
Distributed-Application Development Tools for DCE/OSF

Uri Shani and Israel Gold

Haifa Research Laboratory
IBM Israel Science and Technology

Matam - Advanced Technology Center
Haifa 31905, Israel

E-mail: shani@vnet.ibm.com

Abstract
VCE/ OSE‘ offers a comprehensive RPC-based sol-

ution fair the development of open distributed applica-
tions across network of heterogeneous multiple-vendor
machines. However, o e n simple DCE applications may
have a rather complicated structure, requiring good
understanding of the elaborate DCE technology. In
this paper, we examine the DCE application develop-
ment path, and introduce two new tools, idlgen and
gluegen (collectively called MakeDCE), u7hich he& to
separate applicalion logic from DCE aspects.

The development ojp simple DCE applications using
idlgen arid gluegen remains a rather simple task, requir-
ing very little knowledge of DCE, and of the DCE
toolkit. These tools are particularly useful for splitting
existing monolithic programs into clients and servers,
with almost no change to the original application code.
Complex IICE appIica<tions are supported as well, even
though the splitting approach may not be fully applica-
ble.

Keywords: Distributed computing, application devel-
opment, CASE, DCE, wrapper, source matching,
source generation, client, server, IDL

Introduction

Distributed Progrannming Environment (DCE) by
the Open Software Foundation (OSF) offers a com-
prehensive solution for distributed client/server appli-
cations over network of heterogeneous multi-vendor
machines [SI. The IICE services and development
toolkit come in several levels based at the bottom on
thrc.ads and Remote Procedure Call (RPC) [l].
Threads allow concurrent threads of control to execute
within the same application process. DCE RPC is
bascd on Apollo’s NCS [4 , 71, providing a synchro-

nous communication mechanism which appears syn-
tactically the same at the application level as a local
procedure call.

Above these basic layers come additional services:
Directory services maintain a global symbolic identifi-
cation system of servers on the network. Securitj> ser-
vices provide authentication and vahdation services on
an open network environment. Time services main-
tain global time synchronization, and a Distributedfile
system. Each component of DCE comes from a well
established and proven technology, all integrated into
a single cohercnt environment (see refcrcnces in [(PI).

The DCE run-time complexity can be appreciated
by the ske of its library of support functions - ;L few
hundreds of functions to support all the above ser-
vices. Close to a hundred to support the fundamental
RPC level. The full comprehension of I>CE is a sig-
nificant task, realizing that DCE applications may
have a rather complicated structure, eien for simple
cases.

To develop a DCE application, IOU first have to
design its distributed architecture, and write DCE code
to perform RPC operations. On the server side this
amounts to registering and unrpgistering its remote
services. On the client side this amounts to locating
and binding to servers and calling remote scmices In
order to perform RPC to remote services, they must
be defmed as operations in an Interface i>efi,zition
Language (IIIL) fie. The recommended DC’E devel-
opment path is first to write an IDL fie. The file is
compiled by the DCE stub-compller idl, gcnerdting
stubs and an .h header file. ’The header file neells to
be #include-d in the client and server sources, ant1 the
stubs need to be compiled and linked with them.
Therefore, the application becomes veq DCE dc pen-
dant - in structurc as well as in source code.

We look at the situation wherc the application can
have a monolithic version - where no elements of dis-
tributed programming exist. The program is then

34
0-8186-5835-5/94 $03.00 Q 1994 IEEE

mailto:shani@vnet.ibm.com

cplit. or partitioned mto several partitions playing the
role of cherits, servers, or both. If properly done, the
application can coexist in its monolithic version as
well as its spht version. DCE cannot support t h s
approach to its fullest since there are aspects of
program partitioning [IO] which DCE cannot comply
with For mstance, how to split a global variable.
However, a s igdkant simplification of DCE applica-
tion development can be achieved with program split-

The two main aspects of splitting existing applica-
tion\ is that the IDL file can be extracted from the
original C source, and that the original code from the
monolithic application will remain unchanged as
much as possible Therefore, the interface to the DCE
run-time has to be separated from the application.

We report here of tools to achieve these goals.
idlgen is a tool that generates IDL files from C files
where certam remote services are implemented. Since
the IDI, file is derived from C sources, there is no
Iieed to mport (include) the .h file which results from
stub-compilmg the IDL file. For t h s reason, idlgen
also mamtains the compatibility between IDL and C
sources gluegen as its name alludes to, is a tool
whch generates glue-code to bind together the client
and semer. gluegen generates code whch performs all
netMork and DCE run-time management so that when
K I T occurs, it is properly bound and eventually suc-
ceed? Glue-code is generated based on a small high-
level specfication language we tcrm Application Profile
(APF), which frees the programmer from getting into
the goo dctails of DCE run-time. We only give a
hmited account of gluegen in this paper. For a
detailed report see [4].

idlgen is a compiler which reads IDL and C sources
and produces a new, modified IDL file. idlgen extracts
the interface-relevant information from its input files,
checks that all relevant declarations are present and do
not introducc any conflicts. Wherever needed, idfgen
generatrs IDL attributes and declarations, and when
needed, it converts IDL-incompatible constructs in C
into equivalent ID I,- compatible constructs. idigen
incorporates mto IDL files, changes made to their cor-
respondmg C sources; and vice-versa, it analyzes
implications of changes made to the IDL file by the
user.

Using idlgen to develop an IDL file from a col-
lcction of C sources can be as easy as

ting

1. Decide whch functions will become IDL oper-

2. Invoke idlgen to generate an IDL fde
ations

3 . Verify that the generated file answers the require

The following chapters introduce the idlgen ancl
gluegen tools, using examples rather than formal
descriptions. We conclude the paper with a short
comparison to other approaches in t h s field.

ments

idlgen - an IDL extractor

The idken tool analyzes C and IDI, files thu\
enables to update old IDI. files to accommodatc
changes in existing applications, as well as tci generatc
IDL, files for new applicationc. It is a language trans
lator that takes source fila (C and IDL) as input, anc<i
outputs a new IDL source file - ready for the i d
compder.

idlgen is invoked from the command line. A
number of command h e options and switches arc
available for tailoring idlgen operations A most
simple C program such as “f(a,b){retum a + b;}” car
make an immediate demon\tration of generating ii

legal IDL file by idlgen as follows,
User:
echo ‘f(a,b){return a tb ;}’ I i d l g e n - i d t v

System:
interface noname {

/ R @ . * * * * * * * * * * * * * * * * * R R * ~ k * * * ~ * *

* This f i l e b u i l t w i t h the MakeDCE f a c i l i t y vel- 1.0 *
* - A D C E Application-Development E n a b l i n g T o o l *

* I n i t i a l l y generated on Sun Jan 31 08:45:12 1!393 *
* *

* Last update on Sun Jan 31 08:45n12 1993 *

* * * * * * * * * * * * * * * X * * * * * * * * * * X * * * * * * * * * * * * * * ~ * * * * * * * * ~ * * l

* *
* IBM Corporation 1992 *

/*@[export] f ; f i l e - s t d i n * /

long i n t f (
[in] l o n g i n t a ,
[in] l o n g i n t b

1;

‘The -id switches tell idlgen to generate a full IDL, file
using built-in default attributes; the switch + v tells
idlgen to tum off verbose mode. The resulting file is
written to the standard output since no output file
name appears in the command line. No input file
name is given neither, so standard-input is taken -
piped in from the echo command.

I’he resulting IDL file in the example above, reveals
how idfgen maintains its own information in PDL fdes

35

We term this method Meta-Comments since we hide
the information inside C comments.

,Veta-comments have the following general format:
/*@ [meto-statement I ; [comnent] */

When parsing IDL files, idlgen checks the meta-
rtatement for correcl syntax, while igporing the
comment part.

In the above example, meta-comments are used for
two purposes. One is to place a disclaimer to the fact
that MakcDCE generated this file. The second is to
state that the function f() is exported from the file
“-stdin” (although “stdiri” is not a very useful
filename). When idlgen is invoked on multiple input
files, one of whch is an IDL file, and the others are C
files, it will only process exported functions and other
declarations used by them.

In the example above, there is only one C mput
file, and all its exportable functions are considered for
export by default. Alternatively, we can proceed in
steps. Our initial step will be to select which of the
exportable symbols of C sources are to be considered
for the 1111, file. To help accomplish this task, idlgen
will extract from the C‘ sources all exportable symbols
and list them within mieta-comments in an initiul I D L
3Ie

Our next step will be to go over this list, using a
text editor, and alter the status of functions we do not
want to export. We will do that by changing the attri-
bute [export] to [noexport]. Than, invoking idlgcn
agam taking this time the initial IDL file as input,
together with the original C sources, producing a new
modified IDL file. 7 b e resulting file can be a separate
new filr:, or override the initial IDL file, and will be a
legal and operational I D L , file.

Comparing and modifying C and IDL files

The general invocation command line for idlgen is,
i d lgen < inpu t f 11 e>.. . . c:swi tches>. . .

Whenever the input files consist of an IDL, file and C
files, the declarations in the IDL file, and those rele-
vant declarations in the Cc files are compared and
checked for consistency.

An initial IDI, file contains only a list of names of
functions to be exponted or not-exported. In other
cases, existing IDL files may be edited so that status of
functions is inverted. In both cases new declarations
may be extracted from C sources and added to the
IDI, file. In the later case, some declarations in an
existing IDL file may become redundant, and will not
be reproduced in the resulting output file.

‘The new declarations are converted to meet the
syntax and semantics of IDL which are not fully com-
patible with those of the C lanpage. In particular,
IDL attributes are added based on some analysis of
the C sources. For instance, the [input] and [output]
attributes as in the simple example above (for the
parameters off()).

In subsequent invocations of idiqen, the p~ opcr
aspects of the corresponding declarations in the IDI,
file and the C files wdl be compared and verified.

It is important to understand that although an IDI,
file can export functions from many C sources, idfgen
can process portions of the IDL, file, dcpendiny on
which of the C files are input to idlgen. It could also
process the IDL file and all of the relcvant C fill-s in
one step.

We will discuss now some of the conversions done
by idlgen.

Matching unions.
A union in an input C file will be converted to the

appropriate variant in IDL. For instance, the C
union:

un ion U { i i i t i; f l o a t f;)

Is converted to the following IDI, typcdcf by Jdlgcn,
/*Manufactured typedef f o r an aggregate by MakeOCE */
typedef un ion U s w i t c h (l o n g MK-TEMP) {

case 0: long i n t i ;
case 1 : f l o a t f;

} u-MKGEN;

As the progam evolves, changes may occur in the
declaration of union U. idlgen will match the unions in
C and IDL even when their fields are reordered. In
our example, if we add the field char c, and skiumc.: the
fields,

union U { f l o a t f ; char c; i n t i; 1
idlgen will produce a modified IDI, declaration,

/*Manufactured typedef f o r an aggregate by MakeOCE * /
typedef un ion U sw i t ch (l ong MK-TEMP) {

case 1: f l o a t f ;
case 2: char c;
case 8 : l ong i n t i;

} U-MKGEN;

Enum tags.
The IDI, language does not accept cnum with tags.

All enum declarations must be enclosed within a
typedef, and have no tags. ‘lo mantain a f t - ~ t y
between the IDL file and its C source, the t‘ig is
entered into the IDL declaration inside a nieta-
comment (this is a third situation where meta-

36

comments are used by idken). The id1 compiler
ignores this as a comment, while idlgen reads the tag
name and is able to associate it with the corresponding
C source construct for type matching. Carrying the
tag name into the IDL file will also be a helpful piece
of information for the developer.

For instance, the C enum
enum e { a , b , c };

Is converted to an IDL, enum as follows:
typedef [transmit-_as(long)] enum /*@ e ;*/ {

a ,
b ,
C

} e-MKGEN;

Long identifiers.
The 1111, language h i t s identifiers’ length to below

the length permitted in C. idlgen has no limitation on
identifier-length, but will check identifiers in input C
files against the IDL, limit. Moreover, idlgen generates
ncw identifiers in output IDL files which can be very
long since they are generated as a combination of C
identifiers.

To prevent IDI, syntax errors, idIgen generates
#define statements in the output IIIL file where long
names are defined as short n,ames.
/ t i fndef IOLGEN
fi
#endi f

define th i s-i s-a-very-1 ong-name-i ndeed MKSHORT-Cl

When the file is processed by id1 compiler, only the
short names are “seen.” When processed by idlgen, the
long names are used. This is needed to properly iden-
tify and rriatch C and IDL sources.

Frw other cascs.

of the interesting ones are:
Although not all idIgen features are shown here, few

. II)I, reserved words differ from C reserved words.
idlgen checks C: identifiers which are IDL reserved
words and renames them to prevent id1 compiler
error\. idgen reports these cases in waming mes-
sages.
Bit-fields in structs are not allowed in IDL. idlgen
will generate errors for them. Alignment
(0-length) fields are removed
1,ong indirections can be “broken” to multiple
typcdefs where IDI, attributes can be defined.

.

The choice and limitations in using the indirection
attributes [ptr] and [refl when related to unions,
arrays, and function retum values are considered
by idlgen when generatmg the attributes in the
output IDL file.
aggregates in function header are not very useful
since their scope is the function head and body
alone. Yet, if the C fdes do that, idZqcn \\ill care-
fully redefine all these aggregates so that a lcgal
IDL file is generated.

gluegen - glue-code generator

gluegen generates binding code which allows DCE
applications to startup, establish a handle, and
perform RPC. In Figure 2 , the code generated by
gIuegen plays parallel role to thc stubs generated by
the id1 compiler when “wrapping” an application to
operate properly in the DCE environmcnt.

To clarify how gluqqen works, ue precnt A simpli-
fied view of the possible IX’E appllcation modcls
bhich gluegen C M handle. See [4] for more.

D C E application models

I1CE building blocks for distributed applications
allow the development of rather complicated arid intri-
cate solutions. h i operational DCF application is
best represented in the general case as a dynamic
graph consisting of nodes and links. Nodes are Client
and Server programs, each executing on some
machine, and links are bindings between Clicnts and
Seners. A hnk can represent a potential binding
between two nodes, a connection, or an on-going
R K . It is essential to emphasize that in I X E , a link
is represented via an interface, as described in a pantic-
ular IIIL file. Figure 1 depicts a schematic I-epresl-n-
tation o f this idea.

‘I‘he topology of an application can change during
execution. h’odes may appear and disappear, move
(i.e., be assigned to different hosts at different times),
connect and disconnect in various ways, have multiple
connections at a time, gain parallel access or be serial-
ized, and so on. The most general situation (‘an only
be implemented by coding a program in a gcneral-
purpose language which uses the DCI’ RI’(: primi-
tives.

37

1,

Figure 1. Distributed Application Graph. An edge in the
graph represenki a collection of RPC-able oper-
ations as defined in a [ICE Interface. The edge
arrowhead represmts the direction of an RPC.
For instance, the edge I2 directed from B to A
specifies that interface I2 is lmportcd bq node B
and exported by node A.

Although the general task of DCE programming is
very broad, we are lomoking for a formal description of
this task so that generic templates can be prepared
ahead of time and be used to easily build useful DC'E
applications in a short time.

When an application node imports a given intcr-
face, it is said to be a Client of that interface. And
when it exports a given interface, it is said to be a
Server of that interface. An application node cannot
import and export the same interface. Observe,
however, that a single application node may import
and/or export multiple interfaces. Moreover, a partic-
ular interface may be exported by several application
nodes. In our example, interface t2 is exported by
nodes A and C. Nolde A imports and exports inter-
faces, playing thus bo.th client and server roles, making
it a chaining-server.

'1'0 summarize, wi: have two major goals: 1'0
define the details of a single interface (binding)
between DCE nodes of which the IDL file is a major
component, and second tab combine multiple interfaces
into DCE applications.

'Thr: DCE environment is more complicated and
flexible [SI. 1nterfac:es axe uniquely identified by a
unique universal identifier (uuid). This identifier is
written within the IDL, file defining the interface.
Additional differentiation comes on the basis of major
and minor version numbers in the interface (IDL) file
head. Further differentiation is provided by introduc-
ing objects, which are also uniquely identified by a
uuid. An object can be c'onsidered as an implementa-
tion of an interface, and there may be several different
implementation of the same interface whch arc distin-

guished by an object uuid. Moreover, multiple identi-
cal implementations of the same interface may coexist
on several machines on the network. In order to bind,
a client needs to identify which of the objects of an
interface it wishes to bind to, and than select one of
the competing servers on the network according to
some criteria. Interface uuid-s are written in the IDL
file header. Objects uuid-s are not stored in IDI, files,
but are used m the code which binds a client to a par-
ticular server that implements an interface. 'This com-
plexity is encapsulated within the code generated by
gluegen.

Directory and security services are strongly related
to the client/server binding issue but will not be
included in our discussion of giuegen glue-code in the
scope of this paper (see [4]).

giuegen takes as input the application's topology
defined by a set of attributes. gluegen uses a simple
syntax in an Application Profile (AI'F) file. 7 his is a
formal language which controls the generation of the
appropriate glue-code. Somr of the attributes arc bor-
rowed from the DCE documented tesminoloa, and
some are specific to gluegen.

giuegen profile objects.
Rather than presenting the giuegen lanpage, we

will show an example of defining a Client/Server
application using APF.

The APF language identifies an interface profile,
which defines the binding methods for a particular
interface. An interface is associated with a particular
IDL, file, and thus represents a set of operations. In
the DCE application model graphs discussed above,
an interface represents an edge between two applica-
tion nodes. The version and interface name are auto-
matically extracted by giuegen from thr: corresponding
IDL file.

A collection of interfaces may be associated with an
application in an object we term application profile.
In an application profile, an interface can either be
exported, or imported. The application profdc also
defines how w d the application be initiahzed (start
up), and how many concurrent threads of st:rvice w d
coexist in a server.

The interface profile attributes fall into t w o catego-
ries: compile-time attributes and run-time dtributes.
Values of compile-time attributes must be specified in
the APF. Values of run-time attributes may be speci-
fied in the APF, or later at run-time upon invoc.ation
of the Client and Server applications. Run-lime attri-
butes can come from the command-lie, the standard-
input, or another file - depending on the user's choice
in the APF. Likewise, the values picked for attributes

38

at run-time, and which are needed to bind to an inter-
face exported by a server, can be reported by the
server application to the standard output streams, or
to a file. This is also done according to the user's
choice in the APE;.

When the server reports its binding attribute values
to a file, the file can then be fed to the client. As a
result, the two applications will bind in a very simple
and direct method.

Example. Consider the distributed application graph
in Figure 1. Application node A imports interface I ,
and exports interfaces I, and 1,. Definition of applica-
tion node A using the APF language might look as
follows (keywords are in bold letters):

/* Application Profile for Node A * /

in te r face I 1 {
protseq = ncadg-ip-udp;
host = nodeD;
bindtype = repm;
handle = explicit;
id1 = "13.idl";

1
in te r face I 2 {

protseq = ncadg-ip-udp;
bindtype = lepm;
handle = explici ;
id1 = "12.idl";

1

in te r face I3 l i k e I2
id1 = "13.idl";

1
appl icat ion appA {

f input = null;
foutput = stdout;
nthreads = 1;
import I1 ;
export I2 ;
export I3 ;

1
Explanation:

The application profile above defines an applica-
tion named uppA. The (interface) binding attributes
for u p p i , some provided with command arguments
and some resolved at run-time, will be written to the
standard output ($output= stdout). So binding infor-
mation will be read from input file @put= null).
The application will work serially using a single thread
(nthread.y = 1).

All three interfaces use the same protocol sequence
(protseq = ncadg-ip-udp). The exported intedaces I2
and 13 will be registered in the local entry-point

mapper - the rpcd component of DCE (bindtype =
lepm). The imported interface I1 uses the samc.
method on its own host, which can be a remote host
(nodeD) to the AppA application (bindtype = repm
and host = nodeD). All three interfaces use an
explicit handle (handle = explicit). Each interfacc
also has its own IDL file.

Note the like feature allowing 13 to inherit most of
its attnbutes from 12. Additional effectiveness can bc
obtained via C preprocessing:

/ * Application Profile for Node A using
** Il.ipf, I2.ipf and t h e LIKE statement
* I
i ncl ude "I 1. i p f ' I

#include "12. i pf "

in te r face 13 l i k e I2 { id1 = "13.idl" }

...
1

The APF language model is object-oriented for con-
venience and ease of comprehension, even though it is
based solely on attributes and has no user-defined
methods. The intemal representation of the model is
object-oriented, where the application, interface and
DCE objects (not shown in the example) are prede-
fined classes with predefined methods. The giuegen
library is not exposed to the programmer and is used
only via the APF file and run-time attribute<, as
described above. Exposing more of the library and
allowing access to more of the built-in methods will
make the combination of compile-time APF, and run-
time library very powerful.

Putting it all together

To demonstrate the relationships and origin of
components which make up a DCE application using
idlgen and gluegen, Figure 2 on page 7 depicts a situ-
ation where a monolithic application (top) is split to
two programs serving in the roles of a Client and a
Server (bottom).

The components of each application node (Client and
Server) are as follows:

1. Glue-code and glue-stub are generated by giuegen
from an APF file. Separate pairs of glue-code and
glue-stub files are generated for each application -
one for the Client, and one for the Sener. The
glue-codes include the main() entry-points of the
Client and Server programs.

39

/ , I / , I, ia ., / ri, a;...*i .)":/,'.' , T i l
. . .

idlesn

Legend:

Local procedure call

RPC communications

File generation by twls

f--

w
-v

Figure 2. Putting i t all together

2. The glue-library is linked with each program and
implements the APl used in the glue-code. Appli-
cation code may also use the API of the glue-lib.

3. Application code in the Client is the Main part of
the original application - whlch performs an RPC
to the Server.

4. Application code in the Server is the Urility part
of the original application - which implements
the RPC performed by the Client.

5. Scrver-stub is a code generated by the id1 compiler
(part of DCE) for the Server. The code is gener-
ated from an IDI, file which represents the intcr-
face between the Client and the Server.

6. Chcnt-stub is a code generated by the id compiler
for the Client.

7. The IDL file usecl to generate the stubs in steps 6,
and 5, i? extracted from the C source by idlgen.

8. DC'E RTI, is the DCE run-time library which
supports the DCES execution environment of DCE
applications. Tllis layer uses other lower-level

communication support layers in the ope1 ating
systems of the respective platforms on which the
application nodes execute.

Directory and security services

Directory services add another whole world of pos-
sibdities, specifically in hiding gory details of objects
within symbolic names in a global and cell directory
data bases. When dealing with directory services, one
has to distinguish management from access. The
management of directory services requires suitable
tools which are not part of application devclopinent.
Within this aspect of management, we can also
include many elements of security (see belou). I n the
application development acpects, dircctorq se Inices
allow to define an interface via its symbolic nane in
the directory, reducing the amount o f information
entered to gfuegen via the APT; tile.

Security services are used to control accc'zs to ser-
vices via authentication and validation. Altl-ough
issues of security can be rather complicated. on13 can
observe however, that some aipect\, like 1 1 cceu
Control fisfs (ACI,) are part of directorq services
management. To fully exploit security in the applica-
tion, certain DCE activities may have to be interldaved
within the application code.

The extension of the APF language to include
objects, directory and security seniccs is being incor-
porated into gluegen and will simplifies many a\pects
of the tool as well as increases its utility. The txten-
sions to APF and to the gfuegen run-time libraiy are
not described in this paper (see [4]).

Conclusions

This paper introduces the MakeDCE family including
the tools idfgen and gfuegen for the tlevelopmcnt of
DCE applications, with respect to splitting monolithic
applications into clients and servers. The tools can be
applied to the general case of DCE applications as
well, and serve two goals: Reduce code dependency on
DCE, and relieve the programmer from being deeply
familiar with the details of DCE development toolkit.

There are many alternative approaches to distrib-
uted application development. DCE is not an object-
oriented system, even though its internal architecture
is such. DCIJ IS mtended to develop procedural appli-
cations on a distributed environment. Object oriented
alternatives [8] may or may not use D('E ax an imple-

40

mentation base. For instance, there are efforts to
cnrich DCE with objects [SI, or to build a C++
library encapsulating its run-time [2, 31. gluegen uses
a library which introduces a higher-level of abstraction
abo1.e the IICE run-time, but keeps it at the proce-
dural format. The run-time support in gluegen
strongly relates to the elements of the APF language,
where applications, interfaces, and DCE objects arc
treated at the language and in the internal represen-
tation -- as objects in the “OOP” sense. gluegen run-
time library, maintains this model and gives access to
it through a limited API.

Our approach keeps DCE aspects separated from
the application logic and makes it much less depend-
cnt not only on DCE, but also cm the fact that the
application is distributed.

A totally different approach is to introduce a new
1:inguagc [111 where aspects of distribution are lan-
guage elements integrated with the application logic.
The application is than independent of DCE, which
now is a choice of an implementation vehicle in the
language. We believe that the approach adopted by
IICE of providing support for distribution via func-
tions is preferred. Independence of the application
from IICE cxn be achieved by separating application
logic from aspects of distribution as two orthogonal
implemcntation efforts. Our tools offer an essential
instrumentation in this direction.

Acknowledgements

Thanks to Ran Canetti, Karen Laster, and Arie Tal
who contributed to the tools reported here.

References

[I] Birrell, A. and B., Nelson, “Implementing
Remote Procedure Calls,” ACM Trans. on
Computer Systemr, vol. 2, pp. 39-50, I:eb.
1984

[2] Citibank Distributed Processing Technology,
Objtran Programmer’s Guide (Available via
internet from lcp@fig.citib.com), 1993.

1131

c41

1151

C61

c71

Dilley, J ., “Object-Oriented Distributied
Computing With C++ and OS]; DCE,’
Proceedings of the Internationd 1X‘E Lt ork-
shop, A . Schill (ed .) , pp. 256-266, Karlsruhe
WG: Springer-Verlag, October 1993.

Gold, I. and U., Shani, “Wrapping DCE/(3SF
Client /Sewer Applications,” Prucetding.7 9:’
LfSENlX L‘nlI,Y Applications Ikwlopmeni
Symposium, Toronto, Canada. k\pril 25-2h
1994.

Mock, M. I;., “DC€3++: Distributing C + t
Objects using OSF DCE’,” Procecdings olr thi
international DCE Workrhop, ,.I. Schill i d .)
pp. 242-255, Karlsruhc, WG: Springer-Verlag
October 1993.

Network Computing Archtecture. Apollo
Computer Inc., I’rentice Hall, 1991.

Network Computing System Referencc
Manual, Apollo Computer Inc , Prentice I I d
1991.

Object hlanagement Group, l‘he Common
Object Request Ihoker: Architecture and
Specification, 199 1.

Open Software Foundation, I X F ; Application
Development Guide, 1993

Shani, U, , N., Amit, I . , Boldo, M., Kaplan
J . , Marbcrg, R. Y., I’inter and M , Kodeh
“Program Partitioning for I Ieterogencou:
Machines,” Proceedings. The Sixsh Israel8
Conference on Computer Systems mid :?oft
ware Engineering, pp. 136- 145, IIcr~liah
Israel, Junc 2-3 1999.

Yemini, S. , G., Goldsankh, A., StoJenko, Y.
Wei and L., Beeck, “Concert: A Heteroge
neous High-Level-Language Approach tc
Heterogeneous Distributed Systems,’
Proceedings of the 9th Internationcl[Confer
ence on Distributed Computing Syste, ?I r , 1 8 9.

41

