Distributed-Application Development Tools for DCE/OSF

Uri Shani and Israel Gold

Haifa Rescarch Laboratory
IBM Israel Science and Technology
Matam — Advanced Technology Center
Haifa 31905, Israel
E-mail: shani@vnet.ibm.com

Abstract

DCEJOSF offers a comprehensive RPC-based sol-
ution for the development of open distributed applica-
tions across network of heterogeneous multiple-vendor
machines. However, even simple DCE applications may
have a rather complicated structure, requiring good
understanding of the elaborate DCE technology. In
this paper, we examine the DCE application develop-
ment path, and introduce two new tools, idlgen and
gluegen (collectively called MakeDCE), which help to
separate application logic from DCE aspects.

The development of simple DCE applications using
idlgen and gluegen remains a rather simple task, requir-
ing very little knowledge of DCE, and of the DCE
toolkit. These tools are particularly useful for splitting
existing monolithic programs into clients and servers,
with almost no change to the original application code.
Complex DCE applications are supported as well, even
though the splitting approach may not be fully applica-
ble.

Keywords: Distobuted computing, application devel-
opment, CASE, DCE, wrapper, source matching,
source generation, client, server, IDL

Introduction

Distributed Programming Environment (DCE) by
the Open Software Foundation (OSF) offers a com-
prehensive solution for distributed client/server appli-
cations over network of heterogencous multi-vendor
machines [9]. The DCE services and development
toolkit come in several levels based at the bottom on
threads and Remote Procedure Call (RPC) [1].
Threads allow concurrent threads of control to execute
within the same application process. DCE RPC is
based on Apollo’s NCS [6, 7], providing a synchro-

34
0-8186-5835-5/94 $03.00 © 1994 IEEE

nous communication mechanism which appears syn-
tactically the same at the application level as a local
procedure call.

Above these basic layers come additional services:
Directory services maintain a global symbolic identifi-
cation system of servers on the network. Security ser-
vices provide authentication and validation scrvices on
an open network environment. 7ime services rnain-
tain global time synchronization, and a Distributed file
system. Each component of DCE comes from a well
established and proven technology, all integrated into
a single coherent environment (see references in [9]).

The DCE run-time complexity can be appreciated
by the size of its library of support functions — a few
hundreds of functions to support all the above ser-
vices. Close to a hundred to support the fundamental
RPC level. The full comprehension of DCE is a sig-
nificant task, realizing that DCE applications may
have a rather complicated structure, even for simple
cases.

To develop a DCE application, you first have to
design its distributed architecture, and write DCE code
to perform RPC operations. On the server side this
amounts to registering and wunregistering its remote
services. On the client side this amounts to locating
and binding to servers and calling remote services. In
order to perform RPC to remote services, they must
be defined as operations in an [nterface Definition
Language (IDL) file. The recommended DCE devel-
opment path is first to write an IDL file. The file is
compiled by the DCE stub-compiler idl, generating
stubs and an .A header file. The header file needs to
be #include-d in the client and server sources, and the
stubs need to be compiled and linked with them.
Therefore, the application becomes very DCE depen-
dant — in structure as well as in source code.

We look at the situation where the application can
have a monolithic version — where no elements of dis-
tributed programming exist. The program is then

mailto:shani@vnet.ibm.com

split, or partitioned into several partitions playing the
role of clients, servers, or both. If properly done, the
application can coexist in its monolithic version as
well as its split version. DCE cannot support this
approach to its fullest since there are aspects of
program partitioning [10] which DCE cannot comply
with. For instance, how to split a global varable.
However, a significant simplification of DCE applica-
tion development can be achieved with program split-
ting.

The two main aspects of splitting existing applica-
tions is that the IDL file can be extracted from the
original C source, and that the original code from the
monolithic application will remain unchanged as
much as possible. Therefore, the interface to the DCE
run-time has to be separated from the application.

We report here of tools to achieve these goals.
idlgen 15 a tool that generates IDL files from C files
where certain remote services are implemented. Since
the IDL file is derived from C sources, there is no
need to import (include) the .4 file which results from
stub-compiling the IDL file. For this reason, idigen
also maintains the compatibility between IDL and C
sources. gluegen as its name alludes to, is a tool
which generates glue-code to bind together the client
and server. gluegen generates code which performs all
network and DCE run-time management so that when
RPC occurs, it i1s properly bound and eventually suc-
ceeds. Glue-code 1s generated based on a small high-
level specification language we term Application Profile
(APF), which frees the programmer from getting into
the gory details of DCE run-time. We only give a
Limited account of gluegen in this paper. For a
detailed report see [4].

idlgen is a compiler which reads IDL and C sources
and produces a new, modified IDL file. idlgen extracts
the interface-relevant information from its input files,
checks that all relevant declarations are present and do
not introduce any conflicts. Wherever needed, idlgen
generates IDL attributes and declarations, and when
needed, it converts IDL-incompatible constructs in C
into equivalent IDL-compatible constructs. idlgen
incorporates into IDL files, changes made to their cor-
responding C sources; and vice-versa, it analyzes
implications of changes made to the IDL file by the
user.

Using idigen to develop an IDL file from a col-
lection of C sources can be as easy as

1. Decide which functions will become IDL oper-
ations
2. Invoke idlgen to generate an IDL file

35

3. Verify that the generated file answers the require-
ments

The following chapters introduce the idlgen and
gluegen tools, using examples rather than formal
descriptions. We conclude the paper with a short
comparison to other approaches in this field.

idlgen — an IDL extractor

The idigen tool analyzes C and IDL files thus
enables to update old IDI. files to accommodate
changes in existing applications, as well as ta generatc
IDL files for new applications. It is a language trans
lator that takes source files (C and IDL) as input, and
outputs a new IDL source file — ready for the id/
compiler.

idigen is invoked from the command line. A
number of command line options and switches arc
available for tailoring idlgen operations. A most
simple C program such as “f(a,b){return a+b;}” can
make an immediate demonstration of generating &
legal IDL file by idigen as follows,

User:
echo 'f(a,b){return astb;}' | idigen -id +v

System:
interface noname {

/*@;*************k****k**************k*k****ik*******Q*X

* This file built with the MakeDCE facility ver 1.0 *

- A DCE Application-Development Enabling Tool

*
*
* Initially generated on Sun Jan 31 08:45:12 1993
* Last update on Sun Jan 31 08:45:12 1993

*

* IBM Corporation 1992

*

E I

*

**************k******k*****k******k*xk**********k*tk*/

/*@[export] f ; file -stdin */

Tong int f (
[in] long int a,
[in] Tong int b
I

h

The -id switches tell idigen to generate a full IDL file
using built-in default attributes; the switch +v tells
idigen to tumn off verbose mode. The resulting file is
written to the standard output since no output file
name appears in the command line. No input file
name is given neither, so standard-input is taken —
piped in from the echo command.

The resulting IDL file in the example above, reveals
how idlgen maintains its own information in IDL files.

We term this mcthod Meta-Comments since we hide
the information inside C comments.
Meta-comments have the following general format:

/%@ [meta-statement | ; [comment] */

When parsing IDL files, idlgen checks the meta-
statement for correct syntax, while ignoring the
comnument part.

In the above example, meta-comments are used for
two purposes. One is to place a disclaimer to the fact
that MakeDCE generated this file. The second i1s to
state that the function f{) is exported from the file
“-stdin” (although “stdin” 1s not a very useful
filename). When idigen is invoked on multiple input
files, one of which is an IDL file, and the others are C
files, it will only process exported functions and other
declarations used by them.

In the example above, there is only one C input
file, and all its exportable functions are considered for
export by default. Alternatively, we can proceed in
steps. Our initial step will be to select which of the
exportable symbols of C sources are to be considered
for the IDL file. To help accomplish this task, idigen
will extract from the C sources all exportable symbols
and list them within meta-comments in an initial IDL
file.

Our next step will be to go over this list, using a
text editor, and alter the status of functions we do not
want to export. We will do that by changing the attn-
bute [export] to [noexport]. Than, invoking idigen
again taking this time the initial IDL file as input,
together with the original C sources, producing a new
modified IDL file. The resulting file can be a separate
new file, or override the initial IDL file, and will be a
legal and operational IDL file.

Comparing and modifying C and IDL files

The general invocation command line for idigen is,

idlgen <input file>... <switches>...

Whenever the input files consist of an [DL file and C
files, the declarations in the IDL file, and those rele-
vant declarations in the C files are compared and
checked for consistency.

An 1initial IDL file contains only a list of names of
functions to be exported or not-exported. In other
cases, existing IDL files may be edited so that status of
functions is inverted. In both cases new declarations
may be extracted from C sources and added to the
IDI, file. In the later case, some declarations in an
existing DL file may become redundant, and will not
be reproduced in the resulting output file.

36

The new declarations are converted to meet the
syntax and semantics of IDL which are not fully com-
patible with those of the C language. In particular,
IDL attributes are added based on some analysis of
the C sources. For instance, the [input] and [output]
attributes as in the simple example above (for the
parameters of f{)).

In subsequent invocations of idigen, the proper
aspects of the corresponding declarations in the IDL
file and the C files will be compared and verified.

It is important to understand that although an IDL
file can export functions from many C sources, idigen
can process portions of the IDL file, depending on
which of the C files are input to idlgen. It could also
process the IDL file and all of the relevant C files n
one step.

We will discuss now some of the conversions done
by idlgen.

Matching unions.

A union in an input C file will be converted to the
appropriate vadant wn IDL. For instance, the C
union:

union u { int i; float f; }
Is converted to the following IDL typedef by idigen,

/*Manufactured typedef for an aggregate by MakeDCE */
typedef union u switch (long MK TEMP) {

case 0: Tong int 1;

case 1: float f;
} u_MKGEN;

As the program evolves, changes may occur in the
declaration of union u. idlgen will match the unions in
C and IDL even when their fields are reordered. In
our example, if we add the field char ¢, and shuffle the
fields,

union u { float f; char c; int i; }
idlgen will produce a modified IDIL. declaration,

/*Manufactured typedef for an aggregate by MakeDCE */
typedef union u switch (long MK_TEMP) {

case 1: float f;

case 2: char c;

case 0: long int i;
} u_MKGEN;

Enum tags.

The IDL language does not accept enum with tags.
All enum declarations must be enclosed within a
typedef, and have no tags. To mantain affinity
between the IDL file and its C source, the tag is
entered into the IDL declaration inside a meta-
comment (this is a third situation where meta-

comments are used by idlgen). The idl compiler
ignores this as a comment, while idigen reads the tag
name and is able to associate it with the corresponding
C source construct for type matching. Carrying the
tag name into the IDL file will also be a helpful piece
of information for the developer.

For instance, the C enum

enum e { a,b,c };
Is converted to an IDI. enum as follows:

typedef [transmit as(long)] enum /*@ e ;*/ {

a,
b,
C
} e MKGEN;

Long identifiers.

The IDI, language limits identifiers’ length to below
the length permitted in C. idlgen has no limitation on
identifier-length, but will check identifiers in input C
files against the IDL limit. Moreover, idigen generates
new identifiers in output IDL files which can be very
long since they are gencrated as a combination of C
identifiers.

To prevent IDL syntax ecmors, idlgen generates
#define statements in the output IDL file where long
names are defined as short names.

#ifndef 1DLGEN

define this_is_a very long_name_indeed MKSHORT 0
#endif

When the file 1s processed by idl compiler, only the
short names are “seen.” When processed by idlgen, the
long names are used. This is needed to properly iden-
tity and match C and IDL sources.

Few other cases.
Although not all idlgen features are shown here, few
of the interesting ones are:

» IDL reserved words differ from C reserved words.
idlgen checks C identifiers which are IDL reserved
words and renames them to prevent idl compiler
errors. idlgen reports these cases in warning mes-

sages.
» Bit-ficlds in structs are not allowed in IDL. idlgen
will generate errors for them. Alignment

(0-length) fields are removed.
« Long indirections can be “broken” to multiple
typedefs where [DL attributes can be defined.

37

« The choice and limitations in using the indirection
attributes [ptr] and [ref] when related to unions,
arrays, and function return values are considered
by idlgen when generating the attributes in the
output IDL file.

aggregates in function header are not very uscful
since their scope is the function hcad and body
alone. Yet, if the C files do that, idlgen will care-
fully redefine all these aggregates so that a legal
IDL file is generated.

gluegen — glue-code generator

gluegen gencrates binding code which allows DCE
applications to startup, establish a handle, and
perform RPC. In Figure 2, the code generated by
gluegen plays parallel role to the stubs generated by
the idl compiler when “wrapping” an application to
operate properly in the DCE environment.

To clarify how gluegen works, we present a simpli-
fied view of the possible DCE application models
which gluegen can handle. See [4] for more.

DCE application models

DCE building blocks for distributed applications
allow the development of rather complicated and intri-
cate solutions. An operational DCE application is
best represented in the general case as a dynamic
graph consisting of nodes and links. Nodes are Client
and Server programs, each executing on some
machine, and links are bindings between Clients and
Servers. A link can represent a potential binding
between two nodes, a connection, or an on-going
RPC. It is essential to emphasize that in DCE, a link
1s represented via an interface, as described in a partic-
ular IDL file. Figure 1 depicts a schematic represen-
tation of this idea.

The topology of an application can change during
execution. Nodes may appear and disappear, move
(i.e., be assigned to different hosts at different times),
connect and disconnect in various ways, have multiple
connections at a time, gain parallel access or be serial-
ized, and so on. The most general situation can only
be implemented by coding a program in a general-
purpose language which uses the DCE/RPC primi-

tives.

Figure 1. Distributed Application Graph. An edge in the
graph represents a collection of RPC-able oper-
ations as defined in 2 DCE Interface. The edge
arrowhead represents the direction of an RPC.
For instance, the edge I, dirccted from B to A
specifies that interface /5 is imported by node B
and exported by node A.

Although the general task of DCE programming is
very broad, we are looking for a formal description of
this task so that generic templates can be prepared
ahead of time and be used to easily build useful DCE
applications in a short time.

When an application node imports a given inter-
face, it is said to be a Client of that interface. And
when it exports a given interface, it is said to be a
Server of that interface. An application node cannot
import and export the same interface. Observe,
however, that a single application node may import
and/or export multiple interfaces. Moreover, a partic-
ular interface may be exported by several application
nodes. In our example, interface [, is exported by
nodes A and C. Node A imports and exports inter-
faces, playing thus both client and server roles, making
it a chaining-server.

To summarize, we have two major goals: To
define the details of a single interface (binding)
between DCE nodes of which the IDL file is a major
component, and second to combine multiple interfaces
into DCE applications.

The DCE environment is more complicated and
flexible [9]. Interfaces are uniquely identified by a
unique universal identifier (uuid). This identifier is
written within the IDL file defining the interface.
Additional differentiation comes on the basis of major
and minor version numbers in the interface (IDL) file
head. Further differentiation is provided by introduc-
ing objects, which are also uniquely identified by a
uuid. An object can be considered as an implementa-
tion of an interface, and there may be several different
implementation of the same interface which are distin-

38

guished by an object vuid. Moreover, multiple identi-
cal implementations of the same interface may coexist
on several machines on the network. In order to bind,
a client needs to identify which of the objects of an
interface it wishes to bind to, and than select one of
the competing servers on the network according to
some criteria. Interface uuid-s are written in the IDL
file header. Objects uuid-s are not stored in IDL files,
but are used in the code which binds a client to a par-
ticular server that implements an interface. This com-
plexity is encapsulated within the code generated by
gluegen.

Directory and security services are strongly related
to the client/server binding issue but will not be
included in our discussion of gluegen glue-code in the
scope of this paper (sce [4]).

gluegen takes as input the application’s topology
defined by a set of attributes. gluegen uscs a simple
syntax in an Application Profile (APF) file. This is a
formal language which controls the generation of the
appropriate glue-code. Some of the attributes arc bor-
rowed from the DCE documented terminology, and
some are specific to gluegen.

gluegen profile objects.

Rather than presenting the gluegen language, we
will show an example of defining a Client/Server
application using APF.

The APF language identifies an interface profile,
which defines the binding methods for a particular
interface. An interface is associated with a particular
IDL file, and thus represents a sct of operations. In
the DCE application model graphs discussed above,
an interface represents an edge between two applica-
tion nodes. The version and interface name are auto-
matically extracted by gluegen from the corresponding
IDL file.

A collection of interfaces may be associated with an
application in an object we term application profile.
In an application profile, an interface can either be
exported, or imported. The application profile also
defines how will the application be initialized (start
up), and how many concurrent threads of service will
coexist 1n a server.

The interface profile attributes fall into two catego-
ries: compile-time attributes and run-time attributes.
Values of compile-time attributes must be specified in
the APF. Values of run-time attributes may be speci-
fied in the APF, or later at run-time upon nvocation
of the Client and Server applications. Run-time attri-
butes can come from the command-line, the standard-
input, or another file — depending on the user’s choice
in the APF. Likewise, the values picked for attmbutes

at run-time, and which are needed to bind to an inter-
face exported by a server, can be reported by the
server application to the standard output streams, or
to a file. This is also done according to the user’s
choice in the APF.

When the server reports its binding attribute values
to a file, the file can then be fed to the client. As a
result, the two applications will bind in a very simple
and direct method.

Example. Consider the distributed application graph
in Figure 1. Application node A imports interface /,
and exports interfaces [; and . Definition of applica-
tion node A using the APF language might look as
follows (keywords are in bold letters):

/* Application Profile for Node A */

interface 11 {
protseq = ncadg_ip_udp;
host = nodeD;
bindtype = repm;
handle = explicit;
idl = “11.1d1";

}

interface 12 {
protseq = ncadg_ip_udp;

bindtype = lepm;
handle = explicit;
idl = "12.9dV";

}

interface 13 like 12 {
idl = *I3.3d1";

}

application appA {
finput = null;
foutput = stdout;
nthreads = 1;
import I1;

export 12;
export I3;
}
Explanation:

The application profile above defines an applica-
tion named appA. The (interface) binding attnbutes
for appA, some provided with command arguments
and some resolved at run-time, will be wrtten to the
standard output (foutput= stdout). No binding infor-
mation will be read from input file (finput= null).
The application will work serially using a single thread
(nthreads = 1).

All three interfaces use the same protocol sequence
(protseq = ncadg_ip_udp). The exported interfaces /2
and /3 will be registered in the local entry-point

39

mapper — the rped component of DCE (bindtype
lepm). The imported interface 7/ uses the samc
method on its own host, which can be a remote host
(nodeD) to the AppA application (bindtype repm,
and host nodeD). All three interfaces use an
explicit handle (handle explicit). Each interface
also has its own IDL file.

Note the like feature allowing 13 to inkerit most of
its attnibutes from 12. Additional effectiveness can be
obtained via C preprocessing:

/* Application Profile for Node A wusing
** J1.ipf, I2.ipf and the LIKE statement

*/
#include "I1.ipf"
#include "I12.ipf"

interface 13 like 12 { idl = "I3.id1" }

}...

The APF language model is object-oriented for con-
venience and ease of comprehension, even though it is
based solely on attributes and has no user-defined
methods. The internal representation of the model is
object-oricnted, where the application, interface and
DCE objects (not shown in the example) are prede-
fined classes with predefined methods. The gluegen
library is not exposed to the programmer and is used
only via the APF file and run-time attributes as
described above. Exposing more of the library and
allowing access to more of the built-in methods will
make the combination of compile-time APF, and run-
time library very powerful.

Putting it all together

To demonstrate the relationships and origin of
components which make up a DCE application using
idigen and gluegen, Figure 2 on page 7 depicts a situ-
ation where a monolithic application (top) is split to
two programs serving in the roles of a Client and a
Server (bottom).

The components of each application node (Client and
Server) are as follows:

1. Glue-code and glue-stub are generated by gluegen
from an APF file. Separate pairs of glue-code and
glue-stub files are generated for each application —
one for the Client, and one for the Server. The
glue-codes include the main() entry-points of the
Client and Server programs.

Monolithic application

RO3ASEZELIE=222vRETRE

FGlue code/stub

Eemmarns
T

74 :Cliont

Fistub

o

1iDCERTL 1

Network
Legend:
-~
Local procedure call
. - -
RPC communications
seeverrvasacresiie

File generation by tools

Figure 2. Putting it all together

2. The glue-library is linked with each program and
implements the API used in the glue-code. Appli-
cation code may also use the API of the glue-lib.

. Application code in the Client is the Main part of
the original application — which performs an RPC
to the Server.

. Application code in the Server is the Utility part
of the original application — which implements
the RPC performed by the Clent.

. Server-stub is a code generated by the id/ compiler
(part of DCE) for the Server. The code 1s gener-
ated from an IDL file which represents the inter-
face between the Client and the Server.

. Client-stub is a code generated by the idl compiler
for the Client.

. The IDL file used to generate the stubs in steps 6,
and 5, is extracted from the C source by idlgen.

. DCE RTL is the DCE run-time library which
supports the DCE execution environment of DCE
applications. This layer uses other lower-level

40

communication support layers in the opcrating
systems of the respective platforms on which the
application nodes execute.

Directory and security services

Directory services add another whole world of pos-
sibilities, specifically in hiding gory details of objects
within symbolic names in a global and cell directory
data bases. When dealing with directory services, one
has to distinguish management from access. The
management of directory services requires suitable
tools which are not part of application developrnent.
Within this aspect of management, we can also
include many elements of security (sce below). In the
application devclopment aspects, directory services
allow to define an interface via its symbolic name in
the directory, reducing the amount of information
entered to gluegen via the APF file.

Security services are used to control access to ser-
vices via authentication and validation. Although
issues of security can be rather complicated, one can
observe however, that some aspects, like rccess
Control Lists (ACL) are part of directory services
management. To fully exploit security in the applica-
tion, certain DCE activitics may have to be interlcaved
within the application code.

The extension of the APF language to include
objects, directory and sccurity services is being incor-
porated into gluegen and will simplifies many aspects
of the tool as well as increases its utility. The ¢xten-
sions to APF and to the gluegen run-time library are
not described in this paper (see [4]).

Conclusions

This paper introduces the MakeDCE family including
the tools idigen and gluegen for the development of
DCE applications, with respect to splitting monolithic
applications into chients and servers. The tools can be
applied to the general case of DCE applications as
well, and serve two goals: Reduce code dependency on
DCE, and relieve the programmer from being deeply
familiar with the details of DCE development toolkit.
There are many alternative approaches to distrib-
uted application development. DCE is not an object-
oriented system, even though its intemnal architecture
is such. DCE is intended to develop procedural appli-
cations on a distributed environment. Object oriented
alternatives [8] may or may not use DCE as an imple-

mentation base. For instance, there are efforts to
enrich DCE with objects [S], or to build a C++
library encapsulating its run-time [2, 3]. gluegen uscs
a library which introduces a higher-level of abstraction
above the DCE run-time, but keeps it at the proce-
dural format. The run-time support in gluegen
strongly relates to the elements of the APF language,
where applications, interfaces, and DCE objects arc
treated — at the language and in the internal represen-
tation — as objects in the “OO0P” sense. gluegen run-
tirne library, maintains this model and gives access to
it through a limited APL.

Our approach keeps DCE aspects separated from
the application logic and makes it much less depend-
ent not only on DCE, but also on the fact that the
application is distributed.

A totally different approach is to introduce a new
language [11] where aspects of distribution are lan-
guage elements integrated with the application logic.
The application is than independent of DCE, which
now is a choice of an implementation vehicle in the
language. We believe that the approach adopted by
DCE of providing support for distribution via func-
tions is preferred. Independence of the application
from DCE can be achieved by separating application
logic from aspects of distribution as two orthogonal
implementation cfforts. QOur tools offer an essential
instrumentation in this direction.

Acknowledgements

Thanks to Ran Canetti, Karen Laster, and Arie Tal
who contributed to the tools reported here.

References

Birrell, A. and B., Nelson, “Implementing
Remote Procedure Calls,” ACM Trans. on
Computer Systems, vol. 2, pp. 39-59, Feb.
1984,

(1]

Citibank Distributed Processing Technology,
Objtran Programmer’s Guide (Available via
internet from lep@fig.citib.com), 1993.

(2]

41

3]

[4]

(5]

(6]

7]

(8]

(9]

(10]

(1]

Dilley, I., “Object_Oriented Distributied
Computing With C++ and OSF DCE;
Proceedings of the International DCE Work-
shop, A. Schill (ed.), pp. 256-266, Karlsruhe
WG: Springer-Verlag, October 1993.

Gold, 1. and U., Shani, “Wrapping DCE/;OSI
Client/Server Applications,” Proceedings o
USENIX UNIX Applications Developmen:
Symposium, Toronto, Canada, April 25-2&
1994.

Mock, M. U., “DCE++: Distributing C++
Objects using OSF DCE,” Proceedings of the
International DCE Workshop, A. Schill (ed.).
pp- 242-255, Karlsruhe, WG: Springer-Verlag.
October 1993.

Network Computing Architecture, Apollo
Computer Inc., Prentice Hall, 1991.
Network Computing System Reference

Manual, Apollo Computer Inc., Prentice Hall
1991.

Object Management Group, The Common
Object Request Broker: Architecture and
Specification, 1991.

Open Software Foundation, DCE Application
Development Guide, 1993.

Shani, U., N., Amit, [., Boldo, M., Kaplan
J., Marberg, R. Y., Pinter and M., Rodeh
“Program Partitioning for Heterogeneous
Machines,” Proceedings, The Sixth Israel:
Conference on Computer Systems and Soft-
ware Engineering, pp. 136-145, Herzliah
Israel, June 2-3 1992.

Yemini, S., G., Goldszmidt, A., Stoyenko, Y.
Wei and L., Beeck, “Concert: A Heteroge-
neous High-Level-Language Approach to
Heterogeneous Distributed Systems,’
Proceedings of the 9th [nternational Confer
ence on Distributed Computing Systems, 1989.

