SystemMailbox{C5C3EAFC-A32F-4925-85A5-3C08709DE617}\
@example.com;X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;s=SystemMailbox?\
C5C3EAFC-A32F-4925-85A5-3C\;

"CN=it-department,OU=it,DC=example,DC=com",SMTP:it-department@example.com;\
X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;s=it-department\;

"CN=purchasing-department,OU=purchasing,DC=example,DC=com",SMTP:purchasing-department@example.com;\
X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;s=purchasing-department\;

"CN=sales-department,OU=sales,DC=example,DC=com",SMTP:sales-department@example.com;\
X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;s=sales-department\;

The valid recipients are the values marked with smtp (aliases) and SMTP
(primary addresses). You need to extract the values associated with smtp and
SMTP to create a list that the Postfix smarthost can use. You’ll eventually do
this with a script on the smarthost, but for now you simply need to get the list
to the smarthost.

Sending the Recipient List to the Mail Relay

There are many ways to copy a file from your Exchange Server to your
smarthost, but among the best is secure copy (scp), an encrypting,
automatable utility supported by both Windows and Unix.

The following steps are involved in automating the file transfer to the
smarthost:

1. Get a secure copy (scp) client for Windows; for example, PuTTY.

2. Create a copy user on the smarthost.

3. Create authentication keys.

4. Add the public key to the authorized keys.

5. Copy the private key to the Windows host.

6. Convert the SSH key into PuTTY’s key format.

7. Copy the export file to the smarthost.

Getting a Secure Copy Client for Windows

Among the many clients that allow you to use scp to copy files from a
Windows host is PuTTY, a free Telnet and SSH client. You can download
it from http://www.chiark.greenend.org.uk/~sgtatham/putty.
Mail Gateways 177
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

You need to download pscp.exe and puttygen.exe from this package to
perform the operations required in this example. Copy the executables to a
path that Windows searches, such as C:\Windows.

Creating a Copy User on the Smarthost

To accommodate the file transfer, create a user on your smarthost. This
account will serve only to receive the exported list of recipients. For example,
you could create a user named e3k with this command:

useradd e3k

After creating a user, set its password using the passwd command. You’ll
use the password during the setup process, but you can disable it when
everything is running smoothly.

Creating Authentication Keys

The next step is to create a set of authentication keys so that you don’t need
a password to transfer the files from the Windows server to the smarthost. As
root on the smarthost, run su - e3k to switch to the e3k user and run ssh-
keygen to create the keys: For example, you can run the following command
as e3k:

$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/e3k/.ssh/id_rsa):
Created directory '/home/e3k/.ssh'.
Enter passphrase (empty for no passphrase): �
Enter same passphrase again:
Your identification has been saved in /home/e3k/.ssh/id_rsa.
Your public key has been saved in /home/e3k/.ssh/id_rsa.pub.
The key fingerprint is:
17:7e:78:9e:39:0e:04:b7:ee:6d:39:28:c6:21:e4:84 e3k@mail.example.com

� Do not provide a passphrase if you want the copy process to run
unattended. If you enter a passphrase, you will need to use it whenever
copying the export file to the smarthost.

The preceding command creates two files: .ssh/id_rsa and .ssh/
id_rsa.pub. The former is the private key; don’t let it out of your sight (no
host should have it other than your Windows machine).

Adding the Public Key to the Authorized Key List

Now that you have the keys, you need to tell your SSH server about the public
key that you just created. To append a public key from the file id_rsa.pub to
the list in the $HOME/.ssh/authorized_keys file for your copy user (e3k), run the
following command.
178 Chap te r 13

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

$ cd .ssh
$ cat id_rsa.pub >> authorized_keys

After creating the authorized_keys file, make sure that it has the correct
permissions, or else the SSH server will refuse to use the file for
authentication:

$ chmod 644 authorized_keys
$ ls -l authorized_keys
-rw-r--r-- 1 e3k e3k 230 May 13 10:38 authorized_keys

Copying the Private Key to Windows

Next you need to copy the private key from the smarthost to your Windows
host. The easiest way to do this is to use the pscp.exe command on the
Windows machine. If the IP address of your smarthost were 172.16.1.1, you
would run this command at the command prompt:

> C:\export> pscp e3k@172.16.1.1:/home/e3k/.ssh/id_rsa .
e3k@172.16.1.1's password:
id_rsa | 0 kB | 0.9 kB/s | ETA: 00:00:00 | 100%

Use the password you created for the user in the “Creating a Copy User
on the Smarthost” section.

Converting the SSH Key to the PuTTY Key Format

PuTTY uses a format different than most Unix SSH packages do to store
public and private keys, so you will need to convert the private key into
PuTTY’s own format to use it. The puttygen utility can convert the key;
run it from the command line as follows:

C:\export> puttygen id_rsa

This command starts a GUI client that loads the private key. You should
now see the dialog box in Figure 13-2.

Figure 13-2: Successful key import with PuTTYgen
Mail Gateways 179
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Click OK to confirm the message. The PuTTY Key Generator dialog box
shown in Figure 13-3 will be displayed. Give the converted key a name (such
as example_com.ppk), and click the Save private key button.

Figure 13-3: Saving the private key in PuTTYgen

As shown in Figure 13-4, the Key Generator will warn you about the
empty passphrase in the key. Click Yes to save the key without a passphrase
and to store the private key. Now your Windows host is ready to use scp to
transfer files to the smarthost using an authentication key.

Figure 13-4: PuTTY warning about the empty passphrase in the key
180 Chap te r 13

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Copying the List of Recipients to the Smarthost

Keep your Command Prompt window open to copy a file from your Windows
host to the smarthost using the pscp.exe utility (the scp belonging to PuTTY).
When you run pscp, you must identify the private key, the file to be copied,
and the user that will do the copying. In our example, the private key is in
the example_com.ppk file, example_com_recipients.txt is the file to be copied, and
the user is e3k. To put the file in /home/e3k, you would use this command:

C:\export> pscp -i example_com.ppk example_com_recipients.txt e3k@172.16.1.1:/home/e3k/
Authenticating with public key "rsa-key-20040512"
example_com_recients.txt | 2 kB | 2.4 kB/s | ETA: 00:00:00 | 100%

After successfully copying the file to the smarthost, you can store the
csvde export command from the earlier “Exporting Valid Recipients from
Active Directory” section and the preceding pscp command in a batch file
named export_valid_recipients.bat. Then you can run it with a mouse click
whenever you create, change, or delete a recipient. The file would look
something like this:

csvde -m -n -g -f "C:\export\example_com_recipients.txt" \
 -r "(|(&(objectClass=user)(objectCategory=person)) \
 (objectClass=groupOfNames) (objectClass=msExchDynamicDistributionList))" \
 -l proxyAddresses
pscp -i example_com.ppk example_com_recients.txt e3k@172.16.1.1:/home/e3k/

After verifying that this batch file works, you can disable the copy user
password on the smarthost using a command such as usermod -L e3k so
that remote access to the e3k account is only possible with an authenti-
cation key.

Building the Recipient Map

You now have the Active Directory export file on your smarthost, so you
can extract recipients from the file with a script. There are two things to
remember when doing so:

� Microsoft uses both SMTP and smtp to denote recipient addresses, so the
script must catch both variants.

� Your script must be able to exempt a few recipients that should not
receive mail from the outside. An example is the SystemMailbox mailbox
used by Exchange for internal communication.

The following script, called extract_valid_recipients, extracts all valid
recipients and places them in a file, but it does not include the recipients
listed in the file blacklist.
Mail Gateways 181
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

#!/bin/sh
Extract all addresses that start with SMTP or smtp from
an Active Directory export, but omit those that are listed in blacklist
cat $1 | tr -d \" | tr , \\n | tr \; \\n | awk -F\: '/(SMTP|smtp):/ {printf("%s\tOK\n",$2)}' | \

grep -v -f blacklist > $2

The blacklist file looks like this:

Administrator
SystemMailbox

Run the command extract_valid_recipients to run the script, and it will
produce a list of valid recipients in the relay_recipients file.

extract_valid_recipients /home/e3k/example_com_recipients.txt relay_recipients

The output should look like this:

abuse@example.com OK
postmaster@example.com OK
wilmapebble@example.com OK
wilma@example.com OK
wilma.pebble@example.com OK
w.pebble@example.com OK
pebble@example.com OK
mcbricker@example.com OK
bettymcbricker@example.com OK
betty@example.com OK
betty.mcbricker@example.com OK
b.mcbricker@example.com OK
fredflintstone@example.com OK
fred.flintstone@example.com OK
f.flintstone@example.com OK
fred@example.com OK
flintstone@example.com OK
barney.rubble@example.com OK
barneyrubble@example.com OK
rubble@example.com OK
barney@example.com OK
b.rubble@example.com OK
bammbamm@example.com OK
bamm@example.com OK
bamm.bamm@example.com OK
b.bamm@example.com OK
it-department@example.com OK
purchasing-department@example.com OK
sales-department@example.com OK
182 Chap te r 13

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

If this output looks correct, convert it using postmap (for example, with a
command like this: postmap hash:relay_recipients), and move it to the path
that your relay_recipient_maps parameter points to (this was discussed in the
earlier “Defining Relay Recipients” section). For example, you can use a
command like the following:

mv relay_recipients.db /etc/postfix/relay_recipients.db

CAUTION Do not point relay_recipient_maps directly to your newly created relay_recipients
map (for example, hash:/home/e3k/relay_recipients)! Postfix would quit services if
the map conversion failed. The safe way is to convert the map first, and only if this suc-
ceeds move it to the location where relay_recipient_maps points.

Building the Sender Access Map

As an added bonus, your Active Directory export file can also give Postfix a
list of senders that are permitted to send mail to the outside world. To do
this, you can write a script just like the one in the “Building the Recipient
Map” section, but with one small change: Microsoft uses SMTP to denote valid
sender addresses, so the address extraction script should process only
elements with this mark.

NOTE This is useful for preventing viruses from using the Outlook Contacts folder to build
false sender addresses and then sending mail out of your network.

You can call the script extract_valid_senders, and it should look like this:

#!/bin/bash
Extract all addresses that start with SMTP from an Active Directory
export, but omit those that are listed in blacklist
cat $1 | tr -d \" | tr , \\n| tr \; \\n | awk -F\: '/SMTP:/ {printf("%s\tOK\n",$2)}' | \
grep -v -f blacklist > $2

This time, when you run the following command, you should get a
shorter list than before because there are no aliases:

./extract_valid_senders /home/e3k/example_com_recipients.txt example_com_senders

The output should look something like the following, which is based on
the earlier example:

w.pebble@example.com OK
b.mcbricker@example.com OK
fred.flintstone@example.com OK
barney.rubble@example.com OK
b.bamm@example.com OK
it-department@example.com OK
purchasing-department@example.com OK
sales-department@example.com OK
Mail Gateways 183
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

In the preceding command-line example you redirected the output to a
file named example_com_senders. Now create an indexed database from it with
the postmap hash:example_com_senders command. Then create a restriction (see
Chapter 8) that checks envelope senders with these constraints:

� If the mail comes from the internal server, it must carry one of the valid
envelope sender addresses.

� If the mail does not come from the internal server, the restriction does
not apply.

To configure Postfix to apply this conditional restriction, define a
restriction class that triggers the envelope sender restriction when the mail
comes from the internal mail server. For example, your main.cf file might
contain the following:

smtpd_restriction_classes =
 must_be_valid_sender �
must_be_valid_sender = �
 check_sender_access hash:/etc/postfix/example_com_senders
 reject
smtpd_recipient_restrictions =
 check_client_access hash:/etc/postfix/example_com_ip �
 reject_unauth_destination
 ...

� must_be_valid_sender is the name of a restriction that contains the
subset of restrictions that are applied when mail stems from the internal mail
server; this line simply lists the restriction classes.

� The definition of this restriction contains the procedure for messages
coming from the internal server: first check the list of valid envelope senders,
and reject any other envelope sender.

� check_client_access triggers the execution of the must_be_valid_sender
restriction class.

Finally, you need to add the IP address of your internal mail server to
the/etc/postfix/example_com_ip file, along with the restriction action to be
taken. For example, the following line specifies that if a message comes from
172.16.1.1, Postfix should apply the must_be_valid_sender restriction:

172.16.1.1 must_be_valid_sender

After adding these configuration options, you must reload Postfix to
make the changes take effect.

Automating the Map-Building Process

You can automate the map-building process on the smarthost. The following
example uses a Makefile that you can download from the Book of Postfix
website (http://www.postfix-book.com).
184 Chap te r 13

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Makefile to automate map build process
configuration settings
Location of the file we extract the data from
ADS_DUMP=/home/e3k/example_com_recipients.txt
Location of the .proto files
PROTO_PATH=relay_recipients
PROTO_PATH2=valid_senders
destination of successfully built maps
MAP_PATH=/etc/postfix/relay_recipients
MAP_PATH2=/etc/postfix/valid_senders
type and suffix of the maps to build
DB_TYPE=hash
DB_SUFFIX=db
Makefile options
#
build all maps
all: $(MAP_PATH).$(DB_SUFFIX) $(MAP_PATH2).$(DB_SUFFIX) blacklist
extract valid recipients from $(ADS_DUMP) to $(PROTO_PATH).proto
$(PROTO_PATH).proto: $(ADS_DUMP)
 ./extract_valid_recipients $(ADS_DUMP) $(PROTO_PATH).proto
extract valid senders from $(ADS_DUMP) to $(PROTO_PATH2).proto
$(PROTO_PATH2).proto: $(ADS_DUMP)
 ./extract_valid_senders $(ADS_DUMP) $(PROTO_PATH2).proto
build map of valid recipients from $(PROTO_PATH).proto
$(MAP_PATH).$(DB_SUFFIX): $(PROTO_PATH).proto
 /usr/sbin/postmap -w $(DB_TYPE):$(PROTO_PATH).proto && \

mv $(PROTO_PATH).proto.$(DB_SUFFIX) $(MAP_PATH).$(DB_SUFFIX)
build map of valid senders from $(PROTO_PATH2).proto
$(MAP_PATH2).$(DB_SUFFIX): $(PROTO_PATH2).proto
 /usr/sbin/postmap -w $(DB_TYPE):$(PROTO_PATH2).proto && \
 mv $(PROTO_PATH2).proto.$(DB_SUFFIX) $(MAP_PATH2).$(DB_SUFFIX)
remove all proto maps
clean:
 rm -f $(PROTO_PATH).* $(PROTO_PATH2).* *~

Once you’ve successfully run make to verify that the conversion works, you
can create a cron job to run it automatically. For example, the following job
in your crontab would run every 15 minutes:

0,15,30,45 * * * * cd /root/relay_recipients && /usr/bin/make

Configuring Exchange and Postfix Communication
This section explains how to configure Microsoft Exchange to relay all mail
through your Postfix gateway, and also how to configure Exchange so that it
does not accidentally swamp your Postfix server.

By default, Exchange does not relay outbound messages to a gateway.
To initiate the configuration for a relay, perform the following steps.
Mail Gateways 185
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

1. Start the Exchange System Manager from the Programs menu.

2. Select Server from the tree menu on the left.

3. Select your mail host from the subtree.

4. Select Protocols from the Hosts menu.

5. Select SMTP from the Protocols menu.

6. Right-click the SMTP menu, and select Properties from the Default
SMTP Virtual Server menu entry.

7. Select the Delivery tab in the Default SMTP Virtual Server properties
window.

You’re now ready to finish the configuration. The steps are described in
the following sections.

Setting the Postfix Server as the Smarthost

The first thing to do is configure Exchange to send all outbound messages to
your Postfix gateway. Select Advanced Delivery from the Delivery tab, and
enter the fully qualified domain name (FQDN) of your Postfix smarthost
(such as postfix.example.com), as shown in Figure 13-5.

Figure 13-5: Configuring the location of the smarthosts in Exchange 2003

NOTE Exchange does not accept an IP address as a value for the Smart host field. Either add
the smarthost to the (internal) DNS queried by the Exchange Server, or set it statically
with the hosts file on your Exchange Server.
186 Chap te r 13

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

After setting the FQDN of the smarthost, you need to stop and start the
Default SMTP Virtual Server of your Exchange Server to make the changes
effective.

Limiting Outbound Connections

So far, you’ve put a lot of effort into protecting the internal mail server from
rude behavior from the smarthost. The next step serves to protect Postfix
from being overloaded by messages from your Exchange Server. All you need
to do is limit the number of simultaneous outgoing connections.

NOTE The default setting in Exchange is 1,000 simultaneous connections. If the outgoing
mail queue carries that many messages (which is likely to happen on a larger network
after a restart of Exchange’s SMTP services), it will displace its large load to the
smarthost within a matter of minutes, and this can bind too many resources on
the smarthost, especially if it does not offer services for a single internal mail server.

In this case, it’s better to have the Exchange Server process its outgoing mail queue
at a slower pace. If you don’t have access to the server, you can also use the Postfix rate-
limiting mechanisms described in Chapter 21 to force a limited number of connections
from the host.

Select Outbound Connections from the Delivery tab of the Default
SMTP Virtual Server window, and set the limit to 50 simultaneous connec-
tions, as shown in Figure 13-6. This has proved to be a good setting under
regular circumstances.

Figure 13-6: Limiting the number of outgoing connections in Exchange

NAT Setup

A Postfix mail server behind a NAT gateway runs into problems because the
NAT gateway modifies the IP packets (replacing the destination address)
before it transmits them to Postfix. This means that smtpd will listen only to
the gateway’s private IP address, while the NAT gateway accepts connections
to the “official” IP address.
Mail Gateways 187
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

This is only an issue because the email RFCs require the mail server to
accept mail sent to postmaster@[address] where address is an IP address. Some
blacklists send delisting information only to that address.

You can configure Postfix to accept mail to postmaster@[address] by using
the proxy_interfaces parameter. Even if Postfix only listens to an internal IP
address, it will accept mail addressed to user@[address]. If your NAT gateway
has the address 192.0.34.166, you would use this setting:

proxy_interfaces = 192.0.34.166
188 Chap te r 13

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

14
A M A I L S E R V E R F O R M U L T I P L E

D O M A I N S

Postfix can send, receive, and store
messages for more than one domain by

using either of two distinct methods. The
first method uses virtual alias domains, which

simply expands the number of domains for which the
server is the final destination. The second method
involves virtual mailbox domains and goes further, because virtual mailbox
domains do not need local accounts. This chapter shows you how to imple-
ment both approaches for offering SMTP services to more than one domain.

Virtual Alias Domains

Normally, Postfix recognizes itself as the final destination only for domain
names specified with the mydestination parameter.1 The domains listed in
mydestination are called the canonical domains, because they normally list all
the names of the local machine (and perhaps its parent domain name).

1 Postfix also recognizes itself as the final destination for addresses of the form user@[ipaddress]
that list one of Postfix’s IP addresses.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

In this chapter we describe a number of methods to make Postfix the
final destination for additional domains. These additional domains are called
virtual because they have nothing to do with the machine’s own name.

To configure basic services for a virtual alias domain, you must perform
the following steps:

1. Set the virtual alias domain name.

2. Create a map of recipient addresses.

3. Configure Postfix to receive mail for virtual alias domains.

4. Test the new configuration.

5. Create advanced mappings.

These steps are described in the following sections.

Setting the Virtual Alias Domain Name

Your first step is to tell Postfix that it is the final destination for a domain
in addition to the system default. Postfix uses the virtual_alias_domains
parameter to define a map of virtual domains. To use this parameter, create
a map file, such as /etc/postfix/virtual_alias_domains, containing the virtual
domains in a format like this:

virtual alias domains
postfix-book.com 20021125

In the preceding example, the number on the right hand side is the
domain’s creation date, but you can set it to whatever you like. Postfix does
not use the right-hand side when looking at a map for the virtual_alias_
domains parameter, but Postfix maps always require both a right-hand side
and a left-hand side.

After creating the file, convert it to an indexed map with this command:

postmap hash:/etc/postfix/virtual_alias_domains

NOTE If you list a domain as being virtual, don’t use it as the value for your mydestination
parameter, because unexpected things may happen. Postfix would not know if it should
deliver the mail locally or send it off to virtual rewriting. That’s why Postfix will com-
plain loudly about such a configuration in the log.

Creating a Recipient Address Map

The next step in configuring a virtual alias domain is to create an /etc/
postfix/virtual_alias_maps file to map the virtual alias domain recipient
addresses to local recipient addresses. The following example includes single
and multiple recipients.
190 Chap te r 14

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

postfix-book.com
postmaster@postfix-book.com ralf@example.com
abuse@postfix-book.com abuse@example.com, patrick@example.com
ralf@postfix-book.com ralf@example.com
patrick@postfix-book.com patrick@example.com

Make sure that you include targets for postmaster and abuse, because the
RFCs require that all domains have recipients for these addresses.

CAUTION Always use fully qualified domain names in your recipient addresses on the right side of
your virtual_alias_maps file. Otherwise you leave too much room for interpretation. If
you specify just the localpart (for example, ralf) the Postfix trivial-rewrite daemon
will add the domain part specified by myorigin. The local user ralf@$myorigin may not
be correct, depending on the values of myorigin and mydestination.

With this file in place, create an indexed map with this command:

postmap hash:/etc/postfix/virtual_alias_maps

Configuring Postfix to Receive Mail for Virtual Alias Domains

Now that you have both maps in place, you must configure Postfix to receive
mail for your virtual alias domain according to the rules in the recipient
map. The parameters you need to set in main.cf are virtual_alias_domains
and virtual_alias_maps. Using the file names from previous sections, the
parameters should read as follows:

virtual_alias_domains = hash:/etc/postfix/virtual_alias_domains
virtual_alias_maps = hash:/etc/postfix/virtual_alias_maps

Reload Postfix and test the virtual alias domains as described in the next
section.

Testing Virtual Alias Domain Settings

You can test your virtual alias domain settings by sending a message to
existing and unknown recipients in both domains.

Sending to a Valid Address in a Virtual Alias Domain

This is how you might send a message to a valid recipient (postmaster):

$ echo test | /usr/sbin/sendmail postmaster@postfix-book.com

Verify that the message went through by looking at the log file. You
should see log messages like the following.
A Mai l Server for Mul ti ple Domains 191
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Apr 19 11:20:50 mail postfix/pickup[17850]: B8C4629AB38: uid=0 from=<root>
Apr 19 11:20:50 mail postfix/cleanup[17863]: B8C4629AB38:

message-id=<20040419092050.B8C4629AB38@mail.example.com>
Apr 19 11:20:50 mail postfix/qmgr[17851]: B8C4629AB38:

from=<root@mail.example.com>, size=282, nrcpt=1 (queue active)
Apr 19 11:20:50 mail postfix/local[17866]: B8C4629AB38: to=<ralf@example.com>,

orig_to=<postmaster@postfix-book.com>, relay=local, delay=0, status=sent
(mailbox)

The test message first went to postmaster@postfix-book.com; due to the
entries in virtual_alias_maps, mail to postmaster@postfix-book.com goes to
ralf@example.com. It was then delivered locally to the user ralf, because
example.com is the “real” domain.

Sending to an Invalid Address in a Virtual Alias Domain

This is how you might send a message to an invalid recipient (nouser):

$ echo test | /usr/sbin/sendmail nouser@postfix-book.com
$ tail -f /var/log/mail.log
Apr 19 11:21:23 mail postfix/pickup[17850]: 9B61F29AB38: uid=0 from=<root>
Apr 19 11:21:23 mail postfix/cleanup[17863]: 9B61F29AB38:

message-id=<20040419092123.9B61F29AB38@mail.example.com>
Apr 19 11:21:23 mail postfix/qmgr[17851]: 9B61F29AB38:

from=<root@mail.example.com>, size=282, nrcpt=1 (queue active)
Apr 19 11:21:23 mail postfix/error[17887]: 9B61F29AB38:

to=<nouser@postfix-book.com>, relay=none, delay=0, status=bounced
(user unknown in virtual alias table)

This mail was addressed to nouser@postfix-book.com. Because there was no
entry in virtual_alias_maps, mail to nouser@postfix-book.com bounces with the
error message “user unknown in virtual alias table.”

Advanced Mappings

The more virtual alias domains you add, the likelier it is that you will have
to add the same map entries over and over again. That’s when catchalls—
regular expression entries and implicit mappings—come in handy. They are
described in the following subsections.

Catchall Entries
In some situations, you may want mail to an unknown user in a virtual
alias domain to go to a catchall address. The virtual(5) manual page lists
a number of ways that you can do this in a virtual_alias_maps map entry.
The one that has the least precedence is as follows:

@postfix-book.com catchall@example.com
192 Chap te r 14

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

For the preceding entry, if your Postfix server cannot find a match for
unknownuser@postfix-book.com in the virtual alias domain alias map for postfix-
book.com, Postfix maps this address to catchall@example.com.

Regular Expression Entries

You can use regular expressions in virtual_alias_maps to map mail to a set
of unknown users in a virtual alias domain to a catchall account. In addition,
you can substitute the match on the LHS into the target address on the
RHS—this is shown in the example below. This can be handy if you send
matched addresses to a program that you specify in an alias_maps entry.

To get an idea of how this works, consider the following virtual_alias_
maps entry:

/^(.*)@postfix-book\.com$/ catchall+$1@example.com

When a message arrives for an unknown user, the following happens:

1. Mail to unknownuser@postfix-book.com is mapped to catchall+unknown-
user@example.com.

2. Postfix delivers the message to the local, existing recipient catchall@exam-
ple.com, but during delivery to a program, it sets the $EXTENSION environ-
ment variable to unknownuser—as described in the local(8) manual page.
(The recipient_delimiter parameter sets the extension delimiter; by
default, it is +.)

3. If a program handles mail for the catchall address, it can use the
$EXTENSION environment variable to find the intended recipient and
construct an informational message to send back to the original
sender. You can find an example of such a program, named fuzzy,
at http://www.stahl.bau.tu-bs.de/~hildeb/postfix.

There are plenty of other ways that you can use regular expressions in
your virtual_alias_maps map. One particularly useful practice is to map
addresses that match a certain pattern to a single recipient. Let’s say that you
have several admin-name@example.com addresses that should go to a single
mailbox. You could try an entry like this:

/^admin-.*@postfix-book\.com$/ mailbox@example.com

This is much nicer than specifying each mapping by hand, like this:

admin-firewall@postfix-book.com mailbox@example.com
admin-mail@postfix-book.com mailbox@example.com
admin-web@postfix-book.com mailbox@example.com
...
A Mai l Server for Mul ti ple Domains 193
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Implicit Mappings for Multiple Domains

At times, it can be useful to create a generic mapping that applies to multiple
domains. For example, your goal could be to create a generic postmaster
recipient that always matches, no matter how many virtual alias domains you
host. You can do this by adding the following entry to your virtual alias map:

postmaster postmaster@example.com

With this in place, all messages addressed to a recipient with a localpart of
postmaster go to postmaster@example.com. Because of the preceding entry, Postfix
will accept mail for these addresses and deliver them to postmaster@example.com:

� postmaster@$myorigin

� postmaster@[$inet_interfaces]

� postmaster@$mydestination

Notice that not all of these are virtual alias domains and that these three
domains may not necessarily cover all of your virtual alias domains. Take a
look at the virtual(5) man page, which describes the search order in detail. If
you want all of your virtual alias domains to have the same postmaster address,
write a script to add them to the virtual_alias_maps.

CAUTION You can’t use configuration variables (such as $myorigin) in a map. Postfix won’t
expand the variables. Our notation only serves as an illustration.

Virtual Mailbox Domains

Virtual mailbox domains are domains for users that don’t have a local
account (that is, for users that aren’t in /etc/passwd). Originally introduced as
a patch that included a separate delivery agent daemon, the virtual mailbox
domain feature is now a standard Postfix component.

The virtual delivery agent in Postfix is based on the local delivery agent.
Unlike the local agent, the virtual delivery agent cannot access your system’s
local user information (for example in /etc/passwd) to look up recipient
names. Instead, the virtual delivery agent relies entirely on map types that
have nothing to do with your system.

There are two reasons for preventing the virtual delivery agent from
knowing anything about system accounts:

Scalability
On Linux, using local accounts defined in /etc/passwd restricts mail serv-
ers to roughly 65,536 recipients. Solaris and *BSD are not bound to this
limitation. They have much longer UIDs. The virtual delivery agent is
not bound to these limits.
194 Chap te r 14

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Security
There is a much lower probability of a system compromise if usernames
and passwords aren’t required in order for local accounts to simply send
and receive mail. Also, the virtual delivery agent does not execute user-
specified shell commands or append mail to user-specified local files.

Because the virtual delivery agent knows nothing about your system, it
cannot process files such as $HOME/.forward or make use of applications such
as procmail and vacation. The virtual delivery agent has been reduced to
delivering mail to mailboxes only.

Checking Postfix for Virtual Delivery Agent Support

To use virtual mailbox domains, the master daemon must be able to run the
virtual daemon. Check your master.cf file; the default is for the daemon to
be enabled, as in the following example:

==

service type private unpriv chroot wakeup maxproc command + args

(yes) (yes) (yes) (never) (100)

==

smtp inet n - n - - smtpd

...

local unix - n n - - local

virtual unix - n n - - virtual

...

NOTE Make sure that the virtual daemon is not running chrooted (see the fifth column in the
preceding example).

Basic Configuration

To configure a basic virtual mailbox domain, you must make the virtual
delivery agent store all messages using the same UID and GID in a flat
hierarchy. You will need to perform the following steps:

1. Set the name of the virtual mailbox domain.

2. Set the file ownership for the virtual delivery agent.

3. Set the base directory for the domain’s mailboxes.

4. Create the recipient map.

5. Create an alias map.
A Mai l Server for Mul ti ple Domains 195
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Setting the Virtual Mailbox Domain Name

First, you will need to tell Postfix that it is the final destination for one or more
virtual mailbox domains by setting the virtual_mailbox_domains parameter in
your main.cf file to a list of domains. For example, if you wanted to create a
virtual mailbox domain mailbox for example.com, you would use this setting:

virtual_mailbox_domains = example.com

Setting File Ownership

Although virtual mailbox domains do not require that each mailbox have a
unique user, you still need at least one user ID (UID) and group ID (GID) to
give the virtual delivery agent access to the mailboxes. To do so, you must
define ownership maps with the virtual_uid_maps and virtual_gid_maps
parameters.

Setting the User

To set the mailbox owner, you need to create a local user for the mailboxes,
if you have not already done so. To create a mailbox user named vuser with a
user ID of 1000, run this command:

useradd vuser -u 1000

CAUTION By default, the mailbox owner may not have a UID lower than 100. This is a security
measure set by the virtual_minimum_uid parameter, which prevents virtual from over-
writing sensitive files owned by system accounts. You can set a different boundary by
setting the virtual_minimum_uid in your main.cf file.

With the mailbox owner user in place, you must tell virtual to use this
UID when it writes messages to the filesystem. Set the UID with the virtual_
uid_maps parameter in your main.cf file, as in this example for a UID of 1000:

virtual_uid_maps = static:1000

NOTE Use the static option for the UID to make the virtual daemon use this UID exclusively.
You can also apply UIDs dynamically, as explained shortly in the “Advanced Configu-
ration” section.

Setting the Group

You need a local group in addition to the user that you just set. For a basic
setup, create a GID with the same number as the UID in the previous section.
Your useradd command may have already done this for you (check your /etc/
group file), but if not, use a command such as this one:

groupadd vuser -g 1000
196 Chap te r 14

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Now set the virtual_gid_maps parameter in your main.cf just as you did for
the virtual mailbox user:

virtual_gid_maps = static:1000

Setting the Virtual Mailbox Domain Base Directory

The virtual delivery agent needs to know where to find the mailboxes for its
recipients. Normally, it’s up to the operating system to provide environment
variables and configuration files that tell applications about default system
settings. Because the virtual delivery agent does not recognize environment
variables you have to state explicitly where to put the messages it should
deliver to the users.

Set the virtual_mailbox_base parameter in your main.cf file to specify
where to store incoming messages. Here’s an example:

virtual_mailbox_base = /var/spool/virtual_mailboxes

NOTE The full path of an individual virtual mailbox consists of the virtual_mailbox_base
value and a value in the lookup map (described in the next section). In other words, it
is $virtual_mailbox_base/$mailboxname.

After setting the virtual_mailbox_base parameter, it’s a good idea to
actually create the directory and make it accessible to the user that you
defined in the previous sections:

mkdir /var/spool/virtual_mailboxes
chown vuser:vuser /var/spool/virtual_mailboxes
chmod 700 /var/spool/virtual_mailboxes

Creating the Recipient Map

You must define virtual mailbox domain recipients in a map. For example,
you could create a file named /etc/postfix/virtual_mailbox_recipients with the
fully qualified recipients on the left side and the mailbox names on the right
side. Here’s an example of how it might look:

wilma.pebble@example.com wilmapebble
betty.mcbricker@example.com bettymcbricker
fred.flintstone@example.com fredflintstone
barney.rubble@example.com barneyrubble
bamm.bamm@example.com bammbamm/

The virtual daemon prepends the value of the virtual_mailbox_base
parameter to the mailbox name to form the full mailbox file pathname. The
default format for mailboxes is mbox format, but you can specify Maildir
format by appending a slash (/) to the mailbox name, as in the preceding
entry for bamm.bamm@example.com.
A Mai l Server for Mul ti ple Domains 197
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Once you’re happy with this file, you have to build an indexed version by
entering this command:

postmap hash:/etc/postfix/virtual_mailbox_recipients

Then you can tell Postfix where to find the map by setting the
virtual_mailbox_maps parameter in main.cf, as follows:

virtual_mailbox_maps = hash:/etc/postfix/virtual_mailbox_recipients

Recipient Map Limitations

For security reasons, there are a few limitations on recipient maps:

� Virtual mailbox domain recipients cannot use an address extension,
such as user+extension@domain.tld.

� The virtual daemon cannot invoke external programs as local can.

� Regular expression maps are allowed, but you can’t use expression
substitution (this means you can’t put $1 in the RHS).

� You can’t perform table lookups with the proxymap daemon.

Creating the Alias Map

You can have aliases for a virtual mailbox domain, but you have to put them
in a separate map, such as /etc/postfix/virtual_mailbox_aliases. The format
calls for the fully qualified alias name on the left side and the fully qualified
target on the right side, as in this example:

wilma@example.com wilma.pebble@example.com
pebble@example.com wilma.pebble@example.com
...
postmaster@example.com bamm.bamm@example.com
abuse@example.com bamm.bamm@example.com

As with other maps, you must create an indexed version with this
command:

postmap hash:/etc/postfix/virtual_mailbox_aliases

Finally, tell Postfix to use the map for aliases by setting the virtual_alias_
maps parameter in your main.cf file, like this:

virtual_alias_maps = hash:/etc/postfix/virtual_mailbox_aliases

After reloading Postfix, your mail server will accept messages for your
virtual mailbox domain recipients.
198 Chap te r 14

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Advanced Configuration

If you need to provide mail services for many virtual mailbox domains, the
chances are that storing all messages in a single directory hierarchy will cause
trouble, because there may be two users with the same name. Furthermore,
backing up data separately becomes very complicated. To solve these problems,
you can configure virtual mailbox domains to store messages for different
domains in different directories. You also have the option of using different
user IDs (UIDs) and group IDs (GIDs).

To set up this kind of advanced configuration, you must do the following.

1. Set the names of the virtual mailbox domains.

2. Set file ownership for the virtual delivery agent.

3. Set the base directory for the mailboxes.

4. Create the recipient map.

5. Create an alias map.

6. Set the storage and access permissions.

Setting the Virtual Domain Names

As described in the earlier “Setting the Virtual Mailbox Domain Name”
section, you set the virtual mailbox domain names with the virtual_mailbox_
domains parameter. Here’s an example with two domains:

virtual_mailbox_domains = example.com, postfix-book.com

Setting File Ownership

For an advanced configuration, you need to create a UID and GID set for
each virtual recipient domain. Let’s say you want to use the user and group
name example for example.com and pfxbook for postfix-book.com. Refer back to
the “Setting File Ownership” section for details; to create the users, you
might use these commands:

useradd example -u 1001
useradd pfxbook -u 1002
groupadd example -g 1001
groupadd pfxbook -g 1002

Take note of these UIDS and GIDS; you’ll use them again soon when you
create lookup maps in the “Setting Storage and Access Permissions” section.

Setting the Base Directory for Virtual Mailbox Domains

You need to set the virtual_mailbox_base parameter to tell virtual where
it should store messages, just as in the earlier “Setting the Virtual Mailbox
Domain Base Directory” section.
A Mai l Server for Mul ti ple Domains 199
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Let’s use the same setting as in that section:

virtual_mailbox_base = /var/spool/virtual_mailboxes

However, the difference between what we’re doing here and the basic
configuration we set up earlier is that you must change the directory permis-
sions for virtual_mailbox_base. Otherwise the virtual daemon—using differ-
ent UIDs and GIDs for each user and domain when it stores a message—will
not be allowed to write to the subdirectories:

mkdir /var/spool/virtual_mailboxes
chown vuser:vuser /var/spool/virtual_mailboxes
chmod 775 /var/spool/virtual_mailboxes

Now you will have to create the subdirectories (for example, example.com
and postfix-book.com) because virtual will create only the mbox or Maildir of
the recipient, not the parent directory of its domain.

mkdir example.com
chown example example.com/
chgrp example example.com/
chmod 700 example.com/

CAUTION Postfix 2.0 and earlier will not create Maildir-style mailboxes in world-writable parent
directories; you will need to create Maildirs in advance.

If mail delivery fails due to some permissions problem, you will see
messages like the following in the mail log:

May 26 12:04:33 mail postfix/virtual[14196]: warning: maildir access problem
for UID/GID=1002/1002: create /var/spool/mailboxes/postfix-book.com/
patrick/tmp/1085565873.P14196.mail.example.com: Permission denied

May 26 12:04:33 mail postfix/virtual[14196]: warning: perhaps you need to
create the maildirs in advance

Creating Recipient Maps

Now you need to create a map for valid recipients in your virtual mailbox
domains. The process is the same as in the earlier “Creating the Recipient
Map” section, except that you need to prepend directories to the mailbox
names. This way, messages for separate domains go in different directories,
so that you don’t need to worry about name conflicts.

For example, you can create an /etc/postfix/virtual_mailbox_recipients
file like this:

wilma.pebble@example.com example.com/wilmapebble/
betty.mcbricker@example.com example.com/bettymcbricker/
200 Chap te r 14

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

fred.flintstone@example.com example.com/fredflintstone/
barney.rubble@example.com example.com/barneyrubble/
bamm.bamm@example.com example.com/bammbamm/
ralf@postfix-book.com postfix-book.com/ralf/
patrick@postfix-book.com postfix-book.com/patrick/

Remember that after creating the map, you need to build an indexed
version with this command:

postmap hash:/etc/postfix/virtual_mailbox_recipients

As before, set the virtual_mailbox_maps parameter to the map in your
main.cf file.

virtual_mailbox_maps = hash:/etc/postfix/virtual_mailbox_recipients

This takes care of all recipients except for the alias maps, which you create
in the same way as described in the earlier “Creating the Alias Map” section.

Setting Storage and Access Permissions

You cannot define separate storage and access permissions for different
virtual mailbox domains, as was described in the earlier “Setting File
Ownership” section. Instead, you must create maps that associate mailboxes
to user IDs and group IDs.

Now you will need the UIDs and GIDs you created in the “Setting File
Ownership” section. You must assign a UID to each mailbox in a map specified
with the virtual_uid_maps parameter. For example, you could set the map name
to hash:/etc/postfix/virtual_uid_map with this line in your main.cf file:

virtual_uid_maps = hash:/etc/postfix/virtual_uid_map

Now, put the recipients in the map by entering the full recipient address
on the left side and the UID on the right side, as in this example:

wilma.pebble@example.com 1001
betty.mcbricker@example.com 1001
fred.flintstone@example.com 1001
barney.rubble@example.com 1001
bamm.bamm@example.com 1001
ralf@postfix-book.com 1002
patrick@postfix-book.com 1002

NOTE Don’t forget to create the indexed version of the map with the postmap command. An
even shorter version would be:

@example.com 1001
@postfix-book.com 1002
A Mai l Server for Mul ti ple Domains 201
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

The GID mapping works just like the UID mapping. Here’s a sample
map that you can use for this example in a /etc/postfix/virtual_gid_map file:

wilma.pebble@example.com 1001
betty.mcbricker@example.com 1001
fred.flintstone@example.com 1001
barney.rubble@example.com 1001
bamm.bamm@example.com 1001
ralf@postfix-book.com 1002
patrick@postfix-book.com 1002

Specify this file in your virtual_gid_maps parameter as follows:

virtual_gid_maps = hash:/etc/postfix/virtual_gid_map

TIP Because the entries for virtual_gid_maps in this example are exactly the same as the
ones for virtual_uid_maps, you can skip the work of making the GID map file and just
refer to the UID map in your main.cf as follows:

virtual_gid_maps = $virtual_uid_maps

After setting up the maps and configuration file, reload Postfix to have
the virtual daemon deliver messages to subdirectories named after recipient
domains.

Generating Maps with Scripts

As you may have noticed, virtual needs at least three maps to look up
recipients, mailboxes, and owner and group permissions. You can make your
life a lot easier by having a script build all of the maps from a single source
file, such as /etc/postfix/virtual_build_map_source, that contains all of the
required information. For example, let’s say that the source file contains the
following lines:

wilma.pebble@example.com example.com/wilmapebble/ 1001 1001
betty.mcbricker@example.com example.com/bettymcbricker/ 1001 1001
fred.flintstone@example.com example.com/fredflintstone/ 1001 1001
barney.rubble@example.com example.com/barneyrubble/ 1001 1001
bamm.bamm@example.com example.com/bammbamm/ 1001 1001
ralf@postfix-book.com postfix-book.com/ralf/ 1002 1002
patrick@postfix-book.com postfix-book.com/patrick/ 1002 1002

The following script (let’s call it /etc/postfix/build_virtual_maps) reads
the data from the map source and creates the three target maps:

!/bin/bash
#
Build all virtual mailbox maps from one source
202 Chap te r 14

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

section: paths

SOURCE=/etc/postfix/virtual_build_map_source
VMAP=/etc/postfix/virtual_mailbox_recipients

VUID=/etc/postfix/virtual_uid_map

VGID=/etc/postfix/virtual_gid_map

AWK=/usr/bin/awk

POSTMAP=/usr/sbin/postmap

section: build

build $virtual_mailbox_maps

$AWK '{printf("%s %s\n",$1,$2)}' $SOURCE > $VMAP

$POSTMAP hash:$VMAP

build $virtual_uid_maps

$AWK '{printf("%s %s\n",$1,$3)}' $SOURCE > $VUID

$POSTMAP hash:$VUID

build $virtual_gid_maps

$AWK '{printf("%s %s\n",$1,$4)}' $SOURCE > $VGID

$POSTMAP hash:$VGID

NOTE You can download this script from the Book of Postfix website at http://www.
postfix-book.com. (You may need to change the paths at the beginning, of course.)

After running the script, all of the maps, except the source file and the
virtual alias map, should have the same date and time:

-rw-r--r-- 1 root root 532 May 26 12:12 virtual_build_map_source

-rw-r--r-- 1 root root 251 May 26 13:21 virtual_gid_map

-rw-r--r-- 1 root root 12288 May 26 13:21 virtual_gid_map.db

-rw-r--r-- 1 root root 394 May 26 13:21 virtual_mailbox_recipients
-rw-r--r-- 1 root root 12288 May 26 13:21 virtual_mailbox_recipients.db

-rw-r--r-- 1 root root 251 May 26 13:21 virtual_uid_map

-rw-r--r-- 1 root root 12288 May 26 13:21 virtual_uid_map.db

Database-Driven Virtual Mailbox Domains

If you’re interested in an enterprise or an ISP MTA, you can have Postfix access
a database to get virtual mailbox domain information. This arrangement is
especially flexible, because you can delegate the user administration to other
people without giving them root access on the server. If you provide a powerful
web interface, your customers can manage their own data (add aliases, change
their SMTP AUTH, POP3, and IMAP passwords, and so on). Furthermore,
changes to data in the database show up immediately, so you don’t need to
reload Postfix every time you change data.

On the other hand, indexed maps are faster to access, and map lookups
don’t consume as many system resources as SQL queries, because you don’t
need to run a database server. Furthermore, a database-driven solution may
be more complex.
A Mai l Server for Mul ti ple Domains 203
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

If you run into performance problems with database lookups, you can set
up a dedicated database server that can be available to many Postfix servers
(and other services) on your network. Combined with load-balancing
mechanisms such as round robin and special hardware, you can build high-
performance mail services with a database.

This section shows you how to implement database-driven virtual mail-
box domains using MySQL as the database. Here’s what you need to do:

1. Check Postfix for MySQL map support.

2. Build Postfix to support MySQL maps.

3. Configure the database.

4. Test database-driven virtual mailbox domains.

NOTE Database-driven maps aren’t limited to being used in virtual mailbox domains. You
can use them in many other scenarios. Postfix also supports PostgreSQL and LDAP
queries (the PostgreSQL configuration is nearly identical to that of MySQL; LDAP is
discussed in Chapter 19).

Checking Postfix for MySQL Map Support

Before you configure Postfix to query MySQL, you should probably verify
that your installation actually supports this type of map. Use the postconf -m
command to print the supported map types. If you have MySQL support, you
should see mysql in the output, as in this example:

postconf -m
btree
cidr
environ
hash
ldap
mysql
nis
pcre
proxy
regexp
sdbm
static
unix

If you don’t have MySQL support in your installation, you can either
install a Postfix package from your operating system distribution that
supports MySQL, or you can build it yourself manually and then install
your new version (as described in the next section).
204 Chap te r 14

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Building Postfix to Support MySQL Maps

To build Postfix with MySQL table support, first locate the header files and
libraries that the Postfix build needs. To find the header file directory, use
this command:

find /usr -name 'mysql.h'
/usr/include/mysql/mysql.h

The preceding output shows that the header files on this particular
system are in /usr/include/mysql. To find the MySQL client libraries, run this
command:

find /usr -name 'libmysqlclient.*'
/usr/lib/mysql/libmysqlclient.so.10
/usr/lib/mysql/libmysqlclient.so.10.0.0
/usr/lib/mysql/libmysqlclient.so
/usr/lib/mysql/libmysqlclient.a

The output here shows that the libraries are in /usr/lib/mysql.
Now that you know the correct paths, you can set the variables for the

Postfix Makefile build configuration process. For the paths in this example,
you would use the following command to configure and build Postfix:

$ make tidy
$ make makefiles CCARGS='-DHAS_MYSQL -I/usr/include/mysql'

AUXLIBS='-L/usr/lib/mysql -lmysqlclient -lz -lm'
$ make

After the build completes and you install Postfix, verify that you have
MySQL support as described in the previous section.

Configuring the Database

When you’re ready to set up the MySQL database to hold your virtual
domain information, connect to MySQL as root and create a database.
The following command creates a database named mail:

mysql> CREATE DATABASE `mail`;

TIP You can download the complete set of SQL statements for this section from The Book
of Postfix website at http://www.postfix-book.com. If you need to learn some-
thing about SQL statements first, A Gentle Introduction to SQL can be found at
http://sqlzoo.net.
A Mai l Server for Mul ti ple Domains 205
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Creating a Recipient Domain Table

Create a table with a name such as virtual_mailbox_domains to hold the
domains for which Postfix will consider itself the final destination. You can
use this command:

mysql> CREATE TABLE `virtual_mailbox_domains` (
mysql> `Id` int(10) unsigned NOT NULL auto_increment,
mysql> `domain` varchar(255) default NULL,
mysql> PRIMARY KEY (`Id`),
mysql> FULLTEXT KEY `domains` (`domain`)
mysql>) TYPE=MyISAM COMMENT='Postfix virtual aliases';

If this command is successful, you can add your virtual domains to the
table. For example, to add example.com to the table, type this SQL command
to insert a row:

mysql> INSERT INTO virtual_mailbox_domains VALUES (1,'example.com');

Adding Users

Now it’s time to create a table where each row contains a recipient, mailbox
name, UID, and GID. You can name it virtual_users; the structure is very
similar to the columns of the /etc/postfix/virtual_build_map_source file that we
used in the earlier “Generating Maps with Scripts” section.

NOTE The following table builds upon the MySQL SMTP AUTH table described in
Chapter 18. It contains passwords and other information, so you can use it as
an authentication backend source for both SMTP authentication and for virtual
mailbox domains.

Run the following command to create the virtual_users table:

mysql> CREATE TABLE `virtual_users` (
mysql> `id` int(11) unsigned NOT NULL auto_increment,
mysql> `username` varchar(255) NOT NULL default '0',
mysql> `userrealm` varchar(255) NOT NULL default 'mail.example.com',
mysql> `userpassword` varchar(255) NOT NULL default '1stP@ss',
mysql> `auth` tinyint(1) default '1',
mysql> `active` tinyint(1) default '1',
mysql> `email` varchar(255) NOT NULL default '',
mysql> `virtual_uid` smallint(5) default '1000',
mysql> `virtual_gid` smallint(5) default '1000',
mysql> `virtual_mailbox` varchar(255) default NULL,
mysql> PRIMARY KEY (`id`),
mysql> UNIQUE KEY `id` (`id`),
mysql> FULLTEXT KEY `recipient` (`email`)
mysql>) TYPE=MyISAM COMMENT='SMTP AUTH and virtual users';
206 Chap te r 14

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

The active field is optional; you can use it to enable or disable a recipient’s
mailbox (which might be useful if a customer hasn’t paid, and you need to
disable the service, but you don’t want to lose the account configuration).

With the table in place, you need to add data for testing. Here is a
command that adds a sample row:

mysql> INSERT INTO virtual_users VALUES (5,'bamm.bamm','mail.example.com','1stP@ss',1,1,
mysql> 'bamm.bamm@example.com',1001,1001,'example.com/bammbamm/');

Creating a Table for Virtual Aliases

The last table that you must create is for virtual aliases. As with other alias
maps, the table rows contain the alias name and the real recipient address.
Create a table (with a name such as virtual_aliases) as follows:

mysql> CREATE TABLE `virtual_aliases` (
mysql> `Id` int(10) unsigned NOT NULL auto_increment,
mysql> `alias` varchar(255) default NULL,
mysql> `virtual_user_email` text,
mysql> PRIMARY KEY (`Id`),
mysql> FULLTEXT KEY `aliases` (`alias`,`virtual_user_email`)
mysql>) TYPE=MyISAM COMMENT='Postfix virtual recipients';

As with the other tables, you should fill it with some data. Start with the
aliases that the RFCs require:

mysql> INSERT INTO virtual_aliases VALUES (1,'postmaster@example.com','bamm.bamm@example.com');
mysql> INSERT INTO virtual_aliases VALUES (2,'abuse@example.com','bamm.bamm@example.com');

Creating a MySQL User for Postfix

Your last task in configuring the database is to create a MySQL user to query
the tables. You should limit the user’s permissions so that Postfix cannot
modify the data. The following command adds a new user named postfix
that can connect from localhost:

mysql> CONNECT mysql;
mysql> INSERT INTO user VALUES

('localhost','postfix','','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y');
mysql> UPDATE mysql.user SET password=PASSWORD("Yanggt!") WHERE user='postfix' AND

host='localhost';
mysql> FLUSH PRIVILEGES;

You need to restrict the account to read-only (SELECT) access. Postfix
shouldn’t be able to alter or create tables. Use the GRANT command to do this:

mysql> GRANT USAGE ON *.* TO 'postfix'@'localhost' IDENTIFIED BY PASSWORD '2fc879714f7d3e72';
mysql> GRANT SELECT ON mail.virtual_aliases TO 'postfix'@'localhost';
mysql> GRANT SELECT ON mail.virtual_users TO 'postfix'@'localhost';
mysql> GRANT SELECT ON mail.virtual_mailbox_domains TO 'postfix'@'localhost';
A Mai l Server for Mul ti ple Domains 207
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Configuring Postfix to Use the Database

When configuring a SQL query system for Postfix, you must set the following
parameters in a special file. Postfix substitutes these parameters into a series
of SQL statements that culminates with a SELECT statement:

user

The username that connects to the database.

password

The password of the database user. It must be in plaintext form.

hosts

A list of one or more FQDN hostnames or IP addresses of SQL servers. If
Postfix fails when trying to contact the first host in the list, it will try the
other hosts in random order. If no server is available, Postfix defers the
job until a server is online.

When you use localhost as a server, Postfix automatically uses a
Unix domain socket instead of a TCP/UDP connection.

dbname

The database to connect to.

table

The name of the table that contains the virtual domain data.

select_field

The field that contains a result from the query (for example, a user’s
email address).

where_field

The field to match when querying the database (for example, an email
alias).

additional_conditions

Additional conditions on the query; for example, you may want to query
only user accounts that are currently active. This parameter is optional.

Table 14-1 illustrates how the fields of indexed maps correspond to
database parameters. You can use it when creating a SELECT statement if
you’re not sure of the table fields you need to specify.

Table 14-1: How Fields of Indexed Maps Correspond to Database Parameters

Map Type LHS RHS Conditions

indexed map left column right column -

SQL database table where_field select_field additional_conditions
208 Chap te r 14

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Protecting the Postfix SQL Configuration

Postfix currently supports two ways of configuring MySQL (and PostgreSQL)
SELECT statements.

The first requires that you write Postfix’s SQL server username and
password in your main.cf file. Because this is not very safe, it will not be
covered in this book (main.cf is normally world-readable, so every user on
your system would be able to get these credentials). If you insist on using this
method, see MYSQL_README in the Postfix readme directory for more information,
but be aware that future versions of Postfix will not support this style.

The second method is preferable because it handles security far better.
The SELECT statements (including the username and password) go in separate
files outside of main.cf. Furthermore, you will put them into a subdirectory
accessible only to Postfix and root (you’ll specify the location of the files in
main.cf).

To set up the file structure, first create a directory, such as /etc/postfix/
sql, and set appropriate permissions:

mkdir /etc/postfix/sql
chown postfix /etc/postfix/sql
chgrp root /etc/postfix/sql
chmod 500 /etc/postfix/sql

Now you’re ready to add files here, where they are safe from (most)
prying eyes.

Constructing the Recipient Domains Query

The first file you need to add will define the parameters for a query that
retrieves the domains for which Postfix considers itself a final destination.
Add the following configuration to a file such as /etc/postfix/sql/virtual_
mailbox_domains.cf:

user = postfix
password = Yanggt!
dbname = mail
table = virtual_mailbox_domains
select_field = domain
where_field = domain
hosts = localhost

As mentioned earlier, these parameters correspond to values in a SQL
SELECT statement. The statement for the preceding file would be as follows, with
domainpart being the domain part of the incoming recipient email address:

mysql> SELECT domain FROM virtual_mailbox_domains WHERE domain = 'domainpart'
A Mai l Server for Mul ti ple Domains 209
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

It may seem a little strange to read the domain from the table when you
already know it, but the point of this query is to see whether there are
actually any rows in the database that match the domain part. If there are
none, the query fails, and Postfix knows that it is not the final destination for
the domain.

NOTE You do not need to enter any of these SELECT statements (Postfix constructs them auto-
matically when accessing the database), but it helps to know them when tracking down
database problems at the MySQL prompt.

Now you need to tell Postfix (in main.cf) to use MySQL and where to find
the parameters for virtual_mailbox_domains. The specification looks much like
a regular indexed map, but with the hash keyword replaced with mysql:

virtual_mailbox_domains = mysql:/etc/postfix/sql/virtual_mailbox_domains.cf

Creating the User ID and Group ID Queries

Next you need to add the parameters for the UID and GID queries
(remember that these define the virtual mailbox file owner). Add the
following lines to a file named /etc/postfix/sql/virtual_uid_maps.cf:

user = postfix
password = Yanggt!
dbname = mail
table = virtual_users
select_field = virtual_uid
where_field = email
hosts = localhost

The SELECT statement that corresponds to this file looks like the following
(where recipient is the recipient address of an incoming message):

mysql> SELECT virtual_uid FROM virtual_users WHERE email = 'recipient'

Use the virtual_uid_maps parameter in main.cf to tell Postfix where it can
find the SQL query to lookup the UID:

virtual_uid_maps = mysql:/etc/postfix/sql/virtual_uid_maps.cf

Creating a SQL lookup for the GID is similar to the UID procedure. Use
a filename such as /etc/postfix/sql/virtual_gid_maps.cf to create the SQL
SELECT statement:

user = postfix
password = Yanggt!
dbname = mail
210 Chap te r 14

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

table = virtual_users
select_field = virtual_gid
where_field = email
hosts = localhost

The corresponding SQL SELECT statement for this file is as follows:

mysql> SELECT virtual_gid FROM virtual_users WHERE email = 'recipient'

Then tell Postfix where to lookup the GID. Point the virtual_gid_maps
parameter in main.cf to the SQL query file:

virtual_gid_maps = mysql:/etc/postfix/sql/virtual_gid_maps.cf

Creating the Recipient Query

Perhaps the most important query is the one that retrieves the recipient
mailbox name when given a recipient address. Add the following query
parameters to the /etc/postfix/sql/virtual_mailbox_recipients.cf file:

user = postfix
password = Yanggt!
dbname = mail
table = virtual_users
select_field = virtual_mailbox
where_field = email
additional_conditions = and active = '1'
hosts = localhost

Notice the additional_conditions parameter here. The parameters in this
file correspond to the following SELECT statement:

mysql> SELECT virtual_mailbox FROM virtual_users WHERE email = 'recipient' AND active = '1'

The virtual_mailbox_maps parameter tells Postfix where to look for virtual
mailbox recipients and their mailboxes. In main.cf, add this line:

virtual_mailbox_maps = mysql:/etc/postfix/sql/virtual_mailbox_recipients.cf

Creating the Aliases Query

Finally, it’s time to specify the parameters for the virtual aliases query. Put
the following lines in a file such as /etc/postfix/sql/virtual_alias_maps.cf:

user = postfix
password = Yanggt!
dbname = mail
A Mai l Server for Mul ti ple Domains 211
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

table = virtual_aliases
select_field = virtual_user_email
where_field = alias
hosts = localhost

This is the SELECT statement that corresponds to the preceding file:

mysql> SELECT virtual_user_email FROM virtual_aliases WHERE alias = 'recipient'

To wrap it up, tell Postfix where to find the aliases query configuration
file with the virtual_alias_maps parameter in main.cf:

virtual_alias_maps = mysql:/etc/postfix/sql/virtual_alias_maps.cf

Reload Postfix to put all the changes in main.cf into effect, and start
testing.

Testing Database-Driven Virtual Mailbox Domains

Tracking down a problem can become quite tedious if you can’t tell whether
the problem lies with Postfix or MySQL. That’s why you should test MySQL
and Postfix separately. If the MySQL tests succeed, then you know the
problem lies with the Postfix configuration.

Testing MySQL

The very first thing you should test is whether the username and password
that you supplied in the query configuration files are allowed to access
MySQL and make queries.

Then try to connect to the database that holds your virtual mailbox
domain data. Both tests will be shown in the following example:

mysql -u postfix -p -h localhost -A

Upon successful login, you will see this output:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 144 to server version: 3.23.58
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>

Use the CONNECT statement to access the mail database, and you should get
a confirmation that looks like this:

mysql> CONNECT mail;
Connection id: 145
Current database: mail
mysql>
212 Chap te r 14

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

If you can’t connect to the server, check the username and password that
you specified to MySQL in the earlier “Creating a MySQL User for Postfix”
section. On the other hand, if you’re having trouble connecting to the mail
database, check the GRANT statements (in the same section).

Querying Recipient Domains

Now it’s time to run a SELECT statement that will verify that your Postfix
MySQL user can look up virtual mailbox domains in the virtual_mailbox_
domains table. Enter a command such as this:

mysql> SELECT domain FROM virtual_mailbox_domains WHERE domain = 'example.com';

If this is successful, you should see one row of output that contains the
query input (recall from the “Constructing the Recipient Domains Query”
section that this is the correct behavior):

+-------------+
| domain |
+-------------+
| example.com |
+-------------+
1 row in set (0.00 sec)

If you don’t get a match, check whether the domain exists in your table.
One easy way to check this is to retrieve all rows from the table by omitting
the WHERE clause:

mysql> SELECT domain FROM virtual_mailbox_domains;

Querying Virtual Mailbox UIDs and GIDs

Next you verify that your MySQL user is able to retrieve a known recipient
address. Try to the retrieve the virtual_uid field from a known recipient
address in your virtual_users table, as in this successful example, which shows
the mapping from bamm.bamm@example.com to the virtual mailbox UID 1001:

mysql> SELECT virtual_uid FROM virtual_users WHERE email =
'bamm.bamm@example.com';

+-------------+
| virtual_uid |
+-------------+
| 1001 |
+-------------+
1 row in set (0.00 sec)

Do the same for the GID:

mysql> SELECT virtual_gid FROM virtual_users WHERE email =
'bamm.bamm@example.com';
A Mai l Server for Mul ti ple Domains 213
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

+-------------+
| virtual_gid |
+-------------+
| 1001 |
+-------------+
1 row in set (0.00 sec)

Querying Recipient Mailboxes

Test whether the Postfix MySQL user can look up a mailbox for a given
recipient. Recall that this is the virtual_mailbox in the virtual_users table.
Here’s an example that maps bamm.bamm@example.com to the Maildir-style
mailbox example.com/bammbamm/:

mysql> SELECT virtual_mailbox FROM virtual_users WHERE email =
'bamm.bamm@example.com';

+-----------------------+
| virtual_mailbox |
+-----------------------+
| example.com/bammbamm/ |
+-----------------------+
1 row in set (0.00 sec)

Querying Aliases

Your final database check is for aliases. For a known alias, retrieve the
recipient address (the virtual_user_email field in the virtual_aliases table).
Here’s an example:

mysql> SELECT virtual_user_email FROM virtual_aliases WHERE alias =
'postmaster@example.com';

+-----------------------+
| virtual_user_email |
+-----------------------+
| bamm.bamm@example.com |
+-----------------------+
1 row in set (0.00 sec)

Testing Postfix

You can test Postfix MySQL lookups without sending any test email messages.
The postmap command can perform any kind of query, including those in
a MySQL table. Here’s the general format of a postmap command that does a
MySQL query:

postmap -q "value" mysql:path-to-parameter-file
214 Chap te r 14

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

For example, here’s how to tell Postfix to query MySQL for a known
virtual mailbox domain:

postmap -q "example.com" mysql:/etc/postfix/sql/virtual_mailbox_domains.cf

If this is successful, the data matching the query should be displayed on
the command line:

example.com

If no result is being returned, check whether that virtual domain name
exists in your table (see the earlier “Querying Recipient Domains” section).
If that test was successful, verify the username and password information in
your virtual_mailbox_domains.cf file.

Querying UIDs and GIDs

To proceed with testing, tell Postfix to query MySQL for the UID and GID of
a known virtual mailbox recipient:

postmap -q "bamm.bamm@example.com" mysql:/etc/postfix/sql/virtual_uid_maps.cf
1001
postmap -q "bamm.bamm@example.com" mysql:/etc/postfix/sql/virtual_gid_maps.cf
1001

Querying Recipients

Next, verify Postfix can query for known recipients. The postmap command
that corresponds to the SELECT statement in the earlier “Querying Recipient
Mailboxes” section is as follows:

postmap -q "bamm.bamm@example.com" mysql:/etc/postfix/sql/virtual_mailbox_recipients.cf
example.com/bammbamm/

Querying Aliases

Your final test is to tell Postfix to query MySQL for the virtual user email
address of a known alias. A successful query looks like this:

postmap -q "postmaster@example.com" mysql:/etc/postfix/sql/virtual_alias_maps.cf
bamm.bamm@example.com
A Mai l Server for Mul ti ple Domains 215
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

15
U N D E R S T A N D I N G S M T P

A U T H E N T I C A T I O N

SMTP authentication is a way of
identifying mail clients independent of

their IP addresses, which makes it possible for
a server to relay messages for mail clients with IP

addresses that the server does not trust. This chapter is
a primer on SMTP authentication (SMTP AUTH). Not
only will you learn about SMTP authentication and its
advantages over other approaches, but you will also see
how to install and configure Cyrus SASL, a package
required for SMTP authentication support in Postfix.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

The Architecture and Configuration of Cyrus SASL

In the early days, SMTP servers would forward mail from any client to any
destination. When spam became a problem, MTAs had to be extended with
the ability to only accept mail forwarding requests from specific clients. MTA
implementors decided to identify these specific clients by their IP address,
and then administrators had to configure their systems to reject untrusted
clients (see Figure 15-1).

Today mail-relay abuse attempts are still a daily nuisance, and adminis-
trators spent lots of time fortifying their servers using further restrictions
(see Chapter 8). Still, basing relay access on an IP address is difficult in the
case of the extremely large and distributed networks in use today, and it is
completely unworkable for mobile users.

Figure 15-1: Modern mail servers reject relaying from untrusted IP addresses

Mobile users (which are defined in RFC 2977) need to access their own
domain’s resources regardless of their current location on the Internet.
Unfortunately, mobile users almost never use the same IP address, and
furthermore, the mobile user and postmaster will never know their IP
addresses in advance, rendering rules based on static IP addresses useless.

There are several ways of allowing relay access to mobile users:

� SMTP-after-POP and SMTP-after-IMAP

� SMTP authentication

� Certificate-based relaying

� Virtual private networks (VPNs)

The SMTP-after-POP or SMTP-after-IMAP method (see Figure 15-2)
delegates the problem of identification to a POP or IMAP server.

These are the basic steps in the SMTP-after-POP or SMTP-after-IMAP
method:

1. The mail client authenticates to a POP or IMAP server.

2. After successful authentication, the POP or IMAP server writes the mail
client’s IP address into a database shared with the mail server. The IP
address stays in the database for a limited amount of time.

Mail client Trusted
IP address

LAN Internet

Mail clientMail server Untrusted
IP address

Relay Mail server
218 Chap te r 15

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

3. The mail client attempts to relay a message through the SMTP server.

4. The SMTP server looks up the mail client’s IP address in the database.
If the IP address is in the database, the server allows relaying.

Figure 15-2: SMTP-after-POP as authentication for relaying

SMTP authentication solves the problem at its root (see Figure 15-3).
These are the basic steps in the SMTP AUTH method:

1. The SMTP server offers SMTP AUTH to a mail client.

2. The client passes its credentials to the server.

3. The server verifies the credentials and permits relaying if they are valid.

Figure 15-3: SMTP AUTH as authentication for relaying

Certificate-based relaying, covered in Chapter 18, is based upon the
exchange and validation of TLS client certificates (see Figure 15-4).

These are the basic steps in certificate-based relaying:

1. The SMTP server offers a TLS connection to the mail client.

2. The client sends its certificate to the server.

3. The server verifies the certificate and permits the client to relay if the
certificate is among those that the server recognizes.

LAN

Mail client

Mail server

Mail client

Internet

POP
server

Relay
IPs

Relay

1

2

Mail client IP address

LAN

Mail server

Internet

Mail clientMail server

Relay

SMTP AUTH
Unders tand ing SMTP Au then t icat ion 219
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 15-4: Client certificate as authentication for relaying

Virtual private networks (VPNs) give clients access to a mail server by
setting up a secure virtual network running on top of the regular Internet. In
a VPN, administrators have control over IP addresses, so you can use relaying
based on IP address. Because the VPN configuration has nothing to do with
the SMTP server configuration, it is not covered in this book. These are the
basic steps in using a VPN:

1. The mail client’s computer connects to a VPN.

2. The SMTP server allows the client to relay based on the client’s IP
address in the virtual network.

Which Approach Is Best?

Certificate-based relaying with TLS is great, because it provides a high level
of security, but many mail clients do not yet support it. In addition, the
overhead of managing certificates on the clients and server is not trivial.
These two factors constitute a substantial effort for a company-wide or ISP-
wide rollout. If you can’t yet use certificates to relay, your choices boil down
to SMTP-after-POP, SMTP AUTH, and VPNs.

From a system architect’s point of view, SMTP-after-POP is far less than
ideal, because the solution is not even within the server and protocol where
the problem lies. Instead, another server (a POP or IMAP server), which is at
least as complex as an SMTP server, provides a stopgap solution. This
complicates matters, because the two servers must communicate, and
because the servers were almost certainly developed by different people
there is a high risk of incompatibility, especially as new releases appear.

The design of SMTP-after-POP isn’t its only drawback. It actually doesn’t
provide very good security because of its IP address–based decision mecha-
nism. It’s not difficult to spoof an IP address—an attacker can discover the IP

Relay

Mail client

LAN

Private certificate

1122

Mail server

Mail server

Public certificates

1122
1122
1122

Internet
220 Chap te r 15

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

address of a mail client that has just been granted permission to relay for a
certain time slot and spoof that IP address until the time has passed. This
kind of abuse is not possible when the client has to authenticate for every
new message that it wants to send.

A VPN-based system is very easy to set up if you already have a VPN, but
setting up a VPN just for a mail server is a tremendous amount of effort. In
addition, a VPN requires ongoing maintenance because each new mobile
user needs VPN software.

If you want something simple, independent, and secure, SMTP AUTH is
probably for you.

SASL: The Simple Authentication and Security Layer

Postfix implements SMTP authentication with the help of SASL (Simple
Authentication and Security Layer). SASL is an authentication framework
described in RFC 2222, and understanding how it works is critical to
understanding SMTP authentication as a whole. There are several SASL
implementations, and Postfix uses the Cyrus-SASL libraries derived from the
original SASL implementation in Project Cyrus.

NOTE Project Cyrus is the name of Carnegie Mellon University’s project to build a new cam-
pus mail system. See http://asg.web.cmu.edu/cyrus for more information.

SASL consists of three layers that you must configure. Figure 15-5 shows
the three layers: the authentication interface, the mechanism, and the
method.

In an application that uses the Cyrus SASL framework, the authenti-
cation process requires the following steps:

1. An application supporting SASL (such as the Postfix smtpd daemon)
listens for network connections.

2. A client connects and initiates authentication in these four substeps:

3. The application stores the information about the chosen mechanism
and the credentials.

4. The application hands the information over to a mechanism driver,
which passes it along to the password-verification service.

5. The password-verification service accesses an authentication backend,
such as /etc/shadow. The backend tries to match the client’s credentials
with one of its entries.

a. The client chooses an SMTP AUTH mechanism.
b. The client prepares to transmit its credentials according to the

requirements of the mechanism.
c. The client tells the server which mechanism it has chosen.
d. The client transmits the credentials.
Unders tand ing SMTP Au then t icat ion 221
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 15-5: The SASL layers

6. The password-verification service hands the result from the backend to
smtpd.

7. smtpd takes action based on the result. For example, it can let authenti-
cated users relay mail.

The following sections explain Cyrus SASL in more detail. You will learn
all about the SASL authentication interface, methods, mechanisms, and
authentication backends, and about how to prepare Cyrus SASL and Postfix
to offer server-side SMTP AUTH.

Authentication Interface
The purpose of an authentication interface is to tell a client that authen-
tication is available and which authentication mechanisms may be used.
Many services, to name only LDAP or SMTP, may require authentication, but
they differ in their client-server protocol. That’s why SASL has no authen-
tication interface of its own. Instead, it leaves it to the specific service and its
protocol to integrate how the capability of authentication is brought to the
attention of the client.

For email, the place where client and server meet, is the SMTP dialog.
The ESMTP protocol integrates authentication into the dialog by adding it
to the list of the mail server’s capabilities. You can see if a mail server offers
SMTP AUTH functionality by connecting to the server and using the EHLO
greeting, like this:

$ telnet mail.example.com 25
220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com
250-PIPELINING
250-SIZE 20480000
250-VRFY
250-ETRN

Method
(Password-verification service)

Mechanism

Authentication interface
222 Chap te r 15

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

250-AUTH PLAIN LOGIN
250-AUTH=PLAIN LOGIN
250-XVERP
250 8BITMIME
QUIT
221 Bye

The boldface-italic lines in the preceding output indicate SMTP
authentication support with the PLAIN and LOGIN authentication
mechanisms. The second line (with the equal sign) is present for broken
mail clients that do not follow the final SASL specification.

CAUTION The application interface is configured within the application that offers SMTP
AUTH. In Postfix, that’s the smtpd daemon; you’ll see how to configure the interface in
Chapter 16.

SMTP AUTH Mechanisms

SMTP AUTH mechanisms, such as PLAIN and LOGIN, define the
verification strategy used during authentication. The mechanisms that the
server offers show up in the application interface; in this case, that’s the
SMTP dialog. When initiating authentication, the client chooses a
mechanism, transmits its choice to the server, and then transmits its
credentials.

Cyrus SASL offers a wide variety of SASL mechanisms that differ in the
way they transmit credentials and in the level of security they provide. A few
of them are nonstandard and are designed for specific clients. You don’t
have to use all of the mechanisms available to you; you can configure Postfix
to offer only a limited range of Cyrus SASL mechanisms.

TIP In practice, it is best to use PLAIN, LOGIN, and CRAM-MD5 in an environment
where you need to support Windows, Mac OS, and Unix clients.

Here are the mechanisms:

ANONYMOUS
The ANONYMOUS mechanism (defined in RFC 2245) was created to
permit anonymous access to mail services. To use this mechanism, all a
mail client needs to do is send any string to the server, and the server will
then allow the client to relay.

CAUTION Do not use the ANONYMOUS mechanism with Postfix unless you want your mail
server to become an open relay. Spammers know how to abuse this mechanism.

CRAM-MD5, DIGEST-MD5
The Cyrus SASL library supports two “shared secret” mechanisms:
CRAM-MD5 and its successor, DIGEST-MD5. These methods rely
on the client and the server sharing a secret, usually a password.
The server generates a challenge based on the secret, and the client
Unders tand ing SMTP Au then t icat ion 223
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

responds, proving that it knows the shared secret. This is much more
secure than simply sending an unencrypted password over a network,
but the server still needs to store the secret.

EXTERNAL
The EXTERNAL mechanism allows you to bind TLS/SSL credentials
to SASL. In particular, the EXTERNAL mechanism allows you to extract
some form of username from the certificate used during TLS/SSL
negotiation.

GSSAPI, KERBEROS_V4
The Cyrus SASL library comes with two mechanisms that make use of the
Kerberos authentication system: KERBEROS_V4, which should be able
to use any Kerberos v4 implementation, and GSSAPI (tested against MIT
Kerberos v5 and Heimdal Kerberos v5). Because these mechanisms make
use of the Kerberos infrastructure, they have no password database.

NOTE Unfortunately, KERBEROS_V4 has some security problems. Use GSSAPI instead.

NTLM
The NTLM mechanism is a nonstandard, undocumented mechanism
developed by Microsoft. The SASL distribution includes it for sites that
need to interoperate with Microsoft clients (such as Outlook) and serv-
ers (such as Exchange).

OTP
The one-time pad (OTP) mechanism is similar to CRAM-MD5 and
DIGEST-MD5 in that it uses a shared secret and a challenge/response
exchange. However, OTP is considered to be more secure than the other
shared secret mechanisms because the secret is used to generate and
store a sequence of one-time (single-use) passwords that prevent replay
attacks, so you don’t need to store secrets on the server.

PLAIN, LOGIN
Credentials that are sent using PLAIN as the mechanism are transmitted
as base64-encoded plaintext. This mechanism is simple, and most mail
clients implement it, but base64-encoded strings can be decoded easily.
LOGIN is the same as PLAIN, but it is used for mail clients (such as Out-
look Express) that do not follow the RFC.

CAUTION The fact that credentials are sent in plaintext across the network creates a security risk.
Anyone running a sniffer, such as snort or tcpdump, can read the secrets. You can
overcome this problem by using TLS in combination with plaintext SMTP authentica-
tion. In particular, you can tell Postfix to offer plaintext mechanisms only after a TLS
session has been established (see Chapter 18).

SRP
SRP combines the safety of shared secret authentication with the single-
use feature of OTP. It is based on public key cryptography and relies on
passwords (not certificates) during authentication.
224 Chap te r 15

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Authentication Methods (Password-Verification Services)

Authentication methods (also known as password-verification services) handle
the mechanisms, taking care of the communication between the application
that offers SMTP authentication and the backend that stores the credentials.

Cyrus SASL offers two password verification services: saslauthd and
auxprop. The two services differ in the mechanisms they can offer and in the
backends they can connect to. The application that offers authentication
through its interface must choose which password-verification service to use.
(You’ll see the configuration later in the “Installing and Configuring Cyrus
SASL” section.) Here is an overview of the services:

saslauthd
saslauthd is a stand-alone daemon that may be run with superuser privi-
leges. It may connect to many kinds of authentication backends, but
especially those that require superuser privileges, such as /etc/shadow.
saslauthd is limited to the plaintext mechanisms (PLAIN and LOGIN).

auxprop
auxprop is a catchall password-verification service for a number of auxil-
iary plug-ins. Each plug-in is specialized for one distinct type of authenti-
cation backend, such as sasldb2 and SQL servers.

CAUTION The auxprop plug-ins connect to the authentication backend with the privileges of the
application that provides the authentication. In Postfix, the application is smtpd,
which runs with the fewest privileges required.

Versions of Cyrus SASL prior to 2.x allowed access to /etc/shadow using auxprop.
This required increasing the privileges of the daemon offering SMTP AUTH and
defeated the Postfix security architecture. You are strongly discouraged from using a
backend that forces you to increase the application privileges.

Authentication Backends
As a final step, Cyrus SASL requires one or more authentication backends
to verify the credentials provided by the client. The password-verification
service checks whether the credentials match what is stored in the authen-
tication backend. The official list of authentication backends supported by
Cyrus SASL includes the following:

imap
An IMAP server can verify the credentials.

kerberos
Cyrus SASL can check Kerberos tickets.

ldap
Cyrus SASL can read credentials from an OpenLDAP server.

pam
Cyrus SASL can read from any modules that you make available through
PAM (Pluggable Authentication Modules).
Unders tand ing SMTP Au then t icat ion 225
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

passwd/shadow
Cyrus SASL can read from the system user databases
(/etc/passwd and possibly /etc/shadow).

sasldb2
Cyrus SASL has its own user database named sasldb2. This database is
required for the Cyrus IMAP server, but you don’t need an IMAP server
to use it with SMTP authentication.

sql
Cyrus SASL can access user data on SQL servers. The currently sup-
ported servers are MySQL and PostgreSQL.

Planning Server-Side SMTP Authentication

If you want to support SMTP authentication on your mail server, you need
only perform two steps:

1. Determine the clients that will use SMTP AUTH and the mechanisms
these clients support.

2. Define the authentication backend that you wish to use, and derive the
appropriate password-verification service.

Finding Clients and Their Supported Mechanisms

One tenet of computer security is that you cannot attack a service that
does not exist. Therefore, you should consider configuring Postfix for only
the mechanisms that your users need. On a small network where you have
good control over the mail clients in use, you can very effectively limit
mechanisms. Table 15-1 is a simplified version of the SASL client reference
(http://www.melnikov.ca/mel/devel/SASL_ClientRef.html) by Alexey Melnikov,
and it lists the mechanisms supported by various mail clients. It provides a
fairly comprehensive overview of the POP, IMAP, ACAP, and LDAP AUTH
capabilities of mail clients.

However, if you need to support as many clients as possible, offer at least
the PLAIN, LOGIN, and CRAM-MD5 mechanisms. Most mail clients support
these.

NOTE You will probably notice that there are fewer mechanisms listed in Table 15-1 than in
the SASL client reference. There are so many mechanisms that it was necessary to
abridge the SASL client reference, but those listed in Table 15-1 will give you the most
mileage in heterogeneous IT environments.

After determining the mechanisms that you need to support the mail
clients, you need to choose the appropriate authentication backend.
226 Chap te r 15

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Table 15-1: Mechanisms of SMTP AUTH–Capable Clients

Client A
N

O
N

Y
M

O
U

S

C
R

A
M

-M
D

5

D
IG

ES
T-

M
D

5

EX
TE

R
N

A
L

G
SS

A
P
I

K
er

b
er

o
s

4

LO
G

IN

N
TL

M

P
LA

IN

SC
R
A

M
-M

D
5

SK
EY

AKmail no yes no no no no no no no no no

Bat! (SecureBat!) no yes yes no no no yes no yes no no

Control Data’s
IMAPSP

no yes no no no no no no yes no yes

Eudora Pro 4.3
and later

no yes no no no no yes no yes no no

fetchmail 5.0.3 no no no no no no no no no no no

Forte Agent no no no no no no no no no no no

Gnus no yes no no no no yes no no no no

JavaMail no no no no no no yes no yes no no

MH UCI 6.8.3 ? no no no no no no no no no no

Mozilla 1.0 no yes no yes no no no no yes no no

Mulberry v3 no yes yes no yes no yes yes yes no no

mutt 1.2.5i n/a1

1 Does not support SMTP directly; relies on a local MTA.

n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Nestcape
Messenger 4.51+

no no no yes no no no no yes no no

nmh 1.0.4 —2

2 See the CMU SASL library.

no no no no no no no no no no

Novell Evolution no yes yes no no yes no yes yes no no

Orangsoft
Winbiff > 2.30

no yes no no no no yes no yes no no

Outlook Express
> 4.03

3 Supports draft 10 of SMTP AUTH spec (i.e., "AUTH=" but not "AUTH ").

no no no no no no yes yes no no no

Outlook > 983 no no no no no no yes yes no no no

Paladin no yes no no no no no no no no no

PalmOS Eudora no yes no no no no no no no no no

Pegasus Mail
3.12

no yes no no no no yes no no no no

Pine 4.33 and
later

no yes no no yes yes yes no yes no no

PMMail no no no no no no no no no no no

Sylpheed no yes yes no no no yes no no no no

Wanderlust yes yes yes no no yes yes no no yes no
Unders tand ing SMTP Au then t icat ion 227
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Defining the Authentication Backend and Password-Verification Service

An easy but not terribly secure place to get user credentials is your system’s
local user database, /etc/passwd. This authentication backend already exists,
and unless you are an ISP, you probably have created accounts for all mail
users.

Unfortunately, too many administrators create user accounts that permit
shell access. Anyone who gains access to the usernames and passwords used
in an SMTP AUTH session could easily gain shell access to your server (and
as a result, would likely also gain superuser access, because it is much easier
to do this when you already have a shell account). This alone could be reason
enough to choose an authentication backend that has nothing to do with
your system users.

Theoretically, the ideal authentication backend has no relation to system
users, especially if you use a plaintext mechanism, because the consequences
of compromising credentials used only for mail relaying are not very serious
compared to a system break-in. You can use a self-contained database, such as
sasldb, an SQL server, or even an LDAP server. Tables 15-2 and 15-3 identify
the mechanisms you can use for each type of authentication backend. Notice
that your choice of backend also determines which password-verification
service you must use.

After deciding on an authentication backend, you’re ready to configure
Cyrus SASL for smtpd.

Table 15-2: Authentication Backends and Mechanisms Compatible with the
saslauthd Password-Verification Service

Authentication
Backend PLAIN LOGIN CRAM-

MD5
DIGEST-
MD5 OTP NTLM

getpwent (regular system
users)

yes yes no no no no

kerberos yes yes no no no no

pam yes yes no no no no

rimap (remote IMAP
server)

yes yes no no no no

shadow yes yes no no no no

ldap yes yes no no no no

Table 15-3: Authentication Backends and Mechanisms Compatible with the
auxprop Password-Verification Service

Authentication
Backend PLAIN LOGIN CRAM-

MD5
DIGEST-
MD5 OTP NTLM

sasldb2 yes yes yes yes yes yes

sql yes yes yes yes yes yes
228 Chap te r 15

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Installing and Configuring Cyrus SASL

Postfix requires Cyrus SASL to provide SMTP AUTH functionality to mail
clients or to use it by itself when a remote mail server offers SMTP AUTH.

If you just need to configure the Postfix smtp client to authenticate with
a remote server, all you need to do is install Cyrus SASL and proceed to
Chapter 16.

However, if you want Postfix, acting as an MTA, to offer SMTP AUTH
to remote mail clients, you need to install and configure Cyrus SASL. In
addition, Postfix needs to be told how to interact with Cyrus SASL when you
want to use server-side SMTP AUTH. In all, you need to do the following:

1. Install Cyrus SASL.

2. Create the Postfix application configuration file.

3. Configure logging and the log level.
4. Set the password-verification service.

5. Select SMTP AUTH mechanisms.
6. Configure saslauthd or auxprop.

7. Test authentication.

Installing Cyrus SASL
If your system doesn’t come with Cyrus SASL preinstalled or as a package,
you need to download the Cyrus SASL library from the Download Cyrus
Software web page, http://asg.web.cmu.edu/cyrus/download.

CAUTION The following sections assume that you’re using at least Cyrus SASL 2.1.17, but it’s
only natural that a later version will be available when you read this. If you want to
get version 2.1.17, you can get it from the CVS repository, http://asg.web.cmu.edu/
cyrus/download/anoncvs.html.

After unpacking the software, change into the Cyrus SASL SOURCE
directory. If you’re using a version of SASL that you got from CVS, you
need to run sh ./SMakefile to build the configure script.

Run the following command to configure Cyrus SASL for all of the
backends described in the rest of this chapter:

./configure \
 --with-plugindir=/usr/lib/sasl2 \
 --disable-java \
 --disable-krb4 \
 --with-dblib=berkeley \
 --with-saslauthd=/var/state/saslauthd \
 --without-pwcheck \
 --with-devrandom=/dev/urandom \
 --enable-cram \
 --enable-digest \
 --enable-plain \
Unders tand ing SMTP Au then t icat ion 229
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

 --enable-login \
 --disable-otp \
 --enable-sql \
 --with-ldap=/usr \
 --with-mysql=/usr \
 --with-pgsql=/usr/lib/pgsql

NOTE Cyrus SASL has many more configuration options. Run ./configure --help in the
source directory to find out what Cyrus SASL supports. However, if you don’t think you
need all of the backends, you can change the options.

After the configuration script creates the Makefile, you can run make to
build Cyrus SASL, then make install (as root) to install it.

Next you will have to create a symbolic link. The installation process puts
the SASL libraries in /usr/local/lib/sasl2 by default, but the configuration
parameters set in the configure script cause Cyrus SASL to search for the
libraries in /usr/lib/sasl2. Create the link like this:

ln -s /usr/local/lib/sasl2 /usr/lib/sasl2

Finally, see if the syslogd daemon is set up to log Cyrus SASL messages.
Cyrus SASL logs to the syslog auth facility, so if you don’t have anything that
catches this facility already, you should add the following line to your
syslog.conf file and restart your syslogd:

auth.* /var/log/auth

Creating the Postfix Application Configuration File
Every application that offers SASL services must be told how to use the SASL
libraries. Cyrus SASL has one configuration file for each application, rather
than one large global configuration file. This makes it possible to define
different configurations for different applications. The application config-
uration file for Postfix is named smtpd.conf, because by default the Postfix
application that offers SASL services is the smtpd daemon. The file is located
in /usr/lib/sasl2 by default.

NOTE Debian users must put smtpd.conf in /etc/postfix/sasl to make SMTP AUTH work.

Some operating systems come with a smtpd.conf containing a few default
settings; check for the file beforehand. If the file does not exist, create it as
root with the following commands:

touch /usr/lib/sasl2/smtpd.conf
chmod 644 /usr/lib/sasl2/smtpd.conf

The preceding commands won’t harm a preexisting configuration file.
Once you have created the configuration file, you are ready to configure how
Postfix will use the SASL libraries.
230 Chap te r 15

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

CAUTION The Cyrus configuration file syntax is different from that of Postfix. A parameter and
its value must be on a single line. In Cyrus, every parameter ends with a colon, and a
space separates the parameter from its value.

Configuring Logging and the Log Level

The first parameter in the /usr/lib/sasl2/smtpd.conf file that you should
configure is the log_level parameter. The possible values are listed in
Table 15-4.

While you configure and test Cyrus SASL, you should set the log level at
least to 3. Here’s how to set it in the smtpd.conf file:

Global parameters
log_level: 3

This file will grow as you proceed through the following sections.

Setting the Password-Verification Service

The next step is to tell Postfix which password-verification service to use for
authenticating users. At this point, you should make a clear decision between
saslauthd and auxprop, because the subsequent steps differ significantly
depending on the password-verification service.

Cyrus SASL determines the password-verification service from the
pwcheck_method parameter. If you plan to use saslauthd, configure your
smtpd.conf as follows:

Global parameters
log_level: 3
pwcheck_method: saslauthd

Table 15-4: Log Level Values for Cyrus SASL

log_level Value Description

0 No logging

1 Log unusual errors; this is the default

2 Log all authentication failures

3 Log nonfatal warnings

4 More verbose than 3

5 More verbose than 4

6 Log traces of internal protocols

7 Log traces of internal protocols, including passwords
Unders tand ing SMTP Au then t icat ion 231
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

If you plan to use an auxiliary plug-in instead, use this in your smtpd.conf:

Global parameters
log_level: 3
pwcheck_method: auxprop

Selecting SMTP AUTH Mechanisms

Cyrus SASL leaves it to the client to pick the mechanisms to use for authen-
tication. This can lead to authentication failures under the following
conditions:

� If you offer mechanisms that require configuration that you haven’t
done. For example, if you don’t use Kerberos, but your server offers
KERBEROS and the client picks it, the authentication will fail.

� If you chose saslauthd as the password-verification service, but you did
not limit the mechanisms to plaintext mechanisms. In this case, authenti-
cation would fail if a non-plaintext mechanism were selected because
saslauthd cannot handle mechanisms other than PLAIN and LOGIN.

You can ensure that your server offers a specific list of mechanisms with
the mech_list parameter. For example, if you’re using saslauthd, your
smtpd.conf file must look like this:

Global parameters
log_level: 3
pwcheck_method: saslauthd
mech_list: PLAIN LOGIN

With auxiliary plug-ins, you can choose a different list, such as this:

Global parameters
log_level: 3
pwcheck_method: auxprop
mech_list: PLAIN LOGIN CRAM-MD5 DIGEST-MD5

With the mechanism choice in place, you now have to configure either
saslauthd or an auxiliary plug-in. Proceed with the next section if you want to
configure saslauthd, or skip ahead to the “Configuring Auxiliary Plug-ins
(auxprop)” section to configure auxprop.

Configuring saslauthd

saslauthd is a stand-alone daemon that communicates with authentication
backends. You configure saslauthd with command-line options. Before
starting the daemon, do the following.
232 Chap te r 15

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

1. Check the authentication backends that your saslauthd supports.

2. Prepare the saslauthd environment.

3. Configure an authentication backend for saslauthd.

Checking for Supported Authentication Backends

You won’t get very far if saslauthd does not support the authentication
backend that you want to use. Run saslauthd -v to get a list of authentication
backends that your saslauthd binary supports. Here’s an example:

saslauthd -v
saslauthd 2.1.17
authentication mechanisms: getpwent pam rimap shadow ldap

Notice that saslauthd labels its backends as “authentication mecha-
nisms.” Don’t confuse this with SMTP AUTH mechanisms such as PLAIN
and CRAM-MD5.

If the mechanism you need is not in the list, you need to rebuild Cyrus
SASL. Running ./configure --help in the Cyrus SASL source directory yields a
set of options for enabling various backends.

Preparing the saslauthd Environment

saslauthd requires a state directory to store a socket and PID file. The Cyrus
SASL installation scripts do not create the state directory for you, but if you
install Cyrus SASL from a binary package, such as an RPM, the package
installer might create the directory. The default state directory is /var/state/
saslauthd, but /var/run/saslauthd is also common.

You can set the state directory location at build time with the --with-
saslauthd=DIR option to the configure script. You can check the state directory
by starting saslauthd in debug mode:

saslauthd -a shadow -d
saslauthd[31076] :main : num_procs : 5
saslauthd[31076] :main : mech_option: NULL
saslauthd[31076] :main : run_path : /var/run/saslauthd
saslauthd[31076] :main : auth_mech : shadow
saslauthd[31076] :main : could not chdir to: /var/run/saslauthd
saslauthd[31076] :main : chdir: No such file or directory
saslauthd[31076] :main : Check to make sure the directory exists and is
saslauthd[31076] :main : writable by the user this process runs as.

In the preceding output, run_path indicates the state directory where
saslauthd will create the socket. Notice that the saslauthd debugging output
shows that this directory does not exist.

If the directory does not exist, create it and make it accessible only to
root and members of root. The following example shows how you might
do that.
Unders tand ing SMTP Au then t icat ion 233
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

mkdir /var/state/saslauthd
chown root:root /var/state/saslauthd
chmod 750 /var/state/saslauthd

Using a Different State Directory

If you would like to use a state directory other than the default (for example,
if you found a state directory for saslauthd on your system), you can use the
-m dir command-line option to override the default setting. For example, if
you’d like to use the /var/run/saslauthd directory, you can run the daemon as
follows:

saslauthd -m /var/run/saslauthd -a shadow

Here, the path is the directory name, and it does not include the name
of the socket (mux). The -a option is for the authentication backend; you’ll
see this in the next section.

However, you also have to tell Postfix about the new state directory by
setting the saslauthd_path parameter in your smtpd.conf file. This time, you
must include the filename of the socket, as noted in boldface-italic in the
following example:

Global parameters
log_level: 3
pwcheck_method: saslauthd
saslauthd parameters
saslauthd_path: /var/run/saslauthd/mux

After you have the state directory in place, you’re ready to connect
saslauthd to an authentication backend.

Configuring an Authentication Backend for saslauthd

saslauthd uses the option -a backend_name to select an authentication backend.
The name should be one of the backends listed when you run saslauthd -v, as
mentioned in Table 15-2. The following example uses the shadow backend to
read from the shadow password file:

saslauthd -a shadow

The following sections list the most common authentication backends
used with saslauthd. Have a look at the saslauthd(8) manual page for a
complete list of authentication backends for saslauthd.

Authenticating from Local User Accounts

saslauthd can access the local password file, which should work on most Unix
systems, and it can access the local shadow password file on systems that
support shadow passwords. To read from the regular password file (/etc/
passwd), use the -a getpwent parameter.
234 Chap te r 15

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

saslauthd -a getpwent

On systems that use shadow passwords, you can start saslauthd with the
option -a shadow to make it access /etc/shadow; you must run saslauthd as root
to access /etc/shadow:

saslauthd -a shadow

Authenticating from PAM

saslauthd supports PAM (Pluggable Authentication Modules) for authen-
ticating SMTP users. To gain access to the backends that PAM supports,
create /etc/pam.d/smtp and add configuration parameters specific to your
needs and your system, or add the appropriate settings to /etc/pam.conf.

Here’s an example of what you might put in /etc/pam.d/smtp on a Red
Hat Fedora Core 1 system:

#%PAM-1.0
auth required /lib/security/pam_stack.so service=system-auth
account required /lib/security/pam_stack.so service=system-auth

NOTE The configuration filename must be smtp, because RFC 2554 says that the service
name for SASL over SMTP is smtp. Postfix passes the value smtp as the service name
to the sasl_server_new() function. This service name is then passed to saslauthd
and ultimately to PAM, which in turn looks in smtp for authentication instructions.

After configuring PAM, you can start saslauthd as follows:

saslauthd -a pam

Authenticating with an IMAP Server

saslauthd supports an unusual authentication backend that connects to an
IMAP server. This one is different because it is the IMAP server checking the
username and password, but not the SASL libraries.

You configure IMAP as an authentication backend for saslauthd with two
parameters. The first is the usual -a to select a backend, and then use -O to
specify an IMAP server, as in this example:

saslauthd -a rimap -O imap.example.com

Authenticating from LDAP

saslauthd can read credentials from an OpenLDAP server. LDAP queries and
other parameters for connecting to an LDAP server can be very complicated,
so you don’t pass these parameters to saslauthd through the command line.
Instead, it reads the configuration from a separate file. The default filename
is /usr/local/etc/saslauthd.conf, but you can specify a different file with the
-O file parameter.
Unders tand ing SMTP Au then t icat ion 235
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Here’s an example saslauthd.conf file:

ldap_servers: ldap://127.0.0.1/ ldap://172.16.10.7/
ldap_bind_dn: cn=saslauthd,dc=example,dc=com
ldap_bind_pw: Yanggt!
ldap_timeout: 10
ldap_time_limit: 10
ldap_scope: sub
ldap_search_base: dc=people,dc=example,dc=com
ldap_auth_method: bind
ldap_filter: (|(&(cn=%u)(&(uid=%u@%r)(smtpAuth=Y)))
ldap_debug: 0
ldap_verbose: off
ldap_ssl: no
ldap_start_tls: no
ldap_referrals: yes

Obviously, the query (defined here with the ldap_search_base and
ldap_filter parameters) depends on your own LDAP configuration.

NOTE There are many more LDAP parameters than are listed here. See the auth_ldap module
for saslauthd for the complete list.

Let’s say that you put your configuration in /etc/saslauthd.conf. You
would start saslauthd as follows:

saslauthd -a ldap -O /etc/saslauthd.conf

Configuring Auxiliary Plug-ins (auxprop)

Unlike saslauthd-based backends, applications that use auxiliary plug-ins
with the auxprop system run the plug-ins directly, reading the configuration
from the application’s own SASL configuration file. As mentioned earlier,
the application configuration file for Postfix is smtpd.conf. The following
sections show you how to configure the auxiliary plug-ins that come with the
SASL source.

NOTE There are more auxiliary plug-ins for SASL than are listed in this section, such as
ldapdb, which you can find in the /contrib section of the OpenLDAP source files. The
ldapdb plug-in is excellent, but it is difficult to install because it doesn’t come with a
Makefile or other build tool. The discussion in this chapter focuses on configurations
for intermediate users.

Using the sasldb2 Plug-In

Cyrus SASL comes with a standard plug-in named sasldb2 that is used mostly
in Cyrus IMAP, but can be used separately. The sasldb2 plug-in comes with
two utilities: saslpasswd2 for user management, and sasldblistusers2 for listing
all users in sasldb2.
236 Chap te r 15

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

CAUTION The database and tool names end with a “2” because they belong to Cyrus SASL 2.x.
They had to be renamed to avoid conflicts with Cyrus SASL 1.x, because the Cyrus
SASL API changed between the two versions. If you find tools without a number at the
end, they are probably for Cyrus SASL 1.x and will not work with version 2.

To configure Cyrus SASL with sasldb2, you need to do two things:

1. Create the sasldb2 database.

2. Configure SASL to read from the database.

Creating the sasldb2 Database

You can create the sasldb2 database by running the saslpasswd2 command as
root. The option -c creates a sasldb2 database in the /etc/sasldb2 file. Here’s
an example that creates the database, adds a user, and a realm of the Postfix
myhostname (you cannot create the database unless you add a user):

saslpasswd2 -c -u `postconf -h myhostname` test
Password:
Again (for verification):

CAUTION The sasldb2 plug-in requires a realm in addition to the credentials. Postfix uses the
value of the smtpd_sasl_local_domain parameter as the realm (it is empty by default).
Postfix can have only one realm per smtpd instance, effectively limiting authentication
to a single realm.

After creating the database, limit access to the root user and the postfix
group:

chmod 640 /etc/sasldb2
chgrp postfix /etc/sasldb2
ls -l /etc/sasldb2
-rw-r----- 1 root postfix 12288 Feb 4 16:23 /etc/sasldb2

If you offer the OTP mechanism, you must also make the database file
writable by Postfix, so that it can mark expired passwords. You may need to
modify the ownership and permissions if another group needs to access the
database file.

Configuring SASL to Read from the sasldb2 Database

To tell Postfix about the sasldb2 database, edit the smtpd.conf file and
specify auxprop as the password-verification service and sasldb as the
auxprop plug-in type:

Global parameters
log_level: 3
pwcheck_method: auxprop
Unders tand ing SMTP Au then t icat ion 237
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

mech_list: PLAIN LOGIN CRAM-MD5 DIGEST-MD5
auxiliary Plugin parameters
auxprop_plugin: sasldb

Using the sql Plug-In

Cyrus SASL 2 offers access to two popular relational databases: MySQL and
PostgreSQL. Both are available through the sql auxiliary plug-in, and they
use these same configuration parameters:

sql_engine

The sql_engine parameter specifies the database type. As of Cyrus SASL
2.1.17, you can pick mysql or pgsql.

sql_hostnames

The sql_hostnames parameter specifies the database server name. You can
specify one or more FQDNs or IP addresses separated by commas. If you
pick localhost, the SQL engine tries to communicate over a socket.

sql_database

The sql_database parameter defines the name of the database to
connect to.

sql_user

The sql_user parameter defines the database username.

sql_passwd

The sql_passwd parameter defines the password (in plaintext) for the
database user.

sql_select

The sql_select parameter defines the SELECT statement used to find the
password for a given username and realm.

sql_insert

The sql_insert parameter defines an INSERT statement for allowing the
SASL library to create users in the SQL database (making it accessible to
programs such as saslpasswd2).

sql_update

The sql_update parameter defines the UPDATE statement that allows the
SASL library or a plug-in to update a user in the SQL database for a
mechanism such as OTP. The sql_update parameter must be used in com-
bination with sql_insert.

sql_usessl

The sql_usessl parameter allows you to use an encrypted connection to
the database. By default, it is off (sql_usessl: no); use a setting of yes, 1,
on, or true to enable SSL.
238 Chap te r 15

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Cyrus SASL provides the following macros that you can use in your
parameter settings to build database queries:

CAUTION Macros must be quoted separately with single quotation marks (') when you define a
query in smtpd.conf.

Configuring MySQL for SASL

The first thing to do when configuring MySQL for SASL in Postfix is to
create a database and table. This example SQL statement creates a table with
the default fields that Cyrus SASL expects, plus an extra field that lets you
disable relay access for a particular user:

mysql> CREATE DATABASE mail;
mysql> CONNECT mail;
mysql> CREATE TABLE `users` (

`id` int(11) unsigned NOT NULL auto_increment,
`username` varchar(255) NOT NULL default '0',
`userrealm` varchar(255) NOT NULL default 'mail.example.com',
`userpassword` varchar(255) NOT NULL default '1stP@ss',
`auth` tinyint(1) default '1',
PRIMARY KEY (`id`),
UNIQUE KEY `id` (`id`)
) TYPE=MyISAM COMMENT='SMTP AUTH relay users';

As you can see, all of the fields (id, username, userrealm, userpassword, and
auth) have default values. It’s particularly important that there be a default
password so that an attacker can’t try a null password.

Next you need to create a MySQL user that can read and write to the
SASL authorization database. For example, this sequence of commands
creates a user named postfix:

mysql> CONNECT mysql;
mysql> INSERT INTO user VALUES

('localhost','postfix','','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','
Y','Y','Y');

mysql> UPDATE mysql.user SET password=PASSWORD("Yanggt!") WHERE user='postfix'
AND host='localhost';

mysql> GRANT SELECT, UPDATE ON mail.users TO 'postfix'@'localhost';
mysql> FLUSH PRIVILEGES;

%u This macro is replaced with the username provided during
authentication.

%p This is a placeholder for the password; this is the default column
name for plaintext passwords.

%r This macro is replaced with the realm provided during
authentication.

%v This specifies the submitted value that should replace an existing
value during an SQL UPDATE or INSERT operation.
Unders tand ing SMTP Au then t icat ion 239
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Add a test entry to the users table with a command like this:

mysql> INSERT INTO `users` VALUES (1,'test','mail.example.com','testpass',0);

Finally, after setting up the MySQL database, configure the auxiliary plug-
in authentication backend in your smtpd.conf file with settings such as these:

Global parameters
log_level: 3
pwcheck_method: auxprop
mech_list: PLAIN LOGIN CRAM-MD5 DIGEST-MD5
auxiliary Plugin parameters
auxprop_plugin: sql
sql_engine: mysql
sql_hostnames: localhost
sql_database: mail
sql_user: postfix
sql_passwd: Yanggt!
sql_select: SELECT %p FROM users WHERE username = '%u' AND userrealm = '%r' AND auth = '1'
sql_usessl: no

Notice the auxprop password-verification service and the sql plug-in.
Refer back to the “Using the sql Plug-In” section for the meanings of the
other parameters and the macros.

NOTE Read options.html in the Cyrus SASL doc directory for more detailed information on
notation and parameters.

Configuring PostgreSQL for SASL

The process for using PostgreSQL with SASL is very similar to that for using
MySQL. Here’s how to create a mail database in PostgreSQL:

createdb mail
CREATE DATABASE

Now, connect to the database and create a table for the SASL users as
follows:

psql -d mail
Welcome to psql 7.3.4, the PostgreSQL interactive terminal.
Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit
mail=# CREATE TABLE public.users
240 Chap te r 15

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

mail-# (
mail(# id int4 NOT NULL,
mail(# "username" varchar(255),
mail(# "userrealm" varchar(255),
mail(# "userpassword" varchar(255),
mail(# auth int2 DEFAULT 0,
mail(# CONSTRAINT id PRIMARY KEY (id)
mail(#) WITHOUT OIDS;
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index 'id' for table 'users'
CREATE TABLE
mail=# COMMENT ON TABLE public.users IS 'mail users';
COMMENT
mail=#

Next, make a user that can read from and write to the database:

mail=# CREATE USER postfix PASSWORD 'Yanggt!' NOCREATEDB NOCREATEUSER;
CREATE USER

Give this user SELECT and UPDATE access to the table:

mail=# GRANT UPDATE,SELECT ON users TO postfix;
GRANT

The next step is to create a test account entry in the mail table:

mail=# INSERT INTO users VALUES ('1','test','mail.example.com','testpass','1');

Finally, with the PostgreSQL database in place, you can configure the
auxiliary plug-in like this in smtpd.conf:

Global parameters
log_level: 3
pwcheck_method: auxprop
mech_list: PLAIN LOGIN CRAM-MD5 DIGEST-MD5
auxiliary Plugin parameters
auxprop_plugin: sql
sql_engine: pgsql
sql_hostnames: localhost
sql_database: mail
sql_user: postfix
sql_passwd: Yanggt!
sql_select: SELECT %p FROM users WHERE username = '%u' AND realm = '%r' AND auth = '1'
sql_usessl: no

After configuring your authentication backend, you are ready to test
authentication.
Unders tand ing SMTP Au then t icat ion 241
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Testing the Authentication
After configuring Cyrus SASL with either saslauthd or an auxiliary plug-in
and one backend, you should test it before you configure SMTP AUTH in
Postfix as described in Chapter 16. Experience has shown that most
problems with SMTP AUTH arise from problematic Cyrus SASL installations,
not from Postfix itself.

The first step in testing is to find the testing tools. Unless you installed
Cyrus SASL from source code, this might not be an easy task (by default, the
tools are in the sample/ subdirectory of the source distribution). If you use a
Cyrus SASL installation that came with an operating system distribution, you
will have to look closely for programs named client and server.

NOTE The names of the binaries are far from consistent among operating system packages,
and some packages don’t even install all of the binaries. Check for cyrus-*-devel pack-
ages, and look at the names of the programs in these packages. They’re not necessarily
named client and server.

For example, Red Hat Linux ships a mixture of Cyrus SASL 1.x and 2.x,
renaming the binaries to sasl-sample-client and sasl-sample-server for Cyrus SASL
1.x and sasl2-sample-client and sasl2-sample-server for 2.x.

Once you have found the client and server programs, follow these steps
to test authentication:

1. Start saslauthd if you use a backend that requires saslauthd as a
password-verification service.

2. Create the server configuration file.

3. Start the server program.

4. Test authentication with the client program.

Starting saslauthd

If you chose a backend that uses saslauthd as the password-verification
service (that is, it does not use an auxiliary plug-in such as sasldb or a
SQL database), you should start saslauthd with debugging parameters
from command line. Don’t use an init script; you want to be able to use
the -d option, which tells the main saslauthd not to go into daemon mode,
but rather to remain attached to the current terminal and print debugging
output.

Here’s an example of starting up saslauthd for shadow password
authentication:

saslauthd -m /var/state/saslauthd -a shadow -d
saslauthd[4401] :main : num_procs : 5
saslauthd[4401] :main : mech_option: NULL
saslauthd[4401] :main : run_path : /var/run/saslauthd
saslauthd[4401] :main : auth_mech : shadow
242 Chap te r 15

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

saslauthd[4401] :ipc_init : using accept lock file: /var/run/saslauthd/mux.accept
saslauthd[4401] :detach_tty : master pid is: 0
saslauthd[4401] :ipc_init : listening on socket: /var/run/saslauthd/mux
saslauthd[4401] :main : using process model
saslauthd[4402] :get_accept_lock : acquired accept lock
saslauthd[4401] :have_baby : forked child: 4402
saslauthd[4401] :have_baby : forked child: 4403
saslauthd[4401] :have_baby : forked child: 4404
saslauthd[4401] :have_baby : forked child: 4405

Creating the Server Configuration File

Now you need to create the configuration file for the server program. Recall
that each SASL application requires its own configuration file; the test
program server will need a sample.conf file. However, the test configuration
should be the same as the configuration you used for Postfix. The easiest way
to do this is to create a symbolic link to your smtpd.conf file, as follows:

cd /usr/lib/sasl2/
ln -s smtpd.conf sample.conf

Starting the Server Program

Open a new shell and run the server program with the -s and -p options to
specify the service and port for the server:

server -s rcmd -p 8000
trying 10, 1, 6
socket: Address family not supported by protocol
trying 2, 1, 6

Make sure you use a port that your machine isn’t already using.

NOTE The meaning of rcmd is not well documented.

Testing with the Client Program

Finally, start the client program, and let it connect to the server. Once
connected, the client program asks you to enter an authentication ID, an
authorization ID, and a password. Use the -m command-line option to choose
a mechanism. The following example uses test as the authentication and
authorization IDs and testpass as the password on localhost (127.0.0.1):

client -s rcmd -p 8000 -m PLAIN 127.0.0.1
receiving capability list... recv: {11}
PLAIN LOGIN
PLAIN LOGIN
please enter an authentication id: test
please enter an authorization id: test
Unders tand ing SMTP Au then t icat ion 243
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Password:
send: {5}
PLAIN
send: {1}
Y
send: {18}
test[0]test[0]testpass
successful authentication
closing connection

You’re looking for the successful authentication message. You can also
monitor the communication on the server program’s side. The following
example shows the connection initiation and the credentials coming in and
being verified:

server -s rcmd -p 8000
trying 10, 1, 6
socket: Address family not supported by protocol
trying 2, 1, 6
accepted new connection
send: {11}
PLAIN LOGIN
recv: {5}
PLAIN
recv: {1}
Y
recv: {18}
test[0]test[0]testpass
successful authentication 'test'
closing connection

Finally, if you’re using a backend that requires saslauthd, you can see
what’s happening as saslauthd verifies the credentials. It should look
something like this:

saslauthd -m /var/run/saslauthd -a shadow -d
saslauthd[4547] :main : num_procs : 5
saslauthd[4547] :main : mech_option: NULL
saslauthd[4547] :main : run_path : /var/run/saslauthd
saslauthd[4547] :main : auth_mech : shadow
saslauthd[4547] :ipc_init : using accept lock file: /var/run/saslauthd/mux.accept
saslauthd[4547] :detach_tty : master pid is: 0
saslauthd[4547] :ipc_init : listening on socket: /var/run/saslauthd/mux
saslauthd[4547] :main : using process model
saslauthd[4548] :get_accept_lock : acquired accept lock
saslauthd[4547] :have_baby : forked child: 4548
saslauthd[4547] :have_baby : forked child: 4549
saslauthd[4547] :have_baby : forked child: 4550
244 Chap te r 15

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

saslauthd[4547] :have_baby : forked child: 4551
saslauthd[4548] :rel_accept_lock : released accept lock
saslauthd[4548] :do_auth : auth success: [user=test] [service=rcmd] [realm=]

[mech=shadow]
saslauthd[4548] :do_request : response: OK
saslauthd[4548] :get_accept_lock : acquired accept lock

If something goes wrong, you should be able to zero in on the problem
by going through the following steps:

1. If you’re using saslauthd as a password-verification service, look for
[reason=...] in the debugging output.

2. Verify that the user and password are correct in your authentication
backend.

3. Make sure that saslauthd has permission to access your authentication
backend.

4. Verify that you submitted the correct strings for username and password.

Once you have successfully authenticated, proceed to Chapter 16 and
configure the Postfix smtpd daemon to offer SMTP AUTH to mail clients.

The Future of SMTP AUTH

The current SMTP AUTH implementation is far from final. Future versions
of Postfix will see a big change in SASL. Currently the SASL libraries that
access authentication backends are linked and are used from within the smtpd
daemon (the same daemon that handles communication with mail clients).
Figure 15-6 shows what the connection chain looks like.

Figure 15-6: Current SASL integration into Postfix

Accessing the authentication backends usually requires a privileged user,
so anyone who could hijack the daemon responsible for SMTP AUTH would
be very close to the user database in a system.

Postfix tries to avoid privileged processes wherever possible, especially
when the authentication daemon is exposed directly to the (always hostile)
network. In addition, complexity is an enemy of security, and Cyrus SASL
definitely qualifies as complex.

Mail client
smtpd

(SASL libs)
Authentication

backend
Unders tand ing SMTP Au then t icat ion 245
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Sometime in the future, Postfix will have a new daemon (perhaps named
sasld) whose only job is to connect Postfix and the Cyrus SASL libraries. The
communication between Postfix and the new daemon should be as simple as
possible. Figure 15-7 shows how the new connection chain might look.

Figure 15-7: Future SASL integration into Postfix

The new design will make the daemon that needs to be exposed to the
network less vulnerable to exploits, and this will take Postfix a step closer to
one of its main goals—secure services.

Mail client
sasld

(SASL libs)
Authentication

backendsmtpd
246 Chap te r 15

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

16
S M T P A U T H E N T I C A T I O N

SMTP authentication (SMTP AUTH)
allows authorized mail clients with

dynamic IP addresses to relay messages
through your server without creating an open

relay. This chapter shows you how to enable SMTP
AUTH in your server and client-side SMTP AUTH in
Postfix.

Checking Postfix for SMTP AUTH Support

Although the Postfix source code includes support for SMTP authentication,
it is not enabled by default because Postfix does not come with the SMTP
AUTH library that handles the actual work. When you build Postfix, you
need to tell the build process about this library.

The Postfix packages provided with many distributions come with
SMTP AUTH support. You can easily verify whether your version of
Postfix already has support for SMTP AUTH enabled. Run ldd `postconf
-h daemon_directory`/smtpd as root and search for libsasl2.so in the output.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

ldd `postconf -h daemon_directory`/smtpd
 libldap.so.2 => /usr/lib/libldap.so.2 (0x00117000)
 liblber.so.2 => /usr/lib/liblber.so.2 (0x008a9000)
 libpcre.so.0 => /lib/libpcre.so.0 (0x00b86000)
 libsasl2.so.2 => /usr/lib/libsasl2.so.2 (0x00101000) �
 libssl.so.4 => /lib/libssl.so.4 (0x00b11000)
 libcrypto.so.4 => /lib/libcrypto.so.4 (0x00977000)
 libgssapi_krb5.so.2 => /usr/lib/libgssapi_krb5.so.2 (0x00afc000)
 libkrb5.so.3 => /usr/lib/libkrb5.so.3 (0x00a6f000)
 libcom_err.so.2 => /lib/libcom_err.so.2 (0x00a6a000)
 libk5crypto.so.3 => /usr/lib/libk5crypto.so.3 (0x00ad8000)
 libresolv.so.2 => /lib/libresolv.so.2 (0x00965000)
 libdl.so.2 => /lib/libdl.so.2 (0x008b8000)
 libz.so.1 => /usr/lib/libz.so.1 (0x008bd000)
 libdb-4.1.so => /lib/libdb-4.1.so (0x00c18000)
 libnsl.so.1 => /lib/libnsl.so.1 (0x008fe000)
 libc.so.6 => /lib/libc.so.6 (0x0076e000)
 libcrypt.so.1 => /lib/libcrypt.so.1 (0x008d0000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x00759000)
 libpthread.so.0 => /lib/libpthread.so.0 (0x00912000)

� The output of libsasl.so.2, which is the current major Cyrus SASL
version, indicates that SASL support has been compiled into Postfix and you
are ready to configure SMTP authentication.

NOTE Postfix also supports the older Cyrus SASL version, 1.5. If you find libsasl.so.7
in the output of the ldd command, your version of Postfix was built with Cyrus
SASL 1.5. If you find only libsasl.so.7, consider upgrading to Cyrus SASL 2;
the authentication backend support in this release is a substantial improvement over
that of version 1.5.

Adding SMTP AUTH Support to Postfix

If you don’t have SASL support in your Postfix installation and want to use
SMTP AUTH, you need to rebuild Postfix. The first thing you need to do is
locate the Cyrus SASL libraries and header files on your system. Search for
the libraries with a find command like this:

find /usr -name 'libsasl*.*'
/usr/lib/sasl2/libsasldb.la
/usr/lib/sasl2/libsasldb.a
/usr/lib/sasl2/libsasldb.so.2.0.15
/usr/lib/sasl2/libsasldb.so
/usr/lib/sasl2/libsasldb.so.2
/usr/lib/libsasl2.so.2.0.15
/usr/lib/libsasl2.so.2
248 Chap te r 16

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

/usr/lib/libsasl2.la
/usr/lib/libsasl2.a
/usr/lib/libsasl2.so

In the preceding example, you can see that the Cyrus SASL 2 library is in
/usr/lib. Make a note of this location, and then search for the corresponding
include files with this command:

find /usr -name '*sasl*.h'
/usr/include/sasl/sasl.h
/usr/include/sasl/saslplug.h
/usr/include/sasl/saslutil.h

NOTE Linux distributions put header files and libraries in separate packages in a misguided
effort to save disk space. If you can’t find the include files for Cyrus SASL on your sys-
tem, but the libraries are there, locate and install the SASL packages that end in -dev
or -devel.

If you don’t have the Cyrus SASL library on your system, read Chapter 15
to configure and install it. Once you know where the header and include file
directories are, you can build Postfix with SASL support like this:

1. Unpack the Postfix source as a regular user.

2. Change into the Postfix source directory.

3. Set the build options and run make makefiles and make, like this:

$ CCARGS="-DUSE_SASL_AUTH -I/usr/include/sasl" AUXLIBS="-L/usr/lib -lsasl2"
make makefiles

$ make

Keep in mind that these are the options for SASL only; you may wish
to add more options as described in the *_README files in the README_FILES
directory of the Postfix source tree.

4. Become the superuser (root).

5. If this is your first Postfix installation, run make install. However, if you’re
upgrading or replacing an existing installation, run make upgrade.

6. Verify that you have SASL support as described at the beginning of this
chapter.

Server-Side SMTP Authentication

This section of the chapter explains how to configure the Postfix smtpd
server to offer SMTP AUTH to mail clients. Once authenticated, the clients
can relay messages through the Postfix server even if their IP address is not
within the range of IP addresses defined by the mynetworks configuration
parameter.
SMTP Authen ti ca ti on 249
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

CAUTION To properly configure SMTP AUTH on your server, you not only need to configure and
link the Postfix library with the Cyrus SASL library, but you must also configure Cyrus
SASL to communicate with an authentication backend. See Chapter 15 for the details.

Figure 16-1: Server-side SMTP AUTH architecture

Figure 16-1 shows a mail client that authenticates itself with a mail server
before sending a message to be relayed to a remote destination. The server
compares the credentials from the mail client against the credentials stored
in an authentication backend. The server relays messages for the client only
if the credentials that were sent match the ones that are stored.

Enabling and Configuring the Server

After configuring an authentication backend in SASL, as described in
Chapter 15, you must configure the server as follows:

1. Enable server-side SMTP AUTH.

2. Configure the SASL mechanisms that will be offered to clients.

3. Configure SMTP AUTH support for nonstandard mail clients.

4. Configure the realm Postfix will pass to the SASL library.

5. Configure relay permissions in Postfix.

Mail client
Mail server

Postfix
SMTP AUTH

user:pass:
realm:app

yes/no

SASL

File, app,
database
250 Chap te r 16

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

NOTE Running Postfix chrooted and offering SMTP AUTH is not complicated. Follow the
instructions in this chapter to set up server-side authentication. Once you have proven
that non-chrooted SMTP authentication works, proceed to Chapter 20; running SMTP
AUTH with a chrooted Postfix is used as an example to describe chroot setups.

Enabling Server-Side SMTP AUTH

The first thing you need to do is enable server-side SMTP authentication for
the Postfix smtpd server, because this feature is disabled by default. Set the
smtpd_sasl_auth_enable parameter in main.cf to turn it on:

smtpd_sasl_auth_enable = yes

Configuring SASL Mechanisms

Now you must define the authentication mechanisms that Postfix should
offer to mail clients. Cyrus SASL provides several mechanisms that range
from anonymous “authentication” to very strong systems such as Kerberos.

You can control the offered mechanisms with the
smtpd_sasl_security_options parameter. Set it to a comma-separated list of one
or more of the following options:

noanonymous

This setting ensures that the server actually verifies the client’s creden-
tials. This is the default setting, and you should definitely keep this,
because some spammers know about anonymous SMTP authentication.
Make sure that your smtpd_sasl_security_options parameter always lists
noanonymous; otherwise, your mail server will almost certainly be abused as
an open relay.

noplaintext

Adding noplaintext to the list of SASL security options excludes all plain-
text authentication mechanisms, such as PLAIN and LOGIN. This is rec-
ommended because plaintext credentials are trivial to sniff from a
network.

noactive

This setting excludes SASL mechanisms that are susceptible to active
(non-dictionary) attacks. For example, mutual authentication is not sus-
ceptible to active attacks.

nodictionary

This keyword excludes all mechanisms that can be broken by means of a
dictionary attack. A dictionary attacker attempts to break a password by
brute force, trying many different passwords until one works.

mutual_auth

Using mutual_auth allows only mechanisms that provide mutual authenti-
cation. This form of authentication requires the server to authenticate
itself to the client as well as the other way around.
SMTP Authen ti ca ti on 251
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

When testing the configuration, you do not need to change this
parameter; the default of smtpd_sasl_security_options = noanonymous keeps
you safe from spammers but still allows plaintext mechanisms so that
debugging is slightly easier. Later, when you have verified that SMTP
AUTH works, you should disable plaintext authentication by expanding
your smtpd_sasl_security_options parameter in main.cf to at least this:

smtpd_sasl_security_options = noanonymous, noplaintext

CAUTION A mail client using plaintext mechanisms sends the username and password as a
base64-encoded string. It is trivial to decode this, so anyone listening to an SMTP dia-
log can use this data to abuse your mail server. Unfortunately, this is the only mecha-
nism that Outlook Express supports. If you want to offer plaintext mechanisms, offer
them only over an encrypted communication layer, as described in Chapter 18.

Configuring SMTP AUTH Support for Nonstandard Mail Clients

The next thing you should probably do is tell Postfix to offer an alternative
notation in the SMTP dialog so that broken mail clients still can use SMTP
AUTH.

Broken mail clients do not recognize SMTP AUTH when it is offered as
described in RFC 2222; instead, they recognize a notation that had been
used in a draft of the standards document, where an equal sign (=) instead of
a blank space appeared between the AUTH statement and the mechanisms.

Clients known to be “broken” are old versions of Microsoft Outlook,
Microsoft Outlook Express, and Netscape Mail.

To support broken mail clients, set broken_sasl_auth_clients in main.cf as
follows:

broken_sasl_auth_clients = yes

After reloading Postfix, you will notice another AUTH line in the SMTP
dialog that includes the equal sign. Here’s an example:

telnet mail.example.com 25
220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com
250-PIPELINING
250-SIZE 51200000
250-VRFY
250-ETRN
250-AUTH LOGIN PLAIN
250-AUTH=LOGIN PLAIN
250 8BITMIME
QUIT
252 Chap te r 16

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Configuring the SASL Realm

You may need to set a realm within in main.cf to be sent to the Cyrus SASL
password-verification service that you use, depending on the version of Cyrus
SASL and the specific service. When a client wants to authenticate, Postfix
sends the realm to Cyrus SASL along with the client’s credentials. You can
define the realm in Postfix with the smtpd_sasl_local_domain parameter in
main.cf; this parameter is empty by default and should be left empty unless
you use an auxiliary plug-in that actually requires a realm:

smtpd_sasl_local_domain =

You should change this to match the password-verification service that
you use:

auxprop
The services that use auxiliary properties expect a realm. Set smtpd_
sasl_local_domain to the realm your SMTP AUTH users have in the
authentication backend. For example, if your SMTP AUTH users in
/etc/sasldb2 have the realm example.com, use the following:

smtpd_sasl_local_domain = example.com

saslauthd prior to Cyrus SASL 2.1.17
saslauthd prior to Cyrus SASL 2.1.17 cannot deal with realms; you should
not use one. Remove the value for smtpd_sasl_local_domain as follows:

smtpd_sasl_local_domain =

saslauthd for Cyrus SASL 2.1.17
saslauthd for Cyrus SASL 2.1.17 does not know what to do with a realm,
so it ignores this information. It doesn’t matter what realm you send, so
you don’t have to touch the smtpd_sasl_local_domain parameter.

saslauthd Cyrus SASL 2.1.19
saslauthd Cyrus SASL 2.1.19 and later versions made sending the realm
configurable. Use the option -r when you start saslauthd to have the
realm passed to your password-verification backend.

Configuring Relay Permissions

The final step is to tell Postfix to permit relaying for SASL-authenticated
clients. To do this, add permit_sasl_authenticated to the list of smtpd_recipient_
restrictions in your configuration. Here’s an example:

smtpd_recipient_restrictions =
 [...]
 permit_sasl_authenticated,
SMTP Authen ti ca ti on 253
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

 permit_mynetworks,
 reject_unauth_destination
 [...]

Make sure you put the permit_sasl_authenticated keyword early enough in
the parameter so that an authenticating client doesn’t accidentally get
kicked out by another rule first (most importantly reject_unauth_destination).

You’re now finished with the basic server SMTP AUTH setup. Reload
your configuration and start testing.

Testing Server-Side SMTP AUTH

Testing server-side SMTP authentication involves these steps:

1. Check the mail log to find errors that Postfix can detect on its own.

2. Check the SMTP dialog to make sure that smtpd offers SMTP AUTH.

3. Authenticate a user to ensure that Postfix can communicate with
Cyrus SASL.

4. Send a test message to a remote user to verify that authenticated users
can relay messages to nonlocal destinations through your server.

Checking the Mail Log

Check the log file by printing out all lines in /var/log/maillog that contain the
words reject, error, warning, fatal, or panic followed by a colon (:) with this
command:

egrep '(reject|error|warning|fatal|panic):' /var/log/maillog

You shouldn’t see any errors related to SMTP AUTH, but if there are
any, check your configuration for typographical errors or Cyrus SASL–
related problems.

Now, enable verbose logging for the smtpd daemon, and keep the logging
level set this way for as long as you test SMTP AUTH. Make this change by
adding a -v to the smtpd command in master.cf:

==
service type private unpriv chroot wakeup maxproc command + args
(yes) (yes) (yes) (never) (100)
==
smtp inet n - n - - smtpd -v
#smtps inet n - n - - smtpd

Once you reload Postfix, the changes will take effect.
254 Chap te r 16

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Checking the SMTP Dialog

The next test is to make sure that Postfix offers SMTP AUTH to mail clients,
so that clients know when they can initiate SMTP authentication. Connect to
your server, and send an EHLO introduction to the server (SMTP AUTH only
works in extended SMTP communication). Here’s an example:

$ telnet mail.example.com 25
220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-STARTTLS
250-AUTH NTLM LOGIN PLAIN DIGEST-MD5 CRAM-MD5
250-AUTH=NTLM LOGIN PLAIN DIGEST-MD5 CRAM-MD5
250-XVERP
250 8BITMIME
QUIT
221 Bye

You can easily see that the AUTH parameter not only tells you that SMTP
AUTH is enabled, but also supplies a list of possible authentication mecha-
nisms. Furthermore, a near-identical line follows for broken clients.

If the server doesn’t offer the AUTH parameter, check that you did the
following:

� Compiled Postfix with Cyrus SASL support

� Configured the basic parameters correctly, and that you don’t have any
typos in main.cf; use postconf -n to verify the parameters

� Connected to the correct servers and that you use EHLO, not HELO

Authenticating a User

To authenticate a user, you need a base64-encoded string that contains a
valid username and password from your authentication backend. For
example, if your username is test and your password is testpass, use this
command:

$ perl -MMIME::Base64 -e 'print encode_base64("test\0test\0testpass");'

The output will look like this:

dGVzdAB0ZXN0AHRlc3RwYXNz
SMTP Authen ti ca ti on 255
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Now, connect to your server and start an extended SMTP communi-
cation using EHLO, and then use AUTH PLAIN to tell Postfix that you want to
authenticate using the plaintext mechanism with the base64-encoded string.
Here’s an example of a successful test:

$ telnet mail.example.com 25
220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-STARTTLS
250-AUTH NTLM LOGIN PLAIN DIGEST-MD5 CRAM-MD5
250-AUTH=NTLM LOGIN PLAIN DIGEST-MD5 CRAM-MD5
250-XVERP
250 8BITMIME
AUTH PLAIN dGVzdAB0ZXN0AHRlc3RwYXNz
235 Authentication successful
QUIT
221 Bye

You can easily see the 235 Authentication successful confirmation. If you
experience problems and the server responds with 535 Error: authentication
failed, try the following:

� Check your log file for errors.

� Verify the username and password in your authentication backend.

� Check over your Cyrus SASL configuration in /usr/lib/sasl2/smtpd.conf,
as described in Chapter 15.

� Reload Postfix if you changed /usr/lib/sasl2/smtpd.conf.

� Decode your base64 string, and compare the output against your origi-
nal input. (If you want to test the null bytes, redirect the output to a file
and run a text editor on the file.) Here’s an example:

$ perl -MMIME::Base64 -e 'print decode_base64("dGVzdAB0ZXN0AHRlc3RwYXNz");'
testtesttestpass

CAUTION If you post your logs to a mailing list, you probably should alter them to remove the user-
name and password information that comes with the verbose logging level. As an alter-
native, you could create a test user that you will delete as soon as you finish.
256 Chap te r 16

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Relaying a Test Message

You’re finally ready to see if the Postfix server permits an authenticated user
to relay a message. First, though, you need to make sure that other relay
permissions don’t interfere with your new authentication-based rules. To
ensure this, connect from a host or network that is not permitted to relay
without SMTP authentication. It pays to double-check, so first try to send a
message without using SMTP AUTH.

If you don’t have access to a client outside the network range defined in
mynetworks, disable the mynetworks parameter, and set mynetworks_style = host
while you test. This restricts relay permission to the server only, so you can
use any host on your local area network to test the server.

Connect to the server as described in the previous section, but do not QUIT
after you have authenticated successfully. Instead, proceed with a regular
SMTP communication session that sends mail to a nonlocal user. Here’s an
example that sends a message from john.doe@example.com to echo@postfix-
book.com:

$ telnet mail.example.com 25
220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-AUTH DIGEST-MD5 CRAM-MD5 GSSAPI PLAIN LOGIN
250-AUTH=DIGEST-MD5 CRAM-MD5 GSSAPI PLAIN LOGIN
250-XVERP
250 8BITMIME
AUTH PLAIN dGVzdAB0ZXN0AHRlc3RwYXNz
235 Authentication successful
MAIL FROM: <john.doe@example.com>
250 Ok
RCPT TO: <echo@postfix-book.com>
250 Ok
DATA
354 End data with <CR><LF>.<CR><LF>
This is a server side SMTP AUTH test. If the mail is
accepted, relaying works.
.
250 Ok: queued as 3FF15E1C65
QUIT
221 Bye
Connection closed by foreign host.
SMTP Authen ti ca ti on 257
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Notice the 250 Ok message that the server sends as a response to the RCPT
TO: command; this is usually a good sign, but you still want to confirm that a
message goes through. If this test doesn’t work, try the following:

� Check your log file for errors.

� Ensure that you set permit_sasl_authenticated correctly, as explained in
the earlier “Configuring Relay Permissions” section.

� Double-check your base64 string.

� Check your SMTP dialog for typographical errors.

Advanced Server Settings

Since the arrival of SMTP AUTH capability in Postfix, some parameters have
been added to give you better control over how SMTP AUTH should be
handled. The following subsections will tell you what Postfix can do today.

Offering SMTP AUTH Selectively

You can exclude networks so that Postfix will not offer SMTP AUTH to them.
This is extremely useful when you have Netscape mail clients (Netscape 4.x)
that insist on using SMTP AUTH as soon as it is offered; no matter whether
you configured them to use it or not.

Set the smtpd_sasl_exceptions_networks parameter in main.cf, and either
use the variables Postfix knows from its own configuration, such as mynetworks,
or define a list in IP address/CIDR notation (for example, 172.16.0.117/32):

smtpd_sasl_exceptions_networks = $mynetworks, 172.16.0.117/32

Enforcing an SMTP AUTH User to Match a Specific Envelope Sender

As soon as a mail client is authenticated, it is allowed to send with any
envelope sender it chooses. You can limit the mail clients, however, to
using a specific envelope sender address with the smtpd_sender_login_maps
parameter; it defines the path to a map that matches envelope sender
addresses with SASL login names. The map, such as /etc/postfix/
smtpd_sender_login_map, would look like this:

flintstone@example.com flintstone
rubble@example.com rubble
sales@example.com flintstone, rubble

The left-hand side of the map contains the envelope sender, and the
right-hand side contains either a single login name or a list of comma-
separated login names. Convert the map with postmap, for example postmap
hash:/etc/postfix/smtpd_sender_login_map, and tell Postfix to read the map in
main.cf.
258 Chap te r 16

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

smtpd_sender_login_maps = hash:/etc/postfix/smtpd_sender_login_map

You might also use NIS, LDAP, or SQL queries, instead of a hash map type.
Once Postfix knows about the map, you must choose one of two

restrictions to specify what should be done with clients whose envelope
sender doesn’t match their login name.

reject_sender_login_mismatch

This will restrict all clients, whether they are SMTP-authenticated or not.
reject_unauthenticated_sender_login_mismatch

This will restrict only clients that haven’t SMTP-authenticated
themselves.

Either one or the other parameter goes into the list of smtpd_recipient_
restrictions in main.cf:

smtpd_recipient_restrictions =
 ...
 reject_unauthenticated_sender_login_mismatch
 ...

Client-Side SMTP Authentication

In client-side SMTP authentication, the smtp and lmtp Postfix daemons use
Cyrus SASL to authenticate themselves with a remote server. In a client
configuration, you need to configure Postfix, but you don’t need to worry
about configuring Cyrus SASL. Both daemons, smtp and lmtp, can use any
mechanism that the Cyrus SASL library supports.

Figure 16-2: Client-side SMTP AUTH architecture

domain:user:password

SMTP AUTH Mail server
Mail client

Postfix

File
SMTP Authen ti ca ti on 259
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 16-2 shows the Postfix smtp daemon engaged in an SMTP
AUTH session with a remote mail server. The client (smtp) sends
credentials stored in an SASL password file to acquire relay permission
from the remote server.

AUTH for the Postfix SMTP Client

Configuring SMTP authentication for the Postfix client is much easier than
configuring it for the server. Although you still need the Cyrus SASL library,
you don’t need to configure SASL.

Here’s what you need to do:

1. Ask the remote server for the mechanisms that it offers.

2. Enable client-side SMTP AUTH.

3. Provide a file that holds your SMTP AUTH credentials.

4. Configure Postfix to use the credential file.

5. Disable unsafe authentication mechanisms.

Checking for Valid Authentication Mechanisms

Your first step is to find out what mechanisms the remote server offers and
make sure that your Cyrus SASL installation provides you with libraries to
support those mechanisms. Connect to your mail server, and send an EHLO
greeting to list the mechanisms. Here’s an example:

$ telnet mail.remote-example.com 25
220 mail.remote-example.com ESMTP
EHLO mail.example.com
250-mail.remote-example.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-STARTTLS
250-AUTH LOGIN PLAIN DIGEST-MD5 CRAM-MD5
250-AUTH=LOGIN PLAIN DIGEST-MD5 CRAM-MD5
250-XVERP
250 8BITMIME
QUIT
221 Bye

You can see that the server not only supports the LOGIN, PLAIN,
DIGEST-MD5, and CRAM-MD5 mechanisms, but also will talk to the broken
clients described earlier in the “Configuring SMTP AUTH Support for
Nonstandard Mail Clients” section.

Now, list the libraries in your Cyrus SASL library directory. For example,
if your Cyrus installation prefix is /usr/local, you would run the following.
260 Chap te r 16

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

ls -1 /usr/local/lib/sasl2/lib*.so

The output should look something like this:

/usr/local/lib/sasl2/libanonymous.so
/usr/local/lib/sasl2/libcrammd5.so
/usr/local/lib/sasl2/libdigestmd5.so
/usr/local/lib/sasl2/liblogin.so
/usr/local/lib/sasl2/libplain.so
/usr/local/lib/sasl2/libsasldb.so

It’s easy to see that this installation supports the ANONYMOUS,
CRAM-MD5, DIGEST-MD5, LOGIN, and PLAIN mechanisms. (Note
that libsasldb.so is not an authentication mechanism library.)

Once you have all this information, compare the mechanisms the
remote server offers to the listing of your own server’s Cyrus SASL libraries,
and you will know which mechanisms your Postfix client will be able to use
to connect to that server.

Enabling Client-Side SMTP AUTH

By default, client-side SMTP authentication is disabled. To turn it on, set the
smtp_sasl_auth_enable parameter in main.cf to yes:

smtp_sasl_auth_enable = yes

This enables client-side SMTP AUTH; you still have to tell Postfix where
to find the secrets needed to authenticate and which of the mechanisms
(from those the remote server offers) Postfix may use.

Storing SMTP AUTH Credentials

Your next step is to prepare the data that the Postfix client will use when it
wants to authenticate with one or more remote servers. As root, create the
/etc/postfix/sasl_passwd map file if it does not already exist:

touch /etc/postfix/sasl_passwd

TIP Postfix always open maps before chrooting, so this table can safely be kept outside
the jail.

Edit this file, putting the fully qualified domain name of a mail server
that requires authentication on the left-hand side, and a colon-separated
username and password pair on the right. Here’s an example that sets user-
names and passwords for mail.example.com and relay.another.example.com:

mail.example.com test:testpass
relay.another.example.com username:password
SMTP Authen ti ca ti on 261
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

After editing sasl_passwd, change the permissions so that only root can
read it; remember that it holds confidential information that local users
should not be able to read. Do this with the chown and chmod commands:

chown root:root /etc/postfix/sasl_passwd && chmod 600 /etc/postfix/sasl_passwd

NOTE Don’t worry about the permissions for Postfix; it reads sasl_passwd before it switches
to a user with fewer privileges and before entering a chroot jail.

With the proper permissions in place, convert the map file into an
indexed map that Postfix can access quickly (you need to do this every time
you change sasl_passwd):

postmap hash:/etc/postfix/sasl_passwd

Configuring Postfix to Use the SMTP AUTH Credentials

Next, you need to tell the Postfix client where to find the authentication
credential map that you just set up. Set the smtp_sasl_password_maps parameter
in main.cf to the full path of your sasl_passwd file, but specify that the map
values are stored in a hash file with the hash: qualifier. Here’s an example:

smtp_sasl_password_maps = hash:/etc/postfix/sasl_passwd

Restricting Authentication Mechanisms

As a final client configuration step, you should disable the use of unsafe
mechanisms. Set the smtp_sasl_security_options parameter to a comma-
separated list of mechanism types that the client may not use (see the earlier
“Configuring SASL Mechanisms” section for a list of valid types). By default,
smtp_sasl_security_options is set to noanonymous, but you should disable
plaintext mechanisms if you can (that is, if your server supports an encrypted
mechanism, such as DIGEST-MD5 or CRAM-MD5). To do this, add the
following line to main.cf:

smtp_sasl_security_options = noanonymous, noplaintext

TIP If the remote server offers only plaintext mechanisms, but you don’t want to use them
over an unencrypted communication layer, you can see if the server offers STARTTLS.
If it does, you can force Postfix to use TLS, as described in Chapter 18, so that the
client sends plaintext credentials only after establishing an encrypted communication
layer.
262 Chap te r 16

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Testing Client-Side SMTP AUTH

Testing your client’s authentication involves both local and remote testing:

1. Verify the credentials with the remote server to make sure that the
credentials you have are valid and are known to the remote server.

2. Check the log file.

3. Use Postfix to send a test message to a remote user, showing that you can
relay messages through the server.

Verifying Credentials with the Remote Server

Your first step is to verify that the username and password you have
actually work. Connect to the remote server, as described in the earlier
“Authenticating a User” section, and authenticate with the given username
and password.

NOTE If the remote server does not offer plaintext mechanisms over an unencrypted communi-
cation layer, you can try to use OpenSSL’s s_client to establish a TLS session, see if it
offers plaintext mechanisms, and try to AUTH then. See Chapter 18 for the details on
how to do this.

You can also try configuring the credentials into a GUI mail client that supports
various authentication mechanisms. Send a message with the client to see if the server
accepts the credentials.

After you’re sure that the server accepts your username and password,
you can focus on your Postfix configuration.

Checking the Log File

The next step is to look for obvious errors in the Postfix log file with the now-
familiar egrep command:

egrep '(reject|error|warning|fatal|panic):' /var/log/maillog

Using the Postfix Client to Send a Test Message to a Remote User

The final test is to send a message to a remote destination using your Postfix
mail client daemon (smtp). Perform the following steps:

1. Increase the log level for the smtp daemon.

2. Send a message to a remote destination.

3. Check the log file for confirmation of successful authentication.
SMTP Authen ti ca ti on 263
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Increasing the Log Level for the smtp Daemon

To increase the amount of log output for the smtp client daemon, edit your
master.cf file and give the smtp program a -v argument as follows (make sure
not to confuse the smtpd line with smtp):

==
service type private unpriv chroot wakeup maxproc command + args
(yes) (yes) (yes) (never) (100)
==
smtp inet n - n - - smtpd
#smtps inet n - n - - smtpd
...
smtp unix - - n - - smtp -v
...

After you reload the Postfix configuration, the smtp daemon will log the
SMTP AUTH communication and the calculation of credential information,
such as encoding or decoding the base64 string.

CAUTION You probably want to be careful about sending your Postfix log to a mailing list,
because smtp logs your credentials in plaintext. Take care to replace your username
and password (with XXX, for example) before posting your log.

Sending a Test Message to a Remote Destination

You can check whether client-side authentication works by using a GUI mail
client to transport the message to your Postfix client daemon. Or you can use
the following command line to send a message to echo@postfix-book.com,
which sends a message back to the envelope sender that includes the
complete header and body of the original message:

$ mail -s 'Testing client side authentication' echo@postfix-book.com
Testing...
.
Cc:
$

Checking the Log File for Successful Authentication

Finally, check the Postfix log file for successful authentication with the grep
command:

grep '235 Authentication successful' /var/log/maillog

If everything went well, you should see one or more lines like the
following that says that the authentication with relay.example.com worked:

Jan 20 12:40:39 mail postfix/smtp[21740]: < relay.example.com[172.16.0.100]:
235 Authentication successful
264 Chap te r 16

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

NOTE You should also have a new message in the destination mailbox; check the headers of
this message.

The lmtp Client

Configuring the Postfix lmtp client to use SMTP AUTH is very similar to
configuring the smtp client (see the earlier “AUTH for the Postfix SMTP
Client” section). These are the steps you need to perform:

1. Enable client-side SMTP AUTH by setting lmtp_sasl_auth_enable = yes in
your main.cf file.

2. Create a file that holds the SMTP AUTH credentials. To do this,
refer to the earlier “Storing SMTP AUTH Credentials” section, but
use lmtp_passwd as a filename instead of smtp_passwd (of course, you
could also share the credentials file with the smtp client).

3. Configure Postfix to use the file with the SASL credentials; set
lmtp_sasl_password_maps = hash:/etc/postfix/lmtp_passwd in your
main.cf file.

4. Restrict the client to safe authentication mechanisms (as described in
the next section).

Restricting lmtp to Groups of Mechanisms

The process for banning unsafe mechanisms for the lmtp client daemon is
very similar to the process for the smtp client daemon, described in the
section, “Restricting Authentication Mechanisms.” For example, if you want
to make sure that the client does not use plaintext mechanisms, set the
lmtp_sasl_security_options parameter as follows:

lmtp_sasl_security_options = noplaintext, noanonymous

However, there’s one slight difference from the smtp daemon settings: If
your lmtp client daemon happens to be on the same machine as your Postfix
server, and if they communicate via sockets, you might as well loosen the
settings a little and allow plaintext mechanisms:

lmtp_sasl_security_options = noanonymous

Testing SMTP AUTH for the lmtp Client

To test the lmtp client, perform the same steps as described earlier in the
“Testing Client-Side SMTP AUTH” section. In addition, you may want to use
imtest, a utility in the Cyrus IMAP package. This is particularly useful when
your goal is to make the Postfix lmtp client deliver mail to the LMTP server
that comes with the Cyrus IMAP server.
SMTP Authen ti ca ti on 265
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

17
U N D E R S T A N D I N G T R A N S P O R T

L A Y E R S E C U R I T Y

So far, you have seen that Postfix is rather
secure from the system point of view—

that is, Postfix tries hard to eliminate
common security holes that might lead to a

break-in. As noble as these efforts are, however, there’s
still something missing. The problem is that SMTP, as designed, does not
protect you from intruders that may be snooping on your network packets.
This may sound like a bleak situation, and although you may think there is
a bit of exaggeration in descriptions of the dangers, there are some real
instances where it really does make sense to protect the SMTP conversation
from eavesdroppers.

For example, a company that exchanges content over the Internet
through mail servers may want to consider encrypting this content, and
anyone running an SMTP server that supports SMTP AUTH allowing
plaintext authentication has a reason to be worried. Sensitive message
content and passwords will be transferred in plaintext TCP packets, and
anyone who might have access to the path of that data stream could dump
the TCP packets to their own computer and reconstruct the data stream.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

You can fix this problem with Transport Layer Security (TLS), a system
that encrypts communication between two hosts before any sensitive data goes
out over the wire. In Postfix, you can even use TLS to permit relaying, based
on a certificate system. This chapter explains the theory of TLS in Postfix,
whether it is acting as a mail client, a mail server, or a mail server that permits
relaying based on client certificates. When you are finished with this chapter,
you will also know when it makes sense to use TLS and its prerequisites.

TLS Basics

The default SMTP client-server communication is not encrypted. The
client simply establishes a TCP connection and starts transmitting data
(see Figure 17-1). Unless the content itself was encrypted by another
system, it is transported in plaintext, readable by anyone capable of
listening to the data stream. An unwanted listener could easily see the
content, and if they had control of a router, could possibly alter it.

Figure 17-1: Unencrypted communication—readable by everyone

These attacks are impossible when the client and server use TLS (see
Figure 17-2), because this system provides three things:

Privacy
The communication between the client and server is encapsulated inside
an encrypted session. A third party without access to the client and server
cannot decipher the data that is exchanged.

Integrity
Even though a man-in-the-middle attack is possible, both sides can
immediately detect any alteration in the content.

Proof of authenticity
The client and server can exchange certificates that are validated by a
trusted certification authority (CA) and that prove the authenticity of
the hosts involved. A certificate contains information such as the FQDN
of the host. DNS spoofing, to name just one possible attack, would be
detected before data was sent.

Internet

From: Sender <sender@example.com>
To: Recipient <recipient@example.com>
Subject: Forgot my password!

The old one was "Ri1n@K," but I cannot log...

Mail server Mail client
268 Chap te r 17

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 17-2: Encrypted communication—readable by the sender and recipient only

There are three common misconceptions about TLS:

� TLS does not protect the content after it goes from the client to the
server. As soon as the server receives and stores the message, it is once
again in clear text.

� TLS only guarantees encryption from the mail client to the mail server.
Remember that the mail server may need to pass the message along to
another server. Other mail servers on message’s path to the final destina-
tion might not support TLS. Therefore, although you can enforce
encryption on your own mail hubs, it is likely that you do not have con-
trol over the transport as soon as the message leaves your organization.
As soon as one of the servers along the way does not support TLS, it goes
back to clear text.

� TLS does not necessarily protect mail that is accepted and later returned
as undeliverable. There is no guarantee that the return mail will follow
the same path.

If any of these is a concern, you must encrypt the message content before
sending it. Popular email encryption tools include S/MIME, PGP, and GnuPG.

How TLS Works
Transport Layer Security encrypts the communication between exactly two
hosts. A TLS-enabled session proceeds as follows:

1. A client connects to a server.

2. The hosts initiate the SMTP communication.
3. The server offers TLS with the STARTTLS keyword within the SMTP

communication.
4. If the client is capable of using TLS, it responds by sending STARTTLS to

the server.
5. The public server certificate is signed with the private key and sent to the

client.
6. The client verifies the server’s certificate by checking its CA signature

against the public CA signature in the client’s own root store.

LAN

1122

Internet

Mail server Mail client
Under s tanding T ransport Layer Secu ri t y 269
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

7. The client verifies the server’s certificate by comparing the certificate’s
Common Name string with the server's DNS hostname.

8. The client and server switch to encrypted communication.

9. The hosts exchange data.

10. The session ends.

As you can see from this procedure, certificates play an important role
in TLS.

Understanding Certificates

Encryption technology does not depend on certificates, but they are
necessary to ensure that only the hosts intended to talk to each other can
actually do so. If each host can verify the other’s certificate, they agree to
encrypt their session. Otherwise, they abort the whole process of encryption
and issue warnings, because the basis for trust (authenticity) is absent.

How to Establish Trust

When you create a certificate, your system writes two files to the disk; one
contains the public key and the other one the private key. The sending host
encrypts some data with its private key, and the receiving host uses the public
key to decrypt and verify the authenticity of the sender. It’s possible to verify
a public key that has been signed by a CA—the CA acts as guarantor for the
validity of the sending host.

The receiving host does not query the CA directly every time it wants
to verify a certificate. This would not only cause a lot of traffic, but also leave
too much room for external manipulation when the verification data goes
over the network. Instead, the receiver locally compares the signature of
the CA’s public key against a checksum of the certificate in question. The
CA calculates and adds this checksum to the sender’s certificate during the
signing process. Any changes to the signed certificate would alter the check-
sum and render it useless, because the TLS mechanism would immediately
detect the tampering.

To establish trust between a client and a server they must meet different
requirements:

Client
A mail client that verifies the authenticity of a server certificate must
have access to the CA’s public key. Someone must import this key into
the client’s operating system certification store, where the mail client
and other applications can read it.

Server
A mail server that issues a certificate must have valid private and public
keys. The public keys must be signed by a CA.
270 Chap te r 17

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Which Certification Authority Suits Your Needs?
There are several certification authorities out there who will be happy to sign
your certificate. The question of which CA suits your needs best depends on
the CA’s services and prices, and your reason for using certificates:

Private use
If you can only envision using your certificate for private purposes, where
you or a limited number of users need a signed certificate (for example,
coworkers at your company or servers in a larger network at various loca-
tions all under your control), then you can consider being your own cer-
tificate authority. Sign the server certificate yourself, and then provide
both your CA root certificate and your server certificate to your clients
and servers. This involves less effort and money, but mail clients and serv-
ers outside your organization won’t trust your certificate.

Official use
If you need official contact with outside users and mail servers that you
have no control over, you should employ the services of an official CA.
You can start your search for a CA that suits your specific needs at the
PKI page (http://www.pki-page.org), where you will find a comprehensive
list of CAs around the world.

Creating Certificates

Whether you plan to roll your own CA or have your certificate signed by an
official certification authority, you will always have to create a certificate
request to have it signed.

It’s easy to create a new certificate—all you need to do is run a script and
a few commands that do most of the work for you. All you need is some
information at hand when you run the script.

Required Information

Most of the following parameters speak for themselves; you shouldn’t have
any trouble figuring them out. However, there is one entry where you must
be a little careful: Common Name. The value you provide in server certificates
must match the DNS name of your host. If there is a mismatch, TLS suspects
a man-in-the-middle attack (in which someone stole the certificate), and it
aborts verification. With client certificates, it’s common to specify a personal
name instead.

Here is the information you need to have at hand:

� Country

� State or province

� City or other municipal area

� Organization
Under s tanding T ransport Layer Secu ri t y 271
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

� Organization unit

� Common name

� Email address

Creating the CA Certificate
If you decide that you want to sign your own certificates, you need to create
your own CA certificate first. (If you’re using an official CA, skip ahead to
the “Distributing and Installing the CA Certificate” section.) Run misc/CA.pl
-newca in your OpenSSL distribution:

./CA.pl -newca
CA certificate filename (or enter to create)
Making CA certificate ...
Generating a 1024 bit RSA private key
......++++++
....++++++
writing new private key to './demoCA/private/cakey.pem'
Enter PEM pass phrase: �
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:EX
State or Province Name (full name) [Some-State]:Examplia
Locality Name (eg, city) []:Exampleton
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Example Inc.
Organizational Unit Name (eg, section) []:Certification Authority
Common Name (eg, YOUR name) []:mail.example.com
Email Address []:postmaster@example.com

� When generating your CA certificate, you need to enter a passphrase.
This will be required any time you work as a CA to sign and revoke certificates.

The misc/CA.pl program creates subdirectories where it puts files and
directories needed to run a CA. After you have run the program, you should
have a new misc/demoCA subdirectory, which should look like this:

tree demoCA/
demoCA/
|-- cacert.pem �
|-- certs
|-- crl
|-- index.txt
|-- newcerts
272 Chap te r 17

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

|-- private
| `-- cakey.pem �
`-- serial

� cacert.pem is the CA’s public key. Your hosts will need it in their
certificate root store to verify the signature in the Postfix public certificate.

� cakey.pem is the CA’s private key. It must be protected and only the
user who runs the CA should have read/write permission.

Distributing and Installing the CA Certificate
The next step is to distribute the CA certificate to all clients that will use TLS.
If you run your own CA you will find the CA certificate located in misc/demoCA.
By default openssl will save it as cacert.pem. If you’ve chosen an official certifi-
cation authority you will have to find and download their CA certificate.

How you distribute the CA certificate mainly depends on the applica-
tions that will use the certificate and the environment they run in. GUI
applications usually have a certificate root store provided by the operating
system, which offers centralized management of all certificates.

On servers that provide a command-line interface only and use Open-
SSL, there is no such thing as a single, centralized root store. Command-line
applications can use their own store, and the location of the store must be
configured within each application. Since Postfix is a command-line applica-
tion, you will need to configure either the smtp daemon or the smtpd daemon
or both to gain access to a store containing CA certificates. This part of the
configuration will be explained in Chapter 18.

NOTE Separate stores add flexibility for designing specialized solutions, but they also add com-
plexity to keeping certificates in various certificate stores up-to-date.

Windows Installation

Windows wants the certificate in a different format—OpenSSL can convert
the CA certificate for you. You don’t have to use CA.pl; you can run openssl
directly. In the following example, the SSL installation directory is /usr/
local/ssl:

cd /usr/local/ssl/misc/demoCA
openssl x509 -in cacert.pem -out cacert.der -outform DER

After you’ve done this, you will find a new file named cacert.der in /usr/
local/ssl/misc/demoCA.

Installing a CA certificate on Windows is fairly easy:

1. Copy cacert.der to your Windows machine.

2. Double-click cacert.der to start the installation process (see Figure 17-3).

3. Click Install Certificate, and follow the Certificate Import Wizard.
Under s tanding T ransport Layer Secu ri t y 273
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 17-3: A successfully installed CA certificate on a Windows host

4. Click Yes when asked to add the certificate to the root store.

5. After the installation is done, double-click cacert.der again to verify that
you successfully added it.

Linux (KDE-3.1.x) Installation

Installing a CA certificate on Linux/KDE is just as easy as on Windows:

1. Copy cacert.der to your Linux machine.

2. Double-click cacert.der in Konqueror to start the installation process.

3. KDE starts KDE Secure Certificate Import.

4. Choose Import.

5. A dialog box will appear, confirming that the import was successful.

6. Start KDE Control Center, and choose Security & Privacy from the
left pane.

7. Choose Crypto from the left pane.

8. Click the SSL Signers tab in the right pane.

9. Verify that the new certificate is there (see Figure 17-4).

Mac OS X Installation

Installing a certificate on Max OS X depends on the version you run. Here’s
a mixture of command-line and GUI steps that should work on all versions
(OS X prior to 10.3 and later).
274 Chap te r 17

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 17-4: A successfully installed CA certificate on a Linux host

To install a certificate manually, follow these steps:

1. Copy the cacert.pem to your home directory.

2. Open a Terminal window.

3. Import cacert.pem into the keychain:

$ sudo certtool i cacert.pem k=/System/Library/Keychains/X509Anchors
...certificate successfully imported

To verify that the certificate was successfully imported, follow these steps:

1. In the GUI open keychain in /Applications/Utilities/. You will only see
your local keychain.

2. Choose Add Keychain from the File menu, and add /System/Library/
Keychains/X509Anchors to your keychain.

3. Search for your CA certificate by scrolling in the X509Anchors keychain.
The Name column should refer to it by the Common Name you used
(see Figure 17-5).
Under s tanding T ransport Layer Secu ri t y 275
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 17-5: A successfully installed CA certificate on a Mac OS X host

Creating Your Server’s Certificate

Once you’ve installed the CA certificate, it’s time to create the Postfix server
certificate. On the command line in /usr/local/ssl/misc, run the following
command. It generates the certificate request that you’ll have the CA sign in
the following “Signing Your Server’s Certificate” section:

openssl req -new -nodes -keyout postfix_private_key.pem -out
postfix_private_key.pem -days 365

Generating a 1024 bit RSA private key
......................++++++
..........++++++
writing new private key to 'postfix_private_key.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:EX
State or Province Name (full name) [Some-State]:Examplia
Locality Name (eg, city) []:Exampleton
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Example Inc.
276 Chap te r 17

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Organizational Unit Name (eg, section) []:MX Services
Common Name (eg, YOUR name) []:mail.example.com
Email Address []:postmaster@example.com
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
#

CAUTION Don’t use misc/CA.pl to create the private key file, unless you edit it so that it does not
ask for a private passphrase to be included in the key. Adding a passphrase would mean
that whenever Postfix wanted to use the certificate, someone would have to enter the
passphrase! Postfix loads the certificate upon any start or restart of its smtp and smtpd
daemons, and if there’s a password, a user has to enter it. Needless to say, it would be
absurdly impractical for a server like Postfix not to be able to restart on its own.

Signing Your Server’s Certificate
The final step in building the server certificate is to get it signed by a CA.
If you are using an official CA, follow their instructions. Otherwise, run
openssl from the command line to create postfix_public_cert.pem from
postfix_private_key.pem.

openssl ca -policy policy_anything -out postfix_public_cert.pem -infiles
postfix_private_key.pem

Using configuration from /usr/local/ssl/openssl.cnf

Enter pass phrase for ./demoCA/private/cakey.pem:

Check that the request matches the signature

Signature ok

Certificate Details:

 Serial Number: 1 (0x1)

 Validity

 Not Before: Nov 9 21:25:13 2003 GMT

 Not After : Nov 8 21:25:13 2004 GMT

 Subject:

 countryName = EX

 stateOrProvinceName = Examplia

 localityName = Exampleton

 organizationName = Example Inc.

 organizationalUnitName = MX Services

 commonName = mail.example.com

 emailAddress = postmaster@example.com

 X509v3 extensions:

 X509v3 Basic Constraints:

 CA:FALSE

 Netscape Comment:
 OpenSSL Generated Certificate

 X509v3 Subject Key Identifier:

 9E:36:9D:9B:ED:4E:32:73:0E:86:55:2A:FF:1B:49:F9:1C:47:17:75
Under s tanding T ransport Layer Secu ri t y 277
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

 X509v3 Authority Key Identifier:

 keyid:00:52:AD:B7:FA:C2:EF:01:1A:9E:7B:0F:57:DB:DC:E4:82:59:8D:0B
 DirName:/C=EX/ST=Examplia/L=Exampleton/O=Certification Authority
Example Inc./CN=mail.example.com/emailAddress=postmaster@example.com

 serial:00

Certificate is to be certified until Nov 8 21:25:13 2004 GMT (365 days)

Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries

Data Base Updated

postfix_public_cert.pem is the certificate that will be sent to clients
during the initial TLS negotiation. Along with this certificate, Postfix will
also send the signature from postfix_private_key.pem. To verify postfix_
public_cert.pem the receiving host will then do some calculation based on
Postfix’s private key signature and the CA certificate signature. The result
must match the signature of postfix_public_cert.pem. Otherwise the public
key will be considered forged, and the communication will be ended
immediately.

Preparing Certificates for Use in Postfix

Regardless of whether you plan to use the certificates for smtp (mail client) or
smtpd (mail server), you should copy all of the certificates to /etc/postfix/certs:

mkdir /etc/postfix/certs
cp cacert.pem /etc/postfix/certs
cp ../*.pem /etc/postfix/certs

Then you must protect the server’s private key, postfix_private_key.pem,
from access by other users on your machine:

cd /etc/postfix/certs
chmod 600 postfix_private_key.pem

When you’re finished, the permissions should look like this:

ls -all certs/
total 20
drwxr-xr-x 2 root root 4096 Nov 9 23:03 .
drwxr-xr-x 3 root root 4096 Oct 28 00:13 ..
-rw-r--r-- 1 root root 1379 Nov 9 23:02 cacert.pem
-rw------- 1 root root 1620 Nov 9 23:02 postfix_private_key.pem
-rw-r--r-- 1 root root 3806 Nov 9 23:02 postfix_public_cert.pem

You are now ready to use the Postfix TLS features described in the next
chapter.
278 Chap te r 17

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

18
U S I N G T R A N S P O R T L A Y E R

S E C U R I T Y

Transport Layer Security (TLS) for Postfix
comes in two forms: client-side and server-

side TLS. In addition to basic TLS, both
forms provide functionality for performance

tuning and fine-grained TLS enforcement, as well as
enabling wrappers for secure plaintext SMTP AUTH
and having the capability to permit relaying based on
client certificates.

This chapter shows you how to configure Postfix for client- and server-
side TLS. You will see different approaches for deploying TLS and the TLS
daemons that supplement the default set of Postfix daemons.

Checking Postfix for TLS Support

Before you can set up the Postfix configuration files for TLS (described in
RFC 2487), you must check whether your version of Postfix supports it. This
is important, because the stock Postfix source code does not come with TLS
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

capability at all—you must patch the Postfix source code to get TLS and
STARTTLS support. If you use a prepackaged binary, though, you may
already have TLS, because many Linux distributions include it in their
Postfix packages. Postfix 2.2 includes TLS as a compile time option.

NOTE The TLS patch for Postfix was developed by Dr. Lutz Jänicke, a member of the
OpenSSL development team who develops encryption technology professionally. As
noted on the OpenSSL website, “The OpenSSL Project is a collaborative effort to
develop a robust, commercial-grade, full-featured, and Open Source toolkit implement-
ing the Secure Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1) pro-
tocols as well as a full-strength general purpose cryptography library.” For more
information on the OpenSSL Project, visit http://www.openssl.org.

Although TLS support comes as a patch, you may already have TLS
support in your Postfix, because many distributions include it in their Postfix
packages.

To check whether your Postfix installation supports TLS, check the
output of postconf -d for tls. A pipeline to a grep command should return
TLS parameters and their default values. Here is an example:

postconf -d | grep tls
smtp_enforce_tls = no
smtp_starttls_timeout = 300s
smtp_tls_CAfile =
smtp_tls_CApath =
smtp_tls_cert_file =
smtp_tls_cipherlist =
smtp_tls_dcert_file =
smtp_tls_dkey_file = $smtp_tls_dcert_file
smtp_tls_enforce_peername = yes
smtp_tls_key_file = $smtp_tls_cert_file
smtp_tls_loglevel = 0
smtp_tls_note_starttls_offer = no
smtp_tls_per_site =
smtp_tls_session_cache_database =
smtp_tls_session_cache_timeout = 3600s
smtp_use_tls = no
smtpd_enforce_tls = no
smtpd_tls_CAfile =
smtpd_tls_CApath =
smtpd_tls_ask_ccert = no
smtpd_tls_auth_only = no
smtpd_tls_ccert_verifydepth = 5
smtpd_tls_cert_file =
smtpd_tls_cipherlist =
smtpd_tls_dcert_file =
smtpd_tls_dh1024_param_file =
280 Chap te r 18

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

smtpd_tls_dh512_param_file =
smtpd_tls_dkey_file = $smtpd_tls_dcert_file
smtpd_tls_key_file = $smtpd_tls_cert_file
smtpd_tls_loglevel = 0
smtpd_tls_received_header = no
smtpd_tls_req_ccert = no
smtpd_tls_session_cache_database =
smtpd_tls_session_cache_timeout = 3600s
smtpd_tls_wrappermode = no
smtpd_use_tls = no
tls_daemon_random_bytes = 32
tls_daemon_random_source =
tls_random_bytes = 32
tls_random_exchange_name = ${config_directory}/prng_exch
tls_random_prng_update_period = 60s
tls_random_reseed_period = 3600s
tls_random_source =

The existence of all these TLS-related parameters indicates that TLS is
supported.

Building Postfix with TLS Support

If your binary does not have TLS support, you must build a new Postfix
installation. First, check your system for the OpenSSL libraries and header
files (the .h include files). Use find to search for the SSL libraries and
includes as follows:

find /usr -name 'ssl.*'

This command may take some time to complete. If successful, you
should see some output like this:

/usr/include/openssl/ssl.h
/usr/lib/libssl.so
/usr/lib/libssl.a

In this example, ssl.h is the include file, libssl.so is the shared version of
the OpenSSL library, and libssl.a is the static version of the library.

If you can’t find OpenSSL on your machine, you can attempt to find a
binary package from your distribution. Be sure to install the OpenSSL
development packages (usually named openssl-dev or openssl-devel);
otherwise, you will probably not get the include files.

If you want to use a newer version of OpenSSL than your distribution
ships with, or if you can’t find a binary package, you can build OpenSSL
yourself. You will see how to do this next.
Using T ransport Layer Secu ri t y 281
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Building and Installing OpenSSL from Source Code

OpenSSL, Postfix, and the TLS patch kit are under constant development.
Because the TLS patch kit depends on both Postfix and OpenSSL, you have
to make sure that everything fits together when you download the source
code and the patch kit.

CAUTION Some Linux distributions ship with OpenSSL libraries that will break parts of your sys-
tem if you overwrite the current OpenSSL installation on your system. If your machine
has OpenSSL 0.9.6 or higher, you should stick with that version unless you know how
to configure a newer version not to conflict with your existing installation.

OpenSSL 0.9.6 or higher works fine with Postfix TLS. As an alternative, you can
install the new library into a different place, thus avoiding the problem of overwriting
the essential libraries.

The easiest way to get appropriate source code is to visit Lutz Jänicke’s
website at http://www.aet.tu-cottbus.de/personen/jaenicke/postfix_tls where
you will find a TLS compatibility table. All you need to do is choose the
Postfix, TLS patch kit, and OpenSSL sources from the same row of that table,
and you will be prepared to begin building and installing your sources.

To install OpenSSL, do the following:

1. As a regular user, unpack the OpenSSL source with the tar xzf openssl-
version.tar.gz command, where version is the OpenSSL version.

2. Change into the newly created directory containing the OpenSSL sources.

3. Read the INSTALL file, and decide whether you need any special options.

4. If you want to build shared libraries, run configure with --shared; shared
libraries are not built by default. If you link Postfix statically against
libopenssl.a, then you will need to recompile all of Postfix if you need to
update OpenSSL due to security issues.

5. After running the configure script to build the Makefiles, run make &&
make test.

6. Become the superuser (root), and run make install. If you didn’t build
shared libraries, you’re finished.

7. Verify the shared library path; the install process prints this directory just
before terminating. The default path is /usr/local/ssl/lib.

8. Add the shared library path to your dynamic linker’s runtime search
path. On Linux, this means that you have to add the directory to the
/etc/ld.so.conf file and run ldconfig. On Solaris, you need to run crle.

Building Postfix with TLS

After you’ve got the OpenSSL libraries and include files, you can build a new
TLS-aware Postfix. You need the Postfix source code and the TLS patch kit.
282 Chap te r 18

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

CAUTION Make sure you check the README and INSTALL files before doing anything; the procedure
for installing TLS support may have changed since the date of publication.

To build Postfix, follow these steps:

1. Unpack the Postfix source code and TLS patch kit as a regular user into
separate directories.

2. Change into the Postfix source directory.

3. Run patch -p1 < ../tls_dir/pfixtls.diff to apply the patch, where tls_dir
is the directory containing the TLS patch file named pfixtls.diff.

4. Set the build options, and then run make makefiles and make as follows,
where ssl_prefix is your SSL base directory and sasl2_prefix is your
SASL2 base directory.

$ CFLAGS="-DUSE_SSL -DUSE_SASL_AUTH -Isasl2_prefix/include -Issl_prefix/
includes" AUXLIBS="-Lssl_prefix/lib -lssl -lcrypto -Lsasl_prefix/lib -
lsasl2" �

$ make makefiles
$ make

� These options specify a Postfix build with TLS and SASL2
support. To add more options, read the relevant file in the readme
directory of the Postfix source tree.

5. Switch to the superuser (root).

6. Run make install if this is the first installation from source code or make
upgrade if you already had a working Postfix installation.

7. If you built OpenSSL as a shared library, run ldd `postconf -h
daemon_directory`/smtpd to verify that the dynamic runtime linker can find
all of the libraries that you used to compile Postfix.

After completing these steps, you should have a Postfix installation that
supports Transport Layer Security.

Server-Side TLS

In server-side TLS, Postfix acts as a mail server (MTA), offering TLS to mail
clients (see Figure 18-1). You can configure Postfix to encrypt the transport
layer, hiding the entire SMTP communication session, to receive plaintext
SMTP AUTH credentials safely, or to relay mail for clients based on the
certificates that the clients present.

NOTE Postfix does not offer STARTTLS to the sendmail command-line utility. This is a security
feature; a TLS-aware sendmail would need to access the server’s private key. However,
the key is owned and is only readable by root, and the Postfix sendmail does not run
as root.
Using T ransport Layer Secu ri t y 283
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 18-1: TLS for the Postfix mail server

Basic Server Configuration

To set up server-side TLS, you need to modify five parameters in your Postfix
configuration files. You should also set two additional parameters to facilitate
debugging (this not only helps you find problems, but is handy when tuning
TLS sessions because Postfix gets to know mail clients that can and cannot
use TLS).

The configuration steps are as follows:

1. Enable TLS in the main Postfix configuration file.

2. Tell Postfix where to find the certificates required for TLS.

3. Connect Postfix to a random source generator.

4. Increase the log level to get useful information as you learn to run TLS.

5. Add information to mail headers to further trace TLS.

Enabling Server-Side TLS

By default, TLS-capable Postfix servers do not have server-side TLS enabled,
so Postfix does not offer TLS to clients, even if they ask for it. To enable
server-side TLS, set the smtpd_use_tls parameter in main.cf to yes:

smtpd_use_tls = yes

After reloading the configuration, Postfix offers STARTTLS to mail
clients in the SMTP dialog to inform them that they may negotiate a TLS
session. However, enabling server-side TLS is not sufficient to get it working,
because you haven’t told Postfix where to find the server certificates essential
to a TLS session. You will see a message like this in the mail log:

Dec 1 03:07:13 mail postfix/smtpd[741]: TLS engine: do need at least RSA _or_
DSA cert/key data

LAN

1122

Internet

Mail server Mail client

Mail serverPlaintext transport
284 Chap te r 18

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Setting Certificate Paths

The next step is to add paths for the files or directories that hold your server
certificates. At the very least, you must provide the server key and certificate
that was signed by a certification authority and the corresponding private key
used to create the certificate request. Both declarations appear in main.cf.
Here is an example, where the certificates are in /etc/postfix/certs:

smtpd_tls_key_file = /etc/postfix/certs/postfix_private_key.pem �
smtpd_tls_cert_file = /etc/postfix/certs/postfix_public_cert.pem �

� smtpd_tls_key_file is the path to the private key.
� smtpd_tls_cert_file is the path to the server certificate.

NOTE The preceding settings assume that your server certificate and private key are in sepa-
rate files. If you decide to put both certificates in a single file, you can point one param-
eter to the other with a configuration line such as smtpd_tls_cert_file =
$smtpd_tls_key_file.

After setting these certificate parameters, you can run Postfix in server-
side TLS mode, but you’ll still have several errors and warnings in the log
file. That’s because Postfix can’t transmit the CA’s certificate and verify
certificates sent by mail clients. You still need to configure the source for CA
certificates.

Configuring the Postfix Certificate Root Store

As mentioned earlier in Chapter 17, OpenSSL does not have a default
central root store, so you need to create a root store designed specifically for
your mail system or to use a root store that already exists on your system. The
configuration that you’re about to see uses the ca-bundle.crt file that comes
with the Apache mod_ssl module, which contains several CA certificates and
servers for Apache.

NOTE You may want to set up your own collection of CA certificates in order to make sure that
they really stem from those certification authorities and weren’t modified by some third
party on their way to packaging. This is the safest way to proceed, because all TLS secu-
rity efforts are in vain if the certificates on which this mechanism relies are fakes.

When preparing to collect the CA certificates for your server, be prepared to spend a
considerable amount of time in the process. When we researched this chapter, collecting
the certificates turned out to be a very time-consuming task. Nearly all of the
certification authorities seemed to hide the pertinent information on their websites.

To find the Apache mod_ssl ca-bundle.crt on your system, run locate ca-
bundle.crt on the command line:

$ locate ca-bundle.crt
/usr/share/ssl/certs/ca-bundle.crt
Using T ransport Layer Secu ri t y 285
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

If you do not have the locate command, you need to resort to the slower
find command:

$ find / -name ca-bundle.crt

After you find or install your root store, you must configure Postfix to use
it with the smtpd_tls_CAfile parameter in main.cf. Here’s an example:

smtpd_tls_CAfile = /usr/share/ssl/certs/ca-bundle.crt

If you act as your own certification authority, you need to add your CA
certificate to this root store. You can just append your certificate to the end
of the preexisting root with a cat command, as in this example:

$ cat /usr/local/ssl/misc/demoCA/cacert.pem >> /usr/share/ssl/certs/ca-bundle.crt

NOTE If your CA certificate is a link in a chain of certificates, add all of the CA certificates
from your CA certificate down to the root CA certificate in the certificate chain.

The smtpd_tls_CAfile parameter expects all certificates to be located in a
single file. As an alternative, Postfix offers the smtpd_tls_CApath parameter,
which you can set to a directory in which certificates are stored as separate files.

NOTE The storage method isn’t the only difference between smtpd_tls_CAfile and smtpd_tls_
CApath. The files in smtpd_tls_CApath are consulted only when Postfix needs to verify a
certificate. However, Postfix reads the files named by the smtpd_tls_CAfile parameter at
startup, before Postfix enters the chroot jail. Therefore, if you decide to run Postfix in a
chrooted environment, smtpd_tls_CAfile is the better choice, because you can place the
certificate files outside the chroot jail.

You might be better off setting both parameters, splitting some CA certi-
ficates into separate files from a main batch in a single file. Postfix reads files
named by smtpd_tls_CAfile first, then consults smtpd_tls_CApath as a fallback.

Connecting Postfix to a Random Source Generator

TLS is a safe way to send mail not just because it encrypts the communication
layer, but also because it never uses the same combination of numbers for
any two ciphers. The TLS implementation does this by choosing a (pseudo)
random number for all new TLS sessions.

OpenSSL does not generate its own random numbers because most
Linux and BSD derivatives have built-in random number sources as system
devices in /dev.

NOTE If your system doesn’t have built-in random number generation, you can use the
pseudo-random number generator daemon (also by Lutz Jänicke). To configure Postfix
to use this daemon, you set the tls_random_exchange_name parameter in main.cf.
Have a look at samples/sample-tls.cf in your Postfix distribution for more details.

The two sources for random numbers normally available on your system
are dev:/dev/random and dev:/dev/urandom.
286 Chap te r 18

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

/dev/random

The /dev/random generator provides high-quality random data, but you
shouldn’t use it on systems that use TLS heavily. The reason is that /dev/
random can block if a TLS requests random data too quickly, draining the
random source. If this happens, Postfix stops working until the systems
gains enough entropy to provide numbers again.

/dev/urandom

The /dev/urandom generator never blocks because it uses an internal
pseudo-random number generator to create the entropy data. Use /dev/
urandom for systems that start Postfix automatically.

To connect Postfix to a random source generator, set the tls_random_
source parameter in main.cf and reload your configuration:

tls_random_source = dev:/dev/urandom

NOTE OpenSSL versions greater than 0.9.6 detect /dev/urandom automatically. If you use one
of these versions, you do not need to set tls_random_source. OpenSSL 0.9.7 goes even
further, detecting other random source generators. If you’re using OpenSSL 0.9.7, look
at its documentation for more details.

Increasing the TLS Log Level

The TLS subsystem provides the smtpd_tls_loglevel parameter to control the
amount of TLS-related information written to your mail log. The five levels
described in Table 18-1 control how verbose the logging is.

The first time you enable server-side TLS, set the log level to 2, which gives
you enough information to start debugging if things don’t work out as planned:

smtpd_tls_loglevel = 2

Adding Information to Mail Headers

You may also want your mail server to add TLS information to the Received
header of each message sent using TLS. Do this by setting the smtpd_tls_
received_header parameter in main.cf as follows.

Table 18-1: smtpd_tls_loglevel Levels for smtpd

Log Level Description

0 No TLS logging; this is the default

1 Startup and certificate information

2 All of level 1, plus information about the various stages of TLS negotiation

3 All of level 2, plus hex and ASCII dumps of the negotiation process

4 All of level 3, plus hex and ASCII dumps of the complete transmission
after the mail client sends STARTTLS
Using T ransport Layer Secu ri t y 287
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

smtpd_tls_received_header = yes

After a configuration reload, you should see something like this in your
mail headers:

Received: from client.example.com (client.example.com [172.16.0.3])
 (using TLSv1 with cipher EDH-RSA-DES-CBC3-SHA (168/168 bits))
 (No client certificate requested)
 by mail.example.com (Postfix) with ESMTP id B637A7247
 for <tls-bounce@mail.examples.com>; Wed, 10 Dec 2003 23:37:02 +0100 (CET)

Testing Server-Side TLS

There are three things to test after you configure the TLS basics:

1. Check the log file to see if Postfix encountered any errors.

2. Check for STARTTLS in the SMTP dialog to see that Postfix is
offering TLS.

3. Test TLS with the openssl program to prove that Postfix can
initiate a TLS session using the certificates you provided in the
basic configuration.

Checking the Log File

The first test is to look for TLS support by scanning the log file using a
regular expression:

$ egrep '(reject|error|warning|fatal|panic):' /var/log/maillog

This command prints out all lines in /var/log/maillog that contain the
words reject, error, warning, fatal, or panic followed by a colon (:).

If you did everything correctly, there shouldn’t be any TLS-related
errors. If problems do crop up, check the configuration file for typos and
check the read permissions of the certificates.

Looking for STARTTLS in SMTP Communication

The next test you should do is run a telnet session to the Postfix server to
verify that it offers TLS to mail clients. Look carefully at the following output
for the STARTTLS keyword:

$ telnet localhost 25
220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com
250-PIPELINING
288 Chap te r 18

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

250-SIZE 10240000
250-VRFY
250-ETRN
250-STARTTLS
250-AUTH NTLM LOGIN PLAIN OTP DIGEST-MD5 CRAM-MD5
250-XVERP
250 8BITMIME
QUIT
221 Bye

Simulating a TLS Mail Client–Server Session with OpenSSL

The final test is a simulation of a mail client-to-server session with the openssl
s_client option. The OpenSSL client can connect to remote hosts with TLS/
SSL, printing out plenty of diagnostic information in the process. If it
succeeds, your TLS server configuration works, and you can now test with a
mail client. If this test fails, you will get a wealth of useful debugging
information for tracking down the error.

Here is an example of a successful session, where your CA path is /etc/
postfix/certs:

openssl s_client -starttls smtp -CApath /etc/postfix/certs/ -connect localhost:25
CONNECTED(00000003)
depth=1 /C=DE/ST=Bavaria/L=Munich/O=Postfix Book/OU=#Authoring/CN=mail.example.com/
emailAddress=postmaster@example.com
verify return:1
depth=0 /C=DE/ST=Bavaria/L=Munich/O=Postfix Book/OU=Mailserver/CN=mail.example.com/
emailAddress=postmaster@example.com
verify return:1

Certificate chain
 0 s:/C=DE/ST=Bavaria/L=Munich/O=Postfix Book/OU=Mailserver/CN=mail.example.com/
emailAddress=postmaster@example.com
 i:/C=DE/ST=Bavaria/L=Munich/O=Postfix Book/OU=#Authoring/CN=mail.example.com/
emailAddress=postmaster@example.com
 1 s:/C=DE/ST=Bavaria/L=Munich/O=Postfix Book/OU=#Authoring/CN=mail.example.com/
emailAddress=postmaster@example.com
 i:/C=DE/ST=Bavaria/L=Munich/O=Postfix Book/OU=#Authoring/CN=mail.example.com/
emailAddress=postmaster@example.com

Server certificate
-----BEGIN CERTIFICATE-----
MIID4DCCA0mgAwIBAgIBATANBgkqhkiG9w0BAQQFADCBnjELMAkGA1UEBhMCREUx
EDAOBgNVBAgTB0JhdmFyaWExDzANBgNVBAcTBk11bmljaDEVMBMGA1UEChMMUG9z
dGZpeCBCb29rMRMwEQYDVQQLFAojQXV0aG9yaW5nMRkwFwYDVQQDExBtYWlsLmV4
YW1wbGUuY29tMSUwIwYJKoZIhvcNAQkBFhZwb3N0bWFzdGVyQGV4YW1wbGUuY29t
MB4XDTAzMTAyMzIwMTkyOVoXDTA0MTAyMjIwMTkyOVowgZ4xCzAJBgNVBAYTAkRF
MRAwDgYDVQQIEwdCYXZhcmlhMQ8wDQYDVQQHEwZNdW5pY2gxFTATBgNVBAoTDFBv
Using T ransport Layer Secu ri t y 289
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

c3RmaXggQm9vazETMBEGA1UECxMKTWFpbHNlcnZlcjEZMBcGA1UEAxMQbWFpbC5l
eGFtcGxlLmNvbTElMCMGCSqGSIb3DQEJARYWcG9zdG1hc3RlckBleGFtcGxlLmNv
bTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA9wBRlv3EsemFDq0X5L/4DUCt
8oIpdlOX0pNMKqh/LnWuFXivCy52dMMbWtQgWaR+xRKaacyLeIdeyDx5Lwz0gOd6
3zT+M2TAwGi6eQp+u8NpIuDF3eKYRBPoLGMuQiWkOcwNjagXg+U1Q9oVBseMgg/a
0Vj8aNasi4qJ2N59sbcCAwEAAaOCASowggEmMAkGA1UdEwQCMAAwLAYJYIZIAYb4
QgENBB8WHU9wZW5TU0wgR2VuZXJhdGVkIENlcnRpZmljYXRlMB0GA1UdDgQWBBQj
RXFGfepblNkc6G/57Et7xRI1eDCBywYDVR0jBIHDMIHAgBQJScWoXDhSbW76EWQI
GUMvoySuN6GBpKSBoTCBnjELMAkGA1UEBhMCREUxEDAOBgNVBAgTB0JhdmFyaWEx
DzANBgNVBAcTBk11bmljaDEVMBMGA1UEChMMUG9zdGZpeCBCb29rMRMwEQYDVQQL
FAojQXV0aG9yaW5nMRkwFwYDVQQDExBtYWlsLmV4YW1wbGUuY29tMSUwIwYJKoZI
hvcNAQkBFhZwb3N0bWFzdGVyQGV4YW1wbGUuY29tggEAMA0GCSqGSIb3DQEBBAUA
A4GBADUNOgZfc8ClIRir/9DboKup+MSijhlPi5bmMOj6OWNj6STiNrcjTaF8qH+6
LFxXbclJfWUHaEFvSLSeW79zh7KX67yOU46nVVYdF8+gHV/XnZK6f/6CpwcjOnQP
PI3GDtLoNXUlPqrngrJskWUuDcZwkQBlXinZlyMSs1gcSDS0
-----END CERTIFICATE-----
subject=/C=DE/ST=Bavaria/L=Munich/O=Postfix Book/OU=Mailserver/CN=mail.example.com/
emailAddress=postmaster@example.com
issuer=/C=DE/ST=Bavaria/L=Munich/O=Postfix Book/OU=#Authoring/CN=mail.example.com/
emailAddress=postmaster@example.com

No client certificate CA names sent

SSL handshake has read 2592 bytes and written 356 bytes

New, TLSv1/SSLv3, Cipher is DHE-RSA-AES256-SHA
Server public key is 1024 bit
SSL-Session:
 Protocol : TLSv1
 Cipher : DHE-RSA-AES256-SHA
 Session-ID: D341BF543EB5690DA873EFD0B0B4CB2EF210930812C14F3DBB85BD1AE92C6CB3
 Session-ID-ctx:
 Master-Key:
D4E3B4617214EDA8E1D2EAF54482FC65D1BD7BF5474F2FB2E2C0312BE098D8AF29ABC6603C4A89B7B413ED24D79375CD
 Key-Arg : None
 Start Time: 1068108666
 Timeout : 300 (sec)
 Verify return code: 0 (ok)

220 mail.example.com ESMTP Postfix (2.0.16-20030921)
QUIT
DONE

Server Performance Tuning

Cryptography puts a load on your processor. At the start of each TLS session,
the client and server perform several private-key operations to sign the
handshake messages—a computationally expensive process. A lot of simul-
taneous TLS sessions can seriously slow down a mail server.
290 Chap te r 18

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

By default, Postfix’s smtpd memorizes the session key for its connections.
However, Postfix also allows smtpd processes to terminate after a period of
inactivity to save resources on the server and to load possible new config-
uration information. Unfortunately, this means that Postfix loses a session
key after the smtpd terminates, so it must recalculate the key when a mail
client returns to transmit another message.

To avoid the loss of session keys when an instance of smtpd dies, Postfix
may maintain an out of process session key cache as described in the
following section.

Configuring a TLS Session Key Cache

To head off the problem of computational load that TLS cryptography
can create, you need to configure smtpd processes to store session keys in
a database. After one smtpd stores the key, all smtpd processes have access to
the key, regardless of whether they just started or have been running for a
long time. A session-key cache significantly reduces CPU load.

To enable a session-key cache, set the smtpd_tls_session_cache_database
parameter, and enable the tlsmgr daemon. The main.cf parameters look
like this:

smtpd_tls_session_cache_database = sdbm:/etc/postfix/smtpd_scache
smtpd_tls_session_cache_timeout = 3600s

NOTE Session key caching requires concurrent write access to the key database. In Postfix, only
the SDBM database type supports this. All TLS-enabled Postfix installations recognize
this key type.

By default, all session keys in the database expire after one hour (3,600
seconds). RFC 2246 recommends a maximum of timeout period of 24 hours.
You can change the default behavior by setting a different value for smtpd_
tls_session_cache_timeout, specified in seconds.

Maintaining the TLS Session-Key Cache with tlsmgr

Postfix needs to actively maintain its TLS session-key cache database. For
security reasons, you must remove keys when they expire, and you also need
to keep the database from growing without bounds. The tlsmgr daemon that
is only present in TLS-capable Postfix installations performs these tasks. Here
are the specifics on what tlsmgr does:

� Assists in creating random numbers on systems that do not have built-in
random support

� Clears expired keys from the session cache database as defined by
smtpd_tls_session_cache_timeout

� Rebuilds the database specified by smtpd_tls_session_cache_database from
scratch when you restart Postfix
Using T ransport Layer Secu ri t y 291
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

To run tlsmgr, you must verify that it is enabled in master.cf. On an
installation built from source, you shouldn’t need to change anything, but
some distributions disable the daemon in their Postfix packages, so it never
hurts to make sure that it is uncommented in your master.cf, as follows:

==
service type private unpriv chroot wakeup maxproc command + args
(yes) (yes) (yes) (never) (100)
==
...
tlsmgr fifo - - n 300 1 tlsmgr
...

CAUTION Never put the TLS session cache database in the chroot jail. A compromised session
cache database could be used to trick mail clients into believing that they are communi-
cating with a safe mail server, allowing the clients to transmit sensitive information.

You can run the tlsmgr daemon chrooted, because it opens the session-key database
before it changes its root directory, and it is therefore able to read and write to the
database while chrooted.

You must reload Postfix to start tlsmgr after making the appropriate
changes in master.cf.

Server-Side Measures to Secure the SMTP AUTH Handshake

SMTP AUTH may offer plaintext security mechanisms, such as PLAIN and
LOGIN. Certain mail clients, Microsoft Outlook and Outlook Express in
particular, can use only those mechanisms at present. Although users are
generally oblivious to security mechanisms, using plaintext for SMTP AUTH
tends to make administrators nervous, because anyone capable of reading
raw packets on the network can easily extract usernames and passwords.

You can protect against plaintext username and password submission by
offering SMTP AUTH only in conjunction with TLS.

Offering SMTP AUTH with TLS Only

Postfix provides the smtpd_tls_auth_only parameter to offer SMTP AUTH only
when an encrypted SMTP connection has been established. This parameter
is not enabled by default; to turn it on, add this line to main.cf and reload
your configuration:

smtpd_tls_auth_only = yes

Keep in mind that restricting SMTP AUTH to TLS sessions is a very strict
approach to banning plaintext mechanisms from an unencrypted SMTP
session, and it prohibits certain other (safer) mechanisms from regular
SMTP communication.
292 Chap te r 18

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

To verify your TLS enforcement, ensure that the Postfix server does not
offer SMTP AUTH for unencrypted sessions. Connect to your server on port
25, and start a handshake with EHLO yourFQDN as follows:

$ telnet mail.example.com 25
220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-STARTTLS
250 8BITMIME
QUIT
221 Bye

Notice that SMTP AUTH and its mechanisms do not appear in this
SMTP session, so step one of this configuration works.

Testing with an Encrypted Transport Layer

Now you should check to see whether SMTP AUTH is offered in a TLS
session. As you did when testing TLS earlier, run openssl s_client to connect
to your server, and then issue EHLO yourFQDN as in the earlier telnet session.
Although there is a lot more output this time, you should be able to pick out
the SMTP AUTH information at the end:

openssl s_client -starttls smtp -CApath /etc/postfix/certs/ -connect localhost:25
CONNECTED(00000003)
depth=1 /C=EX/ST=Examplia/L=Exampleton/O=Certification Authority Example Inc./
CN=mail.example.com/emailAddress=postmaster@example.com
verify return:1
depth=0 /C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=MX Services/CN=mail.example.com/
emailAddress=postmaster@example.com
verify return:1

Certificate chain
 0 s:/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=MX Services/CN=mail.example.com/
emailAddress=postmaster@example.com
 i:/C=EX/ST=Examplia/L=Exampleton/O=Certification Authority Example Inc./CN=mail.example.com/
emailAddress=postmaster@example.com
 1 s:/C=EX/ST=Examplia/L=Exampleton/O=Certification Authority Example Inc./CN=mail.example.com/
emailAddress=postmaster@example.com
 i:/C=EX/ST=Examplia/L=Exampleton/O=Certification Authority Example Inc./CN=mail.example.com/
emailAddress=postmaster@example.com

Server certificate
Using T ransport Layer Secu ri t y 293
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

-----BEGIN CERTIFICATE-----
MIID9jCCA1+gAwIBAgIBATANBgkqhkiG9w0BAQQFADCBpjELMAkGA1UEBhMCRVgx
ETAPBgNVBAgTCEV4YW1wbGlhMRMwEQYDVQQHEwpFeGFtcGxldG9uMS0wKwYDVQQK
EyRDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eSBFeGFtcGxlIEluYy4xGTAXBgNVBAMT
EG1haWwuZXhhbXBsZS5jb20xJTAjBgkqhkiG9w0BCQEWFnBvc3RtYXN0ZXJAZXhh
bXBsZS5jb20wHhcNMDMxMTA5MjEyNTEzWhcNMDQxMTA4MjEyNTEzWjCBpDELMAkG
A1UEBhMCRVgxETAPBgNVBAgTCEV4YW1wbGlhMRMwEQYDVQQHEwpFeGFtcGxldG9u
MRUwEwYDVQQKEwxFeGFtcGxlIEluYy4xFDASBgNVBAsTC01YIFNlcnZpY2VzMRkw
FwYDVQQDExBtYWlsLmV4YW1wbGUuY29tMSUwIwYJKoZIhvcNAQkBFhZwb3N0bWFz
dGVyQGV4YW1wbGUuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDL1OHc
H7lyo2bcDbafEeTvsSEGepsleBAmMsB1ohWLnjUcEmE5Rth9eF/TMYUABiWhnXOb
2H0KOalzuyjQqLtFHy4Bh6EcNeMdTtrEPZ2kYw+/ARkaGJrwzlNwfpzwuBhBr/qX
5FQstSG2cI4vMRkb2Vb9sq8aFneAMn+zH98v9QIDAQABo4IBMjCCAS4wCQYDVR0T
BAIwADAsBglghkgBhvhCAQ0EHxYdT3BlblNTTCBHZW5lcmF0ZWQgQ2VydGlmaWNh
dGUwHQYDVR0OBBYEFJ42nZvtTjJzDoZVKv8bSfkcRxd1MIHTBgNVHSMEgcswgciA
FABSrbf6wu8BGp57D1fb3OSCWY0LoYGspIGpMIGmMQswCQYDVQQGEwJFWDERMA8G
A1UECBMIRXhhbXBsaWExEzARBgNVBAcTCkV4YW1wbGV0b24xLTArBgNVBAoTJENl
cnRpZmljYXRpb24gQXV0aG9yaXR5IEV4YW1wbGUgSW5jLjEZMBcGA1UEAxMQbWFp
bC5leGFtcGxlLmNvbTElMCMGCSqGSIb3DQEJARYWcG9zdG1hc3RlckBleGFtcGxl
LmNvbYIBADANBgkqhkiG9w0BAQQFAAOBgQDOnDMeoWihd+TGQ+zJPF35RsZekYc2
0zayT4Ratkiv1GFKVRHVjr9iNgT3nywQonJzWVmqcm52LUBidtHhyY/VKLPhGCQM
VffjvUbVgBaygkV0XmVSrFq7w+A42ejqLCP/+Hi6o1RF9FfJoJPiyZ1LVStiIDYF
l2DRSfGKL4A+xw==
-----END CERTIFICATE-----
subject=/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=MX Services/CN=mail.example.com/
emailAddress=postmaster@example.com
issuer=/C=EX/ST=Examplia/L=Exampleton/O=Certification Authority Example Inc./
CN=mail.example.com/emailAddress=postmaster@example.com

Acceptable client certificate CA names
/C=EX/ST=Examplia/L=Exampleton/O=Certification Authority Example Inc./CN=mail.example.com/
emailAddress=postmaster@example.com

SSL handshake has read 2822 bytes and written 368 bytes

New, TLSv1/SSLv3, Cipher is DHE-RSA-AES256-SHA
Server public key is 1024 bit
SSL-Session:
 Protocol : TLSv1
 Cipher : DHE-RSA-AES256-SHA
 Session-ID: 01DFC00E443BBA8E4E9FE65C7F398702D7BB95367E62D9CBD12F217A97A9B8FC
 Session-ID-ctx:
 Master-Key:
E0F1C5F47787E3D9C9E236E38407555DE544C97BB9F81ACE3343C897DF8E50691AB432D03E2D79509F452DA7BB363CB8
 Key-Arg : None
 Start Time: 1071223541
 Timeout : 300 (sec)
 Verify return code: 0 (ok)
294 Chap te r 18

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-AUTH NTLM LOGIN PLAIN OTP DIGEST-MD5 CRAM-MD5
250-AUTH=NTLM LOGIN PLAIN OTP DIGEST-MD5 CRAM-MD5
250-XVERP
250 8BITMIME
QUIT
DONE

With the preceding boldface-italic AUTH output, you can see that
Postfix is indeed offering SMTP AUTH when encrypted. Now you can
configure mail clients to use plaintext mechanisms in SMTP AUTH together
with TLS.

Controlling SASL Mechanisms in TLS

A more sophisticated way to ban plaintext mechanisms in regular SMTP
communication is to use the smtpd_sasl_tls_security_options parameter. As
in the previous section, this parameter specifies that plaintext mechanisms
must be protected in a TLS session, but also that non-plaintext mechanisms
in unencrypted communication are permissible. A clever combination of
the SASL smtpd_sasl_security_options parameter with the smtpd_sasl_tls_
security_options parameter makes this possible:

smtpd_sasl_security_options = noanonymous, noplaintext
smtpd_sasl_tls_security_options = noanonymous

The first line says not to allow anonymous and plaintext authentication,
but the second line overrides this, saying that plaintext is fine in a TLS
session.

Testing SASL with TLS

As when barring all SMTP AUTH mechanisms, the first thing to test in the
SASL configuration is to make sure Postfix does not offer the plaintext
mechanisms in an unencrypted session. Connect to your server on port 25,
issue EHLO yourFQDN, and observe the result:

$ telnet mail.example.com 25
220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com
Using T ransport Layer Secu ri t y 295
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-STARTTLS
250-AUTH NTLM OTP DIGEST-MD5 CRAM-MD5
250-AUTH=NTLM OTP DIGEST-MD5 CRAM-MD5
250 8BITMIME
QUIT
221 Bye

Notice that the SMTP AUTH lines are missing the plaintext LOGIN
and PLAIN mechanisms, proving that the smtpd_sasl_security_options =
noanonymous, noplaintext setting works.

Testing the Encrypted Transport Layer

After verifying that the smtpd_sasl_security_options setting works, check that
your smtpd_sasl_tls_security_options = noanonymous setting functions as
expected. Use openssl s_client to connect to your server, and issue EHLO
yourFQDN as before. The result should look like this:

openssl s_client -starttls smtp -CApath /etc/postfix/certs/ -connect localhost:25
CONNECTED(00000003)
depth=1 /C=EX/ST=Examplia/L=Exampleton/O=Certification Authority Example Inc./
CN=mail.example.com/emailAddress=postmaster@example.com
verify return:1
depth=0 /C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=MX Services/CN=mail.example.com/
emailAddress=postmaster@example.com
verify return:1

Certificate chain
 0 s:/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=MX Services/CN=mail.example.com/
emailAddress=postmaster@example.com
 i:/C=EX/ST=Examplia/L=Exampleton/O=Certification Authority Example Inc./CN=mail.example.com/
emailAddress=postmaster@example.com
 1 s:/C=EX/ST=Examplia/L=Exampleton/O=Certification Authority Example Inc./CN=mail.example.com/
emailAddress=postmaster@example.com
 i:/C=EX/ST=Examplia/L=Exampleton/O=Certification Authority Example Inc./CN=mail.example.com/
emailAddress=postmaster@example.com

Server certificate
-----BEGIN CERTIFICATE-----
MIID9jCCA1+gAwIBAgIBATANBgkqhkiG9w0BAQQFADCBpjELMAkGA1UEBhMCRVgx
ETAPBgNVBAgTCEV4YW1wbGlhMRMwEQYDVQQHEwpFeGFtcGxldG9uMS0wKwYDVQQK
EyRDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eSBFeGFtcGxlIEluYy4xGTAXBgNVBAMT
EG1haWwuZXhhbXBsZS5jb20xJTAjBgkqhkiG9w0BCQEWFnBvc3RtYXN0ZXJAZXhh
bXBsZS5jb20wHhcNMDMxMTA5MjEyNTEzWhcNMDQxMTA4MjEyNTEzWjCBpDELMAkG
A1UEBhMCRVgxETAPBgNVBAgTCEV4YW1wbGlhMRMwEQYDVQQHEwpFeGFtcGxldG9u
296 Chap te r 18

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

MRUwEwYDVQQKEwxFeGFtcGxlIEluYy4xFDASBgNVBAsTC01YIFNlcnZpY2VzMRkw
FwYDVQQDExBtYWlsLmV4YW1wbGUuY29tMSUwIwYJKoZIhvcNAQkBFhZwb3N0bWFz
dGVyQGV4YW1wbGUuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDL1OHc
H7lyo2bcDbafEeTvsSEGepsleBAmMsB1ohWLnjUcEmE5Rth9eF/TMYUABiWhnXOb
2H0KOalzuyjQqLtFHy4Bh6EcNeMdTtrEPZ2kYw+/ARkaGJrwzlNwfpzwuBhBr/qX
5FQstSG2cI4vMRkb2Vb9sq8aFneAMn+zH98v9QIDAQABo4IBMjCCAS4wCQYDVR0T
BAIwADAsBglghkgBhvhCAQ0EHxYdT3BlblNTTCBHZW5lcmF0ZWQgQ2VydGlmaWNh
dGUwHQYDVR0OBBYEFJ42nZvtTjJzDoZVKv8bSfkcRxd1MIHTBgNVHSMEgcswgciA
FABSrbf6wu8BGp57D1fb3OSCWY0LoYGspIGpMIGmMQswCQYDVQQGEwJFWDERMA8G
A1UECBMIRXhhbXBsaWExEzARBgNVBAcTCkV4YW1wbGV0b24xLTArBgNVBAoTJENl
cnRpZmljYXRpb24gQXV0aG9yaXR5IEV4YW1wbGUgSW5jLjEZMBcGA1UEAxMQbWFp
bC5leGFtcGxlLmNvbTElMCMGCSqGSIb3DQEJARYWcG9zdG1hc3RlckBleGFtcGxl
LmNvbYIBADANBgkqhkiG9w0BAQQFAAOBgQDOnDMeoWihd+TGQ+zJPF35RsZekYc2
0zayT4Ratkiv1GFKVRHVjr9iNgT3nywQonJzWVmqcm52LUBidtHhyY/VKLPhGCQM
VffjvUbVgBaygkV0XmVSrFq7w+A42ejqLCP/+Hi6o1RF9FfJoJPiyZ1LVStiIDYF
l2DRSfGKL4A+xw==
-----END CERTIFICATE-----
subject=/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=MX Services/CN=mail.example.com/
emailAddress=postmaster@example.com
issuer=/C=EX/ST=Examplia/L=Exampleton/O=Certification Authority Example Inc./
CN=mail.example.com/emailAddress=postmaster@example.com

Acceptable client certificate CA names
/C=EX/ST=Examplia/L=Exampleton/O=Certification Authority Example Inc./CN=mail.example.com/
emailAddress=postmaster@example.com

SSL handshake has read 2822 bytes and written 368 bytes

New, TLSv1/SSLv3, Cipher is DHE-RSA-AES256-SHA
Server public key is 1024 bit
SSL-Session:
 Protocol : TLSv1
 Cipher : DHE-RSA-AES256-SHA
 Session-ID: 01DFC00E443BBA8E4E9FE65C7F398702D7BB95367E62D9CBD12F217A97A9B8FC
 Session-ID-ctx:
 Master-Key:
E0F1C5F47787E3D9C9E236E38407555DE544C97BB9F81ACE3343C897DF8E50691AB432D03E2D79509F452DA7BB363CB8
 Key-Arg : None
 Start Time: 1071223541
 Timeout : 300 (sec)
 Verify return code: 0 (ok)

220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
Using T ransport Layer Secu ri t y 297
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

250-AUTH NTLM LOGIN PLAIN OTP DIGEST-MD5 CRAM-MD5
250-AUTH=NTLM LOGIN PLAIN OTP DIGEST-MD5 CRAM-MD5
250-XVERP
250 8BITMIME
QUIT
DONE

You can see that in a TLS session, Postfix offers the plaintext LOGIN and
PLAIN mechanisms, proving that the smtpd_sasl_tls_security_options =
noanonymous setting works. You can now proceed to configure mail clients to
use plaintext mechanisms in SMTP AUTH together with TLS.

Server-Side Certificate-Based Relaying

Postfix’s ability to permit relaying based on client certificates (see Figure
18-2) is an alternative to SMTP AUTH-based relaying. This is useful in a
network where you cannot (or do not want to) use SMTP AUTH, or when
you want to simplify the process of relaying and encrypting the transport
layer by combining both processes into a single step.

Figure 18-2: TLS for certificate-based relaying

The only drawback to this method is that the only known mail GUI
that supports this kind of functionality is the Netscape/Mozilla mail client.
In spite of this limitation, however, this approach is useful in a large network
that has Postfix installations at several different locations, and when these
locations have only dial-up access to the Internet and are limited to dynamic
IP addresses. In this situation, it makes sense to have the dial-up Postfix
servers relay their outgoing messages to a Postfix server that has a static IP
address, using certificate-based relaying to make sure that the messages
come from one of the dial-up servers and not some random third party.
This approach also simplifies server setup, makes Postfix more secure by
excluding SMTP AUTH, and protects the transport of in-house messages.

Relay

1122

Public client certificates

Encrypted transport layer

LAN Internet

Mail server Mail client

Mail server

1122

Private client key and certificate
298 Chap te r 18

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

NOTE As time goes on, fewer mail servers are accepting mail from dial-up and DSL lines,
because lots of spam originates from those systems’ IP addresses. Special DNS-based
Blackhole Lists (DNSBLs) called Dial-Up User Lists (DULs) now ban complete subnets
known to be used by dial-up machines.

You need to perform the following steps for the server configuration:

1. Configure Postfix to ask for client certificates.

2. Configure Postfix to permit relaying for client certificates.

NOTE Certificate-based relaying requires you to configure both server and client-side TLS.
This section explains the server-side configuration; you’ll see the client-side configura-
tion later in this chapter.

Configuring Postfix to Ask for Client Certificates

The first step in enabling certificate-based relaying is to instruct Postfix to ask
explicitly for client certificates. This is necessary because mail clients usually
do not automatically offer their certificates. The smtpd_tls_ask_ccert
parameter takes care of this (it’s not enabled by default):

smtpd_tls_ask_ccert = yes

This parameter is also useful for debugging, and you can always leave it
on because the information added to the header of each message sent over
TLS does not create any security risks.

NOTE If no certificate is available, Netscape’s mail client either complains or offers a number
of client certificates from which to choose. This behavior is annoying, so this option
is off by default. However, your SMTP server needs the certificate if you want to use
certificate-based relaying.

Configuring Postfix to Permit Relaying for Client Certificates

The Postfix TLS patch includes two additional restrictions that can control
relaying with the smtpd_recipient_restrictions parameter. How you set up the
restriction depends on your CA’s certificate:

Client certificate–based relaying
You can build a map of client certificates that may relay mail through
Postfix. This is the safe approach if your client certificates stem from
more than one (official) CA.

Certification authority–based relaying
You can choose to permit relaying for all mail clients with certificates
signed by your own CA, if you run your own CA and have full control
over the certificates.

These two options are described in the following two sections.
Using T ransport Layer Secu ri t y 299
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Client Certificate–Based Relaying

If your setup requires that mail clients relay using certificates signed by one
or more official CAs, you need to go through these steps:

1. Create a list of client certificate fingerprints.

2. Convert the list to a database.

3. Permit those clients to relay.

The first thing you need to do is collect the public certificates from the
mail clients that are allowed to relay. For each certificate, you need to extract
the MD5 fingerprint.

NOTE If you don’t want to do this manually, download and run add_ccerts_to_relay_
clientcerts.sh. This script calculates the MD5 fingerprint, copies it to /etc/postfix/
relay_clientcerts, and builds an appropriate map from the contents of this file.

Let’s say that you have a client certificate named client_public_cert.pem.
You can extract the MD5 fingerprint with this command:

openssl x509 -noout -fingerprint -in client_public_cert.pem

The output should look something like this:

MD5 Fingerprint=00:8B:02:30:9D:18:F4:81:5D:2F:48:E4:5B:17:82:A7

The fingerprint is the string of hexadecimal numbers and colons. Add
the fingerprint, along with the client hostname, to the /etc/postfix/
relay_clientcerts file, like this:

00:8B:02:30:9D:18:F4:81:5D:2F:48:E4:5B:17:82:A7 client_1.example.com
18:F4:81:5D:2F:82:A7:48:E4:5B:17:00:8B:02:30:9D client_2.example.org
...

Although Postfix’s TLS implementation only requires the fingerprint,
/etc/postfix/relay_clientcerts is a typical Postfix map, so you need two items
per line. You can choose any string you want as the right-hand side; in this
example it’s the client’s fully qualified domain name. Using the FQDN
makes it easier to find and identify the fingerprint in the map.

TIP You could also add the expiry date of the client certificate to the right side to speed up or
automate the process of finding expired certificates.

After adding the fingerprint, convert the relay_clientcerts file to a
Postfix map with postmap:

postmap hash:/etc/postfix/relay_clientcerts

This command creates /etc/postfix/relay_clientcerts.db, and you’re
finished with the list creation.
300 Chap te r 18

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Now you need to add a parameter to main.cf that tells Postfix where to
find the client map:

relay_clientcerts = hash:/etc/postfix/relay_clientcerts

Finally, expand the relay permissions by adding the permit_tls_clientcerts
parameter to smtpd_recipient_restrictions:

smtpd_recipient_restrictions =
 ...
 permit_tls_clientcerts
 ...

Remember that the order of items in smtpd_recipient_restrictions is
important. Make sure permit_tls_clientcerts appears early in your restrictions.

That’s all you need to do to configure this version of certificate-based
relaying. Reload Postfix to make the changes take effect.

Certification Authority–Based Relaying

If you want to relay only on the basis of a valid certificate, you must have
full control over the client certificates. You must run your own certification
authority (CA) and sign client certificates by yourself, and furthermore,
your CA needs to be the only one that Postfix knows about. This is absolutely
necessary, because with this feature, the only criterion that Postfix uses is
successful certificate validation.

CAUTION If you use an official CA certificate or even a list of official CA certificates, any client
on the Internet could get a certificate signed by one of those certification authorities,
and would therefore be allowed to relay—your server would become an open relay.

The relaying methods discussed earlier require you to build and main-
tain a list of client certificates that may relay; the advantage here is that you
need just one CA certificate to make a decision.

To make Postfix relay for clients with certificates signed by your private
CA, first reduce the list of CAs down to one, your own public CA certificate.
As discussed earlier, the smtpd_tls_CAfile parameter controls the CA file, so
your parameter line would look something like this in main.cf:

smtpd_tls_CAfile = /usr/share/ssl/certs/cacert.pem

After you’re sure that Postfix recognizes only your own certificate, add
the permit_tls_all_clientcerts parameter to smtpd_recipient_restrictions:

smtpd_recipient_restrictions =
 ...
 permit_tls_all_clientcerts
 ...

Finally, reload Postfix to make the changes effective.
Using T ransport Layer Secu ri t y 301
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Tightening the TLS Server

So far, you’ve seen how to configure Postfix to offer and process Transport
Layer Security. This section shows how to enforce and reject TLS when the
client does not submit a certificate.

CAUTION Be careful when using the following features, because they can break your mail system if
used in an improper environment.

Enforcing TLS

You can force all clients to use TLS. This feature is handy in a private
network where you need to be sure that all message traffic is encrypted (for
example, in a large company with distributed locations). To do so, set the
smtpd_enforce_tls parameter in your main.cf file to yes (the default is no), and
reload Postfix:

smtpd_enforce_tls = yes

CAUTION RFC 2487 states, “A publicly-referenced SMTP server MUST NOT require use of
the STARTTLS extension in order to deliver mail locally. This rule prevents the
STARTTLS extension from damaging the interoperability of the Internet’s SMTP
infrastructure.”

Requiring TLS for every client on a public mail server is a bad idea in general,
because it locks out clients that cannot use TLS or are not configured to do so. If you
require TLS on a public mail server, expect that a large proportion of email will not
be delivered to your network.

Requiring a Client Certificate

You can take TLS enforcement one step further and allow only clients that
submit certificates. With this option, if a client does not send a certificate,
Postfix refuses to go through with TLS. To make it work, add the smtpd_tls_
req_ccert parameter to main.cf as follows, and reload Postfix:

smtpd_tls_req_ccert = yes

NOTE This setting does not keep a client from using unencrypted SMTP communication
unless you enforce TLS with the smtpd_enforce_tls parameter described earlier. Use
both parameters for a very strict policy.

Client-Side TLS

Client-side TLS is used when Postfix is acting as a mail client that connects to
mail servers that support TLS (see Figure 18-3). Depending on the config-
uration, Postfix can make (selective) use of TLS by sending SMTP AUTH
credentials with plaintext mechanisms in TLS to acquire relay permission,
or by presenting its own client certificate to be allowed relay access.
302 Chap te r 18

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 18-3: TLS for the Postfix mail client

Basic Client Configuration

You need to set three parameters in main.cf to enable basic TLS support for
the Postfix mail client. You can also tweak an additional parameter to aid in
debugging TLS sessions. These are the steps you need to go through:

1. Enable client-side TLS.

2. Configure Postfix to verify the server certificate.

3. Connect Postfix to a random source generator.

4. Log client-side TLS activity.

Enabling Client-Side TLS

All TLS-capable Postfix installations have client-side TLS, but they do not
enable it by default. Postfix doesn’t make use of STARTTLS with any server
(even if the server enforces TLS) until you add the following parameter
setting to main.cf on the client:

smtp_use_tls = yes

With this parameter in place, the Postfix smtp daemon initiates
STARTTLS in the SMTP dialog if the mail server on the other side of a
connection offers STARTTLS. However, enabling client-side TLS isn’t
enough to make the whole process work. The Postfix client doesn’t yet know
where to find CA certificates that it will need to verify the server certificate.

Verifying the Server Certificate

When the Postfix SMTP client starts TLS with a mail server, it attempts to
validate the certificate that the server presents in the session. Postfix checks
the cryptographic signature that a CA adds to the server’s certificate by using

Encrypted transport layer

LAN Internet

Mail server Mail client

Mail server

Server certificate

1122

Plaintext transport
Using T ransport Layer Secu ri t y 303
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

the public key of the CA certificate. Therefore, your Postfix installation must
have a repository of CA certificates where it can look for cryptographic
signatures and compare them.

NOTE As mentioned in Chapter 17, OpenSSL does not have a central root store for CA
certificates. Therefore, you need to create a new root store. The configuration described
shortly uses ca-bundle.crt, which is explained in the section “Configuring the Postfix
Certificate Root Store.” You may also want to create your own root store file, also in
this section.

Like the Postfix server, the client can use two different CA certificate
storage types: a file with all CA certificates in a single file, or a directory
containing many files, each containing a CA certificate.

For a chrooted mail client, you should keep all CA certificates in a single
file, because Postfix reads the files at startup before running the chroot
operation.

If you don’t use chroot, you may as well keep the CA certificates in a
directory, because it’s easier to maintain. This is especially handy if you add
CA certificates regularly, because you don’t need to restart Postfix whenever
you add a new CA certificate. However, don't use the directory approach for
chrooted setups, because you will need to keep the certificates in the chroot
jail, defeating the purpose chroot in the first place (keeping sensitive
information away from the jail).

NOTE As with the TLS server configuration, you can use both approaches at once. Set both of
the parameters in the following sections, and separate some CA certificates from others.
When Postfix searches for a CA certificate, it reads the file first, then turns to the direc-
tory if it can’t find the certificate in the file.

Concatenating All CA Certificates into a Single File

The simplest approach (and probably also the one that gets the most
mileage) is to store all CA certificates in one file. As mentioned earlier, if you
happen to run Apache with mod_ssl, you already have such a file, called ca-
bundle.crt. Find it by executing locate ca-bundle.crt on the command line:

$ locate ca-bundle.crt
/usr/share/ssl/certs/ca-bundle.crt

Now tell the Postfix client to use this file by setting the smtp_tls_CAfile
parameter to the ca-bundle.crt path in main.cf, and then reload Postfix:

smtp_tls_CAfile = /usr/share/ssl/certs/ca-bundle.crt
304 Chap te r 18

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

NOTE If you run your own certification authority, add your CA certificate to this root store
with a command like this:

cat /usr/local/ssl/misc/demoCA/cacert.pem >> /usr/share/ssl/certs/ca-
bundle.crt

If your CA certificate is a link in a chain of certificates, add all of the CA
certificates from your CA certificate up to the root CA certificate in the certificate
chain.

Storing All CA Certificates in a Directory

For a directory-based approach to CA certificate access, set the smtp_tls_
CApath parameter to a directory containing certificate files. The first thing
you probably need to do with a new Postfix installation is create a directory
for the certificate files:

mkdir /etc/postfix/certs

Now put all of the CA certificates that you need for your setup into this
directory, and build an index table for fast certificate lookup. Create the
index with c_rehash, a program that comes with OpenSSL. Running this
command builds the index and makes symbolic links to the CA certificates:

c_rehash /etc/postfix/certs/
Doing /etc/postfix/certs/
cacert.pem => e0dc2d06.0
WARNING: postfix_private_key.pem does not contain a certificate or CRL: skipping
postfix_public_cert.pem => 6df723a3.0

NOTE Don’t forget to run c_rehash each time you add a new CA certificate.

Once you’ve performed these steps, tell Postfix to use this directory as its
CA root store, and then reload your configuration:

smtp_tls_CApath = /etc/postfix/certs

Connecting the Postfix Client to a Random Source Generator

To properly initialize the encryption, you need to connect Postfix to a
random number source. See the discussion of the tls_random_source
parameter in the earlier “Connecting Postfix to a Random Source
Generator” section. The process is the same for the client and the server.
Using T ransport Layer Secu ri t y 305
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Logging Client-Side TLS Activity

Before you fire up Postfix to test your TLS client, increase the smtp_tls_
loglevel parameter setting to 2 so that you can see significant TLS events
(the default is 0):

smtp_tls_loglevel = 2

See the discussion of the smtpd_tls_loglevel parameter in the earlier sec-
tion “Increasing the TLS Log Level” for the meanings of the various log levels.

Testing Basic Client Functionality

To test basic client-side TLS, you need to perform only two steps:

1. Check the log file to see if the Postfix client detected any errors.

2. Send mail to a TLS-enabled server.

Checking the Log File for Errors

Run an egrep command to pick out TLS problems in the Postfix log file:

$ egrep '(reject|error|warning|fatal|panic):' /var/log/maillog

If there are any TLS-related glitches that Postfix can detect, this
command should catch them. There shouldn’t be any errors pointing to
TLS-related issues, but if there are problems, check over your configuration
to see if you mistyped something, and make sure that Postfix has read
permission for the certificates.

Sending Mail to a TLS Server

Now try sending a message to a TLS-enabled mail server to see if the Postfix
client uses TLS.

If you don’t know of any TLS servers, Lutz Jänicke, developer of the TLS
patch, has a public mail server that you can use for testing. Send a message
to postfix_tls-bounce@serv01.aet.tu-cottbus.de, and the server should send
the mail back to you, including headers added to your original message that
indicate whether the message was transmitted over TLS. The header should
look something like this:

Received: from mail.state-of-mind.de (mail.state-of-mind.de [212.14.92.89])
 (using TLSv1 with cipher EDH-RSA-DES-CBC3-SHA (168/168 bits))
 (Client did not present a certificate)
 by serv01.aet.tu-cottbus.de (Postfix) with ESMTP id 74C6B2330
 for <postfix_tls-bounce@serv01.aet.tu-cottbus.de>; Wed, 10 Dec 2003

23:50:45 +0100 (MET)
306 Chap te r 18

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Selective TLS Use

With selective TLS client configuration, you can enforce a security policy
with certain servers but also keep messages from going into a black hole if
a mail server that offers STARTTLS is somehow misconfigured.

NOTE This happens quite often with Lotus Notes servers.

You’ll perform three steps:

1. Enable selective TLS in your Postfix configuration.

2. Build a policy map that tells the smtp client when to use TLS.

3. Configure Postfix to note when servers offer TLS.

Enabling Selective TLS

Turn on selective client-side TLS in main.cf by setting the smtp_tls_per_site
parameter to a policy map. In this example, the map is /etc/postfix/tls_
per_site:

smtp_tls_per_site = hash:/etc/postfix/tls_per_site

Building the TLS Policy Map

The TLS policy map has the same style as any other Postfix map; each line
represents an entry with a key-value pair. Put the host or domain on the left
side (the key) and the TLS policy on the right side (the value). The possible
policies for the Postfix SMTP client are as follows:

NONE

Disables client-side TLS.

MAY

Allows the client to try TLS if the remote server offers STARTTLS, but it
doesn’t have to if it doesn’t want to.

MUST

Forces the Postfix client to use TLS when this server offers TLS with
STARTTLS. Furthermore, Postfix checks the server certificate’s
CommonName parameter against the server’s fully qualified domain name.

MUST_NOPEERMATCH

A lesser version of the MUST policy. The Postfix client responds to START-
TLS and verifies the server’s certificate, but it ignores any differences
between CommonName and the FQDN.
Using T ransport Layer Secu ri t y 307
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

NOTE If you configure Postfix to use a TLS policy map, the settings in the map will always
override your main.cf settings. If you turned off TLS, it will use TLS for those hosts
found in the map. Vice versa, if you turned TLS on in main.cf and the host cannot
be found in the policy map, it will still use TLS.

Start the map with a file named /etc/postfix/tls_per_site that looks
something like this:

dom.ain NONE
host.dom.ain MAY
important.host MUST
some.host.dom.ain MUST_NOPEERMATCH

After writing this ASCII map, build the hash map with the postmap
command to make it available to Postfix:

postmap hash:/etc/postfix/tls_per_site

Identifying TLS Servers

Finding the servers that offer TLS is useful not only when debugging a TLS
session, but also when you configure the selective TLS feature in Postfix. Set
the smtp_tls_note_starttls_offer parameter to yes in your main.cf file:

smtp_tls_note_starttls_offer = yes

Now, as soon as your Postfix client connects to a mail server that offers
STARTTLS, the client logs the server name to the mail log as follows:

client postfix/smtp[1504]: Host offered STARTTLS: [mail.example.com]

With this final configuration setting, your TLS client is ready to go.

Client Performance Tuning
The same performance considerations described for the Postfix TLS server
in the section “Server Performance Tuning” apply to the TLS client. The
client uses the same tlsmgr daemon described in that section to cache session
keys for the client. However, because this is the client, the configuration
parameter names are slightly different; change the smtpd to smtp.

Therefore, to enable caching, go through all of the steps described in
“Server Performance Tuning,” but use smtp_tls_session_cache_database and
smtp_tls_session_cache_timeout in your main.cf instead:

smtp_tls_session_cache_database = sdbm:/etc/postfix/smtp_scache
smtp_tls_session_cache_timeout = 3600s
308 Chap te r 18

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Securing Client SMTP AUTH

In the section “Server-Side Measures to Secure the SMTP AUTH Handshake,”
you saw how to secure SMTP AUTH communication on the server side with
TLS. This section shows you how to do it on the client side. Just to recap,
you do not want your client to send your username and password with the
SMTP AUTH plaintext mechanisms over an unencrypted connection. If
you have to use the plaintext mechanisms, the client should start a TLS
session first.

With a combination of the smtp_sasl_security_options parameter for
unencrypted connections and smtp_sasl_tls_security_options for TLS
sessions, you can lock down SMTP AUTH:

smtp_sasl_security_options = noanonymous, noplaintext
smtp_sasl_tls_security_options = noanonymous

The first rule forbids anonymous and plaintext authentication
mechanisms over an unencrypted transport layer, and the second allows
plaintext mechanisms when talking to the server with TLS.

Client-Side Certificate-Based Relaying

Certificate-based relaying is a secure way of allowing servers to relay messages
for clients, even if the clients aren’t on a network that the server knows
about. You saw the server configuration in the section “Server-Side
Certificate-Based Relaying.” However, the client configuration isn’t like the
server’s relaying features; it’s more like setting up the server itself, because
you have to provide paths to the certificate that the client presents to the
kernel and to the key that the client will use for initiating the connection.

Configuring Paths to the Postfix Client Certificate and Key

To make the Postfix client present a certificate to the server when a TLS
session starts, you need to set the smtp_tls_cert_file parameter to the client
certificate and the smtp_tls_key_file parameter to the client key in main.cf.
Here’s an example:

smtp_tls_cert_file = /etc/postfix/certs/postfix_public_cert.pem
smtp_tls_key_file = /etc/postfix/certs/postfix_private_key.pem

NOTE If you also configured server-side TLS in your Postfix installation, reuse the server’s cer-
tificate and key unless you want your Postfix server and client to have different “digital
identities.”

Now, reload your Postfix configuration and start testing.
Using T ransport Layer Secu ri t y 309
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Testing Client-Side Certificate-Based Relaying

Testing involves three steps:

1. Check the log file for obvious errors.

2. Verify that the client sends its certificate.

3. Verify that the client can relay based on its certificate.

Checking the Log File

Checking the log files is a matter of running the egrep command that you’ve
seen earlier in this chapter:

$ egrep '(reject|error|warning|fatal|panic):' /var/log/maillog

If you get any errors, the usual advice applies: check your configuration
files for typos, and make sure the client has read permission for the certificates.

Verifying that the Client Certificate Is Sent

To get proof that the client sends its certificate, you have to send a mail to a
TLS-enabled server and see whether it accepts the client certificate. If you
send a client certificate to a Postfix mail server that has smtpd_tls_received_
header = yes set, text like the following appears in your headers:

Received: from client.example.com (client.example.com [172.16.0.3])
 (using TLSv1 with cipher EDH-RSA-DES-CBC3-SHA (168/168 bits))
 (Client CN "client.example.com", Issuer "mail.example.com" (verified OK))
 by mail.example.com (Postfix) with ESMTP id 63AC77247
 for <tls-bounce@mail.example.com>; Thu, 11 Dec 2003 19:48:38 +0100 (CET)

The third line states that the mail client Client sent a certificate to the
mail server. The certificate was signed by the mail.example.com CA, and the
server was able to verify this.

NOTE If things don’t work as expected, and you don’t know if it is the client or server that is
causing problems, send a message to postfix_tls-bounce@serv01.aet.tu-cottbus.de.
As described earlier, this service bounces the message back to you with TLS debugging
enabled.

Verifying that the Client Can Relay with Its Certificate

Now test your client’s certificate-based relaying capabilities by sending a
message through a TLS server. Make sure that the server relays messages
based on your certificate with the following criteria.
310 Chap te r 18

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

1. Make sure your client is not part of the server’s network, or any network
that the server grants relay access to by other criteria, such as mynetworks.

2. Make sure your client does not use any features such as SMTP AUTH.

3. Make sure the recipient is not in the relayhosts list of final destinations.

Tightening Client-Side TLS

You can force the client to use TLS, or to take an even stricter stance,
communicating with the server only if the client can verify the server’s peer
name. Enforcing TLS communication on the client side is useful only when
you can control the servers with which the client communicates.

CAUTION Misconfiguring these features can break your outgoing mail system.

The following prerequisites must hold in order to force TLS
communication:

1. The server must offer TLS.

2. The values for CommonName in the certificate must match the server’s fully
qualified domain name.

3. The client must be able to verify the server’s certificate with the CA’s
signature.

If even one of these conditions is not met, the client will not send the
message to the server. Instead, the client holds the message in its queue and
sends a 4xx error notice to the mail log.

NOTE Enforcing the SMTP client to use TLS is useful in private networks and when you
know that your client relays all messages over one server.

To force client-side TLS, set the smtp_enforce_tls parameter in your
main.cf as follows:

smtp_enforce_tls = yes

If this mode is too strict for everyday use, you can allow transmission if
the CommonName in the server’s certificate does not match its fully qualified
domain name. Do this by setting the smtp_tls_enforce_peername to no (this
option is normally enabled when you set smtp_enforce_tls):

smtp_tls_enforce_peername = no

CAUTION This option presents the danger of a man-in-the-middle attack.
Using T ransport Layer Secu ri t y 311
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

19
A C O M P A N Y M A I L S E R V E R

This chapter shows you how to build a
complete mail system based on Postfix,

Cyrus SASL, Courier maildrop, and
Courier IMAP. These components will get

configuration and authentication data from an
OpenLDAP server that provides directory services.

We will go from a basic setup to an advanced setup. The basic setup will
connect all applications to the central LDAP server. Once we got this going,
we will make the system more complex. The advanced setup will add
transport layer security wherever possible and will show you how to offer
SMTP authentication based on LDAP queries.

You should have a profound understanding of LDAP schemas and
OpenLDAP before you start to implement the company mail server we
describe in this chapter. If you haven’t dealt with OpenLDAP before, the
OpenLDAP Administrator’s Guide, http://www.openldap.org/doc/admin22, is a
good starting point for reading.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Conceptual Overview

Figure 19-1 gives you an overview of the applications you will need to deal
with in this chapter and how they will be linked to each other. You can see
OpenLDAP is in the center of all the services. The application servers work as
follows:

� Postfix hands authentication data to the LDAP server when mail clients
seek to relay using SMTP AUTH. In addition, Postfix queries the LDAP
server for local user and alias information when incoming mail arrives.
Upon accepting a message, Postfix hands it to Courier maildrop.

� Courier maildrop is responsible for local delivery. It asks the LDAP server
for the mailbox location, and it also looks for filter rules (for example, for
placing messages marked as spam into a subfolder named .spam).

� The user connects to the Courier IMAP server to retrieve mail. This
server queries the LDAP server for the user’s credentials. LDAP also tells
Courier where to find the mailbox and which UID and GID to use when
accessing it.

Figure 19-1: Architecture of a company mail server

Server

1122

Mail client

Server
certificate

Virtual
mailbox

Filter
rules

Receive email,
manage email

Authenticate,
send email

1122

Transport
to local

delivery agent

Courier
maildrop

Deliver to
mailbox

Get mailbox
location,

get user specific
permissions

Get rules for
incoming email

Access mailbox,
manage email

1122
314 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

The LDAP Directory Structure

The first thing you need to do to build the mail system is design your LDAP
directory tree. This can be a difficult task; one reason why LDAP isn’t more
widespread is that it is daunting to design a directory from scratch. There are
three key things to consider when you draw up the structure, schemata use,
and attributes:

� The purpose of the directory

� Your organizational structure

� The requirements of the servers that use the LDAP directory

The primary purpose of the directory in this chapter is to show you how
Postfix and other servers query an LDAP server. We will keep the structure as
simple as possible so that you can focus on application configuration instead
of getting lost in a directory quagmire.

We’ll build the mail system in this chapter for an organization named
Example Inc. This company got its start selling rocks and has grown large
enough to have various departments. Among these are an IT department
(run by a somewhat childish administrator named Bamm Bamm), a sales
department, and a purchasing department. To keep it simple, we’ll use just
these three departments.

The directory service will provide Postfix, Cyrus SASL, Courier maildrop,
and Courier IMAP with user and configuration data. This example will be
based on the authldap.schema that comes with Courier IMAP because the
other servers can use it without a problem.

NOTE If you don’t want to build your own directory, you can download an LDIF (LDAP
Data Interchange Format) dump of Example Inc. from the Book of Postfix website at
http://www.postfix-book.com.

Figure 19-2 shows the directory tree, which starts at the node named
dc=example,dc=com and spreads into two large branches.

The branch to the left contains authentication accounts for servers; we’ll
look at those later in the “Advanced Configuration” section when securing
the LDAP data and connection.

The branch on the right is called ou=people,dc=example,dc=com. It has
subnodes, such as ou=it,ou=people,dc=example,dc=com, that represent the
organizational structure. As you go further down, you’ll encounter more
subnodes that hold user objects filled with attributes and values that hold all
the information required to provide all user-related data for a complete mail
system.

NOTE You can do a lot more with a directory service. For example, you can add Postfix server
configuration values for mydestination, relayhost, virtual_domain, and so on.
A Company Mai l Se rve r 315
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Figure 19-2: Organizational branch of Example Inc.

Choosing Attributes in a Postfix Schema

If you are an LDAP novice and were hoping for an easy solution, we have
some bad news. There is no Postfix LDAP schema to drop in, fill with data,
and let roll. You may be even more discouraged to hear that this is inten-
tional, but there’s a good reason for this. Nearly everything that Postfix
needs for this solution comes in other schemata, such as the core.schema in
OpenLDAP, or with applications like Courier IMAP, which comes with its
own authldap.schema.

To choose the right schemata and attributes for your servers, you need to
examine the requirements of the servers. For example, if Postfix uses LDAP
for maps, you can set up the following entities.

dc=example,dc=com

ou=people

ou=purchasing

...

...

ou:it,ou=people,dc=example,dc=com
objectClass: CourierMailAlias
objectClass: organizationalUnit
maildrop: it@example.com
mail: bamm@example.com

dn: uid=bammbamm,ou=it,ou=people,dc=example,dc=com
uid: bammbamm
givenName: Bamm
sn: Bamm
cn: Bamm Bamm
userPassword: bamm_secret
homeDirectory: /var/spool/mail/bammbamm
mailbox: /var/spool/mail/bammbamm
quota: 51200000
mail: bamm@example.com
maildrop: postmaster@example.com
maildrop: bamm.bamm@example.com
maildrop: abuse@example.com
objectClass: CourierMailAlias
objectClass: CourierMailAccount
objectClass: inetOrgPerson
uidNumber: 1001
gidNumber: 1001
316 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Destinations, networks, and hosts

Destinations, networks, and hosts are represented by hostnames and IP
addresses. Postfix looks these up to determine which domains it should
accept mail and allow relay access for, and it may also use them when it
applies host and network restrictions.

Your directory must contain attributes that describe hosts and
networks and that perhaps allow for multivalue addition in a single
LDAP object. You’ll find appropriate attributes in network-related
schemata, such as the CORE or NIS schema examples.

Recipients and senders

When Postfix looks up recipients and senders, it looks for username@host-
name by default. There are many available schemata containing attributes
like this. For example, you could look at core.schema and other mail-
related schemata like the ones for Sendmail or qmail. However, don’t
forget the delivery side of the mail system. Many POP and IMAP servers
come with their own schemata, all with attributes for defining sender
and recipient addresses.

Aliases

A user may have more than one alias. The attribute you choose must
allow for multiple addition to an object. Most mail-related schemata have
an alias attribute. The schema that you plan to use for sender and recipi-
ent addresses is probably appropriate.

Lists

Lists consist of a single alias entry and multiple recipient addresses. If
you have a schema with both attributes, you have everything that you
need for a list.

Before you undertake to write your own Postfix schema you should rather
adapt the schemata for other servers to Postfix. This approach lessens the load
and complexity of your LDAP service, and it gives you more flexibility when
expanding your directory or the servers that use it.

As mentioned before, this chapter’s example is based primarily on the
authldap.schema that comes with Courier IMAP because it has almost every-
thing necessary for a complete directory.

Branch Design
We will split the directory in two major branches (see Figure 19-2). The left
branch will contain application accounts, which we will use later in the
“Advanced Configuration” section to implement access control for
applications querying the directory.

The right branch will contain user-related information. It will be split
into smaller subunits according to the department structure. We will use the
organizationalUnit object to create the subunits, and later we will configure
the organizationalUnit objects to hold information for simple mailing lists.

With the branches in place, we can turn to creating an actual user object.
A Company Mai l Se rve r 317
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Building User Objects

You can build user objects from three object classes, inetOrgPerson,
CourierMailAccount, and CourierMailAlias, which you can find in
inetorgperson.schema, authldap.schema (Courier IMAP), and nis.schema.
Usage of the nis.schema is necessary because authlap.schema depends
on some of its attributes.

Using attributes from all three schemata, we will describe a single
user object. A complete object for Bamm Bamm in the IT department as
we use it in this chapter looks like this:

dn: uid=bammbamm,ou=it,ou=people,dc=example,dc=com
uid: bammbamm
givenName: Bamm
sn: Bamm
cn: Bamm Bamm
userPassword: bamm_secret
homeDirectory: /var/spool/mail/bammbamm
mailbox: /var/spool/mail/bammbamm/Maildir
quota: 51200000S
mail: bamm@example.com
maildrop: postmaster@example.com
maildrop: bamm.bamm@example.com
maildrop: abuse@example.com
objectClass: CourierMailAlias
objectClass: CourierMailAccount
objectClass: inetOrgPerson
uidNumber: 1003
gidNumber: 1003

You may wonder where all of these attributes came from. The following
sections explain their origins.

Creating the Sender and Recipient

You need to create an object to carry all user related attributes and values.
We’ll use inetorgperson.schema, because it provides extra attributes that
allow for a company-wide address book.

You can create a unique user object with the uid attribute.
inetorgperson.schema also gives you access to the mail attribute, which
you can use for local recipient addresses and valid sender addresses.
These two attributes look like this in the inetorgperson.schema:

attributetype (0.9.2342.19200300.100.1.1
 NAME ('uid' 'userid')
 DESC 'RFC1274: user identifier'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256})
318 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

attributetype (0.9.2342.19200300.100.1.3
 NAME ('mail' 'rfc822Mailbox')
 DESC 'RFC1274: RFC822 Mailbox'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{256})

NOTE You can add the mail attribute to an object more than once. You’ll see later that this
comes in handy for creating mailing list members.

Let’s say that we want to create an object. In this chapter, we’ll use the
concatenation of the user’s first and last names as the uid attribute.

Defining Aliases

You can find a good attribute for defining aliases in authldap.schema from
Courier IMAP. There’s an auxiliary class there named CourierMailAlias with a
maildrop attribute that defines a RFC 822 mailbox for a mail alias:

attributetype (1.3.6.1.4.1.10018.1.1.4 NAME 'maildrop'
 DESC 'RFC822 Mailbox - mail alias'
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{256})

NOTE The CourierMailAlias object class is an auxiliary class, which means that you can’t add
it to a directory by itself. You need to add it in conjunction with a structural class. This
is fine, because the inetOrgPerson class that we’re already using is a structural class.

Creating List Objects
The simplest kind of list that Postfix supports without the help of a list
manager (such as Mailman) are just aliases that map to a list of recipients. At
this point, we already have all of the attributes we need, so we just need to
come up with a suitable list object—anything without a userPassword attribute
should do.

In fact, you don’t need to create an extra object for lists. Just add the
CourierMailAlias object class to the organizationalUnit class used to create the
original branches.

The CourierMailAlias object gives us access to the maildrop and mail
attributes. Now you can assign an alias name, such as all@example.com, to a
maildrop attribute of ou=people,dc=example,dc=com, and add mail entries for
every member in the organization. A complete list object might look like this:

dn: ou=people,dc=example,dc=com
ou: people
description: All employees
objectClass: CourierMailAlias
objectClass: organizationalUnit
A Company Mai l Se rve r 319
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

maildrop: all@example.com
mail: bamm@example.com
mail: pebble@example.com
mail: mcbricker@example.com
mail: flintstone@example.com
mail: rubble@example.com

At this point, the LDAP server has the recipients and aliases that Postfix
needs, so you can turn your attention to the other servers.

Adding Attributes for the Remaining Servers

When Postfix finishes processing an email, it sends it to a local delivery agent
(LDA), such as Courier maildrop. The LDA needs to know the location of
the mailbox and the user and permissions that it should use. Mail transport
agents such as Courier IMAP also need to know where the mailbox is located.

We’ll specify the mailbox location with the mailbox attribute from
Courier’s authldap.schema:

attributetype (1.3.6.1.4.1.10018.1.1.1 NAME 'mailbox'
 DESC 'The absolute path to the mailbox for a mail account in a non-default
location'
 EQUALITY caseExactIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

This schema also defines a quota attribute that can define the maximum
size of a mailbox:

attributetype (1.3.6.1.4.1.10018.1.1.2 NAME 'quota'
 DESC 'A string that represents the quota on a mailbox'
 EQUALITY caseExactIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

However, authldap.schema refers to nis.schema for the following attributes
that Courier needs while accessing mailboxes:

attributetype (1.3.6.1.1.1.1.0 NAME 'uidNumber'
 DESC 'An integer uniquely identifying a user in an administrative domain'
 EQUALITY integerMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE)
attributetype (1.3.6.1.1.1.1.1 NAME 'gidNumber'
 DESC 'An integer uniquely identifying a group in an administrative domain'
 EQUALITY integerMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE)
attributetype (1.3.6.1.1.1.1.3 NAME 'homeDirectory'
 DESC 'The absolute path to the home directory'
 EQUALITY caseExactIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)
320 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

The uidNumber and gidNumber attributes contain the numbers for the
mailbox user ID and group ID. Courier maildrop needs them to get the
correct permissions for writing messages to a mailbox, and Courier IMAP
needs them when reading and deleting messages. In addition, Courier
maildrop needs the homeDirectory attribute to read filtering rules.

Basic Configuration

This section shows you how to integrate LDAP support into Postfix and other
servers. We’ll look at only the basic functionality here. The “Advanced
Configuration” section later in the chapter will explain how to secure your data.

Configuring Cyrus SASL
One of the stranger twists of the software installed for the company mail
server is that the Cyrus SASL ldapdb plug-in requires the OpenLDAP
development libraries. However, to be able to talk to Cyrus SASL,
OpenLDAP requires the Cyrus SASL development libraries. If you want
to build both from source code, this cross-reference can be tricky.

NOTE The ldapdb plug-in requires OpenLDAP either later than 2.1.27 or later than 2.2.6. If
you already have an appropriate OpenLDAP installation that supports SASL, you
may only need to install the OpenLDAP development libraries when you build SASL
with ldapdb support.

To get around this problem, you have to build and install Cyrus SASL
twice. The first time, you’ll do it without ldapdb, so that OpenLDAP can link
against the SASL libraries. Later in this chapter, you’ll need to rebuild Cyrus
SASL with your newly installed OpenLDAP library, so that you can get the
ldapdb plug-in. If you don’t need Cyrus SASL for other applications on your
server, you can use the following configuration command to get the
minimum SASL required to build OpenLDAP:

./configure \
 --with-plugindir=/usr/lib/sasl2 \
 --disable-java \
 --disable-krb4 \
 --with-dblib=berkeley \
 --with-saslauthd=/var/state/saslauthd \
 --without-pwcheck \
 --with-devrandom=/dev/urandom \
 --enable-cram \
 --enable-digest \
 --enable-plain \
 --enable-login \
 --disable-otp

Now you can turn your attention to building OpenLDAP.
A Company Mai l Se rve r 321
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Configuring OpenLDAP

If you don’t have OpenLDAP on your system, get a version newer than 2.1.27
or 2.2.6 (this version uses a different BerkeleyDB) from a package, or
download the source code from http://www.openldap.org/software/download.
Read the following section “Installing OpenLDAP from Source” if you’re
building from source code.

Installing OpenLDAP from Source

As a regular user, unpack the archive and change into the newly created
directory. Run configure with at least the following options:

$./configure --prefix=/usr --exec-prefix=/usr --bindir=/usr/bin \
--sbindir=/usr/sbin --sysconfdir=/etc --datadir=/usr/share \
--includedir=/usr/include --libdir=/usr/lib --libexecdir=/usr/libexec \
--localstatedir=/var --sharedstatedir=/usr/com --mandir=/usr/share/man \
--infodir=/usr/share/info --with-slapd --with-slurpd --without-ldapd \
--with-threads=posix --enable-static --enable-dynamic --enable-local \
--enable-cldap --enable-rlookups --with-tls --with-cyrus-sasl \
--enable-wrappers --enable-passwd --enable-cleartext --enable-crypt \
--enable-spasswd --enable-modules --disable-sql --libexecdir=/usr/sbin \
--localstatedir=/var/run --enable-ldbm --with-ldbm-api=berkeley \
--enable-bdb --enable-ldap --enable-meta --enable-monitor \
--enable-null --enable-rewrite --disable-shared --with-kerberos=k5only

After the configuration script finishes, run make depend, make, and make
test, and then become root, and run make install. You’re now ready to
configure OpenLDAP.

Configuring the LDAP Server

To configure the OpenLDAP server, slapd, change to the configuration
directory (for example, /etc/openldap) and edit the slapd.conf file. You need
to add the following configuration:

SCHEMATA
include /etc/openldap/schema/core.schema
include /etc/openldap/schema/cosine.schema
include /etc/openldap/schema/inetorgperson.schema
include /etc/openldap/schema/misc.schema
include /etc/openldap/schema/nis.schema
include /etc/openldap/schema/authldap.schema
RUNTIME
pidfile /usr/var/slapd.pid
argsfile /usr/var/slapd.args
DATABASE DEFINITIONS
database ldbm
suffix "dc=example,dc=com"
322 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

rootdn "cn=Manager,dc=example,dc=com"
rootpw {CRYPT}SHXa4LHVH8y3A
directory /usr/var/openldap-data
INDICES
index objectClass eq
index cn eq
index mail,maildrop pres
index mailbox,quota,uidNumber,gidNumber eq

The SCHEMATA section of slapd.conf specifies the schemata to load during
startup.

The DATABASE DEFINITIONS section sets "dc=example,dc=com" as the suffix
defining the top branch of your directory tree. It assigns a rootdn set of
attribute values ("cn=Manager,dc=example,dc=com") and a rootpw value to give
the user defined by rootdn read-write access to the directory. Use the
slappasswd(8) command to create an encrypted password.

The INDICES section defines attributes that should be indexed. When you
index an attribute, it is much quicker to look up.

Controlling SASL Authentication in OpenLDAP

Because OpenLDAP has SASL support, it may use SASL during authen-
tication to bind users to the server. Although it will not use plaintext
mechanisms to process authentication, it might offer GSSAPI among the
remaining mechanisms.

Because we’re not going to configure a full-blown Kerberos server just to
use this mechanism, it’s best to disable it now so that clients don’t try to use
it. Do this by listing only the mechanisms you want in a special SASL config-
uration file for OpenLDAP. Create a /usr/lib/sasl2/slapd.conf file with this
setting:

mech_list: DIGEST-MD5

See Chapter 15 for more information about SMTP authentication.

Importing the Directory

Now it’s time to fill the LDAP database with data. There are a lot of ways to
do this, but in our case, slapd probably isn’t running yet. This means that you
can use the slapadd utility on an LDIF file like this:

slapadd -v -c -b "dc=example,dc=com" -l example.com.ldif

CAUTION Don’t run slapadd when slapd is running. The utility writes directly to the database,
and it might cause slapd to crash and corrupt your database.

After successfully importing the LDIF file, start slapd. If you experience
problems with the import, read slapadd(8) to see if you need any other
parameters (or, if things are really bad, turn on debugging).
A Company Mai l Se rve r 323
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Configuring the LDAP Client

To test your slapd configuration and get it working with Courier IMAP,
you need to configure the OpenLDAP client. Normally, you need to adjust
some settings in the /etc/openldap/ldap.conf file. For the basics, enable the
following parameters:

URI ldap://mail.example.com
BASE dc=example,dc=com

The URI and BASE parameters specify which LDAP server to access and
where in the tree to start queries. Once you set these parameters correctly,
you can test the directory.

Testing LDAP

The easiest way to test the LDAP server is to run the client tools that come
with OpenLDAP. From the command line, run ldapsearch to connect the
LDAP client to the server and make a query to the directory. Here’s a
successful example:

ldapsearch -x -LLL -b "uid=bammbamm,ou=it,ou=people,dc=example,dc=com" "(objectclass=*)"
dn: uid=bammbamm,ou=it,ou=people,dc=example,dc=com
uid: bammbamm
givenName: Bamm
sn: Bamm
cn: Bamm Bamm
homeDirectory: /var/spool/mail/bammbamm
maildrop: postmaster@example.com
maildrop: bamm.bamm@example.com
maildrop: abuse@example.com
objectClass: CourierMailAlias
objectClass: CourierMailAccount
objectClass: inetOrgPerson
mailbox: /var/spool/mail/bammbamm/Maildir
quota: 5120000S
userPassword:: YmFtbV9zZWNyZXQ=
uidNumber: 1003
gidNumber: 1003
mail: bamm@example.com

If you get this output, you know that you can access the directory and
that it is stored as intended. If you don’t get any output, configure the
loglevel parameter as described in slapd.conf(5), and see what more
debugging information can tell you.
324 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Configuring Postfix and LDAP

To check whether your Postfix already has LDAP and SASL support enabled,
try this command:

$ ldd `/usr/sbin/postconf -h daemon_directory`/smtpd
 linux-gate.so.1 => (0x00bad000)
 libldap.so.2 => /usr/lib/libldap.so.2 (0x00882000)
 liblber.so.2 => /usr/lib/liblber.so.2 (0x00646000)
 libsasl2.so.2 => /usr/lib/libsasl2.so.2 (0x0098a000)
 libdb-4.2.so => /lib/tls/libdb-4.2.so (0x00a73000)
 libnsl.so.1 => /lib/libnsl.so.1 (0x00835000)
 libresolv.so.2 => /lib/libresolv.so.2 (0x00655000)
 libc.so.6 => /lib/tls/libc.so.6 (0x004e6000)
 libdl.so.2 => /lib/libdl.so.2 (0x00603000)
 libssl.so.4 => /lib/libssl.so.4 (0x0084c000)
 libcrypto.so.4 => /lib/libcrypto.so.4 (0x04377000)
 libpthread.so.0 => /lib/tls/libpthread.so.0 (0x0061c000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x004cd000)
 libgssapi_krb5.so.2 => /usr/lib/libgssapi_krb5.so.2 (0x00d09000)
 libkrb5.so.3 => /usr/lib/libkrb5.so.3 (0x006da000)
 libcom_err.so.2 => /lib/libcom_err.so.2 (0x058fd000)
 libk5crypto.so.3 => /usr/lib/libk5crypto.so.3 (0x05902000)
 libz.so.1 => /usr/lib/libz.so.1 (0x00609000)

The lines with the ldap and sasl2 libraries indicate that LDAP and SASL
support have been compiled into Postfix.

You learned how to configure SASL support in Chapter 15. Now you
need support for LDAP in addition to SASL. You can get this support by com-
bining the environment variables CCARGS and AUXLIBS that the build process
uses in a sensible fashion. First, recall that you built for SASL like this:

$ CCARGS="-DUSE_SASL_AUTH -I/usr/local/include AUXLIBS="-L/usr/local/lib
-lsasl2" make makefiles

To build the Cyrus SASL libraries with LDAP support, you need to find
the LDAP libraries and header files on your system. If you don’t know where
they are, search for the libraries like this:

find /usr -name 'libldap*.*'
/usr/local/lib/libldap.so.2
/usr/local/lib/libldap.so.2.0.122
/usr/local/lib/libldap_r.so.2
/usr/local/lib/libldap_r.so.2.0.122
/usr/local/lib/libldap.so
/usr/local/lib/libldap.a
A Company Mai l Se rve r 325
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

/usr/local/lib/libldap_r.so
/usr/local/lib/libldap_r.a
find /usr -name 'liblber*.*'
/usr/local/lib/liblber.so.2.0.122
/usr/local/lib/liblber.so.2
/usr/local/lib/liblber.so
/usr/local/lib/liblber.a

This output shows that the LDAP libraries are in /usr/local/lib; the /usr/
lib and /usr/include paths are searched by the compiler, preprocessor, and
linker automatically. Take a note of this location, and then search for the
corresponding include files with this command:

find /usr -name '*ldap*.h'
/usr/local/include/ldap.h
/usr/local/include/ldap_cdefs.h
/usr/local/include/ldap_schema.h
/usr/local/include/ldap_utf8.h
/usr/local/include/ldap_features.h

NOTE If you can’t find the include files for LDAP on your system, but the libraries are there,
you probably need to install the LDAP developer packages from your operating system.
You’re looking for packages that end in -dev or -devel.

Now that you know where to look for both LDAP and SASL support,
unpack the Postfix source as a regular user, and change to the Postfix
source directory. Configure and build Postfix with options for both SASL
(-DUSE_SASL_AUTH) and LDAP (-DHAS_LDAP) like this:

$ CCARGS="-DHAS_LDAP -DUSE_SASL_AUTH -I/usr/local/include" AUXLIBS="-lldap
-llber -L/usr/local/lib -lsasl2"

$ make makefiles
$ make

After the build completes, become the superuser (root) and run make
install or make upgrade as appropriate. Finally, verify that you have SASL and
LDAP support as described at the beginning of this chapter.

LDAP Lookups

There aren’t many LDAP-related questions on the Postfix mailing lists,
especially compared to the number asking about database backends. Many
people think that running Postfix (or anything else, for that matter) with
LDAP is akin to voodoo and try to avoid it at all costs. However, this just isn’t
the case. The configuration steps for LDAP queries always go as follows.

1. Create a directory for the LDAP configuration files.

2. Create a Postfix configuration file for LDAP.
326 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

3. Test an LDAP query.

4. Configure Postfix to use the LDAP query configuration.

You will iterate over these steps twice in the following subsections. First
you will configure a query for local recipients and as a second step you will
configure a query for mail aliases.

Creating an LDAP Configuration Directory

A well-configured LDAP server rejects queries for security-related directory
data. The directory requires users that want to retrieve such data to authen-
ticate (“bind”) to the LDAP server first. You’ll learn how to create a binding
user for Postfix in the “Advanced Configuration” section later in the chapter,
but you need to take the first step of creating the extra configuration
directory now. This is because Postfix bind credentials must be stored in
Postfix-specific configuration files, but you don’t want to put them into your
main.cf file, because that would make them world-readable.

CAUTION Creating LDAP configurations in external files requires Postfix 2.x. You can configure
LDAP query parameters entirely in main.cf, but because this requires that the pass-
words for LDAP users be in main.cf, it’s not very secure—any user on the Unix system
that Postfix runs on can read them.

If you really want to use the main.cf file to store the credentials, read the
“Backwards Compatibility” section in the ldap_table(5) manual page.

To create the configuration directory, create an /etc/postfix/ldap
directory accessible only to root and postfix. You’ll store all LDAP map
configuration files there and reference them from main.cf.

mkdir /etc/postfix/ldap
chgrp postfix /etc/postfix/ldap
chmod 750 /etc/postfix/ldap

Adding LDAP Queries for Local Recipients

Let’s look now at the basic Postfix parameters for querying an LDAP server.
We will start off by disabling LDAP bind operations. Then we will create a set
of parameters that will give us information to verify to local recipients.

Disabling LDAP Bind

By default, Postfix tries to authenticate via LDAP bind to the server before
running a query. When you’re first starting out, it’s a good idea to disable
this authentication in order to keep things as simple as possible. Create an
LDAP query configuration file named /etc/postfix/ldap/local_recipients.cf
with the following configuration parameter, which turns off the bind:

bind = no
A Company Mai l Se rve r 327
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Configuring the LDAP Host

You can tell Postfix where to find the directory service with the server_host
and server_port configuration parameters. The server_host parameter defines
the connection type (ldap://, ldaps://, or ldapi://) as a part of one or more
LDAP server URLs that may include the server port. This parameter defaults
to server_host = ldap://localhost:389.

Optionally, you can set server_port (whose default port is 389) to define
the LDAP server port, but this makes sense only if all of your LDAP servers
listen on the same port. Otherwise, you can just append the port on a per-
URL basis, like this:

server_host = ldap://mail.example.com:389, ldaps://auth.example.com:636

In this chapter, the LDAP server runs on the same host as the other
servers and listens on the default LDAP port (389). In this case, you can set
server_host as follows:

server_host = ldap://mail.example.com

Specifying a Branch

The next thing to do is set Postfix’s starting branch for searches with the
search_base parameter. There is no default value, so you always have to set it.
Add the dn piece of the branch for the user objects, like this:

search_base = ou=people,dc=example,dc=com

Defining LDAP Result Attributes

To complete the LDAP map configuration, you need to define the attribute
that holds the key that Postfix accesses upon lookups. The logic is exactly as
in any other map that you have seen so far. The parameter names for the
keys and values compared to indexed maps are shown in Table 19-1.

As you can see, you define the query key attribute with the query_filter
parameter. Following the example from the Example Inc. directory, specify
the attribute for local recipient mail addresses (the mail attribute), and
define the part of the fully qualified mail address that Postfix should submit
to the LDAP server. The substitutions are as follows.

Table 19-1: How Fields of Indexed Maps Correspond to LDAP Query
Parameters

Map Type LHS RHS Conditions

indexed map key value -

LDAP query query_filter result_attribute,
result_filter

special_result_attribute
328 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Because the directory entries in this chapter contain only fully qualified
mail addresses, such as bamm@example.com, we’ll use %s. Configure Postfix to
query based on the full domain name as follows:

query_filter = (mail=%s)

NOTE The standard syntax for LDAP queries and results is defined in RFC 2254 (http://
www.rfc-editor.org/rfc/rfc2254.txt). You can specify your query in any way that
you like. For example, if you have an attribute named mailboxActive in your schema
that denotes an active (not disabled) mailbox, you could form the query parameter as
follows:

query_filter = (&(mail=%s)(mailboxActive=1))

Now you need to define the attribute Postfix will use to query for a result.
There are two parameters at your disposal: result_attribute for configuring
the actual attribute, and result_filter for filtering out parts of the LDAP
query result that you may not need.

In this chapter, you need only verify the existence of a local mail address
because Courier maildrop is the delivery agent in this chapter, not Postfix.
Postfix simply needs to know whether the local recipient address is valid, so
you can use any attribute returned.

NOTE This means that Postfix accepts any value that the LDAP server returns as proof that
the local recipient exists for an incoming message. If the LDAP server doesn’t return a
value, Postfix rejects the message.

Choose a simple attribute that’s easy to identify when testing the query.
In our case, uid fits the bill, so here’s how to configure it as the result attri-
bute in the Postfix local_recipients.cf configuration file:

result_attribute = uid

Activating the Query Map

When you’re happy with your /etc/postfix/ldap/local_recipients.cf file,
you need to activate this map in the main Postfix configuration. Set the
local_recipient_maps parameter in your main.cf file to a list of maps that
Postfix will consult when looking for local recipients. Use proxymap (described
in Chapter 5) to improve LDAP query performance, as follows:

local_recipient_maps = proxy:ldap:/etc/postfix/ldap/local_recipients.cf

%s The complete mail address (for example, bamm@example.com)
%u The localpart without the @ and the domain (for example, bamm)
%d The domain part without the localpart and the @ (for example,

example.com)
A Company Mai l Se rve r 329
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Each proxymap process asks queries on behalf of multiple clients, and
may, but does not have to, cache lookup results.

With the new map in place, reload your Postfix configuration and start
testing.

Testing LDAP Recipients

At this point, the only test you can perform is checking whether Postfix can
look up a valid local recipient. You won’t be able to send a test message
because local delivery hasn’t been configured.

Use the postmap command to query the LDAP server for a known local
recipient, such as bamm@example.com. However, before you do this you need to
switch to the postfix user on your system, because you must make sure that
this user is allowed to read the LDAP configuration file and run the query. A
successful test looks like this:

su - postfix
$ /usr/sbin/postmap -q "bamm@example.com" ldap:/etc/postfix/ldap/

local_recipients.cf
bammbamm

The query here returns the uid value for bamm@example.com; in this case, the
value for that attribute is bammbamm, so the configuration works. If it doesn’t
work, add a -v parameter to the postmap command for verbose output. In
addition, you can add the debuglevel parameter to the LDAP query config-
uration file:

debuglevel = 1

NOTE You can increase the debug level to 3, which should give you all information necessary
to fix a problem.

Querying LDAP for Mail Aliases

To configure Postfix to query the LDAP server for mail aliases, you’ll follow
the same basic configuration steps that were shown in the earlier “Adding
LDAP Queries for Local Recipients” section, except that this time you must
specify a different result_attribute parameter for the query result, and you
must use the query_filter parameter to extract a specific attribute from the
results.

Alias names in the example directory server are assigned to the
maildrop attribute of an entry. Therefore, a configuration file for aliases
(for example, /etc/postfix/ldap/virtual_aliases.cf) would look like the
following.
330 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

bind = no
server_host = ldap://mail.example.com
search_base = ou=people,dc=example,dc=com
query_filter = (maildrop=%s)
result_attribute = mail

Configuring Postfix for LDAP Alias Query Maps

With the LDAP alias query configuration file in place, you need to connect it
to your Postfix configuration by setting the virtual_alias_maps parameter in
main.cf. The syntax is the same as in the recipient maps described in the
earlier “Activating the Query Map” section:

virtual_alias_maps = proxy:ldap:/etc/postfix/ldap/virtual_aliases.cf

Reload your configuration and start testing.

Testing LDAP Alias Query Maps

As before, you can’t send a message to test the LDAP query configuration,
but you can use the postmap command. Recall that postmaster@example.com is an
alias for bamm@example.com in the directory. Switch to the postfix user, and see if
the alias map works like this:

su - postfix
$ /usr/sbin/postmap -q "postmaster@example.com" ldap:/etc/postfix/ldap/virtual_aliases.cf
bamm@example.com

If you don’t get any output from this command, add a -v parameter to
the postmap command for verbose output. You can also add the debuglevel
parameter to the LDAP query configuration file (and you can increase the
debug level up to 3, depending on the amount of information you need):

debuglevel = 1

Testing Lists

You may recall that the simple list design described in the “Creating List
Objects” section earlier in the chapter uses aliases. Therefore, you should be
able to retrieve multiple recipients of an alias by running a postmap query on
the list name:

su - postfix
$ /usr/sbin/postmap -q "all@example.com" ldap:/etc/postfix/ldap/virtual_aliases.cf
bamm@example.com,pebble@example.com,mcbricker@example.com,flintstone@example.com,rubble@example.com
A Company Mai l Se rve r 331
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

When the LDAP server returns multiple results, Postfix collects all of them
and transforms them into a comma-separated list, as in the preceding example.

Delegating Transport to Courier Maildrop

The configuration in this chapter does not use any of the Postfix delivery
agents (the local, maildrop, and virtual daemons). One reason for this is that
third-party delivery agents offer features such as filtering rules and quotas. For
example, the user bammbamm could place all messages for postmaster@example.com
in a subfolder. This section shows you how to configure Postfix to delegate the
task of local message delivery to Courier maildrop.

Creating a Local Transport

Start out by defining a new transport service in your master.cf file. Don’t
worry about breaking your current LDA (if you even have a working one),
because Postfix won’t use the new service until you make a corresponding
change in your main.cf file. The new transport will be a pipe transport called
maildrop. Add the following configuration lines to your master.cf file:

maildrop unix - n n - - pipe
 flags=Rhu user=vmail argv=/usr/local/bin/maildrop -d ${recipient} -w 75

The flags of this pipe(8) transport operate as follows:

After you add the service, edit your main.cf file to tell Postfix to use it as
the local transport:

local_transport = maildrop

CAUTION There are two side effects of using maildrop instead of the local delivery agent. First local
looks at the alias maps, but Courier maildrop can’t do this. However, you already
addressed this problem in the earlier “Configuring Postfix for LDAP Alias Query Maps”

R Prepends a Return-Path message header containing the envelope
sender address. The Postfix local daemon is required to this by
RFC 2821.

h Converts the domain name of the command-line $recipient address
and the $nexthop hostname to lowercase.

u Converts the localpart of the command-line $recipient address to
lowercase.

user user=vmail specifies that /usr/local/bin/maildrop -d ${recipient}
should run as the user vmail, a user that you’ll see later when setting
up Courier maildrop.

-w Sets the warning level for deliverquota(8) to 75 percent of the
mail directory quota. Omit this if you don’t want to enforce a
quota.
332 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

section when you set the virtual_alias_maps parameter. The second limitation is that
maildrop will not take care of Delivered-To loops unless you configure a filter rule. This
will be taken care of in the section “Creating a Mail Filter.”

Limiting Concurrent Messages

Before testing your new transport, you need to make sure it is configured
to deliver to only one user at a time. Don’t fret over any performance loss
from this, because it’s normal for most mail servers. Even the Postfix local
transport is limited to one message at a time with the local_destination_
recipient_limit parameter.

The parameter syntax for creating a limit for other LDAs is servicename_
destination_recipient_limit, with servicename equal to the first field in master.cf.
Add the following line to main.cf for the Courier maildrop service that you
just defined:

maildrop_destination_recipient_limit = 1

Now reload Postfix and start testing.

Testing the LDA

To test the LDA, just send a message to one of the addresses in your recipient
map and watch the mail log. You should be able to see Postfix using the new
maildrop transport like this:

echo foo | /usr/sbin/sendmail -f "" postmaster@example.com
tail -f /var/log/maillog
Jun 29 14:39:13 mail postfix/pickup[5122]: AC7B94400C: uid=0 from=<>
Jun 29 14:39:13 mail postfix/cleanup[5127]: AC7B94400C:
 message-id=<20040629123913.AC7B94400C@mail.example.com>
Jun 29 14:39:13 mail postfix/qmgr[5123]: AC7B94400C:
 from=<>, size=285, nrcpt=1 (queue active)
Jun 29 14:39:13 mail postfix/pipe[5130]: AC7B94400C:
 to=<bamm@example.com>, orig_to=<postmaster@example.com>,
 relay=maildrop, delay=0, status=sent (example.com)
Jun 29 14:39:13 mail postfix/qmgr[5123]: AC7B94400C: removed

If you don’t see a maildrop transport in the log, turn on verbose logging
for smtpd in master.cf, reload your configuration, and send another message.

Configuring Courier Maildrop

Courier maildrop is an LDA that takes messages from a transfer agent such as
Postfix and stores them in a recipient’s mailbox in Maildir format. Maildrop
can also apply filters to messages. One more interesting capability is the
enforcement of quotas on directories (messages in Maildir format are stored
as separate files in a directory).
A Company Mai l Se rve r 333
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Preparing Your System

Courier maildrop prohibits unauthorized users from writing to mailboxes.
You need to choose trusted users and groups before you build the binaries.
Create at least one new user with user ID and group ID numbers matching
the values that you gave to the uidNumber and gidNumber attributes in your
LDAP directory. Courier maildrop and IMAP retrieve these attributes from
the directory when accessing the mailbox.

The example configuration in this chapter uses the following user ID
and group ID:

uidNumber: 1003
gidNumber: 1003

If you haven’t done so yet, create a user and group to match these values.
For example, these commands add a user and group named vmail on a Linux
system:

useradd -u 1003 vmail
groupadd -g 1003 vmail

Installing Courier Maildrop

LDAP support in Courier maildrop is in beta testing as we’re writing this.
It runs well when correctly configured, but it won’t tell you what went wrong
if it catches an error. Considering the speed at which Courier maildrop
evolves, this will probably be fixed by the time you read this book. To get
LDAP support, download the development snapshot of maildrop from
http://www.courier-mta.org/download.php#maildrop.

Extract the archive as a regular user, and change to the newly created
directory. Courier maildrop uses GNU Autoconf, so the build options are
specified as follows:

$./configure --enable-restrict-trusted=1 --enable-trusted-users='root vmail'
--enable-trusted-groups='root vmail' --enable-maildirquota --with-trashquota
--enable-maildropldap

Make sure that you specify --enable-maildropldap for LDAP support. If you
want quota support, include --enable-maildirquota and --with-trashquota, but
have a look at the section “Preparing Maildir Quotas” first. After the config-
uration script finishes, run make. If everything goes smoothly, become root
and run make install-strip install-man to install stripped binaries and manual
pages.

Now that you have maildrop installed, you need to do something about
the Postfix pipe daemon, which refuses to run any process as root. To get
around this, change the maildrop binary to setuid root.
334 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

chmod 750 /usr/local/bin/maildrop
chmod u+s /usr/local/bin/maildrop
chown root:vmail /usr/local/bin/maildrop
ls -l /usr/local/bin/maildrop
-rwsr-x--- 1 root vmail 165552 Jun 25 12:48 /usr/local/bin/maildrop

Don’t worry about circumventing the normal Postfix security policies.
The pipe daemon runs maildrop, which immediately starts running as root, but
upon getting the correct user ID and group ID from LDAP, maildrop switches
to that user and group.

Configuring Courier Maildrop

The easiest way to set up the maildrop configuration for LDAP is to copy the
sample file named maildropldap.config from the maildrop source directory to
/etc/maildropldap.config (this is where Courier maildrop looks for an LDAP
configuration file by default). Edit the file to match your configuration.

Here’s how it would look for the example in this chapter:

hostname mail.example.com
basedn dc=example,dc=com
filter &(objectclass=inetorgperson)
timeout 5
search_method mail
mail_attr mail
uid_attr uid
uidnumber_attr uidNumber
gidnumber_attr gidNumber
maildir_attr mailbox
homedirectory_attr homeDirectory
quota_attr quota

Creating Maildir Mailboxes

All users in this company mail server are virtual users. They are in no relation
to local user accounts, and when you created users in your LDAP directory,
no script automatically created a home directory or a mailbox.

Before testing the maildrop program, you need to create the user
mailboxes. You’ll have to do this by hand for now (you can automate it later
with scripts, of course). Courier maildrop comes with a utility called
maildirmake that creates a Maildir mailbox and a few default subfolders.

Maildrop looks at the homeDirectories attribute on the LDAP server to
locate a mailbox. However, because you switched to virtual users, you can
create a skeleton directory in a place such as /home/mailskel, which you can
simply copy to user home directories without worrying about specific user
permissions.
A Company Mai l Se rve r 335
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Here’s how to create the outer mail skeleton directory:

mkdir /home/mailskel
chgrp vmail /home/mailskel
chmod 770 /home/mailskel
ls -dall /home/mailskel
drwxrwx--- 6 root vmail 4096 Jun 28 17:52 /home/mailskel

Now you can create another directory named /home/mailskel/.templateDir
and give ownership to vmail:

mkdir /home/mailskel/.templateDir
chown vmail /home/mailskel/.templateDir/
chgrp vmail /home/mailskel/.templateDir/
chmod 700 /home/mailskel/.templateDir/
ls -dall /home/mailskel/.templateDir
drwx------ 2 vmail vmail 4096 Jun 29 22:27 /home/mailskel/.templateDir

You’re now ready to build the actual mail directory. However, before
running maildirmake to create the basic Maildir directory structure, you need
to switch to the vmail user so that maildrop will be able to access an exact
copy of it later:

su - vmail
$ maildirmake /home/mailskel/.templateDir/Maildir

Verify that maildirmake created the directory as follows:

$ ls -la /home/mailskel/.templateDir/Maildir
total 20
drwx------ 5 vmail vmail 4096 Jun 29 22:31 .
drwx------ 3 vmail vmail 4096 Jun 29 22:31 ..
drwx------ 2 vmail vmail 4096 Jun 29 22:31 cur
drwx------ 2 vmail vmail 4096 Jun 29 22:31 new
drwx------ 2 vmail vmail 4096 Jun 29 22:31 tmp

As you can see, you now have a directory called Maildir containing the
three subdirectories cur, new, and tmp, where inbox messages reside
(depending on their status).

Run maildirmake a few more times to create subfolders named Drafts,
Trash, and Spam:

$ maildirmake -f Drafts /home/mailskel/.templateDir/Maildir
$ maildirmake -f Trash /home/mailskel/.templateDir/Maildir
$ maildirmake -f Spam /home/mailskel/.templateDir/Maildir
$ ls -la /home/mailskel/.templateDir/Maildir
336 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

total 32
drwx------ 8 vmail vmail 4096 Jun 29 22:39 .
drwx------ 3 vmail vmail 4096 Jun 29 22:31 ..
drwx------ 2 vmail vmail 4096 Jun 29 22:31 cur
drwx------ 5 vmail vmail 4096 Jun 29 22:39 .Drafts
drwx------ 2 vmail vmail 4096 Jun 29 22:31 new
drwx------ 5 vmail vmail 4096 Jun 29 22:39 .Spam
drwx------ 2 vmail vmail 4096 Jun 29 22:31 tmp
drwx------ 5 vmail vmail 4096 Jun 29 22:39 .Trash

Notice that each of these subdirectories has cur, new, and tmp
subdirectories.

Your mail directory template is now available as a skeleton to use when
creating virtual Maildir mailboxes for other users. Use cp -pR as the superuser
to preserve ownership and permissions when copying the template. For
example, you can create the mailbox for bammbamm as follows:

cp -pR /home/mailskel/.templateDir/ /var/spool/mail/bammbamm
ls -all /var/spool/mail/bammbamm
total 12
drwx------ 3 vmail vmail 4096 Jun 29 22:31 .
drwxrwx--- 9 root vmail 4096 Jun 29 22:55 ..
drwx------ 8 vmail vmail 4096 Jun 29 22:39 Maildir
ls -all /var/spool/mail/bammbamm/Maildir/
total 32
drwx------ 8 vmail vmail 4096 Jun 29 22:39 .
drwx------ 3 vmail vmail 4096 Jun 29 22:31 ..
drwx------ 2 vmail vmail 4096 Jun 29 22:31 cur
drwx------ 5 vmail vmail 4096 Jun 29 22:39 .Drafts
drwx------ 2 vmail vmail 4096 Jun 29 22:31 new
drwx------ 5 vmail vmail 4096 Jun 29 22:39 .Spam
drwx------ 2 vmail vmail 4096 Jun 29 22:31 tmp
drwx------ 5 vmail vmail 4096 Jun 29 22:39 .Trash

Don’t create directories for the rest of your users yet; have a look at the
next section first.

Creating a Mail Filter

After creating a Maildir template directory, you can create a default set of
delivery filters for Courier maildrop. To get started, configure a global set of
rules in /etc/maildroprc that apply to every mail recipient on your server. For
debugging purposes, you may find it handy to put a log file into each user’s
home directory with this rule:

logfile "$HOME/maildrop.log"
A Company Mai l Se rve r 337
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Now you can turn your attention to filter rules. The first rule in the
following example will prevent a Delivered-To loop as mentioned in the
section “Creating a Local Transport.” It should always be at the beginning of
your maildroprc file to catch before any other actions are carried out. The
second rule tells maildrop to put any message with X-Spam-Status: Yes in the
message header into the .spam subfolder of the recipients mailbox ($DEFAULT):

logfile "$HOME/maildrop.log"
if (/^Delivered-To: $LOGNAME@mail.example.com/:h)
 {
 echo "This message is looping, it already has my Delivered-To: Header!"
 EXITCODE = 1
 exit
 }
 # Add Delivered-To: header
 xfilter "reformail -A'Delivered-To: $LOGNAME@mail.example.com'"

You can filter on a per-user basis by adding a .mailfilter file with
additional rules to a recipient’s home directory. You must use a strict set of
permissions, or maildrop will refuse to use instructions from .mailfilter.
Here’s how to create it for bammbamm:

su - vmail
$ cd /var/spool/mail/bammbamm
$ touch .mailfilter
$ chmod 600 .mailfilter

Recall that the preceding user is also the postmaster. Therefore, the
following .mailfilter filter rule files messages with postmaster@example.com as
the recipient in the message header to the .postmaster directory:

if (/^To.*postmaster@example\.com/)
{
 to "$DEFAULT/.postmaster/"
}

NOTE Global filter rules take precedence over per-user rules.

Of course, you haven’t created the .postmaster folder yet, so before you can
use this rule, you must create it. Become vmail and run maildirmake as follows:

su - vmail
$ cd /var/spool/mail/bammbamm
$ maildirmake -f postmaster Maildir

Maildrop filtering rules can make life a lot easier for users because
they don’t have to rely on their mail client. To learn more about
maildrop’s filtering capabilities, refer to the maildropfilter(5) manual
338 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

page, and pay special attention to the examples listed for http://
www.dotfiles.com in the “Other” section.

Preparing Maildir Quotas

Quotas seem like a nice feature to have, but before you decide to turn them
on, you should be aware that the maildrop quota system is somewhat contro-
versial because Maildir quotas are not reliable all the time. The following
statement by Victor Duchovni summarizes a Postfix developer’s point of view:

The real sticking point is that the users of “maildir++” don’t
want robust quota code that is guaranteed to work all the
time! They are willing to trade robustness (quota state files
never need to be rebuilt, user always under quota, . . .) for
ease of use (no filesystem quota interface to worry about,
quotas can be soft allowing for configurable limited
functionality when over quota).

Of course, this aspect of the quotas is known (see http://www.inter7.com/
courierimap/README.maildirquota.html), but many administrators still prefer to
take the advantages of Courier maildrop along with some slight disadvan-
tages. Every situation is different, so you need to decide on the matter of
quotas for yourself.

If you want to go for it, first add -w 75 to the maildrop service line in the
earlier “Creating a Local Transport” section to generate a warning message
when the mail directory is at 75 percent capacity (a “soft” limit). You will
need to come up with the warning message template yourself. Create the
template as a plaintext file named /usr/local/etc/quotawarnmsg containing a
message something like this:

From: MAILER-DAEMON <>
To: Valued Customer:;
Subject: Mail quota warning
Mime-Version: 1.0
Content-Type: text/plain; charset=iso-8859-1
Content-Transfer-Encoding: 7bit

Your mailbox on the server is now more than 75% full. So that you can continue
to receive mail you need to remove some messages from your mailbox.

Maildrop adds Message-ID and Date headers when storing the quota
warning in the recipient’s mailbox.

Testing Courier Maildrop

It’s now time to test your Courier maildrop installation. There are four steps
in the testing:

1. Test that Courier maildrop works without Postfix.

2. Use the sendmail program that comes with Postfix to deliver a message
to Courier maildrop.
A Company Mai l Se rve r 339
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

3. Test that the filters work.

4. Test that the quotas work (if you chose to use them).

Testing Stand-Alone Courier Maildrop

Switch to the vmail user and execute the maildrop command as Postfix would:

su - vmail
$ /usr/local/bin/maildrop -d bamm@example.com
this is a test message

Enter CTRL-D on a line by itself to send the message. Check whether
maildrop terminated cleanly by looking at the exit code, as follows:

$ echo $?
0

An exit code of zero indicates successful execution and delivery. Of
course, you could also verify that maildrop created a new file in bamm’s mail
directory:

$ ls -l /var/spool/mail/bammbamm/Maildir/new
total 4
-rw------- 1 vmail vmail 23 Jun 30 12:12

1088590342.M975018P6589V0000000000000302I0001840E_0.mail.example.com,S=4

If you enabled Courier maildrop logging, you will find this proof of
delivery in the log:

Date: Mon Aug 9 09:05:56 2004
From:
Subj:
File: /var/spool/mail/bammbamm/Maildir (12)

Testing Courier Maildrop with Postfix

To test Postfix with maildrop, use the Postfix sendmail binary and inspect your
mail log as follows:

echo foo | /usr/sbin/sendmail -f rubble@example.com bamm@example.com
tail -f /var/log/maillog
Jul 26 23:20:58 mail postfix/pickup[27883]: 608DD229EF5: uid=0

from=<rubble@example.com>
Jul 26 23:20:58 mail postfix/cleanup[28429]: 608DD229EF5:

message-id=<20040726212058.608DD229EF5@mail.example.com>
Jul 26 23:20:58 mail postfix/qmgr[27882]: 608DD229EF5:

from=<rubble@example.com>, size=288, nrcpt=1 (queue active)
340 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Jul 26 23:20:58 mail postfix/pipe[28432]: 608DD229EF5: to=<bamm@example.com>,
relay=maildrop, delay=0, status=sent (example.com)

Jul 26 23:20:58 mail postfix/qmgr[27882]: 608DD229EF5: removed

The mail log here indicates that Postfix relayed the message to maildrop.
If you enabled logging in /etc/maildroprc, you should find a log entry like the
following in Bamm Bamm’s maildrop.log file:

Date: Mon Jul 26 23:24:42 2004
From: rubble@example.com (root)
Subj:
File: /var/spool/mail/bammbamm/Maildir (345)

This entry states that a message from rubble@example.com (identified by
Postfix as root) was delivered to /var/spool/mail/bammbamm/Maildir, which
happens to be Bamm Bamm’s inbox.

Testing Courier Maildrop Filters

To test filtering, create and send a file named testmessage with something to
trigger the filter rules in /etc/maildroprc. Here’s a message that should work
with the spam filtering rule from the section “Creating a Mail Filter”:

From: Barney <rubble@example.com>
To: Bamm Bamm <bamm@example.com>
Subject: Test message tagged as SPAM
X-Spam-Status: Yes
foo bar

Send the message with sendmail as follows:

/usr/sbin/sendmail -f rubble@example.com bamm@example.com < testmessage

In addition to checking the spam subfolder to verify that it works, check
the maildrop.log file. It should look like this:

Date: Mon Jul 26 22:29:24 2004
From: Barney <rubble@example.com>
Subj: Test message tagged as SPAM
File: /var/spool/mail/bammbamm/Maildir/.spam/ (412)

The message was delivered to the subfolder .spam, so the global
filters work.

Now alter your test message as follows to see if local filters work:

From: Barney <rubble@example.com>
To: Postmaster <postmaster@example.com>
Subject: Test message for Postmaster
A Company Mai l Se rve r 341
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Send this message to postmaster@example.com:

/usr/sbin/sendmail -f rubble@example.com postmaster@example.com < testmessage

The maildrop.log file should look like the following, confirming that the
message went to the Postmaster’s folder:

Date: Mon Jul 26 23:36:48 2004
From: Barney <rubble@example.com>
Subj: Test message for Postmaster
File: /var/spool/mail/bammbamm/Maildir/.postmaster (391)

Testing Courier Maildrop Quotas

Finally, if you configured maildrop to use Maildir quotas, you need to test
whether the soft limit and hard limit work. Create a testmessage that has a size
of 5MB like this:

dd if=/dev/zero of=/root/testmessage bs=5M count=1
1+0 records in
1+0 records out
ls -all testmessage
-rw-r--r-- 1 root root 5242880 Jul 27 09:25 testmessage

Next, use ldapmodify to set a lower quota for Bamm Bamm. It should
reach softlimit after one testmessage and hardlimit after the second. Create a
file, such as modify_bammbamm_quota.ldif, including your changes:

dn: uid=bammbamm,ou=it,ou=people,dc=example,dc=com
changetype: modify
replace: quota
quota: 6990507S

Then run ldapmodify, and import the changes from modify_bammbamm_
quota.ldif:

ldapmodify -x -D "cn=Manager,dc=example,dc=com" -w secret -f modify_bammbamm_quota.ldif

When all of this is set up, you can send the first of the two test messages
off to bamm@example.com:

/usr/sbin/sendmail -f rubble@example.com bamm@example.com < /root/testmessage

Check whether the message was delivered to Bamm Bamm’s mailbox:

ls -la
-rw------- 1 vmail vmail 5243221 Jul 27 09:38 1090913892.\
 M24019P29629V0000000000000302I00229EF6_0.mail.example.com,S=5243221
-rw-r----- 1 vmail vmail 447 Jul 27 09:38 1090913893.\
 M932062P29629V0000000000000302I00229F00_warn.mail.example.com,S=447
342 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

You can see an additional message that carries the string warn in its
filename. Use cat to have a look at it:

cat 1090913893.M932062P29629V0000000000000302I00229F00_warn.mail.example.com\,S\=447
From: MAILER-DAEMON <>
To: Valued Customer:;
Subject: Mail quota warning
Mime-Version: 1.0
Content-Type: text/plain; charset=iso-8859-1
Content-Transfer-Encoding: 7bit

Your mailbox on the server is now more than 75% full. So that you can
continue to receive mail you need to remove some messages from your mailbox.

Maildrop has delivered the message, and it created a mail quota warning
message in the recipient’s mailbox. Because the mailbox is said to be 75
percent full, your next message will saturate the hardlimit; maildrop will have
to bounce the message back to rubble@example.com:

/usr/sbin/sendmail -f rubble@example.com bamm@example.com < /root/testmessage

In the mail log, you should see that the message was bounced back to the
sender:

tail -f /var/log/maillog
Jul 27 09:59:18 mail postfix/pickup[29788]: 4C083229F09: uid=0

from=<rubble@example.com>
Jul 27 09:59:18 mail postfix/cleanup[29793]: 4C083229F09:

message-id=<20040727075918.4C083229F09@mail.example.com>
Jul 27 09:59:18 mail postfix/qmgr[29789]: 4C083229F09:

from=<rubble@example.com>, size=5250843, nrcpt=1 (queue active)
Jul 27 09:59:19 mail postfix/pipe[29795]: 4C083229F09: to=<bamm@example.com>,

relay=maildrop, delay=1, status=bounced (permission denied. Command output:
maildrop: maildir over quota.)

The bounce notifies the sender, rubble@example.com, that delivery was not
possible due to the following reason: <bamm@example.com>: permission denied.
Command output: maildrop: maildir over quota.

Configuring Courier IMAP
The last server that you need to configure is Courier IMAP. If you’re not
familiar with it already, Courier supports the Maildir format and offers POP,
POP-SSL, IMAP, and IMAP-SSL services to clients.

Installing Courier IMAP

To install the Courier IMAP server, download the source code from http://
www.courier-mta.org/download.php#imap. As a normal user, extract the archive,
change to the new directory, and run configure as follows.
A Company Mai l Se rve r 343
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

$./configure --enable-workarounds-for-imap-client-bugs --enable-unicode
--without-authpgsql --without-socks

$ make

The configuration process automatically detects LDAP libraries on your
machine.

NOTE If you’re running Red Hat, add --with-redhat to the configuration options to enable a
Red Hat–specific workaround.

After the configuration is complete, switch to root and run make install
install-configure to install the software and the documentation.

Configuring Courier IMAP to Use Its LDAP Authentication Daemon

Courier uses a modular authentication backend (the modules are located
in /usr/lib/courier-imap/libexec/authlib if you compiled Courier IMAP with
the default options). To configure the Courier authentication daemon
(authdaemon) for exclusive LDAP authentication, change the value of the
authmodulelist parameter in /usr/lib/courier-imap/etc/authdaemonrc to read
as follows:

authmodulelist="authldap"

For consistency, you should remove all other module names from the
authmodulelist.

While still editing the authdaemonrc file, go to the end of the file and
change or add the version parameter to include only authdaemond.ldap
(otherwise, authdaemon chooses the first authdaemond.* module that it finds):

version="authdaemond.ldap"

Configuring the Authentication Backend

You now need to tell the authentication backend about your LDAP server
and directory. To configure the authdaemond.ldap module, change the default
entries in /usr/lib/courier-imap/etc/authldaprc to match your server and
directory. To make it work with the example in this chapter, specify the
following parameters:

LDAP_SERVER mail.example.com
LDAP_BASEDN dc=example,dc=com
LDAP_MAIL mail
LDAP_FILTER (objectClass=inetorgperson)
LDAP_HOMEDIR homeDirectory
LDAP_MAILDIR mailbox
LDAP_MAILDIRQUOTA quota
344 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

LDAP_CLEARPW userPassword
LDAP_UID uidNumber
LDAP_GID gidNumber

NOTE The comments in authldaprc are quite helpful for explaining the parameters.

Creating the IMAP Certificate

The only thing left to do is to create a security certificate for Courier IMAP.
Although Courier creates one automatically upon starting up imapd-ssl (and
it comes with the mkimapdcert utility), we can’t really use it because it isn’t
signed by our certification authority.

Follow these steps to create the certificate:

1. Assuming that you set up your own CA as described in Chapter 17, you
can create an imapd certificate as follows:

openssl req -new -nodes -keyout imapd_private_key.pem -out
imapd_private_key.pem -days 365

2. Sign the key with your CA, creating the public certificate:

openssl ca -policy policy_anything -out imapd_public_cert.pem -infiles
imapd_private_key.pem

3. Creating the certificate file for Courier IMAP is a little different than for
Postfix TLS and OpenLDAP. Concatenate both key files to create an
imapd.pem file:

cat imapd_private_key.pem imapd_public_cert.pem > imapd.pem

4. Copy the certificate to where Courier can find it, and set the correct per-
missions to protect the private key inside the file:

cp imapd.pem /usr/lib/courier-imap/share/imapd.pem
chmod 600 /usr/lib/courier-imap/share/imapd.pem
chown root /usr/lib/courier-imap/share/imapd.pem

5. Start the SSL instance of imapd:

/usr/lib/courier-imap/libexec/imapd-ssl.rc start

6. Use ps to make sure that it started:

ps auxwww | grep imapd-ssl
root 1676 0.0 0.3 1940 500 ? S 16:08 0:00 /usr/lib/ \
A Company Mai l Se rve r 345
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

courier-imap/libexec/couriertcpd -address=0 \
-stderrlogger=/usr/lib/courier-imap/sbin/courierlogger \
-stderrloggername=imapd-ssl -maxprocs=40 -maxperip=4 \
-pid=/var/run/imapd-ssl.pid -nodnslookup -noidentlookup 993 \
/usr/lib/courier-imap/bin/couriertls \

root 1680 0.0 0.2 1952 340 ? S 16:08 0:00 /usr/lib/ \
courier-imap/sbin/courierlogger imapd-ssl

root 1810 0.0 0.4 4600 564 pts/0 S 17:24 0:00 grep imapd-ssl

NOTE You can use the scripts in /usr/lib/courier-imap/libexec and copy them to your
init.d directory to have Courier started and stopped automatically when you change
runlevels.

Testing the IMAP Server

To verify that your IMAP server is accessible and that users can log in,
connect to port 143 of your server and carry out a session. Connect to the
server as follows:

telnet mail.example.com 143
* OK [CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE \
 THREAD=ORDEREDSUBJECT THREAD=REFERENCES SORT QUOTA \
 IDLE ACL ACL2=UNION STARTTLS] Courier-IMAP ready. \
 Copyright 1998-2004 Double Precision, Inc. \
 See COPYING for distribution information.

After you see the preceding greeting message, log in:

. login bammbamm bamm_password

. OK LOGIN Ok.

Now select the inbox to see whether the folder is working properly:

. select INBOX
* FLAGS (\Draft \Answered \Flagged \Deleted \Seen \Recent)
* OK [PERMANENTFLAGS (* \Draft \Answered \Flagged \Deleted \Seen)] Limited
* 5 EXISTS
* 0 RECENT
* OK [UIDVALIDITY 1089237749] Ok
* OK [MYRIGHTS "acdilrsw"] ACL
. OK [READ-WRITE] Ok

Finally, log out:

. logout
* BYE Courier-IMAP server shutting down
. OK LOGOUT completed
346 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Testing IMAP over TLS

To test IMAP over TLS, use the s_client utility from OpenSSL instead of
telnet. Let it connect to port 993 (the imaps port). This client displays quite a
bit of certificate-checking output, but after the connection is established, you
can use it just as you did with the preceding unencrypted session. Here’s how
it should look:

openssl s_client -CAfile /usr/share/ssl/certs/cacert.pem -connect localhost:993
CONNECTED(00000003)
depth=1 /C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=Certification
Authority/\
 CN=mail.example.com/emailAddress=certmaster@example.com
verify return:1
depth=0 /C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=IMAP \
 services/CN=mail.example.com/emailAddress=postmaster@example.com
verify return:1

Certificate chain
 0 s:/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=IMAP services/\
 CN=mail.example.com/emailAddress=postmaster@example.com
 i:/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=Certification

Authority/ CN=mail.example.com/emailAddress=certmaster@example.com

Server certificate
-----BEGIN CERTIFICATE-----
MIIEDDCCA3WgAwIBAgIBAzANBgkqhkiG9w0BAQQFADCBsDELMAkGA1UEBhMCRVgx
ETAPBgNVBAgTCEV4YW1wbGlhMRMwEQYDVQQHEwpFeGFtcGxldG9uMRUwEwYDVQQK
EwxFeGFtcGxlIEluYy4xIDAeBgNVBAsTF0NlcnRpZmljYXRpb24gQXV0aG9yaXR5
MRkwFwYDVQQDExBtYWlsLmV4YW1wbGUuY29tMSUwIwYJKoZIhvcNAQkBFhZjZXJ0
bWFzdGVyQGV4YW1wbGUuY29tMB4XDTA0MDcxMzEzNTUzMloXDTA1MDcxMzEzNTUz
MlowgaYxCzAJBgNVBAYTAkVYMREwDwYDVQQIEwhFeGFtcGxpYTETMBEGA1UEBxMK
RXhhbXBsZXRvbjEVMBMGA1UEChMMRXhhbXBsZSBJbmMuMRYwFAYDVQQLEw1JTUFQ
IHNlcnZpY2VzMRkwFwYDVQQDExBtYWlsLmV4YW1wbGUuY29tMSUwIwYJKoZIhvcN
AQkBFhZwb3N0bWFzdGVyQGV4YW1wbGUuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GN
ADCBiQKBgQC95UUtw3dVVGghNLPEN3YBw/iKMkXtNhXllLAUEshZEIDGGjB1q9W8
QC4mLB0sWTYLTXWUbvoJHmBCmf6tzVv0i932r4KTDzanLP7EDc4tvg8ouhFxUEka
lVA+1g3l5oY8v1LIOYWxS8fpmRQENYHWncoShmXRPjg4wO6/2pZaawIDAQABo4IB
PDCCATgwCQYDVR0TBAIwADAsBglghkgBhvhCAQ0EHxYdT3BlblNTTCBHZW5lcmF0
ZWQgQ2VydGlmaWNhdGUwHQYDVR0OBBYEFFK61+FMcqcC3M/Em3X2I8JCn8JuMIHd
BgNVHSMEgdUwgdKAFMNGZ7/NorS6WpJQJZ2IhDno97iXoYG2pIGzMIGwMQswCQYD
VQQGEwJFWDERMA8GA1UECBMIRXhhbXBsaWExEzARBgNVBAcTCkV4YW1wbGV0b24x
FTATBgNVBAoTDEV4YW1wbGUgSW5jLjEgMB4GA1UECxMXQ2VydGlmaWNhdGlvbiBB
dXRob3JpdHkxGTAXBgNVBAMTEG1haWwuZXhhbXBsZS5jb20xJTAjBgkqhkiG9w0B
CQEWFmNlcnRtYXN0ZXJAZXhhbXBsZS5jb22CAQAwDQYJKoZIhvcNAQEEBQADgYEA
iqd/nOvihp1EWF+K7hgbptl9v13tzyuE3TMSI3oXtGnQtYNLTvx3eaYDBecUQaI1
q1ocQBsvz17+noz9jwD69UlBWUANwxDu0bPHmnr7CeePVnv6fAyZ4Jg9x8vAPzDD
Nu/Tu88M0kEVQ2XT35oPM+gDy3Mw44NrYB2xhky8Ptg=
-----END CERTIFICATE-----
A Company Mai l Se rve r 347
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

subject=/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=IMAP services/\
 CN=mail.example.com/emailAddress=postmaster@example.com
issuer=/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=Certification
Authority/\
 CN=mail.example.com/emailAddress=certmaster@example.com

No client certificate CA names sent

SSL handshake has read 1202 bytes and written 340 bytes

New, TLSv1/SSLv3, Cipher is AES256-SHA
Server public key is 1024 bit
SSL-Session:
 Protocol : TLSv1
 Cipher : AES256-SHA
 Session-ID:
7AA6E031976D8B3846F1B2C8FCBEBEB777C89BAD16E548C0D8FE0B170BF1D49B
 Session-ID-ctx:
 Master-Key: E41CE39B98EFF3395936404F7142D2804FA7BBE63ADB6A57F3FB51\
 3A756E6D55F548A5765AC27F99F862F46664131C72
 Key-Arg : None
 Krb5 Principal: None
 Start Time: 1089732738
 Timeout : 300 (sec)
 Verify return code: 0 (ok)

* OK [CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUBJECT \
 THREAD=REFERENCES SORT QUOTA IDLE AUTH=PLAIN ACL ACL2=UNION] Courier-IMAP

ready. \
 Copyright 1998-2004 Double Precision, Inc. See COPYING for distribution

information.
. login bamm@example.com bamm_secret
. OK LOGIN Ok.
. logout
* BYE Courier-IMAP server shutting down
. OK LOGOUT completed
closed

Congratulations! You now have a working LDAP-based mail server. But
there still are a few things to do.

Advanced Configuration

Your mail server is functional, but you still have more work to do. At the
moment, anyone who can connect to the LDAP server can retrieve security-
related data, such as the userPassword attribute. Furthermore, all data
retrieved by the various servers (including Postfix) conduct their LDAP
sessions in plaintext.
348 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Your first priority should be to address these security issues by tightening
things up. This section shows you how to use bind users in an LDAP server so
that you can limit what the LDAP server can send to a client. In addition,
you’ll see how to encrypt the LDAP session itself. As an added bonus, you’ll
configure ldapdb-based SMTP authentication and use it to enforce a com-
pany policy that prevents potential abuse of sender addresses.

Expanding the Directory

Controlling access to an LDAP directory and enforcing SMTP authentication
require you to set up accounts for all servers that depend on the directory.
To do this, you need to expand the directory tree to add another top branch
that will keep servers separate from mail users. Figure 19-3 illustrates the new
branch called ou=auth,dc=example,dc=com, which holds objects of the class
account.

Figure 19-3: Authentication branch of Example Inc.

In the plaintext directory, you will use these attributes and schemata:

dn: ou=auth,dc=example,dc=com
ou: auth
objectClass: organizationalUnit
dn: uid=postfix,ou=auth,dc=example,dc=com
uid: postfix
objectClass: account

dc=example,dc=com

ou=auth ou=people

...

...

dn: uid=postfix,ou=auth,dc=example,dc=com
uid: postfix
userPassword: {SHA}7js/stCLRNq3ayZWxyjvlB4Cfos=
objectClass: account
objectClass: simpleSecurityObject
description: Postfix Bind user
A Company Mai l Se rve r 349
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

objectClass: simpleSecurityObject
description: Postfix Bind user
userPassword: {CRYPT}9lGRsJNHN5DrI
dn: uid=couriermaildrop,ou=auth,dc=example,dc=com
uid: couriermaildrop
objectClass: account
objectClass: simpleSecurityObject
description: Courier Maildrop Bind user
userPassword: {CRYPT}lA8iQdmwZRC86
dn: uid=courierimap,ou=auth,dc=example,dc=com
uid: courierimap
objectClass: account
objectClass: simpleSecurityObject
description: Courier IMAP Bind user
userPassword: {CRYPT}S1t1/3ENmjk1s
dn: uid=ldapdb,ou=auth,dc=example,dc=com
uid: ldapdb
objectClass: inetOrgPerson
givenName: ldapdb
sn: ldapdb
cn: ldapdb
userPassword: AvaAg07i
mail: ldapdb
saslAuthzTo: ldap:///
ou=people,dc=example,dc=com??sub?(objectclass=inetOrgPerson)

Each server that accesses the LDAP directory (Postfix, Courier maildrop,
Courier IMAP, and Cyrus SASL) through the ldapdb module will have its
own account. The attributes in the uid=ldapdb,ou=auth,dc=example,dc=com object
differ from the others as follows:

� The password is stored in plaintext format to enable the DIGEST-MD5
shared-secret authentication mechanism (this mechanism can’t access
encrypted passwords).

� The new mail attribute will be used instead of uid to authenticate users.

� The saslAuthzTo attribute defines where ldapdb can take another user’s
identity.

Adding Authentication to Servers

The first feature that we’ll implement is mail relaying through SMTP
authentication so that mobile and remote users with IP addresses outside the
local trusted network can send mail. You already saw how to do this without
LDAP in Understanding SMTP authentication, but this time we’ll build and
configure Cyrus SASL with the ldapdb plug-in. You could always do it with
the saslauthd stand-alone daemon, but unfortunately, this daemon is limited
350 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

to plaintext mechanisms. When you’re through with this section, your Postfix
server should be able to offer plaintext mechanisms (PLAIN, LOGIN) and
shared-secret mechanisms (CRAM-MD5, DIGEST-MD5) to mail clients.

The authentication process differs slightly from what is described in
Chapter 16, which discusses Postfix and Cyrus SASL interaction, because it
uses an authorization ID to verify authentication. This identifier stems from
the Cyrus IMAP project, where it is possible to allow a group of users to act
on behalf of one user. For example, you can set Cyrus IMAP up to allow
others to read a vacationing user’s mail without exchanging any passwords.

The ldapdb authentication process works as follows:

1. A mail client using SMTP authentication connects to the Postfix server
and transmits the username (and a passphrase if a plaintext mechanism is
in use). This username is the authentication ID in the context of SASL.

2. The Postfix smtpd asks the SASL library to verify the credentials. The
SASL library delegates this task to the ldapdb plug-in, which will get in
contact with the LDAP server.

3. The ldapdb configuration for the Postfix smtpd daemon contains another
username and passphrase (ldapdb transmits the passphrase only when the
client uses a plaintext mechanism). This username is called the authoriza-
tion ID in the context of SASL because it has permission to retrieve the
passphrase from the mail user (the authentication ID).

4. If ldapdb succeeds in retrieving the passphrase from the LDAP server, it
compares the string to the passphrase given by the mail client. The exact
method of verification depends on the mechanism that the mail client
used. Plaintext mechanisms mean that a simple comparison of strings
will be performed, but shared-secret mechanisms cause ldapdb to calcu-
late strings using the passphrase and to compare the strings.

If either method succeeds, authentication was successful, and
ldapdb transmits the information back to SASL, which then tells Postfix
that it may grant relay access.

Applying the ldapdb Patch

The ldapdb plug-in was contributed to Cyrus SASL by OpenLDAP architect
Howard Chu to enable shared-secret mechanisms to SASL authentication.
Though ldapdb has been scheduled to be part of future Cyrus SASL versions,
it hasn’t made its way into the current release (as of Cyrus SASL 2.1.19). To
make it easier to get ldapdb support for Cyrus SASL, we’ve created a patch
that you can download from the http://www.postfix-book.com website.

To apply the patch to the Cyrus SASL source files, unpack a fresh SASL
distribution and change into the new directory. Apply the patch as shown in
the following example.
A Company Mai l Se rve r 351
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

patch -p1 < ../cyrus-sasl-2.1.19-ldapdb.patch
patching file config/openldap.m4
patching file configure.in
patching file doc/install.html
patching file doc/options.html
patching file doc/readme.html
patching file doc/sysadmin.html
patching file lib/staticopen.h
patching file plugins/ldapdb.c
patching file plugins/Makefile.am
patching file plugins/makeinit.sh

If the patch goes cleanly, build Cyrus SASL like this (notice the --with-
ldap* options):

./configure \
 --with-plugindir=/usr/lib/sasl2 \
 --disable-java \
 --disable-krb4 \
 --with-dblib=berkeley \
 --with-saslauthd=/var/state/saslauthd \
 --without-pwcheck \
 --with-devrandom=/dev/urandom \
 --enable-cram \
 --enable-digest \
 --enable-plain \
 --enable-login \
 --disable-otp \
 --with-ldap=/usr \
 --with-ldapdb

After the configuration process completes, you can install or upgrade
your current version of SASL by running make install. If you have not already
done so, create a symbolic link from /usr/local/lib/sasl2 to /usr/lib/sasl2,
because SASL will expect to find the libraries in that directory with these
particular configuration options.

When you are finished, you should see these new ldapdb libraries in
/usr/lib/sasl2:

ls -la libldapdb.*
-rwxr-xr-x 1 root root 702 Jul 16 20:43 libldapdb.la
lrwxrwxrwx 1 root root 19 Jul 16 20:43 libldapdb.so -> libldapdb.so.2.0.19
lrwxrwxrwx 1 root root 19 Jul 16 20:43 libldapdb.so.2 -> libldapdb.so.2.0.19
-rwxr-xr-x 1 root root 94948 Jul 16 20:43 libldapdb.so.2.0.19

Configuring ldapdb

As explained earlier in the “Adding Authentication to Servers” section, you
must create a SASL configuration for the Postfix smtpd daemon in /usr/lib/
sasl2/smtpd.conf to make SASL available to Postfix.
352 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Here’s an example:

pwcheck_method: auxprop
auxprop_plugin: ldapdb
mech_list: PLAIN LOGIN DIGEST-MD5 CRAM-MD5
ldapdb_uri: ldap://mail.example.com
ldapdb_id: proxyuser
ldapdb_pw: proxy_secret
ldapdb_mech: DIGEST-MD5
log_level: 7

The additional LDAP-related configuration parameters are ldapdb_id
and ldapdb_pw. The username here is the authorization ID. (Remember
that the ldapdb plug-in requires smtpd to use the authorization ID before
it can become the identity of the mail user and reauthenticate.)

Configuring the OpenLDAP Authorization Policy

You now have Postfix set up to bind to the OpenLDAP server, but you
still need to configure the OpenLDAP slapd to authenticate the user
and authorize it to become another user. First, select a policy that
defines how slapd should handle the authenticated users. Set the sasl-
authz-policy parameter in your slapd.conf file to one of the following
choices:

NOTE You will find more detailed information in Chapter 10 of the “OpenLDAP
Administrator’s Guide” (http://www.openldap.org/doc/admin22/
sasl.html#SASL%20Proxy%20Authorization).

We’ll use to as the policy in this book because we believe it is easier for
the administrator to limit who may take another identity than to add a new
attribute to each user object. To configure the policy for the example in this
chapter, add the following line to slapd.conf:

sasl-authz-policy to

none Disables authorization. This is the default setting.
from Requires each LDAP user to explicitly permit one or more users to

act as the authorization ID. To allow authorization, they need to
add the saslAuthzFrom attribute to their own user object. This
attribute contains the dn (distinguished name) of the user that may
take their identity.

to Permits all users to act as an authorization ID by default. With this
policy, a user adds the saslAuthzTo attribute to their own user object,
which defines where it is permissible to take another user’s identity.
The LDAP directory administrator must create a rule that allows
only a limited number of users to assume other identities (to
prevent abuse).

both Activates both of the from and to policies.
A Company Mai l Se rve r 353
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Configuring SASL OpenLDAP Binds

For the last step in enabling SASL-based binds to the OpenLDAP server,
you need to configure slapd with the directory branch where credentials are
stored. You also need to specify the query attribute for the given authen-
tication ID. This is handled with a search filter called sasl-regexp that defines
where the smtpd bind (authorization ID) should search for users it wants to
authenticate.

Put the filter in your slapd.conf configuration file as follows:

sasl-regexp
 uid=(.*),cn=.*,cn=auth
 ldap:///dc=example,dc=com??sub?(&(objectclass=inetOrgPerson)(mail=$1))

NOTE The preceding regular expression does not look for a uid (login name), but rather, a
mail address. This is intentional; many ISPs and mail service providers use the email
address as the login name. There are many reasons for using the email address as the
login, but the top two are that users need to memorize one less value, and it’s easier to
share authentication data with other systems, such as Radius servers.

After your filter is in place, restart your OpenLDAP server, check the log
for problems, and start testing.

Testing the ldapdb Plug-In

There are three points that you need to check in your ldapdb configuration:

� The mechanism limitation

� Direct SASL-based binding

� ldapdb-based authentication

Testing the Mechanism Limitation

Make sure that the mech_list parameter in your /usr/lib/sasl2/slapd.conf
configuration is effective. Run ldapsearch as follows to list the mechanisms
that slapd offers to clients:

ldapsearch -LLL -x -s base -b "" "(objectClass=*)" supportedSASLMechanisms
dn:
supportedSASLMechanisms: DIGEST-MD5

If your output looks like this, you’re in good shape. Otherwise check
your slapd.conf file for typos.

Testing Direct SASL Binds

Verify that a user in your directory can bind directly to slapd using SASL
(without the ldapdb plug-in) by using the ldapwhoami command.
354 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

ldapwhoami -U bamm@example.com
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: bamm@example.com
SASL SSF: 128
SASL installing layers
dn:uid=bammbamm,ou=it,ou=people,dc=example,dc=com

This test verifies that you can actually authenticate as a user. If it fails,
you’re not going to get any further. Refer back to the section “Configuring
SASL OpenLDAP Binds” to see if you made any mistakes.

Testing ldapdb Authentication

Cyrus SASL comes with utilities named server and client that allow you to test
authentication independent of other servers. Using them eliminates any side
effects that packages such as Postfix might introduce, and it allows you to
zero in on SASL-based problems, including those that involve ldapdb.

To test authentication, first create a symlink from smtpd.conf to
sample.conf for use by server:

cd /usr/lib/sasl2/
ln -s smtpd.conf sample.conf

Now, open a terminal window and start server:

./server -s rcmd -p 23
trying 10, 1, 6
socket: Address family not supported by protocol
trying 2, 1, 6

Open a second terminal window, and start client with the LDAP uid of a
user in your LDAP server. This program asks you for the authentication ID
and the authorization ID. Here’s how you would do it for bammbamm (dn:
uid=bammbamm,ou=it,ou=people,dc=example,dc=com):

./client -s rcmd -p 23 -m PLAIN mail.example.com
receiving capability list... recv: {31}
LOGIN PLAIN DIGEST-MD5 CRAM-MD5
LOGIN PLAIN DIGEST-MD5 CRAM-MD5
please enter an authentication id: bammbamm
please enter an authorization id: bammbamm
Password:
send: {5}
PLAIN
send: {1}
Y

A Company Mai l Se rve r 355
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

send: {29}
bammbamm[0]bammbamm[0]bamm_secret
successful authentication
closing connection

NOTE The authorization ID will be replaced by the value specified by the ldapdb_id parameter
in your sample.conf file, but you still need to provide something at the prompt.

If you see successful authentication (as in the preceding output), ldapdb-
based authentication works. Otherwise, take a look at your authentication
log and the Cyrus SASL logs to figure out what went wrong.

Protecting Directory Data

For security reasons, you don’t want to make all data on your LDAP server
readable by anyone who queries the server. You can restrict read access on a
server by putting access control lists (ACLs) on users that bind to the LDAP
server. It’s a two-step process:

1. Configure the LDAP server to limit read access.

2. Configure the LDAP-dependent packages to bind to the LDAP server.

Limiting Directory Read Access

In the earlier “Expanding the Directory” section, you added bind users
to your directory. Now you must tell slapd what parts of the directory the
bind users may access, as well as what other users (such as anonymous
users) may do.

Add the following rules to your /etc/openldap/slapd.conf file:

Access rules for saslAuthzTo
access to dn.subtree="dc=example,dc=com" attr=saslAuthzTo
 by dn.base="cn=Manager,dc=example,dc=com" write
 by * read
Access rules for userPassword
authenticated users (self) and the directory Manager may
change their (own) password.
anybody else may access the passwords during authentication
access to dn.subtree="dc=example,dc=com"
 attr=userPassword
 by self write
 by dn.base="cn=Manager,dc=example,dc=com" write
 by dn.base="uid=courierimap,ou=auth,dc=example,dc=com" read
 by * auth
Access rules for uidNumber, gidNumber, mailbox, homeDirectory, quota
The only one to change their values is Manager.
Applications that need these values may read them.
Authenticated users may read their own data.
Anybody else may not access these data.
356 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

access to dn.subtree="dc=example,dc=com"
 attr=uidNumber attr=gidNumber attr=mailbox attr=homeDirectory attr=quota
 by dn.base="cn=Manager,dc=example,dc=com" write
 by dn.base="uid=courierimap,ou=auth,dc=example,dc=com" read
 by dn.base="uid=couriermaildrop,ou=auth,dc=example,dc=com" read
 by dn.base="uid=postfix,ou=auth,dc=example,dc=com" read
 by self read
 by * none
Access rules for attributes mail, uid and maildrop
Applications may access these attributes.
Authenticated users may do so as well
Anybody else may read them as well
access to dn.subtree="dc=example,dc=com"
 attrs=mail attr=uid attr=maildrop
 by dn.base="uid=courierimap,ou=auth,dc=example,dc=com" read
 by dn.base="uid=postfix,ou=auth,dc=example,dc=com" read
 by dn.base="uid=ldapdb,ou=auth,dc=example,dc=com" read
 by self read
 by * read
Fallback rule
Any attribute that wasn't addressed above may be read by anyone.
access to * by * read

Restart your LDAP server after adding the rules.
This is a relatively simple ACL rule set that works well with the schema

and applications in this chapter. You can create finer access rules; have a
look at the slapd.access(5) manual page, or get one of the current LDAP
books.

Configuring Bind Users in LDAP Clients

With the OpenLDAP ACLs in place, you need to configure each of your
packages that access the LDAP server to connect as a bind user.

Configuring Postfix as a Bind User

To make Postfix connect to an LDAP server as a bind user, you must
change three parameters in the configuration files in /etc/postfix/ldap.
The parameters are bind, bind_dn, and bind_pw:

� The bind parameter must be set to yes to enable the bind user.

� The bind_dn parameter sets the distinguished name of the bind user.
In this chapter’s example, you can set bind_dn = uid=postfix,ou=auth,
dc=example,dc=com.

� The bind_pw parameter sets the password (in plaintext).

NOTE You can see that you need to secure this data, because it contains a password. This is
the reason why we created a separate directory for LDAP query configuration files at the
beginning of this chapter.
A Company Mai l Se rve r 357
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

After you’re finished, all of your configuration files in /etc/postfix/ldap
should contain lines like this:

bind = yes
bind_dn = uid=postfix,ou=auth,dc=example,dc=com
bind_pw = Yanggt!

Configuring Courier Maildrop as a Bind User

The Courier maildrop parameters are almost the same as those for Postfix,
except that there is no parameter to switch the bind system on (if you do
not specify a bind distinguished name, Courier won’t try to bind). The
parameters that you’ll place in your /etc/maildropldap file are binddn and
bindpw; the configuration should look something like this:

binddn uid=couriermaildrop,ou=auth,dc=example,dc=com
bindpw Yrj6Hl6r

CAUTION Now that you have a password in plaintext, verify that /etc/maildropldap is accessible
only to root.

Configuring Courier IMAP as a Bind User

The last client that you need to configure as a bind user is Courier IMAP. As
with Courier maildrop, there are only two parameters that you need to set in
your /usr/lib/courier-imap/etc/authldaprc file—LDAP_BINDDN and LDAP_BINDPW:

LDAP_BINDDN uid=courierimap,ou=auth,dc=example,dc=com
LDAP_BINDPW X5mYpl6p

CAUTION As before, make sure that your IMAP LDAP configuration file (/usr/lib/courier-
imap/etc/authldaprc) is accessible only by root.

Testing Server Restrictions

To test the servers, refer back to the section “Testing LDAP Recipients”;
all you need to do is make sure that each component can retrieve data
from the LDAP server. If you run into problems, check your log files. In
particular, have a close look at the slapd log file. If you need to adjust
the slapd logging level, adjust the loglevel parameter as described in the
slapd.conf(5) manual page.

Encrypting LDAP Queries
Although you are now protecting the data on your LDAP server from
unauthorized users, you still haven’t done anything about keeping the data
safe when it is being transmitted over an insecure network. This section
shows you how to use TLS to protect the communication layer.
358 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Configuring TLS for OpenLDAP

Before you try to configure TLS for your installation of LDAP, verify that
slapd supports TLS. Running ldd on slapd usually shows dependencies on the
SSL library if TLS is supported:

ldd /usr/sbin/slapd
 libslapd_db-4.1.so => /usr/lib/libslapd_db-4.1.so (0x00116000)
 libsasl2.so.2 => /usr/lib/libsasl2.so.2 (0x00101000)
 libkrb5.so.3 => /usr/lib/libkrb5.so.3 (0x00a6f000)
 libk5crypto.so.3 => /usr/lib/libk5crypto.so.3 (0x00ad8000)
 libcom_err.so.2 => /lib/libcom_err.so.2 (0x00a6a000)
 libssl.so.4 => /lib/libssl.so.4 (0x00b11000)
 libcrypto.so.4 => /lib/libcrypto.so.4 (0x00977000)
 libcrypt.so.1 => /lib/libcrypt.so.1 (0x008d0000)
 libresolv.so.2 => /lib/libresolv.so.2 (0x00965000)
 libdl.so.2 => /lib/libdl.so.2 (0x008b8000)
 libwrap.so.0 => /usr/lib/libwrap.so.0 (0x00bfe000)
 libpthread.so.0 => /lib/libpthread.so.0 (0x00912000)
 libc.so.6 => /lib/libc.so.6 (0x0076e000)
 libgssapi_krb5.so.2 => /usr/lib/libgssapi_krb5.so.2 (0x00afc000)
 libz.so.1 => /usr/lib/libz.so.1 (0x008bd000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x00759000)
 libnsl.so.1 => /lib/libnsl.so.1 (0x008fe000)

You will need to perform the following steps to configure slapd with TLS:

1. Create X509 certificates for slapd.

2. Configure slapd to offer TLS.

3. Configure the LDAP clients to use TLS.

Creating X509 Certificates for slapd

As with any server that offers SSL-derived encryption, you must create
certificates for slapd that contain public and private keys. Chapter 17
explains how to create the certificates.

Assuming that you run your own CA, you could create a private key file
named slapd_private_key.pem for slapd as follows:

openssl req -new -nodes -keyout slapd_private_key.pem -out \
slapd_private_key.pem -days 365

The corresponding command to create a public key named
slapd_public_cert.pem is as follows:

openssl ca -policy policy_anything -out slapd_public_cert.pem -infiles \
slapd_private_key.pem
A Company Mai l Se rve r 359
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Now create a subdirectory named certs for your keys in /etc/openldap.
After copying the .pem files into the subdirectory, it should look like this:

ls -la /etc/openldap/certs/
total 24
drwx------ 2 ldap ldap 4096 Jun 21 22:31 .
drwxr-xr-x 4 root root 4096 Jun 21 23:12 ..
-rw------- 1 ldap ldap 1624 Jun 21 22:31 slapd_private_key.pem
-rw------- 1 ldap ldap 3807 Jun 21 22:31 slapd_public_cert.pem

CAUTION Make sure that you change the ownership and permissions of the files so that they are
accessible only to the user that runs slapd.

Configuring slapd to Offer TLS

To tell slapd about your new certificate files, you need to add four parameters
to your slapd.conf file:

TLSCACertificateFile /usr/share/ssl/certs/cacert.pem
TLSCertificateFile /etc/openldap/certs/slapd_public_cert.pem
TLSCertificateKeyFile /etc/openldap/certs/slapd_private_key.pem
TLSVerifyClient demand

The TLSCACertificateFile parameter specifies the location of the CA
certificate. In this example, slapd looks at a single file for this certificate,
but you may need more than one file. If this is the case, you can omit the
filename and have slapd search the entire directory. You will also need to
use c_rehash from the OpenSSL utilities to index the directory, as described
in Chapter 18.

NOTE Your CA certificates should be in a location that the rest of the LDAP clients can access.

You can set the TLSVerifyClient parameter to one of never, allow, try, or
demand to restrict access for certain kinds of authentication. You need to make
sure that the TLS settings work on the client side, so set this parameter to
demand to force clients to use TLS. This makes it easy to find out whether the
clients support it.

Configuring TLS for LDAP Clients

This section shows you how to turn on client-side LDAP support in Postfix
and Courier IMAP. At the moment, Courier maildrop cannot do TLS, but
this isn’t really a problem, because the LDA doesn’t need to know any user
passwords.

Turning On Postfix LDAP Support

Postfix needs its own public certificate and private key to access the LDAP
server over TLS. You should have already created the key files in Chapter 17,
so you can reuse them.
360 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

To enable TLS over LDAP, you must add the following parameters to all
LDAP query configuration files in /etc/postfix/ldap:

version = 3
tls_ca_cert_file = /usr/share/ssl/certs/cacert.pem
tls_cert = /etc/postfix/certs/postfix_public_cert.pem
tls_key = /etc/postfix/certs/postfix_private_key.pem
start_tls = yes

The parameters work as follows:

version

Sets the version of the LDAP protocol. By default, Postfix uses version 2,
but TLS requires version 3.

tls_ca_cert_file

Specifies the CA certificate.
tls_cert

Specifies the public certificate for Postfix.
tls_key

Specifies the private key for Postfix.

start_tls

Enables TLS.

Enabling LDAP Queries for Courier IMAP

To enable LDAP over TLS for Courier IMAP, you need to follow a config-
uration strategy different from that of Postfix because Courier does not come
with its own LDAP client, but rather uses the one that comes with OpenLDAP.
You need to configure the OpenLDAP client to use TLS, and then tell Courier
IMAP to request LDAP over TLS from the OpenLDAP client.

The OpenLDAP client configuration file is usually /etc/openldap/
ldap.conf. You need to add the following TLS_* parameters to enable TLS
support:

URI ldap://mail.example.com
BASE dc=example,dc=com
TLS_CACERT /usr/share/ssl/certs/cacert.pem
TLS_CERT /etc/openldap/certs/slapd_public_cert.pem
TLS_KEY /etc/openldap/certs/slapd_private_key.pem
TLS_REQCERT demand

The parameters are similar to the ones for Postfix:

TLS_CACERT

Specifies the CA certificate that the rest of the packages in this chapter use.
TLS_CERT

Specifies the client’s public certificate.
A Company Mai l Se rve r 361
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

TLS_KEY

Specifies the client’s private key. If you like, you can reuse the slapd cer-
tificate and key.

TLS_REQCERT

Specifies the policy for requesting the server certificate. Set it to demand in
order to force TLS or drop the connection.

Because you already told the OpenLDAP client about the certificate
and keys, you just need to tell Courier IMAP to request TLS for LDAP in
your /usr/lib/courier-imap/etc/authldaprc file:

LDAP_TLS 1

With this final piece in place, you can restart Courier IMAP and test it.

Testing TLS

The TLS parameters that you just added to your configuration added a lot of
complexity, so it’s important that you test it carefully.

1. Test the application all others turn to—the LDAP server. Test the LDAP
server’s own client.

2. If that works, turn to Postfix and see if it can connect. Verify that Courier
IMAP is able to use the LDAP client to get SSL.

Testing the OpenLDAP Server

The first test is to make sure that the OpenLDAP server offers TLS
certificates. There really isn’t any simple command for checking this on
port 389 (where you normally find TLS1 for LDAP). We’ll see if we can go
to port 636 (where OpenLDAP offers SSL) to see if slapd will be satisfied
with the certificates.

Use the s_client utility to connect to the server as follows:

openssl s_client -CAfile /usr/share/ssl/certs/cacert.pem -connect localhost:636
CONNECTED(00000003)
depth=1 /C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=Certification
Authority/\
 CN=mail.example.com/emailAddress=certmaster@example.com
verify return:1
depth=0 /C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=LDAP services/\
 CN=mail.example.com/emailAddress=ldapmaster@example.com
verify return:1

Certificate chain
 0 s:/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=LDAP services/\
 CN=mail.example.com/emailAddress=ldapmaster@example.com
 i:/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=Certification Authority/\
 CN=mail.example.com/emailAddress=certmaster@example.com
 1 s:/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=Certification Authority/\
362 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

 CN=mail.example.com/emailAddress=certmaster@example.com
 i:/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=Certification Authority/\
 CN=mail.example.com/emailAddress=certmaster@example.com

Server certificate
-----BEGIN CERTIFICATE-----
MIIEDDCCA3WgAwIBAgIBAjANBgkqhkiG9w0BAQQFADCBsDELMAkGA1UEBhMCRVgx
ETAPBgNVBAgTCEV4YW1wbGlhMRMwEQYDVQQHEwpFeGFtcGxldG9uMRUwEwYDVQQK
EwxFeGFtcGxlIEluYy4xIDAeBgNVBAsTF0NlcnRpZmljYXRpb24gQXV0aG9yaXR5
MRkwFwYDVQQDExBtYWlsLmV4YW1wbGUuY29tMSUwIwYJKoZIhvcNAQkBFhZjZXJ0
bWFzdGVyQGV4YW1wbGUuY29tMB4XDTA0MDcxMzEzNTQwNloXDTA1MDcxMzEzNTQw
NlowgaYxCzAJBgNVBAYTAkVYMREwDwYDVQQIEwhFeGFtcGxpYTETMBEGA1UEBxMK
RXhhbXBsZXRvbjEVMBMGA1UEChMMRXhhbXBsZSBJbmMuMRYwFAYDVQQLEw1MREFQ
IHNlcnZpY2VzMRkwFwYDVQQDExBtYWlsLmV4YW1wbGUuY29tMSUwIwYJKoZIhvcN
AQkBFhZsZGFwbWFzdGVyQGV4YW1wbGUuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GN
ADCBiQKBgQDcqVcyPn4qhI65sAdPgu+Et2vzWsyHT/IT39mZ6Gqrh15Oa/eQA7Lz
GmUKR/t/W4ol28ygN/udpkHZiTUDjUC5ENF7kqk4vnx/4DpwmDmOjNgO7JJEr0FL
c0Jl/KqZzAItBh32KtIhV8BQcdlfzdoxEq07MkxRw1pu7LyLo5qOkwIDAQABo4IB
PDCCATgwCQYDVR0TBAIwADAsBglghkgBhvhCAQ0EHxYdT3BlblNTTCBHZW5lcmF0
ZWQgQ2VydGlmaWNhdGUwHQYDVR0OBBYEFCKdRZglsm4/1io2sltD1riyCE+KMIHd
BgNVHSMEgdUwgdKAFMNGZ7/NorS6WpJQJZ2IhDno97iXoYG2pIGzMIGwMQswCQYD
VQQGEwJFWDERMA8GA1UECBMIRXhhbXBsaWExEzARBgNVBAcTCkV4YW1wbGV0b24x
FTATBgNVBAoTDEV4YW1wbGUgSW5jLjEgMB4GA1UECxMXQ2VydGlmaWNhdGlvbiBB
dXRob3JpdHkxGTAXBgNVBAMTEG1haWwuZXhhbXBsZS5jb20xJTAjBgkqhkiG9w0B
CQEWFmNlcnRtYXN0ZXJAZXhhbXBsZS5jb22CAQAwDQYJKoZIhvcNAQEEBQADgYEA
AZCH5A23WVdIdO9NkD23Bz3HF+MyOf8fUx1CaQbLwo572mjgB/O3H7K969bU/te2
BeLOjifMo/vexXPMeajwzDnIKm/yJO7eNt85eeKciI6MZJVhvuPvtp/Rc5vArcas
HNqpmm7oDAEFIRclHsfhsyAHwsTTr18UGndfL3Hetkw=
-----END CERTIFICATE-----
subject=/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=LDAP services/\
 CN=mail.example.com/emailAddress=ldapmaster@example.com
issuer=/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=Certification
Authority/CN=mail.example.com/emailAddress=certmaster@example.com

Acceptable client certificate CA names
/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=Certification Authority/\
 CN=mail.example.com/emailAddress=certmaster@example.com

SSL handshake has read 2402 bytes and written 352 bytes

New, TLSv1/SSLv3, Cipher is AES256-SHA
Server public key is 1024 bit
SSL-Session:
 Protocol : TLSv1
 Cipher : AES256-SHA
 Session-ID:
21430E35213A797176B28B16BF24D20EC9019902B5B09FCEDDA0333682FD6F7D
 Session-ID-ctx:
 Master-Key:
45636217FD3136A536CE62618DBC1CA92E6E0B1E773F75120632F761C289943BB\
 85F78369C622A0D78DB60726147465F
 Key-Arg : None
A Company Mai l Se rve r 363
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

 Krb5 Principal: None
 Start Time: 1089733870
 Timeout : 300 (sec)
 Verify return code: 0 (ok)

QUIT
DONE

If you get a return code of 0 (ok), the certificates check out. Now you can
test whether you can use the LDAP client to query the server over TLS.

Testing the OpenLDAP Client

To see whether the OpenLDAP client works, try to retrieve data with the
ldapsearch command as follows:

ldapsearch -ZZ -x -LLL "(mail=bamm@example.com)" userPassword
dn: ou=people,dc=example,dc=com
dn: ou=it,ou=people,dc=example,dc=com
dn: uid=bammbamm,ou=it,ou=people,dc=example,dc=com
userPassword:: YmFtbV9zZWNyZXQ=

This ldapsearch command is particularly useful because it reads the
default settings in ldap.conf; recall that the Courier IMAP TLS/LDAP con-
figuration depends on these. Furthermore, this query mimics a Courier
IMAP query. The -ZZ option forces ldapsearch to use TLS.

If this command doesn’t work, have a close look at your ldap.conf file and
your logs.

Testing Postfix

To test Postfix’s LDAP over TLS support, run a postmap command to query
the directory for a known recipient. Here’s an example from this chapter:

postmap -q "bamm@example.com" ldap:/etc/postfix/ldap/local_recipients.cf
bammbamm

If this doesn’t work, see if it works without TLS support. After you’ve got
it working, re-enable the TLS settings and set the debuglevel in your Postfix
LDAP configuration file (for example, /etc/postfix/ldap/local_recipients.cf)
to at least 1, so that you can pore over some descriptive logging information.

Testing Courier IMAP

You just tested some of the underpinnings of the Courier IMAP config-
uration in the “Testing the OpenLDAP Client” section. To verify that
everything works, connect to the IMAP port and log in as you did in the
section “Testing the IMAP Server.” A successful login looks like this:

telnet mail.example.com 143
* OK [CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE \
 THREAD=ORDEREDSUBJECT THREAD=REFERENCES SORT QUOTA \
364 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

 IDLE ACL ACL2=UNION STARTTLS]
 Courier-IMAP ready. Copyright 1998-2004 Double Precision, Inc.\
 See COPYING for distribution information.
. login bamm@example.com bamm_secret
. OK LOGIN Ok.
. logout
* BYE Courier-IMAP server shutting down
. OK LOGOUT completed

Enforcing Valid Sender Addresses

Once users successfully connect to the Postfix server with SMTP authen-
tication, they can relay messages through your server using any sender
address that they desire. If you don’t really trust your users that much, you
can use a restriction called reject_authenticated_sender_login_mismatch,
introduced in Postfix 2.1, that tells Postfix to enforce valid sender addresses.
It works like this:

1. The user connects with a username using SMTP authentication.

2. When the user attempts to send a message, Postfix extracts the
envelope-sender.

3. Postfix looks up the envelope sender in the maps configured with
smtpd_sender_login_maps. Ideally, this is an LDAP-based map.

4. If the lookup returns the same username that was used for SMTP
authentication, Postfix accepts the message. Otherwise Postfix rejects
the message.

Creating the LDAP Map

You already have all of the data for the smtpd_sender_login_maps map in your
directory, so it makes sense to reuse it, not only because you need no
additional data, but also because there is no additional maintenance work.
To set up the map, create a new file in /etc/postfix/ldap with the settings that
you need for the query.

When you specify the attributes to be retrieved from the LDAP server as
usernames, you can choose to permit only mail addresses used in mail
attributes or to also allow senders to use their aliases (which are stored in the
maildrop attribute).

Let’s say that you want to create a configuration that permits both in the
query file named /etc/postfix/ldap/mail_from_login.cf. Assuming that you
have TLS enabled, the complete file should look like this:

version = 3
debuglevel = 0
server_host = ldap://mail.example.com
tls_ca_cert_file = /usr/share/ssl/certs/cacert.pem
tls_cert = /etc/postfix/certs/postfix_public_cert.pem
A Company Mai l Se rve r 365
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

tls_key = /etc/postfix/certs/postfix_private_key.pem
tls_random_file = /dev/urandom
start_tls = yes
bind = yes
bind_dn = uid=postfix,ou=auth,dc=example,dc=com
bind_pw = Yanggt!
search_base = ou=people,dc=example,dc=com
query_filter = (|(mail=%s)(maildrop=%s))
result_attribute = mail

The only two parameters here that should be different from the other
files in /etc/postfix/ldap are query_filter and result_attribute.

With the query map file in place, set the smtpd_sender_login_maps
parameter in your main.cf file as follows:

smtpd_sender_login_maps = ldap:/etc/postfix/ldap/mail_from_login.cf

Configuring the smtpd Restriction

Finally, put everything in place for restricting senders to their own mail
addresses by adding the reject_authenticated_sender_login_mismatch parameter
to the list of restrictions in your main.cf file:

smtpd_recipient_restrictions =
 permit_mynetworks
 reject_authenticated_sender_login_mismatch
 permit_sasl_authenticated
 reject_unauth_destination

NOTE This restriction applies only to users that have authentication, but it does not apply to
anyone else. Therefore, users in your trusted networks can send mail as anyone they
please. Furthermore, incoming mail from the rest of the Internet still works.

Testing the smtpd Restriction

To test your new configuration, first see if the map works. Use postmap to
match a regular recipient as follows:

postmap -q "bamm@example.com" ldap:/etc/postfix/ldap/mail_from_login.cf
bammbamm

If you are permitting aliases as sender addresses, use postmap to query for
an alias:

postmap -q "postmaster@example.com" ldap:/etc/postfix/ldap/mail_from_login.cf
bammbamm
366 Chap te r 19

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

If this works, the last thing you need to test is an actual SMTP session.
First, prepare a base64-encoded authentication string for the first stage of
the connection:

perl -MMIME::Base64 -e \
'print encode_base64("bamm\@example.com\0bamm\ @example.com\0bamm_secret");'
YmFtbUBleGFtcGxlLmNvbQBiYW1tQGV4YW1wbGUuY29tAGJhbW1fc2VjcmV0

Now, connect from a remote host to your Postfix server and authenticate
using this string:

telnet mail.example.com 25
220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-AUTH PLAIN LOGIN CRAM-MD5 DIGEST-MD5
250-AUTH=PLAIN LOGIN CRAM-MD5 DIGEST-MD5
250 8BITMIME
AUTH PLAIN YmFtbUBleGFtcGxlLmNvbQBiYW1tQGV4YW1wbGUuY29tAGJhbW1fc2VjcmV0
235 Authentication successful

Now, try to send a message as a different user (recall that you
authenticated as Bamm Bamm):

MAIL FROM: <rubble@example.com>
250 Ok
RCPT TO: <wietse@porcupine.org>
553 <rubble@example.com>: Sender address rejected: not owned by user
bamm@example.com

Postfix detects the mismatch in the RCPT TO stage, because this is where
the smtpd_recipient_restrictions parameter takes effect.

You should also try sending as the real user as well. If this works, there’s
nothing left to do. You’re finished. Have fun!
A Company Mai l Se rve r 367
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

20
R U N N I N G P O S T F I X

I N A C H R O O T E N V I R O N M E N T
The chroot feature adds just another barrier against intrusion;

that barrier is meaningful only when the host is already running
in a hardened configuration.—Wietse Venema

Running Postfix in a chroot jail isolates it
from the entire directory structure of the

operating system. The goal is to protect the
system from the intruder who manages to break

into Postfix. In order to use this feature, you must lock
a minimal number of files, applications, and other
resources into a chroot jail directory.

Setting up a chroot jail requires no external programs. The distribution
contains helper scripts that set up an appropriate chroot environment. This
chapter both describes the theory of chroot environments and provides an
SASL/TLS example that shows how chroot and Postfix actually work
together.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

The chroot scripts that come with Postfix can be found in the examples/
chroot-setup directory of the source tree. If you use prepackaged Postfix
binaries, the packager probably added a few scripts that keep the contents of
the chroot jail directory in sync with the filesystem outside of the jail.

The foolproof procedure for setting up a chroot jail is as follows:

1. Get things working without using chroot.

2. Convert Postfix daemons to a chroot setup, one at a time.

If you use this procedure, you can easily identify any daemons that break
when chrooted and adjust the contents of the jail directory accordingly.

How Does a chroot Jail Work?

Imagine a burglar breaking a window to get into your house, but that window
belongs to a high-security room. Not only does the room contain nothing of
value, but the items in the room will not help the burglar get further into the
house. The burglar has no choice but to give up.

For this to work, the architect must make sure that only things that are
absolutely necessary are located in this high-security room. Furthermore,
these items must be properly secured so they cannot be turned against the
high-security room itself.

A chroot jail under Unix is much like this high-security room.

Basic Principles of a chroot Setup

These are the basic principles of a chroot setup:

Use the lowest privileges required to run applications
The more powerful the user, the more they can harm the system. In par-
ticular, root and programs running as root can break out of the chroot
jail fairly easily. Therefore, programs running in the chroot jail should
not run with superuser privileges, but with the lowest privilege level
required to get their jobs done.

Drop privileges correctly
An application that provides a service offered on a low-numbered port,
such as port 25, may need to be started as root in order to get access to
the port. However, after the application gets what it needs, it should
drop special access privileges correctly.

Keep the jail small and bare
Keep only the bare minimum of files in a chroot jail. The fewer there
are, the less likely it is that you will provide an intruder with something
to abuse.

Make the files in the jail owned by root and writable by root only
Applications running in the chroot jail should not be able to alter files
within the jail. Change ownership and write permissions to root only.
370 Chap te r 20

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Link configuration files from the outside
Symbolic links from inside the jail to files outside of it will not work for
the system running inside the jail. Some systems share a configuration
file between the jailed daemon and other utilities that are run from user
mode. This requires all of the daemons to be able to access the configu-
ration file, whether they are inside or outside the jail. Rather than
rebuilding these utilities to use a special path (such as /chroot/named/etc/
named.conf) you can create a symbolic link from outside to inside the jail, as
in this example:

ln -s /chroot/named/etc/named.conf /etc/named.conf

This allows most of the tools to operate normally, but you have to be
a little more careful when editing files such as /etc/named.conf, because
when you do so, you’re affecting a jailed system.

Technical Implementation

The daemons chroot and drop privileges by themselves. This allows them to
access /etc/postfix files (and open maps) before going to jail.

The chroot() system call alters how a process—after entering the chroot
jail—perceives the filesystem to a process. Here’s how it works:

1. The master daemon calls chdir(queue_directory).

2. The master daemon invokes the other Postfix daemons, telling each of
them whether or not it should change the file system root or drop its
privileges.

Except in very limited circumstances, it’s impossible to escape this jail.

How Does chroot Affect Postfix?

When you run Postfix in a chroot jail, it affects the way Postfix sees the
filesystem. Let’s say that you chrooted to /var/spool/postfix. Although any
other application may be able to see /var/spool/postfix (the queue directory)
and anything else on the system, the Postfix daemons consider /var/spool/
postfix to be / once they start chrooted. They can’t access anything else
outside of /var/spool/postfix.

This may require you to copy several files into the Postfix jail that are out
of reach to the daemons that run chrooted:

Binaries (daemons)
You don’t need to copy daemons into the chroot jail, because they are
launched by the master daemon, which isn’t chrooted.

Libraries needed by binaries
Programs load libraries before going to the jail, so you won’t need to
copy them to the jail.
Runn ing Po s tf ix in a chroot Environment 371
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Maps
Programs open static maps before going into the jail. However, you may
need to create a socket in the chroot jail for database-driven maps (see
the sockets point in this list).

Configuration files
The daemons read configuration files before going to the jail. There’s
no need to copy them into the jail.

Sockets
Socket files, such as the mysql socket or the SASL socket, need to be
accessible to daemons inside the jail. Keep in mind that the MySQL cli-
ent library may look for the socket in a place such as /var/run/
mysql.socket, so you will need to put it in a place such as queue_directory/
var/run/mysql.socket.

Files needed by libraries
The C library needs to look at files such as /etc/resolv.conf and /etc/
localtime to work properly. You need to install copies of these files in /
var/spool/postfix.

Helper Scripts for chroot

Postfix comes with several helper scripts in the examples/chroot-setup
directory of the source tree. These scripts assist you in setting up a chroot
jail for your particular operating system.

When you run Postfix chrooted, it checks that the basic required files,
such as /var/spool/postfix/etc/resolv.conf, are present and up-to-date
in the chroot jail. Postfix writes warnings to the log file if files inside and
outside the chroot jail are out of sync. It’s very important that you heed
these warnings and act to fix the inconsistencies.

chrooted Daemons

Because the master daemon starts the rest of the Postfix daemons, it is the
one that tells the daemons to run chrooted or not. You control chroot
invocation in /etc/postfix/master.cf.

Enabling chroot

To run a daemon chrooted, you need to identify the service that invokes it in
the master.cf file. Check the chroot column in master.cf to find the current
chroot state of the daemon. Postfix SOURCE ships with every daemon set to
n, but some distributions change that in their Postfix packages. That is, none
of the daemons in a stock installation runs chrooted. To change it, change
the chroot option from n or - to y.
372 Chap te r 20

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

For example, if you want to chroot the smtpd daemon, your configuration
file might look like this:

==
service type private unpriv chroot wakeup maxproc command + args
(yes) (yes) (yes) (never) (100)
==
smtp inet n - y - - smtpd
#smtps inet n - n - - smtpd
-o smtpd_tls_wrappermode=yes -o smtpd_sasl_auth_enable=yes
...
pickup fifo n - n 60 1 pickup
cleanup unix n - n - 0 cleanup
...

Notice that the chroot column entry for the smtp service has been
changed to y. The master daemon will run this service chrooted after you
reload Postfix.

chroot Limitations and Task Delegation

The documentation within master.cf indicates that you can run almost any
daemon chrooted “except for the pipe, virtual, and local daemons”:

pipe

The pipe daemon spawns external programs, usually located outside the
Postfix queue directory, and it therefore usually need files outside the
queue directory.

local

The local daemon takes care of local delivery and needs to have access to
user home directories. It doesn’t make much sense to run local
chrooted, because this would imply that the home directories are below
/var/spool/postfix, inside the chroot jail, where an intruder could possi-
bly gain access to them.

virtual

The virtual daemon takes care of local delivery, just like the local dae-
mon. The logic against running the local daemon chrooted holds for
this daemon too.

When using a chroot environment, other daemons may need to use the
proxymap daemon in order to gain access to configuration data. For example,
if a chrooted SMTP server needs access to the system passwd file in order to
reject mail for nonexistent local addresses, it wouldn’t be practical to main-
tain a copy of the passwd file in the chroot jail, because this would undermine
the whole idea of running Postfix chrooted.
Runn ing Po s tf ix in a chroot Environment 373
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

To keep security-related maps out of the jail, you can delegate lookups to
the proxymap daemon (again, not running chrooted) with this configuration
parameter:

local_recipient_maps = proxy:unix:passwd.byname $alias_maps

Keep in mind that because proxymap goes through the barrier of the jail,
proxymap cannot proxy maps used in a security relevant context.

chroot Libraries, Configuration Files, and Other Files

Many programs need external files to function correctly. These files include:

� Libraries and other shared objects

� Configuration files

� Other files, such as socket devices

There are several ways of finding out which files a program needs. To
find shared library dependencies, you can use ldd or chatr on most Unix
variants. However, this will not be a problem with a standard Postfix
installation, because all daemons are started and load their libraries before
going into the chroot jail.

To find out what configuration files you need, use a program such as
strace (on Linux), truss (on Solaris), or ktrace (on other Unix variants). One
way of using strace is to start a program like this:

strace -o ouputfile program

Then inspect the file output for open() calls:

grep open outputfile | grep ENOENT
open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or directory)

open("/usr/share/locale/C/libdst.cat", O_RDONLY) = -1 ENOENT (No such file or directory)

open("/usr/share/locale/C/LC_MESSAGES/libdst.cat", O_RDONLY) = -1 ENOENT (No such file or directory)

open("/usr/share/locale/C/libdst.cat", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/usr/share/locale/C/LC_MESSAGES/libdst.cat", O_RDONLY) = -1 ENOENT (No such file or directory)

open("/usr/share/locale/C/libisc.cat", O_RDONLY) = -1 ENOENT (No such file or directory)

open("/usr/share/locale/C/LC_MESSAGES/libisc.cat", O_RDONLY) = -1 ENOENT (No such file or directory)

open("/usr/share/locale/C/libisc.cat", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/usr/share/locale/C/LC_MESSAGES/libisc.cat", O_RDONLY) = -1 ENOENT (No such file or directory)

open("/usr/share/locale/C/libdns.cat", O_RDONLY) = -1 ENOENT (No such file or directory)

open("/usr/share/locale/C/LC_MESSAGES/libdns.cat", O_RDONLY) = -1 ENOENT (No such file or directory)

open("/usr/share/locale/C/libdns.cat", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/usr/share/locale/C/LC_MESSAGES/libdns.cat", O_RDONLY) = -1 ENOENT (No such file or directory)
374 Chap te r 20

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

NOTE Keep in mind that a program may try to open several versions of a configuration file
before finding the correct one.

Alternatively, you can attach strace to a running process to see what it
is trying to do. For example, if you’d like to see what the master daemon is
doing, try something like this:

ps auxwww|grep master
root 9004 0.0 0.3 3452 940 ? S 07:49 0:00 /usr/lib/postfix/master
strace -p 9004
Process 9004 attached - interrupt to quit
select(76, [10 11 12 15 17 18 21 23 24 26 27 29 30 32 33 35 36 38 39 41 42 44
45 47 48 50 51 53 54 56 57 59 60 62 63 65 66 68 69 71 72 74 75], [], [10 11 12
15 17 18 21 23 24 26 27 29 30 32 33 35 36 38 39 41 42 44 45 47 48 50 51 53 54
56 57 59 60 62 63 65 66 68 69 71 72 74 75], {22, 790000} <unfinished ...>
Process 9004 detached

Overcoming chroot Restrictions

The scripts that help you set up a chroot jail in the Postfix source distribution
(in examples/chroot-scripts) can also tell you which system files you might
need to copy into your chroot jail, such as the time zone files required by the
C library. The following is an overview of the files you will need.

DNS
The C library needs certain files to implement name resolution
correctly; for example, you need /etc/resolv.conf, /etc/nsswitch.conf,
and /etc/hosts on a Linux system. These need to be inside the chroot
jail, and the helper scripts can copy them for you.

Time settings
If you find that the logging produced by your Postfix daemon is off by
several hours, you need to copy the time zone information (/etc/local-
time) into the chroot jail.

Sockets
You can configure Postfix and saslauthd easily to work inside a Postfix
chroot environment. All you need to do is configure Postfix and saslau-
thd with different paths for saslauthd’s socket.

In the Postfix chroot jail (usually /var/spool/postfix), first create all
required run_path subdirectories:

mkdir /var/spool/postfix/var
mkdir /var/spool/postfix/var/run
mkdir /var/spool/postfix/var/run/saslauthd
chmod 770 /var/spool/postfix/var/run/saslauthd
chgrp postfix /var/spool/postfix/var/run/saslauthd
Runn ing Po s tf ix in a chroot Environment 375
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Now, add the saslauthd_path parameter to /usr/lib/sasl/smtpd.conf,
which tells the chrooted smtpd where to look for the socket. Cut off the
path that leads to the jail (that is, leave off /var/spool/postfix), and
provide the path of the run_path, including the socket name (mux) as
the value:

saslauthd_path: /var/run/saslauthd/mux

Finally, start saslauthd with the -m option, which defines where to
create the socket. Give it the full path as seen outside the jail:

/usr/sbin/saslauthd -m /var/spool/postfix/var/run/saslauthd -a shadow

This way, both applications use the same socket to communicate,
even though Postfix is running chrooted.
376 Chap te r 20

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

PART IV
T U N I N G P O S T F I X

This part of the book provides hints on how to improve
the performance of your server. Starting from common-
place problems, such as DNS caching and being an
open relay, we progress to advanced concepts, including
how to avoid bouncing undeliverable mail and setting
up dedicated transports. You can employ blacklists to
reduce the inflow of mail, and the experimental rate-
limiting features of Postfix 2.1 are also worth looking at.
Remote Client Concurrency and Request Rate Limiting

Chapter 21 shows you a new feature for limiting the rate of client con-
nections. This is a countermeasure for protecting Postfix from SMTP
clients that inundate the smtpd daemon with too many connections
at once.

Performance Tuning
Postfix is fast, but sometimes you can tune it to become even faster.
You should read Chapter 22 if your Postfix does not perform as well
as you think it should.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

21
R E M O T E C L I E N T C O N C U R R E N C Y

A N D R E Q U E S T R A T E L I M I T I N G

Postfix 2.1 and 2.2 implement remote
client concurrency and rate limits. Rate

limiting is a countermeasure for protecting
Postfix from SMTP clients that inundate the smtpd

daemon with too many connections at once. This
chapter illustrates several instances where rate limiting
is useful and shows you how to configure it.

The Basics of Rate Limiting

Even a well-tuned Postfix installation can handle only a finite amount of
email traffic at one time. A server’s capacity depends on parameters such as
disk I/O throughput, CPU speed, and the speed of any virus scanners that
are connected to Postfix. Before Postfix 2.1, it was possible for a single client
to use all of the available smtpd Postfix server processes, locking out all other
clients trying to deliver mail.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Hardware limitations, clients eating up connections, and complex
configurations are enough to justify limiting the amount of incoming mail.
However, there are other situations where rate limiting prevents mail
deferral or otherwise lessens the ill effects on Postfix:

Virus and worm outbreaks
New viruses and worms spreading across a network normally attempt to
propagate themselves as quickly as possible. Rate limiting slows the
spread of malicious software by throttling the propagation speed.

Mail bombs
Mail bombs are large, continuous bursts of mail, usually sent from a sin-
gle system to your system. Usually this happens with malicious intent, but
it can also happen by accident. (For example, we’ve seen an antivirus
product send one message per infected file—when this happens on a
thoroughly infected system, your mail server may be flooded with more
than 100 messages per minute.)

Runaway clients
The term “runaway client” is a generalization that includes virus or worm
outbreaks and mail bombs; it refers to any client that is out of control,
sending continuous stream of mails to your system. The client is not nec-
essarily malicious—the problem could be caused by a programming or
configuration error.

Spam from open proxies
Open proxies are popular with spammers as a tool to disguise the origin
of their mail. When rate limiting restricts messages from an open proxy,
Postfix refuses incoming messages from an open proxy with a temporary
error code. Because the proxy has no queuing mechanisms of its own, it
does not retry delivery, so large inflows of spam from open proxies do
not make it to your system.

To use rate limiting, you must gather statistics and adjust several param-
eters to influence how many successive and simultaneous connections clients
may make to the smtpd daemon. You’ll see how to do this in the following
sections.

Gathering Rate Statistics

Before you can start limiting client connections, you must know which clients
connect and how many successive and simultaneous connections they
initiate during normal operation. The anvil daemon keeps track of clients
for you, maintaining connection statistics and recording maximum
connection counts and rates.

NOTE Recording client-connection statistics is useful beyond the implementation of rate limit-
ing. For example, you can read this information into a log-watching program that in
turn updates firewall rules to block those runaway clients. Rate limiting is relatively
new to Postfix, so as of this writing there are no popular programs that do this.
380 Chap te r 21

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Running the anvil Daemon

Like other Postfix daemons, anvil is controlled by the master daemon.
Although anvil is enabled by default, you should examine your master.cf file
to verify that the line that configures anvil is not commented out:

==
service type private unpriv chroot wakeup maxproc command + args
(yes) (yes) (yes) (never) (100)
==
anvil unix - - n - 1 anvil

The anvil daemon is started on demand, and it writes all data it gathers
to the mail log at fixed intervals. These log messages appear as follows:

Dec 20 01:19:16 mail postfix/anvil[8991]: statistics: max connection count 4
for (10.0.0.1:smtp:216.129.165.190) at Dec 20 01:18:35

Dec 20 01:29:16 mail postfix/anvil[8991]: statistics: max connection rate 9/
60s for (10.0.0.1:smtp:62.243.72.19) at Dec 20 01:22:11

Dec 20 01:29:16 mail postfix/anvil[8991]: statistics: max connection count 2
for (10.0.0.1:smtp:62.243.72.19) at Dec 20 01:22:09

Dec 20 01:39:16 mail postfix/anvil[8911]: statistics: max connection rate 3/
60s for (10.0.0.1:smtp:146.82.138.6) at Dec 20 01:37:04

Dec 20 01:49:16 mail postfix/anvil[8991]: statistics: max connection rate 2/
60s for (10.0.0.1:smtp:218.18.32.248) at Dec 20 01:46:35

Dec 20 01:49:16 mail postfix/anvil[8991]: statistics: max connection count 2
for (10.0.0.1:smtp:218.18.32.248) at Dec 20 01:46:35

Dec 20 01:59:16 mail postfix/anvil[8991]: statistics: max connection rate 3/
60s for (10.0.0.1:smtp:146.82.138.6) at Dec 20 01:50:58

Dec 20 01:59:16 mail postfix/anvil[8991]: statistics: max connection count 2
for (10.0.0.1:smtp:171.67.16.117) at Dec 20 01:55:33

Dec 20 02:09:16 mail postfix/anvil[8991]: statistics: max connection rate 2/
60s for (10.0.0.1:smtp:216.136.204.119) at Dec 20 02:03:38

Dec 20 02:19:16 mail postfix/anvil[8991]: statistics: max connection rate 2/
60s for (10.0.0.1:smtp:63.161.42.51) at Dec 20 02:09:29

Dec 20 02:19:16 mail postfix/anvil[8991]: statistics: max connection count 2
for (10.0.0.1:smtp:130.149.17.13) at Dec 20 02:11:52

Changing the anvil Log Interval

By default, anvil writes statistic reports to the mail log every ten minutes,
or when the daemon terminates (for example, if you reload Postfix, or if the
daemon terminates itself after max_idle seconds). If you need to increase or
decrease this interval, set the client_connection_status_update_time parameter
in main.cf:

client_connection_status_update_time = 10m

Your changes take effect as soon as you reload Postfix.
Remote Client Concurrency and Reques t Rate Limi ti ng 381
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

NOTE This log interval is a diagnostic tool that is independent of the anvil daemon’s internal
operation. Decreasing the interval does not cause anvil to collect statistics more often;
the Postfix programs access all current anvil data through interprocess communica-
tion. They do not look at the log files.

Limiting Client-Connection Frequency

By default, Postfix does not impose a limit on the number of successive times
that a client may connect. Therefore, if you do not change anything, a client
can connect and disconnect as often as it likes, making smtpd waste precious
resources performing DNS lookups, doing TLS handshakes, and so on.

To impose a client-connection frequency limit, Postfix must count the
number of connections in a specific period of time. This interval is known
as the rate time unit, and you can define it with the client_connection_rate_
time_unit parameter. The default is one minute (60 seconds):

client_connection_rate_time_unit = 60s

Now you can set a limit on the number of connections permitted from
a single client during this rate time unit with the smtpd_client_connection_
rate_limit parameter. For example, the following setting, in conjunction
with the preceding default rate time unit, allows one client to connect a
maximum of 30 times in 60 seconds:

smtpd_client_connection_rate_limit = 30

Testing Client-Connection Rate Limits

The easiest way to test rate limits is to apply the settings and then observe the
logs for a few days. Incorrect settings cannot cause you to lose mail or harm
your system, because Postfix refuses rate-limited clients with temporary error
codes. A properly configured client will retry delivery; for example, Postfix
retries for five days by default (see the maximal_queue_lifetime parameter).

If you want an immediate test, try the following:

1. Generate lots of mail traffic with a program such as smtp-source.

2. Send mail from an IP address that is not exempt from the rate limits.

NOTE During testing, you can also reduce the client_connection_status_update_time
parameter to one minute to gather connection statistics more frequently.

To carry out the test, use the following settings in your main.cf file and
reload your server configuration:

smtpd_client_event_limit_exceptions= �
client_connection_rate_time_unit = 60s
382 Chap te r 21

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

smtpd_client_connection_rate_limit = 1 �
client_connection_status_update_time = 1m �

� Setting this parameter to empty specifies that all clients are subject to
rate limiting; use this setting only for testing.

� This limit is set gratuitously low for testing purposes. You really don’t
want an email server that allows only one connection from a client per
minute.

� This setting generates statistic logs every minute, so that you don’t
have to wait ten minutes for a status report. Again, use this only for testing.

Now you need to generate enough traffic to activate the rate limiter. Use
the smtp-source command on your Postfix server like this:

$ smtp-source -m 10 -f sender@example.com -t recipient@example.com 127.0.0.1:25

NOTE If smtp-source isn’t part of your distribution, grab it from the Postfix source files.

The preceding command sends ten test messages from sender@example.com
to recipient@example.com via the SMTP server on 127.0.0.1 (localhost). Because
you set the per-client limit to one connection every 60 seconds, this com-
mand easily exceeds that limit.

You will see this error output from smtp-source:

smtp-source: fatal: bad startup: 450 Too many connections from 127.0.0.1

Furthermore, your log will show this:

Jan 9 09:04:16 mail postfix/smtpd[26530]: connect from localhost[127.0.0.1]
Jan 9 09:04:16 mail postfix/smtpd[26530]: 12AA515C06F:
client=localhost[127.0.0.1]

Jan 9 09:04:16 mail postfix/smtpd[26530]: disconnect from localhost[127.0.0.1]
Jan 9 09:04:16 mail postfix/smtpd[26530]: connect from localhost[127.0.0.1]
Jan 9 09:04:17 mail postfix/smtpd[26530]: warning: Too frequent connections:
2 from 127.0.0.1 for service localhost:smtp

Jan 9 09:04:17 mail postfix/smtpd[26530]: disconnect from localhost[127.0.0.1]

Here is another example, where the smtpd_client_connection_rate_limit
parameter was set to 30. Postfix refused all clients exceeding that maximum
allowed frequency with a 450 status code, disconnected, and produced a
warning with the client name and address and daemon name:

Dec 20 02:39:03 mail postfix/smtpd[18431]: warning: Too frequent connections:
31 from 81.199.6.44 for service 10.0.0.1:smtp �

Dec 20 02:39:04 mail postfix/smtpd[17840]: warning: Too frequent connections:
32 from 81.199.6.44 for service 10.0.0.1:smtp

Dec 20 02:39:04 mail postfix/smtpd[17878]: warning: Too frequent connections:
33 from 81.199.6.44 for service 10.0.0.1:smtp

...
Dec 20 02:39:15 mail postfix/smtpd[18440]: warning: Too frequent connections:

65 from 81.199.6.44 for service 10.0.0.1:smtp
Remote Client Concurrency and Reques t Rate Limi ti ng 383
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Dec 20 02:39:15 mail postfix/smtpd[18432]: warning: Too frequent connections:
66 from 81.199.6.44 for service 10.0.0.1:smtp

Dec 20 02:39:16 mail postfix/anvil[8991]: statistics: max connection rate 72/
60s for (10.0.0.1:smtp:81.199.6.44) at Dec 20 02:39:15 �

� The client running on 81.199.6.44 exceeded the 30-connections-per-
minute limit, causing the Too frequent connections warning in the log.

� This particular client (81.199.6.44) set the connection rate record with
72 connections in 60 seconds, as anvil reports here.

Restricting Simultaneous Client Connections

By default, the number of simultaneous connections per client is limited to
half the default process limit. As a result, two clients can occupy all of the
smtpd processes that Postfix is permitted to run. The smtpd_client_connection_
count_limit parameter controls the number of simultaneous connections per
client. For example, the following configuration setting in main.cf limits a
client to 25 concurrent connections:

smtpd_client_connection_count_limit = 25

CAUTION The process limit for smtpd or the default_process_limit parameter should be consider-
ably larger than smtpd_client_connection_count_limit; otherwise one client might hog
all available smtpd processes.

Testing Simultaneous Client-Connection Limits

As was the case with connection frequency limits, the easiest way to test
concurrent session limits is to apply the settings and observe the logs for a
few days. However, if you’d like an immediate test, generate lots of simul-
taneous connections with the smtp-source command from an IP address that
is not exempt from rate limits.

During testing, you should probably reduce client_connection_status_
update_time to one minute.

To carry out the test, set the rate-limiting parameters in your master.cf
file as follows, and reload the configuration:

smtpd_client_connection_limit_exceptions = �
client_connection_rate_time_unit = 60s
smtpd_client_connection_count_limit = 1 �
client_connection_status_update_time = 1m �

� All clients are being subjected to rate limiting; do this only for testing.
� This limit is far too low; use this only for testing. You don’t want to use

an email server that only allows one connection from one client every 60
seconds.
384 Chap te r 21

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

� Produce log reports every minute so that you don’t have to wait ten
minutes for a status report; use this only for testing.

You can open several simultaneous connections with the smtp-source
command. Try running this on your Postfix server:

$ smtp-source -s 10 -m 10 -f sender@example.com -t recipient@example.com 127.0.0.1:25

The -m 10 option says to send ten test messages, and the -s 10 option
specifies ten simultaneous SMTP sessions. With a limit of one connection per
client, you should easily trip the limit and generate this error message from
smtp-source:

smtp-source: fatal: bad startup: 450 Too many connections from 127.0.0.1

The log should show something like this:

Jan 9 09:14:15 mail postfix/smtpd[28438]: warning: Too many connections:
2 from 127.0.0.1 for service localhost:smtp

Jan 9 09:14:15 mail postfix/smtpd[28438]: disconnect from localhost[127.0.0.1]
Jan 9 09:14:15 mail postfix/smtpd[28437]: warning: Too many connections:
2 from 127.0.0.1 for service localhost:smtp

Jan 9 09:14:15 mail postfix/smtpd[28437]: disconnect from localhost[127.0.0.1]
Jan 9 09:14:15 mail postfix/smtpd[28439]: warning: Too many connections:
3 from 127.0.0.1 for service localhost:smtp

Jan 9 09:14:15 mail postfix/smtpd[28439]: disconnect from localhost[127.0.0.1]
Jan 9 09:14:15 mail postfix/smtpd[28440]: warning: Too many connections:
4 from 127.0.0.1 for service localhost:smtp

Jan 9 09:14:15 mail postfix/smtpd[28440]: disconnect from localhost[127.0.0.1]

For the log messages that follow, smtpd_client_connection_count_limit was
set to 25. As was the case with frequency limits, Postfix sends a 450 status code
to a client making too many simultaneous connections, disconnects, and logs
a warning with the client name and address:

Dec 3 09:12:53 mail postfix/smtpd[19883]: warning: Too many connections:
26 from 213.165.64.165 for service 10.0.0.1:smtp �

Dec 3 09:12:53 mail postfix/smtpd[19884]: warning: Too many connections:
27 from 213.165.64.165 for service 10.0.0.1:smtp

...
Dec 3 09:13:15 mail postfix/smtpd[19894]: warning: Too many connections:

35 from 213.165.64.165 for service 10.0.0.1:smtp
...
Dec 3 09:16:47 mail postfix/anvil[7958]: statistics: max connection count

37 for (10.0.0.1:smtp:213.165.64.165) at Dec 3 09:12:3 �

� 213.165.64.165 exceeds the limit of 25 connections, causing the Too
many connections warning in the log.

� 213.165.64.165 set the record with 37 connections targeted to smtpd.
Remote Client Concurrency and Reques t Rate Limi ti ng 385
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Exempting Clients from Limits

You can use the smtpd_client_connection_limit_exceptions parameter to
exclude authorized hosts and networks from the client limitations in this
chapter. The notation includes network/netmask expressions, hostnames,
and domain names.

By default, Postfix grants client-limit exemptions to all hosts in mynetworks.
If you want to use a more restrictive setting, you can take a look at sample-
smtpd.cf, smtpd(8), and anvil(8).

Here is an example that allows hosts in $mynetworks, the subnet
10.45.207.0/24, and the domain example.com to connect as much and as
often as they please:

smtpd_client_connection_limit_exceptions =
$mynetworks,
10.45.207.0/24,
.example.com
386 Chap te r 21

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

22
P E R F O R M A N C E T U N I N G

Postfix is fast out of the box, but like other
packages, you can usually tune it to work

even faster. Furthermore, there are situ-
ations where Postfix may not perform as well

as you expected, whether because of hardware
or software limitations on the server system or other
adverse conditions, such as a big influx of spam or
undeliverable mail.

This chapter shows you how to find and analyze the most common
performance problems.

Basic Enhancements

We will first look at a few elementary tweaks that still may not be terribly
obvious. Think of the suggestions here as a checklist for solving or avoiding
simple problems. Above all, keep in mind that many performance problems
are actually caused by a flawed setup, such as a bad /etc/resolv.conf file. The
following points appear in no particular order; they’re all of equal importance.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Speeding Up DNS Lookups

Postfix does a lot of DNS queries because SMTP requires lookups for MX
and A records. Furthermore, many of the Postfix restrictions use DNS
lookups to verify a client’s hostname or to perform a blacklist lookup.
Therefore, it’s critical that your server be able to look up DNS records
quickly, especially if you have a high amount of traffic.

Testing DNS Lookups

The most common problem with DNS name resolution is that queries take
too long. You can use the dig command to perform a DNS lookup and
display detailed information about the query’s execution:

$ dig www.example.com
; <<>> DiG 9.2.3rc4 <<>> www.example.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 48136
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;www.example.com. IN A
;; ANSWER SECTION:
www.example.com. 172800 IN A 192.0.34.166
;; Query time: 174 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Mon Oct 6 09:40:52 2003
;; MSG SIZE rcvd: 49

In this example, the query took 174 milliseconds. Now, let’s run the
query again:

$ dig www.example.com
; <<>> DiG 9.2.3rc4 <<>> www.example.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6398
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
;www.example.com. IN A
;; ANSWER SECTION:
www.example.com. 172765 IN A 192.0.34.166
;; Query time: 18 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Mon Oct 6 09:41:27 2003
;; MSG SIZE rcvd: 49

This subsequent query for the same host took only 18 milliseconds,
approximately ten times faster. The reason that this second query was so
quick is that this particular machine is accessing a caching DNS server.
388 Chap te r 22

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

If the lookups take significantly longer (or worse, time out), then you’re
having DNS problems. There are several possible reasons:

resolv.conf settings

If you run Postfix in a chroot jail, you may have changed /etc/resolv.conf
but forgotten to copy the updated file to the chroot jail (usually /var/
spool/postfix/etc/resolv.conf).

The nameservers listed in /etc/resolv.conf could be slow or not
servicing requests at all. Verify that the specified servers answer your
DNS queries in a timely manner for each server line in /etc/resolv.conf
using the dig command.

Network problems

Your uplink to the Internet might not be working as it should, or it could
be saturated. If this is the case, you should consider getting more band-
width or using traffic shaping to give priority to nameserver queries.

Firewall settings

A firewall can block nameserver packets moving to and from your mail
server.

Malfunctioning caching nameserver

If you’re running a caching nameserver locally, make sure that it’s actu-
ally working.

Improving DNS Lookup Performance

If your /etc/resolv.conf settings, your network, and your firewall all seem
fine, yet you still need to speed up your DNS queries, you should consider
running a local caching server, such as djbdns dnscache or an instance of
BIND on your server or network. The cache significantly speeds up the
lookup process and decreases network utilization at the same time because
recurring lookups don’t result in outgoing packets.

Confirming That Your Server Is Not Listed as an Open Relay
If you’re running an open relay, you can expect that many mail servers will
refuse any mail from your servers. In addition, spammers will use your system
to send their mail, increasing the load on your system, because your system is
handling your users as well as your abusers.

Your system will typically end up on a blacklist after the open relay has
been confirmed. It can be a royal pain to get off a blacklist, and it may take
days or even weeks. Therefore, it’s essential that you make sure that your
system is not an open relay or open proxy. Look up your IP address on
http://openrbl.org. If you’re listed, close the open relay immediately. Allow
users to relay in only one of these situations:

� The user’s client is listed in the mynetworks parameter.

� The user’s client successfully performed SMTP authentication.

� The user’s client successfully authenticated itself using a TLS client
certificate.
Per formance Tuning 389
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Refusing Messages to Nonexistent Users

It’s a good idea to refuse messages for recipients that don’t exist in your
system. If Postfix were to accept such mail, it would have to send a non-
delivery notification to the sender address. In the case of spam or viruses,
that sender address is almost certainly not the true origin of the mail.
The resulting MAILER-DAEMON notifications will clog the queue for
several days.

This shouldn’t be too much of a problem by itself, but if you accept mail
for users that do not exist on your system, your system can store the messages
in a place that can eventually fill up, or if you run a relaying system (see
Chapter 13), the ultimate target of the message will eventually have to send a
bounce back to the envelope sender of the message (to the Return-Path in the
message header). Furthermore, this bounce may turn out to be undeliver-
able itself, because the domain used as the sender domain probably won’t
accept anything.

In any case, these bounces will clutter your queue or go to the mailbox
specified by double_bounce_recipient (which may be your postmaster account).
If you see something like this in your mail queue, you may be having this
problem:

$ mailq
-Queue ID- --Size-- ----Arrival Time---- -Sender/Recipient-------

63BE9CF331 10658 Mon Jan 12 14:38:30 MAILER-DAEMON

 (connect to mail3.quickspress.com[63.89.113.198]: Connection timed out)

 platinum@quickspress.com

1C932CF30E 3753 Sat Jan 10 16:16:38 MAILER-DAEMON

 (connect to mx.unrealdeals.biz[69.5.69.110]: Connection refused)

 EntrepreneurCareers@unrealdeals.biz

98EC3CF3F9 5505 Sat Jan 10 20:25:06 MAILER-DAEMON

 (connect to fhweb8.ifollowup.com[216.171.193.38]: Connection refused)

 root@fhweb8.ifollowup.com

50B14CF31E 5196 Mon Jan 12 11:35:11 MAILER-DAEMON

 (connect to mail.refilladvice.net[218.15.192.166]: Connection timed out)

 clintoncopeland@refilladvice.net

F4009CF39D 5452 Sun Jan 11 01:58:27 MAILER-DAEMON

 (connect to fhweb9.ifollowup.com[216.171.193.39]: Connection refused)

 root@fhweb9.ifollowup.com

-- 30 Kbytes in 5 Requests.

Here you can see five messages that are being bounced back to the
original senders (notice that the sender is MAILER_DAEMON), but in each
case, the recipient’s mail server is unreachable.
390 Chap te r 22

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

To refuse messages for nonexistent recipients on your system, set the
local_recipient_maps and relay_recipient_maps parameters (the latter if you’re
running a gateway that just relays mail to internal mail servers) to maps
containing valid recipients.

If bounces really get out of hand, you can also employ RHSBL-style
blacklists (see Chapter 8) to reject mail from servers that don’t accept
bounces at all (because all bounces that need to be sent back to these servers
remain in your mail queue for several days). There’s an RHSBL-style blacklist
at RFC-Ignorant.Org (http://rfc-ignorant.org) that you can use like this:

check_rhsbl_sender dsn.rfc-ignorant.org

Blocking Messages from Blacklisted Networks

There are many different kinds of blocklists and DNS blacklists available that
list individual IP addresses, whole IP ranges, and even sender domains for all
sorts of reasons. There’s at least one list for every kind of perceived
misbehavior.

The most useful of these list open relays and open proxies, because they
can be tested automatically in an objective manner. Here are just a few of the
blacklists:

� relays.ordb.org

� list.dsbl.org

� cbl.abuseat.org

� dul.dnsbl.sorbs.net

NOTE Few things change faster than blacklists. Today’s hot blacklist may be out of service
tomorrow.

These blacklists have low probabilities of false positives because they
provide clear criteria for listing addresses. Running an open proxy or open
relay is generally considered wrong, so using these lists puts social pressure
on the administrators of the misconfigured systems. (Of course, they may be
clueless or just not care.)

Refusing Messages from Unknown Sender Domains

If possible, do not accept messages containing an envelope sender from an
invalid domain. If there’s a problem during delivery, the error report always
goes back to the envelope sender, and if this address contains a nonexistent
domain, there’s nowhere to send the error report.

Postfix tries to send the error report, finds it to be undeliverable, and
then (since it cannot be bounced, because the envelope sender is empty)
sends it to 2bounce_notice_recipient.
Per formance Tuning 391
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

You can avoid this by adding reject_unknown_sender_domain to smtpd_
sender_restrictions or smtpd_recipient_restrictions, as discussed at length
in Chapter 8.

Reducing the Retransmission Attempt Frequency

If you have a lot of mail that your server can’t deliver on the first few
attempts, consider using a fallback relay (with the fallback_relay parameter)
or increasing the backoff time (maximal_backoff_time) to reduce the frequency
with which deferred mail reenters the active queue.

Without a fallback relay, Postfix spends precious time trying to deliver
mail to sites that are down or unreachable. Each of these delivery attempts
ties up one smtp process that has to wait until the timeout is reached. A fall-
back relay can do the dirty work of retrying transmission for messages that
can’t be delivered on the first try. This means your regular mail server can
operate with the default timeouts or even with reduced timeout values,
speeding up delivery.

On the other hand, increasing the maximal_backoff_time parameter bumps
up the maximum time that the server ignores a certain destination after a
delivery problem occurs. Therefore, Postfix makes fewer attempts to contact
problematic servers.

Finding Bottlenecks

This section describes how you can identify bottlenecks in your system.
Before reading through this material, you may want to review Chapter 5 to
get an idea of which daemons do what.

Because all of the Postfix daemons have to access one or more queues in
order to do their work, knowing the status of queues can come in really
handy. Here are a few of the queues that you need to worry about:

� incoming

� deferred

� active

� maildrop

When a message enters the system, it becomes a queue file that Postfix
moves between the queues. If one of the queues has a lot of messages in it,
you may have an underlying performance problem. To get a handle on the
different queues, Victor Duchovni wrote a nifty utility called qshape to show
the distribution of messages among the previously mentioned queues. This
program reads the queue files directly, bypassing the mailq command, and
therefore, only root and the postfix user can run it. You can download it at
http://sbserv.stahl.bau.tu-bs.de/~hildeb/postfix/scripts. Recent Postfix
versions have this script included in the source tarball.
392 Chap te r 22

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

qshape displays a tabular view of the Postfix queue contents. The rows of
the table show the number of messages bound for a particular destination, as
well as the overall total. The columns show the age of the messages. For
example, take a look at the following output for the hold queue (parameter
hold), where you can see the top ten lines of the (mostly forged) sender
domain distribution (parameter -s) for captured spam:

qshape -s hold
 T 5 10 20 40 80 160 320 320+
 TOTAL 12 0 0 0 0 2 2 0 6
 hotmail.de 2 0 0 0 0 0 0 0 2
 alb-24-194-161-132.nycap.rr.com 1 0 0 0 0 1 0 0 0
 freeenet.de 1 0 0 0 0 0 1 0 0
 x4u2.desy.de 1 0 0 0 0 0 0 0 1
 csi.com 1 0 0 0 0 0 1 0 0
 da.ru 1 0 0 0 0 0 0 0 1
 freeuk.com 1 0 0 0 0 1 0 0 0
 mx5.outrageouscourtiers.com 1 0 0 0 0 0 0 0 1
 online.de 1 0 0 0 0 0 0 0 0
 molgen.mpg.de 1 0 0 0 0 0 0 0 1
 charite.de 1 0 0 0 0 0 0 0 0

The T column contains the total count of messages for each domain.
The other columns show the counts for messages older than a certain age
(measured in minutes) but not older than the age in the column to the right.
In this case, there are two messages that purport to be from hotmail.de. Both
are older than 320 minutes.

By default, qshape shows statistics for both the incoming and active queues
because these are directly related to the overall performance. You can specify
a different set of queues on the command line, as in these examples:

$ qshape deferred
$ qshape incoming active deferred

Now that you can track down busy queues, you can do something about
them. The following sections explain how to clear up bottlenecks in each
type of queue. We’ll also cover the formulas you can use to calculate whether
your system can handle a given amount of mail, and how and when to use
fallback relays.

Incoming Queue Bottlenecks

As described in the previous section, “Finding Bottlenecks,” the Postfix
cleanup service stores all new mail in the incoming queue. New files get a
permissions mode of 0600 until they are complete and are ready for further
processing, when they get an access mode of 0700. Under normal conditions,
Per formance Tuning 393
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

the incoming queue is nearly empty and contains only files with a mode of
0600, because the queue manager should be able to import new messages
into the active queue as soon as the cleanup service is done with them.

However, the incoming queue will grow when the message input rate
spikes above the rate at which the queue manager can move messages into
the active queue. At that stage, the only thing slowing down the queue
manager is the trivial-rewrite service. If the queue manager is having
trouble keeping up, you may be using slow lookup services—such as MySQL
and LDAP—for transport lookups, or you may need to speed up the servers
that provide the lookup services.

NOTE If you’re using high or variable latency IPC (interprocess communication) maps, such
as LDAP and SQL, Postfix needs more time to receive mail. Thus, Postfix will be run-
ning more smtpd (and cleanup) processes, and will sooner hit the smtpd process limit.
With these slow table lookups, a delivery agent (local, pipe, virtual, lmtp) will proba-
bly finish in less time than smtpd needs to receive mail, so Postfix will run fewer delivery
agents than expected.

One possible remedy with LDAP is to try to avoid binding to your LDAP server. Set
bind = no in your LDAP query configuration files. This makes Postfix bind to the
LDAP server anonymously, thus reducing the overhead for authentication and
password verification.

In comparison to file-based maps, such as hash, btree, dbm, and cdb, IPC maps
just takes longer to look up information, and therefore, the Postfix daemons can do
nothing while waiting for the lookup to go through. If the lookup were faster, Postfix
would be faster.

As discussed elsewhere, these maps do have their advantages, and that can
outweigh the drawbacks. One of the most significant is that Postfix doesn’t need to kill
and restart a process to reopen a map when the contents have changed. You may want
to try some database tuning instead.

If the bottleneck lies in the incoming queue, then the influx of messages is
taking precedence over sending messages out. A way to prevent the inflow of
mail from starving the outflow is to fool around with the in_flow_delay param-
eter to limit the input rate when the queue manager starts to fall behind. The
cleanup service pauses for the number of seconds specified by in_flow_delay
before creating a new queue file if it cannot obtain a token from the queue
manager.

The reason that this works is that the number of cleanup processes is
usually limited by the SMTP server (smtpd) concurrency. The input rate can
exceed the output rate by at most the SMTP connection count divided by
in_flow_delay messages per second. To find out the current number of
incoming SMTP connections, use ps and grep as follows:

ps auxww| grep smtpd | grep -v grep | wc --lines
 22
394 Chap te r 22

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

There are 22 smtpd processes running on this system. This command
counts all smtpd processes, so if you have multiple smtpd configurations
(for example, if you’re using a content filter that reinjects mail back into
the queue with SMTP), then you need to use a more specific grep pattern
to find the number of smtpd daemons accepting mail from the outside
network:

ps auxww| grep smtpd | grep -v grep | grep -v localhost | wc --lines
 9

With a default process limit of 100 and an in_flow_delay setting of one
second, the coupling is strong enough to limit a single runaway injector to
one message per second. However, it is not strong enough to deflect an
excessive input rate from many sources at the same time.

If your server is under attack from multiple sources, your best option is
to make the SMTP sessions as short as possible (a smtpd_error_sleep_time of
zero, and a low smtpd_hard_error_limit, which will make Postfix hang up on
connections that exceed this limit). Do this only if the incoming queue is
growing even when the active queue isn’t full and the trivial-rewrite service
is using a fast transport lookup mechanism.

If you try these remedies and you’re still having problems with a
congested incoming queue but no active queue congestion, the problem is
most likely your I/O subsystem: Mail is coming in and is written to disk, but
the smtpd and qmgr processes need to access the same resource (the on-disk
queue), and you’re bound by the speed of the I/O subsystem.

In this case, it’s time to either add a lot of memory to your mail server
(in order to increase the disk caching pool for the operating system), or
move the queue directory to one of these:

� A striping RAID system

� A battery-backed RAM disk (this is for the daring people out there,
because you’ll lose mail in the case of a system crash)

Maildrop Queue Bottlenecks

Messages that are submitted via the Postfix sendmail command but are
not yet sent to the main Postfix queues by the pickup service sit around
in the maildrop queue—you can send messages using the sendmail
command, and they’ll be added to the maildrop queue even when the
Postfix system isn’t running. The single-threaded pickup service scans the
maildrop queue directory periodically or when notified of new message
arrival by postdrop.
Per formance Tuning 395
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

The rate at which the pickup service can inject messages into the primary
queues is largely determined by disk access times, because it must commit
the message to stable storage before finishing. The same is true of the
postdrop program, which writes messages to the maildrop directory.

Because the pickup service is single-threaded, it can deliver only one
message at a time, at an overall rate not exceeding the disk I/O latency (and
CPU usage, if applicable) incurred by the cleanup service, because every mail
that pickup processes needs to go through cleanup. As you remember, cleanup
performs header_checks, body_checks, and so on, which can be very CPU
intensive. cleanup then writes the message into a queuefile—and this is
bounced by the disk I/O latency. If you have congestion in the maildrop
queue, you probably have one of these two problems:

� Excessive local message submission rate

� Excessive CPU consumption in the cleanup service due to excessive
body checks

However, keep in mind that when the active queue is full, the cleanup
service attempts to slow down message injection by pausing for each message,
according to the in_flow_delay parameter. In this case, congestion in the
maildrop queue may be a result of further downstream congestion.

Don’t try to deliver a lot of mail via the pickup service. If you have a high-
volume site, you need to avoid using content filters that reinject scanned
mail with sendmail and postdrop. Instead, use an SMTP connection for
injection. There are plenty of programs that can do it for you, including
mini_sendmail (http://www.acme.com/software/mini_sendmail).

If you’ve got a lot of locally submitted mail, you might have a forwarding
loop or a runaway notification program. In addition, the postsuper -r com-
mand can place selected messages into the maildrop queue for reprocessing.
Although this is useful for resetting stale content_filter settings, requeuing a
large number of messages with postsuper -r can cause a spike in the size of
the maildrop queue.

Deferred Queue Bottlenecks

When Postfix can’t deliver a message to some of its recipients because of a
temporary failure, it places the message in the deferred queue in hopes of
delivering it later. The queue manager scans the deferred queue periodically
at an interval specified by the queue_run_delay parameter. As mentioned in
Chapter 5, the queue manager chooses messages from both the incoming and
deferred queues in a round-robin fashion to prevent deferred mail from
dominating the active queue.

Each deferred queue scan reinjects a fraction of the deferred queue
back into the active queue for retrying, because each message in the
deferred queue is assigned a cool-off time when it is deferred. Postfix
396 Chap te r 22

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

does this by time-warping the modification times of the queue file into the
future. A queue file is not eligible for retry if its modification time hasn’t
arrived.

The cool-off time is at least the value of minimal_backoff_time and at
most maximal_backoff_time. Postfix sets the next retry time by doubling the
message’s age in the queue and adjusting the result to make sure that the
time lies between these limits. The end result is that Postfix retries young
messages more frequently.

If your high-volume site has a large deferred queue, you may want to
tweak the queue_run_delay, minimal_backoff_time, and maximal_backoff_time
parameters to provide short delays upon the first failure and perhaps causing
longer delays after multiple failures. This will reduce the retransmission rate
of old messages, reducing the quantity of previously deferred mail in the
active queue.

CAUTION One common reason for large deferred queues is a failure to validate recipients at the
SMTP input stage. See the “Mail to Unknown Recipients” section in Chapter 8 for the
reasons why you must do recipient validation.

If a server with lots of deferred mail goes down for a while, it’s possible
for the entire deferred queue to reach the retry time simultaneously when
the server comes back up. This can lead to a very busy active queue. Com-
plicating this, the phenomenon will repeat itself approximately every
maximal_backoff_time seconds if most of the messages are again deferred.

Ideally, to fix this problem, Postfix will include a random offset in
addition to the standard retry time to reduce the chances of the entire
deferred queue being repeatedly flushed at the same time.

Active Queue Bottlenecks

As described in Chapter 5, the queue manager is a delivery agent scheduler
that tries to ensure fast and fair message delivery to all destinations within
designated resource limits. Congestion in the active queue occurs when
one or more destinations accept messages at a slower pace than the corre-
sponding message input rate.

If the destination is down for some time, the queue manager will mark
it as dead and immediately defer all mail for the destination without even
bothering to assign it to a delivery agent. Therefore, these messages leave
the active queue quickly, but they end up in the deferred queue. If the desti-
nation is just plain slow, or if there is a problem causing an excessive input
rate, the active queue grows and becomes saturated by messages destined
for the slow destination. There are only two ways to reduce the congestion:

� Reduce the input rate.

� Increase throughput.
Per formance Tuning 397
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Increasing throughput requires either increasing the concurrency (the
number of simultaneous Postfix smtp processes that you run) or reducing the
latency of deliveries (by getting on a better network, changing the map type,
fixing a DNS slowdown, and the like). To increase concurrency, you can
increase the number of the default_process_limit parameter in your main.cf
file. However, if you want to do it on a per-destination basis, find the slow
transport (such as a transport for content_filter) or destination (such as
certain big freemail sites) that’s dominating the active queue (qshape is great
for this). After you zero in on the culprit, define a dedicated transport name
and set name_destination_concurrency_limit. See “Configuring an Alternative
Transport” in this chapter for more detailed information on how to do this.

Above all, keep in mind that the maximum number of processes used for
any service is limited in master.cf and main.cf.

NOTE Remember that your operating system must be able to handle the increased number of
processes and open files. See “Running hundreds of processes” in the Postfix FAQ at
http://www.postfix.org/faq.html.

The latency can sometimes be lowered by speeding up DNS (see the
section “Improving DNS Lookup Performance” in this chapter) and map
lookups as mentioned in Chapter 5, in the section “Databases (MySQL,
PostgreSQL, LDAP).” In addition, decreasing timeouts for busy sites with lots
of MX hosts can help. However, none of this will help if the receiving system
cannot keep up (for example, when you’re sending to slow sites like certain
freemail sites).

Another cause of congestion in the active queue is unwarranted flushing
of the entire deferred queue. The deferred queue holds messages that prob-
ably won’t be delivered, at least not in any random try. Furthermore, it’s also
likely that the failure leading to the deferral will take a long time, because
Postfix will have to wait for a timeout.

CAUTION The “flush the queue” instinct of some administrators for a large deferred queue will
probably be counterproductive and make the problem worse. Don’t flush the deferred
queue unless you expect that most of the messages in there will actually make it to their
destinations on the next try! So analyze first, fix the problem, then flush the queue!

Finally, avoid reloading or restarting Postfix when possible. When the
queue manager restarts, there may be messages in the active queue directory,
but the true active queue (in memory) is empty. In order to recover the
in-memory state, the queue manager moves all of the messages in the
active queue back into the incoming queue and relies on the normal
incoming queue scan to refill the active queue. The process of moving all
the messages back and forth, redoing the transport table lookups, and
re-importing the messages to memory is expensive.
398 Chap te r 22

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

CAUTION The postfix reload command restarts the queue manager, so you should avoid fooling
around with configuration files that require the postfix reload command for their
changes to take effect on busy production servers.

Asynchronous Bounce Queue Congestion Inequality

If the deferred queue is full of undeliverable bounces, Postfix is not to blame
for the queue congestion. The congestion is a consequence of high average
latency when you have a large backlog of undeliverable mail, because the
smtp daemons trying to send the mail just time out. Victor Duchovni figured
out the congestion inequality that will tell you if you’re having problems
like this.

In a queue with lots of bounces that will never be deliverable, the
number of junk messages brought into the active queue by a queue run is
determined by the following formula:

The number of messages processed per queue run is at most:

When the process limit is exhausted, you can assume that the number
of bounces in the queue is much larger than the process limit. (This is
assuming that the default_process_limit applies to the smtp daemons. If
you raised the entry in the maxproc column of master.cf, use that value in
this equation instead.)

Putting these equations together, you get this result:

When you multiply both sides by maximal_backoff_time / queue_run_delay,
you get the congestion inequality:

The parameters are as follows:

P The smtp transport process limit, obtained by running this command:

postconf default_process_limit
default_process_limit = 100

NOTE Check the maxproc value of the smtp line in master.cf to see if there’s an explicit smtp
transport process limit.

size_of_the_queue × queue_run_delay

maximal_backoff_time

queue_run_delay × default_process_limit

smtp_connect_timeout × M

size_of_the_queue × queue_run_delay

maximal_backoff_time

queue_run_delay × default_process_limit

smtp_connect_timeout × M
≥

P × B ≥ Q × T × M
Per formance Tuning 399
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

B The maximal backoff time, obtained with this command:

postconf maximal_backoff_time
maximal_backoff_time = 4000s

Q The number of bounces in the queue (these bounces presumably go
to at least P / destination_concurrency_limit distinct destinations).

T The smtp connection timeout, obtained with this command:

postconf smtp_connect_timeout
smtp_connect_timeout = 30s

M The average MX IP address count. When a domain has more than
one MX record, Postfix has to try each one. You don’t need exact
numbers; just estimate it, and use qshape to estimate the MX count for
the dominant destinations.

NOTE By default, each destination can consume at most 20 delivery agents (default_
destination_concurrency_limit = 20), so keep adding destinations until you reach
the process limit.

In practice, just estimate a range for M and perhaps cap it by setting smtp_mx_
address_limit (the upper limit for the number of MX addresses Postfix will try).

If you can’t satisfy this inequality, you’re in serious trouble. Do every-
thing you can to lower the value of the right side and raise the left side.

When attempting to lower the value of the right side, keep these points
in mind:

� You can’t decrease Q short of deleting the bounces.

� You can decrease T by creating a dedicated smtp transport for the recipi-
ent domains of the bounces and lowering its SMTP connection timeout.

� You can’t decrease M, because you don’t run the recipient servers and
DNS services.

Here are some suggestions for increasing the value of the left side:

� Increasing P is easy. Change the default process limit or edit master.cf
to allow for more smtp processes.

� To increase B, increase the maximal backoff time.

Let’s look at a couple of examples. The first is an installation of
Postfix 1.x on Solaris with 2,000 junk messages in the queue.

In Postfix 1.x, the smtp_connection_timeout setting is the operating system’s
TCP connection timeout. This is about 180 seconds by default on Solaris,
and much longer on Linux. If you’re using the default_process_limit default
of 50, you get the following result.
400 Chap te r 22

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

P * B >= Q * T
50 * 4000 >= 2000 * 180
200000 >= 360000

Here, the inequality does not hold, because the maximal_backoff_time of
4,000 seconds is too small, especially if junk destinations have multiple MX
records.

Now let’s consider the situation where we’re using Postfix 1.1.11 (or
later) with 2,000 junk messages in the queue.

For later versions of Postfix (at least 1.1.11-20020717), the connection
timeout is 30 seconds on all platforms, and version 1.1.12-20021212 raised
the default process limit to 100. This yields the following picture:

P * B >= Q * T
100 * 4000 >= 2000 * 30
400000 >= 60000

This time, the inequality holds true. Furthermore, because the default
backoff is 4,000 seconds, this is well below the critical level, even if the typical
junk destination MX host count is 4. Later Postfix versions can handle a
much larger queue full of junk.

The critical queue size with a default_process_limit setting of 100 is
approximately as follows:

100 * 4000 / 30 = 13000

It might be lower if the MX count is above one. With a process limit of
500, a timeout of 10 seconds, and a maximal_backoff_time of 4 hours, the
critical queue size is this whopping number:

500 * 14400 / 10 = 720000

However, this absurd limit would keep 500 processes busy trying new
messages every 10 seconds—in other words, 50 messages will be leaving and
reentering the deferred queue every second.

Using Fallback Relays

If the primary queue is buckling under the load, it is worth the effort to set
up a second server (or Postfix instance; multi-instance support is slated for
version 2.2) to deal with retries. Therefore, you can tune the primary queue
normally, perhaps with very short timeouts, and any messages that can’t be
delivered on the first attempt can be retried in a fallback queue or on the
fallback relay with the special tuning described earlier in this chapter.
Per formance Tuning 401
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

To set it up, set the following parameters in the main.cf file for your main
Postfix server:

smtp_connect_timeout = 5s
smtp_mx_address_limit = 3
#fallback_relay = [127.0.0.1]:20025
for multiple instances of Postfix on the same machine
fallback_relay = fallback.example.com
for another instance on another host

Then, on the server specified by fallback_relay, set a high critical queue
size. For example, use these parameters to set a limit of 720000:

smtp_connect_timeout = 10s
smtp_mx_address_limit = 5
default_process_limit = 500
bounce_queue_lifetime = 2d
maximal_backoff_time = 4h

NOTE You may want to increase smtp_connect_timeout by just a little. Some hosts and net-
works really are that slow.

Tuning for Higher Throughput

If your machine relays a high volume of inbound mail, you can arrange to
have a separate transport forward mail to the inbound domains. For the
purposes of this section, let’s call that transport “relay.” In Postfix 2.x, you
tune it like this:

1. Set relay_destination_concurrency_limit to a high number (for
example, 50).

2. Set up the master.cf entry for relay so that it contains -o smtp_
connect_timeout=$relay_connect_timeout (with no spaces around
the equal sign).

3. Set relay_connect_timeout in main.cf to 5 or 1.

If you’re doing content filtering for viruses with an SMTP-based
content_filter (see Chapter 12), make sure the sending transport is
configured with -o disable_dns_lookups=yes. This also helps when you’re
sending all mail to a fixed destination, and you don’t have to look up MX
records (for example, when using the relayhost feature).
402 Chap te r 22

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Configuring an Alternative Transport

If you routinely send high volumes of mail to sites with a lot of mail
exchangers (Hotmail is one notable example), there isn’t much point in
using the default timeouts. Postfix can probably deliver mail bound for
these domains more quickly if it doesn’t spend so much time on each
broken mail exchanger. This section shows you how to do it.

First, define a new smtp transport called deadbeats in your master.cf file.
To do this, copy the smtp transport line, rename it as deadbeats, and add a
little tweak—a lower smtp_connect_timeout value:

deadbeats unix - - - - - smtp
 -o smtp_connect_timeout=$deadbeats_connect_timeout

The default timeout is 30 seconds, so give set this deadbeats_connect_
timeout a value of five seconds in your main.cf file:

deadbeats_connect_timeout = 5

Now, still inside your main.cf file, instruct Postfix to use this special
transport when sending mail to certain destination domains by setting the
transport_maps parameter:

transport_maps = hash:/etc/postfix/transport

Create the /etc/postfix/transport map like this:

yahoo.com deadbeats:
yahoo.com has 3 MX host, with 9 A records in total
compuserve.com deadbeats:
compuserve.com has 3 MX hosts with 4 A records each
aol.com deadbeats:
aol.com has 4 MX hosts with 18 A records in total
hotmail.com deadbeats:
hotmail.com has 4 MX hosts with 10 A records in total
hotmail.de deadbeats:
hotmail.de has no MX hosts, but 6 A records

To put it in place, run postmap hash:/etc/postfix/transport, and reload
your configuration.
Per formance Tuning 403
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

A P P E N D I C E S

The last part of The Book of Postfix is the appendices.
The appendices should help you get started, help you
troubleshoot problems when you experience them,
and give you some references to have at hand while
you are in the midst of configuring your server:
Installing Postfix

Appendix A contains instructions for installing Postfix from source code,
as well as for the Debian and Red Hat Linux distributions.

Troubleshooting Postfix
Having trouble with something when you try to modify a configuration?
Appendix B offers advice for the most frequent gotchas and gives some
general tips for tracking down problems.

CIDR and SMTP Standards Reference
Not everyone can memorize subnets in CIDR notation or SMTP server
response codes. We’ve put them together for you in Appendix C.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

A
I N S T A L L I N G P O S T F I X

This appendix describes how to build
Postfix from source code, as well as how

to install, prepare, and build packages for
Debian Linux and Red Hat Linux.

The Postfix Source Code

You can find links to the Postfix source code at http://www.postfix.org/
download.html. There are several mirror sites; you should select the one closest
to you for maximum speed.

Before you download the source code, you should know the difference
between experimental (snapshot) and official releases. The official release
does not change, except for bug fixes and portability patches. On the other
hand, snapshot releases contain newer untested features. Code in snapshot
versions that works (and stops changing) eventually becomes part of an
official release.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Official Postfix releases are named postfix-a.b.c.tgz, where a, b, and c are
as follows:

a Major release number (significant package restructuring)

b Minor release number (new features)

c Patch level (bug fixes)

Snapshot releases have names such as postfix-a.b-yyyymmdd.tgz, where
yyyymmdd is the release date. The mail_release_date configuration parameter
contains the release date for both official and snapshot releases.

When you apply an official patch, the patch level and release date
change. However, a new snapshot has only a different release date, unless the
snapshot includes the same bug fixes as a patch release.

Applying Patches
There are several special features that you can get by applying third-party
patches. You can find a list of Postfix patches at http://www.postfix.org/
addon.html. (If you don’t know how to apply a patch, you probably shouldn’t
be doing this.)

Patches have their own documentation, and because they can signifi-
cantly alter the features and behavior of Postfix, you should carefully read
the instructions.

Building and Installing from Source Code
After you unpack your source code package using tar xfz postfix-a.b.c.tgz,
you will probably customize your build process depending on the features
that you want. The README_FILES directory contains the documentation for
features such as BerkeleyDB, PCRE, MySQL, and SASL (SMTP-AUTH)
support. Each of the files in this directory gives instructions on how to set
environment variables that alter the build process.

If you’re looking for functionality described in this book that isn’t in the
default configuration, you will most likely find instructions on how to build
Postfix with the feature at the beginning of the chapter that describes the
feature. You can find a complete list of available options in the INSTALL file
that comes with Postfix. The build procedure is always the same:

1. Set the AUXLIBS environment variable to a set of linker options.

2. Set the CCARGS environment variable to a set of compiler and
preprocessor options.

3. Run make makefiles to create the Makefile.

For example, on an ancient HP-UX 10.20 machine, the following is the
command to include BerkeleyDB support, where the library path is /users2/
local/BerkeleyDB-4.0.14/lib and the include path is /users2/local/BerkeleyDB-
4.0.14/include).
408 Appendix A

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

$ AUXLIBS='-L/users2/local/BerkeleyDB-4.0.14/lib -ldb' \
 CCARGS='-DHAS_DB -I/users2/local/BerkeleyDB-4.0.14/include' \
 make makefiles

If you want to use CDB instead, apply the patch, install the CDB libraries,
and run this command:

$ AUXLIBS='-L/usr/local/lib -lcdb' \
 CCARGS='-DHAS_CDB -I/usr/local/include' \
 make makefiles

Then, as a regular user, run make:

$ make

After compiling the package, you need to determine whether you’re
installing Postfix for the first time or just installing an upgrade. For a first-
time installation, run this command as root:

make install

This command asks several questions about installation paths.
However, if you are upgrading an existing installation, run these

commands as root instead:

postfix stop
make upgrade
postfix start

For upgrades, the installer extracts the paths of the existing Postfix
installation from the main.cf file and reuses the paths and configuration files.

Starting and Stopping Postfix

As you have probably noticed, you can control Postfix with the postfix
program. It understands the following parameters:

start Starts the Postfix mail system. This also runs the configuration
check described below.

stop Performs an orderly shutdown of the mail system. Running
processes terminate at their earliest convenience.

check Verifies that the Postfix configuration is valid. This command
warns you about bad directory or file ownership and permissions,
and it creates missing directories.
I n sta l l ing Pos t f ix 409
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Installing Postfix on Debian Linux

It’s easy to install Postfix on a Debian Linux distribution with the apt-get
command. Although Postfix versions may differ over time, the steps that you
need to perform for installation and integration on Debian Linux are likely
to remain the same for some time.

Installing Postfix

When you initially install your system with Debian, you can choose Postfix as a
package. However, if you don’t manually override the default choice for mail
system, exim will be enabled as the default MTA after the initial boot. You can
see whether Postfix is installed on your system with the dpkg command, which
will print out the installed version if present. Use it like this:

$ dpkg -l 'postfix*'
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed
|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err:
uppercase=bad)
||/ Name Version Description
+++-====================-====================-
==
ii postfix 1.1.11.0-3 A high-performance mail
transport agent
un postfix-dev <none> (no description available)
un postfix-doc <none> (no description available)
ii postfix-ldap 1.1.11.0-3 LDAP map support for Postfix
ii postfix-mysql 1.1.11.0-3 MYSQL map support for Postfix
ii postfix-pcre 1.1.11.0-3 PCRE map support for Postfix
un postfix-snap <none> (no description available)
un postfix-snap-dev <none> (no description available)
un postfix-snap-doc <none> (no description available)
un postfix-snap-ldap <none> (no description available)
un postfix-snap-mysql <none> (no description available)
un postfix-snap-pcre <none> (no description available)
un postfix-snap-tls <none> (no description available)
un postfix-tls <none> (no description available)

As you can see, Postfix 1.1.11.0-3 is installed. This system also has support
for ldap, mysql, and pcre maps. Not present are the postfix-tls package (the
package that supports TLS and SASL) or one of the more experimental
snapshot versions (postfix-snap).

If you’d like to try out a Postfix snapshot, run this command:

apt-get install postfix-snap
Reading Package Lists... Done
Building Dependency Tree... Done
410 Appendix A

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

The following packages will be REMOVED:
 postfix postfix-ldap postfix-mysql postfix-pcre
The following NEW packages will be installed:
 postfix-snap
0 packages upgraded, 1 newly installed, 4 to remove and 0 not upgraded.
Need to get 567kB of archives. After unpacking 47.1kB will be freed.
Do you want to continue? [Y/n]

Debian’s package management system removes any conflicting packages,
such as exim and Sendmail before installing the postfix-snap package.

Starting and Stopping Postfix

Debian policy dictates that system daemons ship with startup and shutdown
scripts that go into /etc/init.d. You can start Postfix manually with /etc/
init.d/postfix start and stop it with /etc/init.d/postfix stop.

Installing an Update

Installing updates and upgrades on Debian also goes through the apt-get
command. Here is an example of an update being performed:

apt-get update
Hit http://marillat.free.fr unstable/main Packages
Hit http://marillat.free.fr unstable/main Release
Hit http://smarden.org woody/unofficial Packages
Ign http://smarden.org woody/unofficial Release
Hit http://smarden.org woody/pape Packages
...
Reading Package Lists... Done
Building Dependency Tree... Done
apt-get upgrade
Reading Package Lists... Done
Building Dependency Tree... Done
0 packages upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

Upgrades leave the current configuration intact unless there are some
changes that are absolutely necessary, such as additions or changes to the
master.cf file and changes to the queue directory.

Building from a Debian Source Package

If you want to build Postfix from a Debian source code package, first retrieve
the source package:

apt-get source postfix
Reading Package Lists... Done
Building Dependency Tree... Done
I n sta l l ing Pos t f ix 411
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Need to get 2382kB of source archives.
Get:1 http://http.us.debian.org unstable/main postfix 2.1.3-1 (dsc) [832B]
Get:2 http://http.us.debian.org unstable/main postfix 2.1.3-1 (tar) [1972kB]
Get:3 http://http.us.debian.org unstable/main postfix 2.1.3-1 (diff) [409kB]
Fetched 1977kB in 9s (216kB/s)
dpkg-source: extracting postfix in postfix-2.1.3

After you get the source code on your system, you can modify debian/
rules or other files in the debian directory if you want to change the build in
any way. When you’re happy with your configuration, you can try to build
Postfix with these commands:

cd postfix-2.1.3
dpkg-buildpackage

Let’s say you try this, but you get some error messages, like these:

dpkg-buildpackage: source package is postfix
dpkg-buildpackage: source version is 2.1.3-1
dpkg-buildpackage: source maintainer is LaMont Jones <lamont@debian.org>
dpkg-buildpackage: host architecture is i386
dpkg-checkbuilddeps: Unmet build dependencies: libdb4.2-dev libgdbm-dev
libldap2-dev (>= 2.1) libmysqlclient10-dev libsasl2-dev postgresql-dev
dpkg-buildpackage: Build dependencies/conflicts unsatisfied; aborting.
dpkg-buildpackage: (Use -d flag to override.)

This means that you’re missing some packages required to build this
particular Postfix source package. Install the packages like this:

apt-get install libdb4.2-dev libgdbm-dev libldap2-dev libmysqlclient10-dev
libsasl2-dev postgresql-dev
...

Now, try it again. The build process should look like this:

dpkg-buildpackage
dpkg-buildpackage: source package is postfix
dpkg-buildpackage: source version is 2.1.3-1
dpkg-buildpackage: source maintainer is LaMont Jones <lamont@debian.org>
dpkg-buildpackage: host architecture is i386
 debian/rules clean
test -f debian/rules
dh_clean build
...
dpkg-deb: building package `postfix-doc' in `../postfix-doc_2.1.3-1_all.deb'.
 dpkg-genchanges
dpkg-genchanges: including full source code in upload
dpkg-buildpackage: full upload (original source is included)
412 Appendix A

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

So far, so good, but you might want to make sure that the packages are
there:

cd ..
ls -l *.deb
-rw-r--r-- 1 root src 97592 Jul 5 13:11 postfix-dev_2.1.3-1_all.deb
-rw-r--r-- 1 root src 662758 Jul 5 13:11 postfix-doc_2.1.3-1_all.deb
-rw-r--r-- 1 root src 33644 Jul 5 13:11 postfix-ldap_2.1.3-1_i386.deb
-rw-r--r-- 1 root src 29646 Jul 5 13:11 postfix-mysql_2.1.3-1_i386.deb
-rw-r--r-- 1 root src 29430 Jul 5 13:11 postfix-pcre_2.1.3-1_i386.deb
-rw-r--r-- 1 root src 29920 Jul 5 13:11 postfix-pgsql_2.1.3-1_i386.deb
-rw-r--r-- 1 root src 140110 Jul 5 13:11 postfix-tls_2.1.3-1_i386.deb
-rw-r--r-- 1 root src 763570 Jul 5 13:11 postfix_2.1.3-1_i386.deb

If everything looks good, install the packages with dpkg -i:

dpkg -i postfix_2.1.3-1_i386.deb

Installing Postfix on Red Hat Linux

You can install Postfix on a Red Hat Linux distribution with the RPM (Red
Hat Package Manager) system. As of Red Hat Linux version 7.3, you can even
install Postfix in parallel with Sendmail. You can choose which MTA to run
by switching between them using the alternatives system.

As with the Debian packages, although Postfix versions vary over time,
the steps required to install Postfix on a Red Hat Linux system are unlikely to
change for a long time.

Getting Postfix for Red Hat Linux

The Red Hat installer does not include Postfix by default when you install
Red Hat Linux, but you can add it at installation time. To check whether
Postfix is already on your system, query the package manager:

rpm -q postfix
postfix-2.1.1-3.fc1

Here, the package manager printed the currently installed version. If
you don’t have Postfix on your system, you’ll get something like this instead:

rpm -q postfix
package postfix is not installed

NOTE RPM only lists software that was installed using RPM. It does not list applications
that were compiled and installed from source code.
I n sta l l ing Pos t f ix 413
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Getting Postfix on CD

The most convenient way to get Postfix on your machine is to copy it from
the Red Hat CDs to your hard disk and install the RPM. Insert the disc into
your CD drive, and attach it to your system with a command such as this:

mount /dev/cdrom /mnt/cdrom/

Copy the Postfix RPM to your hard disk with a command like this:

rpm -ivh /mnt/cdrom/RedHat/RPMS/postfix-XX-xx.rpm

Downloading Postfix from the Red Hat Site

You can also download the Postfix package from the Red Hat FTP site or
one of its mirrors. You’ll find a list of the mirrors at http://www.redhat.com/
download/mirror.html. After downloading the package, tell the package
manager to retrieve the file and install it:

rpm -ivh ftp://USER:PASSWORD@HOST:PORT/path/to/postfix-XX-xx.rpm

Keep in mind that Red Hat does not update these packages at the same
rate as Postfix development advances. If you want to run a Postfix package
with the newest features but don’t want to build it from source code, have a
look at the RPMs that Simon J. Mudd maintains.

Downloading Simon J. Mudd’s Postfix RPMs

Simon’s RPMs are usually more current than the ones that ship with the
Red Hat distribution. You can download ready-made binaries for multiple
platforms, including Linux on Alpha, Sparc, and IBM S390 (mainframe), or
you can get the SRPM (RPM Source Package). The SRPMs provide support
for building binary packages with several options listed on the website.

You’ll find mirror sites for Simon’s RPMs and SRPMs at http://
postfix.wl0.org/en/mirrors/.

Downloading Postfix from rpmfind.net

Finally, you’ll find that rpmfind.net has RPMs for many distributions. Point
your browser at http://www.rpmfind.net, search for postfix, and download the
RPM appropriate to your needs.

Building an RPM from an SRPM

For security reasons, you shouldn’t build RPMs from SRPMs as root.
However, building them as a non-root user requires some preparation.
Specifically, RPM needs a certain directory structure to build RPMs from
source code or from SRPMS. By default, these directories are under /usr/src/
redhat.
414 Appendix A

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Setting Up the Directory Structure and Environment Variables

When you build an RPM as a regular user, you cannot use the default
location because only root is allowed to write to the default directories. Use
the following script to create the required directory structure in your home
directory, and set appropriate environment variables for RPM:

#!/bin/sh
rpmuser Build user rpmbuild environment
Author: Tuomo Soini <http://tis.foobar.fi>
#
create directories
for i in SOURCES SPECS BUILD SRPMS RPMS/i386 RPMS/i486 RPMS/i586 RPMS/i686 \
RPMS/athlon RPMS/noarch
do
 mkdir -p $HOME/rpm/$i
done
unset i
set environment variables
echo "%_topdir $HOME/rpm" >> $HOME/.rpmmacros
EOF

Let’s say that you create a user named rpmuser to build the RPM. After
running rpm_prepare.sh, the user’s home directory should have the following
directories and subdirectories:

$ tree
.
|-- rpm
| |-- BUILD
| |-- RPMS
| | |-- athlon
| | |-- i386
| | |-- i486
| | |-- i586
| | |-- i686
| | `-- noarch
| |-- SOURCES
| |-- SPECS
| `-- SRPMS
`-- rpm_prepare.sh
12 directories, 1 file

The script also sets the correct variables in the .rpmmacros file. You need
to set the environment every time you log in and out as the user who builds
the RPMs. Use the echo "%_topdir $HOME/rpm" >> $HOME/.rpmmacros command
to do this.

NOTE If you want to get into more detail on building RPMs, have a look at the RPM
HOWTO at http://rpm.org.
I n sta l l ing Pos t f ix 415
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Building and Installing an RPM

You can’t query source packages for the options to build into the binary.
The workaround is to install the source package with rpm -ivh postfix-XX-
xx.src.rpm into the new rpm build directory; then take a look at the script
that is used to build spec files:

$ less rpm/SOURCES/make-postfix.spec
...
The following external variables if set to 1 affect the behaviour
#
POSTFIX_MYSQL include support for MySQL's MySQL packages
POSTFIX_MYSQL_REDHAT include support for RedHat's mysql packages
POSTFIX_MYSQL_PATHS include support for locally installed mysql binary,
providing the colon seperated include and
library paths (/usr/include/mysql:/usr/lib/mysql)
POSTFIX_MYSQL_QUERY include support for writing full select statements
in mysql maps
POSTFIX_LDAP include support for openldap packages
POSTFIX_PCRE include support for pcre maps
POSTFIX_PGSQL include support for PostGres database
POSTFIX_SASL include support for SASL (1, 2 or 0 to disable)
POSTFIX_TLS include support for TLS
POSTFIX_IPV6 include support for IPv6
POSTFIX_VDA include support for Virtual Delivery Agent
...
To rebuild the spec file, set the appropriate environment
variables and do the following:
#
cd `rpm --eval '%{_sourcedir}'`
export POSTFIX_MYSQL=1 # for example
sh make-postfix.spec
cd `rpm --eval '%{_specdir}'`
rpmbuild -ba postfix.spec

Follow the instructions in the script to set the appropriate environment
variables and create your spec file. After you’re satisfied with your spec file,
build your RPM with this command:

$ rpmbuild -ba rpm/SPECS/postfix.spec

Upon successful completion, become root and install Postfix:

rpm -ivh /path/to/postfix-XX-xx.rpm

Now all you need to do is tell your Red Hat server to use Postfix as
its MTA.
416 Appendix A

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Switching to Postfix

The default MTA for Red Hat servers is Sendmail. You can change this by
using alternatives to switch to Postfix.

NOTE As of Red Hat 7.3, the distribution comes with a Debian port called alternatives. This
command makes it possible for several programs that perform identical or similar func-
tions to be installed on a single system at the same time.

Become root, invoke alternatives --config mta, and then specify Postfix as
the default MTA:

alternatives --config mta
There are 2 programs which provide 'mta'.
 Selection Command

*+ 1 /usr/sbin/sendmail.sendmail
 2 /usr/sbin/sendmail.postfix
Enter to keep the default[*], or type selection number: 2

As the default MTA, Postfix will automatically be started by Red Hat at
boot time. You can check the runlevels by running chkconfig:

chkconfig --list postfix
postfix 0:off 1:off 2:on 3:on 4:on 5:on 6:off

Removing the Sendmail MTA

After you install Postfix, there’s no reason to keep Sendmail hanging around,
so remove it like this:

rpm -e sendmail

Starting and Stopping Postfix in Red Hat Linux

Red Hat Linux RPMs usually ship with startup and shutdown scripts that go
in /etc/init.d. You can start Postfix with /etc/init.d/postfix start and stop it
with /etc/init.d/postfix stop.
I n sta l l ing Pos t f ix 417
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

B
T R O U B L E S H O O T I N G P O S T F I X

This chapter contains tips for several
different Postfix trouble areas, including

the system logger, configuration issues,
network oddities, and general system issues.

As with any kind of troubleshooting, when you’re
having trouble with Postfix, you need to have an idea
of where the problem is before you can fix it. This is
especially true for Postfix, which has several separate
subsystems.

Problems Starting Postfix and Viewing the Log

The most “obvious” reason for Postfix not to be processing your mail is that
Postfix might not even be running. Postfix must be running, even if you’re
only submitting mail using the sendmail command. The easiest way to find out
if Postfix is running is to run postfix start:

postfix start
postfix/postfix-script: starting the Postfix mail system
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

If you see this message, it means that Postfix wasn’t running, so the
command tried to start it up. However, if Postfix is already running, you’ll
get this message:

postfix start
postfix/postfix-script: fatal: the Postfix mail system is already running

When running this command, you should see similar messages in your
mail log, such as these:

Jul 5 22:49:29 mail postfix/postfix-script: starting the Postfix mail system
Jul 5 22:49:29 mail postfix/master[14835]: daemon started -- version 2.1.3

If you don’t see these messages, check your syslog configuration
immediately. You want to make sure that it logs mail.*; complete logs are
essential for any kind of comprehensive troubleshooting.

We recommend consolidating all syslog entries for the mail facility (or
whichever facility Postfix is configured for) into one log file. Some installa-
tions (such as the one in Debian GNU/Linux) split the log into multiple
files, but this makes reading the log very tedious. To set it up for easy viewing,
make sure your /etc/syslog.conf has an entry like this:

(- Log all the mail messages to one place.)
mail.* -/var/log/maillog

Let’s say that you see the messages on the command line and log, but
you still wonder if Postfix is actually running. Sometimes it pays to be
paranoid, because Postfix can start and crash immediately afterward if
there’s a serious problem. Use ps and grep to see if the Postfix component
daemons are really running. If they are running, the command execution
should look like this:

ps aux|grep postfix
root 5035 0.0 0.4 2476 1100 ? S 09:29 0:00 /usr/lib/postfix/master
postfix 5036 0.0 0.3 2404 936 ? S 09:29 0:00 pickup -l -t fifo -u -c
postfix 5037 0.0 0.3 2440 964 ? S 09:29 0:00 qmgr -l -n qmgr -t fifo -u -c

In the preceding output, you can see that the Postfix master daemon
is running as root, and the queue manager (qmgr) and pickup service are
running as the postfix user, so the system is up and running.

There are several reasons why Postfix might fail to start, but the most
common is that a Postfix daemon can’t find a shared library. To approach
this problem, first find the directories that Postfix uses with this command:

postconf | grep directory
command_directory = /usr/sbin
config_directory = /etc/postfix
420 Appendix B

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

daemon_directory = /usr/lib/postfix
mail_spool_directory = /var/mail
manpage_directory = /usr/local/man
process_id_directory = pid
program_directory = /usr/sbin
queue_directory = /var/spool/postfix
readme_directory = no
require_home_directory = no
sample_directory = /etc/postfix
tls_random_exchange_name = ${config_directory}/prng_exch

You’re looking for the path to daemon_directory. Find it and change to
that directory. Look at the contents:

cd /usr/lib/postfix
ls -l
total 384
-rwxr-xr-x 1 root root 16588 Sep 12 18:50 bounce
-rwxr-xr-x 1 root root 22684 Sep 12 18:50 cleanup
-rwxr-xr-x 1 root root 4248 Sep 12 18:50 error
-rwxr-xr-x 1 root root 10344 Sep 12 18:50 flush
-rwxr-xr-x 1 root root 20508 Sep 12 18:50 lmtp
-rwxr-xr-x 1 root root 31956 Sep 12 18:50 local
-rwxr-xr-x 1 root root 22388 Sep 12 18:50 master
-rwxr-xr-x 1 root root 33084 Sep 12 18:50 nqmgr
-rwxr-xr-x 1 root root 7248 Sep 12 18:50 pickup
-rwxr-xr-x 1 root root 10496 Sep 12 18:50 pipe
-rwxr-xr-x 1 root root 27424 Sep 12 18:50 qmgr
-rwxr-xr-x 1 root root 12160 Sep 12 18:50 qmqpd
-rwxr-xr-x 1 root root 7456 Sep 12 18:50 showq
-rwxr-xr-x 1 root root 25000 Sep 12 18:50 smtp
-rwxr-xr-x 1 root root 44712 Sep 12 18:50 smtpd
-rwxr-xr-x 1 root root 5612 Sep 12 18:50 spawn
-rwxr-xr-x 1 root root 10284 Sep 12 18:50 trivial-rewrite
-rwxr-xr-x 1 root root 10400 Sep 12 18:50 virtual

The Postfix daemons from the command column in the /etc/postfix/
master.cf file should be in this directory. You can inspect the shared library
dependencies of a single program with the ldd command (this works on
Linux, Solaris, and other common Unix variants; it may be a different
command on other systems):

ldd `postconf -h daemon_directory`/smtpd
 libpostfix-master.so.1 => /usr/lib/libpostfix-master.so.1 (0x4001d000)
 libpostfix-global.so.1 => /usr/lib/libpostfix-global.so.1 (0x40023000)
 libpostfix-dns.so.1 => /usr/lib/libpostfix-dns.so.1 (0x4003c000)
 libpostfix-util.so.1 => /usr/lib/libpostfix-util.so.1 (0x40040000)
 libdb3.so.3 => /usr/lib/libdb3.so.3 (0x4005d000)
 libnsl.so.1 => /lib/libnsl.so.1 (0x40105000)
T roubleshoot ing Pos t f ix 421
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

 libresolv.so.2 => /lib/libresolv.so.2 (0x40119000)
 libgdbm.so.1 => /usr/lib/libgdbm.so.1 (0x4012a000)
 libc.so.6 => /lib/libc.so.6 (0x40130000)
 libdl.so.2 => /lib/libdl.so.2 (0x4024b000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

The preceding output seems to indicate that everything is in order with
the smtpd daemon because every library dependency resolves to an actual file.
However, you might be unlucky enough to get this instead:

ldd `postconf -h daemon_directory`/smtpd
 libpostfix-master.so.1 => /usr/lib/libpostfix-master.so.1 (0x4001d000)
 libpostfix-global.so.1 => /usr/lib/libpostfix-global.so.1 (0x40023000)
 libpostfix-dns.so.1 => /usr/lib/libpostfix-dns.so.1 (0x4003c000)
 libpostfix-util.so.1 => /usr/lib/libpostfix-util.so.1 (0x40040000)
 libdb3.so.3 => not found
 libnsl.so.1 => /lib/libnsl.so.1 (0x4005d000)
 libresolv.so.2 => /lib/libresolv.so.2 (0x40071000)
 libgdbm.so.1 => /usr/lib/libgdbm.so.1 (0x40082000)
 libc.so.6 => /lib/libc.so.6 (0x40088000)
 libdl.so.2 => /lib/libdl.so.2 (0x401a3000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

In this case, libdb3.so.3 is missing. A program that cannot find all of its
shared libraries will not run. If you’re running Linux, and you installed a
Postfix package intended for another distribution (or even another version
of your distribution), it’s possible that you may discover this kind of problem
only at run time. If this is the case, you need to make a decision.

The best solution is to find a Postfix package that fits your distribution or
to compile Postfix from source code (see Appendix A). However, if you insist
on trying to work with what you have, you can try to find libdb3.so.3 like this:

find / -name libdb3.so.3
/usr/lib/libdb3.so.3

This command will probably take forever to finish (because it searches
your whole filesystem), but if you’re lucky enough to find the library, you can
add its directory path to the /etc/ld.so.conf file and run ldconfig. Of course,
this might invite library and symbol clashes. It’s almost never a good idea to
mess around with shared libraries unless you really know what you’re doing.

The find command may not even help, because the library may not
reside on your system. If this is the case, you might be able to find the
package that contains the library. However, if you just can’t seem to work it
out, you need to make a tough decision. If finding a Postfix package that
works seems out of the question, and compiling from source code seems
daunting, you might consider switching operating systems or distributions.
422 Appendix B

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Connecting to Postfix

If Postfix starts up fine but doesn’t behave as expected, see if your server
actually accepts connections on port 25. Connect to the SMTP port to find
out. Here’s how a successful connection plays out:

telnet localhost 25
220 mail.example.com ESMTP Postfix
QUIT
221 Bye

You may be able to connect to the loopback interface, but this doesn’t
mean that the entire Internet can. Let’s say that your machine is at
10.1.2.233. Try it again, this time connecting to that address:

telnet 10.1.2.233 25
220 mail.example.com ESMTP Postfix
QUIT
221 Bye

If this doesn’t work, the first thing to do is look in your main.cf file to see
if inet_interfaces has been set but excludes the IP address that you’re trying
to reach. The default is to listen on all interfaces.

Checking the Network

If the Postfix configuration seems fine, and Postfix has been restarted, but
you still can’t establish a connection, check the firewall or IP filtering
configuration of your network. It’s possible that your system blocks the port
by default. There are several places to look, because IP filtering can happen
through an operating system firewall script (for example, something that
calls iptables or ipf), or it can be performed outside of the machine by
firewall appliances and routers.

You have to check everywhere.
If your configuration seems correct so far, you need to check outside of

your local network. Your ISP can block incoming traffic to your port 25 (and,
incidentally, outgoing traffic to port 25 on another machine). If you find that
your ISP is refusing incoming traffic and it refuses to open up the port, your
only recourse is to change ISPs.

To see if an outsider can reach you, run this command:

telnet relay-test.mail-abuse.org

When you make this connection, relay-test.mail-abuse.org performs an
online relay test of the machine that made the connection. If your ISP (or
your own firewall) doesn’t block incoming connections to your box on port
25, then you should see quite a few messages in your log file.
T roubleshoot ing Pos t f ix 423
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

If you can’t connect to the preceding host, you may be having name
resolution problems. Test it with this command:

host relay-test.mail-abuse.org
relay-test.mail-abuse.org is an alias for cygnus.mail-abuse.org.
cygnus.mail-abuse.org has address 168.61.4.13

You should see an IP address, as shown in the preceding output. If
you don’t, you can’t resolve hostnames. Your /etc/resolv.conf or /etc/
nsswitch.conf file (or both) could be incorrect. It could be even worse; your
machine might not even be able to connect to the Internet. Try to ping
something. A successful test looks like this (use CTRL-C to stop the test):

ping 134.169.9.107
PING 134.169.9.107 (134.169.9.107): 56 data bytes
64 bytes from 134.169.9.107: icmp_seq=0 ttl=54 time=12.1 ms
64 bytes from 134.169.9.107: icmp_seq=1 ttl=54 time=12.1 ms
64 bytes from 134.169.9.107: icmp_seq=2 ttl=54 time=12.1 ms
--- 134.169.9.107 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 12.1/12.1/12.1 ms

Verifying the Listening Process
If Postfix is running and your network checks out, but your test connections
still don’t seem to work, see if Postfix is actually listening on port 25 with the
netstat command:

netstat -t -a | grep LISTEN
tcp 0 0 *:printer *:* LISTEN
tcp 0 0 localhost:domain *:* LISTEN
tcp 0 0 *:ssh *:* LISTEN
tcp 0 0 *:smtp *:* LISTEN

The preceding output shows that there are servers listening on the
printer, domain, SSH, and SMTP ports (check /etc/services for the
numerical counterparts of the names). You can see that something is
listening on port 25 (smtp). However, is this Postfix or something else?

The lsof command can tell you. Try the command that follows. If the
output includes sendmail listening on port 25, then your old sendmail binary
is still active:

lsof -i tcp:25
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
sendmail 25976 root 4u IPv4 228618 TCP mail.example.com:smtp
(LISTEN)
424 Appendix B

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Kill this process, and edit your system startup files so that it won’t come
back when you reboot (if at all possible, remove Sendmail from your system
entirely, because you’re supposed to run Postfix, remember?).

NOTE lsof is an extremely powerful tool that can show all open files (and the processes using
the files), but it is very dependent on your kernel. Make sure that your lsof is up-to-date
and matches your current kernel. An outdated lsof returns no output for Internet con-
nections at all. Run lsof -i if you’re not sure if it works.

If you’re using Postfix, the lsof output should include Postfix listening
on port 25 with the master daemon:

lsof -i tcp:25
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
master 26079 root 11u IPv4 228828 TCP *:smtp (LISTEN)

Getting Postfix to Use Your Configuration Settings

The main.cf file is long and can be difficult to read. A configuration option
can appear twice, or a typo can be hidden somewhere in a pile of comments.
Use the postconf command to display the configuration that Postfix uses. You
can see the difference just from line counts:

cd /etc/postfix
wc -l main.cf
postconf -n | wc -l

The output of postconf -n lists all parameter settings in main.cf, even
parameters that have the same value as the default. When changing main.cf,
you should verify your changes with postconf to see if Postfix sees them.

You might prefer to use the command postconf -e parameter=value to edit
the parameter in main.cf to value programmatically. This little trick allows you
to make changes to the Postfix configuration with shell scripts or cron jobs.

If you’re approaching a configuration issue, the postconf(5) manual
page is worth reading.

Reporting Postfix Problems

When you are first starting out with Postfix, it can be difficult to judge the
kind of information that should be reported to postfix-users@postfix.org.
The postfinger program (by Simon J. Mudd) extracts most of the relevant
information. To see what it does, mail the postfinger output, along with
your own questions, to yourself like this:

postfinger | /usr/sbin/sendmail youraddress@your.domain
T roubleshoot ing Pos t f ix 425
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Of course, this assumes that outgoing mail works on your system. When
all else fails, you can transfer the output to another system.

If your problem is related to SMTP-AUTH and thus SASL, use Patrick’s
script salsfinger! saslfinger is a bash utility script that seeks to help you
debug your SMTP AUTH setup. The saslfinger program gathers various
information about Cyrus SASL and Postfix from your system and sends it to
stdout. To see what it does, mail the saslfinger output, along with your own
questions, to yourself like this:

saslfinger -s | /usr/sbin/sendmail youraddress@your.domain

NOTE Postfinger has been part of the source distribution of Postfix since version 2.1. You can
also get it at ftp://ftp.wl0.org/sources/postfinger.

saslfinger is not part of the source distribution of Postfix. You can get it at
http://postfix.state-of-mind.de/patrick.koetter/saslfinger.

Getting More Logging Information

If you’re having trouble zeroing in on problems with specific pieces of your
Postfix installation, you can increase the amount of logging information on a
per-daemon basis. Do this by appending -v to the daemon configuration
entry in /etc/postfix/master.cf, as in this example for smtpd:

==
service type private unpriv chroot wakeup maxproc command + args
(yes) (yes) (yes) (never) (50)
==
smtp inet n - - - - smtpd -v

To make the change take effect, reload Postfix. The daemon should now
be very verbose when it does its work. If this still isn’t enough information,
you can even add another -v to the entry, and you’ll get even more output.
Make sure that you set it back to normal after you’re finished with
debugging, because verbose logging generates lots of lines in your log file,
hindering the overall system performance.

Client-Specific Logging

If you have a busy mail server, and increasing the log level for all clients will
bury you in output, you can also selectively increase logging for certain
clients with the debug_peer_list parameter. The following example shows how
to make the smptd logging more verbose for only the clients at 10.0.0.1 and
10.0.0.4:

debug_peer_list = 10.0.0.1, 10.0.0.4
426 Appendix B

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

You can specify one or more hosts, domains, addresses, and networks as
the value for this parameter. To make the change effective immediately, you
need to run the postfix reload command.

Logging and qmgr

One common problem is that log output from the qmgr process is missing.
The queue manager should emit log entries like this:

Aug 5 17:05:26 hostname postfix/qmgr[308]: A44F828C71:
from=<bamm@example.com>, size=153136, nrcpt=1

(queue active)

If you’re missing the log information, there are two possible causes:

libc problems
The libc implementation is broken (the syslog client does not reconnect
when the syslogd server is restarted). If this is the case, you should
upgrade your libc.

qmgr is running chrooted
The Postfix qmgr process is running chrooted (see master.cf), but there is
no syslog socket inside the chroot jail. See the syslog(8) manual page for
how to specify additional sockets and to specify one for the Postfix
chroot jail.

Other Configuration Errors

There are three errors that seem to happen all of the time:

Problems opening files
If you have a problem opening a file that seems to exist, see if it’s speci-
fied as a map in the configuration file (for example, if it starts with a
hash: prefix). If this is the case, run postmap on the plaintext file that con-
tains the map data to create an indexed version.

Also, verify that the permissions and ownership are correct. Don’t
forget executable access on the directory and all directories leading up
to it.

Permissions problems
If you have permissions problems, you can see whether Postfix can fix
them automatically with the post-install command:

/etc/postfix/post-install set-permissions upgrade-configuration

This command edits main.cf and master.cf as appropriate, in
addition to fixing permission problems, so you might want to make a
backup of your configuration before doing this.
T roubleshoot ing Pos t f ix 427
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Comments
Any line whose first non-space character is a hash (#) is a comment. Post-
fix doesn’t accept any other comment syntax. If postconf shows a parame-
ter that seems unfamiliar, you may have a misplaced # somewhere in your
configuration file.

Intricacies of the chroot Jail
All too often, the ability to run chrooted causes strange problems. A Postfix
installation never runs chrooted by default. There are just too many things
that can go wrong, so Wietse wisely chose not to chroot by default. Unfortu-
nately, other package maintainers sometimes go a little crazy with security
features.

Postfix daemons open all their maps before entering the jail. However,
system files that are needed for DNS lookups, other host related lookups,
network service lookup, timezone lookup, and other stuff that happens in
libraries that are linked into Postfix must be in the chroot jail. The package
maintainer needs to provide scripts that copy the necessary files from their
original locations in the filesystem into the jail. You typically need /etc/
resolv.conf and /etc/nsswitch.conf. The Postfix source distribution includes
an examples/chroot-setup subdirectory that contains scripts for setting up a
chroot jail under different operating systems. Matthias Andree wrote a LINUX2
script that sets things straight on Linux.

In theory, a package maintainer should include the mechanism to build
the chroot jail correctly on your particular operating system or distribution.
However, if you’re just starting out, you could be overwhelmed. Instead of
correcting your chroot jail, which you never knew existed at all, you should
probably un-chroot Postfix’s daemons until you get Postfix fully operational.
Edit /etc/postfix/master.cf, and look at each entry:

==
service type private unpriv chroot wakeup maxproc command + args
(yes) (yes) (yes) (never) (50)
==
smtp inet n - - - - smtpd

A hyphen in the chroot column indicates that smtpd is running chrooted.
Set this to n, and reload Postfix. In addition, remember that not every Postfix
daemon can run chrooted. Most of them can, but you’re likely to encounter
bizarre problems if you try to chroot the pipe, local, or virtual daemons.

You’ll find a lot more information about the chroot process in Chapter 20.

Solving Filesystem Problems

Most modern Unix flavors offer journaling filesystems, but this may not
protect you from occasional filesystem corruption, especially if you have
bad hardware or are using a newfangled filesystem that hasn’t been fully
428 Appendix B

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

debugged. If there are very strange things happening, such as directories
turning into files, consider an immediate reboot with a full forced fsck of
all disks with a series of commands like this:

touch /forcefsck
sync
reboot

Yes, you won’t have a pretty uptime number, and users will complain, but
you cannot fix filesystem problems without forcing fsck. We’ve successfully
annoyed many users on Red Hat and Debian this way.

Library Hell

Postfix makes extensive use of shared libraries, such as the BerkeleyDB
library. This particular library causes a lot of problems because there are so
many different versions with different on-disk data formats. All mail service
components, such as Postfix, POP-before-SMTP, dracd, postgrey, and other
tools that access and alter hash: or btree: type maps need to use compatible
BerkeleyDB libraries.

It gets even worse; on-disk formats for different versions of BerkeleyDB
are incompatible, meaning that an application may not be able to read a
map written by another application that uses a different version of
BerkeleyDB.

To check the libraries that Postfix uses, use the ldd command as
described in the section “Problems Starting Postfix and Viewing the Log”:

ldd `postconf -h daemon_directory`/smtpd
 libpcre.so.0 => /usr/local/lib/libpcre.so.0 (0x4001d000)
 libdb-3.1.so => /lib/libdb-3.1.so (0x40028000)
 libnsl.so.1 => /lib/libnsl.so.1 (0x400a1000)
 libresolv.so.2 => /lib/libresolv.so.2 (0x400b8000)
 libc.so.6 => /lib/libc.so.6 (0x400ca000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

In the preceding output, smtpd was linked against BerkeleyDB-3.1.x, so all
other programs that need to share the Postfix hash: and btree: maps must use
the same version of BerkeleyDB (or at least a version that has the same on-
disk format).

Daemon Inconsistencies

If an upgrade of Postfix fails, or if you do it in a nonstandard way (such as
installing from source over an RPM install instead of removing the old
version first), strange things can happen. You may be mixing daemons from
different versions of Postfix.
T roubleshoot ing Pos t f ix 429
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

To find out the version of Postfix that a daemon belongs to, use strings
on all daemon binaries, like this:

strings /usr/libexec/postfix/smtpd | grep 2003
2.0.13-20030706

20030706

strings /usr/libexec/postfix/cleanup | grep 2003
2.0.13-20030706
20030706

In this case, the versions (represented as dates) actually match. We’ve
used 2003 as the year in this example, but you’re using a version from
another year, grep for that year instead.

Fork Hell

One common problem that is caused by mixing daemons from incompatible
Postfix versions has to do with the tlsmgr daemon. The load appears to be
incredibly high and process IDs are increasing constantly, but nothing’s
running, and there isn’t even much mail traffic or queued mail.

You probably upgraded Postfix but kept an old tlsmgr and master.cf file
that runs tlsmgr.

The problem is that the new Postfix spawns the old tlsmgr, but this
daemon immediately exits with status 0 because it can’t work with the
new version of Postfix. Postfix logs nothing because an exit code of 0 is
normal. However, Postfix immediately respawns tlsmgr, and the process
repeats itself.

If this turns out to be the case, first comment out the tlsmgr line in
master.cf, then reload Postfix to resume normal services. Then you can
get a working upgrade with a compatible version of tlsmgr.

Stress-Testing Postfix

To find out how much mail traffic your installation can handle, you need
to perform some kind of stress testing. To put an adequate load on the
server, you need a fast mail generator. Postfix comes with a pair of testing
programs named smtp-source and smtp-sink for just this purpose. Here’s
how they work:

smtp-source

This program connects to a host on a TCP port (port 25 by default) and
sends one or more messages, either sequentially or in parallel. The pro-
gram speaks both SMTP (the default) or LMTP, and it is meant to aid in
measuring server performance.
430 Appendix B

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

smtp-sink

This test server listens on the named host (or address) and port.
It receives messages from the network and throws them away. You can
measure client and network performance with this program.

Let’s start with smtp-source to stress-test your Postfix installation. The
following example injects 100 total messages of size 5KB each in 20 parallel
sessions to a Postfix server running on localhost port 25. Because you’re also
interested in how much time this takes, use the time command:

$ time ./smtp-source -s 20 � -l 5120 � -m 100 � -c � \
 -f sender@example.com � -t recipient@example.com � localhost:25 �
100
real 0m4.294s
user 0m0.060s
sys 0m0.030s

� 20 parallel sessions
� 5KB message size
� 100 total messages
� Display a counter
� Envelope sender
� Envelope recipient
� Target SMTP server
In this example, injection took 4.294 seconds. You also want to know

how long actual delivery takes. Check your logs for this and to verify that
every last message that arrived for recipient@example.com was received.

Now let’s turn our attention to smtp-sink to find out how many messages
per second your server can handle from your horrible mass-mailing software.
Postfix has to process each outgoing message even if the server on the other
side throws it away (so you can’t use this to test the raw performance of your
mass mailer unless you connect your mailer directly to smtp-sink).

The following example sets up an SMTP listener on port 25 of localhost:

$./smtp-sink -c localhost:25 1000

Now you can run your client tests.
If you want to get an idea of how much overhead the network imposes,

and also run a controlled experiment to see what the theoretical maximum
throughput is for your mail server, you can make smtp-source and smtp-sink
talk to each other. Open two windows, and in the first, start up the dummy
server like this:

./smtp-sink -c localhost:25 1000
100
T roubleshoot ing Pos t f ix 431
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

With this in place, start throwing messages at this server with smtp-source
in the other window:

$ time ./smtp-source -s 20 -l 5120 -m 100 -c \
 -f sender@example.com -t recipient@example.com localhost:25
100

real 0m0.239s

user 0m0.000s

sys 0m0.040s

This output shows that smtp-sink is much faster at accepting messages
than Postfix. It took only 0.239 seconds to accept the messages, which is 18
times faster than the Postfix injection process. Now, wouldn’t it be nice if you
could throw away all incoming email like this?

Disk I/O

When you run your stress testing, you might encounter huge load averages
on your machine that seem out of place. Assuming that you don’t have any
content filtering in place, Postfix is I/O bound, so your I/O subsystem could
be saturated.

If the output of top shows a high load, such as 10.7, but none of your
processes are actually using the CPU, your load is probably coming from the
kernel using most of the CPU for I/O and not letting processes run. Further-
more, the reason that the kernel is doing so much I/O is that many more
processes have requested I/O operations (and are now waiting for them).

Linux 2.6 kernels support iowait status in the top command. To see if this
is the case on 2.4.x kernels (which don’t have a separate means of displaying
the iowait status), you can add a kernel module. Oliver Wellnitz wrote just
such a kernel module that you can download from ftp://ftp.ibr.cs.tu-bs.de/
os/linux/people/wellnitz/programming. This module calculates the load dif-
ferently and gives you an interface in the /proc filesystem that you can see,
like this:

cat /proc/loadavg-io
rq 0.30 0.23 0.14
io 0.08 0.31 0.27

In this example, rq is the number of processes that are in the state
TASK_RUNNING, while io is the number of processes that are in the state
TASK_UNINTERRUPTIBLE (waiting for I/O). The sum of those two is what the
kernel usually calls load.
432 Appendix B

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

If you’re having problems like this, you need faster disks, or even a
solution such as an SSD (a solid state disk—basically a RAM disk with a
battery backup) or a mirrored or striped RAID for the queue directory.
See the section “Incoming Queue Bottlenecks” in Chapter 22 for more
information.

One other solution that may or may not work is to remove the syn-
chronous updates for the queue directory. If you’re using an ext2 or ext3
filesystem, try this command:

chattr -R -S /var/spool/postfix/

This setting is actually the default with recent Postfix installations.

Too Many Connections

When you set up your mail server, you may try to tackle too many problems
at once. If you want a stable Postfix system, change one thing at a time.
This especially holds true if you want to use LDAP or SQL. Try proceeding
like this:

1. Build your system without LDAP maps (that is, use hash, btree or dbm
maps).

2. Use appropriate ldapsearch commands to extract all the necessary data
from your LDAP server. Use a scripting language, such as Perl or Python,
to reformat the data into the Postfix map file input.

3. When your Postfix is working correctly without LDAP, replace one map
at a time with a corresponding LDAP map. Test each LDAP map as user
postfix, like this:

$ postmap -q - ldap:mapname < keyfile

keyfile contains a list of addresses (keys) to be queried. If the map
returns sensible data, change a suitable _maps configuration parameter to
have Postfix use the LDAP map.

4. To consolidate the number of open lookup tables, share one open table
among multiple Postfix processes with the proxymap daemon, as described
in the section titled “Postfix Daemons” in Chapter 5.
T roubleshoot ing Pos t f ix 433
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

C
C I D R A N D S M T P S T A N D A R D S

R E F E R E N C E

This first section in this chapter explains
the Classless Inter Domain Routing (CIDR)

notation that Postfix can use in cidr: type
maps and for the mynetworks parameter. The second

section cites possible SMTP server response codes from
RFC 2821.

Subnets in CIDR Notation

In CIDR notation, an IP address is represented as A.B.C.D/n, where n is
called the IP prefix or network prefix. The IP prefix identifies the number of
significant bits used to identify a network. For example, 192.9.205.22 /18
means the first 18 bits are used to represent the network and the remaining
14 bits are used to identify hosts. Common prefixes are 8, 16, 24, and 32.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Even if you claim to have been fooling around with computers since you
were 10, and to have been one of the first to get online (back when the word
ARPANET meant something), you may still have trouble remembering
subnet masks in CIDR notation. Table C-1 lists the subnet masks and their
equivalents.

Table C-1: Subnets in CIDR Notation

CIDR Prefix Netmask Binary Value Number of Networks

/1 128.0.0.0 10000000000000000000000000000000 128 Class A domains

/2 192.0.0.0 11000000000000000000000000000000 64 Class A domains

/3 224.0.0.0 11100000000000000000000000000000 32 Class A domains

/4 240.0.0.0 11110000000000000000000000000000 16 Class A domains

/5 248.0.0.0 11111000000000000000000000000000 8 Class A domains

/6 252.0.0.0 11111100000000000000000000000000 4 Class A domains

/7 254.0.0.0 11111110000000000000000000000000 2 Class A domains

/8 255.0.0.0 11111111000000000000000000000000 1 Class A domain

/9 255.128.0.0 11111111100000000000000000000000 128 Class B domains

/10 255.192.0.0 11111111110000000000000000000000 64 Class B domains

/11 255.224.0.0 11111111111000000000000000000000 32 Class B domains

/12 255.240.0.0 11111111111100000000000000000000 16 Class B domains

/13 255.248.0.0 11111111111110000000000000000000 8 Class B domains

/14 255.252.0.0 11111111111111000000000000000000 4 Class B domains

/15 255.254.0.0 11111111111111100000000000000000 2 Class B domains

/16 255.255.0.0 11111111111111110000000000000000 1 Class B domain

/17 255.255.128.0 11111111111111111000000000000000 128 Class C domains

/18 255.255.192.0 11111111111111111100000000000000 64 Class C domains

/19 255.255.224.0 11111111111111111110000000000000 32 Class C domains

/20 255.255.240.0 11111111111111111111000000000000 16 Class C domains

/21 255.255.248.0 11111111111111111111100000000000 8 Class C domains

/22 255.255.252.0 11111111111111111111110000000000 4 Class C domains

/23 255.255.254.0 11111111111111111111111000000000 2 Class C domains

/24 255.255.255.0 11111111111111111111111100000000 1 Class C domain

/25 255.255.255.128 11111111111111111111111110000000 128 hosts

/26 255.255.255.192 11111111111111111111111111000000 64 hosts

/27 255.255.255.224 11111111111111111111111111100000 32 hosts

/28 255.255.255.240 11111111111111111111111111110000 16 hosts

/29 255.255.255.248 11111111111111111111111111111000 8 hosts

/30 255.255.255.252 11111111111111111111111111111100 4 hosts

/31 255.255.255.254 11111111111111111111111111111110 2 hosts

/32 255.255.255.255 11111111111111111111111111111111 1 host
436 Appendix C

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

Server Response Codes

The following server response codes can help you to understand log
messages or to set response codes that differ from Postfix’s default settings.
The codes are excerpts from RFC 2821, section 4.2.

4.2.1 Reply Code Severities and Theory

The three digits of the reply each have a special significance. The
first digit denotes whether the response is good, bad or incomplete. An
unsophisticated SMTP client, or one that receives an unexpected code,
will be able to determine its next action (proceed as planned, redo,
retrench, etc.) by examining this first digit. An SMTP client that wants
to know approximately what kind of error occurred (e.g., mail system
error, command syntax error) may examine the second digit. The third
digit and any supplemental information that may be present is reserved
for the finest gradation of information.

There are five values for the first digit of the reply code:

1yz Positive Preliminary reply
The command has been accepted, but the requested action is being
held in abeyance, pending confirmation of the information in this
reply. The SMTP client should send another command specifying
whether to continue or abort the action.

NOTE Unextended SMTP does not have any commands that allow this type of reply, so it does
not have continue or abort commands.

2yz Positive Completion reply
The requested action has been successfully completed. A new request
may be initiated.

3yz Positive Intermediate reply
The command has been accepted, but the requested action is being
held in abeyance, pending receipt of further information. The SMTP
client should send another command specifying this information. This
reply is used in command sequence groups (i.e., in DATA).

4yz Transient Negative Completion reply
The command was not accepted, and the requested action did not
occur. However, the error condition is temporary and the action may
be requested again. The sender should return to the beginning of the
command sequence (if any). It is difficult to assign a meaning to
“transient” when two different sites (receiver- and sender-SMTP
agents) must agree on the interpretation. Each reply in this cate-
gory might have a different time value, but the SMTP client is
encouraged to try again. A rule of thumb to determine whether a
reply fits into the 4yz or the 5yz category (see below) is that
replies are 4yz if they can be successful if repeated without any
change in command form or in properties of the sender or receiver
(that is, the command is repeated identically and the receiver does
not put up a new implementation.)
CIDR and SMTP Standards Reference 437
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

5yz Permanent Negative Completion reply
The command was not accepted and the requested action did not occur.
The SMTP client is discouraged from repeating the exact request (in
the same sequence). Even some “permanent” error conditions can be
corrected, so the human user may want to direct the SMTP client to
reinitiate the command sequence by direct action at some point in
the future (e.g., after the spelling has been changed, or the user
has altered the account status).

[. . .]

4.2.3. Reply Codes in Numeric Order

211 System status, or system help reply

214 Help message
(Information on how to use the receiver or the meaning of a partic-
ular non-standard command; this reply is useful only to the human
user)

220 <domain> Service ready

221 <domain> Service closing transmission channel

250 Requested mail action okay, completed

251 User not local; will forward to <forward-path>
(See section 3.4) [ann.: in RFC 2821]

252 Cannot VRFY user, but will accept message and attempt delivery
(See section 3.5.3) [ann.: in RFC 2821]

354 Start mail input; end with <CRLF>.<CRLF>

421 <domain> Service not available, closing transmission channel
(This may be a reply to any command if the service knows it must
shut down)

450 Requested mail action not taken: mailbox unavailable
(e.g., mailbox busy)

451 Requested action aborted: local error in processing

452 Requested action not taken: insufficient system storage

500 Syntax error, command unrecognized
(This may include errors such as command line too long)

501 Syntax error in parameters or arguments

502 Command not implemented (see section 4.2.4) [ann.: in RFC 2821]

503 Bad sequence of commands

504 Command parameter not implemented

550 Requested action not taken: mailbox unavailable
(e.g., mailbox not found, no access, or command rejected for policy
reasons)

551 User not local; please try <forward-path>
(See section 3.4) [ann.: in RFC 2821]
438 Appendix C

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

552 Requested mail action aborted: exceeded storage allocation

553 Requested action not taken: mailbox name not allowed
(e.g., mailbox syntax incorrect)

554 Transaction failed (Or, in the case of a connection-opening
response, “No SMTP service here”)

Copyright (C) The Internet Society (2001)

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it or
assist in its implementation may be prepared, copied, published and dis-
tributed, in whole or in part, without restriction of any kind, provided
that the above copyright notice and this paragraph are included on all
such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or ref-
erences to the Internet Society or other Internet organizations, except
as needed for the purpose of developing Internet standards in which case
the procedures for copyrights defined in the Internet Standards process
must be followed, or as required to translate it into languages other
than English.
CIDR and SMTP Standards Reference 439
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

G L O S S A R Y

A

A record In DNS, a record that maps a hostname to an IP address.

Active Directory Microsoft’s directory service. It is a centralized system to
distribute data related to users, networks, and security settings. Think of it as
LDAP with Kerberos, but with value-added non-conformance to standards.

Active Directory Service Interface (ADSI) An API that enables program-
mers of scripts or C/C++ programs to easily query and manipulate the
objects in the Active Directory.

attachment A file within an email message.

B

base64 encoding A data-encoding scheme that converts binary-encoded
data to printable ASCII characters. It is one of the MIME content transfer
encodings used in Internet email.

blind carbon copy An email header, noted as bcc:, that lists addresses to
which a message should be sent, not seen by the recipients. See also carbon
copy.

Boolean A variable holding a truth value, either true or false.

C

carbon copy An email header, noted as cc:, that lists secondary addresses to
which a message should be sent, visible to all recipients.

certificate A file that holds information to prove the identity of a person or
machine.

certification authority (CA) An authority that issues and manages digital
identities.

chroot The chroot() system call specifies a new root directory for a process.
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

CNAME record In DNS, a CNAME record, also known as a canonical
name, is a record that expands an alias. Depending on the DNS tree involved
(forward or in-addr.arpa), a CNAME can refer to an A record or to a PTR
record. See also A record and PTR record.

comment A note inside configuration files or source code that provides
helpful information about bits of configuration or code.

D

daemon A process that runs and performs its services in the background of
a computer.

DCF-77 An encoded time signal sent on the long-wave frequency 77.5 kHz.
The Physikalisch-Technische Bundesanstalt (http://www.ptb.de) in Germany
is the official source of this signal, which distributes the correct time for Ger-
many. Anyone may use this signal to synchronize devices to the official time.

demilitarized zone A neutral zone between private and public networks
that gives users from the public network controlled access to data provided
by the private network. See also firewall.

dial-up user list (DUL) An RBL-style blacklist that contains IP addresses of
known dial-up pools.

dictionary attack Refers to obtaining a recipient’s address by running
through a list of likely possibilities, often a list of words from a dictionary.

distribution An operating system set comprising a kernel, an operating sys-
tem, assorted free software, and sometimes proprietary software. The term is
most commonly used with respect to Linux.

domain A group of computers whose hostnames share a common suffix,
the domain name. See also top-level domain, domain name service (DNS).

domain name service (DNS) A general purpose, distributed, and replicated
data query service chiefly used on the Internet for translating hostnames into
Internet addresses.

dynamic IP address An IP address that is assigned to a computer’s network
interface from a pool of IP addresses upon connecting to a network.

dynamic linking A program execution system where the operating system
loads and links library code for an executable when the executable runs. See
also library.

E

Extended Simple Mail Transfer Protocol (ESMTP) A set of extensions to
the original SMTP protocol that enables a mail client to ask a mail server
about its capabilities.

external application An application outside of Postfix, such as a virus scan-
ner or a script.
442 Glossary

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

F

false positive Occurs when a test incorrectly reports a condition as true.

firewall A gateway server that controls inbound and outbound connections
between a private and public network. It can also provide controlled access
from the outside to a demilitarized zone. See also demilitarized zone.

first-in, first-out (FIFO) A system of handling requests or data. A queue is a
FIFO; whatever goes in first is processed first. The idea is always to handle the
oldest request first.

fully qualified domain name (FQDN) The full name of a system, consisting
of its local hostname and its domain name, including a top-level domain. For
example, mail is a hostname and mail.example.com is an FQDN. An FQDN
should be sufficient to determine a unique Internet address for any host
on the Internet. This process (called name resolution) uses the domain name
service (DNS).

G

groupware A highly integrated application that consists of several programs
that provide various services, such as email, time planning, address database,
and news services.

H

hexadecimal A base-16 numeral system, usually written using the symbols
0–9 and A–F or a–f.

I

include file Include (header) files contain function prototypes, constant
definitions, and macros necessary for compiling software. Most include files
correspond to a library. See also library.

Internet Assigned Number Authority (IANA) The central registry for vari-
ous assigned numbers in the Internet Protocol, such as ports, protocols,
enterprise numbers, options, codes, and types.

Internet Message Access Protocol (IMAP) A protocol allowing a client to
access and manipulate email messages on a server. It permits manipulation
of remote message folders (mailboxes) in a way that is functionally equiva-
lent to local mailboxes.

IMAP includes operations for creating, deleting, and renaming
mailboxes; checking for new messages; permanently removing messages;
searching; and selective fetching of message attributes, texts, and portions
thereof. It does not specify a means of posting mail; this function is handled
by a mail transfer protocol such as SMTP.
Glossa ry 443
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

interprocess communication (IPC) An application programming interface
(API) and underlying support that allows several running processes to talk to
each other.

K

kernel The foundation of an operating system. A kernel is responsible for
providing various computer programs with secure access to the machine’s
hardware.

L

left-hand side (LHS) In a map with two columns, the left-hand side is the
left column. In Postfix, the left-hand side of an entry is called the key.

library A collection of precompiled machine code that can be linked to
when compiling programs. Libraries serve as helper code for other pro-
grams. See also include file.

Lightweight Directory Access Protocol (LDAP) A protocol for accessing
online directory services. It defines a relatively simple protocol for updating
and searching directories running over TCP/IP.

Local Mail Transfer Protocol (LMTP) A derivative of SMTP, the Simple
Mail Transfer Protocol. See also Simple Mail Transfer Protocol (SMTP).

M

macro A short instruction that expands into a set of larger instructions.

mail exchange record (MX record) A DNS resource record indicating the
host that handles email for a hostname.

mail user agent (MUA) A program that allows a user to compose and read
email messages. The MUA provides the interface between the user and the
message transfer agent (MTA). Outgoing mail is eventually transmitted to an
MTA for delivery, and incoming messages are picked up from where the mail
delivery agent (MDA) left them.

malicious software (malware) A program or a file that is harmful to a
computer.

man-in-the-middle attack Describes an attack where an attacker sits in
between the communication of two parties. The attacker is able to read and
modify the messages sent between the two parties without the parties know-
ing that the link between them has been compromised.

map A map in Postfix is a table of two columns, where each line represents
an entry that associates a key with a value. The key and value are sometimes
referred to as the left-hand side and the right-hand side. See also left-hand
side (LHS), right-hand side (RHS).
444 Glossary

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

mbox format A file format used for holding email messages. All messages
are concatenated in one file, separated by a From line at the beginning of
each message and followed by a blank line at the end.

message transport agent (MTA) A program responsible for receiving
incoming email and/or delivering it to individual users. It may also transport
nonlocal messages to their remote destinations. See also Internet Message
Access Protocol (IMAP), Post Office Protocol (POP), and Simple Mail Trans-
fer Protocol (SMTP).

Multipurpose Internet Mail Extensions (MIME) An Internet standard for
the format of email.

mumble A word often used on the Postfix mailing list to describe a set of
parameters that share the same name, but differ in some part. For example,
smtpd_mumble_restrictions subsumes all smtpd restrictions such as smtpd_client_
restrictions, smtpd_sender_restrictions, smtpd_recipient_restrictions, smtpd_
data_restrictions, and so on.

N

name resolution The process of resolving a hostname to an IP address.

network address translation (NAT) Sometimes known as Network masquer-
ading or IP masquerading, network address translation is a technique used in
computer networking for allowing a private network to access a public net-
work through a single point. It relies on rewriting IP addresses of network
packets passing through a router or firewall.

Network Time Protocol (NTP) An Internet protocol used to synchronize
the clocks of computers to some time reference. NTP is an Internet standard
protocol originally developed by Professor David L. Mills at the University of
Delaware.

O

open proxy A misconfigured proxy that processes connection requests
from third parties. Open proxies can be used to submit mail to servers by
means of that open proxy.

open relay An SMTP server that forwards mail between third parties. A
third-party message relay occurs when a mail server processes a mail message
where neither the sender nor the recipient is a local user.

P

patch A (temporary) addition to a piece of code, usually as a remedy to an
existing bug or to provide a new feature.
Glossa ry 445
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

port A (network) port is an interface for communicating with a computer
program over a network. Network ports are usually numbered, and a net-
work implementation, such as TCP or UDP, attaches a port number to data it
sends; the receiving implementation uses the attached port number to figure
out which computer program to send the data to.

Post Office Protocol (POP) A protocol for retrieving email from a server.
Messages are downloaded immediately from the server. See also Internet Mes-
sage Access Protocol (IMAP), Simple Mail Transfer Protocol (SMTP).

Pretty Good Privacy (PGP) A computer program that provides crypto-
graphic privacy and authentication.

proxy A server that acts on behalf of another server, typically in a transpar-
ent manner.

PTR record In DNS, a record that maps an IP address to a hostname.

Q

Quick Mail Queuing Protocol (QMQP) QMQP provides a centralized mail
queue within a cluster of hosts. One central server runs a message transfer
agent. The other hosts do not have their own mail queues; they give each
new message to the central server through QMQP. QMQP was invented by
D.J. Bernstein, also the inventor of qmail.

R

redundant array of independent disks (RAID) A method of storing data
on multiple disks. All disks in a RAID system appear to the operating system
as a single disk. A RAID system can balance I/O operations, thus increasing
performance.

regular expression A regular expression (abbreviated as regexp, regex, or
regxp) is an advanced pattern-matching system that is actually the result of a
nondeterministic finite-state automaton that accepts a particular language.

Request for Comments (RFC) A formal document from the Internet Engi-
neering Task Force (IETF). RFCs are either informational or meant to
become Internet standards and provide for interoperability among networks
and applications. Although one can’t alter an RFC, it is possible to write a
new RFC that supersedes an existing RFC.

right-hand side (RHS) In a map with two columns, the right hand side is
the last column. In Postfix, the right hand side of an entry is called the value.

root See superuser.

router A computer networking device that determines the next network
point to which a data packet should be forwarded on its way toward its
destination.
446 Glossary

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

S

Secure Multipurpose Internet Mail Extensions (S/MIME) An Internet stan-
dard for a secure method of sending email. It describes how encryption
information and a digital certificate can be included as part of the message
body.

Secure Socket Layer (SSL) See Transport Layer Security (TLS).

Sendmail One of the oldest and most widely used MTAs on the Internet.

Simple Authentication and Security Layer (SASL) An authentication frame-
work defined in RFC 2222 (ftp://ftp.rfc-editor.org/in-notes/rfc2222.txt) for
applications that use connections based on protocols such as IMAP, LDAP,
or SMTP. It provides authentication services to those applications and can
look up user data in numerous data backends.

Simple Mail Transfer Protocol (SMTP) A protocol defined in STD 10, RFC
821, used to transfer email between computers. See http://www.faqs.org/rfcs/
std/std-index.html.

Structured Query Language (SQL) A programming language used for
interacting with databases.

superuser Aka root, the superuser is the user who has all rights and
permissions in all modes (single-user or multi-user) on a Unix-style
operating system.

T

tarpit A service on a computer system (usually a server) that delays incom-
ing connections for as long as possible. A tarpit makes network abuses, such
as spamming or dictionary attacks, less effective because it takes the attacker
too long to process the attack. The name is an analogy to a tar pit, in which
animals can get bogged down and slowly sink under the surface. Also known
by the German name teergrube.

telnet A network protocol used on the Internet. It is also the name of a pro-
gram used to invoke a telnet session to a remote host.

top-level domain The last and most significant component of an Internet
fully qualified domain name, the part after the last dot. For example, the
host mail.example.com is in the com top-level domain (which is for commercial
bodies).

Transport Layer Security (TLS) TLS (formerly SSL) is a protocol for
encrypting the communication layer between a client and a server. It should
not be confused with email encryption technologies such as S/MIME and
PGP, which encrypt content but not communication.
Glossa ry 447
No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

U

Unix An operating system that originated at Bell Labs in 1969.

Unix domain socket Unix domain sockets (the correct standard POSIX
term is POSIX Local IPC Sockets) function primarily as a means for interpro-
cess communication and are therefore also called IPC sockets. These con-
nections are from the local computer to itself; they are not connections
actually transmitted over a physical network.

Unix-to-Unix Copy Protocol (UUCP) A Unix utility program and protocol
that allows one Unix system to send files to another via a serial line, which
may be a cable going directly from one machine’s serial port to another’s,
or may involve a modem at each end of a telephone line.

Software is also available to allow UUCP to work over Ethernet, though
there are better alternatives, such as scp for file transfer, SMTP for email, and
NNTP for news.

unsolicited commercial email (UCE) UCE is a more precise expression for
spam. UCE must not be mistaken for commercial email that recipients sub-
scribed for at their own will.

W

whitespace A whitespace character is any character that takes up space but
does not show up on a display.
448 Glossary

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

I N D E X

Special Characters
%d substitution, 329
%p macro, 238
%r macro, 238
%s substitution, 329
%u macro, 238
%u substitution, 329
%v macro, 238
*_checks parameter, 56
+ delimiter, 193

A
-a getpwent parameter, 234
A records, 13–14, 18, 31, 441
ACL (access control list), 356
Active Directory, exporting valid

recipients from, 176–77
Active Directory Service Interface

(ADSI), 441
active queue, 42, 397–99
additional_conditions parameter, 211
address rewriting, 131–32
address_verify_map parameter, 105
address_verify_negative_cache parameter,

105
address_verify_sender parameter, 104
ADSI (Active Directory Service

Interface), 441
aliases

creating, 26
defining, 319

allow_percent_hack restriction, 72
alterMIME program, 143–44
alternatives port, 417
amavisd-new, 149–50, 154, 164

configuring Postfix to use, 157–60
configuring Postfix to use with

smtpd_proxy_filter, 164–65
installing, 149–50

optimizing performance, 154–57
testing, 150–54, 160–63

ANONYMOUS mechanism, 223
antispam measures, 94–108

bogus nameserver records, 95–97
bounces to multiple recipients, 97–98
overview, 94
preventing obvious forgeries, 94–95
restriction process order, 107–8
using DNS blacklists, 98–103
verifying sender, 103–7

anvil daemon, 41, 381
anvil log interval, changing, 381–82
apt-get command, 411
ASCII, 65
asynchronous bounce queue congestion

inequality, 399–401
at service, 20
attachments, 65–68
AUTH for Postfix SMTP client, 260–62
AUTH parameter, 255
authldap.schema, 316–19
authmodulelist parameter, 344
auxiliary plug-ins (auxprop), 236–41

overview, 236
using sasldb2 plug-in, 236–38
using sql plug-in, 238–41

AUXLIBS environment variable, 325, 408
auxprop service, 225, 237, 253

B
base64 MIME encoding, 65, 441
base64 string, 255–56
BCC (blind carbon copy), 441
BerkeleyDB library, 429
BIND distribution, 12
bind parameter, 357
bind_dn parameter, 357
bind_pw parameter, 357

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

450 INDEX

blacklisted networks, blocking messages
from, 391

blind carbon copy (BCC), 441
body filtering, 73
body of messages, 64–65, 126–27
body_checks parameter, 63, 113, 126–27
bogus nameserver records, 95–97
both choice option, 353
bottlenecks, finding, 392–402

active queue bottlenecks, 397–99
asynchronous bounce queue

congestion inequality, 399–401
deferred queue bottlenecks, 396–97
incoming queue bottlenecks, 393–95
maildrop queue bottlenecks, 395–96
overview, 392–93
using fallback relays, 401–2

bounce daemon, 37
bounces to multiple recipients, 97–98
broken_sasl_auth_clients parameter, 252
building mail server, 313–67

adding authentication to servers,
350–56

applying ldapdb patch, 351–52
configuring ldapdb, 352–54
overview, 350–51
testing ldapdb plug-in, 354–56

conceptual overview, 314
configuring Courier IMAP, 343–48

configuring authentication
backend, 344–45

configuring Courier IMAP to use
its LDAP authentication
daemon, 344

creating IMAP certificate, 345–46
installing Courier IMAP, 343–44
overview, 343
testing IMAP server, 346–48

configuring Courier maildrop, 333–43
configuring Courier maildrop, 335
creating Maildir mailboxes, 335–37
creating mail filter, 337–39
installing Courier maildrop, 334–35
overview, 333
preparing Maildir quotas, 339
preparing your system, 334
testing Courier maildrop, 339–43

configuring Cyrus SASL, 321
configuring OpenLDAP, 322–24
configuring Postfix and LDAP, 325–33

adding LDAP queries for local
recipients, 327–30

creating LDAP configuration
directory, 327

delegating transport to Courier
maildrop, 332–33

LDAP lookups, 326–27
overview, 325–26
querying LDAP for mail aliases,

330–32
encrypting LDAP queries, 358–65

configuring slapd to offer TLS, 360
configuring TLS for LDAP clients,

360–62
configuring TLS for OpenLDAP,

359–60
overview, 358
testing TLS, 362–65

enforcing valid sender addresses,
365–67

expanding directory, 349–50
LDAP directory structure, 315–21

adding attributes for remaining
servers, 320–21

branch design, 317
building user objects, 318–19
choosing attributes in Postfix

schema, 316–17
creating list objects, 319–20
overview, 315–16

protecting directory data, 356–58

C
c_rehash program, 305
c_rehash utility, 360
CA (certification authority), 268–77, 441
ca-bundle.crt file, 285
cacert.pem, 272–73
cakey.pem, 272–73
cat command, 286
catchall address, 192
Cc header field, 64
CCARGS environment variable, 325, 408
certificates, 270–78

creating CA certificate, 272–73
creating server’s certificate, 276–77
distributing and installing CA

certificate, 273–76
overview, 271
preparing certificates for use in

Postfix, 278
required information, 271–72
signing server’s certificate, 277–78

certification authority (CA), 268–77, 441
chatr command, 374
check parameter, 409
check_client_access parameter, 184

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

INDEX 451

check_helo_access option, 95
check_recipient_access option, 94
check_recipient_access parameter, 92–93
check_sender_access option, 102
check_sender_mx_access option, 97, 107
checks, 111–27

applying to separate message sections,
112–14

checking body, 126–27
checking for checks support, 118
checking headers, 120–24

in attached messages, 125
discarding messages, 122–23
filtering messages, 123–24
holding delivery, 122
overview, 120
redirecting messages, 123
rejecting messages, 121
removing headers, 122

checking MIME headers, 124–25
how checks work, 112
overview, 111–12, 117–18
safely implementing header or body

filtering, 119–20
when Postfix applies, 114

chkconfig command, 417
chmod command, 262
chown command, 262
chroot environment, 369–76

how chroot affects Postfix, 371–75
chroot libraries, configuration files,

and other files, 374–75
chrooted daemons, 372–74
helper scripts for chroot, 372
overview, 371–72

overcoming chroot restrictions, 375–76
overview, 369–70

chroot jail, 369–70
how it works, 370–71

CIDR (Classless Inter-Domain Routing),
27–28, 435

CIDR SMTP standards reference, 435–39
overview, 435
server response codes, 437–39
subnets in CIDR notation, 435–36

class option, 27
Classless Inter-Domain Routing (CIDR),

27–28, 435
cleanup daemon, 39, 41, 114
client_connection_rate_time_unit

parameter, 382
client_connection_status_update_time

parameter, 381

client-side SMTP authentication. See
SMTP authentication, client-side

client-side Transport Layer Security.
See Transport Layer Security,
client-side

client-specific logging, 426–27
CNAME record, 15
command-line utilities, 48–52

overview, 48
postalias, 48
postcat, 48
postdrop, 49
postfix, 48
postkick, 49–50
postlock, 50
postlog, 50
postmap, 48–49
postqueue, 50–51
postsuper, 51–52

Comprehensive Perl Archive Network
(CPAN), 149–50

Compress::Zlib module, 150
configure command, 282, 343
./configure --help command, 233
CONNECT statement, 212
connectivity, 8–9
content control, 53–54
content filters. See external content filters
content types, 66–67
content_filter, 132–37

basics of configuring, 135–37
filter-delegation daemons, 134–35
overview, 132–34

content_filter directive, 122
content_filter parameter, 145, 157–60
Content-type header field, 64
core.schema package, 316
corrupt queue, 42
Courier authentication daemon, 344
Courier IMAP, 314–19, 343–48, 362

configuring authentication backend,
344–45

configuring to use its LDAP
authentication daemon, 344

creating IMAP certificate, 345–46
installing, 343–44
overview, 343
testing IMAP server, 346–48

Courier maildrop, 314–15, 333–43
configuring, 335
creating Maildir mailboxes, 335–37
creating mail filter, 337–39
installing, 334–35

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

452 INDEX

Courier maildrop, continued
overview, 333
preparing Maildir quotas, 339
preparing your system, 334
testing, 339–43

CourierMailAccount object, 318
CourierMailAlias object, 318–19
CPAN (Comprehensive Perl Archive

Network), 149–50
CRAM-MD5 mechanism, 223–24
creating aliases query, 211–12
creating recipient query, 211
crle command, 282
cron service, 20
cryptographic signature, 303
csvde export command, 181
csvde tool, 176
customizable restrictions, 72–73
Cyrus IMAP project, 40, 351
Cyrus SASL, 217, 229–45, 321, 351, 356

architecture and configuration of,
218–21

configuring, 229–31, 321
configuring auxiliary plug-ins

(auxprop), 236–41
overview, 236
using sasldb2 plug-in, 236–38
using sql plug-in, 238–41

configuring logging and log level, 231
configuring saslauthd, 232–36
creating Postfix application

configuration file, 230–31
installing, 229–30
overview, 229
selecting SMTP AUTH mechanisms,

232
setting password-verification service,

231–32
testing authentication, 242–45

creating server configuration file,
243

overview, 242
starting saslauthd, 242–43
starting server program, 243
testing with client program, 243–45

D

D flag, 332
-d option, 51
daemons, 37–42
DATA command, 58, 71, 139

database-driven virtual mailbox domains,
203–15

building Postfix to support MySQL
maps, 205

checking Postfix for MySQL map
support, 204

configuring database, 205–7
configuring Postfix to use database,

208–12
overview, 203–4
testing, 212–15

databases, 46–47
Date header field, 63
DCF-77, 442
deadbeats transport, 403
deadbeats_connect_timeout parameter, 403
Debian Linux, installing Postfix on,

410–13
debug_peer_list parameter, 426
debuglevel parameter, 330
default_process_limit parameter, 398
default_rbl_reply restriction, 73
defer command, 71
defer daemon, 37
defer_transports parameter, 32–33
deferred queue, 42, 396–97
delete-from-mailq command, 51
delivery of message, triggering, 33
demilitarized zone (DMZ), 27, 175
denial-of-service attack, 41, 175
/dev/random generator, 287
/dev/urandom generator, 287
dial-up mail server for single domain,

29–34
adjusting relay permissions, 31–32
configuring relay permission for relay

host, 34
deferring message transport, 32–33
disabling DNS resolution, 31
overview, 29–31
setting relay host, 32
triggering message delivery, 33

dial-up user list (DUL), 32, 299, 442
dictionary attack, 89
dig command, 12–13, 389
DIGEST-MD5 mechanism, 223–24
disable_dns_lookups parameter, 159
disable_vrfy_command restriction, 72
DISCARD action, 115, 120, 122
discarding messages, 122–23
DMZ (demilitarized zone), 27, 175
DNS blacklists, 98–103

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

INDEX 453

DNS (domain name service), 8, 11, 31, 442
DNS for mail servers, 13–15
DNS lookups, speeding up, 388–89
DNS resolution, disabling, 31
DNSBL (DNS-based Blackhole List), 47,

99, 299
domain name service (DNS), 8, 11, 31, 442
double_bounce_recipient parameter, 390
downloading

Postfix, from rpmfind.net, 414
Simon J. Mudd’s Postfix RPMs, 414

dpkg command, 410
DUL (dial-up user list), 32, 299, 442
DUNNO action, 76

E
egrep command, 112, 306, 310
EHLO command, 58–59, 85–86, 153,

222, 255
EICAR, 162
--enable-maildirquota option, 334
--enable-maildropldap option, 334
encoding processor, 65–66
encoding structure, 67–68
envelope recipient, restricting, 88–91
envelope sender

empty, 92
restricting, 87–88

envelope (SMTP communication),
controlling, 57–60

error daemon, 39
ESMTP (Extended Simple Mail Transfer

Protocol), 139, 153, 159, 442
/etc/resolv.conf file, 12
/etc/syslog.conf file, 10–11
ETRN command restrictions, 73
ETRN (SMTP Extended Turn), 39
Exchange Server. See Microsoft Exchange

Server, using Postfix with
export_valid_recipients.bat file, 181
Extended Simple Mail Transfer Protocol

(ESMTP), 138, 153, 159, 442
external content filters, 129–65

amavisd-new
configuring Postfix to use, 157–60
configuring Postfix to use with

smtpd_proxy_filter, 164–65
installing, 149–50
optimizing performance, 154–57
testing, 150–54, 160–63

appending disclaimers to messages
with a script, 142–48

configuring Postfix for disclaimer
script, 145–46

installing alterMIME and creating
filter script, 143–45

overview, 142–43
testing filter, 146–48

best moment to filter content, 130–32
content_filter, 132–37

basics of configuring, 135–37
filter-delegation daemons, 134–35
overview, 132–34

overview, 129–30, 141, 163–64
smtpd_proxy_filter, 137–40

basics of configuring, 139–40
overview, 137–38

EXTERNAL mechanism, 224
external sources, 47
extract_valid_recipients command, 182

F

-f option, 8
fallback relays, 401–2
fallback_relay parameter, 392, 402
fetchmail utility, 34
FILTER action, 115, 123
filtering messages, 123–24
filters. See checks; external content filters
find command, 281
flush daemon, 39
forgery prevention, 94–95
FQDN (fully qualified domain name), 8,

19, 85–86, 186, 443
from choice, 353
From header field, 63
fully qualified domain name (FQDN), 8,

19, 85–86, 186, 443
fuzzy program, 193

G

gateways. See mail gateways
generic network relay permissions, 27
generic restrictions, 71–72
gethostbyname() method, 31
GID (group ID), 196, 210–11
GID mapping, 201
gidNumber attribute, 334
GnuPG tool, 269
GRANT command, 207
grep command, 156, 264, 280, 394, 420
group ID (GID), 196, 210–11
GSSAPI mechanism, 224

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

454 INDEX

H
h flag, 332
-h option, 51
-H option, 51
hash keyword, 209
Header filtering, 73
header_checks linear map, 45, 63, 113
headers

checking, 120–25
in attached messages, 125
discarding messages, 122–23
filtering messages, 123–24
holding delivery, 122
MIME headers, 124–25
overview, 120
redirecting messages, 123
rejecting messages, 121
removing headers, 122

optional (X-headers), 64
recommended, 63–64
required, 63

HELO command, 58–59
HELO/EHLO, restricting hostname in, 85–87
HOLD action, 115, 122
hold queue, 42
holding delivery, 122
homeDirectories attribute, 335
homeDirectory attribute, 321
host and environment preparation, 7–15

connectivity, 8–9
DNS for mail servers, 13–15
hostname, 8
name resolution (DNS), 11–13
overview, 7–8
syslog, 10–11
system time and timestamps, 9–10

host command, 12, 97
host option, 27
hostname, 8, 85–87

I
-I flag, 118
IANA (Internet Assigned Number

Authority), 9, 65, 443
ifconfig command, 27
IGNORE action, 115, 122
IMAP (Internet Message Access

Protocol), 1, 225, 235, 443
imapd certificate, 345
imapd-ssl tool, 345
imtest utility, 265
in_flow_delay parameter, 394

incoming queue, 42, 393–95
indexed maps, 44–45
individual relay permissions, 28
inetd server, 37
inetOrgPerson object, 318
installing Cyrus SASL, 229–30
installing Postfix, 407–17

building an RPM from an SRPM,
414–16

on Debian Linux, 410–13
overview, 407
Postfix source code, 407–9
on Red Hat Linux, 413–14
removing Sendmail MTA, 417
starting and stopping Postfix in Red

Hat Linux, 417
switching to Postfix, 417

Internet Assigned Number Authority
(IANA), 9, 65, 443

Internet Message Access Protocol
(IMAP), 1, 225, 235, 443

Internet service provider (ISP), 8, 9, 30,
32, 423

interprocess communication (IPC), 49,
382, 394, 444, 448

introduction to Postfix, 1–4
IPC (interprocess communication), 444
ISP (Internet service provider), 8, 9, 30,

32, 423

K
KERBEROS_V4 mechanism, 224
ktrace program, 374

L
LDA (local delivery agent), 21, 40, 194,

320
testing, 333

LDAP Data Interchange Format (LDIF),
315

LDAP (Lightweight Directory Access
Protocol), 174–175, 325–33

adding LDAP queries for local
recipients, 327–30

bind, disabling, 327
creating LDAP configuration

directory, 327
delegating transport to Courier

maildrop, 332–33
directory structure

adding attributes for remaining
servers, 320–21

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

INDEX 455

LDAP; directory structure, continued
branch design, 317
building user objects, 318–19
choosing attributes in Postfix

schema, 316–17
creating list objects, 319–20
overview, 315–16

lookups, 326–27
overview, 325–26
querying for mail aliases, 330–32

ldapdb plug-in, 321, 350–51
ldapdb_id parameter, 353
ldapdb_pw parameter, 353
ldapmodify utility, 342
ldapsearch command, 324, 354, 364
ldapwhoami command, 354
ldconfig command, 282
ldd command, 283, 359, 374, 421, 429
LDIF (LDAP Data Interchange Format),

315
LHLO command, 154
libsasldb.so, 261
libssl.a file, 281
libssl.so file, 281
linear maps, 45–46
Linux

Debian, 410–13
Red Hat, 413–14, 417

lmtp client, 40, 265
lmtp daemon, 134, 259
LMTP (Local Mail Transfer Protocol),

40, 153–54, 444
lmtp_passwd file, 265
lmtp_sasl_security_options parameter, 265
local daemon, 40, 46, 174, 373
local delivery agent (LDA), 21, 40,

194, 320
Local Mail Transfer Protocol (LMTP),

40, 153–54, 444
local_destination_recipient_limit

parameter, 333
local_recipient_maps parameter, 90, 173,

329, 391
local_transport parameter, 173
locate command, 285
log_level parameter, 231
logging and qmgr, 427
loghost command, 11
LOGIN mechanism, 223–26
lookup tables, 36
lsof command, 424

M
-m 10 option, 385
-m command-line option, 243
-m dir option, 234
-m option, 376
mail attribute, 318
mail command, 24
MAIL command, 58
MAIL FROM command, 73, 88, 139
mail gateways, 169–88

advanced gateway setup, 172–87
See also Microsoft Exchange Server
improving security on mail gateway,

173–74
overview, 172

basic setup, 170–72
NAT setup, 187–88
overview, 169–70

mail server, building. See building mail
server

mail user agent (MUA), 1, 444
mail_release_date configuration

parameter, 408
mailbox attribute, 320
Maildir format, 343
Maildir quotas, 339
maildirmake utility, 335–36, 338
maildrop agent, 21, 40
maildrop attribute, 319, 330, 365
maildrop command, 340
maildrop directory, 49
maildrop queue, 41, 42, 50, 395–96
maildrop transport, 332
maildrop.log file, 342
mailq command, 39, 48, 392
main.cf file, 32
make command, 143, 230, 249
make install command, 143, 230, 249
make makefiles command, 249
make upgrade command, 249
maps, 43–47

overview, 43–44
querying, 47
types of, 44–47

_maps configuration parameter, 433
master daemon, 37, 174, 195, 371–73, 425
master.cf file, 171
maximal_backoff_time parameter, 392, 397
maximal_queue_lifetime parameter, 43, 382
MAY policy, 307
mech_list parameter, 232

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

456 INDEX

message content, controlling, 61–68
attachments, 65–68
body, 64–65
headers, 63–64
overview, 61–63

message delivery, triggering, 33
message transfer restrictions, 69–109

antispam measures, 94–108
bogus nameserver records, 95–97
bounces to multiple recipients,

97–98
overview, 94
preventing obvious forgeries, 94–95
restriction process order, 107–8
using DNS blacklists, 98–103
verifying sender, 103–7

building, 74–83
influence of actions on restriction

evaluation, 75–77
moment of evaluation, 75
notation, 74–75
overview, 74
slowing down bad clients, 77–78

classes, 79
defaults, 84
maintaining RFC conformance, 91–93

empty envelope sender, 92
overview, 91
special role accounts, 92–93

overview, 69, 81
processing order for RFC restrictions,

93–94
requiring RFC conformance, 84–91

overview, 84
restricting envelope recipient, 88–91
restricting envelope sender, 87–88
restricting hostname in HELO/EHLO,

85–87
testing

making restrictions effective
immediately, 83

overview, 81–82
simulating impact of restrictions,

82–83
triggers, 70–71
types of, 71–74

additional UCE control
parameters, 73

application ranges, 74
customizable restrictions, 72–73
generic restrictions, 71–72
overview, 71
switchable restrictions, 72

uses for restriction classes, 108–9

message transport
deferring, 32–33
overview, 55–57

message transport agent (MTA), 1–2, 11,
35, 445

Message-Id header field, 63
message/rfc822 MIME type, 66
messages to nonexistent users, refusing,

390–91
Microsoft Exchange Server, using Postfix

with, 174–85
automating map-building process,

184–85
building recipient map, 181–83
building sender access map, 183–84
configuring Exchange and Postfix

communication, 185–87
exporting valid recipients from Active

Directory, 176–77
overview, 174–75
sending recipient list to mail relay,

177–81
adding public key to authorized

key list, 178–79
converting SSH key to PuTTY key

format, 179–80
copying list of recipients to

smarthost, 181
copying private key to Windows,

179
creating authentication keys, 178
creating copy user on smarthost,

178
getting secure copy client for

Windows, 177–78
Microsoft Management Console (MMC),

176
Microsoft Outlook, 85, 252
MIME encodings, 65
MIME headers, 124–25
MIME (Multipurpose Internet Mail

Extensions), 65, 445
mime_header_checks, 63, 113, 124
MIME-Version header field, 64
minimal_backoff_time parameter, 397
misc/CA.pl program, 272
mkimapdcert utility, 345
MMC (Microsoft Management Console),

176
mod_ssl module, 285
mpack utility, 65
MTA (message transport agent), 1–2, 11,

35, 445
MUA (mail user agent), 1, 444

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

INDEX 457

multipart/alternative MIME type, 67
multipart/mixed MIME type, 66
multiple domains, 189–215

database-driven virtual mailbox
domains, 203–15

building Postfix to support MySQL
maps, 205

checking Postfix for MySQL map
support, 204

configuring database, 205–7
configuring Postfix to use database,

208–12
overview, 203–4
testing, 212–15

overview, 189
virtual alias domains, 189–94

advanced mappings, 192–94
configuring Postfix to receive mail

for, 191
creating recipient address map,

190–91
overview, 189–90
setting name, 190
testing settings, 191–92

virtual mailbox domains, 194–203
advanced configuration, 199–203
basic configuration, 195–98
checking Postfix for virtual

delivery agent support, 195
overview, 194–95

multiple recipients, bounces to, 97–98
Multipurpose Internet Mail Extensions

(MIME), 65, 445
munpack utility, 65
MUST policy, 307
must_be_valid_sender restriction, 184
MUST_NOPEERMATCH policy, 307
mutual_auth setting, 251
MX records, 12–13, 15, 31, 171
mydestination parameter, 19, 173, 189–90
mydomain, setting, 19
myhostname, setting, 19
mynetworks parameter, 170, 249, 256,

389, 435
myorigin parameter, 174
MySQL, 203–9, 238–40
mysql socket, 372

N
n chroot option, 372
nameserver records, bogus, 95–97
NAT gateway, 187–88
NAT (network address translation), 445

nested_header_checks, 113, 125
Netscape Mail, 252
network address translation (NAT), 445
Network Time Protocol (NTP), 9–10, 445
newaliases command, 22, 44
nis.schema, 318
noactive setting, 251
noanonymous setting, 251
nodictionary setting, 251
none choice, 353
NONE policy, 307
nonexistent users, refusing messages to,

390–91
noplaintext setting, 251
nqmgr daemon, 83
nslookup command, 12
NTLM mechanism, 224
NTP (Network Time Protocol), 9–10, 445

O
OK action, 76
one-time pad (OTP) mechanism, 224
open relays, 26, 389
OpenLDAP, 235, 313–14, 322–24, 361
OpenSSL, 272–73
openssl s_client option, 289, 293, 296
openssl-dev package, 281
openssl-devel package, 281
organizationalUnit object, 317
OTP (one-time pad) mechanism, 224

P
-p option, 51
PAM (Pluggable Authentication

Modules), 225
passwd command, 178
passwd/shadow authentication backend,

226
patch command, 283
PCRE map support, 118
PCRE (Perl-compatible regular

expression), 45, 117–18
performance tuning, 387–403

basic enhancements, 387–92
blocking messages from blacklisted

networks, 391
confirming that server is not listed

as open relay, 389
overview, 387
reducing retransmission attempt

frequency, 392
refusing messages from unknown

sender domains, 391–92

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

458 INDEX

performance tuning; basic
enhancements, continued

refusing messages to nonexistent
users, 390–91

speeding up DNS lookups, 388–89
configuring alternative transport, 403
finding bottlenecks, 392–402

active queue bottlenecks, 397–99
asynchronous bounce queue

congestion inequality, 399–401
deferred queue bottlenecks, 396–97
incoming queue bottlenecks, 393–95
maildrop queue bottlenecks, 395–96
overview, 392–93
using fallback relays, 401–2

overview, 387
tuning for higher throughput, 402

Perl-compatible regular expression
(PCRE), 45, 117–18

PERMIT action, 76
permit command, 71
permit option, 94
permit_mx_backup_networks restriction, 73
permit_mynetworks option, 93, 97
permit_sasl_authenticated parameter, 253
permit_tls_all_clientcerts parameter, 301
permit_tls_clientcerts parameter, 301
PGP (Pretty Good Privacy), 446
PGP tool, 269
pickup daemon, 41
pipe daemon, 41, 134, 146–47, 334–35, 373
PKI, 271
PLAIN mechanism, 223–26
Pluggable Authentication Modules

(PAM), 225
POP (Post Office Protocol), 446
POP-before-SMTP, 34
Post Office Protocol (POP), 446
postalias command, 22, 44–45, 48
postcat command, 43, 48, 122
postconf command, 425
postconf -m command, 44, 118, 204
postdrop command, 49, 395–396
postdrop program, 42, 396
postfinger program, 425
postfix command, 48
postfix reload command, 22, 32, 45,

83, 427
Postfix source code, 407–9
postfix start command, 22, 419
postfix-snap package, 411
PostgreSQL, 209, 226, 238
post-install command, 427
postkick command, 49–50

postlock command, 50
postlog command, 50
postmap command, 44, 48–49, 97, 109,

183, 214–15, 258, 308, 330, 331,
364, 366

postmap -q command, 48
postqueue command, 50–51
postsuper command, 43, 51–52
postsuper -d command, 122
postsuper -d queueid command, 51
postsuper -H command, 122
postsuper -r - command, 49
postsuper -r command, 396
Pretty Good Privacy (PGP), 446
procmail agent, 21
procmail LDA, 40
Project Cyrus, 221
proxyAddresses attribute, 176
proxymap daemon, 40, 46, 198, 329–30,

373–74, 433
ps command, 10, 345, 394, 420
pscp.exe utility, 178–79, 181
PTR records, 13–14
PuTTY key format, converting SSH key

to, 179–80
puttygen.exe utility, 178–79
pwcheck_method parameter, 231

Q
q flag, 146
qmgr daemon, 39, 83, 420, 427
qmgr process, 427
QMQP (Quick Mail Queuing Protocol),

41, 446
qshape utility, 392–93
query_filter parameter, 328, 330
queue manager, 37
queue_directory parameter, 41
queue_run_delay parameter, 43, 396–97
queues, 42–43
Quick Mail Queuing Protocol (QMQP),

41, 446
QUIT command, 139
quota attribute, 320
quoted-printable MIME encoding, 65

R

R flag, 146, 332
-r option, 51
RAID (redundant array of independent

disks), 395, 433, 446
rbl_reply_maps restriction, 73

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

INDEX 459

RCPT command, 58
RCPT TO command, 72, 139
Received header field, 64
recipient address restrictions, 73
recipient domains query, 209–10
recipient_delimiter parameter, 193
Red Hat Linux

installing Postfix on, 413–14
starting and stopping Postfix in, 417

Red Hat Package Manager (RPM), 413
REDIRECT action, 115, 123
redirecting messages, 123
reducing retransmission attempt

frequency, 392
redundant array of independent disks

(RAID), 446
refusing messages from unknown sender

domains, 391–92
Register of Known Spam Operations

(ROKSO), 96
REJECT action, 76, 115, 120, 121
reject command, 71
reject_authenticated_sender_login_mismatch

parameter, 366
reject_authenticated_sender_login_mismatch

restriction, 365
reject_multi_recipient_bounce option, 97
reject_non_fqdn_hostname option, 85
reject_non_fqdn_sender option, 87
reject_rbl_client option, 99
reject_rhsbl_sender option, 101
reject_sender_login_mismatch restriction,

259
reject_unauth_destination option, 94
reject_unauth_pipelining command, 72
reject_unauthenticated_sender_login_

mismatch restriction, 259
reject_unknown_recipient_domain option,

89, 96
reject_unknown_sender_domain option, 88, 96
reject_unverified_sender option, 104
reject_unverified_sender parameter, 105
rejecting messages, 121
relay host, setting, 32
relay permissions

adjusting, 31–32
configuring for relay host, 34
generic network, 27
individual, 28

relay_connect_timeout parameter, 402
relay_destination_concurrency_limit

parameter, 402
relay_domains parameter, 171
relay_domains restriction, 73

relay_recipient_maps parameter, 90,
172, 391

relayhost feature, 402
relayhost parameter, 32
reload command, 399
remote client concurrency and request

rate limiting, 379–86
basics of rate limiting, 379–80
exempting clients from limits, 386
gathering rate statistics, 380–82
limiting client-connection frequency,

382–84
overview, 379
restricting simultaneous client

connections, 384–85
removing

headers, 122
Sendmail MTA, 417

Reply-To header field, 64
Request for Comments. See RFC
request rate limiting. See remote client

concurrency and request rate
limiting

restrictions. See message transfer
restrictions

result_attribute parameter, 329, 330
result_filter parameter, 329
retransmission attempt frequency,

reducing, 392
Return-Path header field, 64
Return-Path message header, 146
RFC conformance

maintaining, 91–93
empty envelope sender, 92
overview, 91
special role accounts, 92–93

requiring
overview, 84
restricting envelope recipient,

88–91
restricting envelope sender, 87–88
restricting hostname in HELO/EHLO,

85–87
RFC (Request for Comments), 446
RFC restrictions, 93–94
RHSBL (right-hand-side blacklist), 47,

100–101
ROKSO (Register of Known Spam

Operations), 96
role accounts, special, 92–93
RPM (Red Hat Package Manager), 413
RPM Source Package (SRPM), 414
rpmfind.net, downloading Postfix from,

414

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

460 INDEX

S
-s 10 option, 385
-s option, 51
s_client utility, 347, 362
SASL (Simple Authentication and

Security Layer), 221–26, 447
See also Cyrus SASL
authentication backends, 225–26
authentication interface, 222–23
authentication methods (password-

verification services), 225
overview, 221–22
SMTP AUTH mechanisms, 223–24

SASL socket, 372
sasl_passwd file, 262
saslauthd, 225, 232–36, 242–43, 244, 253
saslauthd_path parameter, 234, 376
saslauthz-policy parameter, 353
saslAuthzTo attribute, 350
sasld daemon, 245
sasldb plug-in, 242
sasldb2 plug-in, 226, 236–38
sasldblistusers2 utility, 236
saslfinger program, 426
saslpasswd2 utility, 236–37
sasl-regexp filter, 354
ScanMail application, 121
scp utility, 177
search_base parameter, 328
Secure Multipurpose Internet Mail

Extensions (S/MIME), 447
Secure Sockets Layer (SSL), 280, 447
SELECT statement, 207–12
sender address restrictions, 73
sender, verifying, 103–7
sendmail binary, 340
sendmail command, 50, 94, 395–96, 419
Sendmail MTA, removing, 417
sendmail utility, 23
server_host parameter, 328
server_port parameter, 328
server-side SMTP authentication, 249–59

advanced server settings, 258–59
enabling and configuring server,

250–54
overview, 249–50
testing server-side SMTP AUTH,

254–58
server-side Transport Layer Security.

See Transport Layer Security,
server-side

showq daemon, 39

Simon J. Mudd’s Postfix RPMs,
downloading, 414

Simple Authentication and Security
Layer. See SASL

Simple Mail Transfer Protocol (SMTP),
1, 5, 9, 447

single domain
configuration, 17–28

mapping email addresses to
usernames, 25–26

mapping mail sent to root to
different mailbox, 21–22

minimum configuration, 17–18
overview, 17–18
setting domain mail is accepted for,

19–20
setting domain to be appended to

outgoing messages, 20–21
setting hostname in smtpd banner,

18–19
setting permissions to make Postfix

relay email from network, 26–28
starting Postfix and testing mail

delivery to root, 22–25
dial-up mail server for, 29–34

adjusting relay permissions, 31–32
configuring relay permissions for

relay host, 34
deferring message transport, 32–33
disabling DNS resolution, 31
overview, 29–31
setting relay host, 32
triggering message delivery, 33

slapadd utility, 323, 339–43
slapd server, 322–24
slapd.conf file, 322–23
smarthost, 169
S/MIME (Secure Multipurpose Internet

Mail Extensions), 447
S/MIME tool, 269
SMTP authentication, 34, 217–65

adding SMTP AUTH support to
Postfix, 248–49

checking Postfix for SMTP AUTH
support, 247–48

client-side, 259–65
AUTH for Postfix SMTP client,

260–62
lmtp client, 265
overview, 259–60

future of SMTP AUTH, 245–46
overview, 217, 247

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

INDEX 461

SMTP authentication, continued
SASL (Simple Authentication and

Security Layer), 221–26
authentication backends, 225–26
authentication interface, 222–23
authentication methods (password-

verification services), 225
overview, 221–22
SMTP AUTH mechanisms, 223–24

server-side, 249–59
advanced server settings, 258–59
enabling and configuring server,

250–54
overview, 249–50
planning, 226–28
testing server-side SMTP AUTH,

254–58
SMTP communication (envelope),

controlling, 57–60
smtp daemon, 40, 46, 134, 147, 259,

263–64, 273
SMTP Extended Turn (ETRN), 39
SMTP (Simple Mail Transfer Protocol),

1, 5, 9, 447
smtp_connection_timeout setting, 400
smtp_data_done_timeout parameter, 130, 159
smtp_enforce_tls parameter, 311
smtp_sasl_auth_enable parameter, 261
smtp_sasl_password_maps parameter, 262
smtp_sasl_security_options parameter,

262, 309
smtp_sasl_tls_security_options parameter,

309
smtp_tls_CAfile parameter, 304
smtp_tls_CApath parameter, 305
smtp_tls_cert_file parameter, 309
smtp_tls_enforce_peername parameter, 311
smtp_tls_key_file parameter, 309
smtp_tls_loglevel parameter, 306
smtp_tls_note_starttls_offer parameter,

308
smtp_tls_per_site parameter, 307
smtp_tls_session_cache_database

parameter, 308
smtp_tls_session_cache_timeout parameter,

308
SMTP-after-IMAP, 218
SMTP-after-POP, 218
smtpd command, 254
smtpd daemon, 41, 46, 70, 131–32, 244–45,

273, 351, 377, 380, 422
smtpd restriction, 366–67
smtpd utility, 333

smtpd_*_restrictions parameter, 56, 60
smtpd_authorized_xforward_hosts

parameter, 165
smtpd_client_connection_count_limit

parameter, 384–85
smtpd_client_connection_limit_exceptions

parameter, 386
smtpd_client_connection_rate_limit

parameter, 382–83
smtpd_client_restrictions trigger, 70
smtpd_data_restrictions trigger, 71
smtpd_delay_reject parameter, 75
smtpd_enforce_tls parameter, 302
smtpd_error_sleep_time parameter, 78
smtpd_etrn_restrictions trigger, 70
smtpd_hard_error_limit parameter, 78
smtpd_helo_required parameter, 85
smtpd_helo_required restriction, 72
smtpd_helo_restrictions trigger, 70
smtpd_proxy_filter, 130–31, 137–40

basics of configuring, 139–40
configuring Postfix to use amavisd-

new with, 164–65
overview, 137–38

smtpd_proxy_filter parameter, 139
smtpd_recipient_restrictions parameter,

91, 95, 104, 299, 367
smtpd_recipient_restrictions trigger, 71
smtpd_sasl_auth_enable parameter, 251
smtpd_sasl_exceptions_networks parameter,

258
smtpd_sasl_local_domain parameter, 237,

253
smtpd_sasl_security_options parameter,

251–52, 295
smtpd_sasl_tls_security_options

parameter, 295
smtpd_sender_login_maps parameter, 258,

366
smtpd_sender_login_maps restriction, 73
smtpd_sender_restrictions trigger, 70
smtpd_soft_error_limit parameter, 78
smtpd_tls_ask_ccert parameter, 299
smtpd_tls_auth_only parameter, 292
smtpd_tls_CAfile parameter, 286, 301
smtpd_tls_CApath parameter, 286
smtpd_tls_loglevel parameter, 287
smtpd_tls_received_header parameter,

287, 310
smtpd_tls_req_ccert parameter, 302
smtpd_tls_session_cache_database

parameter, 291

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

462 INDEX

smtpd_tls_session_cache_timeout
parameter, 291

smtpd_use_tls parameter, 284
smtp-sink program, 430–32
smtp-source command, 383–85
smtp-source program, 430–31
spam, 32, 94, 96, 100, 121, 126, 148, 380.

See also unsolicited commercial
email (UCE)

SpamAssassin, 148, 151
spawn daemon, 40
special role accounts, 92–93
sql plug-in, 238–41
SQL (Structured Query Language), 226,

447
sql_database parameter, 238
sql_engine parameter, 238
sql_hostnames parameter, 238
sql_insert parameter, 238
sql_passwd parameter, 238
sql_select parameter, 238
sql_update parameter, 238
sql_user parameter, 238
sql_usessl parameter, 238
SquirrelMail software, 122
SRP mechanism, 224
SRPM (RPM Source Package), 414
SSH key, converting to PuTTY key

format, 179–80
SSH server, 178–79
sshkeygen command, 178
SSL (Secure Sockets Layer), 280, 447
ssl.h file, 281
start parameter, 409
start_tls parameter, 361
starting Postfix in Red Hat Linux, 417
STARTTLS keyword, 269, 284, 288
stop parameter, 409
stopping Postfix in Red Hat Linux, 417
strace program, 374
stress-testing Postfix, 430–33

disk I/O, 432–33
overview, 430–32
too many connections, 433

strict_rfc821_envelopes restriction, 72
Structured Query Language (SQL), 226,

447
Subject header field, 64
subnet option, 27
swap_bangpath restriction, 72
switchable restrictions, 72
syslog, 10–11
syslogd utility, 10

system time, 9–10
SystemMailbox, 181

T
TCP, 8
TCP port 25, 8–9
telnet session, sending mail through, 28
testing

amavisd-new, 150–54, 160–63
authentication, Cyrus SASL, 242–45

creating server configuration file,
243

overview, 242
starting saslauthd, 242–43
starting server program, 243
testing with client program, 243–45

Courier maildrop, 339–43
database-driven virtual mailbox

domains, 212–15
IMAP server, 346–48
LDA, 333
ldapdb plug-in, 354–56
message transfer restrictions

making restrictions effective
immediately, 83

overview, 81–82
simulating impact of restrictions,

82–83
server-side SMTP AUTH, 254–58
stress-testing Postfix, 430–33

disk I/O, 432–33
overview, 430–32
too many connections, 433

TLS, 362–65
virtual alias domain settings, 191–92

text/plain MIME type, 66
timestamps, 9–10
TLD (top level domain), 86
TLS. See Transport Layer Security
TLS client certificate, 219
tls_ca_cert_file parameter, 361
TLS_CACERT parameter, 361
tls_cert parameter, 361
TLS_CERT parameter, 361
tls_key parameter, 361
TLS_KEY parameter, 362
tls_random_source parameter, 287, 305
TLS_REQCERT parameter, 362
TLSCACertificateFile parameter, 360
tlsmgr daemon, 291–92, 308, 430
TLSVerifyClient parameter, 360
tmpfs, sizing, 155

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

INDEX 463

To header field, 63
top command, 432
top level domain (TLD), 86
transfer restrictions. See message transfer

restrictions
Transport Layer Security (TLS), 267–311

building Postfix with TLS support,
281–83

building and installing OpenSSL
from source code, 282

overview, 281
certificates, 270–78

creating CA certificate, 272–73
creating server’s certificate, 276–77
distributing and installing CA

certificate, 273–76
overview, 271
preparing certificates for use in

Postfix, 278
required information, 271–72
signing server’s certificate, 277–78

checking Postfix for TLS support,
279–81

overview, 267–70, 279
Transport Layer Security, client-side,

302–11
basic client configuration, 303–6
client performance tuning, 308
client-side certificate-based relaying,

309–11
overview, 302–3
securing client SMTP AUTH, 309
selective use, 307–8
tightening, 311

Transport Layer Security, server-side,
283–98

basic server configuration, 284–90
adding information to mail

headers, 287–88
connecting Postfix to random

source generator, 286–87
enabling server-side TLS, 284
increasing TLS log level, 287
overview, 284
setting certificate paths, 285–86
testing, 288–90

overview, 283–84
server performance tuning, 290–92
server-side certificate-based relaying,

298–301
configuring Postfix to ask for client

certificates, 299

configuring Postfix to permit
relaying for client certificates,
299–301

overview, 298–99
server-side measures to secure SMTP

AUTH handshake, 292–98
controlling SASL mechanisms in

TLS, 295
offering SMTP AUTH with TLS

only, 292–95
overview, 292

tightening TLS server, 302
transport_maps parameter, 171, 403
trivial-rewrite daemon, 39
trivial-rewrite service, 394–95
troubleshooting Postfix, 419–33

connecting to Postfix, 423–25
checking network, 423–24
overview, 423
verifying listening process, 424–25

daemon inconsistencies, 429–30
getting more logging information,

426–27
getting Postfix to use your

configuration settings, 425
intricacies of chroot jail, 428
libraries, 429
overview, 419
problems starting Postfix and viewing

log, 419–22
reporting problems, 425–26
solving filesystem problems, 428–29
stress-testing Postfix, 430–33

disk I/O, 432–33
overview, 430–32
too many connections, 433

truss program, 374

U
u flag, 332
UCE (unsolicited commercial email), 41,

448
UDP (User Datagram Protocol), 10
uid attribute, 318–19
UID mapping, 201
UID (user ID), 196, 210–11
uidNumber attribute, 334
uname -n command, 19
undisclosed_recipients_header parameter,

63
Unix operating system, 7

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

464 INDEX

Unix-to-Unix Copy Protocol (UUCP), 33,
448

unknown sender domains, refusing
messages from, 391–92

unsolicited commercial email (UCE), 41,
448

User Datagram Protocol (UDP), 10
user flag, 332
user ID (UID), 196, 210–11
useradd command, 196
usermod -L command, 181
userPassword attribute, 319, 348
uses for restriction classes, 108–9
UUCP (Unix-to-Unix Copy Protocol), 33,

448
uudeview utility, 65

V
-v parameter, 331
verifying sender, 103–7
VeriSign, 96
version parameter, 344, 361
virtual alias domains, 189–94

advanced mappings, 192–94
configuring Postfix to receive mail for,

191
creating recipient address map, 190–91
overview, 189–90
setting name, 190
testing settings, 191–92

virtual daemon, 40, 195, 373
virtual delivery agent, 40, 194–97
virtual mailbox domains, 194–203

advanced configuration, 199–203
basic configuration, 195–98
checking Postfix for virtual delivery

agent support, 195
overview, 194–95

virtual private network (VPN), 218, 220
virtual_alias_domains parameter, 190–92
virtual_alias_maps parameter, 173,

191–94, 198, 211, 331
virtual_gid_maps parameter, 196
virtual_mailbox_base parameter, 197, 199
virtual_mailbox_domains parameter, 195,

199
virtual_mailbox_domains.cf file, 214
virtual_mailbox_maps parameter, 197, 200,

211
virtual_uid_maps parameter, 196, 201
vmail group, 334
VPN (virtual private network), 218, 220
VRFY command, 72

W
-w flag, 332
WARN action, 82, 115, 119
warn_if_reject command, 71
warn_if_reject parameter, 82–83
WHERE clause, 213
wildcard MTA, 96
--with-redhat option, 344
--with-trashquota, 334

X
X509 certificates, 339–43, 359
XFORWARD command, 165
X-headers, 64

Y
y chroot option, 372

Z
-ZZ option, 364

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

More No-Nonsense Books from

THE TCP/IP GUIDE
by CHARLES M. KOZIEROK

The TCP/IP Guide is a comprehensive reference to the TCP/IP networking
protocols that will become a valuable resource for any IT professional and an
excellent text for students. The TCP/IP Guide details the core protocols that
make TCP/IP internetworks function and the most important classical TCP/
IP applications. Its personal, easy-going writing style lets anyone understand
the dozens of fascinating protocols and technologies that run the Internet,
and Kozierok offers not only a detailed view of the TCP/IP protocol suite,
but also defines networking and the OSI model architecture.

MAY 2005, 1200 PP., $69.95 ($94.95 CAN)
ISBN 1-59327-047-X

SILENCE ON THE WIRE
A Field Guide to Passive Reconnaissance and Indirect Attacks

by MICHAL ZALEWSKI

Author Michal Zalewski has long been known and respected in the hacking
and security communities for his intelligence, curiosity and creativity, and
this book is truly unlike anything else out there. Silence on the Wire is no hum-
drum technical white paper or how-to manual for protecting one’s network.
Rather, Zalewski’s book is a fascinating narrative that explores a variety of
unique, uncommon and often quite elegant security challenges that defy
classification and eschew the traditional attacker-victim model.

APRIL 2005, 296 PP., $39.95 ($53.95 CAN)
ISBN 1-59327-046-1

HACKING
The Art of Exploitation

by JON ERICKSON

Hacking: The Art of Exploitation is for both technical and non-technical people
who are interested in computer security. Unlike many so-called hacking
books, this book explains the technical aspects of hacking, including stack
based overflows, heap based overflows, string exploits, return-into-libc,
shellcode, and cryptographic attacks on 802.11b. Erickson’s goal is to
instruct—not to promote any illegal activity. If you’re serious about hacking,
this book is for you.

OCTOBER 2003, 264 PP., $39.95 ($59.95 CAN)
ISBN 1-59327-007-0

NO STARCH PRESS

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

THE LINUX COOKBOOK 2ND EDITION
Tips and Techniques for Everyday Use

by MICHAEL STUTZ

The Linux Cookbook 2nd Edition is nearly 50 percent larger than the first and
will help new and existing users get the most out of Linux. It includes hun-
dreds of new recipes and is also distribution neutral, covering all flavors of
Linux, including Red Hat, SuSe, and Debian. The 2nd edition includes new
sections on package management, file conversion, multimedia, working with
sound files (including OGG and MP3), Vi text editing, and advanced text
manipulation. And, just to show what level of text manipulation Linux is
capable of, Stutz designed and typeset his book using only Linux.

AUGUST 2004, 824 PP., $39.95 ($55.95 CAN)
ISBN 1-59327-031-3

HOW LINUX WORKS
What Every Superuser Should Know

by BRIAN WARD

How Linux Works describes the inside of the Linux system for systems adminis-
trators, whether they’re tasked with maintaining an extensive network in the
office or one Linux box at home. Some books try to give you copy-and-paste
instructions for how to deal with every single system issue that may arise, but
How Linux Works actually shows you how the Linux system functions, so you
can come up with your own solutions. After a guided tour of filesystems, the
boot sequence, system management basics, and networking, author Brian
Ward delves into open-ended topics such as development tools, custom ker-
nels and buying hardware, all from an administrator’s point of view. With a
mixture of background theory and real-world examples, this book shows
both “how” to administer Linux, and “why” each particular technique works,
so that you will know how to make Linux work for you.

MAY 2004, 368 PP., $37.95 ($55.95 CAN)
ISBN 1-59327-035-6

PHONE:
800.420.7240 OR

415.863.9900
MONDAY THROUGH FRIDAY,
9 A.M. TO 5 P.M. (PST)

FAX:
415.863.9950
24 HOURS A DAY,
7 DAYS A WEEK

EMAIL:
SALES@NOSTARCH.COM

WEB:
HTTP://WWW.NOSTARCH.COM

MAIL:
NO STARCH PRESS

555 DE HARO ST, SUITE 250
SAN FRANCISCO, CA 94107
USANo Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

U P D A T E S

Visit http://www.postfix-book.com for updates, errata, and other information.

No Starch Press, Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter

	About the Authors
	Acknowledgments
	Ralf Hildebrandt
	Patrick Koetter

	About This Book
	Additional Resources
	Postfix Documentation, How-tos, and FAQs
	Mailing Lists

	Conventions Used in This Book
	Domains and Names Used in This Book
	The Local Domain
	Our Provider

	Scripts
	Comments

	1: An Introduction to Postfix
	Part I: Basics
	2: Preparing Your Host and Environment
	Hostname
	Connectivity
	TCP Port 25

	System Time and Timestamps
	Syslog
	Name Resolution (DNS)
	DNS for Mail Servers
	A Records
	PTR Records
	MX Records

	3: Mail Server for a Single Domain
	The Minimum Configuration
	Configuring Postfix
	Setting the Hostname in the smtpd Banner
	Setting the Domain Mail Is Accepted For
	Setting the Domain to Be Appended to Outgoing Messages
	Mapping Mail Sent to root to a Different Mailbox
	Starting Postfix and Testing Mail Delivery to root
	Mapping Email Addresses to Usernames
	Setting Permissions to Make Postfix Relay Email from Your Network

	4: Dial-up Mail Server for a Single Domain
	Disabling DNS Resolution
	Adjusting Relay Permissions
	Setting the ISP Relay Host
	Deferring Message Transport
	Triggering Message Delivery
	Configuring Relay Permissions for a Relay Host
	POP-before-SMTP
	SMTP Authentication

	5: Anatomy of Postfix
	Postfix Daemons
	Postfix Queues
	Maps
	Map Types
	How Postfix Queries Maps

	External Sources
	Command-Line Utilities
	postfix
	postalias
	postcat
	postmap
	postdrop
	postkick
	postlock
	postlog
	postqueue
	postsuper

	Part II: Content Control
	6: A Postmaster’s Primer to Email
	Message Transport Basics
	Why Do You Need to Know This?

	Controlling the SMTP Communication (Envelope)
	Controlling the Message Content
	Headers
	Body
	Attachments

	7: How Message Transfer Restrictions Work
	Restriction Triggers
	Restriction Types
	Generic Restrictions
	Switchable Restrictions
	Customizable Restrictions
	Additional UCE Control Parameters
	Application Ranges

	Building Restrictions
	Notation
	Moment of Evaluation
	Influence of Actions on Restriction Evaluation
	Slowing Down Bad Clients

	Restriction Classes

	8: Using Message Transfer Restrictions
	How to Build and Test Restrictions
	Simulating the Impact of Restrictions
	Making Restrictions Effective Immediately

	Restriction Defaults
	Requiring RFC Conformance
	Restricting the Hostname in HELO/EHLO
	Restricting the Envelope Sender
	Restricting the Envelope Recipient

	Maintaining RFC Conformance
	Empty Envelope Sender
	Special Role Accounts

	Processing Order for RFC Restrictions
	Antispam Measures
	Preventing Obvious Forgeries
	Bogus Nameserver Records
	Bounces to Multiple Recipients
	Using DNS Blacklists
	Verifying the Sender
	Restriction Process Order

	Uses for Restriction Classes

	9: How Built-in Content Filters Work
	How Do Checks Work?
	Applying Checks to Separate Message Sections
	What’s So Special about These Parameters?

	When Does Postfix Apply Checks?
	What Actions Can Checks Invoke?

	10: Using Built-in Content Filters
	Checking Postfix for Checks Support
	Building Postfix with PCRE Map Support

	Safely Implementing Header or Body Filtering
	Adding a Regular Expression and Setting a WARN Action
	Creating a Test Pattern
	Does the Regular Expression Match the Test Pattern?
	Setting the Check in the Main Configuration
	Testing with Real Mail

	Checking Headers
	Rejecting Messages
	Holding Delivery
	Removing Headers
	Discarding Messages
	Redirecting Messages
	Filtering Messages

	Checking MIME Headers
	Checking Headers in Attached Messages
	Checking the Body

	11: How External Content Filters Work
	When Is the Best Moment to Filter Content?
	Filters and Address Rewriting

	content_filter: Queuing First, Filtering Later
	Filter-Delegation Daemons
	The Basics of Configuring content_filter

	smtpd_proxy_filter: Filtering First, Queuing Later
	Considerations for Proxy Filters
	The Basics of Configuring smtpd_proxy_filter

	12: Using External Content Filters
	Appending Disclaimers to Messages with a Script
	Installing alterMIME and Creating the Filter Script
	Configuring Postfix for the Disclaimer Script
	Testing the Filter

	Scanning for Viruses with content_filter and amavisd-new
	Installing amavisd-new
	Testing amavisd-new
	Optimizing amavisd-new Performance
	Configuring Postfix to Use amavisd-new
	Testing the Postfix amavisd-new Filter

	Scanning for Viruses with smtpd_proxy_filter and amavisd-new
	Configuring Postfix to Use amavisd-new with smtpd_proxy_filter

	Part III: Advanced Configurations
	13: Mail Gateways
	Basic Setup
	Setting Gateway Relay Permissions
	Setting a Relay Domain on the Gateway
	Setting the Internal Mail Host on the Gateway
	Defining Relay Recipients

	Advanced Gateway Setup
	Improving Security on the Mail Gateway
	Using Postfix with Microsoft Exchange Server
	Configuring Exchange and Postfix Communication

	NAT Setup

	14: A Mail Server for Multiple Domains
	Virtual Alias Domains
	Setting the Virtual Alias Domain Name
	Creating a Recipient Address Map
	Configuring Postfix to Receive Mail for Virtual Alias Domains
	Testing Virtual Alias Domain Settings
	Advanced Mappings

	Virtual Mailbox Domains
	Checking Postfix for Virtual Delivery Agent Support
	Basic Configuration
	Advanced Configuration

	Database-Driven Virtual Mailbox Domains
	Checking Postfix for MySQL Map Support
	Building Postfix to Support MySQL Maps
	Configuring the Database
	Testing Database-Driven Virtual Mailbox Domains

	15: Understanding SMTP Authentication
	The Architecture and Configuration of Cyrus SASL
	Which Approach Is Best?

	SASL: The Simple Authentication and Security Layer
	Authentication Interface
	SMTP AUTH Mechanisms
	Authentication Methods (Password-Verification Services)
	Authentication Backends

	Planning Server-Side SMTP Authentication
	Finding Clients and Their Supported Mechanisms
	Defining the Authentication Backend and Password-Verification Service

	Installing and Configuring Cyrus SASL
	Installing Cyrus SASL
	Creating the Postfix Application Configuration File
	Configuring Logging and the Log Level
	Setting the Password-Verification Service
	Selecting SMTP AUTH Mechanisms
	Configuring saslauthd
	Configuring Auxiliary Plug-ins (auxprop)
	Testing the Authentication

	The Future of SMTP AUTH

	16: SMTP Authentication
	Checking Postfix for SMTP AUTH Support
	Adding SMTP AUTH Support to Postfix
	Server-Side SMTP Authentication
	Enabling and Configuring the Server
	Testing Server-Side SMTP AUTH
	Advanced Server Settings

	Client-Side SMTP Authentication
	AUTH for the Postfix SMTP Client
	Testing Client-Side SMTP AUTH
	The lmtp Client

	17: Understanding Transport Layer Security
	TLS Basics
	How TLS Works

	Understanding Certificates
	How to Establish Trust
	Which Certification Authority Suits Your Needs?

	Creating Certificates
	Required Information
	Creating the CA Certificate
	Distributing and Installing the CA Certificate
	Creating Your Server’s Certificate
	Signing Your Server’s Certificate
	Preparing Certificates for Use in Postfix

	18: Using Transport Layer Security
	Checking Postfix for TLS Support
	Building Postfix with TLS Support
	Building and Installing OpenSSL from Source Code
	Building Postfix with TLS

	Server-Side TLS
	Basic Server Configuration
	Server Performance Tuning
	Server-Side Measures to Secure the SMTP AUTH Handshake
	Server-Side Certificate-Based Relaying
	Tightening the TLS Server

	Client-Side TLS
	Basic Client Configuration
	Selective TLS Use
	Client Performance Tuning
	Securing Client SMTP AUTH
	Client-Side Certificate-Based Relaying
	Tightening Client-Side TLS

	19: A Company Mail Server
	Conceptual Overview
	The LDAP Directory Structure
	Choosing Attributes in a Postfix Schema
	Branch Design
	Building User Objects
	Creating List Objects
	Adding Attributes for the Remaining Servers

	Basic Configuration
	Configuring Cyrus SASL
	Configuring OpenLDAP
	Configuring Postfix and LDAP
	Configuring Courier Maildrop
	Configuring Courier IMAP

	Advanced Configuration
	Expanding the Directory
	Adding Authentication to Servers
	Protecting Directory Data
	Encrypting LDAP Queries
	Enforcing Valid Sender Addresses

	20: Running Postfix in a chroot Environment
	How Does a chroot Jail Work?
	Basic Principles of a chroot Setup
	Technical Implementation

	How Does chroot Affect Postfix?
	Helper Scripts for chroot
	chrooted Daemons
	chroot Libraries, Configuration Files, and Other Files

	Overcoming chroot Restrictions

	Part IV: Tuning Postfix
	21: Remote Client Concurrency and Request Rate Limiting
	The Basics of Rate Limiting
	Gathering Rate Statistics
	Running the anvil Daemon
	Changing the anvil Log Interval

	Limiting Client-Connection Frequency
	Testing Client-Connection Rate Limits

	Restricting Simultaneous Client Connections
	Testing Simultaneous Client-Connection Limits

	Exempting Clients from Limits

	22: Performance Tuning
	Basic Enhancements
	Speeding Up DNS Lookups
	Confirming That Your Server Is Not Listed as an Open Relay
	Refusing Messages to Nonexistent Users
	Blocking Messages from Blacklisted Networks
	Refusing Messages from Unknown Sender Domains
	Reducing the Retransmission Attempt Frequency

	Finding Bottlenecks
	Incoming Queue Bottlenecks
	Maildrop Queue Bottlenecks
	Deferred Queue Bottlenecks
	Active Queue Bottlenecks
	Asynchronous Bounce Queue Congestion Inequality
	Using Fallback Relays

	Tuning for Higher Throughput
	Configuring an Alternative Transport

	Appendices
	A: Installing Postfix
	The Postfix Source Code
	Applying Patches
	Building and Installing from Source Code
	Starting and Stopping Postfix

	Installing Postfix on Debian Linux
	Installing Postfix
	Starting and Stopping Postfix
	Installing an Update
	Building from a Debian Source Package

	Installing Postfix on Red Hat Linux
	Getting Postfix for Red Hat Linux
	Building an RPM from an SRPM
	Switching to Postfix
	Removing the Sendmail MTA
	Starting and Stopping Postfix in Red Hat Linux

	B: Troubleshooting Postfix
	Problems Starting Postfix and Viewing the Log
	Connecting to Postfix
	Checking the Network
	Verifying the Listening Process

	Getting Postfix to Use Your Configuration Settings
	Reporting Postfix Problems
	Getting More Logging Information
	Client-Specific Logging
	Logging and qmgr

	Other Configuration Errors
	Intricacies of the chroot Jail
	Solving Filesystem Problems
	Library Hell
	Daemon Inconsistencies
	Fork Hell

	Stress-Testing Postfix
	Disk I/O
	Too Many Connections

	C: CIDR and SMTP Standards Reference
	Subnets in CIDR Notation
	Server Response Codes

	Glossary
	Index
	Updates

