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Preface 

Client/server applications are of increasing importance in industry; they are a signifi- 
cant first step towards a global distributed processing model. A very recent response to 
this trend is the Distributed Computing Environment (DCE) of the Open Software 
Foundation (OSF), the emerging new industry standard for distributed processing. The 
papers in this volume discuss the client/server approach based on DCE, illustrating 
and analyzing the functionality of important DCE components and applications. Mo- 
reover, a number of contributions also focus on new models beyond traditional 
client/server processing and beyond DCE. 

The material summarized in this volume was presented at the International Workshop 
on the OSF Distributed Computing Environment on October 7 and 8, 1993 in Karlsru- 
he, Germany. This workshop was organized by the German Association of Computer 
Science (Gesellschaftfar Informatik, GI/ITG), together with the University of Karlsru- 
he and the Nuclear Research Center in Karlsruhe. 

Major subject areas of the workshop were analysis and overview of DCE, methods 
and tools for DCE applications, extensions of the DCE remote procedure call, and di- 
stributed object-based systems on top of DCE, including the Object Request Broker 
(ORB) of the Object Management Group (OMG). Most papers are of practical orienta- 
tion but typically have a strong technical and conceptual background. A more detailed 
overview of the papers is given at the end of the first contribution which gives a sur- 
vey of distributed systems, DCE, and approaches beyond DCE. 

We would like to thank all people who contributed to the success of this workshop. 
The members of the program committee did a very good job in reviewing about 10 
papers per committee member. The Institute of Telematics of the University of Karls- 
ruhe, especially Prof. Dr. Gerhard Kriiger, made the workshop possible by providing a 
lot of organizational support. The university supported the workshop by making the 
required lecturing halls available. The background organization of the workshop was 
made possible by the Gesellschaftfar Informatik, especially by its working groups on 
operating systems and on distributed systems (FA 3.1 and 3.3). We would also like to 
thank the speakers and authors and the colleagues who did the industry demonstrations 
on DCE; their technical contributions were a major prerequisite for this workshop. 
Moreover, the work force who helped with the local organization, especially the col- 
leagues and students from the Institute of Telematics did an excellent job. 

Finally, we would of course like to thank all companies that supported the workshop 
in various ways, including Daimler-Benz AG, Digital Equipment Corporation, 
Hewlett-Packard, IBM, the Open Software Foundation, Siemens-Nixdorf, and SUN 
Microsystems. The local organization was particularly supported by Dr. Lutz Heuser 
of Digital Equipment's Campus-based Engineering Center (CEC) in Karlsruhe and by 
the Volksbank Karlsruhe. Moreover, we would like to thank all other colleagues who 
supported this workshop in one way or the other during the last few months. 

Karlsruhe, August 1993 Alexander Schill 
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Abstract. This introduction paper presents basic foundations of distributed systems 
and applications and then shows how OSF DCE addresses the requirements imposed 
by distributed enviromnents. The DCE architecture is illustrated, the basic functional- 
ity of the DCE components is explained, and the DCE RPC as the major base for cli- 
ent/server applications is presented in closer detail. 

The paper also discusses requirements and new models beyond DCE in order to en- 
able even more advanced distributed applications. In particular, distributed object- 
oriented DCE extensions are outlined and directions towards distributed multimedia 
applications are pointed out. Moreover, other requirements and trends such as ad- 
vanced tool support or distributed transaction facilities are also discussed. Finally, an 
overview of the papers within these proceedings is given. 

1 Introduction and Overview 

The potential benefits of distributed processing systems have been widely recognized 
[1,2]. They are due to improved economics, functionality, performance, reliability and 
scalability. In order to explore the advantages of distributed processing, appropriate 
support is needed that enables the development and execution of distributed applica- 
tions. A distributed application consists of separate parts that execute on different 
nodes of the network and cooperate in order to achieve a common goal. A supporting 
infrastructure should make the inherent complexity of distributed processing transpar- 
ent as much as possible. The infrastructure is required to integrate a wide range of 
computer system types and should be independent of the underlying communication 
technology. 

The Open Software Foundation (OSF) has presented such an infrastructure called Dis- 
tributed Computing Environment (DCE). It is a collection of integrated software com- 
ponents that are added to a computer's operating system. DCE provides means to 
build and run distributed applications in heterogeneous environments. 



Let us illustrate the role of DCE by an example: Figure 1 shows a distributed office / 
manufacturing procedure that implements a product management scenario. Several 
distributed activities are performed by a collection of processes. We assume that each 
process is allocated to a different network node, and that nodes are connected by a 
physical network. The processes cooperate as shown by the arrows by forwarding 
forms or control data between each other. Some of the activities can be executed in 
parallel (such as the manufacturing and marketing activities) while others are sequen- 
tial, or alternative (such as regular quality control, simplified quality control or by- 
passing according to the product type). Each activity can be subdivided hierarchically. 

~Manufacturin g ~ - - ' - - ~ Q u a l i t y  control 

6 e t c h p r o d u c ~ t  ~t(~Sim, p le -'~ ~ sSalp~ )rt 
Idesign data / I quality I---"- '-  ~ J 
k~ ~ f ~  ~appro~.,al ~ - 

~p lan  .,) ~ e n e r a t i o n )  

Fig. 1 Example of a distributed office procedure application 

An example of an underlying distributed system is shown in figure 2. Two hosts and 
three workstations are interconnected via an Ethernet and a Token Ring. The two net- 
works are coupled via a gateway. Each computer system offers local resources (at 
least CPU and main memory, but possibly also printers and secondary storage). These 
resources can also be accessed remotely and can be shared among different computers. 
Resource control is performed in a decentralized and mainly autonomous way. On 
each computer system, a set of application processes are operating - as found in our 
distributed application. These processes can communicate over the interconnected net- 
works via basic interaction mechanisms such as remote procedure call. At this level, 
the underlying physical network topology is already considered to be relatively trans- 
parent. 

Role of DCE and client/server-model: The OSF Distributed Computing Environ- 
ment (DCE) can now be classified as being a distributed system, while also offering a 
set of services that support the development of distributed applications. Basically, 
DCE closes the gap between the physical components of a distributed system and the 
application components. 
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Fig. 2 Distributed system with communicating application processes 

DCE internally works with the client/server model (see fig. 3), and is particularly 
well-suited for the development of applications that are structured according to this 
model: A server typically offers some service to a population of clients; typical exam- 
ples are print services, computational services or name translation services. A client 
can make use of a service by sending a service request message to a suitable server. 
The request can contain input parameters (e.g. data to be printed). The server performs 
the requested service and finally sends a service response back to the client. The re- 
sponse can contain output parameters (e.g. a status indication). 

Client ] ] Server 
"document I~Service r e que s t  "document 

editing" [ -  Service response i archiving" 

Service r eques t  ] 

4Service response[ 

Server 
"printing" 

Fig. 3 Client/server model 

As shown in the figure, a server can also act as a client of another service, i.e. delegate 
parts of a service request to a peer server. For example, a document archiving server 
could request a print service in order to offer a more complete document management 
functionality to its clients. 
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2 DCE: Strategy and Architecture 

Based on the introduced foundations, this section presents the general strategy of the 
Open Software Foundation towards products for open systems and then illustrates 
DCE as one of these products in more detail. 

2.1 Goals and Strategy of the Open Software Foundation 

The Open Software Foundation (OSF) is a not-for-profit research and development or- 
ganization. Its members comprise computer hardware and software vendors, end us- 
ers, universities and other research institutions. One of the major goals of the OSF is 
to enable global interopcrability among heterogeneous systems by providing a practi- 
cal open computing environment [3]. 

To achieve this, the OSF solicits proposals for open systems software technology, then 
evaluates the submissions, and finally licenses the selected solutions for incorporation 
into the OSF open computing environment. That environment is a collection of tech- 
nologies that provide for interoperability of diverse systems as well as application 
portability. 

Its main parts are currently 

�9 the OSF/1 Unix operating system, 

* the OSF/Motif graphical user interface, 

�9 the OSF Distributed Computing Environment (DCE) and 

* the OSF Distributed Management Environment (DME). 

From a distributed systems point of view, DCE and DME are of primary importance. 
While DCE is the base for building distributed applications and also offers a set of dis- 
tributed services directly to the end user, DME addresses the issues of network and 
system management; it should suffice to mention that it offers an object-oriented infra- 
structure for distributed management applications, together with support for the man- 
agement protocols SNMP and CMIP. It also provides a management user interface 
and several supplemental management services [4]. Moreover, DME uses certain DCE 
components. The DME development has not yet reached the same mature stage as 
DCE. 

In the meantime, DCE tends to become an industry standard for distributed process- 
ing; most of the major computer vendors are members of the OSF and offer (or have 
announced) DCE compliant products for their computing platforms. As opposed to 
other standards, the implementation of the components existed first, and standardiza- 
tion was performed by the OSF thereafter. This seems to have major advantages con- 
ceming the resulting functionality, system performance and timeframe of delivery. 

2.2 DCE Architecture and Services 

Fig. 4 shows the overall DCE architecture [5-6]. All DCE components are based on 
local operating system services (e.g. Unix) and transport services (e.g. TCP/IP). Dis- 
tributed applications make explicit use of fundamental DCE services (in italics in the 



figure) via C programming interfaces. The other DCE services are used implicitly via 
the fundamental services or via modified operating system services. 

Fundamental DCE services: The Thread Service provides a portable implementation 
of lightweight processes (threads) according to the POSIX Standard 1003.4a. Threads 
enable concurrent processing within a shared address space, and are especially used by 
RPC for implementing asynchronous, non-blocking remote invocations and multi- 
threaded servers. 

Distributed applications 

Distr. Cell Directory S./ Security 
Time Global Directory 
Service Service Service 

Distr. 
File 

System 

Disk- 
less 
Support 

Remote Procedure Call 

Thread Service 

Local operating system and transport services 

Fig. 4 DCE architecture 

The DCE RPC is the major base for heterogeneous systems communication. Based on 
RPC, a client request for a remote procedure (i.e. a service request) is transferred to 
the server, mapped to a procedure implementation, executed, and finally acknowl- 
edged by sending back results to the client. All input data and results are encoded as 
RPC parameters similar to local calls. All parameter conversion and transmission tasks 
are handled by call marshalling facilities that are part of so-called RPC stub compo- 
nents at both sites. This way, the remoteness of a call be be masked to a large degree 
at the application level. The stubs are generated automatically from an interface de- 
scription which specifies the signatures of the invoked procedures. DCE offers a C- 
based Interface Definition Language (IDL), various kinds of call semantics, nested pa- 
rameter structures, secure RPC with authentication and authorization based on the 
DCE Security Service, global (up to worldwide) naming of servers based on the X.500 
directory service standard, backward calls from servers to clients, and bulk data trans- 
fer based on typed pipes (logical channels). 

The Cell Directory Service (CDS) supports distributed name management within dedi- 
cated management domains. Name management basically comprises mapping of (at- 
tributed) names to addresses, and update of name information. Most important, it is 
the base for mapping RPC server addresses to client requests. Its functionality is inte- 
grated into the DCE RPC programming interface via NSI (Name Service Interface). 



CDS exploits replication and caching to achieve fault tolerance and efficiency. An ad- 
vanced CDS programming interface is offered by the standardized X/Open Directory 
Service Interface. 

The Security Service implements authentication, authorization, and encryption. These 
mechanisms are tighly integrated with DCE RPC; for example, RPC clients and serv- 
ers can be mutually authenticated, servers can dynamically check access control lists 
for proper client authorization, and all RPC messages can be encrypted on demand. 

Finally, the Distributed Time Service (DTS) implements distributed clock synchroniza- 
tion, a common problem in distributed environments. It guarantees that local clocks of 
participating nodes are synchronized within a given interval. Moreover, synchroniza- 
tion with exact external time sources (e.g. with radio clocks) is supported. This func- 
tionality is important for implementing timestamp-based distributed algorithms. It is 
also directly exploited by other DCE components. 

Other DCE services: The Global Directory Service (GDS) extends CDS by global 
naming facilities across administrative domains. It is based on the X.500 directory 
service standard. Therfore, it enables interoperability not only with other DCE direc- 
tory servers but also with other X.500 servers worldwide. As an alternative, the Inter- 
net Domain Name Service can also be used for global naming. 

The Distributed File System (DFS) implements cell-wide transparent distributed file 
management. Files can be stored at different servers and can also be replicated. Cli- 
ents, i.e. application programs, can access files by location-transparent names similar 
to a local Unix file system. File access is quite efficient based on whole-file caching at 
the client site. This technique also supports scalability by offloading work from file 
servers to clients during file access [7]. Interoperability with the widely used Network 
File System is enabled via an NFS/DFS interface. DFS is augmented with a Diskless 
Support component; it provides boot, swap, and file services for diskless workstations. 

In summary, DCE provides a rich and integrated functionality for distributed applica- 
tions. Moreover, DCE supports heterogeneous systems interoperability and is offered 
in product quality. 

2.3 DCE System Configurations and Application Example 

DCE supports structuring of distributed computing systems into so-called cells in or- 
der to keep the size of administrative domains manageable. A cell can consist of all 
nodes attached to a local area network but is usually defined according to organiza- 
tional considerations rather than physical network structures. Therefore, it is basically 
a set of nodes that are managed together by one authority. 

Cell characteristics: Most DCE services are especially optimized for intra-cell inter- 
actions. While cross-cell communication is possible, interactions within a cell are usu- 
ally much more frequent, and can therefore benefit from such optimization signifi- 
cantly. Moreover, cell boundaries represent security firewalls; access to servers in a 
foreign cell requires special authentication and authorization procedures that are dif- 
ferent from secure intra-cell interactions. Finally, the distributed file system within a 
cell provides complete location transparence; as opposed to that, explicit cell names 
must be specified for file access across cells. 



Example: Fig. 5 shows an example of an application framework based on DCE to im- 
plement an office / manufacturing scenario as discussed above. It consists of three 
cells A-C for product data management, manufacturing and marketing / sales. Within 
each cell, various nodes with dedicated application services exist (such as manufactur- 
ing control, machine management, and quality control processes on three different 
nodes in cell B). Moreover, each cell has a set of DCE system servers, including secu- 
rity, directory, time, and file servers. Typically, two or more servers of each kind are 
configured within a cell in order to improve availability of DCE services and perform- 
ance of service access. One or several global directory servers are available in the ex- 
ample to enable cross-cell naming, e.g. to identify and access an application server in 
a remote cell. Finally, a diskless workstation pool is part of cell A and is linked to 
DFS and other DCE services via the diskless support component of DCE. 

MarKeting ana ~ales 

Fig. 5 DCE application example and cell structure 



All nodes, respectively the application processes, and also the DCE components inter- 
act via DCE RPC. For example, this is indicated within cell A and between cell B and 
C in the figure. RPC servers are located via CDS based on logical names, and via GDS 
across cells. RPC communication can be made secure by the protocols offered by the 
security servers. Each process can comprise a number of threads to serve multiple 
RPCs concurrently (server site) or to issue multiple RPC requests in parallel (client 
site). 

Data management can be based on the distributed file system. This way, different 
processes such as the management, secretary, and data management components of 
cell A can share file data in a location-transparent way. On the other hand, these files 
can also be accessed from remote cells upon request, provided that the accessing client 
is properly authorized and authenticated in both cases. 

3 DCE Remote Procedure Call 

As the RPC tends to be the most important mechanism within DCE, it shall be de- 
scribed in more detail, augmented with practical examples. 

3.1 Properties of DCE RPC 

Language integration and data representation: The implementation of DCE RPC is 
based on the C programming language; all interface specifications are given in a spe- 
cific Interface Definition Language (IDL) that is a superset of the declarative part of 
C, corresponding to C header file code portions. Moreover, the RPC programming in- 
terface is offered as a C library - similar to the interfaces of other DCE components. 

IDL allows the specification of arbitrary parameter data types with virtually the same 
facilities as found in C. The RPC runtime system, namely the stubs generated from 
IDL, are able to handle nested data structures by flattening them recursively, transmit- 
ring them to the server, and rebuilding them there. All differences concerning data rep- 
resentations at the client and server sites are masked by DCE by converting data for- 
mats accordingly. This principle is called "receiver makes right" and means that data 
are transmitted in the sender's representation and are adapted to the receiver's format 
at the destination site. The DCE implementation of a particular vendor must therefore 
know all other possible data formats of peer nodes - however, in practice, only a few 
different formats actually exist. 

Call semantics: The application programmer can choose between different kinds of 
call semantics. For example, the default, at-most-once, makes sure that a call is exe- 
cuted once even if communication messages are temporarily lost. This is achieved by 
message retransmission combined with the detection of duplicate messages. Although 
node failures cannot be tolerated, message loss can be masked this way. Other select- 
able semantics provide weaker guarantees in the case of failure but achieve an im- 
proved efficiency. 

Thread support: Based on threads, it is possible to implement multithreaded servers; 
this just requires an appropriate parameter setting during server initialization. Then a 
(static) pool of concurrent server threads is allocated initially. The application pro- 
grammer, however, must take care of correct thread synchronization in case of shared 



data modifications. On the client site, threads must be started explicitly to do concur- 
rent, asynchronous calls to multiple servers. Within its body, each thread then per- 
forms a synchronous call while different threads are mutually asynchronous. 

Secur i ty :  As mentioned above, secure RPC communication is possible based on the 
security service. First, the application client and server run a distributed authentication 
protocol in cooperation with a security server. In this phase, they mutually validate 
their identity based on a private key encryption approach. In a second phase, the actual 
call is executed; before the server starts acting upon it, it checks the proper authoriza- 
tion of the client based on a local access control list. Finally, the call data can option- 
ally be encrypted in order to enable complete privacy during communication. 

D i r e c t o r y  

S e r v i c e  

Cl i en t  Import [ 

- Local call 
- Locating a suitable server 

(binding) 
- Encoding of call and parameter 

data 
- Call transmission 

I 
I 
I 

client blocks 

- Receipt of RPC reply ~ I 
- Decoding of reply 

I - Continuation of client program 

- Possible error handling 

xpor 

RPC 

S e r v e r  

- Determination o f  communication 
protocols to be used 

- Local installation o f  
procedure interfaces 

C Export o f  procedure interfaces 
to directory service 

- Waiting fo r  incoming calls 

- Receiving a call 
- Decoding of call data 
- Call execution 
- Coding of result data 
- Transmission of reply 

Fig. 6 Typical DCE RPC runtime scenario 

3.2  B u i l d i n g  A p p l i c a t i o n s  w i t h  D C E  R P C  

Building distributed applications with DCE RPC requires the following steps: 

�9 Interface definition: An IDL interface must be specified with all procedures that 
shall be offered by a server. 
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�9 Server implementation: The server procedures must be implemented as ordinary 
C code. Moreover, DCE-specific server initialization steps must be performed by 
the implementation. 

�9 Client implementation: In the simplest case, the client site is implemented as a 
standard C program. Advanced DCE features such as explicit selection among a 
group of servers or execution of secure RPC require additional code, however. 

RPC runtime aspects: A typical DCE RPC runtime scenario is illustrated in fig. 6, 
All functionality that has to be implemented explicitly by the application developer is 
shown in italics, everything else is or can be performed automatically by DCE RPC. 

The first step is the server initialization. The servers determine which communication 
protocols to use (such as TCP/IP or UDP/IP), installs its offered procedure interfaces 
with the RPC runtime system, exports the procedure interface information to the direc- 
tory service (i.e. CDS), and finally waits for incoming calls. 

To invoke an RPC, a client calls the corresponding procedure locally. However, based 
on the stubs that are generated from IDL, an internal handler routine is executed in- 
stead of a local application procedure implementation. It contacts the directory service 
for locating a suitable server. The input is a logical name for the server and the re- 
quired procedure interface, the output is a server address, a so-called binding handle. 
This whole process is called RPC binding. Then the remote call and its input parame- 
ters are encoded and transmitted to the server. While the server executes the call, the 
client blocks. The remaining steps of call decoding, execution and result transfer have 
already been explained earlier. Finally, the client should include some error handling 
due to possible transmission problems etc. 

Example: A program example shall illustrate the required code; it implements a re- 
mote client query against a server that manages product data. The interface definition 
consists of a header with a unique interface number (generated automatically) and 
with versioning information. The interface body comprises the required C type defini- 
tions and procedure interfaces with fully typed parameter specifications. Some attrib- 
utes beyond C are required to distinguish between input and output parameters, for ex- 
ample. 

[ 
uuid(765c3b10-100a- 135d- 1568-040034e67831), 
version(1.0) 
] 
interface ProductData { 

import "globaldef.idl"; 
const long maxprod = 10; 
typedef [string] char *String; 
typedef struct { 

String productName; 
String productAnnotation; 
Plan manufacturingPlan; 

} productDescription; 

long productQuery ( 
[in] String productName[maxProd], 
[out] ProductDescription *pd[maxProd], 
[out] long *status ); 

/! Interface for product data 
//Import of general definitions 
/[ Maximum number of products 
//String type 

[[ Product name 
//Textual annotation 
//...Type defined in globaldef.idl 
[[ Product description data type 

[/Remote query procedure 
//-> Product names 
//<- Product descriptions 
[/<- Call status 
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Server: The server initialization implements the steps discussed above by calling a 
number of DCE RPC system functions. A simplified example program looks as fol- 
lows: 

#include "productdata.h" 
#define enta'yName "/.:/ProductServer" 
#define maxConcCalls 5 

//Generated by the IDL compiler 
//Name of server's directory entry 
//Max. number of concurrent havoc. 

main 0 { 
tmsigned status; 
rpe_.binding_vector_t *bVec; 

//Return status 
//Vector of binding handles 

//*** Perform some local initializations (not detailed here) 
//*** Get the actual vector of binding handles: *** 
rpc. server__inq_bindings (&bVec, &status); 

//*** Register the interface with a machine-local RPC manager process: *** 
rpc_ep_register (ProductData vl 0 s ifspee, bVec, NULL, NULL, &status); 

[/*** Export the interface to the directory service under the given name: *** 
rpc_ns_binding export (rpc_c_ns_syntax_default, entryName, 

ProductData vl 0 s jfspec, bVec, NULL, &status); 

//*** Now be ready to accept incoming invocations concurrently: *** 
rpc_server_listen (maxConcCalls, &status); 
) 

The implementation of the server's application procedures, i.e. ofproductQuery in this 
case, is identical with a local implementation and is therefore not detailed here. 

Client: The client site is also independent from DCE or distributed systems aspects (if 
no advanced RPC functionality is desired): 

#include "productdata.h" [/Interface definition header file 

main 0 { 
String product[maxProd]; //Product names 
ProductDescription *pd[maxProd]; 
long rc, status; 

//Requested product descriptions 
[/Status values 

inputProductNames (product); 
rc = productQuery (product, pd, &status); 
//... check status value and handle errors 
) 

[/Input function (appl. specific) 
//RPC 

In summary, building DCE applications based on the client/server model is a rela- 
tively straightforward task for C programmers. However, the use of advanced features 
is more difficult. In the following, such features are summarized briefly; for deatails, 
see [6]. 
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3.3 Advanced DCE RPC Features 

Binding: During binding, the client can control the selection of a specific server ex- 
plicitly; this mode is called explicit binding as opposed to the automatic binding ap- 
plied above. The implementation of explicit binding is based on directory service in- 
teraction procedures to be called by the client via system RPCs. Moreover, DCE offers 
facilities to register groups of servers with the directory service and to specify client- 
specific search paths through the directory entries. This way, the server selection proc- 
ess can be controlled in detail. 

Callback: With DCE RPC, it is possible for a server to issue a callback to a client 
during remote procedure execution; the client must offer an appropriate call interface 
for that. This way, a server can deliver intermediate results or can request further input 
data. 

Pipes: For bulk data transfer, logical pipes can be established between client and 
server by passing pipe references as RPC parameters. A server can then request large 
chunks of data via the pipe dynamically from the client, and can also send bulk data 
back to the client this way. 

Context: For multiple client/server interactions in a row, it is sometimes useful to es- 
tablish some context information between both sites. An example is information about 
an open file of a file server that is read by a client by several RPCs. DCE RPC offers 
explicit mechanisms to handle such context information. 

Other features such as asynchronous RPCs and secure RPCs have already been dis- 
cussed. Altogether, a quite rich RPC functionality is provided by DCE. 

4 Challenges and Models  Beyond DCE 

While DCE is a major step towards open distributed computing, the approach is still 
limited to relatively conventional client/server applications. This presents a number of 
ongoing research and development challenges to provide advanced support and new 
models beyond DCE. Examples are advanced development and management tools, 
distributed object-oriented systems, distributed transaction support, and multimedia 
extensions. 

4.1 Advanced Method and Tool Support 

Only few commercially available dedicated tools exist for client/server type applica- 
tions. As a consequence, programmers use design methods, debugging tools and other 
software development aids that were developed for the sequential programming lan- 
guages used as RPC host languages. The situation is similar for management compo- 
nents such as source code control tools. The distribution and parallelism exhibited in 
client/server applications, however, requires dedicated development aids. This require- 
ment becomes even more important as we move to programming paradigms beyond 
client/server, such as the ones described later. 

We will, for the remainder, focus on a number of important aspects of tool support 
which can be divided into three categories: development tools (here we will discuss 
formal specification and design), runtime-level tools (debugging and cooperation), and 
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management tools (runtime management and distributed system management). For 
some of these topics, we will separately discuss support for DCE-like client/server ap- 
plications and for advanced distributed applications. 

Formal specification techniques have gained a lot of attention in the context of com- 
munication protocols. This is due to the fact that such protocols are complex (i.e. hard 
to describe unambiguously with informal techniques) and that implementations of dif- 
ferent vendors have to interoperate in open distributed systems. The formal techniques 
used for communication protocols can be applied to distributed applications as well 
[8]; the application of Lotos, Z, and SDL to distributed systems is described in [9]. 
However, the corresponding formal specification techniques usually do not focus on 
any of the most interesting aspects of distributed applications, such as dynamic recon- 
figuration of the network of processes (active entities and communication links beeing 
added and removed at runtime), hierarchical decomposition, and asynchronous com- 
munication. Moreover, the feasibility of formal techniques for large software projects, 
and the close coupling of formal techniques to DCE (in the sense of automatic code 
transformation) have not been achieved to a satisfactory degree yet. Moreover, in the 
client/server context, formal techniques for reasoning about the correctness of RPCs as 
such ought to be included. 

Design: Specific design tools for distributed applications are hardly in use, either. The 
software engineer would want them to support visual programming, early animation of 
coarse designs, and automatic code generation. An example for a prototype tool with 
these features, VDAB, is described in this volume. It also supports the design of the 
dynamic behaviour of distributed applications "by example", based on dedicated call 
scenarios. The tool translates into a distributed version of C++, which is in turn imple- 
mented on top of DCE. 

Debugging: Distributed debugging is widely recognized as one of the most important 
issues to be resolved on the way to cost-effective development of distributed applica- 
tions. This owes to the fact that sequential debuggers do not help resolve some of the 
most predominant problems with testing distributed programs: the interference of the 
debugger with the code (which can make it impossible to detect the effects of race 
conditions), the presence of indeterminisms (which hinder the reproducability of sub- 
sequent debugging sessions), the vast amount of parallel events to be perceived by the 
user, and the lack of support for notions like "distributed breakpoint" and "distributed 
single-step". While uncountable contributions to these issues can be found in the lit- 
erature, hardly any commercially available distributed debugging tool exists in the 
wider DCE context. 

Runtime management: For sequential program development, the management of dif- 
ferent versions and branches of source code and executable code in the development 
environment has been considered an important problem; to resolve this issue, code 
management tools were developed. In contrast, the installation of the final software 
version in a target environment (i.e. at the customer site) was usually deferred to a 
one-shot installation procedure. The installation of a distributed application however, 
i.e. the management of executable code in a distributed environment, is often an itera- 
tive and cumbersome task. Executables have to be copied to all sites, parameters and 
input files have to be considered at these sites, nameserver, network, and operating 
system setups have to be adjusted, etc. During execution, performance monitoring is 
desired, e.g,, as a base for reconfiguration decisions. Such tasks are mostly carried out 
by hand today. But with the increasing deployment of distributed applications and the 
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continuing sophistication of these applications, the need for user-friendly (e.g., 
graphics-based) and highly automated runtime management tools will increase drasti- 
cally. 

Distributed system management: As DCE shows, distributed system management is a 
rather complex task. For example, CDS or Security servers must be installed, man- 
aged, and replicated. Security information such as passwords or access control lists 
must be maintained. DFS management comprises an even wider variety of different 
tasks. Therefore, graphical management tools are required to provide simplified man- 
agement user interfaces. Beyond this, further higher-level programs are desirable 
which automate other routine management tasks in a distributed system such as back- 
ups or software upgrades. 

To summarize, tool support for distributed programming has, for the most part, not yet 
left the academic stage. With DCE, however, the development of distributed applica- 
tions has left this stage and more and more commercial sites get involved in distrib- 
uted programming. The expected aggravating effects on the software crisis will prob- 
ably lead to rapid changes in the scene of support tools in the years to come. 

4.2 Distributed Object-Oriented Systems 

A step beyond RPC are distributed object-based systems as extensions of program- 
ming languages like C++, Smalltalk, Trellis, Modula-2 or Eiffel. An object can be de- 
fined as a data structure associated with a set of operations. The data structure could 
refer to other objects by which an object graph can be built representing a so called 
complex object. Thus, as opposed to RPC servers, the granularity of objects is scalable 
and ranges, in general, from a couple of bytes up to thousands of bytes. 

The fine granularity of objects and their capability to form complex objects lead to a 
unit of mobility, i.e. the object, which is easy to handle. Objects interact with each 
other through "message passing", i.e. an object sends a remote message to a peer ob- 
ject to initiate the execution of one of the provided operations. At the communication 
level, message passing is performed by RPC-style location independent object invoca- 
tions whereby interacting objects can reside at different nodes. 

However, as opposed to RPC with call-by-value parameter semantics, object refer- 
ences (i.e. pointers to objects) can also be passed remotely, leading to call-by-object- 
reference semantics. In addition, single objects or even complete object graphs could 
be passed as parameters to the callee [10]. 

The resulting approach is more flexible than RPC and, in particular, enables a more 
natural modeling of distributed applications. Due to the mobility of objects, they can 
be relocated dynamically. This way, communicating objects can be co-located in order 
to reduce communication costs or to increase availability during execution of a joint 
action of a set of objects. 

Example: The discussed office / manufacturing system can directly be mapped to a 
distributed environment this way (see fig. 7). Distributed office procedures can be rep- 
resented as task objects transferred between server objects. Typical operations of task 
objects are start, stop, suspend, or status inquiry while servers provide actual service 
invocations, status inquiries, or accounting functions. Data/document objects attached 
to an office procedure can also be modeled as objects. Moreover, since each document 
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has a certain structure like chapters, paragraphs and so on, it is likely that such docu- 
ment objects are object graphs as mentioned earlier. 

I 
Object: 
Manufacturing 
control 

Object: 1 Remote r e f e r e n c e s / ~  Quality control 

[ , . . _ , / rOb  iect: ~ ,  "."_.~" . 

~ Migration QObject: 
Sales support 

Attached data / 
document objects 1 

Fig. 7 Distributed object-oriented office procedure modeling 

-DistributedObject 0; 
Location *locate 0; 
boolean move (Location*); 
boolean fix 0; 
boolean unfix 0; 
void Invoke (//...); 
invocation 
I; 

Class structure: The mechanisms to create remote objects, to locate and invoke them, 
and to relocate them dynamically can be implemented by superclasses from which all 
relevant application classes inherit. As an example, a C++ superclass is given below 
[11]; it also offers methods to fix objects at a certain location in order to prevent mi- 
gration, and to unfix them later: 

class DistributedObject { 
//... Instance variables like location, size etc. 
public: 
DistributedObject (Location*);//Constructor to create at a given location 

//Destructor 
//Locate the object 
//Move to a given location 
//Fix at current location (prevent from moving) 
//Release for migrations 
//Perform generic 

Such functionality can be implemented on top of DCE RPC as illustrated by other pa- 
pers in the proceedings. This requires sophisticated additional mechanisms for locat- 
ing mobile objects (e.g. via forwarding addresses), for synchronizing migrations and 
computations, for controlling object migrations according to a given goal, and for 
monitoring and controlling the overall system behaviour. 

OMG/CORBA: The industry consortium Object Management Group (OMG) has de- 
fined the Object Management Architecture (OMA) for managing objects in distributed 
systems. This approach aims at providing support for distributed object interaction in a 
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heterogeneous environment. In OMA, objects usally tend to be much larger than they 
are at programming language level, i.e. a whole application could be an object. This 
approach differs from object graphs in the sense that these "coarse-grained objects" 
are treated as monoliths. 

A key component of OMA it is the Object Services Architecture [12-13] that offers 
the required services with a very broad spectrum of functionality. In general, these 
services provide a higher level of abstraction than DCE does and cover a broader tech- 
nological area. Examples are database- and transaction-oriented services, version con- 
trol of software objects, concurrency control, and distributed object replication. Loca- 
tion independent object interactions are supported by the Common Object Request 
Broker Architecture (CORBA); it supports mechanisms for identifying, locating, and 
accessing objects in a distributed environment. However, the Object Management Ar- 
chitecture has not yet reached the same level of maturity that DCE has. Moreover, 
some functionality of distributed object-oriented systems mentioned above, namely 
mobility, is not yet supported by CORBA. Several vendors implement - at least par- 
tially - CORBA on top of DCE. 

Open Distributed Processing (ODP): Distributed system technology has become a 
major focus in international standardisation and harmonisation activities, too. As an 
important example, work in ISO and related standardisation committees is in progress 
to define a reference model for Open Distributed Processing (ODP). The reference 
model will include a descriptive as well as a prescriptive part. The descriptive part 
defines terminology and modeling gear that can be used to model arbitrary distributed 
systems. The prescriptive part specifies when a distributed system may be called an 
ODP system. It prescribes architectural properties that an ODP system must have. Af- 
ter the ODP reference model has been finished, individual ODP standards conforming 
to the reference model will be defined. Most likely, one will first work on standards 
for infrastructure components similar to those that we find in OSF DCE today. ODP 
and OSF DCE are two projects that are completely unrelated from an organisational 
point of view. However, the ODP work on an abstract reference model benefits sig- 
nificantly from the design of an infrastructure such as OSF DCE. The latter shows 
what functionality is needed in distributed processing systems and how components 
can be integrated into a common framework. Furthermore, when individual ODP stan- 
dards will be sought for, the OSF DCE technology will certainly be a suitable and 
promising starting point. OSF and OMG (see above) have expressed their interest in 
advancing the ODP standardisation. 

4.3 Distributed Transactions and Workflows 

Transactions are a well-known approach found in database systems. It guarantees so- 
called ACID semantics (atomicity, consistency, isolation, and durability). Atomicity 
means that an operation is only performed as a unit; it is either fully completed (com- 
mit) or its effects do not become visible (abort). Consistency means that a transaction 
transforms data from one consistent state into another consistent state. Isolation means 
that concurrent transactions execute like in a sequential system without interference. 
In particular, a transaction T1 will never see any intermediate state of data caused by 
another transaction T2 before T2 is completed. Finally, durability means that the ef- 
fects of a transaction (data manipulations etc.) remain persistent after transaction com- 
pletion; for example, they do not get lost after a system crash. 
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Distributed transactions: The transaction properties have proven very useful for im- 
plementing processing functionality with strict consistency requirements (like 
credit/debit transactions). Therefore, extensions of the basic concept towards distrib- 
uted systems have been developed [14]. Some of them are based on RPC or distrib- 
uted object interactions, others on pure message passing. The implementation typically 
relies on the two-phase commit protocol. In the first phase, all transaction participants 
are polled by a coordinator whether they are able to successfully commit. In the sec- 
ond phase, the uniform decision is propagated to them in order to commit or abort 
jointly. 

This concept has also been extended towards nested transactions with hierarchical 
subtransactions. This allows for running subtransactions in parallel, and for selective 
rollback and restart of subtransactions. Standards and implementations on top of DCE: 
Meanwhile, there are several emerging product-level implementations of distributed 
transactions that conform to new standards. Most notably, the X/Open consortium has 
defined the X/Open Distributed Transaction Processing (DTP) application program- 
ming interface named XA [15]. This approach is designed to work with standardized 
ISO/OSI transaction protocols, namely CCR and TP. 

Conforming to the XA standard, there are several implementations available. The ori- 
gins of XA have evolved according to the Tuxedo system [16] of Unix System Labora- 
tories that is available on numerous hardware platforms and operating systems. The 
Encina transaction processing system [ 17] of Transarc is an open, XA standards-based 
family of components that provide online transaction processing based on DCE. 
Transactional integrity is added to DCE programs through Transactional-C, Transac- 
tional RPC (TRPC), two-phase commit and the management of recoverable data. 
Transactional-C consists of C language extensions to indicate transaction demarcation, 
concurrency control and exception handling. TRPC adds exactly-once semantics to 
DCE RPC. When a remote procedure is called from within a transaction, it is executed 
exactly once, if the transaction commits and not at all if the transaction aborts. Besides 
this basic support for transactional integrity, Encina offers a Structured File System 
(SFS) and a Monitor as an administrative, runtime and development environment for 
transactional applications. Functionality of the Monitor comprises, for example, moni- 
toring active clients, performing load balancing and connecting front-end tools (like 
OSF/Moti0. SFS is an record-oriented file system (in contrast to DCE DFS) that 
meets the requirements of transactional systems for record-style and recoverable re- 
source managers. 

Workflows are a rapidly emerging technology area that deals with long-lived, well- 
defined activities like office procedures. A workflow system controls the execution of 
the global control flow and in some cases provides certain reliability support by using 
transaction mechanisms. Workflows are distributed by nature and thus are one of the 
key application domain for distributed processing. On the other hand, workflows in- 
troduce a new style of programming since execution order and principles should be 
extracted from the single application part and be moved to a separate workflow pro- 
gram. 

Workflow systems could benefit from all DCE services. Especially RPC for communi- 
cation between the workflow and the application parts, authorization and authentica- 
tion of users performing the individual steps, and directory services for locating work- 
flow servers are important. 
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4.4 Distributed Multimedia Systems 

A multimedia system is characterised by the computer controlled generation, manipu- 
lation, presentation, storage, and communication of independent discrete media such 
as text and graphics and continuous media such as audio and video [18,19]. Applica- 
tion domains for multimedia systems are, e.g., multimedia e-mail, multimedia- 
supported teaching, virtual reality simulation systems, and workstation conferencing 
systems. Many of these domains are inherently distributed. A workstation conferenc- 
ing system, for example, allows sharing of window based applications among partici- 
pants at different locations supported by multimedia services for audio communication 
as well as video conferencing. 

Distributed multimedia systems impose new challenges for the communication of con- 
tinuous data. Whereas discrete media have time independent values, the values of con- 
tinuous media change over time and these changes contribute to the media semantics: 
Each single value in an audio or video stream represents stream information for some 
fraction of time. Changes in the times at which values are played or recorded result in 
the modification of the original data semantics and must not happen unintentionally. 
The timing demands of continuous media require operating and transport system sup- 
port for connections with guaranteed quality-of-service (QoS) for the transmission of 
continuous data [20]. This is achieved by allocating some fraction of the end-system 
and network resource capacity and scheduling these resources appropriately. Another 
meaningful requirement is the support of multicast since a continuous stream often 
must be transmitted from one source to multiple sinks. 
For the development of distributed multimedia applications it is reasonable to model 
sources (e.g. a microphone) and sinks (e.g. a loudspeaker) of continuous streams as 
objects. A source object, for example, offers operations to connect itself to a sink ob- 
ject and to start, stop or suspend the production of a stream. This kind of control op- 
erations is performed by conventional DCE RPC communication. When control op- 
erations must be submitted to multiple sinks, a multicall extension to the RPC is 
convenient. Directory and security infrastructure is crucial to identify appropriate 
sources and sinks. The establishment work for the respective connections, however, 
that comprises the negotiation of the required QoS, and the transmission of the data 
itself can be left to the "multimedia" transport system. As a result, sources and sinks 
must be able to cope with the coexistence of dedicated runtime systems for conven- 
tional RPC communication as well as processing of continuous data. 

Special support for producing, processing and consuming continuous data is needed, 
when the data get manipulated within the application. Manipulations are, for example, 
encrypting or compressing audio or video information, or mixing and synchronising 
different but related streams. A useful construction in this context is to conceive the 
connection between a source and its sink as an object in its own right. Such an object 
exhibits two categories of operations: a lower level category acting on the established 
transport connection and a higher level for controlling it. 

5 Overview of the Technical Contributions 

The technical contributions in this volume are concerned with DCE implementation 
issues, with applications and tools, but also with models and approaches beyond DCE. 
In particular, the following areas are covered: 
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DCE analysis and comparison: DCE is compared with the ANSAware environment 
developed in the UK. Moreover, DCE RPC is compared with SUN RPC and with 
other RPC approaches. Two performance analysis studies evaluate DCE RPC and 
CDS in detail. This also leads to concrete recommendations, for example concerning 
the configuration of a CDS name space. This way, the conceptual overview given 
above is augmented with practical DCE analyses and experiences. 

Application support: This part focuses on DCE application support tools and on ac- 
tual DCE applications. Two different tools for enabling Fortran access to DCE serv- 
ices are presented. The first tool supports the conversion of existing non-distributed 
Fortran applications to distributed DCE applications. The other approach enables di- 
rect program-level access from Fortran to C-based DCE functions. One paper presents 
a practical DCE application for stock broker support. This contribution emphasizes 
how DCE is used for real-world applications and reports experiences with DCE appli- 
cation development. Another application implements print services and a heterogene- 
ous interface to various mail systems based on DCE R_PC, using a generic services ar- 
chitecture. 

Methods and tools: Several other DCE support tools are presented. A formal method 
and tool approach focuses on the problem of converting monolithic, non-distributed 
programs to distributed applications on top of DCE. A similar transition approach is 
presented for DCE Security, helping to incorporate conventional Unix security envi- 
ronments into a DCE framework. Finally, advanced tools for resource monitoring in 
DCE cells are presented. Altogether, tool examples from all three categories of devel- 
opment, system management and runtime-level are discussed. 

RPC extensions: This part covers direct extensions of DCE RPC. The first example is 
multimedia support based on new media types and quality of service attributes in IDL, 
and on runtime mechanisms for time-constrained RPC and realtime thread scheduling. 
Another paper introduces an integration of RPC and message passing, leading to a 
more flexible set of communication facilities. Moreover, optimized RPC server selec- 
tion is also addressed in order to relieve the application developer from the selection 
process discussed above. Finally, an ambitious distributed object model is imple- 
mented by an object-oriented RPC extension. It provides the facilities discussed 
above, but also supports dynamic typing of objects. This allows a more natural inte- 
gration of common generic services in a DCE environment. 

Object-based systems: Several other papers focus on object-based DCE extensions, 
too. An operating implementation of CORBA on top of DCE is presented, showing 
that there's a strong practical relationship between CORBA and DCE. The design and 
implementation of a distributed object-oriented framework with mobile objects be- 
yond CORBA, but on top of DCE, is illustrated by another contribution. A related pa- 
per shows how the more conventional DCE functionality can at least be offered via 
higher-level, object-oriented class interfaces. This way, an improved abstraction is 
provided to the application developer. Finally, an object-based tool for graphical sup- 
port of DCE applications is presented. This also extends the tool discussion towards 
the early phases of application design. 
In summary, the papers in this volume illustrate that DCE is a practical environment 
for building distributed programs. However, they also make the need for higher-level 
tools, models and abstractions obvious. It is hoped that directions for further research 
and development in the context of DCE are pointed out this way, and that such work 
will help to make DCE a success for open distributed environments. 
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Abstract. A distributed environment is used for the development and operation 
of distributed applications. This paper compares two distributed environments: 
the Distributed Computing Environment (DCE) from the Open Software Foun- 
dation (OSF) and ANSAware from Architecture Projects Management (APM) 
Limited. The results indicate that DCE and ANSAware have many differences. 
These differences reflect the fact that ANSAware was built up from an innovative 
architectural model for distributed systems with a focus on providing a vehicle 
for technology transfer, while DCE was built by integrating existing technology 
with a focus on providing the functionality necessary for commercial viability. 

1 Introduction 

Distributed environments are the collection of utilities, languages and libraries which 
support the development and operation of distributed applications. A distributed envi- 
ronment has a similar purpose to a distributed operating system, but sits on top of an 
existing operating system as opposed to replacing it entirely. Therefore, the distributed 
environment is easier to port and its installation causes minimal impact to the system 
(i.e. the operating system is not replaced). Unfortunately, a distributed environment is 
not usually as efficient as a distributed operating system and it is difficult to implement 
migration and load balancing in a distributed environment. In this paper, the term dis- 
tributed environment is synonymous with the terms: distributed computing environ- 
ment, distributed processing environment and distributed systems environment. 

This paper compares two prominent distributed environments: DCE 1.0.2 [1] [2] [3] 
and ANSAware 4.0 [4]. Distributed Computing Environment (DCE) is produced by 
the Open Software Foundation (OSF) through its Request For Technology process. Its 
technology originates from a number of vendors and research institutions, including 
Digital Equipment Corporation, Hewlett-Packard, Siemens-Nixdorf, Transarc and 
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MIT. ANSAware is the realisation of the Advanced Networked Systems Architecture 
(ANSA), an architecture for networked computer systems to support distributed appli- 
cations. ANSAware was developed by the research organisation Architecture Projects 
Management (APM) Limited to serve as a technology transfer vehicle. 

This paper compares DCE and ANSAware from a number of perspectives. Section 2 
describes the software components within each distributed environment. Section 3 ex- 
amines application development, which covers the computational aspects. Section 4 
explores infrastructure issues, including the engineering and technological aspects. 
Section 5 addresses system administration and the effort of installing and maintaining 
a distributed environment. Our conclusions are presented in Section 6. 

2 Software Components 
ANSAware and DCE both comprise of a number of software components, shown in 
Figure 1 and Figure 2 respectively. 
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Figure 1: ANSAware components 
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Figure 2: DCE Components 

ANSAware and DCE have common components, such as threads and Remote Proce- 
dure Call (RPC). The threads component allows the creation, management and syn- 
chronisation of multiple threads of control within a single process. The RPC component 
allows procedure calls to be invoked remotely. 

Both distributed environments have a name service. The name service maps names that 
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a user understands into names that a dislributed environment (computer) understands. 
In DCE, the Directory Service component allows information about resources within 
the system to be stored and accessed. The directory service functionality is further di- 
vided into inter-cell and intra-cell parts. A Cell is a fundamental grouping of nodes into 
some administrative domain (see Section 5). A hierarchical naming scheme is provided 
by the Cell Directory Service (CDS) for intra-cell use. Inter-cell naming is handled by 
the Global Directory Service (GDS) which uses either the X.500 or the Domain Name 
Service (DNS) naming scheme. In ANSAware, the trader provides the name service 
functionality. The trader allows a client to find the service that it requires via a lookup 
based on attributes. ANSAware's and DCE's name services are very different; DCE 
provides a white pages service (straightforward name to entry lookup), while ANSA- 
ware provides a yellow pages service (lookup based on attributes). DCE provides 
groups and profiles for the logical grouping of directory entries; such groupings can be 
based on attributes and thus can support a yellow pages style of search. 

Both ANSAware and DCE provide a few distinct services of their own. In DCE, these 
are the Security service, the Distributed Time Service (DTS) and the Distributed File 
Service (DFS). The Security component provides secure communications and control- 
led access to resources within a distributed system. The Distributed Time Service com- 
ponent provides synchronised time to nodes within the system. The Distributed File 
Service component allows users to access and share files anywhere on the network 
without having to know their physical location. ANSAware's distinct services are the 
Notification Service, the Factory and the Node Manager. The notification service ad- 
vises interested parties of the termination of an object. The factory provides the dynam- 
ic instantiation and termination of objects. The node manager provides an architectural 
interface for the creation, simple monitoring and destruction of ANSAware services on 
a node. ANSAware has no distributed file service; it relies on systems such as the Net- 
work File System (NFS). As a general comment, ANSAware focuses on distributed 
processing and neglects distributed data, whereas DCE caters for both these aspects. 

2.1 Summary 

Software 
Components 

~/ame Service 

DCE ANSAware 
RPC, Threads, Name Service, RPC, Threads, Name Service, 
Security Service, DTS and DFS Notification Service, Factory and 

Node Manager 
Directory Service (white pages) Trader (yellow pages) 

3 Applications Development 
3.1 Paradigm 
The architecture for both DCE and ANSAware is based on the object model [5]. An ob- 
ject is a discrete component which makes available a particular resource, or service, 
through a restricted set of operations. Objects play an important role in distributed ap- 
plications, as they provide a natural partitioning for these applications. In both DCE and 
ANSAware, an object's operations are usually partitioned into smaller sets known as 
interfaces, where the operations in each interface usually serve some related purpose. 
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Both DCE and ANSAware support the client-server paradigm; the objects which pro- 
vide the service are the servers and the objects which use the service are the clients. A 
client accesses a service by invoking an operation on the server's interface via an RPC. 

3.2 Interface Definition Language 

In both DCE and ANSAware, an interface definition language (IDL) is used to specify 
the data types and operations applicable to each interface in a platform-independent 
manner. Semantically, DCE's IDL and ANSAware's IDL are very similar; syntactical- 
ly, they are very different. DCE's IDL builds on the C language syntax for function and 
data type definitions, augmented by attributes which define properties not representable 
in the C language. Figure 3 illustrates how a simple interface providing Unix-like file 
operations is def'med using DCE IDL; the attributes appear in brackets. 

[ 
/* An interlace type kt comprises of a unique universal id (uuid) and a version number. */ 
P It is required if interfaces of this type are to be registered with name servers. "/ 
uuid(907FOE10-D3C2-11CB-BCCE-O8002B2D0880), 
version(1.0) 

]interface UnixCaU 
{ 

typedef struct { 
long length; 
[lengths(length)] char data[BUFSlZE]; 
/* length_is 0 indicates the variable which stores the array length */ 

} Buffer; 

/* for the functions below, any error status is returned as the (unnamed) function result */ 

long Open ( [in, string] char pathN, [in] long flags, [in] long mode, [out] long *fd ); 

long Read ( [in] long fd, [in] long nbytes, [out] Buffer *buf, [out] long *nreed ); 
} 

Figure 3: Example of Unix system calls using DCE IDL 

ANSAware's IDL is based on the Courier IDL from Xerox [6] and syntactically resem- 
bles Modula-2. Figure 4 illustrates the simple file interface using ANSAware IDL. 

UnixCall: INTERFACE = 
BEGIN 

Buffer: TYPE = SEQUENCE OF CHAR; 

END. 

Open: OPERATION [path: STRING; flags, mode: INTEGER] 
RETURNS [fd: INTEGER; err: INTEGER]; 

Read: OPERATION [fd: INTEGER; nbytes: INTEGER] 
RETURNS [buf: Buffer; nread: INTEGER; err: INTEGER]; 

Figure 4: Example of Unix system calls using ANSAware IDL 
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Data Types 
The primitive data types supported in both ANSAware and DCE are very similar. Both 
support the common data types: boolean, cardinal, integer, character, real, byte and 
string. Variants of the common data types are also supported, e.g. short integer and long 
real. The major difference is that DCE alone supports pointers allowing DCE to ex- 
change complex pointer-linked structures during an RPC. ANSAware also provides 
ANSAware-specific data types; such as object id, interface id and interface reference. 

New data types can be constructed using data type constructors. The data types con- 
structors supported in both ANSAware and DCE are very similar. Both provide enu- 
meration, arrays, records, variant records and aliases. The only difference is that AN- 
SAware provides sequences (or variable-sized arrays) directly, while DCE supports 
variable-sized arrays by having an explicit length variable indicated by the length_is at- 
tribute on the array declaration (see the definition of Buffer in Figure 3). 

Operation Signatures 
In DCE, there are three methods to exchange information during an RPC: named input 
parameters (indicated by the in attribute), named output parameters (indicated by the out 
attribute) and the unnamed function value (e.g. the error codes are returned as function 
values in Figure 3). There can be any number of input and output parameters (or none), 
but there is at most one unnamed function value. A parameter can be used for both input 
and output (i.e. declared as [in, out]). ANSAware only has two methods: named input pa- 
rameters and optionally named output parameters (which can also be regarded as func- 
tion values). ANSAware can have zero or more of the input and output parameters, but 
no parameter can be both for input and output. 

ANSAware supports two types of operations: interrogations and announcements. Inter- 
rogations (the default form) are operations that return results; the client waits until those 
results are returned. Announcements do not return results and the client does not await 
any response. By not awaiting a response, the client cannot be informed of the failure 
of the announcement operation; this is a risk that the client must accept. The normal 
RPC in DCE is identical to ANSAware's interrogation operation. ANSAware's an- 
nouncement operation is equivalent to DCE's maybe operation (an operation annotated 
with a maybe attribute does not return results and is not guaranteed to execute). 

Interfaees 
Both ANSAware IDL and DCE IDL have a method of inheriting data type definitions 
from another IDL file. In ANSAware, it is the NEEDS statement; in DCE, it is the import 
statement. Additionally, ANSAware has a means to inherit operation definitions from 
another IDL file. The IS COMPATIBLE WITH statement in an ANSAware IDL file inherits 
operation definitions while the IMPLEMENTATION IS COMPATIBLE WITH statement also al- 
lows code re-use. 

In ANSAware, an interface type is identified by a simple name (e.g. tJnixCall in Figure 4). 
Although a DCE interface type can be given a simple name (e.g. tJnixCall in Figure 3), a 
I)CE interface type is actually identified by its uuid and version attributes. The uuid at- 
tribute defines a unique name for the interface while the version attribute indicates the 
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compatibility between different versions of that interface type. The DCE utility uuidgen 
generates uuid values making it easy for the application developer to ensure world-wide 
uniqueness. 

3.3 Distributed Programming Language 

Distributed programming languages are used to implement distributed applications. 
DCE does not provide a new programming language. DCE applications are written and 
compiled using conventional programming languages and compilers, typically C. The 
benefits of this approach are that application programmers do not have to learn a new 
language and existing applications can be more readily ported to DCE. 

In contrast, ANSAware provides a new language, a combination of the C language and 
ANSAware's PREPC language, which provides additional syntax for distributed sys- 
tems functions. ANSAware applications must first be preprocessed to yield a conven- 
tional C program before compilation using a regular C compiler. The advantage of AN- 
SAware's distributed programming language is that it gives syntactic support to the 
concepts of interfaces, not directly representable in the C language and, hence, in DCE 
applications. 

Offering an Interface 
In order to provide an interface to clients, a server must first create and export its inter- 
face. The following code fragments in Figure 5 show how this is done using ANSA- 
ware. Note that lines commencing with a '!' are PREPC code. 

! DECLARE { itref }" UnixCall SERVER r PREPC declaration for the interlace reference (ffref) */ 
/* interface type (UnixCall) and role (SERVER) are specified */ 

ansa_lnterfaceRef if_ref; /* C declaration for the interface reference */ 

I { iLref } :: UnixCall$Create( ... ) r create an interface of type UnixCall */ 
r this operation returns an interface reference */ 

I { } <- traderRef$Export("UnixCall", .... ifret) /* export an interlace offer to the trader */ 
/* traderRef is the trader's interface reference */ 

I itref$Discard /* withdraw the interlace offer trom the trader */ 
/* and destroy the interface */ 

Figure 5: Offering an interface in ANSAware 

In comparison with ANSAware, establishing a server's interface in DCE requires a se- 
ries of calls to register the interface at a number of levels (viz. RPC runtime, name serv- 
ice and endpoint mapper). An outline of the DCE code to establish an interface and the 
main loop which provides service at the interface is shown in Figure 6. 
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@c_server_register_if( ... ); 
@c_server use all._protseqs( ... ); 
rpc_.server_inq_bindings( ... ); 
rpc_ns_binding_export( . . . . . .  
rpc_ep_register( ... ); 
TRY 

rpc_server_listen( ... ); 
FINALLY 

rpc_ep_unregister( ... ); 
rpc_binding_vector_free( ... ); 

ENDTRY 

/* register interface with RPC runtime */ 
/* establish protocol sequences */ 
/* get binding handles for this sewer */ 
/* export entry to name service */ 
/* add endpoints to local endpoint map */ 

/* listen for dient calls */ 

/* remove endpoints from endpoint map */ 
/* relinquish binding handles */ 

Figure 6: Offering an interface in DCE 

An important difference between ANSAware and DCE is that ANSAware treats inter- 
faces as "f'trst class" entities. By "first class" entities, we mean that the interfaces are 
not contained within an object, instead they are distinct entities which may be offered 
by an object. Through ANSAware's support of interfaces as "first class" entities (viz, 
the interface reference data type and interface-specific state) ANSAware object's can 
offer multiple instances of the same interface type. A DCE object cannot readily offer 
multiple interfaces of the same interface type (as an interface can only be identified via 
its interface id and its object id); it can, however, be split up into sub-objects and, thus, 
offer multiple interfaces through multiple sub-objects. 

Implementing the Server's Operations 

Servers must provide code for each of the operations defined in the interface type. The 
code fragment in Figure 7 shows the ANSAware server code for the Read operation de- 
fined in Figure 4. Notice that the interface type has been prepended to the operation 
name and that the first parameter_attr (which is used to access interface-specific state) 
is added to the parameters defined in the IDL file. 

int UnixOall_Read (__attr, fd, nbytes, bur, nread, err) 
ansa_lnterfaceAttr *_attr; /* this parameter may be used to access the interfaee's state */ 
ansa_lnteger fd; 
ansa_lnteger nbytes; 
Buffer *buf; 
ansa_lnteger *nread; 
ansa_lnteger *err; 

{ 
buf->data = buffer; /* buffer is a static variable */ 
*nread = buf->length = read (fd, buf->data, nbytes); 
*err = errno; 
return Successfullnvocation; 

Figure 7: Implementing a Server Operation in ANSAware 

Although establishing a DCE interface is rather complex, the code to implement the op- 
erations offered by the interface is relatively straightforward as shown in Figure 8. Like 
ANSAware, the first parameter IDL_handle is additional to those parameters defined in 
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the IDL file. The IDL_handle parameter can be used to obtain details of the binding. 

long Read (IDL_handlo, fd, nbytes, buf, nread) 
handle_t IDL_handle; 
int fd; 
int nbytes; 
Buffer *bur; 
int *nread; 

{ 
*nread = buf->length = read (fd, buf->data, nbytes); 
retum (errno); 

) 

Figure 8: Implementing a Server Operation in DCE 

B i n d i n g  Cl ients  and Servers 

Before a client can invoke the operations of a server, the client must first be bound to 
the server's interface. DCE provides three different forms of binding: 

�9 automatic, where the client program simply calls the procedures specified in the in- 
terface. The client stub binds to any server offering that interface. Successive calls 
might be made to different servers. 

�9 implicit, where the client program initially binds to a single server. Any call to the 
procedures defined in that interface will automatically be made to the bound server. 

�9 explicit, where the client program binds to one or more servers. Each call made to 
the procedures defined in the interface must specify which bound server is to be 
used (the binding handle for that server is passed as the first parameter to the proce- 
dure). 

Automatic binding is the simplest for the applications programmer, but there is a loss 
of control. Explicit binding is the most complex for the applications programmer, but 
provides maximum control. Implicit binding lies between the other two. The choice of 
binding is expressed as an attribute in an optional Attribute Configuration File (ACF), 
which customises the IDL file. In our experience, explicit binding is required for all but 
the more trivial applications. 

DCE and ANSAware have a different approach to binding. In DCE, the directory serv- 
ice provides the node that offers the interface, the node (and the object id) identifies the 
endpoint to be used, and then binding can occur. In ANSAware, the trader combines the 
ability to select an interface based on quite complex criteria (if desired) with the node 
and endpoint information required to establish a binding. Although there is an explicit 
binding action in ANSAware, our experiences suggest that the trader's Import operation 
(which combines the selection and binding) is normally used. 

DCE's two-stage method of locating an interface (node, then endpoint) appears to be 
based on the assumption that an interface is unlikely to be offered more than once by a 
single node. If multiple instances are offered on a single node, then both entries in the 
directory service point to the same node. The interface's object ids are required to ena- 
ble the end-point mapper to distinguish between the instances. As ANSAware's trader 
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maps interfaces directly to endpoints, multiple interfaces of the same type offered by 
the same node cannot be confused. 

The ANSAware code fragment in Figure 9 demonstrates the client code for selecting 
and b ind ing  to a server interface. 

! DECLARE { if._ref } : UnixCaU CLIENT /* PREPC declaration for the interface reference (iLref) */ 
/* interface type (UnixCall) and role (CLIENT) are specified */ 

ansa_lnterfaceRef if_ref; /* C declaration for the interface reference */ 

! {itref } <- traderRef$1mport('UnixCall", ... ) /* select an interface offer from the trader */ 

Figure 9: ANSAware code for selecting and binding to a server interface 

The explicit binding process performed by the DCE client is in Figure 10. Again, con- 
siderable detail of this complex mechanism has been omitted. Note that this code is not 
required if automatic binding is used. 

rpc_ns_binding_import_begin( ... ); /* begin scanning binding handles */ 
while (1) { 

rpc_ns_binding_import_next( ... ); r import a binding handle *,' 
rpc_binding_to_string_binding( ... ); /* translate to string */ 
rpc_string_binding_parse( ... ); /* parse the binding */ 
rpc_string_free( ... ); /* free all rpc-allocated strings */ 
/* exit loop when suitable binding handle is found */ 

} 
rpc_ns binding_import_done( ... ); /* end of scanning binding handles */ 

Figure 10: DCE code for selecting and binding to a server interface 

Calling Remote Procedure Calls 

As DCE uses conventional programming languages for applications development, in- 
vocation of RPCs is syntactically similar to the invocation of local procedure calls as 
shown in Figure 11. Once the DCE client has established the binding, calls to the op- 
erations of the remote interface can be made quite simply. Notice that the first parame- 
ter (not present in the IDL file) is the binding handle (this is using explicit binding). 

errno = Read (binding_h, td, BUFSIZE, &bur, &nread); 

Figure 11: DCE RPC invocation 

In contrast, invocation of RPCs in ANSAware is done using PREPC code as shown in 
Figure 12. 

! {buf, nread, errno} <-if_ref$Read (fd, BUFSlZE) 

Figure 12: ANSAware RPC invocation 

An ANSAware invocation comprises of five parts. The In'st part is the result list (con- 
tained in { }), the second part is the interface reference for the interface being invoked 
(if_ret), the third part is the operation name (Read), the fourth part is the argument list 
(contained in ()) and the fifth part is used for exception handling (this part is not used 
in the above example). 
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As mentioned in Section 3.3, DCE does not give any syntactic support to interfaces. 
Therefore, name clashes occur if the client uses another interface which has a Read op- 
eration. The simplest solution is to rename the operation in one of the interfaces, but this 
affects all existing clients and servers of that interface (and assumes that the program- 
mer has the privileges to modify the IDL file). By adopting the convention of prepend- 
ing the interface name to each operation name in the IDL f'de, e.g. call the operation Un- 
ixCall__Read, these problems can be avoided. 

Exception Handling 
In ANSAware, exception handling is supported syntactically as part of remote invoca- 
tion. As shown in Figure 13, each invocation can choose to continue, abort, or invoke 
an exception handler in response to any of 27 invocation outcomes, e.g. ok (when the 
operation returns Sueeesslullnvoeation), abnormalReturn (when the operation returns UnSuc- 
eessfullnvocation), transmiffimeout (when a communications time-out occurs). 

! {b, n, e} <- lile__ops$Read (f, B) Continue ok Signal transmitTimeout Abort * 

Figure 13: ANSAware RPC invocation with exception handling 

In DCE, invocation failures are separated into two groups: failures of communications 
(e.g. time-out) and failure at the server (e.g. unable to make the call). By using the ACF 
attributes eomm_status and fault_status, the operations of the interface can be modified to 
return these error codes as either output parameters or function results. The programmer 
can then test these error codes and react appropriately. DCE provides syntactic support 
for exceptions through the use of macros, e.g. RAISE and TRY. 

Advanced DPL Concepts 
In addition to the DPL concepts discussed in the previous sections, DCE provides two 
additional concepts: context handles and pipes. Neither of these concepts are provided 
by ANSAware. 

A DCE server can store the state (or context) associated with a client's session.This al- 
lows the communication overhead to be reduced, as there is no need for the state to be 
transferred (back and forth) for each of the client's invocations on the server. The con- 
text handle is the reference used by the client to associate itself with a particular state 
maintained by the server. 

A pipe is a mechanism used to transfer data of a particular type between a client and a 
server. This transfer can be bidirectional, i.e. the client can use the pipe to transfer data 
to the server and the server can use the same pipe to transfer data to the client. This 
mechanism is normally used to transfer large amounts of data or when there might be a 
sporadic stream of data between the client and the server. One limitation of the pipe 
mechanism is that it cannot transfer pointers or data containing pointers. 

3.4 Concurrency 

In order to exploit the potential for parallel execution in a distributed system, the appli- 
cations must be capable of concurrency. Although the RPC is an excellent paradigm for 
programmers, awaiting the return of the call does not exploit the parallelism of the dis- 
tributed system. As RPCs are the basis for interworking in both DCE and ANSAware, 
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it is important to understand how the concurrency of applications can be increased when 
required. 

DCE supports concurrency via three mechanisms: threads, broadcast RPCs and maybe 
operations. A thread is a light-weight process and allows an application to have multiple 
execution paths. A broadcast RPC is an operation invoked on all servers of a particular 
type within the local network; the client awaits the first successful result while the oth- 
ers are ignored. Broadcast RPCs are only possible in restricted circumstances; in partic- 
ular, the UDP transport protocol is required. Operations with the maybe attribute do not 
need to await results. 

ANSAware supports three concurrency mechanisms: threads, announcements and 
vouchers. ANSAware threads and announcements are similar in concept to DCE's 
threads and maybe operations. Vouchers enable an ANSAware interrogation (RPC) to 

be invoked without awaiting the results, which are collected later as shown in the code 
fragment in Figure 14. Note the use of the := operator rather than the normal <- operator. 

ansa_Voucher v; /* declare a voucher */ 

!{v} := if_ref$Read (fd, BUFSIZE) 
/* processing continues without awaiting the results */ 
! {buf, nread, errno} <-if_refSRedeem (v) 

Figure 14: ANSAware vouchers example 

3.5 Security 

ANSAware has no security mechanisms while DCE provides authentication and au- 
thorisation mechanisms directly. DCE also supplies the foundations for the construction 
of access control, privacy and integrity mechanisms by the applications developer (see 
Section 4.5). 

DCE provides a superset of the access control list (ACL) data structure defined in 
POSIX 1003.6 to enable the implementation of an ACL manager for a server. Based on 
a client's privileges, the ACL manager determines whether that client has permission to 
perform the requested server functionality. 

In DCE, confidentiality (privacy) can be provided in applications by using the Data En- 
cryption Standard (DES) to encrypt/decrypt the parameters of RPCs. DCE provides 
conversation keys, which can be used by DES. Note that some implementations of DCE 
do not include DES libraries due to export restrictions. 

Integrity can be guaranteed if applications include a checksum as one of the parameters 
for each of their RPC operations which require integrity. 

3.6 Summary 

DCE ANSAware 
Paradigms Object-based, client-server, RPC Object-based, client-server, RPC 
IDL syntax C like Modula-2 like 
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DCE 
Supported the common data types, the common 
IDL Data Types data type constructors and pointers 

Methods of named input parameters, named out- 
exchanging infor- put parameters and the unnamed 
mation during an function value 
RPC 

RPC parameter in, out, in/out 
direction 

Types of RPCs default and maybe 

Inheritance from data type definitions 
IDL files 

Interface type uuid + version number 
identifier 

DPL C 

Offering an must register with RPC runtlme, 
interface name server and endpoInt mapper 

only with multiple sub-objects 

ANSAware 
the common data types, the common 

i data type constructors, object ld, 
Interface ld and Interface referenc~ 
named input parameters and option- 
ally named output parameters 

m, out 

interrogation (same as DCE default) 
md announcement (same as DCE 
maybe) 

data type definitions and operation 
definitions 

string 

C with embedded ANSAware 
PREPC 
must register with name server 

yes Support for multi- 
iple instances of 
the same interface 
type by an object 
:Forms of Binding automatic, implicit, expficit normal (same as explici0 

Advanced DPL pipes and context handles none 
Concepts 

Concurrency threads, maybe operations and threads, announcement operations 
broadcast RPCs (same as DCE maybe operations) 

and vouchers 

Security none authentication and authorlsatlon 
mechanisms, and the foundations 
to build access control, privacy 
and Integrity mechanisms. 

4 Infrastructure 

4.1 Technology Supported  

DCE is available (at various levels of  functionality) from a variety o f  vendors on a 
number of  platforms, including MS Windows, OS/2, VMS and UNIX variants. ANSA- 
ware is available from APM on a number of  platforms, including DOS, VMS and UNIX 
variants. 

DCE provides interoperability between the platforms on which it is available; so does 
ANSAware.  Neither DCE nor ANSAware  can interoperate with other distributed envi- 
ronments. 
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DCE is currently implemented using various transport protocols, including TCP, UDP, 
DECnet and Domain. ANSAware is implemented using sockets over TCP and UDP. 

4.2 Distribution Transparency 

Distribution transparency is the ability to mask some aspect of distribution from the 
user. The Basic Reference Model for Open Distributed Processing [6] identifies the fol- 
lowing distribution transparencies: 

�9 access transparency - hiding the different access mechanisms used for local and re- 
mote information and services 

�9 location transparency - hiding the physical location and migration of information 
and services 

�9 replication transparency - hiding the presence of and maintaining the consistency of 
multiple copies of information and services. 

Location transparency can be regarded as a combination of location independence 
transparency (interaction can occur without awareness of physical locations) and relo- 
cation transparency (bindings are preserved despite changes in physical location). 

For process interaction, ANSAware provides access and location transparency. ANSA- 
ware provides access transparency through stubs, which allow remote invocations to 
appear local through a combination of message passing and local invocations, l_x~cation 
independence is provided by mappings from location-independent service references to 
specific locations. If a client calls on a server which has relocated, a binding error will 
occur. The binding error triggers an exception handing routine which uses a service 
called the relocator (this service is provided by the trader in ANSAware 4.0) to deter- 
mine the server's new location, allowing a new binding to be established. Together, the 
exception handling routines and the relocator provide relocation transparency. 

For process interaction, DCE provides access and location independence transparency; 
for data, it provides location transparency and replication transparency. Like ANSA- 
ware, DCE provides its access transparency through stubs and its location independ- 
ence through mappings. Unlike ANSAware, DCE does not provide relocation transpar- 
ency for process interaction. DCE's distributed file service provides location independ- 
ence for files (data) and masks the replication and migration of filesets. 

4.3 Robustness 

Robustness is comprised of three parts: availability, reliability and fault tolerance. 

In the context of distributed systems, availability means the level of usage that an object 
might have of a particular service. Availability can be improved by minimising the 
number of critical components or through adding redundancy (replication). DCE em- 
ploys both of these techniques to improve availability. DCE has two critical compo- 
nents: the CDS and the security service. DCE system services increase their availability 
through caching and replication. ANSAware has only one critical component, the trader 
(see Section 1). ANSAware system services do not employ redundancy to increase 
availability. Both ANSAware and DCE can provide the duplication of services (on sep- 
arate nodes) increasing the availability of a type of service, but not the availability of a 
particular service instance. 
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Reliability is the level of trust that the user has in the system's behaviour, which can be 
influenced by both availability and fault tolerance. It can also be influenced by security 
(which is provided by DCE, but not by ANSAware) and atomicity, which is provided 
by neither DCE nor ANSAware as they do not directly provide any transaction process- 
ing capabilities. 

Fault tolerance is the level of failure handling provided by the system. In both DCE and 
ANSAware, objects can be autonomous, so the failure of one object does not imply the 
failure of the entire system. Exception handling is provided to recover from errors in 
remote invocations. ANSAware also provides a notification service which can notify an 
object of the termination of other objects (see Section 1). 

4.4 Scalability and Incremental Growth 

Both DCE and ANSAware address the issues of scalability. DCE has the concept of a 
cell (an administrative domain) which can be used to partition the distributed system 
into manageable subdomains. If the performance of a cell is degraded by an overloaded 
system service, then the cell can be further partitioned into more cells. In ANSAware, 
the most likely bottle-neck is the trader service. ANSAware reduces the scalability 
problem by allowing duplication of the trader service and federation of these duplicates. 
Federation involves similar independent services working together to enhance the ef- 
fectiveness of each service involved in the federation (e.g. by sharing resources). 

The naming conventions used in interface definitions have a significant impact on scal- 
ability. The simple names used in ANSAware will not be an appropriate solution for a 
very large distributed system, whereas DCE's uuids are guaranteed to be unique. 

Both DCE and ANSAware provide a dynamically reconfigurable object-oriented envi- 
ronment, which allows the introduction of new services and the removal of existing 
services. ANSAware's trader uses subtyping to determine which services can substi- 
tute for other services. In DCE, version control of the interface types is used for service 
substitution. A new service can substitute for an existing service if it has the same major 
version number and a larger or equal minor version number. 

4.5 System Security 

For security to be provided in a distributed environment, it is essential that the infra- 
structure provides either security mechanisms or the necessary foundations for an ap- 
plications developer to build their own security mechanisms. ANSAware provides nei- 
ther, unless the applications developer can modify the ANSAware source code to im- 
plement viable security mechanisms (due to the complexity of this task, it is highly 
infeasible). DCE provides authentication and authorisation mechanisms and also pro- 
vides the foundations for constructing other security mechanisms (see Section 3.5). 
DCE's authentication service is based on MIT Project Athena's Kerberos Network Au- 
thentication Service Version 5 and provides facilities to authenticate both applications 
and users. DCE's authorisation service is based on Hewlett-Packard's privilege service 
and can control the extent of access to system resources. 
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DCE ANSAware 
Platforms MS Windows, OS/2, VMS and DOS, VMS and Unix variants 

Unix variants 
Interoperability only platforms running DeE only platforms running ANSAware 
between heteroge- 
neous platforms 
Transport Prom- TCP, UDP, DECnet and Domain TCP and UDP 
cols 
Process interaction access and location Independence !access and location 
transparencies 
Data transparen- location and replication Not applicable, as ANSAware has no 
cies support for distributed data 

Support for two critical components, caching, one critical component, autonomous 
Robustness replication, security, autonomous objects, exception handling and 

objects and exception handling notification service 
Support for scala- dynamically recortfigurable object- dynamically reconfigurable object- 
bility and incre- oriented environment and cells oriented environment and 
mental growth federation 

5 System Administration 
Administrative tasks include planning, installation, configuration, maintenance and ev- 
olution. Typically, such tasks are carried out at various levels of granularity; for exam- 
ple, some tasks must be performed once per organisation, others once per node. In this 
section, we consider administrative tasks from four levels of granularity (viz: global do- 
main, local domain, node and object). 

5.1 Global Domain 

A global domain involves an entire (enterprise-wide or world-wide) distributed system. 
At this level of granularity, administration involves defining sub-system boundaries. 
These boundaries allow system resources (potentially users, services and files) to be 
partitioned into local domains for management simplicity, performance requirements or 
preservation of existing areas of local autonomy. Subsequently, mechanisms to deal 
with any resulting boundaries (e.g. naming and security boundaries) must be devised. 

In DCE, system resources are partitioned into local domains called cells. Cells are an 
integral part of DCE usage. Both administrative and, to a lesser extent, performance is- 
sues are used to determine cell boundaries. DCE provides a global naming environment 
to identify cells within the global domain (using either the X.500 or DNS naming 
scheme). To participate in a world-wide environment, it is necessary to register each 
cell name with an appropriate standards body. In addition, inter-cell participation re- 
quires sharing of secrets across security boundaries. 

In ANSAware, offered services are partitioned into local domains known as trading do- 
mains. Trading domain boundaries are determined by considering both performance 
and, to a lesser extent, administrative issues. Within each trading domain is a trader. 



36 

One particular trader will be designated as a master trader; the purpose of this trader is 
to share its trading domain (or federate) with all of the other traders (known as local 
traders). This allows local traders to learn the location of other local traders and thus 
federate with them. 

While the trading domain is an important concept within ANSAware, not all parts of 
ANS Aware use these domains. For example, the trading domains do not provide a basis 
for partitioning fries or users. In addition, some infrastructure facilities such as the no- 
tification service and the master trader are required exactly once per global domain re- 
gardless of any trading domain requirements. Likewise, for development purposes, AN- 
SAware's development environment must be installed on a global basis (at least one 
node per platform). 

As each ANSAware global domain has only one master trader and one notification 
service, the merging of two such global domains involves the selection of a common 
master trader and notification service. 

5.2 Local Domain  

At the local domain level, tasks specific to a particular local administration domain 
must be performed. In DCE, this involves the installation of the DCE system services 
on nodes within the cell. The cell must contain a minimum set of core services (one se- 
curity server, three DTS servers and at least one CDS server) and can make use of ad- 
ditional services (e.g. DFS server). All of these services involve ongoing administrative 
overheads. In ANSAware, local domain tasks include installing, maintaining and fed- 
crating the local trader. 

5.3 Node 

A node usually denotes a single machine, but it can also refer to a set of machines run- 
ning a closely-coupled distributed operating system, or to each of the operating systems 
running above a heavy-weight operating system on a single machine (e.g. MVS and 
AIX running on top of VM). 

For each node, DCE involves the installation and maintenance of the appropriate DCE 
development and run-time environments (e.g. the endpoint database). In ANSAware, 
node administration involves the installation and maintenance of the factory and node 
manager. ANSAware and DCE are similar at this level. 

5.4 Object 

ANSAware allows sub-entities to exist within a process; these are known as objects. 
Each object has a management interface, which allows some of an object's functionality 
to be controlled by remote invocations. The only support that DCE provides for object 
management below the process level is a means to identify objects. 

5.5 Summary  

Global Domain 
DCE ANSAware 

define cell boundaries, devise define trading domains, and 
secret sharing mechanisms and administration of master trader 
register global names and notification service 
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Local Domain 
DCE 

administration of core services 

Node 

Object 

administration of DCE runtlme 

Identification 

ANSAware 
administration of local trader 
administration of factory and node 
manager 
management interfaces 

6 C o n c l u s i o n  

In this paper, we have compared DCE and ANSAware from a number of perspectives 
(viz. software components, applications development, infrastructure and systems ad- 
ministration) and have summarised our fmdings in the form of tables, one for each of 
the perspectives. 

DCE was built by integrating existing technology with a focus on providing the func- 
tionality necessary for commercial viability. The benefits of this are that DCE offers the 
important enterprise functions of security and global naming, and has the ability to read- 
ily merge existing global domains. The shortcoming of this is that DCE's architectural 
model was drawn from old technologies, and thus requires refinement if it hopes to 
compete with emerging distributed environments. 

ANSAware was built up from the concepts of an architectural model for distributed sys- 
tems in which the interface is a central concept. The benefits of this are that the overall 
design philosophy is elegant and offers an interface-oriented approach; this yields a 
number of practical benefits: mechanisms for inheritance and subtyping, simpler bind- 
ing and the selection of interfaces based on interface properties. ANSAware is limited 
by the failure of its architectural model to cater for distributed data and enterprise func- 
tionality, such as security and global naming. 
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A b s t r a c t .  Taking part in the Early Participation Program of OSF/DCE 
on IBM RS/6000 workstations, we have examined the RPC of DCE 
between workstation and compute server under aspects of performance, 
capability and functionality for scientific-technical applications program- 
med in Fortran, under user-account. A brief introduction shows the de- 
mands expected from a RPC tool taking a scientific-technical point of 
view. 

1 I n t r o d u c t i o n  

Taking a scientific-technical point of view, the demands,  a RPC tool has to 
satisfy, are resulting from the profile of the user and from the application itself. 

Users of scientific-technical applications are highly specialized, but they nor- 
mally have only basic knowledge in computer  science. Therefore, the user wants 
a short period of learning t ime to get his work done, this means the R P C  tool 
must  be easy to use. The lesser the difference between a distr ibuted and a non- 
distributed application is, the better it is. The RPC tool should hide the distribu- 
tion to the user as much as possible. The possibility of optimizations,  which are 
only useful to users with good knowledge of the used tool, are not so impor tant .  

The features an application demands from a RPC tool can be shown looking 
at a typical, practical example. The program system E S T E R  has been developed 
for the shared-cost action for the reactor savety of the European Communi ty  
[4, 12]. 

To harmonize the analyse of source terms beyond the countries of the EC, 
to strengthen the co-operation of single development groups and to develop a 
best-est imate code for source term analysis which can be used everywhere in 
Europe are goals of the ESTER development. This best-es t imate  code is based 
on modules which are developed at different research locations in countries which 
are members  of the EC. The data  exchange between these modules is made using 
a da ta  base which is kept in the main memory  because of efficiency reasons. 
These single modules are big program packages which were developed for specific 
computers.  If  you want to connect these modules, this can ' t  be done anymore  
on a single computer.  Therefore, communication between the modules and the 
da ta  base with RPC tools is necessary. 
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The development of the modules has been done in projects over serveral 
years and the programming has been done exclusively in Fortran. At the mo- 
ment,  Fortran is a very important  programming language for scientific-technical 
applications. So, a RPC tool must have a Fortran interface to satisfy these requi- 
rements. This interface must have the ability that remote procedures as Fortran 
subroutines and functions can be called from Fortran programs. Programming 
of C routines is undesirable. 

The da ta  exchange between the modules is made using a common data  base 
which is kept in the main memory of any computer. When a calculation and 
afterwards a visualization is made where several modules take part,  there are 
big data  flows between the modules and the data  base. Therefore, the ability of 
a RPC tool to use a high transmission speed is desirable. 

In the summery, there are three demands a RPC tool has to satisfy: A RPC 
tool should be easy to use, should have a Fortran interface and should make it 
possible to use a high transmission speed. 

2 P e r f o r m a n c e  C o m p a r i s o n  

To test the performance, we've compared the DCE RPC, IBM-Rel. 1.2.9310.0 
(OSF-Release 1.0.1.) [8] with three other tools: 

I. the DFN-RPC, Rel. 1.0, a RPC tool for the distribution of Fortran applica- 
tions between workstation and compute server developed by us by order s of 
the DFN, the German Research Network Society [i, 9, 10, 11], 

2. the PVM, Rel. 2.4.1 and 3.0, a message passing library to parallelize Fortran 
and C applications in a network of UNIX computers [2], 

3. and the SUN RPC (ONC), a RPC tool for system programming [14]. 

For the first benchmark, shown in Table i, two IBM aS/6000 workstations 
have been used, connected with Ethernet, FDDI, Cisco and NSC router. The 
RPC of DCE 4 and PVM are using UDP and an own protocol to do end-to-end 
flow control, while the DFN-RPC and the SUN RPC 5 are using TCP. The tests 
transmitted 1, 3 or 64 kbyte real numbers (each with 4 bytes length) as input 
or output arguments, the transmission speed was measured in kbyte/sec. The 
delay was measured by the round-trip-time of an empty call in ms/call. 

The DFN-RPC was used with the default buffer size of 2400 bytes. The buffer 
size can be optimized between 600 bytes and 64 kbytes. Using PVM, the remote 
procedure call has been simulated by sending corresponding messages. 

The results in per cent compare the speed of the DCE RPCs with the speed 
of DFN-RPCs, PVM and SUN RPCs. Looking at the empty calls, the per cent 
results are based on calls/ms. The more powerful CPU of the two CPUs taking 

3 registration number of the BMFT: TK 558 VA 005.3. 
4 In the next release, TCP will be available too. 
5 Also UDP is available, but only with may-be semantics, and therefore not evaluated 
in this test. 
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T a b l e  1. Throughput and delay between two workstations 

Calls with Unit D C E R P C  DFN-RPC PVM3.0  SUN RPC 
abs. abs. % abs. % abs. % abs. % 

64 kbyte In kbyte /s  376 100 499 133 157 42 357 95 
64 kbyte Out kbyte /s  326 100 392 120 124 38 260 77 

3 kbyte In kbyte /s  141 100 196 139 82 58 134 95 
3 kbyte Out kbyte /s  140 100 124 86 78 56 117 84 
1 kbyte In kbyte /s  70 100 92 131 38 64 77 110 
1 kbyte Out kbyte /s  66 100 90 136 37 56 69 105 

Average kbyte /s  187 100 232 124 86 46 167 89 

Empty Call ms/CaU 10.3 100 5.8 178 19.7 52 7.3 141 

Table 2. Throughput and delay, if client and server process are on the same workstation 

Cans with Unit D C E R P C  DFN-RPC D F N 6 4 k  PVM 3.0 SUN RPC 
abs. abs. % abs. % abs. % abs. % abs. % 

64 kbyte In kbyte/s  159 100 1081 680 1336 840 286 180 331 208 
64 kbyte Out kbyte /s  203 100 1099 541 1481 730 286 141 356 175 

3 kbyte In kbyte /s  433 100 593 137 750 173 185 43 268 62 
3 kbyte Out kbyte/s  433 100 577 133 778 180 185 43 268 62 
1 kbyte In kbyte /s  156 100 366 235 376 241 88 56 145 93 
1 kbyte Out kbyte /s  163 100 355 218 385 236 84 52 165 101 

Average kbyte/s  258 100 679 263 851 330 186 72 256 99 

Empty Call ms/Call  6.0 100 2.4 250 2.3 261 9.0 67 3.8 158 

pa r t  ( the side of  the  c o m p u t e  server) was loaded  100% wi th  a d a e m o n .  Al l  
m e asu remen t s  were r epea ted  three  t imes ,  and  all  three  resul ts  have differed on ly  
a l l t t le  b i t .  Therefore ,  the  average  resul ts  shown in the  tab le  can be  used to  
compare  the  p roduc t s .  

DCE R P C  and  SUN R P C  have nea r ly  the  same  t r ansmis s ion  speed.  T h e  
D F N - R P C  is fas ter  by 25%, while P V M  is slower by 50%. E m p t y  cal ls  a re  r a the r  
slow wi th  DCE.  D C E  R P C  needs 10.3 ms for a an  e m p t y  call ,  th is  m e a n s  1.8 
t imes  longer  t han  D F N - R P C ,  a l t hough  it uses UDP. On the  o the r  hand ,  th is  
can be the  reason for the  slowness, because  the  end- to -end  flow con t ro l  has  to  
be m a d e  in the  a p p l i c a t i o n  process.  Looking  a t  P V M  e m p t y  calls,  you can see 
clear ly t ha t  ano the r  two P V M  d e a m o n s  are  involved.  

The  a s y m e t r y  be tween In and  Out  m e a s u r e m e n t s  looking a t  the  abso lu t e  
numbers  is p r o b a b l y  caused by the  different power  of  the  c ompu te r s .  A n o t h e r  
reason are  the  different  rou t ing  p a t h s  t h rough  the  ne twork  for b o t h  d i rec t ions ,  
while in bo th  cases an E the rne t  is the  bot t le -neck .  
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If client and server are on the same RS/6000 530, the differences are more 
visible, see Table 2. These measurements don' t  depend on a real network load 
and the computer has been used only for these measurements. Using DFN-RPC, 
two different buffer sizes have been used for the measurements, one with 2400 
bytes (default) and one with 64 kbytes (64 kbytes is the recommendation for high 
speed networks >100 tobit/s) .  The buffer length can be changed by runtime, but 
can also be given in the interface definition file, used for the stub generation. 

The DCE RPC shows a weakness if plenty of data has to be transferred. 
Other measurements on computers from Sun and Silicon Graphics [6] showed 
that  SUN RPC has problems with a da ta  quantity over 3.9 kbytes, which can 
cause in extreme cases a fixed round-trip-time of 200 ms and this means 19.5 
kbytes/sec transmission speed for 3.9 kbytes of data, see also next section. 

It 's surprising that  the performance of DCE, SUN RPC and PVM is so low 
in comparison with DFN-RPC, which uses internally only needed BSD socket 
system calls for a T C P  connection, although the maximum network speed cannot 
be achieved with those sockets. To reach the maximum speed, more complex 
solutions are necessary, like the implementation in, e.g., the Peregrine High- 
performance RPC [3]. At least, the hope remains that a TCP based DCE RPC 
for applications under user account shows better performance and that,  for kernel 
resident applications (like DFS), the UDP basis is not a disadvantage for the 
performance. 

3 P o s s i b l e  R e a s o n s  f o r  t h e  D i f f e r e n t  P e r f o r m a n c e  

The main topics of optimization of the DFN-RPC are: 

- The DFN-RPC is making only an absolute minimal number of sytem calls. 
Only bsd socket write and read is done, using a TCP/IP connection, which 
is normally established the whole time during the execution of the program. 

- The input and output arguments are copied only once within the user's 
space. They are copied between the argument list and an input or output 
buffer, which is used then for the write and read operations. 

- The conversion - if necessary - is integrated into this copy and is done by 
loops with maximum length. 

- These loops can be vectorized. 
- The argument list on server side is allocated on a local stack and not by 

malloc. 
- As transfer encoding of real and integer numbers one can choose between 

four formats: ieee big or little endian, cray or vax. 

Because we have used the tools DCE RPC, SUN RPC and PVM only as a 
black box, it is difficult to say a lot about the reasons why these products don't 
reach the performance of the DFN-RPC. Nevertheless there are a few decisions in 
the design of those tools which must have a negative impact on the performance 
of these tools. 
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Table  3. In an empty Ethernet between two Silicon Graphics Indigo, IRIX 4.0.5F with 
Eq-+, processor R 3000 and R 4000 

Calls with Unit DFN-RPC DFN64k PVM3.0 SUN RPC 
abs. abs. ~ abs. % abs. % abs. % 

64 kbyte In kbyte/s  800 100 663 83 286 36 487 61 
64 kbyte Out kbyte/s  699 100 753 108 312 45 499 71 

3 kbyte In kbyte/s  524 100 524 100 187 36 410 78 
3 kbyte Out kbyte/s  450 100 500 111 182 40 336 75 
1 kbyte In kbyte/s  294 100 300 102 92 31 238 81 
1 kbyteOut  kbyte/s  294 100 307 104 87 30 195 66 

Average kbyte/s  510 100 508 100 191 37 361 71 

Empty Call ms/Call 2.1 100 1.9 111 8.6 24 2.8 91 

Table  4. SUN tLPC with 4 kbyte input or output data in an empty Ethernet between 
two Silicon Graphics Indigo, IRIX 4.0.5F with E++,  processor R 3000 and R 4000 

Calls with Unit DFN-RPC DFN 64k PVM3.0 S~N RPC 
abs. abs. % abs. • abs. % abs. % 

4 kbyte In kbyte/s 571 100 603 106 116 29 20 3 . 5  
4 kbyte Out kbyte/s 500 100 571 114 176 35 309 62 

The DCE RPC in the tested release (the newest one that  was delivered in the 
Early Participa~ior~ Program of IBM in March 1993) is based only on UDP, which 
is also the default for system applications as the distributed file system (DFS). To 
obtain an at-most-once semantics and to guarantee the end-to-end-flow-contol, 
an additional protocol, executed by the RPC stubs, has to be implemented. This  
can lead to additional context switches between the application and the sys tem 
kernel, which slows down the speed of da ta  transfer and empty  calls. I hope tha t  
this problem has no negative impact  on RPC applications, like DFS, which are 
running in the kernel. 

We have tested the SUN RPC also between two Silicon Graphics systems, 
see Tables 3-5. Looking at RPCs with 64 kbyte output da ta  in Table 3 the DFN- 
RPC transfers 699 kbyte/s ,  i.e. it needs 5.6 #s for one real number. The SUN 
RPC transfers 499 kbyte/s ,  i.e. it needs 7.8/~s/number.  Therefore, the loss of 
performance is 2.2/~s for each real number.  The SUN RPC makes one conversion 
call for each real number  (although this procedure makes only a copy). For the 
overhead of an additional procedure call on both systems we have measured 0.5 
]~s + 0.2 #s = 0.7/~s. This overhead is a significant part  of the performance loss. 

Table 4 shows a special problem of the SUN RPC. If  one is using 4 kbyte  of 
input arguments  in a remote procedure call, then the call needs 200 ms with the 
consequence of a transfer rate of only 20 kbyte/s .  This effect can be seen in a big 
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Tab le  5. Client and Server on the same Silicon Graphics with 1~ 3000 processor 

Calls with Unit DFN-ItPC DFN64k  PVM2.4  PVM3.0  SUN ItPC 
abs. abs. % abs .  % abs. % abs. % abs. % 

64 kbyte In kbyte/s 1012 100 1481 146 157 16 486 48 320 32 
64 kbyte Out kbyte/s 1040 100 1422 137 123 12 492 47 320 31 

3 kbyte In kbyte/s 705 100 868 123 105 15 331 47 450 64 
3 kbyte Out kbyte/s 727 100 938 129 91 13 326 45 450 82 
1 kbyte In kbyte/s 455 100 455 100 58 13 154 34 250 55 
1 kbyte Out kbyte/s 455 100 455 100 53 12 154 34 250 55 

Average kbyte/s 732 100 937 128 98 13 324 44 340 46 

4 kbyte In kbyte/s 800 100 1000 125 117 15 343 43 20 2.5 
4 kbyte Out kbyte/s 800 100 1000 125 100 13 333 42 20 2.5 

Empty Call ms/Call  1.4 100 1.4 100 11.4 10 4.9 29 2.1 67 

Tab le  6. CPU time used in the experiment, shown in Table 2 

Tool process CPU time sum comparison Average from 
Table 

DCE RPC client 380 sec 
server 391 sec 

DFN-RPC 6 Server 168 sec 
client 168 sec 

PVM 3.0 server 363 sec 
client 362 sec 
daemon 494 sec 

SUN l tPC client 365 sec 
server 391 sec 

sum : 771 sec : DCE-time / 1.00 100 ~o 

sum : 336 sec = DCE-time / 2.29 ~63 ~o 

sum : 1219 sec : DCE-time / 0.63 7~ ~o 

sum = 756 sec = DCE-time / 1.02 99 

range of i npu t  and  o u t p u t  quant i t i es  larger t h a n  3.88 kbyte, e.g. see values in 
Table 5 pr in ted  bold. We have tested it  too on a SUN and  have obta ined  similar  

results. 

PVM is a message passing library.  I t  was examined  because it is also a tool to 
d is t r ibute  scientific-technical appl icat ions .  At the mome n t ,  PVM is ou t s t and ing  
because of its good func t iona l i ty  for paral lel  applicat ions,  bu t  it is very slow, 
because it uses daemons  for da t a  transfer .  Al though there was an  increase of 
performance  of a factor of 3 between PVM 2.4.1 and  PVM 3.0, as shown in 
Table  5, there mus t  be done a lot to ob t a in  full performance.  

A fur ther  indica tor  is the consumpt ion  of cpu t ime,  as shown in Table  6. 
Obviously,  there is a correlat ion to the performance shown in Table  2. 

6 With a bui~ersize of 2400 bytes. 
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4 F u n c t i o n a l i t y  

Fortran application interfaces consisting of subroutines, entries, and functions of 
type INTEGER, REAL or DOUBLE with arguments  of type INTEGER, REAL, DOUBLE, 
COMPLEX and arrays (with fixed lengths) of these types can be distr ibuted without 
problems with DCE RPC.  DCE RPC has the following problems with other 
language elements of Fortran [5]: 

- The application interface (function names and argument  list) defined in Fort- 
ran has to be redone in C, so that  a corresponding Interface Definition File 
can be written as the input for the DCE RPC stub generator. The lan- 
guage transition from Fortran to C depends on the manufacturer,  but it is 
documented in most  cases, products as fidl [7] may  also help here. 

- I f  this manufacturer  dependent language transition is different and therefore 
a different RPC protocol arises on client and server, the direct use of DCE 
RPC for Fortran applications isn' t  possible anymore.  Examples  for this are 
functions or arguments  of type LOGICAL or CHARACTER. On computers with a 
different length of a numerical ~mit (e.g. workstation 4 byte, compute server 
8 byte) the type REAL*8 (or equivalent Fortran 90 definitions) is changed to 
double  in C on the workstation and to f l o a t  in C on the compute server. 
In this case, DCE RPC doesn't  find a proper network presentation between 
client and server, so this type can ' t  be t ransmit ted.  This is also true for 
COMPLEX*16. On the contrary, different language transitions of the function 
names in Fortran to names in C aren ' t  a problem, because only the position 
of the function in the IDL file is t ransmit ted.  

- For the Fortran language element alternate return no transition into C can 
be found and function name arguments are not supported by DCE RPC. 

In these last two cases, the application p rogrammer  either has to change the 
Fortran interface or has to write additional stubs which put  his interface into an 
interface that  can be distributed with the DCE RPC.  

Besides this, the possibilities with arrays that  have variable dimensions and 
different or separated input and output  areas are very limited. This can cause the 
situation that  more elements than the application needs have to be transmit ted.  

Therefore, looking at functional aspects, in most  cases, tools with a Fortran 
interface (e.g. DFN-RPC,  PVM) are the better  choice for distributing scientific- 
technical applications programmed in Fortran. 

5 C o n c l u s i o n  

Looking at the three requirements, that  such tools should be easy to use, should 
have a fortran interface and that  they must  be efficient, it is desirable that  the 
DCE RPC gets a bet ter  performance without weakness in particular environ- 
ments. It  should get also a Fortran interface like the D F N - R P C  and an additional 
Fortran message passing library like PVM. 
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Some DCE Performance Analysis Results 
B. Dasarathy, Khalid Khalil, David E. Ruddock 
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Abstract. This paper explores the performance behavior of two core services of 
the OSF DCE, RPC (Remote Procedure Call) and threads. The RPC perfor- 
mance is gauged as a function of the length of argument(s) passed. We show 
that: 

�9 DCE RPC performance behavior with or without security features is linear 
with the length of the messages and is comparable to that of a commonly 
available RPC technology once the client and server are fully bound to each 
other, 

�9 authentication on RPCs is inexpensive, and 

�9 encryption and integrity on messages do not come cheap. 

We also demonstrate that multi-threading increases throughput even on a single 
processor system and how much the throughput is improved in comparison with 
multiple single-threaded processes. The effect of multi-threading a client pro- 
cess on throughput and response time as a function of the number of threads is 
brought out. 

1. Introduction 
We describe in this paper a performance analysis study of some core O S F  M DCE ser- 
vices in DCE 1.0.1, a pre-production release of DCE. Experimentation with DCE has 
been an ongoing effort since April 1992 in a distributed system testbed environment at 
the Computing Technology Integration (CTI) Laboratory at Bellcore. The testbed 
environment, as the name implies, is intended to facilitate analysis of emerging distrib- 
uted computing platform, transaction monitor and distributed system management 
technologies from the perspective of developing inter-operable telephony applications. 
DCE in our testbed environment currently runs on several types of platforms. The 
study reported in this paper has two major goals: to quantify the cost or overhead asso- 
ciated with the remote 12rocedure call (RPC) feature of  DCE, annotated with different 
levels of security, and the impact of its multi-threading feature, a feature for achieving 
concurrency/performance enhancement in applications layered over DCE. 

1.1 What  is DCE? 

DCE is a collection of services for the development, use and maintenance of transpar- 
ent distributed systems using the client/server architecture. Enabling application-level 
inter-operability (among heterogeneous platforms) is the essence of DCE. The com- 
munication paradigm supported by DCE is synchronous RPC across address spaces in 
conjunction with multi-threading within an address space for concurrency. Transpar- 
ency is provided by a directory service/name server. The security features of DCE in- 
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clude authentication of servers and clients to each other and to the system, support for 
resource authorization by an application server in providing services to its clients, and 
various levels of message integrity (at different levels of cost) and encryption. For an 
overview of DCE, see [1], [2], [3] and the introductory chapter of these proceedings. 

1.2 Why DCE Performance Analysis? 

DCE has industry-wide support and is, or will become, available as a product on a va- 
riety of platforms. It is intended to provide interoperability of an application on heter- 
ogeneous platforms regardless of distance between application components and type 
of physical connection. DCE, moreover, hides the complexity of distribution. Its RPC 
mechanism, which behaves functionally more or less like procedural calls in a sequen- 
tial program, permits development of distributed programs as if they were centralized, 
i.e., no major paradigm shift is required on the part of a programmer, unless the use of 
threads is employed for higher throughput. 

Since our experimentation began in April '92, we have found DCE to be usable and to 
be working in conformance with its documentation [4]. This report provides informa- 
tion regarding DCE performance characteristics. From the performance viewpoint, 
distribution has both negative and positive consequences. On the positive side, distri- 
bution provides processing concurrency. On the negative side, distribution involves 
network delay. 

Our performance analysis can be characterized as latency- (response time-) based and 
from an application or a client perspective. An alternative approach is a throughput- 
based analysis, often carried out at a high utilization rate of a resource. It is our view 
that the latency-based analysis is more suitable than throughput-based approach for 
measuring performance from an application perspective and the throughput-based ap- 
proach is more appropriate for the analysis of a server. 

The performance of DCE RPC is analyzed as a function of the length of argument(s) 
passed over the network. Most secure features of DCE are associated with its RPC. The 
overhead associated with various forms/aspects of security --authentication, authori- 
zation, and message integrity and protection ---on DCE RPC is analyzed. To provide 
a perspective on the performance of DCE RPC, the "vanilla" form of DCE RPC, i.e., 
one with no secure features, is contrasted with that of a commonly available RPC tech- 
nology from a vendor. 

We also report here on our performance analysis of the threads feature of DCE. Multi- 
threading within an address space has the potential for increasing performance even on 
a single processor system as a result of the low context switching associated with 
threads. We demonstrate how multi-threading a client address space with n threads 
(doing identical work) improves throughput/response time in comparison with n (iden- 
tical) single threaded client processes. We also report our analysis of the effect of 
multi-threading a single address space on throughput and response time, as a function 
of the number of threads. 
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In Section 2, we describe our performance analysis of RPC and various forms of secure 
RPCs. Section 3 deals with performance analysis of threads. In Section 4, the Conclud- 
ing Remarks Section, we summarize our findings and outline the future directions for 
this work. 

2. RPC Performance 

2.1 Test Environment 

All our experiments, except the one reported in Section 2.4, were carried out on a 
homogeneous set of RISC workstations running DCE 1.0.1, a pre-production release 
of DCE. The MIPS-rating and the SPECint-rating of these machines is 28.5 and 22 
respectively. 

All our experiments were carried out in an Ethemet LAN, in a typical, every day, oper- 
ating environment. 1 Purposely, no traffic/load was added on or removed from the net- 
work or the individual machines hosting the client and server processes. This is 
because our main goal was to study how DCE behaves in a typical environment (from 
an application perspective) and not to study how well DCE behaves under optimal/ 
stress conditions. In all our experiments, the application client and server were on sep- 
arate machines and these machines were different from the machine that hosted the 
DCE server processes for Cell Directory Service (CDS), security and DTS so as to sim- 
ulate typical application configurations. Moreover, if a client and server were to be on 
the same (single processor) machine, the RPC time will be overshadowed/colored by 
the context switching time (of the CPU) between the server and client processes. 
Although this RPC performance between two processes on the same machine might be 
of interest, it does not shed much light on the RPC efficiency or lack of it. All our 
experiments were carried out with UDP/IP as the network protocol. Finally, in all our 
experiments, neither the client nor the server process carried out computationally 
intensive tasks and the single-threaded client process submitted serial requests. (See 
Section 3 for the performance analysis of multi-threaded clients.) The effect of concur- 
rent requests on the application server was not a focus of study, although application 
servers are automatically multi-threaded (to a default maximum of ten) in DCE. 

2.2 DCE Vanilla RPC and Secure RPC Performance Analysis 

In this set of experiments, we studied the DCE RPC performance as a function of the 
length of the message passed across the wire. The data type was restricted to ASCII 
character (idl_char) strings. Since the client and server machines were of the same 
type, there was little data marshalling/unmarshalling overhead in our experiments/test 

1. The network utilization of our operating environment is normally about 5% and about 10% during the 
high activity periods. Thus, our Ethemet LAN is a "well behaving" one. Although several utility pro- 
grams (e.g., mail, clock), word processors and editors were running and many windows were being 
displayed on our application clients and server machines, while our experiments were being con- 
ducted, they were often in a dormant state. Neither these machines nor the DCE server machine acted, 
for instance, as a file or print server for other machines and, thus, did not have any significant back- 
ground load on a sustained basis. 
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results. The client in our RPCs made use of CDS for server identification. Once the 
binding to the server was obtained, a client made 20 RPCs to the server. (We repeated 
the experiments ten times for each length of message studied and each type of security 
annotation.) A statistically accurate picture, we felt, required 10 to 20 RPC calls. A lot 
more than 20 - -50 for instance - -  would have skewed the RPC time appreciably 
upward, as elapsed time for some of the RPCs would include context switching and/or 
swapping time on either or both client and server processes. (This was especially true 
when the message was long and integrity/encryption was required on the parameters 
passed.) We separated the behavior of the first RPC from subsequent ones, because the 
first RPC from a client to the server (and back) took appreciably more time than the 
subsequent RPCs. Subsequent RPC times stabilized and did not differ significantly. 
(Occasionally, we saw a few peaks, perhaps due to context switching/swapping.) The 
first RPC (before the client and server were fully bound to each other) took more time 
(about 30 ms; see the constant factors in Figure 1 and Figure 2 below) because of the 
involvement of the rpcd daemon (the endpoint mapper) for allocating/finding the end 
points (ports) for the client/server communication. 
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The following forms of RPCs were studied: 

�9 Vanilla RPC (RPC with no security features, but with "explicit" binding 
using the CDS) 

�9 RPC with authentication and name-based authorization 1 

�9 RPC with authentication, name-based authorization, and integrity on mes- 
sages (parameters) 

�9 RPC with authentication, name-based authorization, and encryption on mes- 
sages 

1. The response time characteristic curves for the RPCs with just authentication and name-based autho- 
rization are not, however, listed in the two figures to follow. This is because we found the response time 
characteristic for this case to be (statistically) same as that of the vanilla RPC, i.e., authentication and 
simple name-based authorization is almost free. 
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The DCE authentication service is done with software I and is based on DES (Data 
Encryption Standard). It is a modified version of the Kerberos TM Network Authentica- 
tion Service, Version 5. In our experiments with authenticated RPCs, both clients and 
servers authenticated to DCE. The client took on the login context of the user on whose 
behalf it ran and the server authenticated using a password file specified by the server. 
In the case of name-based authorization, the DCE RPC runtime passes the login id and 
other privilege information to the server. It is entirely up to the server to allow resource 
authorization based on the login id of the client. The implication of this is that perfor- 
mance of resource authorization is very much application-dependent. In our experi- 
ments, the part of the server program that performs authorization is about 150 lines 
long, with no iteration, for validating client-provided data such as desired protection 
level by the client and for granting access to a requested operation based on the client' s 
login id. The highest form of protection that DCE provides for the arguments on its 
RPCs is encryption. The second highest form of protection is integrity which ensures 
none of the data transferred between client and server has been modified. (Other levels 
of protection/integrity at low(er) costs include assurance that all packets received by 
the server are from the expected client and protection only at the beginning of an RPC.) 

In Figure 1 and Figure 2 above, we capture the performance of first and subsequent 
RPCs, as a function of the length of the argument(s) of the RPC, respectively. In these 
figures, response time is the elapsed time between just before the RPC is made (on the 
client side) and just after the RPC is completed (als0 on the client side). As the figures 
indicate, message integrity and encryption are not free. 

Moreover, as can be seen from the figures, the DCE RPC performance is predictable 
and linear with the length of the RPC arguments/messages, i.e., 

�9 2 ms (about) per kilobytes of message for the vanilla RPC and for the RPC 
with just authentication and name-based authorization 

�9 7 ms per kilobytes of message for the RPC with authentication, name-based 
authorization, and integrity on messages 

�9 17 ms per kilobytes of message for the RPC with authentication, name-based 
authorization and encryption on messages 

Finally, a word about constants or null-length RPC time quantities. The constants and 
the slopes in the figures are generated by a curve fitting software program which tends 
to favor smaller slopes and larger constant values to larger slopes and smaller constant 
values. Moreover, as the length increases, our RPC times are skewed upwards as the 
result of context switching which in turn has the tendency to exaggerate constant and/ 
or slope factors as a whole for a given curve. To be more specific, for instance (See 
Figure 2.), we clocked null vanilla RPCs (the subsequent ones) at 6 to 7 ms (rather than 
at 10 to 1 lms) and authenticated RPCs with message integrity at 9ms (rather than at 
14 to 15 ms). 

1. The use of a DES hardware chip could improve encrypted RPC performance. 
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2.3 DCE RPC in Comparison To Another RPC Technology/Implementation 

Here we provide a perspective on the performance of DCE RPC by contrasting the va- 
nilla form of DCE RPC with a commonly available RPC technology from a vendor on 
many platforms. The interface definition language compiler program of this RPC tech- 
nology generates client/server stubs just as the DCE idl compiler does for marshalling 
and unmarshalling data. Just like the DCE RPC, this technology hides communication 
complexities by generating stubs that interface to its run-time facilities. This common- 
ly available RPC technology using the interface definition compiler program does not, 
however, provide location transparency through a directory service and/or support 
message protection/integrity and resource authorization support. Moreover, it is also 
restrictive in its argument passing. No more than one parameter can be specified for 
either input or output. (If more parameters are needed, one must create a structure and 
pass it as the single parameter.) We were also hampered by the size restriction imposed 
by this RPC mechanism. The largest size of the message we could pass is around 8000 
characters/bytes 1. Finally, to our knowledge, no industry-wide secure RPC technolo- 
gies exist, i.e., Kerberos-like technology integrated with the RPC technology, against 
which we could compare secure RPC features of DCE. 

m 

8O 

E 

o 

 '2o -I [] average OOE RPO 
I ~ & 1St other RPC 

0 2 4 6 8 10 12 14 16 18 20 
Message Size (KByte) 

Figure 3: Response Time: DCE RPC Vs. Another RPC Implementation 

I. According to a representative of the vendor of this RPC implementation, this is a restriction imposed 
by the UDP protocol and that there is no length restriction in their RPC implementation over TCP/IP. 
However, a developer does not encounter any message length limitation with DCE RPCs over UDP. 



54 

In Figure 3, we contrast the performance of the two RPC implementations. As in Sec- 
tion 2.2, we separate the performance of the first RPC between a client and a server 
from subsequent ones. It should be noted that this commonly available RPC has a fast- 
er response time. However, as the length of the message increases, the difference be- 
tween the response time of this RPC implementation and that of DCE RPC remains 
constant or decreases slightly. Thus, as the length of the message(s) increases, the per- 
formance advantage of this RPC technology over DCE RPC becomes less significant. 

2.4 RPC Performance Across Heterogeneous Platforms 

The client and server machines involved in this experiment were RISC machines with 
the MIPS rating of 37 and 28.5 respectively. Their SPECint ratings, perhaps a better 
measure of CPU, are about the same at 22. As in other experiments, the data type of 
the arguments passed over the wire was restricted to ASCII character (idl_char) 
strings. The response time behavior characteristics for both first RPC and subsequent 
ones are given Figure 4. It appears that heterogeneity does incur some performance 
penalty (both in constant and slope factors), even when there is little marshalling and 
unmarshalling of data. 
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3. Thread Performance  

3.1 Threads: An Overview 

A thread is a single, sequential flow of control within one process.The DCE multi- 
threading service allows multiple threads, that is, multiple flows of control within a 
single process or address space. 

We shall demonstrate that the main advantage of multi-threading is the increased speed 
of computation due to parallelism even when there is only one processor involved. 
This is because the context switching 1 overhead required to execute a different thread 
is less than the context switching overhead to execute a different process. 

By using threads, server applications can service multiple clients concurrently. A cli- 
ent can use threads to make multiple simultaneous requests to a server or multiple serv- 
ers. Each thread progresses independently. Some threads continue processing while 
other threads wait for services such as disk I/O.The benefit of multi-threading is 
increased throughput, except when the CPU utilization is very high. 

Thread Implementation 

The threads of DCE 1.0.1 on platforms we have experimented with have been imple- 
mented in the user space. This means that the management of threads takes place in 
user time and the operating system has no control of the threaded environment. The 
management of threads within the process is analogous to the process management 
within an operating system: priorities, scheduling and memory allocation still take 
place, but at the user level. 

Like processes within an operating system, threads have the following states: 

�9 Waiting: A thread in this slate is not eligible to execute because it is synchro- 
nizing with another thread, or it is waiting for an external event to happen. 
This slate is also referred to as "blocked." 

�9 Ready: A thread in this state can run but is waiting for other threads to relin- 
quish CPU. 

�9 Running: A thread in this slate is currently being executed by the processor. 

The application assigns a scheduling policy and priority to a thread when it is created. 
The scheduler uses this information and the thread state information to determine when 
the thread is allotted processor time. The DCE developer kit(s) we have experimented 
with only supports a modified Round Robin Scheduling policy that allows the highest 
priority thread to run until it blocks. Threads of equal priority are time-sliced. 

3.2 Threads Performance Analysis 

Two experiments were carried out to measure the performance characteristics of multi- 
threaded client and server applications. A multi-threaded client was first written to 

1. On a uniprocessor machine, the computer  runs one process for a short period of time and then switches 

to another. Changing from one process to another is called a "context  switch". 
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send 1000 small RPC messages to the server and wait for each reply. (As in our exper- 
iments in Section 2, the client and server programs were also not compute-intensive.) 
The same program was then modified to send the same 1000 short messages to the 
server using multiple single threaded processes. The intent of doing this was to gauge 
the performance of: 

�9 a multi-threaded client relative to the number of threads used, and 

�9 a single multi-threaded client doing the same tasks as performed by multiple 
single threaded clients. 

As in experiments in Section 2, testing was done on a Ethernet LAN (using only the 
UDP/IP protocol) during normal business hours to obtain typical results. To minimize 
transient environmental conditions that may have occurred during testing, each test 
was performed twelve times and the results averaged (minus the high and low extreme 
times before the results were merged). 

Testing was performed using single CPU client and server machines. Different test 
results would be obtained on a multi-processor machine using an operating system that 
supports system level threads (e.g., threads scheduled by the operating system and not 
by the user level threads scheduler). 

Client efficiency was measured in terms of: 

�9 Average time to complete an RPC. 

�9 Average time in real seconds (elapsed time for n RPCs divided by n) to com- 
plete the task. 

�9 Average number of voluntary context switches 1 performed on the client. 

�9 Average time in seconds the client spent in user mode. 

�9 Average time in seconds the client spent in system mode. 

In all these experiments, regardless of whether the client side consisted of a multi- 
threaded single process or single threaded multi-processes, the server was multi- 
threaded up to a maximum of ten, i.e., up to ten threads could be spun off to process 
client requests on an as needed basis. The number of threads on the client side was var- 
ied from one to ten in our experiments. 

Round Trip RPC Time 

The first metric analyzed is the average time to complete a single RPC. The results of 
the experiment are shown in Figure 5. This figure shows that the average time to com- 
plete a single RPC call increases almost linearly as the number of client threads or pro- 
cesses increases. This increase in latency per RPC is to be expected because increasing 

1. Voluntary context switches are done when the application performs some task that blocks the process. 
The application is not allowed another time quantum until the blocking condition is resolved. Involun- 
tary context switches are performed as normal course of events such as when a program time quantum 
has expired. 
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the number of concurrent activities decreases the time allotted to any single activity. 
This increase in latency is attributed to (but not limited to): 

�9 Server loading: A multi-threaded server can process serialized requests faster 
than multiple simultaneous requests. In other words, the server can process 
individual requests faster if there are no other requests pending. This is 
because the server multiplexes time allotments between multiple threads 
which cause the total time to complete all threads to increase. 

�9 Client loading: As RPC replies are received by a multi-threaded client, the 
number of threads ready to execute increases. Since the client can process 
only one thread at a time, the amount of time spent processing each thread in 
the ready state decreases in a given time period. 
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F i g u r e  5: Average RPC Time Versus No. of Control Flows in Client 

The average RPC time for a multi-threaded single process application is lower than 
that of the single-threaded multi-process application. This is due to fewer context 
switches in the former case than in the latter. Further study is required to determine if 
client or server loading is the major controlling factor leading to the increase in round- 
trip time and the drop of the multiple process curve as the number of processes 
increases. 
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Multi-Threaded RPC Throughput 

Figure 6 charts the amount of average real time required to complete a single RPC 
using multiple threads and multiple processes. The average real-time is the elapsed 
time taken by n concurrent conlrol flows on the client side, (each making an RPC) to 
the same server divided by n. As noted before, neither the client(s) nor the server were 
compute-intensive. The graph demonstrates that a single multi-threaded process per- 
forms much better than multiple single-threaded processes. 
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Figure 6: Throughput as a Function of Number of 
Concurrent Processes & Threads 

One reason for this striking increase in multi-threaded efficiency is shown in Figure 7. 
This graph shows a dramatic decrease in the number of voluntary context switches per- 
formed on the multi-threaded client program. It comes about because the client thread 
that initiated the RPC blocks while the other threads continue processing using the 
remainder of the time quantum. The remainder of the time quantum would have been 
forfeited by a block in a single threaded program. 

Figure 6 and Figure 7 show that there is an optimal number of threads for this particular 
client/server arrangement. This means that there is little if any performance gain when 
more than three threads are used. We stress that three threads turned out to be optimal 
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for this application in our environment; it may or may not be optimal for others. Other 
studies are needed to show how varying the message size and adding security to the 
RPC affect the optimal thread count in an application. 
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Figure 7: Context Switches as a Function of Number of Control Flows 

Threads Overhead 

The amount of time the client program (all 1000 threads) spent in user and system 
modes is shown in Figure 8 and Figure 9, respectively. Figure 8 shows that the time 
spent in the user mode for multi-threaded or multiple process clients varies little with 
the number of control flows, i.e., the amount of user level time needed to do the same 
tasks is independent of the number of control flows in both the schemes. We conclude 
that DCE thread management routines add little user time overhead to the completion 
of the same operations. 

Figure 9 shows that the time spent in system mode decreases slightly for threaded cli- 
ents and linearly increases for multiple process clients. These results are expected 
because the multi-threaded client has fewer voluntary context switches, reducing the 
amount of time the system dedicates to managing the program. Conversely, the system 
mode time increases with the number of processes because the operating system must 
manage more programs that have more voluntary context switches. 
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4. Concluding Remarks 

To summarize, this study analyzes the performance characteristics of two core DCE 
services, RPC and threads. The performance of the DCE RPC was analyzed as a func- 
tion of the length of argument(s) passed over the wire. Most security features of DCE 
are associated with its RPC. The overhead associated with various aspects of security 
--authentication, authorization, and message integrity/protection ---on DCE RPC was 
gauged. Our conclusion is that DCE RPC performance behavior with or without secu- 
rity features is linear with the size of the messages (arguments), authentication on 
RPCs is almost free and encrypfion and integrity on messages do not come cheap. To 
provide a perspective on the performance of DCE RPC, the basic form of DCE RPC, 
i.e., one with no secure features, was compared with a commonly available RPC tech- 
nology/implementation from a vendor. We note that DCE performance is comparable 
to that of this commonly available RPC technology once the server and client are fully 
bound to each other. 

We also demonstrated how multi-threading increases throughput even on a single pro- 
cessor system in view of small context switching overhead associated with threads. In 
particular, we demonstrated how multi-threading a client address space with n threads, 
l<=n<=lO, the n threads doing identical work, improves throughput/response time in 
comparison with n (identical) single threaded processes. We also demonstrated that 
multi-threading a client address space increases throughput as the number of threads 
used increases. We also showed that the optimal number of threads can be determined 
for any application by using techniques similar to the ones used in this study. 

This performance analysis study of DCE environments is only the beginning. Many 
extensions to our performance analysis are possible and needed. The goals of such 
extended studies include: 

�9 To understand the effect of multi-processors on multi-threading, whereby 
there can be true concurrency among threads of the same process or different 
processes. 

�9 To determine the optimal number of threads under varying work load condi- 
tions of client and server and when messages of different lengths are passed 
between them. 

To insure that high performance DCE-based applications are designed and deployed 
in large scale, several other aspects of DCE should be investigated: 

�9 DFS, the DCE Distributed File System 

�9 Replication of DCE servers, specifically its Cell Directory Services (CDS) 
and security servers. 

The replication decision is a trade-off decision among availability, performance and 
consistency parameters. 
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Abstract. This paper summarizes performance results of a systematic 
evaluation of the Open Software Foundation (OSF) Distributed Computing 
Environment (DCE) Cell Directory Service (CDS). The CDS is a distributed 
name database which is used to locate servers and objects within a DCE cell. 
We designed and built a systematic CDS performance test system and then 
characterized and projected the performance of important CDS operations with 
the primary focus on the RPC Name Service Independent (NSI) interface. These 
results should assist customer application modeling as well as CDS porting and 
performance tuning by developers using DCE. We believe CDS in its present 
form has performance tuning opportunities and we provide several 
recommendations for users of the CDS. 

1 I n t r o d u c t i o n  
We conducted a systematic study of the performance characteristics of the Cell 

Directory Service. This paper discusses some of our performance measurements of 
basic CDS services, how and why these measurements were made, and implications 
for the design of DCE applications using CDS. 

The CDS provides distributed applications with the ability to access servers with- 
out a priori  knowledge of the server's physical location. This server location transpar- 
ency enhances availability by connecting clients with currently available servers. 

A distributed application will use the directory service the same way we use a tele- 
phone book. The predominate service it provides is the lookup of a server by name: 
where is the network location of a requested service? Name lookups are a frequent 
operation in distributed applications and must execute efficiently. These requests need 
a true distributed and reliable server for which there are few alternatives other than 
CDS. 

The CDS also provides uniform naming mechanisms for distributed applications, 
supports higher application availability by providing for the read-only replication of 
the name space, provides client side caching and provides X/OPEN Application Pro- 
gram Interface (API) support. 

1.1 Overall Conclusions 
We worked closely with HP DCE's developers during our investigation in Fall 

1992 to provide performance improvements to CDS. Our performance improvements 
were on the order of 30-80% and will be made available through OSF to other vendors 
of DCE. 

For small to medium cells (tens to hundreds of nodes), where the access to the CDS 
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is infrequent, the performance of the CDS makes it a viable distributed name server. 
The CDS functions adequately and is viable for the short term. In the longer term it 
may be a performance bottleneck for certain classes of applications that depend on 
CDS in a critical performance path (such as some OLTP or applications with high 
CDS access frequencies). This paper will provide insight into how to use CDS effi- 
ciently. 

1.2 Paper Organization 
In section 2, the CDS test system is explained. We describe our methodology and 

cautions for data interpretation in section 3. The performance data for binding import 
measurements is presented in section 4, while the performance data for binding 
exports is in section 5. In section 6 we briefly describe results for the low level 
response times for the cdsclerk and cdsd. The final sections discuss future CDS perfor- 
mance improvements, recommendations, and areas for future research. 

Figure 1 Description of Test System Boundary 
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2 System Description 
This section describes the boundaries of the tested subsystems within DCE. 
There are two external APIs that DCE application developers can access CDS: the 

Name Service Independent (NSI) and X/Open Directory Interface (XDI) [11]. A third 
API called the Cell Directory Service Programming Interface (CDSPI) exists. The 
CDSPI interface is not available to application programmers as it is an internal DCE 
library interface used by NSI and XDI library functions. CDSPI was important for us 
to investigate since it represents quantifiable units of work delivered to the CDS dae- 
mons. 

Figure 1 illustrates the relationships among these APIs. NSI calls are made directly 
by application developers, or indirectly from within the IDL-generated stub code and 
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DCE libraries. NSI calls present DCE-knowledgeable access to the name service data- 
base. By DCE-knowledgeable, we mean that the DCE/NSI library knows about the 
CDS attributes which characterize objects as profiles, groups, or server entries[10]. 
This functionality is not found in the XDS or lower level CDSPI interfaces. 

The DCE library makes all its accesses to the CDS through the CDSPI interface. 
There is nearly a one-for-one correspondence of the CDSPI interface calls within the 
DCE library to the socket calls actually made out of the library to the cdsclerk. 

As shown in Figure 1, the other external API interface to CDS, XDI, is outside the 
boundary of our study. However, the programmer using XDS has the choice to use the 
GDS X.500 database or CDS through the Directory User Agent (DUA). If the DUA 
references the CDS, it generates the accesses to the cdsclerk using the same CDSPI 
interface as does the NSI requests. The results of this report (section 6) which address 
the primitive response time costs to retrieve and modify attributes as well as to create 
and delete objects, can be taken as the minimum bounds for XDS response times for 
operations using the CDS. 

3 Methodology 
The data presented in this report was measured on HP/Apollo 9000/720 worksta- 

tions with 64 MB of main memory. The tests used the HP-UX O/S version 8.07, and 
OSF's build 26 of the DCE 1.0.1 product release. This DCE version was released to 
HP customers in early 1993. Because of the novelty of the DCE CDS, we are unaware 
of published accounts of its performance characteristics, although studies of other dis- 
tributed directory schemes are available [2]. 

When faced with the scope of this project, we created three approaches to evaluate 
CDS performance. The first approach centered on the NSI access to the CDS and the 
parameter space of the individual procedure calls. We implemented a CDS test suite 
using a custom performance test framework [1]. Once the test suite was developed, the 
parameter space of the selected function calls was examined exhaustively [6]. The sec- 
ond approach developed experimental modeling techniques that allowed us to explore 
some of the effects of the name space structure on the response times that would be 
expected for binding lookup. We explored issues of cdsd remoteness, nested CDS 
structures, caching, multiple clearinghouses, softlink pointers, etc.[7]. The third 
approach used customized API tracing to get more detailed resource usage across CDS 
daemons [9]. 

We now discuss the various basic types of CDS access and why we emphasized 
these activities in our performance study. 

3.1 Importing RPC Bindings from the CDS 
We believe the retrieval of binding information from the distributed name service is 

the predominant mode of CDS access by applications using the CDS service 1. 
We were interested not only in the costs to retrieve a single binding, but multiple 

bindings as well. The reason to import multiple bindings is that the client application 
may need to retrieve several protocol stacks to a server, for load balancing or reliabil- 
ity. 

3.2 Exporting Bindings to the CI)S 
Binding export (or any name space modification) is a function that we estimate will 

not be as frequent as binding import discussed in the previous section. The objective 

1. There is supporting empirical evidence for this assertion based on performance workload 
measurement work from DEC on their own Domain Naming Service[4]. 
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of any distributed name service is that it should contain information which is neither 
static nor rapidly changing. If it were static, the data should be in some configuration 
file somewhere, not cluttering up the name space. If it were rapidly changing, that is, 
binding exports and other name space manipulation represent a large majority of all 
transactions on the name space, it will cause havoc with the distribution algorithms for 
replicas and other clearinghouse housekeeping. 

Export performance will be important to some users of CDS. The expectations of 
rapid binding export may be part of the performance start-up path. We cannot forget 
that CDS may also be used through XDS where modifications of the name space could 
be a much more important part of the usage of CDS. In cases of managed objects and 
client instrumentation, the export of a client's location to the name space may need to 
be efficient. 

3.3 Caveats for Direct Application of Results 
The reader of this report is advised that the performance data discussed herein does 

not necessarily represent the exact performance a real application will experience. The 
differences are: 
�9 Much of the performance data presented is the running average of multiple, 

repetitive operations to the RPC Name Service. Because of the nature of the 
CDS, these tests avoid the larger costs associated with initial calls to the name 
space and maximize the positive impact the CDS clerk cache has on the results, 
Actual applications will typically not exhibit the same repetitive retrieval pat- 
terns as our test environment. 

�9 Our measurements were performed on a DCE cell linked over an isolated IEEE 
802.3 LAN. The CDS directory server was always within a 2 to 3 millisecond 
(msec) RPC to the local node's cdsclerk. 

�9 Local non-CDS tasks requiring computations or contested network bandwidth 
may lengthen the response times in a more typical real world scenario. 

�9 The performance test bed used in this report is a synthetic structure, systemati- 
cally generated for purposes of this study. Real name spaces will actually evolve 
over time, growing in size and complexity. 

�9 The DCE CDS is a recently released service which is expected to change and 
improve. 

4 RPC  Binding  Import  
The response times for the importation of server bindings in DCE 1.0.1 fall in a 

wide range depending on whether the attribute information is cached, the number of 
bindings requested, whether it was the first or subsequent binding lookup, and the 
kinds of group and profile structures encountered. 

4.1 Test Case Descriptions 
The import binding tests that we want to discuss in this paper are listed in Table 1. 

The letters in the first column are the index keys to the graph which follows it. 
In Table 1, we used both cached and uncached trials, nested groups and profiles, 

and multiple binding lookups to give the reader a sampling of the variety of tests that 
we conducted. 

4.2 Local Node Binding Retrieval Results 
We plot in Figure 2 the first and subsequent response times for each of the import 

tests discussed in Table 1. The First Response time includes an Access Control List 
(ACL) check to ensure that the user has the permissions to reference the CDS entry. 
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This time also includes preparing DCE library memory structures and other house- 
keeping. The Mean Response is the average response times of subsequent imports of 
the same CDS objects. 

Table 1 Binding Import Test Names 

Index [ Action taken in test 
i 

bI Single binding import from a server entry 

bL Single binding lookup from server enl~ 

c 1 The cdsclerk cache hits for server attxibutes 
c2 The cdsclerk cache miss on first attribute read 

c3 The cdsclerk cache is disabled (high confidence) 

bl  One binding lookup from a server entry 

b2 Two binding lookups from a server entry 

b5 Five binding lookups from a server entry 

g 1 One binding lookup starting from a group entry 
g2 Two binding lookups starting from a group entry 

g5 Five binding lookup starting from a group entry 

pl One binding lookup starting from a profile entry 

p2 Two binding lookups starting from a profile entry 
p5 Five binding lookups starting from a profile entry 

ngl One binding lookup from a single nested group entry 

ng2 One binding lookup from a 2 deep nested groups 

ng5 One binding lookup from a 5 deep nested groups 

npl One binding lookup from a single nested profile entry 

np2 One binding lookup from a 2 deep nested profiles 

np5 One binding lookup from a 5 deep nested profiles 

Figure 2 Binding Retrieval from Local Clearinghouse 
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For name space lookup satisfied by the cdsclerk cache (all tests except bars c2 and 
c3), first response times are between 44 milliseconds to over one second. Subsequent 
lookups have better response times. Simple non-cached name space lookups requiring 
cdsd involvement (tests c2 and c3) have response times range between 550 msecs to 
over a second, more than three times longer than the cached counterparts. The non- 
cached responses for the more complex tests are not shown, but have similar increases 
in response times. Note that since the test clearinghouse was local to the same node, 
there were no network latencies in the non-cached response time. 

Servers that are found through groups or profiles (tests gl through npS) have 
response times for binding lookup from 600 msecs to 2 seconds. Simple modeling 
shows that these response times increase markedly when attributes are not cached and 
the server cdsd is located at network delays greater than 20 msecs. 

4.3 Binding Import Conclusions 
Other observations that we made from the binding import measurements include: 
�9 CDS Clerk caching has a major impact on performance. Those measurements 

which accessed entries that were not already in the CDS Clerk cache took four 
times longer to complete. DCE nodes which do not have application sets that 
request repetitive retrievals to identical objects may experience low hit rates to 
the CDS Clerk cache. In addition, environments with complex or slower network 
topologies will experience greater performance increases than documented in 
this report. 

�9 The CDS name server exhibits linear increases in performance proportional to 
the increase in the complexity of a CDS object entry for: 

�9 number of binding handles retrieved per entry. 
�9 number of members accessed per group or profile 
�9 number of attributes accessed per group or profile. 
�9 level of nesting of groups/profiles. 
While these growth patterns, by themselves, are not a problem for simple uses 
of the CDS, it may be of concern when using complex name searches. 

�9 The CDS name server exhibits increasing processing behavior when searching 
through lists of object UUIDs and profile elements with multiple interfaces or 
versions. This is a problem for name bindings that are long-lived and are subject 
to numerous updates. 

�9 Binding retrievals using rpc ns binding_import_* can produce very unpredict- 
able performance results because the operation is actually implemented as calls 
to rpc ns binding_lookup_* with a fixed vector size of five. Among the behav- 
ior we have seen is: 

�9 Simple single binding imports are 25 to 35% higher with rpc ns binding_im- 
port* than they are with rpc ns binding_lookup_* using a vector size of 
one. 

�9 Import performance from a server entry can vary as much as 25% depending 
on the number of handles in the entry. Surprisingly, the best performance is 
achieved when there are 5 or more handles in the entry. 

�9 Importation tests using group and profile entries experienced up to three 
times the response time for single binding retrievals based upon the number 
of qualifying handles in the compound structure. This phenomena was partic- 
ularly evident in a profile structure where multiple elements existed with dif- 
ferent, but compatible minor version numbers. 
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�9 Object identifiers, while having minimal impact on the retrieval of binding han- 
dles from a server entry, can cause significantly slower performance response 
times if used to differentiate server entries within group and profile structures. 

4.4 CDS Structure Affect on Response Times 
We used experimental design techniques to understand the primary factors which 

affect CDS access response time. Several 2-factor combinations (interactions) have 
statistically significant effects on binding import response times. 

Primary factors that affect average response time (neglecting the cost of  the first 
CDS response time cost) are listed below. Note that these effects can be multiplicative 
for objects with multiple components (e.g., groups, profiles). 
�9 The basic cost to retrieve a binding for a server from the name space is 15 to 20 

msecs. 
�9 A significant incremental response time increase occurs if the server entry is not 

found in the cdsclerk cache. This effect is on the order of 40 to 50 msecs. 
�9 The number of  sofflinks traversed to find a server entry increases response time 

incrementally per softlink-indirection level. This affect is on the order of 1 to 2 
msecs per softlink. 
The only significant 2-factor interactions occurred in the presence of multiple clear- 

inghouses. These results have not been fully examined. All of the interaction factors 
are on the order of 3 to 4 msec per lookup. 
�9 Number of clearinghouses in the search path interacts with softlink depth. 
�9 Number of clearinghouses in the search path interacts with entry read from 

cache. 
�9 Directory depth of server entry interacts with softlink depth. 
�9 Number of entries per directory interacts with softlink depth. 
�9 Number of entries per directory interacts with entry read from cache. 

Our measurements and analysis suggest that there are several CDS access and 
structures that do not appear to affect response time. 
�9 The size of the name space (up to 1200 directories and objects) did not signifi- 

cantly alter the response time as compared to the case of 100 directories and 
objects. 

�9 The directory depth of a server entry shows no significant effect on response time 
in our test environment. This was tested for a server entry at the root of the tree 
and 5 levels deep. 

�9 The number of other entries in the name space at the same directory as the server 
entry shows no significant effect on response time in our test environment. This 
was measured for up to 10 objects in the same level in the directory. 

* A "remote clearinghouse" containing the server entry (i.e., a clearinghouse that 
is one LAN hop away from the client node) has no significant effect on response 
time. Intuitively, this result seems surprising since the network delay should 
cause accesses to a remote clearinghouse to be longer than for the local node. 
However, as confirmed by earlier measurements of DCE RPC performance, the 
difference in response times between local and remote RPC is negligible in a 
local LAN environment. MANs and WANs, on the other hand, demonstrate a 
significant deleterious effect since the WAN delay is additive to response time. 



70 

4.5 CDS Access Times Across High-Latency Networks 
There are network costs that are not part of these measurements where the clearing- 

house is located remote from the local node on which the client runs. In fact, this is a 
likely real-world situation. Here, we model typical network delays for each RPC to the 
remote clearinghouse based on our trace measurements. We measured the underlying 
resource demands for various retrieval modes for DCE 1.0.1. We also know the cached 
and non-cached behavior of the retrieval mechanisms. 

If we assume several network delay scenarios, we can construct a simple model of 
the effects. In Table 2 we have modeled different degrees of "remoteness" for the 
clearinghouse and its cdsd by choosing typical network delays as a model parameter. 

�9 LAN - Local Area Network - cdsd is on the same LAN as the client application. 
Assumed a 2 msec round trip time. 

�9 MAN - Metropolitan Area Network - cdsd is in the same metropolitan area as the 
client application. Assumed a typical 40 msec round trip time. 

�9 WAN - Wide Area Network - cdsd is on the same continent as the client applica- 
tion. Assumed a typical 80 msec round trip time 1. 

Table 2 Modeled Binding Lookup Response Times for Remote Servers (msec) 

Remoteness of cdsd: Round trip Time (msec) 
Binding Operation to be Performed 

-- Single Attribute Read 

-- Single Attribute Read 
bl One Binding Retrieval 

bl One Binding Retrieval 

pl One Binding through Profile Retrieval 

pl One Binding through Profile Retrieval 
g5 Bindings from 5 Servers through a Group 

g5 Bindings from 5 Servers through a Group 

p5 Bindings from 5 Servers through a Profile 

p5 Bindings from 5 Servers through a Profile 

rip2 One Binding from 2 nested Profiles 

np2 One Binding from 2 nested Profiles 

I cache i LAN ]MAN [WAN 
yes 3 3 3 

no 16 55 95 

yes 14 14 14 

no 45 160 280 

yes 37 37 37 

no 120 425 750 

yes 126 126 126 
no 400 1430 2500 

yes 130 130 130 

no 450 1600 2800 

yes 62 62 62 
no 195 700 1200 

Table 2 presents the modeled response times for various binding lookups for 
cached and non-cached situations. This table estimates the response times on HP9000 
$720 cdsd servers including the assumed networked delays. 

The lines with yes as cache status in the table are from our direct measurements on 
DCE 1.0.1. The lines marked no as cache status are generated from a simple model 
based on the number of known attribute reads which occur for each of the test cases 
multiplied by the round trip RPC time to the cdsd. Our estimates do not include any 
additional delays for RPC pings on the longer transactions. 

Of course, we expect some of the attributes are cached on a retrieval lookup. There- 
fore, the response time is bounded by the cached and uncached results for each of the 
test cases. 

1. We measured 100 msec DCE RPC round-trip time from Cupertino, Califomia to Chelms- 
ford, Massachusetts. Results can vary based on network topology and distance. 
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Response times grow very large when CDS servers are not local. This problem has 
motivated the clearinghouse replica capability of CDS. Replicas are not always avail- 
able locally to every user, nor are they useful for binding exports which must go to the 
master replica. For some users, binding lookup could experience a long wait. For 
example, servers that are found through groups or profiles can have response times for 
binding lookup on the order of several seconds when attributes are not cached and the 
server cdsd is located at network time delays greater than 20 msecs round trip time. 

4.6 An Application's Binding Response Time 
To determine a particular application's CDS response time, one cannot use these 

results without modification. In order to estimate the probability of communicating 
with the cdsd for binding lookup, one needs answers to workload characterization 
which were not addressed as part of our initial investigation. These questions include: 
�9 What percentage of the binding lookups are designated by the application 

designers to proceed with high confidence, bypassing the cdsclerk cache? Of the 
remaining proportion of binding lookups, some will hit the cdsclerk cache a n d  
some will not. What is the probability in a typical client that the binding lookups 
actually are found in the cdsclerk cache? This can be highly variable. It may be 
based on the default value for attribute time-outs in cache, frequency or rate of 
repeated attribute access by clients on a node, the multiple workload composition 
on the node, the design of the running client applications on the node. 

�9 What is the probability that binding handles found in CDS server entries point to 
network ports that have no server's manager currently active? 

�9 What is the number of distinct CDS clearinghouses which need traversal before 
the retrieval can occur? 
The network delays are added in for a miss in the cdsclerk cache for every attribute 

read which occurs. The number of attribute reads is highly dependent on the structure 
of the binding lookup parameters and name space structure, but can be as few as three 
to as much as dozens of read attribute requests. 

5 R P C  B i n d i n g  E x p o r t  
We turn now to the area of binding export. This function must be completed as the 

server readies itself to accept RPC calls for its services. The export activity requires 
that the CDS object be updated (or created) with the correct binding handle informa- 
tion. 

5.1 Test Case Descriptions 
The investigation using API tracing analysis looked at a wide variety of name space 

binding [9]. This paper discusses a few of those parameter combinations which appear 
to be more interesting from a performance or frequency of occurrence standpoint. 

Four classes of assumptions about the aspects of the name space object are made 
prior to export. These are: 

�9 new object - the server object does not yet exist. 
�9 new intfc - the server object exists but does not have the specific interface 

registered in the object. 
�9 new version- the server object exists and has the interface registered, but 

does not yet have a protocol stack with the correct major version number. 
�9 existing - the server object with the correct protocol stack already exists prior 

to the export. 
In each of the above classes the test registers from 1 to 5 protocol stacks. Each pro- 
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tocol could represent a different network protocol offered (UDP, TCP, etc.) or concur- 
rent interface IDs'. Object attribute caching in the cdsclerk was enabled. 

We traced each API call repeatedly. This allows us to examine both the first 
response time, and the subsequent response time exporting to the same name under the 
same conditions. These times are rarely the same. This repetition required the test pro- 
gram to undo any operations if necessary to put the object back in the same state 
between tests. The resulting API traces were examined as well as the measured 
response times. 

5.2 Simple Export Results 
Figure 3 shows the DCE 1.0.1's first and subsequent response times for exported 

names. First response times are more variable than the subsequent response time in 
our measurements. Measuring the response time of the first binding export by a server, 
many components enter into the operation. To isolate some of the long-term CDS code 
effects, we also measured the response time average of subsequent exports to the same 
object by the same client. We wanted to distinguish between the two because the aver- 
age response time of subsequent exports is influenced less by some of the factors that 
increase the variability of the first response time. Details of the first response time 
incremental costs are beyond the scope of this paper [9]. 

5.3 Disk I/O Operations for Name Space Changes 
For reliability, the CDS changes are written to a log file on the compute node run- 

ning cdsd. This log file grows until it exceeds a non-configurable maximum size or a 
configurable checkpoint time interval has elapsed. At this time a checkpoint will 
occur. 

The response time of simple CDS object updates are roughly stable at about 70 to 
80 milliseconds. The CPU was 25% idle during export operations when the cdsd is on 
the same node as the requesting application and the database is relatively young 2. Sim- 
ple calculations based on the I/O rate, service times, and CPU utilization suggest that 
the I/O cost is around 18 msecs as expected on the internal disk drives of the tested 
workstation. 

Figure 3 Binding Export Response from Local Clearinghouse 
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1. The test changed the RPC port number to distinguish the various binding handles. 
2. There is an import and export response time degradation that occurs as a CDS object are 

modified, which increases response time as well as lowers I/O rates and CPU idle. 
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We conclude that cdsd performs a single disk I/O per name space modification, 
object creation, or object deletion. It appears that this transaction log I/O is synchro- 
nous. The log record is written out before the cdsd can return the RPC. Since multiple 
attributes must be written, several synchronous disk I/O's are required. There is no 
apparent concurrency permitted while the CDS is logging. We observed a 170 byte 
increase in log file length per modify_attribute call. About 11 000 bytes on average is 
logged for a create and a delete of a name space object. At this file growth rate, 600 to 
700 update operations can occur before a checkpoint is started. 

5.4 Adjusting for Network Delays 
We caution the reader that these measurements were made with the cdsd on the 

same node as the test application. The measured response times is higher if the cdsd is 
not local to the node. 

These basic response times include the full RPC call operations from cdsd to the 
cdsclerk. In this test, both processes resided on the same node so the network delay 
was zero. Earlier analysis of RPC performance discovered that the overall response 
time for both of the processes is roughly equivalent whether or not an actual local 
LAN network was used. In [8] we traced the packets for typical RPC calls. In the case 
of UDP protocol transactions, we expect that at least two packets are exchanged per 
RPC call. Thus if the cdsd was on the other end of a LAN or WAN network, the 
response times will be increased by the node-to-node packet transmission cost multi- 
plied by the number of packets that make up each RPC. 

The best case is two packets for each RPC. In the case of TCP/IP protocol connec- 
tions between DCE servers (a possibility in the near future for DCE 1.0.1 or DCE 
1.0.2), 5 packets are needed to set up a connection, 2 packets to transfer the data, and 4 
packets to take down a connection. The connection setup and takedown costs will 
probably be amortized across the numerous concurrent communications between a 
cdsd and its cdsclerk on an active system, so in both cases, a two packet delay is more 
likely to be added to the average response time per cdsclerk to cdsd communication. 

Figure 4 Remote Clearinghouse Effects on Binding Export 
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5.5 Remote Clearinghouse Model 
We can use our knowledge of the underlying communication packet requirements 

to model the export timings for a cdsd server which is remote to the local node. In Fig- 
ure 4, we have graphed the measured local cdsd node response times as the white bars. 
These test categories are the same as described for Figure 3. 

Plotted in dark bars are the results of our modeled response times if the cdsd clear- 
inghouse server has a large round trip latency. This latency could be related to dis- 
tance, slow-speed communication, routers, or a combination of the three. In this case, 
we used a 80 millisecond round-trip time. The response time costs are two to four 
times more expensive for the first three test cases, and significantly more expensive for 
the last test case when the object's binding already exists in the CDS name space. Very 
few export cases are less than one second in response time. 

If the application wishes to update a group or profile object as well, the response 
time costs to update a second object will double the total costs to several seconds. 

6 Basic CDS Attribute and Object Operations 
We turn briefly to the underlying services being performed at the CDSPI on behalf 

of these binding imports and exports. We instrumented a custom version of a cdsclerk 
in order to trace its operations during various test suites. We used the traces produced 
with HP DCE toolkit facilities to measure the important cdsd and cdsclerk functions. 

From the analysis of API Iraces, we could determine the basic response time costs 
of the cdsclerk's operations that were needed to handle the incoming DCE CDSPI 
library request; check the caches for attributes, clearinghouses, directories as needed; 
get the authenticated binding handle from the cache; if a read attribute from cdsd, 
place the attribute into the common cache (shared memory); CMA thread processing; 
and other kernel operations (sockets or DCE RPC). 

Similarly, the basic response times of calling cdsd via RPC calls from the cdsclerk 
were analyzed. In Table 3, we summarize some of the basic measurement comparisons 
which do not include network delay. The basic costs for certain canonical CDS opera- 
tions are listed for the cdsd and the cdsclerk. We used measurements such as these to 
model the performance and improvements for more complex NSI operations. 

Table 3 Basic response times for primitive name space activities ! 

Primitive Activity 

cdsd 

Typical 
Measured 
RespTime 

Estimated 
Non-I/O 
RespTime 

cdsclerk 

Typical 
Measured 
RespTime 

Read Attribute (cached) not used not used 3 msec 
Read Attribute (non-cached) 13.4 rnsec 13.4 msec 4 msec 

Test Attribute 12.8 msec 12.8 msec 4 msec 
Create Object (existing) 11.2 msec 11.2 msec 3 msec 

Create Object (not existing) 81 msec 63 msec 5 msec 
Modify Attribute of Object 75 msec 57 msec 3 msec 

Delete Object 71 msec 53 msec 4 msec 

1. These measurements were taken on a HP Series 9000/720. The CPU speed is estimated 
as 28 million HP-PA instructions per second for this workload based on instruction path- 
length tracing measurements of the DCE library code using H-P internal tools. 
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7 Future CDS Performance Potential 
We worked closely with HP developers porting the OSF DCE release to improve 

the performance of the CDS during our investigation. There remain substantial poten- 
tial for future improvement. These changes may or may not be implemented by a par- 
ticipating OSF technology supplier. For example: 
�9 Further binding lookup response time improvements could be achieved, conser- 

vatively estimated between 13% to 30%, on binding lookups through group or 
profile objects if the NSI library is made aware of which attributes exist for an 
object. Non-existing atwibute reads are often 1/4 to 1/3 of the total attribute reads 
made by these more complex lookups. 

�9 Three additional levels of specific performance tuning steps were defined, pro- 
riding response time improvements of 20% to 50% for multiple binding handle 
exports to local cdsd, and up to 70% for cdsd clearinghouses that are remote (80 
msec network round trip). 

�9 A large number of unnecessary attribute reads could be saved. In most cases a 
quarter to a third of all attribute reads involve lookups that use groups and pro- 
files are for non-existent attributes. Enumeration of attribute data can be 'piggy- 
backed' on the ubiquitous CDS ClassVersion read. This enhancement could 
yield measurable performance sa~ngs in future releases. 
Other examples exist of CDS performance improvements, some may occur from a 

overhaul of some of the underlying architecture. While no promises should be inferred 
from this paper, the authors continue to believe that the performance of CDS can be 
improved in the coming releases from DCE vendors. 

8 CDS Recommendations for Applications 
Based upon these observations, we can offer the following advice for developers 

using the RPC Name Service 1. 
In general, access to the name space should be minimized to prevent unnecessary 

CPU consumption and response time. 
�9 Avoid using rpc ns binding_import_* to retrieve binding handles. Use rpc ns - 

binding_lookup_* directly. Binding importation is a trade-off between perfor- 
mance and the size of the pool of handles from which the name service randomly 
selects a server. Unfortunately rpc ns binding i m p o r t *  hides this trade-off 
from the developer, making an arbitrary choice of a vector size of five. rpc ns - 
binding import_* appears to offer simplicity, but is actually only one of an array 
of choices available with rpc ns binding_lookup_*. As the data in this report 
shows, mixing rpc ns binding import_* with the wrong name space configura- 
tion can lead to some serious performance problems. 

�9 Avoid the use of object identifiers to differentiate server entries within group and 
profile structures. Because of the nature of the search algorithms, mixing object 
UUID based lookups with these groups and profiles result in an extensive and 
slow search of the name space to retrieve the requested server information. 

�9 Clean up obsolete server and binding information from the name space when an 
application rolls major and minor version numbers. 

�9 Because servers tend to stop and start, the name service provides an application 
the capability to overlay the binding and server information stored in the name 
space for a specific interface identifier. This capability allows the application to 

1. Other CDS recommendations are found in [5]. 
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avoid un-exporting the old information and therefore saving on the overall num- 
ber of changes to the name space. Unfortunately as application interface versions 
are created, this obsolete information can remain orphaned in the name space. As 
the data in this report suggests, leaving this information in the name space will 
degrade the performance of the name space. 

�9 Be careful when using profile and group structures in binding retrievals. Groups 
should contain only identical interface ID's. Especially be aware of binding 
retrievals that search profiles or nested profiles that encompass an extensive 
range of disparate servers in a name space. If an rpc ns binding_import_* uses 
such a structure, the name server can end up traversing the entire structure look- 
ing for a minimum of five compatible binding handles. This result could also 
occur if rpc ns binding_lookup_* is called with a vector size larger than the cur- 
rently available bindings in the requested structure. 

�9 Disabling of Clerk Cache - avoid setting the cdscp confidence level to HIGH or 
setting NSI attribute cache time-out to zero so that NSI lookup routines are 
unable to take advantage of the caching capability of the cdsclerk. 

�9 Use Softlinks carefully -- In a complex environment with more than one clear- 
inghouse, the incremental cost to traverse a softlink is 1.7 msecs per softlink in 
the search path. 

�9 CDS transaction log file size - We observed on several occasions that the cost of 
the CDS recovering its name space from the transaction log file (e.g., after a 
crash or cdsd interruption) can delay any pending CDS requests for many min- 
utes. The application designer or system administrator cannot control the growth 
of the checkpoint log file. However, one can minimize the exposure to long 
recovery times by setting the configured intervals between CDS checkpoints to a 
value which keeps the transaction log file small using cdscp. 

9 Future Research 
Although the scope of this project was large, it still represents only a portion of the 

performance aspects of CDS. Among the interesting areas of future performance eval- 
uation work are: 
�9 Name service update times during CDS skulks, or direct update propagation 

around a large, extensive DCE cell with multiple replicas of clearinghouse. 
�9 Performance of cdscp commands or other name service administrative activities 

such as directory, group, or profile creation. 
�9 Exhaustive treatment of the security aspects of the name service except as 

described within this document. 
�9 Global naming services (GDS), intra-ceU naming services, X.500, or cross-cell 

caching. 
�9 Background, asynchronous, solicitation/advertiser costs on network and CPU 

bandwidths. 
�9 Local endpoint mapping or protocol stack selection with run-time libraries. 
�9 Exception handling, errors and failures of the CDS naming retrieval code. 
�9 Differences in client and server nodes' processor speeds effect on retrieval. 
�9 Extensive instruction pathlength tracing of any of the test CDS calls. 
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�9 How well cdsclerk caching performs in a dynamic environment. Specifically, 
offering the expected hit rates to a cache in a "real" loaded client environment 
with the average name lookup response time measurements. 

�9 The XDS name service interface performance, We have made only indirect mea- 
surements for XDS by looking at basic CDSPI operations. 

�9 Understand the cost of  CDS updates in the presence of many replicated clearing- 
houses for the directory in which the update takes place. 
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Abs t rac t .  A tool, called fidl, has been developed which gives the 
Fortran programmer an easy access to the Remote Procedure Call 
(RPC) of the Distributed Computing Environment (DCE). It supplies 
a Fortran application interface by defining a Fortran-like interface 
definition language and facilitates the creation of distributed applications 
by generating the additional code automatically. As a result, the Fortran 
application programmer does not have to learn much about the DCE 
RPC system, the programming language C, or the peculiarities between 
Fortran and C. 
The experiences gained in developing fidl have been collected in the first 
part of the article. These experiences will give general hints how to use 
DCE RPC from languages other than C. 

1 I n t r o d u c t i o n  

In a distributed application, different computers work together and parts of the 
application are running on different machines. Reasons for creating distributed 
applications include the use of special properties of computers (e. g. compute 
power, graphics), the common usage of resources (e. g. data, software, printers), 
and the distribution of the load to different computers in a network. 

Nowadays, there are different systems that support  the program developer 
in generating distributed applications. Some message passing systems (e. g. 
Parallel Virtual Machine PVM, see [1]) can be used to communicate between 
machines in a heterogeneous network instead of nodes on parallel computers. 
For communication, the programmer has to write code to marshall, unmarshall, 
send, and receive messages. On the other hand, Remote Procedure Call (RPC) 
systems use the 'natural '  separation of programs into procedures. The system 
usually derives the code for marshalling and unmarshalling the parameters and 
sending the call over the network from an interface description. 

The RPC of the Distributed Computing Environment (DCE) has a number 
of advantages compared with other RPC systems and message passing systems. 
First, DCE is a proven technology agreed upon and supported by many members 
of the computer industry. Most manufacturers of UNIX based systems provide 
DCE products, and even on other platforms DCE is and will become available. 
Secondly, the DCE RPC is tightly connected with other DCE components: the 
DCE Directory Service, the DCE Threads, and the DCE Security Service (see [2] 
to [5]), for example. With the help of the DCE Directory Service an RPC client 
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does not have to know where a server is located. Thus, the server can be s tar ted 
on another computer  to distribute the load or if a computer  has crashed down. 
The  DCE Threads support  the parallelization within a process. A client can call 
mult iple servers at the same time and a server can handle multiple requests. The 
DCE Security Service, among other things, provides secure communicat ion for 
the DCE RPC.  

A disadvantage of the DCE RPC is that  it does not support  yet the 
distribution of Fortran programs. However, the code for the solution of many  
scientific and engineering programs is written in Fortran. Therefore, the first 
par t  of this article discusses how to use the DCE RPC from Fortran. In the 
second par t  the tool fidl is described, which preserves the Fortran p rog rammer  
f rom writing C code and code calling the DCE library. 

2 Using D C E  R P C  from Fortran 

This section describes how the DCE RPC can be used to distribute 
Fortran applications. The following subsections show the experiences gained in 
developing fidl which have been incorporated into the tool. In the first subsection, 
some concepts how to use DCE from Fortran will be discussed. Thereby, general 
hints show how to distribute applications from languages other than C. The 
second subsection presents the interface between Fortran and C, and the third 
subsection shows problems in using DCE from Fortran. 

2.1 F u n d a m e n t a l  D e c i s i o n s  

In order to distribute an application DCE library calls have to be added to the 
application. The main tasks of the library functions are to store the interface of 
a server and to bind to an appropriate server. At first sight, one could simply 
try to call the library from Fortran instead from C. But this is not practicable 
because in Fortran it is not possible to define new data  types and nearly all DCE 
library functions have such newly defined types as arguments in their parameter  
list. Furthermore, Fortran only supports call by reference. 

As a second a t t empt  one could try to write intermediate routines in C which 
are called from Fortran and which call the DCE library. However, some library 
functions need output  parameters  of other library functions as input parameters .  
Therefore, these parameters  have to be declared as global variables which will 
produce complex and incomprehensible code. 

For this reasons, it is the best to combine the code for the distribution in two 
additional C routines. The server routine consists of the server main program 
which can be nearly the same as for a C application. Only one entry (the manager  
entry point vector which contains the names of the callable Fortran routines) has 
to be adapted to Fortran because it has to use the compiler dependent spelling 
(see Sect. 2.2). The application part  of the server - the manager  routines - can 
be written in Fortran and need not contain any DCE library call. 
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On the client side, the additional C routine handles the binding. It is possible 
to omit this routine by using the automatic binding method, but  it is more 
flexible to write one's own binding routine. Since it is not possible to define the 
data type of a binding handle in Fortran, the favourite binding method is explicit 
customized binding. 

To use customized binding for a specific function, the type of the 
first parameter must have the hand le  at tr ibute in the interface definition. 
Furthermore, the programmer has to supply a bind and an unbind routine for 
every first parameter type (example in Sect. 2.2). These routines are called 
automatically from the client stub. If the programmer wants to use different 
routines for functions with the same first parameter type, he can use a t y p e d e f  
in the interface description to define a new name for that data  type. Even if the 
first parameter of the RPC is passed to the bind routine, there is no need to 
specify the binding depending on this parameter! For example, every function 
could use a different global string variable to specify a server name, and this 
variable could be set at runtime in the client application code. 

As a result, the appropriate concept for the distribution in a language other 
than C is the separation of the additional code for the distribution and the 
application code. The code for the distribution is contained in the server main 
program and in the customized bind and unbind routines and is written in C. 
With this concept even the exception handling can be included for client and 
server side. Since DCE header files are only necessary in the distribution code, 
their inclusion is no problem, contrary to the results of [4]. Another advantage of 
the concept is that there is no additional layer between the Fortran application 
code and the stubs. Therefore, the performance does not decrease. 

2.2 T h e  I n t e r f a c e  b e t w e e n  F o r t r a n  a n d  C 

In order to write an interface definition in the C-like Interface Definition 
Language (IDL) and to derive stubs that are suited to the Fortran application, 
the programmer has to take notice of the interface between Fortran and C. 
However, if he uses the tool fidl there is no need to know the following 
peculiarities: 

1. In Fortran all parameters (except the internally passed lengths of strings) are 
passed by reference. Therefore, the parameters in the idl-file (except arrays 
and string lengths) must be declared as pointers. 

2. Arrays in C are stored in row-major order, whereas Fortran stores arrays in 
column-major order. Because of this, the dimensions of arrays in the idl-file 
must be given in reverse order. 

3. Fortran passes character strings by using two parameters internally: a pointer 
to the first character and an integer (passed by value) specifying the length 
of the string. These two parameters have to occur in the parameter list of 
the IDL for every Fortran character string. 

4. For each Fortran data  type equivalent C data types must be declared. Table 
1 shows this transformation for HP-UX 8.05 on the series 700. It is machine- 
dependent but it should apply to most UNIX workstations. Notice that  
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Table 1 only shows the corresponding data  types. In a parameter  list the 
C types must  be declared as pointers and for a character (even if it has the 
length 1) there are two corresponding arguments.  

5. Some Fortran compilers change the spelling of external names, e. g, FUNCTION 
or SUBROUTINE names or names of external variables, by appending 
underscores or converting to lowercase letters. The IDL must  be suitable; 
if necessary it has to differ on client and on server side. 

6. External variables have to be declared as names of COMMON blocks in Fortran. 
For example, the global variable s e r v e r  in C 

char server[80] ; 

has to be declared in Fortran as 

CHARACTER*80 SERV 

COMMON /SERVER/ SERV 

In this example the Fortran compiler converts the external name SERVER to 
lowercase letters. If  a Fortran p rogrammer  wants to assign a value to SERV 
he has to append a null byte (SERV = ' t e x t  '//CtlAR(O)) explicitly, because 
C strings are terminated by a null byte. 

Section 3.3 shows an example how fidl converts the Fortran-like interface 
description into the C-like IDL. 

Table 1. Data type transformation for most UNIX Workststions 

For t ran  77 C 

INTEGER X long x; 
LOGICAL X long x; 
REAL X float x; 
DOUBLE PRECISION X double x; 
COMPLEX X struct {float re, im;} x; 
CHARACTER X char x; 

2.3 P r o b l e m s  in U s i n g  D C E  f r o m  F o r t r a n  

There are a number  of problems in using DCE in a heterogeneous system which 
occur only in Fortran. They arise from the way Fortran programs are usually 
written, from the non-uniform interface between Fortran and C, and from missing 
features in the IDL. 

One of the most important  problems is that  a lot of existing Fortran programs 
communicate via C01~MON-blocks. In the case of distribution this is not possible, 
because the address spaces of client and server are separated. Therefore, the 
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needed variables inside the C011ll0N-blocks must be added to the parameter list, 
i, e. changes in the existing code are necessary. 

Another problem may occur not only in Fortran but  also in C: if the internal 
length of a REAL is 4 bytes on one computer and it is 8 bytes on another, the 
programmer has to change all REALs into REAL*8 (if the Fortran compiler allows 
this data type) or the 4 byte REALs into DOUBLE PRECISION. Data types with 
fixed length (like the IDL data types) do not exist in Fortran and therefore it 
is difficult to write portable code. The KIND attr ibute of Fortran 90 may help in 
this case. 

Additional problems may arise if the interface between Fortran and C 
differs in a heterogeneous system. For example, the arrangement of the length 
parameter of CHARACTER variables, invisible in Fortran, may differ depending on 
the compiler. If one Fortran compiler arranges these lengths at the end of the 
parameter list and the other after the CHARACTER-parameter (and if there is no 
appropriate compiler option), the programmer must write an intermediary C 
routine that  changes the arrangement of the parameters.  

Some Fortran and C compilers do not share a common definition of true and 
false. Moreover, the internal representation for false may differ between Fortran 
compilers. If the Fortran compiler on the client side uses 1 for false and on the 
server it is - 1 ,  a logical parameter which is false on the client becomes true on 
the server. 

Other problems are inherent to the IDL. There are some missing features, 
and it is not obvious why they are absent: 

- It is not possible to specify more than one dimension of an array dynamically, 
i.e. to give the l e n g t h _ i s  attribute for more than one dimension (see Sect. 
3.3). This is particularly a restriction in Fortran, since arrays in Fortran are 
often defined very large and only a small range is actually needed. 

- There is another limitation for passing arrays dynamically. The variables for 
the length_is attribute must occur as an argument of the parameter list, 
i.e. they cannot be an expression or a constant. If an existing program has to 
be distributed and the desired l e n g t h _ i s  variable is not in the parameter 
list, the program code has to be changed and an additional integer value 
must be transmitted. 

- If the explicit customized binding method is used (which is recommended 
for Fortran users), the first parameter must have the in  attribute. But 
sometimes it would not be necessary to send this parameter to the server. 

Similar problems have been described in [6]. But it is possible to overcome several 
restrictions described therein. For example, it is not necessary to use implicit 
binding for a RPC from Fortran (compare Sect. 2.1). 

The above listed problems can be solved by making changes in the existing 
code, writing intermediate C routines or simply accepting a lack of performance. 
Nevertheless, some problems could be solved, if only the compilers supplied 
appropriate options. These options are not only necessary for a distributed 
program, but also to port easily a program which is written in Fortran and C. 



83 

Above all it should be possible to control optionally the arrangement  of the 
character lengths and to change the spelling of external names. The  optional 
conversion of all REALs to DOUBLE PRECISION and vice versa would be very 
helpful, too. 

3 The  Tool fidl 

A Fortran programmer  who wants to use DCE RPC must write an interface 
description in the C-like Interface Description Language. Therefore, he must  
know the peculiarities between Fortran and C. Moreover, he must write the 
additional code for the distribution, such as the server main program, in the 
language C. This is why a tool called fidl has been developed (see [7]). It  was 
designed to give the Fortran p rogrammer  an easy access to and to facilitate the 
use of DCE RPC. 

3.1 B e n e f i t s  o f  t h e  T o o l  f idl 

The first aim - to facilitate the access from Fortran - was met  by defining 
and converting a Fortran-like interface description language. A Fortran-like 
interface definition, based on Fortran 77 syntax with extensions taken from 
Fortran 90 whenever possible, was defined (as recommended in [8]). fidl converts 
this interface definition to the IDL. Useful error messages and syntax diagrams 
help the programmer  to correct errors in the Fortran interface description. 

The second aim - to facilitate the use of the DCE RPC - was reached by 
taking information from the interface description and generating the additional 
C code for the distribution automatically.  It  takes some time to get used to 
DCE which could be an essential drawback for the use of DCE. Therefore, fidl 
automatical ly generates server main programs and binding routines, which call 
the DCE library. As one result, the programmer  does not have to call any routines 
of the DCE library, and thus saves the t ime of getting used to DCE. As a 
second result, the Fortran p rogrammer  does not need to have any programming 
knowledge in C since all necessary C files are generated by fidl. 

But the tool fidl provides still more support:  for linking and compiling the 
distributed application, it generates 'makefiles'.  With the information of these 
makefiles, the UNIX tool make can be used to compile and link the necessary 
files and libraries automatically.  

Of course, fidl does not offer all features included in DCE. But if a 
programmer  wants to use additional features, he can use the fidl-generated files 
and add the desired code. 

Figure 1 shows how the tools rid[, make, and the IDL compiler collaborate 
to create a distributed application. IF stands for the interface name. fidJ can 
also generate code for an application with multiple interfaces, but this is not 
shown ill this figure. The file ' IF.fdl '  has to be identical on client and server side. 
The generated files ' IF. idl '  are nearly identical, too; only the function names 
may differ (see Sect. 2.3). ' IF .uuid '  contains an automatically produced interface 
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identification (UUID), and therefore it has to be generated only on client side 
and copied to the server. It is included into the files 'IF.idl'. The information 
of 'IF.fdl' is not only used to generate 'IF.idF, but also to generate the files 
'IFserver.c', 'IFbind.c' and 'makefile'. The application code of the client and 
server is contained in the files 'client.f' and 'IFmanager.f'. 

! 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

fidl ~l 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i l  . . . . .  

I 'I~idl,_ I I I IF.uuid I 

idl 

make I makefilel ii 

I client I 

o 'files at the client' 

fidl 

I I ~  idl I 

i idl 

I IF_sstub.o I IFserver.c 

IF.h l i i ! i ~ ~ ! i ~ i ]  

~!l makefilel make 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i . . . . . . . . . . . . . . . . . . . . . . .  

I IFserver I 

'files at the server' 

..... generated files written ~ standard files i', i tools I } files 
by the user used by fidl ..... 

Fig. 1, Creating a distributed application with fidl, idl and make 

3 .2  T h e  P r o g r a m m e r ' s  R e m a i n i n g  Work 

The programmer's remaining work is to deliver the originally non-distributed 
code which has been separated into client and server parts, the Fortran-like 
interface description, and little additional information for the binding. 

For the separation, a purely procedural interface must be used: r 
between client and server are not allowed because of the separated memory. 
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Function names as parameters  and alternative returns from the distributed 
function are forbidden, too. Since the network between client and server is often 
the bottleneck in an application, the p rogrammer  should use a depression of da ta  
for the separation with as few as possible data  transfer. 

The Fortran-like interface description consists of the declarative par t  of 
the remote procedures with few extensions. Similar to the C-like IDL, these 
extensions specify an interface name, the direction in which the parameters  
should be sent, and an efficient way for sending only the par ts  of arrays and 
strings actually used over the network. The p rogrammer  must  combine all the 
procedures to one interface which should form the same server process. 

If  a remote procedure call occurs in the client, the binding specifies to which 
server the call would be sent. For every interface, fidl permits  three different 
binding methods: 

1. The programmer  can specify a constant server name. 
2. The programmer  can give the name within a global variable inside the client 

code which is then evaluated at runtime. 
3. An appropriate server is searched in the Cell Directory Service if no name 

has been provided. 

All three binding methods establish a binding handle in the bind routine 
depending on a server name. In the unbind routine this name and the handle 
are stored. If the next RPC uses the same server name the old binding handle 
is used and no t ime-consuming DCE library calls are necessary to generate the 
handle. 

3.3 E x a m p l e  o f  t h e  I n t e r f a c e  C o n v e r s i o n  a n d  o f  t h e  b i n d i n g  

This section shows an example for the Fortran-like interface description and 
the fidl-generated interface description in the IDL. For the syntax definition 
of the Fortran-like interface description language extensions to Fortran 77 
have been taken from Fortran 90, if possible. Other extensions are marked as 
Fortran 90 comments by an exclamation mark  so that  a Fortran 90 compiler 
should compile the interface correctly. For generating the file with the Fortran 
interface definition, the programmer  can copy the declaration par t  of the remote 
procedures and add the necessary declarations. 

In the example the remote subroutine QREV calculates eigenvalues and 
eigenvectors of a hermit ian matrix.  The complex matr ix  EV holds the input 
mat r ix  and the eigenvector matr ix  on output .  The real vector EW returns the 
eigenvalues and N stores the dimension. The contents of the file 'QR.fdl '  are as 
follows: 

INTERFACE ! QR 

SUBROUTINE •REV( N, EV, EW ) 

INTEGER DIM 

PARAMETER ( DIM = 200 ) 

INTEGER, INTENT(INOUT) : : N 
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COMPLEX*f6, INTENT(INOUT):: EV(DIM,DIM) ! LASTDIM(N) 
REAL*8, INTENT(OUT):: EW(DIM) ! LASTDIM(N) 
END 
END INTERFACE 

The fidl-generated file 'QR.idl '  includes the file 'QR.uuid'  which contains the 
interface UUID (generated by the DCE tool uuidgen). A t y p e d e f  defines the first 
parameter N as customized handle. The subroutine qREV is translated according 
to the description in Sect. 2.2. 

[ 
#include "qR.uuid '~ 
,version(l.O) 
] 

interface qR 

typedef struct dcomplex { double re, im; } dcomplex; 
typedef [handle] long hidce; 
void qrev( 
[in] hidce *N, 
[in,out,length_is(*N)] dcomplex EV[200][2003, 
[out,length_is(*N)] double EW[200] ); 

In this example it can be seen, why it is a problem that  IDL cannot specify 
more than one dimension of an array dynamically. If the number of elements in 
each dimension is 10, 2000 (= 200,10) elements of the matrix EV are transmitted 
while only 100 elements contain the necessary information. 

In the following an extract of the fidl-generated binding file 'QRbind.c'  will be 
listed. It is an example for a customized binding which uses the name of a server 
contained in the global variable QRSEI~VER. How to set this variable is described 
in Sect. 2.2. The status check calls have been omitted in order to shorten the 
listing. 

#include <dce/rpc.h> 
#include <pthread.h> 
#include "QR.h" 

#define LSTRING 80 
unsigned_char_t nils[]= ""; 

char qrserver[LSTRING] = .... ; 
static rpc_binding_handle_t old_handle; 
static int old = O; 
static char old_server[LSTRING] = .... ; 

rpc_binding_handle_t hidce_bind(dummy) 
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hidce dummy; 
( 

u n s i g n e d _ c h a r _ t  * s t r i n g _ b i n d i n g ;  
unsigned32 st; 
rpc_binding_handle_t rpc_handle; 

/* if first call or server name was changed */ 
if (old == 0 J[ strcmp(qrserver,old_server) !=0) { 

rpc_string_bindingcompose(nils, (ndr_char *)"ncadg_ip_udp", 
(ndr_char *)qrserver, nils, nils, ~string_binding, ~st ); 

rpc_binding_from_string_binding(string_binding, &rpc_handle, 
~st); 

else  rpc_binding_copy(old_handle, ~rpc_handle, &st); 
return rpc_handle; 

void  hidce_unbind(dummy, r p c _ h a n d l e )  
h i dce  dummy; 
r p c _ b i n d i n g _ h a n d l e _ t  r p c _ h a n d l e ;  
( 

unsigned32 s t a t u s ;  

o ld  = 1; 
/*  s t o r e  the  hand le  * /  
r p c _ b i n d i n g _ c o p y ( r p c _ h a n d l e ,  &old_handle ,  & s t a t u s ) ;  
s t r c p y ( o l d _ s e r v e r ,  q r s e r v e r ) ;  
r p c _ b i n d i n g _ f r e e ( & r p c _ h a n d l e ,  ~ s t a t u s ) ;  

For subsequent calls with the same server name in the global variable, the 
old fully bound binding handle will be used. Therefore, the execution of the bind 
routine and the call of the server will be essentially faster. 

4 C o n c l u s i o n s  

It has been shown that it is possible to use DCE from Fortran. The tool rid] gives 
the Fortran programmer an easy access to DCE and facilitates the generation of 
distributed applications. 

Nevertheless, there are problems that  arise only in a heterogeneous 
distributed environment. Some of the problems could be solved if the interface 
between Fortran and C would be standardized and if the compilers offered 
appropriate options (see Sect. 2.3). 

In future the support for parallelization and secure communication will be 
included into fidl by the use of the DCE Threads and the DCE Security Service. 
Additionally, fidl will be accomodated to heterogeneous systems. 
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A b s t r a c t .  

The standard Distributed Computing Environment (DCE) offering from the Open 
Software Foundation implies that the client side of a distributed application, the server 
side of the application, and the remote procedures in the server side must be written in 
C. Digital Equipment Corporation has enhanced its DCE product so that the client 
side of a distributed application and the remote procedures in the server side can be 
written in FORTRAN. This enhancement means that, within certain limits, existing 
FORTRAN applications can be converted so that compute-intensive subprograms 
execute on fast server machines. This paper explains the conversion process and its 
limits based on a comprehensive example. 
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I Introduction 
The DCE was designed for creating distributed applications and with 
no consideration for converting legacy (that is, existing) applications. 
Furthermore, the DCE documentation uses C as the only language for 
its examples of developing distributed applications. The examples always 
show the following high-level language components written in C: 

�9 The client side of the application 

�9 The server side of the application 

�9 The remote procedures that reside within the server side of the 
application 

Note 
The interface definition language (IDL), that creates a network 
contract between the client and server sides of the application, 
closely resembles the C language. 

An advantage of writing these three components in C is that they have 
full access to the routines in the remote procedure call (RPC) runtime 
library. For example, a client can call routine rpc_binding_free()  to 
free the memory used by a binding handle. The client can also call 
security routines in the DCE runtime library. 

All of Digital Equipment Corporation's DCE products allow programmers 
to create distributed applications using the C and IDL languages. 

Additional DCE documentation from outside the Open Software 
Foundation (see [1] and [2]) emphasizes using the C and IDL languages. 
However, Rosenberry and Kenney and Fisher [1] summarily answer the 
questions "Do I really have to use C?" and "Can I write DCE application 
programs in languages other than C? Please?". 

2 Using FORTRAN--Overview 
Digital adds considerable value to its DCE products. One addition 
allows developers of distributed applications to use, with relatively few 
exceptions, FORTRAN for the following high-level language components: 

�9 The client side of the application 

�9 The remote procedures that reside within the server side of the 
application 
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As of October 1993, Digitars DCE and FORTRAN combinations are: 

�9 Digital DCE Developers' Kit for OpenVMS VAX and VAX FORTRAN 
(a superset of FORTRAN 77) 

�9 Digital DCE for DEC OSF]I AXP and DEC Fortran 

The full Digital documentation for creating distributed applications with 
FORTRAN is in the product guides for these two DCE products (see [3] 
and [4]). (The README file, mentioned in the FORTRAN chapter of 
each product guide, is also helpful.) This paper goes beyond the product 
guides to summarize converting legacy FORTRAN applications. You 
should read the product guide for your Digital DCE product and this 
paper to obtain all available information. 

This paper assumes the combination of VAX FORTRAN applications 
r u n n i n g  on OpenVMS systems. All the principles in this paper apply 
to DEC Fortran applications running on DEC OSF/1 AXP systems. 

A small number of C routines form the server side of an application. 
In fact, programmers frequently use the same C routines, with small 
changes to some arguments, as the basis of any server side. 

As a result of this FORTRAN capability, programmers can both convert 
many existing applications to distributed ones and create new distributed 
applications. If much of a program's computations occurs in its 
subroutines, programmers can move the subroutines to a fast server 
machine. The result will be a distributed application that, overall, can 
execute much faster than the original nondistributed application. 

2.1 Assumptions 
The distributed FORTRAN applications assume that  a name service 
database exists. They will always have automatic binding between client 
and server processes. The binding portions of the applications might 
execute a little slower than the binding portions of applications that  use 
RPC runtime library routines to establish implicit or explicit bindings. 
Also, distributed FORTRAN applications cannot be multi threaded. 

The distributed FORTRAN applications have no DCE security because 
of automatic binding selection and because the client sides, written 
in FORTRAN, cannot easily call routines--specifically including 
rpc_b ind ing_se t  au th_ in fo ( ) - - in  the RPC runt ime library. The 
applications can have DCE security if programmers establish implicit 
or explicit bindings and modify the client FORTRAN modules to call 
routines in the RPC runtime library. The modification could include a C 
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module, callable from FORTRAN, that in turn calls routines in the RPC 
runtime library. The details of such a modification are beyond the scope 
of this paper. 

2.2 Example 
For an introductory example, consider the following skeleton of a 
FORTRAN program in source file MATH1.FOR. 

PROGRAM MATH1 ! In file MATH1 .FOR 
REAL*4 A, B, C, D, E, F, G, P, Q 
INTEGER* 4 M 
REAL*4 R, S, T, U, V, RESULT1, RESULT2 

C Assign values to the subprograms' arguments. 
CALL SUBI(A, B, C) 
CALL SUB2 (D, E) 
CALL SUB3(E, F, G, M) 
CALL SUB4 (P, Q) 

C 

C 

RESULT1 ffi FUNCI (R, S, T) 
RESULT2 = FUNC2 (U, V) 

STOP 
END 

Compiling separate source files MATHI.FOR, SUBI.FOR, SUB2.FOR, 
SUB3.FOR, SUB4.FOR, FUNC 1.FOR, and FUNC2.FOR followed by link- 
ing their object files creates the traditional nondistributed application 
completely contained within executable file MATH1.EXE. 

Suppose that subroutine subprograms SUB2 and SUB3, and function 
subprogram FUNC2, require much computation. Their execution time 
is almost all of the time MATH1.EXE requires. 

You can convert this nondistributed application to a distributed 
application. It is based on the three source files MATH1.FOR, MATH1 
IF.IDL, and MATHI_SERVER.C. The first file already exists; you must 
create the second and third files. 

In the distributed application, source file MATH1.FOR and the six 
.FOR files containing the six subprograms remain unchanged with one 
exception. MATH1.FOR needs the additional statement 

INCLUDE 'MATH1 IF.FOR' 

(MATH I_IF.FOR is an interface (IF) file created by the IDL compiler 
from file MATHI_IF.IDL.) 
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MATHI_IF.IDL is the second source file in the distributed application. It 
contains the names of the three subprograms SUB2, SUB3, and FUNC2 
plus descriptions of their arguments D, E, F, G, M, R, S, and T. 

Its skeleton is next. 

[ 
uuid (...) 
version (I. 0) 
] 
interface MATH1 IF 
{ 

/* The next four lines correspond to 
"CALL SUB2(D, E)" in MATHI.FOR. */ 

void SUB2( 
[in] float D, 
[out] float E 

) 
/* Two more subprogram names (SUB3 and FUNC2) 

and argument descriptions are here. ,/ 

main 
{ 

rpc_server_use_all protseqs(...) 
rpc_server_register if(...) 
rpc_server inq_bindings(...) 
rpc_ep register(...) 
rpc ns binding_export(...) 
rpc_server_listen(l .... ) 

} 

In reviewing the three important files that comprise the distributed 
application, you can see that: 

�9 The original source program file, MATH1.FOR, remains unchanged 
except for the addition of one statement. All files containing the local 
subprograms (SUB1, SUB4, and FUNC1) remain unchanged. These 
four files are part of the client side. All files containing the remote 

/* First argument is 
always 1 to specify 
1 thread (= no 
multithreading) . ,/ 

/* This is file MATH1 SERVER.C */ 

#include "MATH1 IF.FOR H" /* Interface file created by 
the IDL compiler from 
source file MATH1 IF.IDL */ 

() 

} 

The third source file in the distributed application is MATH1 SERVER.C. 
Its skeleton is next. 
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subprograms (SUB2, SUB3, and FUNC2) remain unchanged. These 
three files are part  of the server side. 

�9 The new interface definition file, MATHI_IF.IDL, reflects the 
subprograms that  will execute on a remote computer and the 
arguments in the subprograms. 

* The new server program file, MATHI_SERVER.C, remains largely 
the same, regardless of what the client program is. The major 
changes to the server program, as the client programs change, are 
the name of the .C source file and the #include statement for the 
generated header file. 

Therefore, converting a legacy FORTRAN application to a distributed 
application often involves no rewriting of the statements in the 
application's source program files. 

Note:  One small change to the syntax of the command that  invokes 
the IDL compiler enables much of Digital DCE's support for FORTRAN 
applications. The change is the addition of: 

�9 option - lang f o r t r a n  (universal syntax) 

�9 qualifier/LANGUAGE=FORTRAN (OpenVMS DCL syntax) 

In the case of IDL file MATH1 IF.IDL, the respective commands that 
invoke the IDL compiler are: 

�9 $ idl mathl . idl  -lang fortran 

�9 $ IDL/LANGUAGE=FORTRAN MATHI.IDL 

Either command generates files MATHI_IF.FOR and MATHI_ 
IF.FOR_H for the FORTRAN client and C server source program 
units, respectively, to include. 

3 Restrictions and Data Types 
Two major restrictions apply to converting legacy FORTRAN applications 
to distributed ones. 

COMMON blocks (labelled and unlabelled) cannot appear in both the 
main program and any of its remotely executed subprograms. This is 
because a COMMON block is one area of memory in one address space 
that  separate program units address. In the model of remote procedure 
calls, two address spaces exist and a program unit can address only one 
of them. However, program units can contain a COMMON block if it 
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is contained within the client process's .EXE file or within the server 
process's .EXE file. 

The distr ibuted program units mus t  be in separate  files. In te rms of the 
previous example, individual files (with reasonable names)  MATH1.FOR, 
SUB1.FOR, SUB4.FOR, and FUNC1.FOR existed. However, single file 
MATH1.FOR could contain the s ta tements  for MATH1, SUB1, SUB4, 
and FUNC1. 

Similarly, the s tatements  for SUB2, SUB3, and FUNC2 could be in 
individual .FOR files or in one .FOR file. The s ta tements  for SUB1 and 
for SUB2 mus t  be in different .FOR files because SUB1 executes on a 
client computer  and SUB2 executes on a server computer. 

Digital's DCE product guides (see [3] and [4]) list all the  restrictions. 

Digital's DCE product guides also list the  correspondence between 
FORTRAN data types and the data  types in an IDL file. For example, 
a single-precision, floating-point number  is declared in a FORTRAN 
program with a REAL*4 statement;  it is declared in an IDL file with 
a float statement.  You can see this by locating single-precision, floating- 
point  variable D in file MATH1.FOR and in file MATHI_IF.IDL. 

4 Overview of the Program Conversion Process 
To begin a program conversion, look closely at  the files comprising the 
application that  you want  to distribute. Make sure tha t  none of the 
aforementioned restrictions applies. For example, you might  have to 
extract program units from a .FOR file tha t  contains more than  one 
program uni t  and place them into separate files. 

If you have an application with much of its communication between 
program units occurring by means of COMMON blocks, it could take 
an unreasonable amount  of t ime to change it. For example, consider the 
following communication structure: 

PROGRAM FO0 
COMMON /COLD/ A, B, C 

CALL FOOl () 

END 
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SUBROUTINE FOOl () 
COMMON /COLD/ X, Y, Z 
, . o  

RETURN 
END 

You cannot make subroutine FOOl a remote procedure because it and 
main  program FOO have the same COMMON block. You would have to 
rewrite the  application based on the following communicat ion structure: 

PROGRAM FOO 
. o o  

~ . .  

CALL FOOl(A, B, C) 
~ ~  

END 

SUBROUTINE FOOl (X, Y, Z) 

~ ~  

RETURN 
END 

Once your source files meet the restrictions listed previously, you can 

begin bui lding the  application. The following sections summarize  the 
process in terms of the overview example. The summary  is based on 
the tradit ional VAX FORTRAN program MATH1.FOR tha t  runs  on the 
OpenVMS operating system. 

You can easily adapt  the example's case of one main  program, four 
subroutine subprograms, and two function subprograms to meet  your 
specific needs. 

5 Creating Distributed Source Program Units 
This section presents  the source program units  tha t  resul t  a t  runt ime in 
the  creation of a client process based on MATH1.EXE and in the creation 
of a server process based on MATHI_SERVER.EXE. Remote procedures 
SUB2, SUB3, and FUNC2 execute within the server process in response 
to calls from within the client process. 

The source program units are in three  groups. They are the interface 
definition file MATHI_IF.IDL, the original seven .FOR files, and the  
server side of the distr ibuted application in file MATHI_SERVER.C. 
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5. I Interface Definition File 
You must  create the interface definition file--in this case, MATHI_IF.IDL. 
It  usually changes considerably from one distributed application to an- 
other. 

File MATHI_IEIDL begins with the creation of a universal unique 
identifier (UUID). This number  is an electronic fingerprint tha t  identifies 
the interface across all t ime and space. A utility program creates 
a UUID. One version of the command, using OpenVMS DCL syntax, 
follows. 

$ IDENTIFIER/GENERATE/OUTPUT=MATH 1 IF.IDL 

(Adding the qualifier /FORMAT=IDL would create a more complete 
version of MATH I_IEIDL.) 

MATH1 IF.IDL contains ASCII text such as 

dlbl 4182- 6544-I Icb-bal2-08002bl 7908f 

Editing MATHI_IF.IDL according to the current  application can result  in 
the following final version of the file. Note that  a rgument  G of subroutine 
SUB3 is both input to and output from this remote procedure. 

[ 
uuid (dlb14182-6544-11cb-ba12-08002b17908f) 
version(l.0) 
] 
interface MATH1 IF 
{ 

void SUB2 ( 
[in] float D, 
[out] float E 
) 

void SUB3 ( 
[in] float E, 
[in] float F, 
[in,out] float G, 
[out] long M 
) 

float FUNC2 ( 
[in] float U, 
[out] float V 
) 
} 
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5.2 Original .FOR Files 
The seven .FOR files remain unchanged with one exception. You must 
add the following statement to file MATH1.FOR: 

INCLUDE ' MATH1 IF.FOR' 

5.3 Sewer Program File 
You must create the sewer program file--in this case, IMATHI_SERVER.C. 
I t  usually changes little from one ~stributed application to another. 

Creating MATHI_SERVER.C according to the current application can 
result in the following final version of the file. Note that the names 
of the subprograms for the three remote procedures and the names of 
the subprograms' arguments do not appear in the file. The information 
becomes part of MATHI_SERVER.EXE from MATHI_IF.IDL and from 
the commands to the FORTRAN compiler and the Linker. Locate the 
seven occurrences of the string ~mathl_if' (including upper case and 
comments) in MATHI_SERVER.C. The string has this value because of 
the name of the IDL file, MATHI_IF.IDL. 

/* This is file MATH1 SERVER.C */ 
#include <stdio. h> 
#include <file.h> 
#include <dce/dce error.h> 
#include "mathl if.for h" /* The IDL compiler created this 

file from file MATH1 IF.IDL. 

main ( ) 
{ 
error status t st; 
rpc b~nding_~ector_p_t bvec; 

/* Register all supported protocol sequences with the 
runtime. 

rpc_server_use_all_protseqs( 
rpc_c protseq_max_calls default, 
&st 

(st != error_status_ok) 

fprint f ( stderr, 

exit (i) ; 

"Can't use protocol sequence - %s\n", 
error text (st)) ; 

) ;  
i f  
{ 

* /  

* /  
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if (st != error_status_ok) 
{ 

fprintf(stderr,"Can't establish protocol sequences - %s\n", 
error text (st)); 

exit (I) ; 
} 

/* Register the server interface with the runtime. */ 
rpc_s erver_regi st er i f ( 

mathl if vl 0 s ifspec, /* From the IDL compiler; "vl_0" */ 
/* comes from the statement */ 
/* "version(l.0)" in file */ 
/* MATH1 IF. IDL. */ 

NULL, 
NULL, 
&st 

); 

if (st != error status ok) 
{ 

printf("Can't register interface - %s\n", error_text (st)) ; 
exit (i) ; 

} 

/* Get the address of a vector of server binding handles. The 
call to routine rpc server_use_all protseqs () directed the 

runtime to create the binding handles. */ 
rpc server_inq bindings(&bvec, &st) ; 
if (st != error status ok) 
{ 

printf ("Can't inquire bindings - %s\n", error text (st)); 
exit (i) ; 

} 

/* Place server address information in local endpoint map. */ 
rpc ep register( 

mathl if vl 0 s ifspec, 
bvec, 
NULL, 
(idI_char*)"FORTRAN Mathl_Interface Test Server", 
&st 

); 
if (st != error_status_ok) 
{ 

printf ("Can't register ep - %skn", error text (st)) ; 
} 
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/* Place server address information into the name service 
database. */ 

rpo ns binding_export( 
rpc_c_ns_syntaxdefault, 
(idl_char*)".:/FORTRAN_mathl if mynode", 
mathl if vl 0 s ifspec, 
bvec, 
NULL, 
&st 

); 
if 
{ 

(st != error_status_ok) 

printf("Can't export to name service - %skn", 
error_text(st)); 

} 

/* Tell the runtime to listen for remote procedure calls. 
Also, FORTRAN cannot support multiple execution threads. 

rpc_server_listen((int)l, &st); 
if (st != error status_ok) 

*/ 

fprintf(stderr, "Error listening: %s\n", error text(st)); 

6 Creating Executable Distributed Program Units 
The previous section presented the three  sets of source program files. 
This section explains how you use these files to create client .EXE and 
server .EXE files. At runt ime,  these files form the two processes tha t  
comprise the executing distributed application tha t  relies on remote 
procedure calls. 

6.1 Interface Definition File 
You use the IDL compiler to create four files based on MATHI_IF.IDL. 
The command, us ing OpenVMS DCL syntax, is: 

$ IDL/LANGUAGE=FORTRAN MATHI_IF.IDL 

The four files tha t  the  IDL compiler creates are: 

MATH1 IF CSTUB.OBJ 

MATH1 IF SSTUB.OBJ 

MATHI_IF.FOR 

MATHI_IF.FOR_H 

(Client stub; for input to Linker) 

(Server stub; for input to Linker) 

(For inclusion by client, MATH1.FOR) 

(For inclusion by server, MATHI_SERVER.C) 
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6.2 Client Program File 
The following commands, using OpenVMS syntax, create the client 
.EXE file, MATH1.EXE. This file has the same name as the original 
nondistributed executable file. Note that the subprograms that remain 
local procedures appear in the commands. 

$ FORTRAN MATH1.FOR 
$ FORTRAN SUB1.FOR, SUB4.FOR, FUNC1.FOR 
$ LINK MATH1.OBJ, SUB1.OBJ, SUB4.0BJ, FUNC1.OBJ, - 
_$ MATH1 IF_CSTUB.OBJ, SYS$INPUT:/OPTIONS 
SYS$SHARE:DCE$LIB_SHR/SHARE 
<Ctrl-z> 

6.3 Server Program File 
The following commands, using OpenVMS syntax, create the server .EXE 
file, MATHI_SERVER.EXE. Note that the subprograms that are remote 
procedures appear in the commands. 

$ CC MATHI_SERVER.C 
$ FORTRAN SUB2.FOR, SUB3.FOR, FUNC2.FOR 
$ LINK MATHI_SERVER.OBJ, SUB2.OBJ, SUB3.OBJ, FUNC2.OBJ,- 
_$ MATH1 IF SSTUB.OBJ, SYS$INPUT:/OPTIONS 
SYS$SHARE:DCE$LIB_SHR/SHARE 
<Ctrl-z> 

7 Running the Distributed Application 
The previous two commands to the Linker created client executable 
file MATH1.EXE and server executable file MATHI_SERVER.EXE. The 
following commands, using OpenVMS syntax, create the two processes 
that, running together, form the distributed application. 

$ ! Start searching for bindings in the name service database. 
$ DEFINE/NOLOG RPC_DEFAULT_ENTRY - 
_$ ".']FORTRAN_math i if_mynode" 
$ ! Create the server process. 
$ SPAWN/NOWAIT/INPUT=NL:/OUTPUT=MATHI_SERVER.LOG- 
_$/PROCESS=MATHI_SERVER RUN MATHI_SERVER.EXE 
$ WAIT 00:00:10 ! Wait for the server process to start. 
$ RUN MATH1.EXE ! Create the client process. 
$ STOP MATHI_SERVER ! Stop the server process; 
$ ! the client process has already stopped itself. 
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8 Summary Figure 
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9 Experiences and Related Work 
The author knows of no experiences or related work with converting 
nondistributed FORTRAN applications to distributed ones. The Digital 
product guides (see [3] and [4]) each have a complete example of a 
distributed FORTRAN example that ran successfully. Digital Equipment 
Corporation released its post-Field Test DCE software with FORTRAN 
support after this paper was due in late June of 1993. 

I0 Conclusion 
This paper summarizes the genera] process of converting legacy 
FORTRAN applications to distributed applications. For each application, 
the process requires: 

�9 Verifying that the applications meet a small number of restrictions, 
the most important of which concerns COMMON blocks 

�9 One small change (adding an include statement) to one of the .FOR 
files 

�9 Creating a .IDL file describing the data structures of the 
subprograms that become remote procedures 

�9 Creating a .C source file that changes little, regardless of the 
complexity of the original .FOR files of the legacy application 

11 References 

1. Rosenberry, Ward, and Kenney, David, and Fisher, Gerry. 
Understanding DCE, Sebastopol, California, USA: O'Reilly and 
Associates, Inc., 1992. 

2. Shirley, John. Guide to Writing DCE Applications, Sebastopol, 
California, USA: O'Reilly and Associates, Inc., 1992. 

3. Digital Equipment Corporation. Digital DCE Developers' Kit for 
OpenVMS VAXProduct Guide: 1993. Part number is AA-PV4FA-TE. 

4. Digital Equipment Corporation. Digital DCE for DEC OSF/1 AXP 
Product Guide: 1993. Part number is AA-PZK4A-TE. 



Using Standard Tools to 
Build an Open, Client/Server Prototype 

Bernard S. Hirsch 

Hewlett-Packard Company 
930 East Campbell Road 

Richardson, Texas 75081 USA 
(214) 699-4197 

bernie@bsh3185.ssr.hp.com 

Abstract. This paper will benefit software developers, MIS managers, and 
end users because it will help explain some of the practical benefits and 
implications of the Open Software Foundation (OSF) Distributed 
Computing Environment (DCE) in the context of a prototype application 
environment that was developed using the OSF DCE. The environment, a 
Financial Desktop, consists of a series of OSF Motif and 
MicrosoftWindows based clients which obtain information and resources 
transparently from a series of DCE based services, that reside on a range of 
heterogeneous computing hardware and software, including multivendor 
operating systems, networks, architectures, and databases. This paper will 
explain how DCE was used to implement this Financial Desktop in such a 
way that installed assets  were leveraged, new technologies were 
integrated,and the focus of control for this environment has shifted away from 
a single hardware or software vendor. The use of the DCE remote procedure 
call (RPC) is discussed with respect to the role that it plays in this 
environment. 

1 Introduction 

The seemingly elusive goal, whereby the wealth of information and services in an 
enterprise is transparently accessible to end users on demand, is one about which 
much is written and discussed. Furthermore, there is an ever accelerating 
requirement to accomplish this in an open, distributed computing environment. 

The first requirement that the computing environment be distributed is due to 
several ongoing trends in which an organization's business units, functions, data, 
users, and computing equipment are all now more and more distributed. The second 
requirement that the computing environment be open is resulting due to the need for 
these enterprises to control their own destiny. That is, they do not want to be reliant 
on a single hardware/software vendor when using information technology to help 
meet business goals. With the frantic pace at which new technologies, products, and 
methodologies are introduced nowadays, an enterprise would like to be in control to 
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incorporate these to increase its competitive advantage, while still leveraging its 
many existing computing investments. 

This paper describes how a prototype of an open, distributed application 
environment for stock brokers was created in which financial information and 
services are transparently accessible across a range of heterogeneous computing 
hardware and software, including multivendor operating systems, networks, 
architectures, and databases. Further, it is shown how this environment, the 
"Financial Desktop" (or FDT), was created using standard, off-the-shelf tools and 
technologies including the Open Software Foundation (OSF) Motif graphical user 
interface and components of the OSF Distributed Computing Environment (DCE). 
Using this open approach it is shown how installed assets are leveraged, new 
technologies can be integrated, and how the focus of control for the environment has 
shifted away from a single hardware or software vendor. 

First the FDT user interfaces and services are described in detail, and the tools and 
technologies that were selected to implement the prototype are presented. Next, 
implementation details and experiences are discussed, followed by a summary of the 
prototype development. Finally, conclusions are drawn on the prototype 
environment and related work is introduced. 

2 Description of the Prototype Environment 

2.1 User View: Graphical User Interfaces 

The setting for the prototype is an application environment for a stock broker, that 
consists of a series of hardware and software components working together in 
unison, so that the stock broker can very efficiently and transparently get his or her 
job done, by having presented at their desktop all of the needed information and 
services. The software components that come into play in this environment are a 
collection of services (or servers) and user interfaces (or clients). 

From the stock broker's perspective, four (4) user interfaces "drive" the entire 
application (see Figures 1, 2). That is, all interaction with the system is done by 
simply entering some information -- such as the customer account number -- and 
then pressing a button in the graphical user interface (GUI). All of the information 
that the stock broker needs to know about that customer, for example, and the status 
of his or her investments are then automatically and transparently presented to the 
stock broker in the same unified interface. The four GUIs (e.g., clients) are 
described below. [ 1] 
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Fig. 1. FDT Client/Server Architecture 

Marketminder 

Using a "real-time" feed to the Dow Jones, Marketminder simultaneously presents 
the NYSE and NASDAQ ticker tape data (e.g., latest stock prices) and allows the 
stock broker to query the latest price for a particular stock. Specific information on 
each stock presented to the stock broker includes: 

a) Stock Name. 
b) Current, High, and Low stock prices for the current trading period. 
c) Stock price change between the current and the previous trading periods. 
d) Volume. 

Financial Desktop (FDT) 

FDT allows the stock broker to query a customer information database for 
individual customer and portfolio data. A heuristic function analyzes various data 
and suggests whether the time is right to sell particular customer stocks. Specific 
information presented to the stock broker includes: 
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a) Customer name, social security number, and address. 
b) Stock symbol, number of shares, and purchase price for each customer stock. 
c) Current trading price for each customer stock owned. 
d) Sell/Hold recommendation for each stock owned. 

New Customer 

New Customer allows new customer data and customer stock portfolio data to be 
added to the customer information database. 

Customer Report 

Customer Report generates letters to all of  the customers of the stock broker that 
own a particular stock. The letters advise them of pending recommendations and 
actions to sell particular stocks based on some activity. Additional functionality 
included in the "Customer Report" client allow the stock broker to either (a) look up 
a stock company name based on a Dow Jones stock symbol, or (b) look up Dow 
Jones stock symbol based on the company name. 

2.2 Resource View: Backend Services 

From a functionality perspective, a significant amount of processing is transparently 
occurring to be able to present all of this information to the stock broker within each 
of these four GUIs (see Figures 1, 2). A description of the various server data 
andoperations in this environment will help explain some of this processing. Five 
(5) servers provide access to all of the information and services within this prototype 
envirnoment. The five servers are described below. [2] 
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Customer Information Database service 

The customer information database service is implemented as an MPE/iX 
Turbolmage proprietary network database of customer information that manages the 
following data: 

a) Customer account number, customer name, social security number, address, 
and number of stocks owned. 

b) Stock symbol, number of shares, and purchase price for each customer stock 
owned. 

Its server operations include: 

i.) "Get customer data" retrieves all of the data in (a) above, given a customer 
ccount number. 

ii.) "Get customer portfolio data" iteratively retrieves all of the stock 
information in (b) above for each customer stock held. 

iii.)"Add new customer" adds the new customer and customer portfolio data 
[specified in (a) and (b) above] to the database. 

iv.) Get customer owning stock" iteratively retrieves all of the customers that 
own a particular stock, given a specific stock symbol. 

Dow Jones ticker tape service 

The Dow Jones service provides a real-time feed to the latest NYSE and NASDAQ 
stock prices. Either the Telerate or Prodigy dialup services can be used as 
underlying services. 
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Latest Stock Price Database service 

The latest stock price database service is implemented as a UNIX NDBM database 
that maintains the latest stock price for each of the stocks coming across the ticker 
tape. 

Stock "sell/hold" heuristic analysis service 

The "sell/hold" analysis service provides a recommendation to the stock broker as to 
whether to sell the customer stock or hold onto it, based on historic and current 
market conditions. 

Stock Symbol Database service 

The stock symbol database service provides a mapping from stock name to stock 
symbol, or from stock symbol to stock name, for each of the stocks in the NYSE and 
NASDAQ. This database service is implemented as a relational database using 
Ingres. 

The following server operations are supported: 

i) "Get stock symbol" retrieves the Dow Jones stock symbol, given the 
company name. 

ii) "Get company name" retrieves the company name, given the Dow Jones 
stock symbol. 

2.3 Hardware, Operating Systems, and underlying Network 

The customer information database service is implemented using an existing 
Turbolmage network database on a HP 3000 Series 900 business computer running 
the MPE/iX operating system. 

The Dow Jones ticker tape service, latest stock price database service, and the 
"sell/hold" analysis service are all implemented on the following hardware and 
operating systems: 

a) HP 9000 Series 700 workstations and Series 800 servers running the HP/UX 
operating system. 

b) IBM RS/6000 Model 320 workstation running the A/X operating system. 
c) DEC DecStation 3100 workstation running the OSF/1 operating system. 
d) DEC VaxStation 3100 running the VMS operating system. 
e) DEC DecStation 5000/200 workstation running the Ultrix operating system. 
f) Siemens-Nixdorf workstation running the SINIX operating system. 
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g) Groupe Bull workstation running the BOS operating system. 
h) Stratus fault-tolerant minicomputer running its variant of the UNIX System V 

Release 4 operating system. 

The stock symbol database service is implemented using the Ingres relational 
database on the HP 9000/730 workstation running the HP/UX operating system. 

The clients are implemented on the following platforms: 

a) HP 9000 Series 700 workstations running the HP/UX operating system. 
b) Intel 80386 PC's running Microsoft DOS 5.0 and Windows 3.0. 

The clients and servers are networked together using both Ethemet and IEEE 802.5 
token ring, using TCP/IP and UDP/IP protocols. 

4 Selected Tools  and Technologies  

The technologies and tools that were selected to be used to implement the Financial 
Desktop application environment are briefly discussed. 

4.1 User Interfaces 

Motif 1.1 using UIMX interface builder 

It was decided that OSF Motif 1.1 was the primary GUI technology to be used to 
implement the client user interfaces. The familiar and intuitive appearance and 
behavior of an interface that complies with the Motif style guide empowers end 
users to be productive immediately. Further, UIMX (also called Interface Architec0 
from Visual Edge was selected as the interface builder for the Motif GUI, due to its 
ease of use, quick prototyping capability, and ability to generate pure Motif C code, 
so that portability to future client platforms can occur very easily. In addition, since 
very efficient C source code is generated, the prototype interface code can also be 
deployed quite appropriately in a production environment. [2] 

Microsoft Windows 3.0 SDK 

The Microsoft Windows 3.0 SDK was used as a secondary, supplemental GUI 
technology to develop MS Windows interfaces for two of the FDT clients that are to 
run natively on the PC platforms. Although MS Windows is not standard or open, it 
is the most popular GUI in use today on PCs, and thus it is strategic to many users. 
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4.2 Application Interoperability 

DCE Remote Procedure Call (RPC) 

It was decided that the OSF DCE RPC would be the enabling technology to be used 
to achieve application interoperability between the four FDT clients and the five 
FDT servers. The primary decision criteria here was the openness of DCE, as an 
enormously popular consortia-sponsored interoperability standard, and as such, the 
expectation that it will be increasingly available on almost every computing 
platform. For the prototype, early versions of DCE were used for x386 
Windows-based PCs, Series 700 HPAIX workstations, and MPE/iX minicomputers, 
to achieve interoperability across the various FDT clients and servers. 

Other decision criteria also affected the selection of the DCE RPC. First, the 
transparency, and scalability afforded the application developer and end users is 
much greater for applications architected with DCE RPC than with some of the less 
robust, pure messaging technologies. The familiar and intuitive local procedure call 
semantics empower software developers to be productive developing distributed 
applications with minimal training. Second, DCE RPC greatly simplifies the 
development of the clients and servers by automatically generating client and server 
stub (or "glue") C code. Most distributed computing complexities are taken care of 
automatically by the DCE RPC tools, generated stub code, and the DCE RPC 
library. Finally, DCE RPC can just as easily be used to implement a production 
worthy implementation as it can to achieve the prototype described in this paper, 
since this third generation technology was designed with these goals in mind. [3, 4] 

5 Implementation Details and Experiences 

5.1 Background 

The FDT prototype was originally developed in early 1991 at HP Dallas using 
Network Computing System (NCS) 1.5.1 RPC and directory services on HP 
Domain/OS, HP/UX, and MPE/XL operating systems. NCS 1.5.1 supports a 
non-threaded distributed computing environment with a non-hierarchical name 
space with no additional security. [5] This technology was used because DCE, 
even in snapshot form, was not yet available from OSF. In addition, the UIMX 
Motif prototyper tool was used to generate the client user interfaces. Since one of 
the purposes of the prototype was to demonstrate heterogeneous distributed 
application interoperability and data access, some rudimentary visual feedback was 
added such that the screens of the various RPC servers "light up" green whenever 
an RPC request is serviced. 
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DCE Implementation 

In July of 1991, OSF decided to use this prototype environment as the basis for its 
DCE demonstration to the support the September 17, 1991 worldwide availability 
announcement of DCE. As such, the FDT client and server code was reengineered 
o use DCE RPC and DCE threads, so that any DCE licensee can utilize the 
prototype environmentfor demonstration purposes, by building it with their 
DCE implementation. At the time of the implementation, the latest version of the 
DCE code was Snapshot 5, and the CDS security services were not yet mature 
enough to be used. The FDT code was ported to OSF/1 on the DECstation 3000 
workstation and the HP PA-RISC 720 workstation, as the two primary development 
environments. 

5.2 Utilization of DCE Core Components 

RPC and Threads 

The DCE remote procedure call was heavily utilized throughout the FDT 
environment to accomplish both distributed data access and distributed 
computation. Idempotent call semantics were used throughout, since read only 
access was he only requirement for the initial implementation. The new DCE 
RPC context handle feature was also utilized in the data access interfaces so 

that servers can maintain client state and clean up if necessary. The endpoint 
mapper daemon (rpcd) was not utilized since well-defined endpoints were used in 
the Interface Definition Language (IDL) files. This is poor implementation 
practice, in general, but was used here due to the infancy of the DCE software. 
Finally, the broadcast attribute was specified for the send_tick() procedure of the 
Dow Jones Ticker Tape Service, so that multiple MarketMinder clients/servers 
are instantly informed of new ticker tape activity. 

Threads were not used explicitly in any client implementation except for a 
workaround that was required for some initializations that were not occurring in 
early DCE code. Threads were used implicitly by every FDT application server so 
that multiple clients are serviced simultaneously. It was for this same reason that 
context handles were also required. The manner with which multi-threaded 
servers are created in DCE is very straightforward and thread complexities are 
transparent to the developer. 

Cell Directory Service Emulation 

Part of the source code port from NCS to DCE included porting NCS location 
broker (lb_$) calls to the DCE NSI calls to register services into and lookup 
services from the Cell Directory Service (CDS). The original goal was to utilize 
the new automatic binding feature in DCE, whereby with no explicit 



113 

programming on the part of the application developer, clients will automatically 
and seamlessly connect with their appropriate servers, and if those servers 
should fail, the clients will then automatically reconnect with other equivalent 
servers. 

However, since the CDS portions of DCE were not ready at that time, a C library 
was created which emulated CDS (actually, RPC NSI) functionality and behavior. 
Conditional compilation allowed use of either the native DCE CDS or the emulation 
library, while providing transparency to the application. In addition to emulating 
the automatic binding and rebinding on server failure, the library randomly picks a 
server to which the client will connect, if there are multiple equivalent servers 
available. This will, in effect, amortize the various RPC calls -- and thus the RPC 
load -- across the various RPC servers, creating a simple form of RPC 
load-balancing. 

The additional step of emulating CDS required the static definition of server 
locations (e.g., hostnames) for each interface definition in a configuration file. 
This is sufficient for a small, static prototype environment, but this methodology 
will not scale up to a larger, more dynamic, and more realistic environment. 

What worked well here, in addition to the transparency to the application 
source code, is that clients compiled with the emulation library will interoperate 
with both servers compiled with the emulation library as well as with servers 
compiled with the true RPC NSI interface--in effect, creating two namespaces. 
The converse is not true, however. 

5.3 Demonstrating DCE Interoperability 

Demonstrating distributed application interoperability and data access is not an 
intuitive concept. If application components are interoperating correctly, user 
requests are processed and results are presented. However, it is not obvious where 
events and actions are happening. As such, a not insignificant amount of effort 
went into providing visual feedback as part of the FDT environment, such that one 
is able to discern where distributed computing is occurring. 

Specifically, the lighting up of screens was expanded to display specific 
vendor logos on both client and server machines. To accomplish this, an 
additional RPC parameter was added to each function signature in the FDT IDL 
files to denote either from which machine an RPC is being called or where it is 
being serviced: 

[idempotent] void db_stocksopen([inl handle_t h, 
[in, out1 long *vendor_id, 
[out] file_handle_t *fh); 
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The background of the server machine's screen, for example, will display a 
bitmap of the client's vendor logo (i.e., the HP or IBM logo) when the RPC is 
serviced. And the client GUI will display a bitmap of the server's vendor logo 
when the RPC completes. In this way, it is easy to determine between which 
machines an RPC is being rocessed. The user can then press a toggle button which 
alternates between visual feedback mode and "live" mode, in which RPCs can 
complete at full speed with no visual feedback. 

5.4 Replicated Application Servers 

FDT application servers were replicated to demonstrate the concepts of utilizing 
DCE for high availability, load balancing, and multiple custom server 
implementations in a distributed computing environment. High availability is 
demonstrated by unplugging the network connection from an FDT server during a 
series of RPC calls. Then, when the ensuing RPC is requested on that now 
unavailable server, the client delays slightly and then rebinds to another equivalent 
server, with its new server vendor logo displayed in the client GUI. In the FDT 
clients, the default RPC timeout was changed from about thirty-two (32) seconds 
to either four (4) or eight (8) seconds. Depending on which application server to 
which a client connects, a different server implementation is executed. For 
example, on a customer database lookup, either a Unix flat file is sequentially 
searched or an HP MPE Turbolmage network database is searched. 

In the prototype environment, the general replication problem is scaled down and 
some assumptions are made so that only application servers with no update 
interface can be replicated. If no assumptions are made -- which in a real 
application environment cannot be done -- either a replicated database or a 
distributed transaction processing (TP) monitor would be required for an 
application server managing a database. Since the former solution requires a 
monolithic, single database vendor implementation, the latter TP monitor 
solution would have been preferred, and the Transarc Encina technology would 
have been selected since it is already integrated with OSF DCE. In this scenario, an 
update is no longer a non-idempotent (i.e., at most once) operation, but instead is 
transactional (i.e., exactly once), in which each replicated database is updated 
with the scope of that single transaction. In effect, the Encina TP monitor 
solution is used to keep heterogeneous databases in synchronization by utilizing a 
two-phase commit across the various databases. [6] 

5.5 Developers' Skills and Roles 

Three developers were intially involved in the building of the FDT prototype. 
Each had different backgrounds and skillsets that were effectively utilized in 
creating different portions of the FDT clients and servers. It was found that a high 
degree of concurrent development was achieved in large part due to the inherent 
requirement to first define the client/server interfaces in the DCE IDL files. This is 
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somewhat akin to defining an object in object-oriented analysis and design 
methodologies. DCE encourages the view of resources and their services as objects 
and methods, and the requirement that this definition be done first allows the DCE 
client and server developers to proceed independently once an IDL file is agreed 
upon. 

The developer with legacy database management skills proceeded to create the 
customer database schema, load the database, and develop the interface routines 
(e.g., methods) that comply with the service's IDL file. In effect, this developer was 
encapsulating the legacy database with a layer of openness that any client developer 
could then access once given the IDL file -- and could access it without knowing its 
underlying implementation or even being knowledgeable about that implementation. 
A customer database object has now been created. 

The developer with a background in GUI design was given the liberty to create a 
GUI that the user would be comfortable with, and as such dealt primarily with 
ergonomic and style-related issues. The third developer, in effect, acted as an 
integrator between the user interface object and the customer database object. This 
developers' role was to translate user interface messages (e.g., callbacks) into 
customer database messages (e.g., business lransactions) and to create the necessary 
application logic to have the DCE client perform as desired. 

These three roles are prevalent throughout the FDT clients and servers. When an 
object and its method already exists, it can simply be reused. This is the case, for 
example, in the Latest Stock Price Database with the request_priceO method used 
by both the Marketminder client and again later by the FDT client. This reusability 
of server operations is one of the primary benefits achieved through thoughtful and 
generalized IDL design. 

6 Summary of Prototype Development 

Before the summary of the steps involved in developing the FDT prototype 
application environment is presented, it should be emphasized again that the 
selected tools and technologies promote parallel development of the application. 
The benefit of this approach is not only that the prototype will be produced more 
rapidly since it is produced in parallel, but also that the learning curve is minimized 
since current skillsets can be partitioned into these three pieces. That is, user 
interface experts can concentrate exclusively on building GUIs, and specific 
technology experts can deal solely with providing access to an underlying 
technology/service by developing the server and server operations. An expert on the 
Turbolmage database can provide access to Turbolmage data by implementing the 
previously agreed upon server operations, and a client developer can then access 
Turbolmage data without having to know anything about the Turbolmage database, 
by simply invoking the appropriate server operation. 
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The primary steps, then, that were followed to create the FDT prototype are outlined 
below: 

. Client~Server Interface Definition: For each service, the client and server 
software developers need to agree upon the client/server interface definition 
and its supported server operations. These server operations include the 
operation name, input and output parameters required by the operation, and 
possibly some additional, optional attributes. This information is specified in 
a DCE IDL file. These server interfaces and server operations were 
discussed above in "2 Description of the Prototype Environment". One of 
the server operations for the customer information database service is 
specified as: 

[idempotent] void get_customer_data(lin] handle_t h, 
[in] char acctNum[4], 

lout1 customer_t *custData, 
[out] long *numStocks, 
[out] long *status); 

. Interface Compilation: For each interface, the DCE IDL compiler is 
executed taking the DCE IDL file as input and producing as output the 
respective client and server side stub code. 

3. At this point, the client and server software developers can start their parallel 
developments, since their interface has now been formally defined. 

3a. Server Implementation: The server software developer will develop the 
implementation for the server operations agreed to in Step 1, above. In 
the implementation of each server operation, the server developer needs 
to manipulate the underlying resource as specified by the operation. 
This entails using Turbolmage system calls, for example, in the 
customer information database server, to query or update this database. 
In the stock symbol service, the server developer needs to issue 
imbedded SQL statements to retrieve the requested stock symbol or 
company name. 

3b. Client Implementation: Development of the client application can also 
be done in parallel here, by first specifying the formal interfaces 
between the GUI and the application logic. What needs to be agreed to 
and specified up front are (1) the callback function names and 
parameters, so that the appropriate function can be called when the user 
presses a button, and (2) the names and types of the GUI 
objects/widgets so that the client software developer can read from and 
write back to the appropriate user interface elements. 
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3b-i. GUI Development: The user interface developer will create the 
appearance and behavior of the GUI and will link the user 
requests for action (e.g., button presses) with client application 
"callback" functions. The information presented in the user 
interfaces was discussed above in "2 Description of the 
Prototype Environment". UIMX was used here to create the 
Motif GUIs, and the Microsoft SDK was used to create the MS 
Windows GUIs. 

3b-ii. Client Application Logic: The client software developer will 
develop the necessary "callback" functions and client application 
logic, and will call the server interface operations as needed. 
Also, the client software developer needs to read from and write 
to the appropriate graphical user interface elements. Some 
pseudo-code for the FDT client shows a sample of the flow of 
processing that occurs when the stock broker enters a customer 
account number and presses the "OK" button: 

void ok_callback(); 
{ 

/* 

* First read the customer account number from the GUL 
*/ 

acctNum = XmTextGetString(textWidget); 
. . .  

/* 

* Next invoke the customer data "query" operation. 
* Note: This is an RPC call. 
*/ 

getcustomer_data(bindingHandle, acctNum, &custData, 
&numStocks, &status); 

o . .  

/* 

* Then, put the customer data just obtained to the screen. 
*/ 

XtSetValues(firstNameLabel, data1, count1); 
XtSetValues(lastNameLabel, data2, count2) 
XtSetValues(ssnLabel, data3, count3); 
XtSetValues(addrLabel, data4, count4); 

} 



118 

7 Conclusions 

A prototype client/server financial application for stock brokers was developed 
using standard, off-the-shelf technologies and tools -- OSF Motif and OSF DCE. 
The technologies and tools that were used to develop the application were selected 
primarily due to their openness, standards compliance, and their capability to also 
be deployed in a production environment. By prioriting openness as the highest 
decision criteria, it is shown how installed assets can be leveraged, new technologies 
can be integrated, and how the focus of control for the environment can be shifted 
away from the vendor and back to the customer, where it belongs. By using 
standard compliant APIs that are portable to many different systems (PCs, MPE/iX, 
and Unix), by using standard compliant protocols that are interoperable with other 
vendors' tools, technologies, and implementations, by using tools and technologies 
that are widely available by tens and hundreds of vendors, and by using tools and 
technologies that scale well from a prototype application to a fully deployed 
application, an enterprise can start to regain control of its computing destiny. 

Specifically, it is seen that by using these open technologies, the investment in 
installed assets, such as the Turbolmage database, can be protected, and in fact 
enhanced, by opening up access to the data to the entire enterprise. In this fashion, 
where the enterprise's business units can use this technology to methodically open 
up the access to their business data and services to anyone who needs to use them, 
business processes can start to be better optimized and reshaped. 

It is also seen how new technologies, such as the Ingres relational database (and in 
the future, object-oriented databases and audio and video), can then also be easily 
added to the environment for the additional benefits of those latest technologies. 

Finally, the client/server development process has demonstrated to lend itself very 
nicely to rapid and effective systems development, in part by allowing the capability 
for parallel software development, in part because the development tools (the DCE 
IDL compiler and the UIMX interface builder) automatically generate much of the 
source code, and in part because if the services are developed in a generalized 
manner, they can be reused many times over by many new clients. 

8 Related Work 

The FDT prototype is currently being used as an educational tool to help 
demonstrate some of the features and benefits of OSF DCE. An HP customer 
education course entitled "Hands-On With Open, Client/Server Technologies" 
(HOW) has been developed to give information technology professionals a hands-on 
exposure on what is involved in developing a client/server solution using true, 
standards-based tools and technologies, such as OSF Motif and OSF DCE. The 
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class is four (4) days long -- half lecture and half lab -- and utilizes the FDT 
prototype for the lab exercises. Two new clients and one new server have been 
added to the FDT environment in the development of this class to allow students to 
be added as customers, to allow customer reports to be generated, and to allow a 
two-way mapping between stock symbol and company name. [7] 

Several other enhancements to the FDT prototype are currently planned or are 
already completed. The first enhancement is introduced in "5.4 Replicated Servers" 
in which the Transarc Encina TP monitor will be used to keep the replicated FDT 
application servers in synch with each other by the XA-compliant two-phase 
commit protocol. If it is determined that this significantly degrades interactive 
performance, then the Encina RQS technology will also be used to batch 
transactions into persistent queues for later processing. [6] 

Another enhancement request is for better use of the DCE core components 
including rpcd, cdsd, and secd (for authentication, integrity, and privacy). Better 
illustration of the distributed computing is also planned, in particular with the use of 
multimedia features such as audio on the clients and servers. Additional 
functionality such as the ability to track and analyze specific stocks or customer 
portfolios over a period of time is planned with the purpose of better illustrating the 
benefits of reusability of DCE server interfaces. 
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Abstract 

Within a heterogeneous distributed computing environment, it is necessary to inte- 
grate services, such as printing and mail, that are scattered throughout the environment 
and which perform single logical tasks. This paper discusses a general purpose archi- 
tecture which provides a framework for designing complex multi-user systems capable 
of interfacing with these services. The merits of this generalized approach are reflected 
in the following two case studies of applications being developed by the University of 
Massachusetts' Project Pilgrim: PIMS (Pilgrim Interface to Mail Systems) and PIPS 
(Pilgrim Interface to Print Systems). These designs incorporate the principles of this 
architecture and utilize OSF DCE. 

PIPS permits the uniform access of a heterogeneous system's printing facilities 
and provides support for printing complex multi-document jobs. This interface is plat- 
form independent, supports flexible mappings between logical and physical printers 
and permits all printing resources to be visible throughout the cell. ISO DPA is used 
for specifying print job attributes and non-DCE systems are also supported. PIMS 
similarly allows distributed mail clients to work directly with a set of uniform, sys- 
tem independent primitives. This interface remains consistent regardless of the mail 
environment/system-architecture native to the client or that used to store a given user's 
mailbox and folders. These primitives allow multiple mailboxes to appear as a single 
unified (coheren0 postbox. This enables operations to be performed on individual mes- 
sages or folders residing on several different machines regardless of underlying mail 
protocol, the user's present host, hardware or operating system. PIMS supports vari- 
able format messages (multimedia) including executable code, alternate display/audio 
forms, and message indirection. Various levels of mail access are supported on clients 
ranging from laptop PCs to supercomputers. 

1 Introduction 

A computing enviromnent  which is distributed introduces a new parad igm for designing 
applications.  At  the same time, managing such applications poses new challenges for the 
designer. Techniques for handling these issues are being deve loped  and should reflect 
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the fact that such environments are likely to be heterogeneous in nature. Services on 
these heterogeneous platforms have traditionally relied on proprietary standards and hence 
frequently do not facilitate interoperability. Additionally, these services have not been 
designed to utilize DCE, nor can they be replaced with equivalent, DCE-aware services 
without substantial modification. Given the importance of these services, a primary task 
in a distributed environment is to insure their integration and also to provide a means of 
managing these (now distributed) applications in a standard conformant fashion. By its 
very nature, DCE is designed to provide a means by which to simplify access to services 
within a heterogeneous environment, otherwise it would not fulfill its purpose. 

A consistent architecture allows a number of applications to pool knowledge and 
techniques for addressing issues associated with a distributed environment. There are 
numerous ways that an application designer can choose to resolve these problems. As is 
usually the case, there is a tradeoff between the generality of a solution and the number of 
issues that it can address. 

This paper addresses the previously discussed issues by reviewing the basic client/server 
model within the context of a distributed environment (Section 2). Section 3 presents 
the Pilgrim Services Architecture, which is a uniform approach to developing complex 
client/server applications. Following this section the PIPS (Section 4) and PIMS (Sec- 
tion 5) case studies are presented. Utilities developed by Project Pilgrim and lower level 
DCE design issues are disscussed in Section 6. The conclusion (Section 7) evaluates both 
case studies within the context of the other tools and utilities being developed at Project 
Pilgrim. 

2 Beyond the Basic Client/Server Model 

Project Pilgrim has been developing OSF/DCE applications at the University of Mas- 
sachusetts for the last three years. This suite of tools provides services to users in a dis- 
tributed environment and the facilities the administration of these tools. Furthermore, the 
integration of legacy applications and personal computers into the OSF DCE environment 
are also goals for the project. Pilgrim's environment includes PCs, mainframes, worksta- 
tions and super-computers. Nodes are connected by LAN's and are organized in a loose 
knit hierarchy based on administrative, departmental and research group. The University is 
a diverse environment (as is any 5000+ computer shop) in that system management must 
address the restrictions associated with the business-oriented, heavily security conscious 
administrative community while adapting to the flexibility and openness inherent in an 
academic/research-oriented institution. In this section, we describe our experiences with 
working in such a computing environment, and the common methodology, or architecture, 
that has evolved as we developed some of the more complex applications. 

The basic client-server model as described in [1, 2, 3] works very well for simple 
applications. However, for complex applications, especially those which attempt to connect 
multiple service providers to several users, this model is inadequate. Furthermore, under 
this scheme, managing such an application would be difficult. If we had n users and m 
services, this would potentially require n • m client-server connections. However, if 
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we simply introduce a single extra layer, then this number reduces to n + m. Extending 
applications by adding a new service is simpler in the latter scheme that is, it requires just 
one new connection instead of the m connections required in the former scheme. Managing 
the application and the services it interfaces to is also simplified, since the new layer could 
provide a management API as well as information caching and logging. 

By adopting the basic Client/Server model, the Server module has to cater to the 
disparate access methods required by the different services. This constitutes the access 
method dependent part of the Server. The Server also contains a common application 
specific portion that remains independent of the service being accessed. Similarly, the 
client module needs to provide various styles of user-interfaces, and it also contains an 
application specific (i.e., user-interface independent) part. This motivates us to consider 
partitioning the Server as well as the Client, into two components - -  one of which deals 
with the intricacies of accessing the service or a particular style of user-interface, and the 
other more stable component, which is dependent upon the needs of the application. 

For example, printers may be available at different locations, and accessing them 
from a VMS machine differs considerably than accessing them from a UNIX machine. 
Furthermore, even different flavors of UNIX, such as BSD or SYS V, have different print 
interfaces, lpr and lp respectively. Similarly, electronic mail poses similarly complexities. 
RFC 822 specifies a format for lnternet text messages as [4] does for multimedia style 
messages. Such standards can conflict with proprietary mail environments (such as certain 
PC and mainframe based systems). Mail access can also vary from being system-based 
(VMS) to file/directory-based as are most Unix variants. Thus application design has to 
account for such diversity, and provide a homogeneous interface to access these services. 
A similar diversity is present in designing a user interface to the application. The style 
of the interface can vary widely, often on a platform or in a site-specific manner, and 
regardless of graphical capabilities inherent in an architecture, a command-line interface 
(CLI) to an application is an important consideration. Whether an interface is graphical or 
command-line in nature, this module should be small and lightweight in order to enable 
small machines to interact with the application. 

For some applications, context has to be maintained between user requests, and some 
applications need a common context to be maintained for all users. In the latter case and 
especially if this common context is modifiable, maintaining it in the user-interface module 
would cause inconsistency. Further more, this context may contain local information, that 
is, information that may not be accessible from any one point in the environment. Any 
transient Client (e.g., a command line interface) may not be able to maintain this context 
even for subsequent user requests. Thus, for certain complex applications, a single layer in 
between the two modules (obtained by splitting the Client and Server as described above) is 
inadequate (for example, the single layer proves to be a bottleneck, or the information that 
needed to be cached may not have been available at any one location in the environment). 

There were a number of other issues of concern, such as integrating security, ease of 
management and control, flexibility and configurability, and the potential for providing 
as well as accessing services on platforms that did not support OSF DCE. All the issues 
previously discussed are addressed by the Pilgrim Services Architecture. 
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Figure 1: Components of the Architecture and their Interaction 

3 Pilgrim Services Architecture 

The services architecture adopted by Project Pilgrim is general enough to accommodate 
most of the applications that seek to provide an interface for existing services to multiple 
users. This architecture consists of four components - -  Client, Supervisor, Secretary and 
Server. It should be noted, that Client and Server components are not to the same as those 
referred to using DCE terminology in [1, 2, 3]. Any of these components may be DCE 
Servers of Clients in their own right. The Client and Supervisor form the outer layer of the 
applications while the Secretary and Server comprise the inner or core layer. 

A particular application may choose to collapse one or more of these components as per 
their individual requirements. More over, the architecture does not impose any restriction on 
the number of instances of any component of an application, leaving those considerations 
to the application designer and site administrator. It is envisaged that the most common 
configuration of an application will be a single (or small number of) Server; a number of 
Supervisors (dependent on the accessibility and the number of services available); multiple 
Clients (typically a small number per user); and a number of Secretaries depending upon 
various factors (such as, complexity of the application, local site configuration, etc). 

3.1 Inner Layer 

The inner layer components are designed to be system independent, relatively stable and 
robust, and may provide various levels of caching. Additionally, a management AP1 should 
be provided by these components. 

The Server is the core of the application and represents the primary mechanism in 
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an implemention. If necessary, it should cache any global information pertaining to the 
application. The Server should receive requests from one or more Secretaries and dispatch 
it to one or more Supervisors, possibly returning the results of the transction back to the 
Secretaries. The dispatching needs to be done only if the service needed is not local to 
the host running the Server. Additionally, the server interacts with the Supervisor using an 
application specific common protocol, thus avoiding host specific dependencies needed to 
access the service. The Server should implement all the dynamic aspects of an application, 
such as dispatching requests to Supervisors according to their priorities (if any); choosing 
the best Supervisor to service every request if more than one is available; and implementing 
an application specific queueing mechanism for the requests. 

The Secretary acts as the liaison between the Client and the Server. Unlike the Server, 
the Secretary may cache local information that may not be accessible to the Server or Client 
specific information, which could help provide a context between subsequent Client calls or 
in between calls from different Clients. It is meant to take over some of the mundane tasks 
such as authenticating a Client thus relieving the Server from these duties. The Secretary 
may be responsible for setting up the Client request. It should handle any translation, 
if required, to and from the internal application specific common protocol to the format 
required by the Client. 

Note that no assumption is made regarding the nature of the Clients which interface 
to a Secretary; these need not be just users, but could be parts of a different application. 
For example, in a mail application, its Server could connect to a local Secretary of a print 
application in order to print a mail message on behalf of a mail user. This makes it easier 
for the mail application to use the print services in the environment, as it obviates the need 
to know the locale of a Server responsible for printing, thereby leaving that job to the 
Secretary of the print application. 

In summary, dividing the inner layer into a Secretary and a Server is essential for 
the following fundamental reason: The task load of several complex applications can be 
partitioned into a static and a dynamic part. The static part could vary depending upon 
the site. By making the Secretary responsible for the static portion, and the Server for the 
dynamic part, a flexible organization of the application can be achieved in the environment. 

3.2 Outer Layer 

The outer layer should encapsulate all the operating system or environmental dependencies. 
The components of this layer should be small and lightweight, hence enhancing the porta- 
bility of the application. The communication between the inner and outer layers should use 
non-DCE transport. 

The Supervisor acts as a liaison between the Server and any external service that the 
application interacts with. It is essentially a wrapper around the host specific interface to 
the service, hiding the intricacies of accessing this service from the rest of the application. 
If required, the Supervisor can translate the information provided by the service to an 
application specific common protocol and vice-versa. 

The Client serves as the user interface to the application and should use the interface 
provided by the Secretary to request a service. Using this interface, a Client may be designed 
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to provide a variety of user interfaces that are as simple as a command line interface or as 
complex as a graphical user interface. 

4 Case Study: PIPS 

PIPS, Pilgrim Interface to Print Systems, is a system designed to uniformly interface with 
the various facilities for printing within a distributed environment. The fundamental premise 
is not to rewrite the existing print systems, but to provide a homogeneous interface to them. 
PIPS therefore fits the profile of applications that could benefit from this architecture. 

4.1 PIPS: Pilgrim Interface to Print Systems 

The fundamental object processed by PIPS is a "job". By definition a job is a collection 
of documents (files) to be printed. For example, a teacher in a school might use a job in 
order to print a set of  materials needed for a class. This job could consist of  documents 
such as exams or a syllabi. PIPS allows users to print these materials while maintaining a 
permanent list of jobs. 

Using PIPS, the user can specify ISO DPA (ISO DP1 O175 Document Printing Appli- 
cation (DPA) Draft Service and Protocol Standard ) options for the job as a whole or for 
any of its individual documents thus hiding the vagaries of the individual print system 
commands from the user. The ISO DPA options, as well as their translations to the format 
of  the print system specified is performed by storing this information in the Cell Directory 
Service. 

PIPS provides a notion of logical printers. A number of logical printers may map to a 
single physical printer. Information of this map is also stored in the Cell Directory Service. 
Access control for each of these logical printers is implemented as part of PIPS. 

4.2 PIPS Design 

PIPS has four components a prescribed in the architecture description in Section 3. We 
begin with a description of the outer layer components. The supervisor in PIPS dispatches 
pre-formatted print requests to the print system. It queries the print system upon request 
from the server about the status of the print system queue, parses the output, and returns it 
in a format understood by the server. 

The client connects to a secretary to send a job for printing, or to find the status of 
submitted jobs, or the status of a logical printer. Currently, using the interface provided by 
the secretary, twoclients have been developed - -  one is a simple tty client, and the other 
is a complex client which uses Motif 4 

The server manages jobs submitted for printing. It performs printer or queue specific 
translations needed to print the documents in a print job. For example, if the number of 
copies for a document to be printed is "2" (specified by ISO DPA option copy-count), and 
the logical printer for this document is provided by print system "lpr" of UNIX, then the 

4Motif is a trademark of OSE 
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server translates this option to the lpr option "-02". In lpr, "-#" is an option for printing 
several copies of a document. The server also keeps track of the progress of the information 
and statistics regarding jobs on a queue. 

The secretary manages static description of the jobs belonging to a singe user. It also 
aids a user in creating new jobs and modifying existing ones. It reads valid job and document 
ISO DPA options from the Cell Directory Service and caches this information, which could 
be used to validate requests from any client that connects to it. 

The secretary authenticates the user submitting the request and sends the user's identity 
to the server with this and every request. The server verifies that all requests to it come 
from an authenticated secretary. Once it authenticates the secretary, it trusts the user identity 
provided to it, and uses that information to implement access control on the logical printers. 
Similarly, the supervisor verifies the server before dispatching the request. PIPS uses OSF 
DCE Security core component to perform authentication and implement the access control. 

Thus, a print request from a client, undergoes some preliminary checking at the secretary 
(validation of ISO DPA options), is sent to the server, which expands the job into its 
constituent documents and provides printer specific translations for each document. These 
documents in turn are sent to the corresponding supervisor which submits them to the 
underlying print system. The progress of this job is monitored by the server and the final 
status is sent back to the user. Pilgrim Event Notification Service[5] is responsible for 
returning this status. 

PIPS simplifies the management of the print services within a given environment. For 
example, to allow or remove access to a new printer, the administrator adds a logical printer 
in the Cell Directory Service. The printers is then mapped to the new printer by storing such 
information as the print system to be used, the translations (or pointer to these) from ISO 
DPA options to the print system specific options, the supervisor that needs to be contacted 
for this printer, etc. Then, by using the server management API, the server is refreshed, so 
that any new request to this printer can now be serviced. 

5 Case Study: PIMS 

PIMS, Pilgrim Interface to Mail Systems, is designed to simplify mail access within a 
distributed environment. Each user is no longer described as a "usemame/address" pair 
but simply by the user's principal name - this despite an extensive host environment with 
decentralized control and policy enforcement. The principal name maps directly to their 
primary mailbox which is stored in the Cell Directory Service. For a given user, this 
mailbox represents where all PIMS mail is delivered as well as mail from outside the cell. 
This mailbox specification can be changed only by the system administrator. Given the 
loosly structured nature of  the University's LAN hierarchy, which is similar to that of any 
compartmentalized corporation or organization, mandating a policy of a single mailbox 
per-user is unenforceable. Within the environment, PIMS allows the typical user (such as 
the 15,000 undergraduates at UMass) to simply receive all mail at their primary mailbox 
and hence literally have a centralized mail repository. 

Also associated with each user is a pointer to a set of configuration files which includes 
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the PIMS setup file. This file allows configuration information to be standardized across all 
platforms, allows all incorporated mail environments to fully support folders and aliases, 
and provides a locale in which users can store mailbox locations in addition to their 
primary mailbox. This later feature allows transparent folder/message migration across 
platforms and mail systems. Setup information of a more general nature is also stored at 
this configuration file. 

Given PIMS's generic representation, entire sets of user mailboxes can be migrated 
to new hosts/mail-formats without the user's knowledge or being affected; thus backups, 
system upgrades, maintenance and fault-tolerance are readily supported. Related to this, 
privacy issues exist in the event of an underlying mail system storing folders in "user- 
space" as opposed to "system-space," but these are political rather than technical. PIMS 
use of certain aspects of the MIME standard saves disk space in that messages to multiple 
users (especially broadcast style messages) can be shared through indirect addressing. 
Also a policy of user transparent data compression can be instituted. Image and graphical 
messages can similarly be retrieved from a set of such libraries or user space such as when 
a user's picture is included with each message they may send. This feature will be further 
advantageous given the development of special purpose architectures, storage devices and 
algorithms for handling such data. 

5.1 Rationale 

Regardless of their size, many computing environments inevitably support legacy mail sys- 
tems. The reasons for maintaining multiple mail protocols and access tools are numerous 
- most notably the cost of retraining personnel and user resistance to change. Obviously 
ensuring that individual mail systems can intercommunicate with each other and the main- 
tenance of user interfaces is itself expensive. Resolving misaddressed mail sent within the 
local environment, insuring that a diverse set of mail systems are properly backed-up and 
user migration given system modifications can be daunting tasks given the diversity and 
backwards compatibility requirements inherent in supporting legacy mail systems. With 
messages potentially arriving for a single user at multiple locales and under separate pro- 
tocols, a variety of ad hoc schemes have been introduced in order to provide some sense of 
system coherency. Users seeking to maintain access to their preferred mail reader often use 
"forwarding" or simply "login" to each host where their mail resides. Forwarding requires 
constant maintenance and is susceptible to cyclic forwarding, while users who maintain 
multiple mailboxes face both the possible task of mastering multiple interfaces as well as 
the reality that crucial messages can be left unread in infrequently accessed mailboxes. 

Additionally, mail setup information must be maintained independently on each plat- 
form and must be changed with each system upgrade. A policy mandating a single- 
user/single-mailbox is often too restrictive considering it is difficult to compartmentalize 
certain anomalous classes of users and that users have traditionally utilized their mailboxes 
as folders or as temporary file storage depending on such factors as the quota allotted them 
on a given system. It is recognized that certain environments can maintain site-wide aliases, 
but this assumes that a single mailbox is enforceable and that the entire environment is 
capable of accessing alias tables. 
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Pilgrim Interface to Mail Systems (PIMS) addresses and offers solutions to the pre- 
viously mentioned shortcomings inherent in many current computing environments' mail 
systems. Additionally, its use is not precluded within environments either supporting only 
a single mail protocol/accessing-tool or where users are associated with only a single 
mailbox. Using the Distributed Computing Environment (DCE), PIMS provides a set of 
primitives designed to enable system independent access to numerous mail systems. It is 
neither another new mail protocol nor yet-another-graphical-interface to mail, rather PIMS 
is a generic representation that masks mail locale and format from the user. Within this 
environment, each mailbox appears as if it resides on the host the user is accessing without 
requiting the user to log into remote hosts. Similarly the folders associated with each mail- 
box are also visible and appear as if they reside on the present host. Mail setup information 
is also represented by this general format and hence regardless of the underlying mail 
environment this information is consistent and requires no modification in the event of 
system modification or upgrading. 

From the system managerial level, PIMS provides a logical methodology and frame- 
work for organizing the potentially thousands of mail users within a cell and allows for 
enforcement and "persuasive" migration toward a truly centralized single mailbox. A 
single-mailbox/single-user environment is preferable for many reasons: it more readily 
facilitates fault-tolerance through replication; simplifies many mail addressing formats and 
hence reduces misaddressed mail; decreases the chance of stale messages; makes indirectly 
referenced message bodies and shared message bodies simpler to implement; and can aid 
in backing up procedures and enforcing quotas for various mail systems. 

The benefit of PIMS's independent representation is that only a single translator is 
required in order to incorporate a new mail format into the environment. This is because 
once a message has been converted to its PIMS representation, a translator for any mail 
format can be used to convert it into that representation. PIMS performs the lowest level 
mail manipulations using the local mail environment and hence can rely on lightweight 
translators making conversion all the simpler. Once in the PIMS general form, any mail 
system can communicate with any other supported by the PIMS environment by simply 
converting between genetic and native formats. This approach is superior to translating 
directly between each format because for accessing N mail systems only N translators are 
required compared with N ~. Furthermore, this generic representation is designed to handle 
non-text (multimedia) mail messages sent under the MIME protocol[4]. Facilitating this is 
that message bodies are not viewed as a single entity but are composed of multiple parts and 
text need not be necessarily 7-bit American ASCII, but can be any width representation. 
The generality inherent in PIMS insures that in the future, it will be capable of handling 
alternate multimedia standards once they are established. 

PIMS is further enhanced in that the Application Programmer Interface (API) provided 
for communicating with mail system front- ends is asynchronous. This non-blocking nature 
greatly enhances any mail client's ability to optimize it's performance through multi- 
threading. In order to achieve coherency certain objects (mailboxes, folders and messages) 
are locked and restrictions placed on write, rename and delete operations. Despite these 
requisite constraints, a significant amount of low-level parallelism can be exploited. 
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5.2 The PIMS Architecture 

PIMS unifies mail within its diverse environment through a three level architecture: mail 

client, communications server and mail server. It should be recognized that mail differs 
from printing in that, except for sending an individual message, accessing electronic mail 
typically involves a multi-command session and that in order to unify scattered mailboxes, 
potentially three RPC layers are required. In order to reduce the number of levels requiring 
communications across the network the client and secretary portion have been combined 
into a single module, the mail client. The client portion accesses the secretary (acting as 
a local secretary) through the PIMS provided API. The communications server acts as a 
global secretary for multiple clients. It accesses mail servers which are composed of an 
applications server and an applications supervisor. On a lower level, each of the three 
fundamental PIMS components acts as both a DCE client and server. This asynchronous 
architecture allows data requests to be spawned by the mail client and hence allows 
continued operation rather than the synchronous waiting for data or status to be return. 
This organization is specific enough to suit this particular application's needs and general 
enough to be applied to other client-server based applications. 

A "typical" PIMS session sees a user access their preferred mailer/mail-reader which 
has been modified to interface with the PIMS API, hence providing seamless access to 
a distributed mail environment (see Figure 2). This action activates a PIMS mail client 

which accesses the Cell Directory Service (1). This globally accessible database provides 
a profile on the user and a binding handle to a communications server (2). The mail client 

then initiates a session with the communications server by passing it a list of auxiliary 

mailboxes a user seeks access to (3). This server is responsible for determining the validity 
of a user and determining their primary mailbox by accessing the Cell Directory Service. 
The Cell Directory Service also provides binding handles so that the communications server 

can access the mailbox server associated with each mailbox a user seeks access to. Once 
this information has been determined, the communications server requests information 
pertaining to each mailbox (4). Each mailbox server contains a set of back-end interfaces 
which translate between PIMS's generic representation and the local mail format (5) (e.g. 
Unix, X.400, VMS). These back-end interfaces provide the requested information which is 
passed back to the communications server (6) followed by to the mail client that initiated 
the request (7). 

5.3 F u n d a m e n t a l  C o m p o n e n t s  

5.3.1 Mail Client: 

A typical mail client's access to the Cell Directory Service allows it to interpret multimedia 
messages. Host profiles contain each host's abilities in system independent form. Using this 
information each multimedia message can be accessed based on the constraints placed on 
it due to the viewing/audio environment it is accessed from. In support of this information 
source, a set of interfaces exist between the mail client and the local host, which permits 
generic queries as to each host's capabilities to be made, this augments the information 
stored in the Cell Directory Service. 
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The standard mail client is multi-threaded, with a client portion making command 

requests to the communications server. Such commands are detached from the main thread 
through a threadpool (a virtually infinite pool of threads). Each mail client also contains 
a server portion "listening" for messages sent by the communications server (e.g. client 
requested data, new mail or error/warning status). 

5.3.2 Communicat ions Server: 

Unlike potential mail clients, communications servers are required to be deployed on 
powerful hosts with a full access to each DCE component. This allows such servers to access 
any required mail serverand act as a caching service and Cell Directory Service liaison for 
mail clients with limited resources. Information retrieved from the Cell Directory Service 
is cached primarily because such entries as a user's primary mailbox are for all intensive 
purposes static at the communications server level. Similarly binding handles associated 
with mailbox servers are cached. In the event of such a server's graceful termination, the 
communications server will be informed directly and hence only the initial access to the 
Cell Directory Service is required for each mail server. 

Although the entire system is designed to perform asynchronously, it is recognized 
that user's can potentially be blocked waiting for data/status to be returned. In order to 
circumvent this, the sending of mail and informing the user of the arrival of new mail are 
designated as low priority tasks while processing requested information and commands are 
designated as higher priority task. 

5.3.3 Mail Server: 

Mail servers are divided into two categories: send and access. A send server's primary 
role is to handle the sending of mail and hence contains a local cache of user addresses 
resolved. Their back-end interface interfaces to the local mail system (e.g. Unix mail, VMS 
mail, X.400) in order to "send" mail within the cell while other interfaces provide access 
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to mail gateways or routines that access such gateways (e.g. SMTP, Unix sendmail). This 
centralized sending locale allows quotas and restrictions on sending mail to be readily 
enforced and facilitates such features as mail messages with indirectly accessed bodies. 

The access flavor of this server manipulates user mail data (read, delete, change read 
status and general folder access). Again this centralized controller aides in enforcing quota 
and mail policy. User data is cached in order to determine a user's specific mail location 
and to maintain a list of active users whose mail is currently being monitored. 

It is recognized that the mail access through two levels of server (e.g. two levels of 
RPC interconnection) can present a potential bottleneck, especially given the transfer of 
large messages. Similarly, copying messages from mail server to mail server would be an 
extremely slow process if a postbox server's interaction/control were mandatory. Direct 
communications between mail servers, and mail servers and clients is permitted and fa- 
cilitated by passing the appropriate binding handles with each operation performed. This 
allows the postbox server level to be bypassed and thus streamlines network communica- 
tions. 

5.4 Client Support and Server Interaction 

As stated previously, a mail client host can vary from laptop to super-computer. Given 
the various levels of power associated with each potential client host, a spectrum of client 
performance must be supported. The optimal client machine (a workstation or larger host) 
will have complete DCE access, have the ability to store a full caching of a user's mail 
environment locally (either in memory or on disk) and possess a graphics/audio capable 
terminal. Restricting mail to only such hosts is an unrealistic limitation; therefore each 
client contains a snapshot of the user's mail and the remaining messages operated on are 
stored over the network. Local caching of messages is handled at a level behind the PIMS 
provided API as are cache-misses which are resolved over the network. 

Clients are configurable based on each host's power, current load and the accessibility 
of each DCE component. The most restrictive form of client is the batch-client. Such a 
client might be a remote PC seeking to access their mail over a limited baud rate modem 
and with none of the DCE components available. Such a client would be required to 
login to a DCE accessible host and establish security credentials. Messages would then 
be checked-out of the PIMS environment in order to permit for remote operation (e.g. 
modification external to the formal PIMS environment). This would allow expensive/slow 
communication links to be disconnected while actual modifications are made to the mail 
messages that are checked out. Locks would insure that certain messages could not be 
deleted/moved while checked-out. At the same time mail retrieval occurs, mail messages 
generated on PC could be sent by the remote host with DCE access. The batch-client 
presents numerous security holes and would therefore be permissible for only certain low 
security mail-groups and based on a user option set during a previously held secure PIMS 
session. 

It is also permissible to have a mail client-lite which would be an extremely limited 
host capable of little or no caching and with no access to facilities such as the Cell Directory 
Service. In this event the communications server, a powerful host, would maintain a user's 
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data cache and serve as liaison for accessing user information from the Cell Service. 
A myriad of techniques could be used to provide such a mail client with access to a 
communications server. These include communicating over a well known endpoint, reading 
a string binding from a shared file or regression into system dependent features such as 
sockets. The system power model with respect to the mail client is similar to the memory 
hierarchy found in hardware environments (cache, primary memory and disk). Local RAM 
storage, local storage to disk, communicat ions server store and mail server store represent 
the PIMS hierarchy. 

Allowing each communications server to act as both a pure communications channel 
and a client mail cache makes gauging the number of such servers required more difficult 
and adds undue overhead to servers that maintain no client storage. In recognition of this, a 
set of server decision rules are maintained in the namespace. Using the criteria established, 
certain classes of clients will be restricted to using certain communications servers. By 
the same token, this set of rules will be used in order to allow clients to interact with 
logical servers (servers on the local host or servers the same local host as a requested mail 

server). Accessing the Cell Directory Service in order to retrieve this choice profile will 
be a significantly more expensive operation than simply retrieving a binding handle; hence 
mail clients will not have access to such information. Clients will automatically contact 
the first detected communications server. Using the server choice profile and accessing 
its own load status, the contacted server will chose to either accept or reject the client. In 
the event of a rejection, this communicat ions server assumes the responsibility of locating 
other such servers in order to find an accepting agent capable of handling the inquiring 
client. Again, maintaining a list of communicat ions server binding handles is expensive 
with respect to Cell Directory Service access, so for obvious reason this is an operation 
limited to communications servers. This feature will also aid in the migration of servers 
given a server being brought down gracefully or in the event servers are added due to 
the present pool becoming too heavily loaded. This configuration in general is extremely 
scalable and given an enforced hierarchy of servers can readily be deployed in support of 
thousands of hosts. 

6 DCE Design and Integration Issues 

Applications development within Project Pilgrim is aided by a robust suite of DCE based 
utilities. Conventional utilities are frequently nonreentrant in nature and hence are not 
suitable for use in a multi-threaded environment. Lex, Yacc and various regular expres- 
sion packages are examples of this present limitation. Furthermore, DCE specific utilities 
expedite development as does Project Pilgrim's "build" environment which makes archi- 
tecture specifications transparent to applications developers. Project Pilgrim has developed 
various common data structures (queues and trees), a regular expression interpreter, gener- 
alized RPC initialization, generalized security verification and a threadpool package which 
provides what appears to the program to be virtual infinite pool of threads. 

As previously stated, the PIMS environment is asynchronous in nature; this perfor- 
mance feature being implemented utilizing the aforementioned utilities. Queues are used 
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within all three components in order to transmit commands, data and status information. 
Each queue is allocated a thread and entries being dequeued are given a thread from 
the threadpool. Mail clients can either assign a function to be executed once a command 
has been processed and hence exploit the environment's asynchronous nature. Addition- 
ally, a mail client can walt (block) on the result of a command. This synchronous behavior 
facilitates PIMS integration with legacy mail readers which inherently do not exploit multi- 
threaded capabilities. In a similar manner PIPS uses queues so as to provide non-blocking 
RPC. Jobs are submitted and initially error checked before being enqueued. As mentioned 
previously; status is returned using PEN. 

7 Conclusion 

In this paper, we have outlined an architecture which provides a framework for designing 
systems which seek to integrate services in a distributed environment in a uniform way. 
We have considered two systems, PIPS and PIMS, in detail and discussed how their design 
fits in this framework. We believe that our architecture provides adequate flexibility and 
control needed in building such distributed systems. 

Any operating system dependencies are localized in the Supervisor and the Client. Both 
of these are small lightweight processes which should be easy to implement. By isolating 
host specific dependencies in the outer layer, adding a new service or user interface does 
not change the core components. The links between the Supervisor and Client modules and 
the rest of the application may be non-DCE, thereby allowing the application to access 
non-DCE services and allowing a non-DCE client to use the application 5. Overall, new 
user interfaces are easier to make available and new service providers are easy to add 
since only a new Supervisor has to be added. The rest of the application is not impacted 6. 
Therefore, porting to a new operating system maybe done incrementally. Porting a Client 
and/or a Supervisor is all that would be required. 

Both the Secretary and Server cache information, thus, saving on accesses to the 
Cell Directory Service. This is importanted because our experience at Project Pilgrim 
has demonstrated that accessing this DCE component could prove to be a bottleneck in 
large environments. Since the Secretary is designed to perform tasks such as validating 
the end user and maintaining static information related to the application, it relieves the 
Server which deals solely with the dynamic aspects of the application. Apart from such an 
advantage this also avoids the possibility of the Server becoming a bottleneck during the 
operation of the application. 

The Secretary can spawn threads to handle requests from different users. Similarly, 
the Server can handle requests from different Secretaries. By allowing several Servers and 
Secretaries in the environment, we can distribute the task load of users, thus achieving a 
high degree of parallelism. 

5Security issues, such as, is the end user a valid user will also need to be addressed, if  one assumes a n o n - D C E  
communicat ion model. 

6If  the Server and Supervisor were not separated, adding new interfaces would impact  the server. Since the 

server would change, each new interface would mean a new version o f  the server, and different versions maybe  
running on different machines on the cell. 
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Management of the application is easier because of the hooks provided in the secretary 
and server modules. Since most of the application's critical operations are performed in 
these modules, a high degree of control is obtained. By formally separating the modules, 
and by making each module configurable, a high degree of flexibility is achieved in the 
organization of the application. By not restricting the instances of any of the components, 
the application may be reconfigured to meet the changing needs of the environment. 

In conclusion, the architecture discussed in this paper provides a methodology for 
designing both a complicated distributed print and mail application. Both applications 
are operational and are being used in our environment. We believe that our architecture 
simplifies the process of designing distributed applications which aim at providing a 
consistent access to the services in a heterogeneous environment for the end users. Also, 
management of these services, as well as the application itself, is easier for the administrator. 
At Project Pilgrim, other systems are being designed based on this architecture, such as 
Pilgrim User Information Services (UslS).[6]. 
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Abstract. Migrating monolithic sequential programs to distributed client-server 
environments enables the programs to access rich networked computing 
resources, distribute data to proper locations, and obtain other capabilities 
offered by distributed systems. However the migration task is often enormous. 
This paper presents a semi-automatic process for converting existing monolithic 
sequential programs to DCE applications. An incomplete-grouping based pro- 
gram partitioning algorithm is used to determine a complete partitioning strategy 
and to obtain a complete cutset for the program graph from a given incomplete 
minimal grouping information. The complete cutset determines the client-server 
relations among program components and defines the RPC interfaces for their 
interactions. 

1.0 Introduction 

Migrating monolithic sequential programs to the OSF's  Distributed Computing Envi- 
ronment (DCE) [6,9] for client-server processing allows the programs to access rich 
network resources, distribute data to proper locations, and obtain other capabilities that 
distributed systems may offer (e.g. locating services dynamically, secured access). 

However the migration task is often enormous. The efforts required may include: 

�9 Reorganizing user programs to fit in client-server model. 

�9 Partitioning user programs into subgroups of  code for running on different 
�9 systems. 

�9 Defining remote procedure calls (RPC) interfaces for client-server interac- 
tions between the groups. 

�9 Wrapping each group into a process which may behave as a client, a server or 
both in the network of program groups. 
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This work should be done automatically as much as possible to reduce the develop- 
ment cost and increase the reliability of the program conversion. 

This paper presents a semi-automatic process for converting existing monolithic 
sequential programs to DCE applications. An incomplete-group based program parti- 
tioning algorithm is used to determine a complete cutset for the program graph from a 
given incomplete grouping information. The complete cutset defines client-server rela- 
tions and forms RPC interfaces between the groups. 

Given a sequential program, one needs to first analyze the program and mark a few key 
procedures in the program which are more significant than others: Some may carry out 
intensive computing task. Others may perform intensive data manipulation, or provide 
essential graphical user interface functions, etc. A partition algorithm will take this 
minimal information to derive a complete cutset for partitioning the program. Accord- 
ing to the complete cutset, the client-server relations among the pieces of the parti- 
tioned program, and the RPC interfaces can then be generated. 

In section 2, we describe the requirements of program partitioning for client-server 
computing and rationalize the need for key partition information from program inves- 
tigator. A formal context is set up for describing the program conversion. The overall 
conversion process is described in section 3. The partition algorithm used in the con- 
version process is presented in section 4. In section 5, an example illustrates the con- 
version process and shows how the algorithm works. 

2.0 Program Partitioning for Client-Server Computing 

The general problem of program partitioning has been addressed in many previous 
works [7,8,11,4,2]. Most of them focused on partitioning a numerical intensive pro- 
gram into parallel tasks for execution on a multiprocessor system [1,3]. However, 
these previous researches differ from our work presented in many ways. The program 
partitioning algorithms on multiprocessor systems often target their goals at optimiz- 
ing metrics such as job completion time, latency, load balancing, or system through- 
put,. A program partitioner usually have no prior information that demands certain cut- 
points to use. It has to determine on its own an (sub)optimal complete cutset for the 
program graph using heuristic approaches to achieve the defined partition goals. 

On the other hand, partitioning software for client-server computing may intend to 1) 
facilitate client access to software tools, 2) harness the power of networked computers, 
and/or 3) re-arrange resources (e.g. data or databases) to appropriate machines. This 
observation leads to a quite different view as to how the program conversion should be 
proceeded. Rather than optimizing those metrics for numerical computing and relying 
on a fully automated tool, a small set of high level information is used to guide a semi- 
automated conversion process. 
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The useful information may include but not limit to: 

1. The procedure calls can be made remote. 

2. The procedures which are better to run on high speed processors due to the 
computing intensive nature. 

3. The procedures which are more appropriate to run on special data servers for 
intensive large data set manipulation. 

4. The procedures which provide advanced user interfaces should run closer to 
users, for example on desktop systems. 

We define a formal model for the program partitioning. In its context, we describe: 1) 
how a monolithic program is interpreted as a client-server application with a given 
complete cutset, 2) what information is needed to guide the program partitioning when 
a complete cutset is not available, and 3) how the partition algorithm derives a com- 
plete cutset from this information. 

A procedural program can be modelled as a directed graph with global state. Each 
node of the graph is a procedure, and each arc is an ordinary local procedure call. The 
graph is cyclic when there are self-recursive or mutual-recursive calls. A node may 
have access to the global state and/or may privately hold a local state. 

A complete cutset is a set of arcs in the graph for which when all arcs in the set are 
removed from the graph, the graph is broken up to a set of disjoint subgraphs. Each 
subgraph contains a group of nodes and arcs. 

Given a complete cutset, a monolithic sequential program can be converted into a cli- 
ent-server application by having each subgroup wrapped into a single execution unit 
(process) which can be independently allocated resources and scheduled. For example, 
two processes may be running on the same or different machines. 

The arc within a group represents a local procedure call. Whereas the arc at each cut 
point between two groups represents a remote procedure call. An arc going out of a 
group is a remote service requested from the group. An arc coming into a group indi- 
cates a remote service provided by the group. When a group has only outgoing arcs, 
the process for the group is a pure client. When a group has only incoming arcs, the 
process of the group is a pure server. Otherwise when a group has mixed incoming and 
outgoing arcs, the process is both a client and a server. 

An incomplete cutset is a set of arcs for which when all the arcs are removed from the 
graph there are remaining connections between groups. An incomplete cutset may be 
given as a result of the desire to decouple particular caller/callee pairs and to make 
them run in different address spaces, possibly on different systems. 
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Since an incomplete cutset is a proper subset of a number of complete cutsets, there are 
many different grouping strategies available for completing the program partitioning. 
Thus the information defines neither the number of groups nor allocation of certain 
nodes to certain groups. A default option is to group each involved callee or caller 
node in a separate group. Otherwise more information is needed for the partitioner to 
come up with a more intelligent and useful grouping decision. 

Therefore, a program investigator may also want to determine, in addition to which 
arcs to break, how nodes under consideration are grouped. For example, if a program 
has 10 procedures, among them the investigator is more concerned of four procedures: 

1. procedure 1 has to run on different machine from procedure 2 which is the 
former call, 

2. procedure 3 has to run closely with procedure 1, and 

3. procedure 4 has to run closely with procedure 2 

He should provide an incomplete grouping { { 1, 3 } { 2, 4 } } and have the partitioner 
to start from this point and find out a complete grouping and cutset. 

3.0 Program Conversion Process 

As shown in Figure 1, the conversion process consists of a number of steps: 

1. A sequential program is observed by an investigator. The procedures of con- 
cern are marked. The marked procedures are grouped. 

2. A program graph generator analyzes the program source and produces a call 
graph for the program. This graph is augmented with the access relations of 
each procedure node to the global states. 

3. The graph partitioner takes the augmented call graph and the minimal group- 
ing strategy suggested by the investigator to re-arrange the elements of graph. 
It completes the grouping task and derives a complete cutset from the graph. 

4. Given the complete cutset, client-server relations of the program subgroups 
are established. The RPC Interfaces (RPC idl files) are identified and built by 
an interface generator. 
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Figure 1. Converting Sequential Programs to DCE applications 
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The driver routine for each group is generated by a client-server driver gener- 
ator. The driver routine is the wrapper for the program group which contains 
operations for setting up DCE client/server operating environment for client- 
server processing. 

The RPC stubs and header files are generated by IDL compiler. 

Together with the original program, the driver routines, the RPC stubs and header files 
form the converted DCE client-server application of the program. 

4.0 Program Partitioning Algorithm 

In this section, we presents the algorithm used by the program partitioner. This algo- 
rithm completes the grouping task from the given incomplete information about the 
intended grouping of the procedures of concern. This algorithm determines how the 
unmarked procedures are merged into the groups. Given a sequential program, the call 
graph contains a set of procedure nodes and a set of global data units. 

Let 
M = set of global data units 
P = list of the unmarked nodes plus the global data units 

Repeat 
dequeue an element from P 
if it has no connection with any group 

enqueue the element back to P 
else if it is a stateless procedure node or 
a system/language/common-environment runtime function 
copy the node to every group which has procedure call connections to it, and move 

the associated connections into the group 
else if it is a global data unit 

move the unit to the group which has more access connections 
to it than other groups, and move the associated connections 
to the group 

else if it is a procedure node 
(with local state and/or access to global states) 

if it has memory connections to global states 
move the node to the group which has more memory 
connections to this node than other groups 

else 
move the node to the group which has more procedure 
call connections to this node than other groups 

Until P is empty 
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Repeat 
get an element from M 
if the global data unit has cross-group access connection(s) 

construct remote access procedure(s) in the group where the 
data unit resides, connect these access procedures to the 
unit, convert the cross group access connections to remote 
procedure calls to the access procedures. 

Until M is empty 

We adopt a centralized shared memory strategy[5,10] by keeping one instance of each 
global data item in one group. Different global data items may be assigned to different 
groups though. These data items are centrally managed by the associated reading and 
writing functions in the same group. The functions can be called from other groups via 
RPC. The 'read' operations on the global data item, which is assigned to different 
group than those where the operations are, will be replaced by RPC calls to the data 
reading functions. The data reading functions return the desired data. Similarly, global 
variable assignment statements are replaced by RPCs to the data writing functions. 
The data reading and writing functions are generated and exported from the interface 
of the group. 

5.0 Example 

This example illustrates how the algorithm works. Given a sequential program, the 
graphical representation of the program is shown in Figure 2. There are 12 procedure 
nodes, nl ... n12, and three global data units, ml ... m3. The solid arrows are procedure 
calls. The dashed lines are global memory access connections, n5 is a stateless func- 
tion which does not access to any global state, n2 holds a local state. {nl, n i l ,  n12}, 
{nl, n3, n4} and {n2, n3, n4} have mutual recursive call relations. 
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Figure 2. A Monolithic Sequential Program 

An investigator examines the program. Among others, he is more concerned of four 
procedures. Procedure nl processes large amount of data in m3. This work could be 
assigned to and run on a data server. Since both procedures n3 and n4 perform comput- 
ing intensive task and closely interact to each other, the investigator decided to have 
them wrapped together for possibly being assigned to and run on a high-speed proces- 
sor. He also recognizes that procedure n6 provides major graphical user interface func- 
tions. It has to be in a separate process to be run on a desktop or workstation with a 
high-function terminal. Therefore, this investigator decide to provide a simple guide- 
line for breaking up the program: four procedure nodes must be separated in three 
groups: { { nl  }, { n3, n4 }, { n6 } }. 

With this incomplete partition information (Figure 3), we apply the partition algorithm 
described earlier to break up the program into a completely defined set of groups 
which contains all program components. The following reveals the algorithm applied 
to this program: 

1. Common interface calls: calls to language runtime functions or operating sys- 
tem services, cl ... c4, are made locally in each group. This assumes that 
every system supports the common application interfaces used by the pro- 
gram. (e.g. printf in C) 
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Stateless procedures: procedure n5 does not access to global state neither hold 
a local state. The node is replicated in both G1 and G3. 

Procedures with state: procedure n2 has two procedure call connections with 
G2 and has one with G1. It is merged into G2. The call connection with G1 
becomes a RPC. 

Global memory: ml  has two access connections with G2 and one with G3. It 
is merged to G2. A remote procedure n13 is constructed to provide G3 remote 
access to ml.  

m2 and m3 each has one access connection with G1. Both are moved into G 1. 

n9 has one call connection with G2 and one memory access connection with 
G1. It is moved to G1 to avoid the need for construction of a remote proce- 
dure for memory access. 

Procedures connecting to only one group: Since n7, n8, nl0, n l l ,  n12 have no 
access to the global states and attach to only one group, they are included in 
the group. 

As a result, the program graph is completely partitioned into groups G1, G2, and G3 as 
shown in Figure 4. A complete cutset is therefore found. GI ,  G2, and G3 are wrapped 
into three separate processes. G1 and G2 processes behave both as client and server. 
G3 is a pure client process. The cut points, the arcs, between G 1, G2, and G3 are 
remote procedure calls. The arcs within the same groups remain ordinary local proce- 
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dure calls. Two interfaces are identified: one for the services exported by G2 contain- 
ing remote procedures n2, n3, n4, and n13, another for the services exported by 
process G1 containing remote procedures nl and n9. The RPC driver programs and 
stubs files are then generated for G1, G2, and G3. 

cl 
n11~ �9 ~ ~ 

nl ~ ~ ' ~ T . . ' " [ r n 3 1  ( c2 ' ~  

~ - - - - - - ~  1 ~ . . . . . ~  n2~4~ 

c4 / n 5  ..n9 .~1.. ~ / ~/n3.. . . .  ~ 1  

........... .................. / 

/~n5 ~._.__.__ n6 ~ -'~ 

c4"/~n8 G3 

n7 

Figure 4. Complete grouping 

6.0 Concluding Remarks 

In this paper, we have described a program conversion process for migrating a mono- 
lithic sequential program to the DCE environment for client-server processing. We 
have differentiated the requirements of program partitioning for client-server comput- 
ing from those for multiprocessing and rationalize the need of critical partition hints to 
be supplied by an program investigator. The mapping from monolithic sequential pro- 
grams to client-server applications is defined via augmented program call graph. A 
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partitioning algorithm is presented which derives a complete cutset for a graph from 
the hints. An example is given to illustrate the conversion processes and shows how 
the algorithm works. 

We are beginning to prototype the system. In particular the focus is on the graph parti- 
tioner. There are efforts in progress on the design and implementation of the interface 
generator and the driver generator. 

In fact, the described conversion process does not include the steps for parallelizing a 
sequential program. It only distributes a monolithic program. In other words, the exe- 
cution of the resulting client-server program remains sequential. Since the program has 
no concurrency, there is no need for access serialization to global states and event syn- 
chronization for calls to procedures with local state. 

In spite of having more issues involved, parallelizing program is still one of the major 
goals to distribute the program. Jade [4] describes a methodology for parallelizing 
sequential programs while maintaining the execution semantics. In the next step, we 
will investigate the way of adding concurrency to the program while converting a 
monolithic sequential program to a client-server application. We will also exploit the 
possibility of adding constraint-based information, in addition to the minimal group- 
ing, for guiding the partitioning process. For example, if a particular group have to be 
kept as small as possible, the algorithm will move the unmarked nodes to other groups 
if possible. More heuristics will be investigated to optimize other metrics such as net- 
work traffic and the number of RPC calls. 

References: 

1. M.L. Campbell. Static allocation for a dataflow multiprocessor. In Proceed- 
ings of the International Conference on Parallel Processing, Pages 511-517, 
Aug. 1985 

2. Wilson C. Hsieh. Extracting parallelism from sequential programs. Technical 
report, MIT, May 1988 

3. P. Hudak and B. Goldberg. Serial combinators: Optimal grains of parallelism. 
In Proceedings of the conference on Functional Programming Languages and 
Computer Architecture, Pages 627-637, Jul. 1985 

4. M.S. Lam and M.C. Rinard. Coarse-grain parallel programming in Jade. In 
Proceedings of the 3rd ACM SIGPLAN Symposium on Principles and Prac- 
tice of Programming, 1991 

5. B. Nitzberg and C. Lo, Distributed Shared Memory: A survey of issues and 
algorithms. IEEE Computer, Aug. 1991 



. 

. 

. 

. 

1 0 .  

1 1 .  

146 

DCE Version 1.0 DCE Application Development Guide. Open Software 
Foundation, June 1992 

V. Sarkar. Automatic partitioning of a program dependence graph into paral- 
lel tasks. In IBM Journal of Research and Development, pages 779-804, Nov. 
1991 

V. Sarkar and J. Hennessy. Partitioning parallel programs for macro-dataflow. 
IN ACM Conference on Lisp and Functional Programming, pages 201-211, 
Aug. 1986 

J. Shirley. Guide to Writing DCE Applications. O'ReiUy and Associates, Inc., 
June 1992 

M. Stumm and S. Zhou. Algorithms implementing distributed shared mem- 
ory. IEEE COmputer, May 1990 

M. Weiser. Program slicing. IEEE Trans. on Software Engineering, July 1984 



Managing the Transition to OSF DCE Security 
Sanjay Tikku 

Stephen Vinter 
Siemens Nixdorf Information Systems 

Burlington, MA 01803 
fikk-u@sni-usa.com, vinter@sni-usa.com 

Stephen Berlrand 
Ibis Communications Inc. 

Lynnfield, MA 01940 
ibis@world.std.com 

Abstract. OSF DCE security and UNIX system security each support indepen- 
dent representations of user identities. We infer from OSF's implementation of 
DCE security that either the two security environments are to be kept separate, or 
that UNIX system security is to be strictly aligned with DCE Security. Neither so- 
lution is usually practical for established UNIX system installations that are only 
beginning to use DCE technology. This paper describes a set of tools that enables 
the compatible and secure coexistence of the two security environments. These 
tools are provided with SNI's DCE product for our System V Release 4 based 
SINIX operating system and UNIX Systems Laboratories' (USL) DCE product. 
They are intended to be used as transition aids until migration to DCE is complete. 
They introduce no compromises to either security system, and they accommodate 
familiar and well-established UNIX system security administration practices and 
policies. 

1 T h e  Secur i ty  A d m i n i s t r a t i o n  P r o b l e m  
DCE introduces a new security administration model which involves the centralized 
management of users and groups that have consistent, global meanings throughout 
the cell [1, 2, 3]. This administration model is unlike many typical UNIX system 
security administration models, which involve per-host administration and, perhaps 
also, the host-specific identities of users and groups [5, 6]. 

These different administrative models follow directly from the differences between the 
DCE security environment, with its replicated but logically centralized database of ac- 
count information (the DCE registry); and the UNIX system security environment, with 
its multiple and dispersed/etc/passwd,/ete/shadow and/etc/group files on the UNIX 
hosts (referred to as UNIX security files in this paper). (Note: the registry represents users 
and groups as UUIDs (Universal Unique Identifiers), but also maintains a mapping of 
UUIDs to UNIX UIDs and GIDs for UNIX compatibility.) 

There are difficulties in adopting DCE security administration when DCE is introduced to 
sites where the UNIX security files on each host are not globally administered. In this 
case, users and groups may be defined inconsistently across hosts, and administrators will 
be concemed about the security ramifications of a global administration model, 
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The OSF does not define the administrative practices and policies for DCE integration 
with established UNIX security administration. However, the implementation of DCE se- 
curity suggests two ways to handle the disparities between the two security environments: 

�9 Maintain completely separate DCE and UNIX system securhy environments. The 
dce_login command establishes separate DCE privileges for each user who has al- 
ready acquired UNIX system privileges via/bin/login (Figure 1). 

�9 Thoroughly integrate the two security environments. The tools passwd_import 
and passwd export unify and synchronize local UNIX security files on all hosts 
with the registry; this approach permits use of a single, integrated login mecha- 
nism (Figure 2). 

Each of these choices, however, presents its own administrative challenges (if not prob- 
lems) to the administrator, and sometimes to the user as well. 

1.1 Maintaining Separate DCE and UNIX System Security Environments 
The problems inherent in maintaining separate DCE and UNIX security environments 
affect both users and administrators. The notion of a user with multiple identities is 
completely contrary to the intent of DCE security, but perhaps more important, hav- 
ing multiple c o n c u r r e n t  identities could be very confusing to the users themselves, 
even though they may be at ease with having different variations of their identities at 
different hosts. Furthermore, this scheme introduces new opportunities for unintended 
violations of security policy: users might inadvertently commit such violations when 
they are unaware of which set of local credentials, from DCE registry or from UNIX 
security files, is in effect at any given time. 

I /etc/passwd Registry 

User login 

User UID User UUID 
UNIX 

Privileges 
Group UIDs Group UUIDs 

Enables access to Enables access to 
SINIX entities DCE entities 

Fig. 1. Separate Logins for DCE and UNIX 

DCE 
Credentials 
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The administrator's burden is also increased, since every DCE user represents an addi- 
tional user to manage. Last, this approach makes DCE appear to be a poorly integrated 
add-on, which will delay its acceptance. 

Because of the serious problems associated with this approach, we could not recommend 
this strategy for accommodaling DCE users in a UNIX system environment. 

1.2 Synchronizing DCE and UNIX System Accounts 
Ideally, all UNIX system users at a DCE site would be DCE users (unified security 
administration under DCE is, in fact, our ultimate goal). However, this means that, as 
administrators import UNIX system account and group information from individual 
hosts to the registry (using the OSF DCE tool, passwd_import) ,  they must resolve all 
inconsistencies related to the identities of UNIX system users and groups across all 
hosts. 

User login 

UNIX 
Privileges 

] Registry ] 

User UID 

Group UIDs 

User UUID 

Group UUIDs 
DCE 

Credentials 

Enables access to Enables access to 
SINIX entities DCE entities 

Fig. 2. Integrated DCE login from OSF 

The types of inconsistencies that they must resolve are as follows: 

�9 The system accounts (such as bin and sys) on a host may have different UIDs than 
those in the registry (this is bound to happen in a cell consisting of hosts running 
different variants of UNIX). 

�9 A user is identified by the same name, but different UIDs, at different hosts. 

�9 Two user accounts at different hosts have different user names (and may represent 
different users), but have the same UID. 

�9 A group is identified by the same name, but different GIDs at different hosts. 

�9 Two groups at different hosts have different names, but are associated with the 
same GID. 
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�9 A group is identified by the same name and GID at different hosts, but the two in- 
stances of the group define different sets of members. 

Table 1 illustrates examples of these conflicts. 

Table 1. Potential Conflicts 

Users Registry /etc/passwd (host A) 
name conflict jones::10 jones::15 
UID conflict thomas:: 10 smith::10 

Groups Registry /etc/group (host A) 
name conflict dev:: 10 dev::20 
GID conflict test::10 QA:: 10 
membership conflict dev::10:admin dev:: 10:admin, sys 

Unresolved UID or GID conflicts can cause serious security violations if not properly re- 
solved. For example, unresolved UID conflicts can result in DCE users logging into local 
UNIX hosts and assuming the identities of local users. Table 1 shows an entry for the 
UNIX user thomas (UID 10) and another for the DCE user smith (also UID 10). When th- 
omas logs into the cell from host A, for example, he obtains the privileges of smith on 
that host. 

Resolving these inconsistencies involves reassigning UNIX UIDs and GIDs for those ac- 
counts that conflict, and changing the permissions of all affected files accordingly. 
There must also be a method for handling backed up files, as these can reintroduce identity 
conflicts when the files are restored. 

Since all DCE users and groups must be established at a single global registry, this ap- 
proach requires all conflicts to be resolved at the time the host is added to the cell. How- 
ever, it is not always practical to force synchron~ation of the account data, partly because 
it may delay acceptance of DCE, and partly because of administrators' commitment to ex- 
isting tools and procedures. 

2 Goals for the Transition 

It became apparent that achieving our ultimate goal of global security administration 
via DCE would take time. We realized that the problem of adopting DCE security was 
chiefly one of managing the transition necessary to achieve it 

Our approach was to create transition aids to be used temporarily until DCE is widely ac- 
cepted by our UNIX system users. We sought to avoid institutionalizing DCE and UNIX 
system security coexistence, because we do not believe coexistence is a correct long-term 
solution. We felt that this was best achieved by supporting non-DCE users (referred to as 
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local users  in this paper) on a DCE host. The goals we defined for our UNIX-to-DCE se- 
ctwity transition model are as follows: 

1. To disrupt as little as possible the administration and established practices of exist- 
ing local users 

2. To introduce no compromises to UNIX system or DCE security 

3. To cause no performance degradation for local users 

4. To accommodate UNIX administration tools, especially since they are often cus- 
tomized for site-specific needs 

5. To maintain interoperability with other implementations of OSF DCE 

6. To augment, rather than replace, the standard OSF DCE security tools 

3 The Transition Approaches Considered 
we first investigated whether our goals could be achieved within the framework of 
the tools supplied by OSE 

With the OSF DCE integrated login, when a host is to become a member of a cell, then all 
users of the host are considered DCE users. It does not offer the capability to support local 
users on a DCE host, so we disqualified it from further consideration. 

We then investigated ways to support local users using the passwd_override file and the 
passwd_import and passwdexport  tools. 

3.1 passwd_override File for Local Users 
We considered using the OSF DCE passwd_override file to list local users. This 
restricts a DCE user to a host-specific identity by overriding the user's network iden- 
tity at the host on which passwd_override resides. 

We first thought that the issue of local and DCE users could be solved simply by creating 
accounts for all users in the registry and then creating pa~wd_override file entries for lo- 
cal users. However, using the passwd_override file mechanism would create a new set of 
problems: 

�9 Specifying local users in passwd_override file would call for mechanisms that 
would enable existing UNIX tools to reference the file (for example, the program 
Is reads/etc/passwd; in this scheme, it would have to reference passwd_override 
instead) (compromises Goal 4). 

�9 The passwd_override file does not allow group overrides (compromises Goal 2) 

�9 We would need to provide a mechanism by which system administrators could add 
or remove local users using their existing UNIX tools and without DCE expertise. 
Cloning passwd_override files from the/etc/passwd files would have accom- 
plished this, but then local users would be listed in two places, necessitating the 
synchronization of these files (compromises Goal 4). 
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�9 The password for the local user is stored in the passwdover r ide  file itself (fol- 
lowing UNIX conventions). In SINIX, however, the user password is stored in the 
/etc/shadow file (which is a preferable scheme). There was no clean solution to 
this problem (compromises Goal 2). 

�9 With the p a s s w d o v e r r i d e  mechanism, the local user actually logs through the 
registry which is a slower process than the standard SINIX login (compromises 
Goal 3). 

For all of these reasons we abandoned the idea of using passwd_override files for defin- 
ing local users on DCE hosts. 

3.2 Resolving User and Group ID Conflicts 
Another problem that we had to solve was how to import users into the registry from 
different hosts and resolve potential user (and group) name and ID conflicts. In exist- 
ing configurations at customer sites we found that although UNIX hosts were net- 
worked, in some cases each had its own set of UNIX security files. Accounts 
representing a single user or group had different names and IDs at different hosts. If 
all of these systems were to be incorporated into a DCE cell, all the name and ID con- 
flicts would have to be resolved. Our original plan was to require that when DCE is 
installed in a network then all UID conflicts be resolved at the time hosts are incorpo- 
rated into the cell. Resolving all conflicts meant that at the time of importing a host 
into a cell: 

�9 Any users being imported would need to be assigned new names or UIDs if they 
conflicted with existing names or UIDs in the registry. 

�9 Any groups being imported would need new names or GIDs if they conflicted with 
existing names or GIDs in the registry. 

�9 The ownership on all files on that host, that were owned by the user or group 
whose ID was changed, needed to be updated. 

The requirement to resolve all conflicts at the start was not acceptable to our customers 
and compromised Goal 1. 

We then considered allowing the mapping of DCE users to different UIDs and GIDs on 
different hosts. This would have enabled us to incorporate hosts in a cell that have con- 
flicts in the UNIX security files. This idea was derived from the USL's Remote File Sys- 
tem (RFS) approach [7]. 

Using this approach, the cell administrator would enter local UIDs and GIDs that conflict 
with registry entries into a local (per host) mapping table. Every host in the cell would op- 
tionally have a table of mapping from UUIDs to UIDs and GIDs. 

Properly maintaining the mapping table would involve modifying UNIX tools that manip- 
ulate UNIX security files, compromising Goal 4. We also believed that this approach 
would institutionalize the mapping table, which is conWary to our intention to create tran- 
sition aids. 
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4 The Transition Approach Adopted 
We finally decided to implement a set of tools that enable administrators to manage 
UNIX system user account and group inconsistencies in the DCE security environ- 
ment, and so allow the local and DCE security environments to coexist despite incon- 
sistencies that cannot be immediately resolved [8, 9]. The tools we implemented for 
SNI's DCE product: 

�9 Accommodate (rather than prohibit) inconsistencies between local UNIX system 
and registry accounts 

�9 Increase the system administrator's ability to limit the privileges of DCE users on 
the UNIX system hosts for accounts that conflict 

�9 Enable user participation in DCE to be determined by whether or not the UNIX 
user wishes to become a DCE user, rather than by whether or not the user's host is 
configured as a member of a DCE cell 

We identified three development efforts that were necessary to achieve our goals: 

1. Developing a mechanism to distinguish between local and DCE users, and 
between local groups and DCE groups. 

2. Developing an integrated login that would recognize the distinctions 

3. Extending the OSF DCE account import and export mechanisms (passwd_import 
and passwd_export). 

The next three sub-sections elaborate on these mechanisms. 

4.1 Local Users and Protected Groups 
To distinguish local users from DCE users, entries corresponding to DCE users in the 
local password file are annotated as such. Unannotated entries in the password file 
correspond to local users. When new user entries are exported from the registry, they 
are automatically annotated as DCE users (refer to description of rgy_export_accts). 

We used DCE as a marker string in the password field of/etc/passwd file. We felt this was 
a valid approach because the password field contains only special marker tags (in SINIX 
and other System V implementations the tag x indicates that the password is in the/etc/ 
shadow file). Adding a new tag for that field does not disturb any existing UNIX system 
feature known to us. 

We used a similar mechanism to handle groups. Entries in/etc/group files may be anno- 
tated as PROTECTED from DCE users. This means that when the registry provides 
a DCE user with privileges that include membership in a protected group, then the host at 
which the group is protected denies that privilege to the DCE user. Only if the DCE user is 
explicitly listed as a member of that group in the/etc/group file at the host is the privilege 
of group membership recognized at that host. The PROTECTED annotation appears in 
the password field of the/etc/group file. 

In the case of an unprotected group in/etc/group, the host grants the privilege of mem- 
bership in that group to DCE users even if they are not explicitly listed as members in/etc/ 
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group. During export we also append all groups from the registry to the/etcJgroup file 
(without membership lists so as to avoid any impact on local security) so the group per- 
missions for files created by a user in a DCE-only group are displayed properly. 

4.2 The SINIX DCE Login Facility 
To interpret these annotated UNIX system accounts, we implemented a special ver- 
sion of Iogin (to replace the standard UNIX login) that recognizes the distinctions 
between local and DCE users, and between protected and unprotected groups. In 
doing so, it enforces the security policy that favors local users and groups when con- 
flicts occur. 

Login Behavior 
When a user logs into a host, and the user's name corresponds to an unannotated 
(local user) entry in the UNIX password file, then that user does not obtain DCE cre- 
dentials, even if an account with the same user name exists in the registry. This 
behavior favors local users when user name conflicts occur (preventing denial of ser- 
vice to local users). 

When a DCE user attempts to log into an account with a UID that conflicts with the UID 
of a local user, the DCE login is denied on that host. This behavior guarantees that the 
DCE user will not obtain privileges that are associated with a local user. 

Table 2 shows some these conflicts and the policies adopted to deal with them. 

Table 2. Login Policy for Resolving Conflicts 

Users Registry 
name conflict jones:: 10 
UID conflict jones:: 10 
Groups 
name conflict dev:: 10 
GID conflict dev:: 10 
membership conflict dev:: 10:admin 

/etc/passwd 
jones:: 15 
smith:: 10 

Policy 
login for local jones only 
DCE jones denied login 

dev::20 none necessary 

qa:: 10 protected-group policy* 
dev:: 10:admin:d protected-group policy* 

* If the group is protected, grant the privilege of group membership to the DCE user 
only if the user is listed as a member of that group in/etc/group; if the group is un- 
protected, grant the privilege of membership to the DCE user if the DCE credentials 
specify membership in the group. 

As Table 2 shows, this login also handles protected groups. Suppose the DCE user smith 
is listed as a member of the group admin in the registry. At host A, this group is protected 
and smith is not a member; at host B, this group is protected and smith is a member; at 
host C this group is unprotected: 

�9 When smith logs in at host A, he does not obtain the admin privilege. 
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�9 When smith logs in at host B, he obtains the admin privilege. 

�9 When smith logs in at host C, he obtains the admin privilege. 

As we noted previously, UNIX security files are automatically synchronized with the reg- 
isa'y. Through the use of our version of login, system adminisU'ators are guaranteed that 
modifications to the registry (likely to be outside of their control) will not change the priv- 
ileges of local users nor the locally effective membership of protected groups. 

Login Implementation 
The integrated SINIX DCE login has been implemented by applying DCE changes to 
the UNIX system login implementation. Our integrated DCE login implementation 
first looks up the user name in the/etc/passwd file to determine whether the user is a 
local user or a DCE user (local users appear before DCE users in the file). 

For a local user, the code path taken is the same as the standard SINIX login imple- 
mentation. This preserves the SINIX login "feel" and performance characteristic. 

For a DCE user, the login logic is described next (all sec_ function calls are from the DCE 
security API [3, 4]): 

1 Invoke sec_login_setup_identity to setup a DCE identity. 

2 Prompt user for DCE password and validate that password by calling sec_iogin_- 
valid_and_cert_identity. If password validation fails then call sec_login_purge_- 
context to destroy the login context that was just created and restart the login 
process; else if password validation succeeds then proceed with login. 

3 Call see_login_get_pwent to get the password entry for the DCE user from the 
registry. 

4 Call getpwnid [10] to get (from the UNIX security files) the password entry corre- 
sponding to the UID for the DCE user 

5 If the UID of the DCE user conflicts with that of a local user then deny login to the 
DCE user; else call setuid to set the UID of the process. At this point, the login is 
committed. 

6 Call sec_login set context to create network credentials for the login context. 

7 If the primary group of the DCE user is protected and the DCE user is not listed as 
a member of that group, then set the principal group of the user to none. Call set- 
gid to set the GID of the process. 

8 Call ser to get all groups to which the DCE user belongs. 

9 For each group, test whether the group is protected (in the/etc/group file) and 
whether the user is a member. If the group is protected AND the user is not a 
member, remove that group from the membership set. 

10 Call setgroups to set the locally effective supplementary group set of the process. 

11 If the DCE user needs to set a new password then invoke chpass [10]. 

12 Add KRB5CCNAME environment variable to the startup environment of the user. 

13 exec the login shell for the user. 
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The initial lookup of the UNIX security files and steps 4, 5, 7 and 9 distinguish the SINIX 
DCE login from the one supplied by OSF. 

4.3 Account Import/Export Extensions 
A key property of the existing OSF approach is that DCE accounts from the registry 
are automatically propagated to the local/etc/passwd files periodically, using the 
passwd_export command. DCE and UNIX system administrators need not partici- 
pate in, or review the results of, this updating process. 

Therefore, the critical problem to solve was how to guarantee to system administrators 
that the account export feature would not make changes without regard for local security 
policies. We did this by creating two tools, r g y i m p o r t a c c t s  and rgy_export_accts (de- 
scribed in section 5), which are wrappers for passwdimpor t  and passwd_export, re- 
spectively 

5 T h e  Transit ion Tools 
We designed several tools that aid the transition to DCE security for our customers. 
Our overall goal is to make the transition easy, and to that end we have developed 
tools that automate, to the extent possible, the associated tasks. Because they are either 
local in effect or wrappers for standard DCE security tools, none of our tools affect DCE 
in terms of behavior or interoperability. 

Our Iransition tools are fully compatible with the tools provided with OSF DCE and 
in addition provide: 

�9 A greater level of automation 

�9 A friendlier user interface 

�9 Clearer output 

As with any implementation of DCE, cell administrators must first decide 

�9 Which hosts are to be members of the cell 

�9 The configuration of DCE services in the cell 

The cell administrator and the system administrator then have to decide 

�9 Which users on these hosts are to have DCE accounts 

�9 Which groups on these hosts are to be protected 

�9 How to resolve various conflicts between user and group IDs 

5.1 Summary of the SINIX DCE Transition Tools 

This section summarizes the transition tools we developed [8]. 

rgy_mark_dce_user  annotates entries in the/etc/passwd file that are to be DCE 
users with the string DCE. This tool is typically run before the host is configured as a 
member of a DCE cell but it can be used at any time. 
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rgy_unmark dce user removes the DCE annotation from the entries in the/etc/passwd 
file that are to be DCE users. This tool is used: 

�9 When a user wants to revert to being a local user on the DCE host 

�9 To preserve local accounts for DCE users after DCE deinstallation. Normally, all 
DCE users are removed from the UNIX security files when DCE is deinstalled. 

rgy_mark_prot_group annotates entries in the/etc/group file that the system adminis- 
trator wants to protect. This tool can be run at any time and all groups marked protected 
will be excluded from the local group set of a DCE user. 

r gy_d i f f_aec t s  reports  on the differences between local and regis t ry account  
information that, unless the differences are resolved, will result in conflicts when the host 
is added to the cell.This tool is typically run before user accounts from UNIX security files 
are imported into the registry. It gives the system and cell administrators a chance to plan 
how to resolve the conflicts when the accounts are actually imported. 

rgy_import..aeets is a wrapper for the OSF DCE tool passwd_import. It enables the ad- 
ministrator to import local account information into the registry and resolve conflicts be- 
tween local and regis t ry  account  informat ion.  Unl ike  p a s s w d _ i m p o r t ,  this 
tool recognizes UNIX password file entries that are annotated as DCE users, and can se- 
lectively import only those users. Also, when users are being selectively imported, it im- 
ports only those groups that are needed by the users being imported into the registry. This 
tool retains all passwd_import options that are simply passed through. It is typically run, 
in lieu of passwd_import, to import user accounts into the registry. It can be run any num- 
ber of times to import users in groups. 

rgy_export_accts is a wrapper for the OSF DCE tool passwd_export. It updates the local 
UNIX security files with account information from the registry. It annotates the exported 
entries as DCE users, and appends the entries to the/etc/passwd file. This tool also anno- 
tates and appends group entries that were exported to the/ere/group file. This tool is typi- 
cally run in lieu of passwd_export to refresh the local UNIX security files, on a regular 
basis and manually as needed. 

rgy_init_aects is a wrapper for the OSF DCE tool rgy_edit. It establishes valid pass- 
words and enables the accounts for the imported DCE users in the registry. When user ac- 
counts are imported into the cell they are set up (by default DCE security policy) with ran- 
dom passwords and are marked as invalid. This tool enables the cell administrator to eas- 
ily turn on an account and also assign a valid starting password in a single step. The cell 
administrator can run this tool from any host in the cell, to turn on a DCE user account. 

dce_install_login installs the integrated SINIX DCE login on the system and saves the 
state of the UNIX security files. This is typically run just after installing DCE onto a host 
but it can be run any time. 

dce_deinstall_login removes the integrated SINIX DCE login program from the system 
and restores the original system login program. It also removes all DCE users and DCE 
groups from the UNIX security files. This is typically run just before removing DCE (if 
necessary) from a host. 
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6 A Sample Session 
Following is a sample session that illustrates the use of the transition tools [8]. It 
shows the steps involved in importing selected user accounts from a host to the regis- 
try. It assumes that DCE installation and configuration have already been done: 

1 The system administrator determines which of the local users are going to be DCE 
users and then runs rgy_lnark..dce_user. For example, 

rgy_mark_dce_user smith jones 

annotates two users in the UNIX password files, smith and jones, as DCE users. 

2 The system administrator next decides which of the groups in the UNIX security 
files should be protected from DCE users and runs rgy mark_prot_group.  For 
example, 

rgy_mark_prot_group wheel 

annotates the group wheel (in/etc/group) as protected from DCE users at the 
host. 

3 The system administrator next informs the cell administrator that the host is ready 
for integration with the cell. 

The cell administrator runs rgy diff_accts to review the differences between 
account information at the host and account information in the registry that would 
result in conflicts. For example, 

rgy_diff_acct a -i 

would prompt the cell administrator as follows: 

[i] Pick up only users marked DCE 

[2] Pick up only local users 

[3] Pick up all users 

(default: 3) [1-3, ?] 

The cell administrator is expected to pick option 1 (since he is planning to import 
annotated accounts only) and that would report on conflicts related to users 
marked as DCE users and their groups. 

Using the information gained in the previous step, the system and cell 
administrators should now plan how the conflicts are to be resolved when the 
accounts are actually imported into the registry. 

4 The cell administrator next runs rgy_import_accts to import these accounts in to 
the registry. The command 

rgy_impo rt_acct s -m 
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imports all user entries that arc marked (-m) as DCE users. It also imports only 
those groups to which these users belong. At this time the cell administrator 
resolves the conflicts between local and registry account data. 

When this step is completed, new DCE accounts have been established in the reg- 
istry for all annotated user entries. 

5 The cell administrator then runs rgy_export_accts  to propagate registry account 
data to the local host. For example, the command 

rgy_export_acct s 

exports registry accounts. Now the UNIX security files have been updated with 
data from the registry. As they are exported, registry entries are appended to the 
UNIX security files and annotated as DCE entries. 

6 The system administrator then runs dee_ins ta l / Iogin  program to install the inte- 
grated SINIX DCE login onto the host. 

7 The process of installing DCE on the host is now complete and all DCE accounts 
are set up. However, none of the newly added DCE accounts can be used until the 
cell administrator explicitly turns them on. 

To turn on the account for one of the imported DCE users the cell administrator 
runs rgy. init acets to establish valid passwords for the imported user account 
and to mark the account and password as valid for login. For example, the com- 
mand dialog 

rgy_init_acct s 

Principal Name: jones 

Principal's Password: jones" password 

Cell Administrator Password: cell admin's password 

establishes the password for the user jones and activates the account. This user can 
now log into the cell as a DCE user from this host. 

Steps 1 through 6 are repeated on every host that is a member of the cell. Step 7 is exe- 
cuted for each DCE user that has been imported into the registry. It would be relatively 
straightforward to extend this mechanism to turn on a group of accounts using the same 
default password for each account or a customized password for each account. 

The cell administrator would use rgy_export__accts regularly to keep the local user and 
group information synchronized with the DCE registry database. Like passwd_export, 
rgy_export_accts is intended to be run automatically on a regular basis (For example, as 
a cron job every night). 
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7 Experiences  and Future Enhancements  
At the time of this writing, we have released the SINIX DCE product to pilot custom- 
ers. Among the suggestions these customers have made, two are notable: 

�9 Enhance rgy_diff_accts utility to enable it to report on conflicts across multiple 
hosts; this would enable the administrator to gain a more global perspective on ac- 
counts in a cell to facilitate planning. The current implementation only lists con- 
flicts between account entries in the registry and those being imported from one 
host. 

�9 Enhance dce_deinstall_login so that it would restore the UNIX security files to 
their former state without any explicit action by the system administrator. The cur- 
rent tool requires the system administrator to run rgy_unmark dce user for all 
those accounts that need to be retained when DCE is removed from the host. 

While we plan to incorporate these enhancements in our tools, we do not intend to 
continue upgrading and maintaining these tools beyond the time it takes for our cus- 
tomers to become full-fledged DCE users. 

8 Conclusion 
We refer to the tools we have described as transition aids because they will become 
unnecessary when the registry is uniformly used for UNIX security administration. 
Until that time, we have attempted to provide DCE cell administrators with all the 
advantages of the DCE without: 

�9 Forcing administrators to make major changes to their existing system to resolve 
conflicts, or 

�9 Compromising the security policies implemented on local hosts. 

We believe our transition aids will speed up the acceptance of the DCE without funda- 
mentally changing its basic approach to security administration. 
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Abstract. Megascope is the Pilgrim utility for monitoring, reporting, managing, and 
presenting status information about the resources of computer systems and environ- 
ment services in large, heterogeneous distributed cnvironrnents. 

Mcgascope is an autonomous distributed application, built on top of the OSF DCE. 2 
It extends the basic functionality of the DCE by adding a service to it that provides 
the cell resource information to other applications. Most notably, Megascope provides 
data input necessary for successful distributed system management. 

This paper discusses the functionality of Megascope and its major design characteris- 

tics. 

1 Goals of Resource Monitoring in DCE Cells  

The Megascope endeavor at Project Pilgrim [9] is engaged in the analysis of the specific 
problems associated with the resource monitoring in large, heterogeneous, DCE-based 
environments. This work is aimed at building a prototype of a resource status monitoring 
service that collects, reports, manages, and presents the status data about various environ- 
ment resources. 

By its structure and functions of an autonomous subsystem, Megascope follows the 
ovtxall current Pilgrim strategy of building comprehensive, coherent, self-regulating en- 
vironments for large-scale heterogeneous distributed computing. Central to this strategy 
are the DCE [7] primitives for remote procedure call, timing, naming, file system, and 
security. Pilgrim constructs distributed applications [10] on top of these DCE primitives, 
the most visible of which are user-oriented utilities that support various generic processing 
tasks, such as printing, mailing, user information, conferences. To secure the integrity, 
coherence, and stability of the environment, Pilgrim supports its user-oriented utilities by 
another group of distributed applications. These are the system-oriented services that are 
perceived by the user-oriented applications as an effective extension of the basic DCE 
support. The system-oriented facilities of Pilgrim include asynchronous event notification, 
generic and dynamic server instantiation, specialized editors of the cell namespace, and 
Megascope. 

1Project Pilgrim is supported in part by Digital Equipment Corporation, Hewlett-Packard Company, and 
University of Massachusetts. 

2OSF is a trademark of the Open Software Foundation. 
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Due to their dynamic nature, distributed environments, including DCE-based environ- 
ments such as Pilgrim, require regulation. To support regulation, these environments must 
be able to sense their status, make decisions on the basis of their status information, and 
apply the necessary control actions. Megascope is designed to perform this status-sensing 
task. In the regulation of distributed computing environments, the essential challenge is to 
achieve and verify the efficient use of environment resources. Megascope is a part of the 
Pilgrim response to this challenge, since it provides the resource status information, which 
is a necessary input for successful resource management. 

This paper reports on our approach to resource monitoring and on the design of 
Megascope. 

Resource monitoring and cell management. DCE environments and, in particular, the 
Pilgrim environment can meet the expectations of their (prospective) users only if a cell in 
such an environment is capable of presenting to its users a credible illusion of functioning 
as an integrated unit that accepts and fulfills the tasks assigned to it. In the user communities 
whose (current) alternative to DCE are centralized mainframe-based computing systems, 
the assumption of efficient and handy central management is taken for granted and built 
into the administrative and technical definition of such facilities. In those user communities 
whose highly decentralized and poorly coordinated information processing now demands 
higher integration, the unifying functions of the DCE are often seen as the only technically 
and economically feasible way to a meaningful consolidation of the available resources. 
Therefore, the purpose of the cell management is to enable a cell to behave as an integrated 
system, to maximize the efficiency of the cell operation, and to obtain the evidence of cell 
efficiency. Opposing this goal are several intrinsic properties of the DCE. 

At the level of the basic DCE components, a DCE cell appears to be a "fiat" struc- 
ture consisting of a number of autonomous computing systems. The management of these 
individual systems is, traditionally, well understood and typically satisfactory. However, 
the overwhelming number of such systems (perhaps thousands of systems) expected to 
operate simultaneously in a cell precludes the human involvement on the level required 
for efficient management of individual facilities by the traditional procedures. The ex- 
pected heterogeneity of DCE cells, where different systems mandate essentially different 
management procedures, only adds a new quality to the already prohibitive volume of 
the management tasks. The major goal of advanced cell management is to bridge this gap 
between the resource management of individual systems and the management goals of 
the cell as a unit. The role of resource monitoring services, in particular of Megascope, 
is to provide a unified view of the cell state information, which can be used as input to 
automated cell administration procedures (e.g., decision support, task scheduling, capacity 
planning.) 

The role of resource monitoring services goes beyond extending the perception of 
human managers to cope with the number and specifics of individual providers of classic 
resources, namely computation time and memory. The adequacy of such low-level re- 
source representations is now challenged by the synergy of distributed environments and 
sophistication of the expected processing tasks. The diversity of applications handled by 
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a single cell, combined with the "maturity" and specifics of abstractions engaged by such 
applications, calls for a more elaborate interface between the service providers and con- 
sumers than that of traditional system management. Software and hardware compatibility, 
potential parallelism, communication cost and properties, geography and administrative 
structure, security, etc., are some of the issues arising between a cell and its users that 
are neither explicit in classic computing environments nor easily represented in terms of 
processor cycles, storage space, I/O bandwidth, or similar standard parameters based on the 
traditional resource models. Formulating an adequate resource description is a prerequisite 
for the development of successful resource monitoring services and an important goal of 
our Megascope project. 

The sophisticated applications of the present and the future are likely to be presented to 
DCE cells by a broad user community consisting of individuals of diverse background and 
often non-expert abilities. Such users may have prerogatives sufficient for engaging sub- 
stantial environment resources and may even command information sufficient for efficient 
scheduling of their tasks, while lacking the technical competence required for effecting 
the necessary management. The success of a cell management support, including its re- 
source monitoring component, may turn out to depend essentially on achieving successful 
interaction with this class of users. The Pilgrim environment concept and, in particular, 
Megascope are conscious of this goal. 

Understanding and defining the resource status in distributed environments. One 
of the goals of the Megascope project is to define and analyze a set of parameters that 
collectively represent the state of a DCE cell or the state of specific environments, includ- 
ing Pilgrim, that a cell supports. Thus defined, the cell status must be informative enough 
to serve as the input to the cell management services, while lending itself to technically 
feasible monitoring by Megascope. We believe that suitable cell-status descriptions will 
evolve together with the practice and the concepts of the DCE. Our analytical efforts aim 
at understanding the inherent characteristics of the DCE that must be captured by such 
status descriptions. Our design and implementation efforts aim at providing an operational, 
flexible, and extensible status monitoring service that satisfies the requirements of its dis- 
tributed environment, and affords us a convenient platform for testing alternative concepts 
and experimenting with various types of instrumentation. 

The cell resource status includes the status of the individual systems in the cell, so the 
innermost part of the status information managed by Megascope consists of the standard 
resource parameters of operating systems and computer hardware, e.g., processing time, 
memory space in various memory hierarchies, I/O capabilities, devices, etc. (cf. [15]). 

The next layer of the monitored resources are the basic DCE components (name service, 
security service, file system, etc.). The exact set of monitored variables that covers the 
functionality of the basic DCE components is a research topic within the DCE community. 
The DCE SIG Instrumentation Work Group [8] considers general queuing theory metrics, 
applied to the cell as a system. It proposes a set of specific variables whose values should be 
observed in the course of the cell operation (e.g., counts of remotely executed calls, elapsed 
time per call, counts of requests per server, counts of directory accesses, counts of supported 
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connections, etc.). Megascope design allows easy accommodation and modification of 
various data items in the status it monitors, so as to adjust easily to the imminent refinements 
of applicable metrics and, more importantly, to serve as a tool in the assessment of the 
quality of such metrics. 

DCE environments may (as the Pilgrim environment does) provide their own services 
and utilities that act as extensions of the basic DCE functionality. The normal operation 
of such dedicated applications is in itself a resource, so the status of these applications 
is subject to reporting by Megascope. A detailed content of this status information also 
awaits further refinements. Typically, this information includes available capacity of various 
servers. 

The Pilgrim environment offers an example of a novel level of management that 
accompanies the exploitation of the DCE capabilities and power. Precisely, the Pilgrim 
environment is able to instantiate servers dynamically [ 10], in response to run-time requests 
for services. In this complex situation, it is not only the capacity and behavior of cell servers, 
but the very existence, number, disposition, and properties of servers that are subject to 
continuous change, explicit management, and, consequently, monitoring. 

Megascope, as a resource monitoring service, differs from its current alternatives in 
that Megascope is designed to be a monitor of distributed environments, while the alterna- 
tives are designed as monitors ofinterconnection networks for such environments. Intemet 
Advisory Board has proposed [3] such a network management standard, the Simple Net- 
work Management Protocol (SNMP) [2, 16, 11], while the International Organization for 
Standardization (ISO) has recommended the Common Management Information Services 
/ Common Management Information Protocol (CMIS/CMIP) [17, 4, 5, 13]. The two stan- 
dards are now dominant among the non-proprietary network management protocols; both 
are well suited for network monitoring, and have been subsequently adapted to include 
monitoring of systems connected into the network. (See e.g., [1] for an illustration of 
such evolution.) However, the information and communication structure of these protocols 
remains oriented toward network entities rather than toward higher-level DCE-based ab- 
stractions of advanced distributed-computing environments. Through its own information 
and communication structure, Megascope attempts to report the behavior of DCE cells in 
more natural terms. Sophisticated monitored entities that do not map trivially onto physical 
systems, processing tasks that must be expressed with a high degree of independence from 
the physical systems, performance metrics and management actions that are defined only 
with respect to the cell as an integrated system, etc., have all prompted our design of 
Megascope. This design is presented in the following section. 

2 Megascope Design 

Megascope recognizes a dynamically modifiable set of systems that it monitors. Members 
of this set are computer systems as well as the utilities and services of the distributed 
computing environment. Monitored systems are characterized by various resources, whose 
status is followed by Megascope. 

Megascope consists of four major components: sensors, panel, observers, and links. 
(See Figure 1.) 
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Figure 1: The Major Components of Megascope. 

Sensors are components that are conceptually in one-to-one correspondence with mon- 
itored systems. Sensors continuously run, collect findings about the resources of their 
monitored systems, recognize those findings that qualify for reporting, and send the re- 
ported findings to interested recipients within Megascope and outside it. 

Megascope panel is an on-line, in-memory database that defines and manages the 
instantaneous description and most recent history of the resource profile of the entire cell. 
The panel information content is continuously updated by sensor data and queried by 
Megascope users. Panels must receive and temporarily store sensor data, interpret sensor 
data to form system status information, request sensor actions in order to maintain its 
information content, and respond to remote queries that retrieve panel information. 

Observers are consumers of the resource status information. Each observer corresponds 
to a user, i.e., a person or a program inquiring about the cell status. Observers interface 
users with Megascope panels; form, partially evaluate, and send user queries to panels; 
receive panel responses to the user queries; and present query results to users. 

Links transmit data between sensors, panels, and observers, and encapsulate those 
transmission issues that depend on network protocols and on details of the RPC support. 

The remainder of this section discusses individual Megascope components, after 
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dwelling on those parts of the information structure of Megascope that are essential for the 
coordinated operation of these components. 

Megascope data organization. Megascope data organization derives from the panel 
database (cf. Section 2.2.) The panel defines the data it manages and the data that circulates 
through the Megascope system. (A more detailed description of the panel database in 
terms of the relational data model is given in [10].) The panel data definition has some 
Megascope-specific characteristics, such as the following: 

The Megascope data definition associates every collected value with a unique data item 
name, and it assigns to each item name a unique Megascope data type. The type description 
relation is unique within Megascope; it associates with each type a set offunetions that can 
be legally applied to it. Most importantly, this description points to the function that decides 
equality between two values of the type and to the function that determines the reporting 
policy for items of the given type. The notion of equality is exploited by sensor schedulers 
(cf. Section 2.1) to detect changes in the values they collect. The reporting policy indicates 
whether the data item value should be reported periodically, asynchronously, etc.; it may 
include access control indicators that govern the visibility of the data item to individual 
recipients. 

To assist sensors in their detection of interesting changes in the behavior of the mon- 
itored variables, the Megascope data organization allows the type functions to have mod- 
ifiers, i.e., additional arguments that may alter the final result of a function application. 
These modifiers are associated with individual data values; the item description relations 
record such modifiers. The panel stores the default values of the modifiers, while sensors 
build a copy of their own item description relation for each recipient they serve. The 
purpose of this design may be illustrated by the following scenario. 

Assume a data item client-count belongs to the data type count, with which Megascope 
associates a suitable equality function. Given two counts, say x and y, a possible choice 
of an equality function may be one that decides that x = y if Ix - y[ _< zA, where A 
is a modifier. Thus the equality of any pair of counts is always determined by the same 
function, specified in the count type description; the outcome of the comparison, however, 
depends on the value of the modifier A, which characterizes the instance of the comparison. 
Consider a sensor that detects an absolute change in the client-count of a server in a DCE 
cell, while reporting simultaneously to two applications. The first application is a security 
service, while the second application is a service that automatically generates and terminates 
servers of a certain kind, in accordance with the number of clients that contend for that 
service. The latter application may wish to be informed of a change in the client-count only 
if it is detected when A _> 5, while the security service may require z~ = 0. To perform 
its task correctly for both recipients, the sensor applies the same equality function, defined 
by the panel database, to the same collected values, but allows its recipients to supply their 
modifiers. By the conceptual separation of the intrinsic proceduresthat govern the behavior 
of a data type from the interpretation of its values, Megascope keeps its data definition 
reasonable and manageable, and still sufficiently flexible. 

The sensor data values passed between various Megascope components are themselves 
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tuples whose relation schemes are defined by the panel. For each domain in such a relation 
scheme, the corresponding tuple contains a pair consisting of the name of the domain 
(item) and its value. Since the value representation is a part of the type description, these 
sensor data values are guaranteed to be interpreted identically throughout Megascope. The 
streamlined relational format of Megascope is expected to be compatible with the existing 
data management and presentation tools, thus enabling Megascope to exploit such tools for 
its conventional database functions. In particular, Megascope sensor data structure can be 
manipulated so that sensor data be made available in a manner compatible with the SNMP 
[11, 16] and CMIS/CMIP [13, 6] frameworks. 

2.1 Sensors 
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Figure 2: Megascope Sensor Structure. 

Sensors are autonomous and responsible for their own configuration, startup, and 
correct operation. Once assigned to a system, a sensor is expected to operate whenever its 
monitored system operates. The functions actually performed by a sensor depend on the 
services requested from the sensor by its environment. Its main function is to collect data 
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from its monitored system and to send the collected data to the recipients in the cell. The 
recipients of an individual sensor are those agents in the cell that have contacted the sensor 
with a request for receiving its data. 

The power of  sensors. Every sensor consists of one scheduler, one supervisor, and 
several probes. The scheduler, the supervisor, and the probes are each represented (con- 
ceptually) by a separate process or a thread. These processes communicate and cooperate, 
but are asynchronous to one another. The probes are responsible for gathering the resource 
findings and converting them into the internal Megascope representation. The scheduler is 
responsible for the sensor control and the actual data flow from the probes to the recipients, 
while the supervisor receives recipient requests. (See Figure 2.) 3 

The autonomous, sophisticated sensors are the vehicle that we expect will take Megas- 
cope to very large DCE cells of the future. Sensors report their findings and are polled 
only in exceptional circumstances. While alternative, poUing-hased monitoring schemes 
(SNMP and CMIS/CMIP) certainly give the inquirers the maximum flexibility as to the 
content and dynamics of their inquiries, this flexibility is paid by the inquirers' overhead, 
once for every monitored system, and once by every inquirer. As cells grow, this cost 
becomes prohibitive. Megascope approach attempts to distribute the responsibility for the 
collection task among a multitude of sensors rather than to concentrate it in individual 
recipients. In contrast to the SNMP approach, in which every polling request initiates a 
sampling on the part of the SNMP agent, Megascope design relies on the sensor-driven 
data gathering. In such approach each collected data value is time-stamped, kept for an 
appropriate time extent, and offered to multiple recipients. While both schemes have their 
advantages, the anticipated development of DCE-based environments gives preference to 
the approach adopted by Megascope. As the cell size grows, the number of recipients 
interested in a particular data item increases, while the cost of individual data sampling 
rises as the monitored systems become more sophisticated and their probes more complex. 
Spreading the collection cost over a group of recipients thus becomes more attractive. 

The comparative advantages of polling and reporting monitoring schemes are a current 
research topic in the distributed-computing community. (See e.g., [14] for a survey of 
the problem.) One of the major perceived deficiencies of the reporting schemes is in their 
impact on the performance of the monitored systems through the sensor operation overhead. 
The expected amount of work performed by Megascope sensors is negligible, therefore 
their resource usage is also negligible. All sensor components are idle most of the time. 
When they operate, they perform rather straightforward processing on a small number of 
data items that are to be collected by an individual computer system. Presently, hundreds 
or even thousands of such data items can be justifiably deemed a small processing task, 
and will be even more so in the future. 

Further potential disadvantage of reporting schemes is seen in the danger of over- 
whelming the inquirers by an uncontrolled concentration of unsolicited data. Our strategy 

3Within the figures in this document, the individual boxes correspond to processing agents or large data 
objects, while the arcs depict data paths. The line thickness indicates the volume of flow (e.g., collected data vs. 
control messages) and the line continuity indicates the frequency of transmission (e.g., continuous sending vs. 
exceptional messages). 
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is to avoid this danger by investing local resources available to sensors so as to reduce the 
communication and processing required from recipients and other components of Megas- 
cope. The challenge is to design these components so that autonomous sensor processing 
matches the needs of diverse recipients. The internal sensor functions and components, 
designed towards this goal, are discussed in the remainder of this subsection. 

Megascope probes. The repertoire ofresource data monitored by Megascope ranges from 
events and counts associated with physical devices to possibly sophisticated descriptions 
of the behavior of environment utilities. To obtain these data, sensors invoke the services 
of the systems they monitor. These services and their invocation mechanisms vary across 
the set of monitored systems and the set of monitored data. The Megascope response to 
this diversity in the monitored data is its variety of sensor probes. 

Each probe is a processing agent that obtains some subset of the monitored data. This 
subset contains findings that are related by their origin, so that they are best collected 
together. For example, a standard system call in an operating system that inquires into the 
status of a device usually returns exhaustive status data containing several related data 
items. Such a system call is typically utilized by one probe. Similarly, another probe may 
report several data items that together describe the transaction activity of a distributed 
database. Probes manage invocations of their underlying system services, select the data 
items of interest, and make these items available to sensor schedulers. 

Every probe is special for its specific gathering goals and mechanisms. To avoid a 
potential pitfall of profusion of various probes, each of them being an ad hoc solution 
to a particular monitoring problem, Megascope insists on keeping the probe functions 
restricted to immediate gathering of lindings and their conversion to the canonical data 
format. Once the data items are encoded in this universal format, their semantics becomes 
virtually transparent to sensor schedulers. 

Probe templates. Given the size and the diversity of the environment, it is inevitable 
and desirable that a multitude of designers and implementors come to be concerned with 
the probe repertoire, while having insight into only a small subset of mutually related 
probes. To ensure compatibility among the probes, Megascope insists on keeping the 
system-dependent probe components, probe pick-ups, as simple and isolated and possible. 
Megascope strategy is to build and administrate various probe templates, which are incom- 
plete probe modules that become probes by including pick-up components. Templates are 
responsible for probe control, interaction with the scheduler, and in general for those issues 
in the probe operation that are critical for maintaining the proper structure and functioning 
of Megascope system as a whole. 

Individual probe templates correspond to specific gathering situations and anticipate 
them. For example, one probe template may drive various pick-ups that are all associated 
with a particular operating system. The structure of this template is dominated by its 
association with a single computer system, by the mainly periodic invocation of its pick-ups, 
and by its relying on the standard application interface to its monitored system. In contrast to 
this template type, another template is required for monitoring the level of activity in video 
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conferences, travel reservation services, or banks. The pick-ups for all these applications 
may be driven by a single template type, which must enable distributed and asynchronous 
collection, and may require explicit cooperation of the monitored applications. 

Sensor control and communication structure is identical throughout Megascope and, 
for a given sensor, independent of its probes. The variety of probe templates is such that 
can be managed by Megascope administration, while specific pick-ups are free to fill the 
open-ended Megascope collection repertoire, on condition that they fit properly into their 
templates. 

Reporting changes only. Schedulers are designed so as to keep the tasks of collection 
and sending separated. While the collection dynamics is maintained by probes, the sending 
is organized by schedulers so as to satisfy the recipient preferences. The generic strategy 
of Megascope is to let the sensors send only those Jindings whose value is not equal to the 
last value actually reported. 

To implement their strategy, sensors remember the last value of every data item sent to 
every recipient. To test for equality, sensors compare the old and new values by invoking the 
Megascope-specific equality function associated with the given data type in the Megascope 
data definition. The modifiers to this function are supplied by each recipient, thus allowing 
for different interpretations of the same absolute findings by different recipients. 

Schedulers may deviate from their strategy of reporting changes only and decide 
to report data even when no significant change has occurred. Schedulers do so when 
the elapsed time since the last sending is long enough to mislead a recipient to deduce 
that the sensor is no longer operating. Since the sensor is the active party in a regular 
communication, the recipient cannot distinguish a missing sensor from one that does 
not have any interesting findings. This problem is believed to be inherent in reporting 
schemes, while those based on polling may reliably detect failures of monitored systems 
by registering the absence of a response to their request. In reality, the anticipated size of 
DCE cells precludes any inquirer from exhaustive polling; it also makes it difficult for a 
monitored system to service polls from all interested inquirers. The Megascope approach 
enables sensors to confirm their existence only as often as is necessary, while the recipients 
may have to poll only when there is a good evidence that the sensor is not operating. The 
implied uncertainty in this method of failure detection depends solely on the confirmation 
interval, which is a part of the sensor reporting policies that can be selected and tuned in 
accordance with recipient preferences. 

Sensor ability to avoid redundant transmission comes with a very modest cost in sensor 
information and control complexity. By exploiting a modest amount of those resources that 
are likely to be abundant in DCE cells: local memory for storing the recipient context and 
processing cycles for evaluating it, sensors enable their recipients to engage only in the 
reception of customized, relevant information. 

Sensor command interface. To establish connections with recipients, sensor supervisors 
support a simple Megascope-specific command interface that enables sensors to receive and 
service recipient requests. Sensor commands arrive asynchronously to sensor operation; 
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they are always initiated by sensor recipients. The first command that a recipient must 
issue to start receiving data from a sensor is a connect request to the sensor. The connect, 
disconnect, and modify requests are the core of the sensor command interface. 

As a result of a successful connect request, the sensor scheduler builds the context 
information that records the specific preferences of the individual recipient as to the content 
and intensity of data communication. The transmission of collected data is thereafter 
initiated by the sensor scheduler, not by its recipient. Once the recipient has delivered its 
connect request to the sensor supervisor, the recipient is free to be a passive parmer in 
the data communication, whose task is limited to the reception of the sensor data. Ideally, 
a sensor supports an arbitrary number of recipient connections, where each connection is 
unaware of the others, and serviced in a customized way. 

The simplicity found in polled sensors and in their interface to inquirers is often seen as 
an advantage of polling schemes over the reporting schemes. Indeed, Megascope sensors 
are more complex than, e,g., SNMP agents (cf. [2].) However, once Megascope sensors 
are configured and running in the environment, their dialog with recipients is neither 
substantially more complex nor does it demand more communication resources than the 
dialog between management stations and agents of SNMP. Sensor command repertoire 
is small, while the commands have simple, value-setting meaning within the recipient 
context. Sensor commands issued by recipients having sufficient privileges are always 
accepted and executed unconditionally. However, the semantics of our command interface 
differs essentially from that of SNMP in what may be termed an extra level of indirection. 
While SNMP commands are issued regularly to solicit the transmission of actual sensor 
data values, Megascope sensor commands operate relatively infrequently on the data 
definition of these values. The flow of actual sensor data in Megascope has an extremely 
simple form: it is unconditional and asynchronous, and since it is unidirectional (from 
schedulers to recipients), it consumes only about one half of the bandwidth that would be 
required by a polling scheme operating on identical data. 

Dynamically modifiable sensor policies. The recipient context kept by the sensor sched- 
uler associates with every requested data item the modifiers required for evaluating its 
equality function and its actual transmission frequency, as preferred by the individual re- 
cipient. To change these preferences, or to modify the reception repertoire, the recipient 
issues a modify command to the scheduler. The modify command associates the specified 
data items with new values of their description fields, thereby establishing new reception 
dynamics, which remains in effect until overridden by another command. Schedulers thus 
support a flexible interface to multiple mutually independent parties. This interface affords 
a recipient an efficient feedback path to its sensors, through which the recipient may tune 
its reception to suit its instantaneous needs. In a special case of the modify command, the 
recipient may demand immediate transmission of its monitored repertoire, thus emulating 
polling. 

Polling schemes are often preferred for their simplicity of sensor configuration. Such 
simplicity is, however, a result of the total absence of flexibility in sensor structure and 
operation, as all such sensors are equal and respond equally to all inquirers. Reporting 
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schemes tend to develop many distinct specialized sensors, whose management becomes 
burdensome because of their diversity. While Megascope sensors all have identical control 
structure, each sensor may be configured for a distinct collection repertoire, and may be 
reconfigured to respond to specific recipient preferences. Megascope sensors thus may be 
all effectively distinct, while being managed identically throughout Megascope. Partially 
responsible for this flexibility is the panel database. 

2.2 Panel 

[ � 9  

II~!nt 1 : 7  :?..:: �9 ....;.. �9 ..............~. 

I L  
1; I i I - ~ sensors [ �9 �9 �9 �9 �9 �9 

observers  
sensors  

BACK PANEL 

: volatile data 

k 
(-(r "k~--~aggregates  

q ,(C on x-- ~ functi 
"K._..._.~, , , , , , , v, , , ,,L,,,, :. ~-.-.K- - t 

[T/~::!::!::!::!::!i:::!ili!:S:!i!i!~,,~ history 

~ m o s t  recent ~ 

resident data requests 
ouncements 

~ a r c h i v e s  

Figure 3: Megascope Panel Structure. 

In the Pilgrim environment, the Megascope panel receives the data collected by all 
sensors. Panel stores the sensor information, maintains it for a limited period of time in its 
recent history space, and computes various aggregate functions on the sensor data. Panel 
responds to observer queries that retrieve the sensor information. 

The Megascope panel runs continuously on its host. We assume that in very large 
environments it may require a dedicated computer system. 

Panel database. The ultimate purpose of the panel database is to answer observer in- 
quiries about the resource status. We term this resource information volatile, to emphasize 
its ephemeral character within the panel, and to contrast it to the resident information, which 
is persistent but dynamically modifiable. The resident information consists of two parts. 
The first part is the data definition of the volatile data, as found in standard database sys- 
tems. The second part is a description of the relevant static characteristics of the monitored 
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systems, on which the volatile information is superimposed. In terms of the relational data 
model one of the most important views supported by the panel database has the following 
relational scheme: 

relational scheme MainView : 
<system-name > <system-resident-fields> <system-volatile-fields> <time-fields>. 

Although the resident database is designed to be modifiable dynamically, these modifi- 
cations need not be inexpensive. While the volatile data follows frequent fluctuations in the 
environment behavior, the resident database accomodates only the relatively infrequent 
changes in the environment structure. Dynamic modifications of the resident database 
grant a degree of flexibility to Megascope that is not present in the original lAB frame- 
work, where the repertoire of the monitored data is fairly static in that it cannot be easily 
extended by individual sensors. (See [1 ] for more details on the problem and a version of 
the solution.) Megascope design enables convenient dynamic modification of the sensor 
and recipient repertoire. A recompilation is required only when new data-type functions 
are introduced. 

The power of dynamic modification of the resident database is especially important in 
the case of system families. 

System families. A system family partitions the set of monitored systems in two subsets, 
one of which comprises the members of the family. The member set of each family is in 
turn partitioned into several subsets, where each member subset is a distinct gender of 
that family. Every system may be a member of several families, but belongs to a single 
gender in each family. Every family has at least one gender. One example of a conceivable 
system family could be a family "operating system", whose members would be only 
those monitored systems that are computers (rather than envirinment services), with every 
operating system being an individual gender. 

Families and their genders are defined so as to group together those monitored systems 
whose equally named resources can be meaningfully compared, aggregated, and substituted 
for one another. Every family corresponds to such a grouping criterion; the members of the 
family are those systems to which the criterion applies; the family members of the same 
gender are equal by that criterion. Families are a means of managing the cell heterogeneity 
by making it explicit where appropriate. If type-function modifiers depend on the sensor 
family membership, then simple modifications of the relatively few family relations can 
produce far-reaching and fine-tuned impact on the behavior of many sensors and the entire 
Megascope system. 

Families should be defined so as to represent those characteristics of monitored systems 
that are relevant for the interpretation of resource data in a specijic cell. Some families 
may turn out to be readily accepted, like those that reflect technological, topological, 
or administrative properties of the monitored systems. Some families may be defined 
in order to improve the efficiency of Megascope administration, by associating certain 
properties with large groups of related systems rather than with individual systems. Obvious 
candidates for such management-related families are those that define access-rights and 
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those that define arguments for normalization functions. (Normalization functions render 
absolute values of equal-named monitored variables in mutually compatible form, e.g., by 
recognizing that equal time extents on processors of different speeds amount to different 
processing capacities.) 

Panel queries. Most of the queries retrieve items from the volatile data set; retrieval is 
the only operation that can be aplied to the volatile data. The resident database admits 
appropriately administered retrieval, storage, and modification. 

The retrieval queries may be thought of as addresing the MainView scheme; their 
general form may be outlined as follows: 

select <system-name><volatile-fields> from MainView where 
<system-resident-fields > satisfy "expression" and 
<system-volatile-fields> satisfy "simple-expression" 

To understand the content and the form of <volatile-fields> and the selection expressions, 
the query should be viewed as consisting of two sequential stages, where the first-stage 
query is issued to the resident database, while the second-stage query retrieves the volatile 
data. The first stage selects a set of interesting systems, while the second stage retrieves the 
resource data of the selected systems. We anticipate that the evaluation of the selected set 
may involve the unrestricted set of the standard database operations over the resident data. In 
contrast to the first stage, the second stage is essentially a projection with simple selections 
based on values of individual items, followed by applications of simple aggregate functions 
on the result. Two explicit stages in the query structure respond to anticipated observer 
interests in large homogeneous substructures within the heterogeneous environment. The 
first stage establishes such a substructure, while the second stage explores it. 

Panel control. Most of the panel tasks are essentially parallel and mutually asynchronous. 
It is therefore conceptually appealing and practically advantageous to view the panel as 
if it were a set of largely independent agents that interact with the outside world and 
interfere with one another in a controlled fashion. This concept is preferable to that of a 
single compact panel for one more reason: facilitating distribution of panel operation over 
several physical hosts. On the highest level, the panel tasks are classified in two groups: 
the foreground tasks executed by the front panel, and the background tasks executed by 
the back panel. 

The front panel communicates with sensors and observers. Its operation is completely 
driven by the events generated by sensors and observers. Upon receiving a sensor message, 
the front panel decodes it and stores its content into the volatile database. To avoid delays, 
the front panel does not attempt to analyze the received data in any way other than 
identifying it to the extent that is required to store it. Upon receiving an observer query, 
the front panel computes its response and sends it to the observer. 

The back panel is mostly engaged in computation and its schedule is based on timing 
rather than on event occurrence. The background tasks in general consist of continuous 
inspection and filtering of the panel database, so that various regular and exceptional 
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operations are performed on the data. Rich and exploitable data-level parallelism is inherent 
in the background processing. The background tasks include: maintaining the resident 
database, maintaining the recent history of the volatile data, handling exceptional values 
discovered in the volatile set or received by a sensor, archiving the volatile data, etc. 

2.3 Observers  
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Figure 4: Megascope Observer Structure. 

Observers are started on the request of users or programs that wish to retrieve the panel 
information. They run on the host that initiates the request. 

Observer responsibilities. Observers collect valid queries from the user and present 
them to the panel, and receive query responses from the panel and present them to the user. 
As a part of this task, observers offer a convenient user interface. 

In an attempt to distribute the processing task, Megascope observers assume partial 
responsibility for computing query results. This responsibility implies decomposing user 
queries into two parts whose composition is equivalent to the original query: the basicpart, 
which is forwarded to the panel, and the local part, which is evaluated by the observer. The 
local part factors out those query evaluation steps that only rearrange the already retrieved 
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data. Such steps can be performed at the user site rather than by the panel. For instance, if 
the user requests a normalized, sorted selection, the observer breaks this query into a basic 
selection plus a local normalization and sort. 

2.4 Links 

Megascope uses PEN [10], the Pilgrim asynchronous event notification utility, as its link 
component. PEN provides all the functionality required from the Megascope links and 
guarantees a degree of independence from the low-level communication mechanisms. 
Finally, as a general event notification mechanism, PEN can make sensor data available to 
external recipients in a convenient way. 

To enable Megascope sensors to function in those DCE cells that do not support the 
Pilgrim environment, Megascope schedulers are designed to support communication with 
their recipients via basic DCE RPC services. 

3 Conclusion 

The success of Megascope design [ 10] depends crucially on its commitment to the advanced 
role of primary data collectors, sensors, in the monitoring process. Sensors are charged with 
the responsibility to configure and maintain themselves, obtain findings and judge their 
interestingness, engage in dialogs with recipients, even cope with some of the possible 
environment faults. Sensors dominate the monitoring process. 

To perform their tasks, sensors operate as collections of concurrent asynchronous 
processes. The correct coordination of the sensor subsystems, although conceptually clear in 
our design, presents an implementation challenge that has to be met in this early stage of the 
DCE development, while the basic environment components are still going through frequent 
revisions. Even though the sensors are designed to be able to operate without the panel, 
their operation depends on their compliance with the panel data definition, which must be 
enforced manually in the absence of the real panel. This information structure, designed 
to support autonomous and ambitious sensor operation, is also challenging, because of its 
nonstandard meaning and nontrivial behavior. 

Our proposal of sensors and the entire Megascope attempts to overcome the imminent 
polling bottleneck of traditional monitors by investing a moderate amount of the local 
computation resources and by insisting on the high-quality design and implementation. Our 
present work on the implementation of sensors looks for a confirmation of our concepts. 
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Abstrac t .  Recent developments in high-speed networks and high- 
performance workstations have led to the emergence of a new class of 
applications termed distributed multimedia applications. However, the 
range of distributed systems architectures currently being proposed to 
support open systems integration were largely conceived prior to these 
developments. Initial work directed towards the introduction of multimedia 
in environments compatible with ISO's Open Distributed Processing (ODP) 
standard has suggested that significant developments to the underlying 
architecture are required. These developments are now being reflected in 
new versions of the ODP standard. However, OSF's Distributed Computing 
Environment (DCE), currently emerging as a de-facto standard for 
distributed processing, does not fully address the requirements of 
multimedia computing. This paper reports on the impact that multimedia 
has had on the ODP community and examines how the community's 
experiences can be used as a basis for incorporating multimedia in DCE. 

1 Introduction 

Widespread recognition of the potential benefits of multimedia computing has 
prompted significant research interest in this field in recent years. A range of single 
workstation multimedia applications are now available combining varying sources of  
information such as voice, video, audio, text and graphics. Examples of these stand- 
alone multimedia applications include interactive video systems and computer aided 
leaming packages. 

Further benefits from multimedia computing can be achieved if support for 
multiple media types is provided within a distributed environment. Such support 
allows the realisation of applications including video conferencing systems, 
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collaborative working and multimedia design environments. The emergence of high- 
speed networks and protocols (e.g. FDDI, ATM), high-performance workstations 
(executing many millions of instructions per second) and large-capacity storage 
devices (e.g. optical disks, disk arrays) has enabled researchers to construct such 
distributed multimedia systems [1]. 

However, in order to address the problems of operating in a hetrogeneous 
environment, Open Distributed Architectures must evolve to meet the requirements 
of this new class of applications. Researchers at a number of institutions are 
considering the implications of multimedia on distributed architectures (e,g. Comet 
[2] and the Touring Machine [3]). The results of this work are now beginning to 
impact on ISO's emerging standard for Open Distributed Processing (ODP) [4]. This 
work has not yet been mirrored in OSF's Distributed Computing Environment 
(DCE) which is rapidly becoming the industrial de-facto standard for distributed 
systems [5]. 

This paper describes the impact which providing support for multimedia 
applications has had on the ODP community and highlights aspects of DCE which 
will need extending if a similar level of functionality is to be provided. Section 2 of 
the paper presents a summary of the key requirements of any platform designed to 
support distributed multimedia applications. Section 3 considers the impact these 
requirements have had on the ODP architecture and describes a set of ODP compatible 
services which have been developed to support distributed multimedia applications (a 
brief introduction to the relevant sections of the ODP architecture is also included). 
Section 4 then highlights aspects of DCE which, in the authors opinion, will need to 
be extended in order for DCE to provide a similar level of functionality. Section 5 
contains some concluding remarks. 

2 Requirements  of  M u l t i m e d i a  

Experimental distributed multimedia applications are being developed in many 
areas such as educational systems [6], medical systems [7] and computer based 
conferencing [8]. In this section we consider system support requirements derived 
from a wide ranging study of distributed multimedia applications [9], under the 
following headings:- 

i) explicit support for continuous media, 

ii) quality of service (QoS) specification, 

iii) synchronisation, and, 

iv) support for group communication. 

These requirements are discussed in more detail in the following sections. 

2.1 Support for Continuous Media 

The various forms of media in a multimedia system can be categorised as either 
static or continuous. Static media are those which do not have a temporal dimension. 
In contrast, continuous media (e.g. video and audio) have an implied temporal 
dimension, i.e. they are presented at a particular rate for a particular length of time 
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[10]. These real-time characteristics of continuous media demand a continuing 
commitment from the underlying system in terms of services provided. Since 
continuous media require sustained system support over a period of time, a means of 
resource reservation is required such that resources can be reserved in advance for the 
time they are needed. Continuous media types also require the development of new 
programming abstractions to model communications and storage which capture the 
concept of information flowing over time [11]. 

2.2 Quality of Service 

Continuous media applications make heavy use of underlying support systems 
in terms of processing, storage and communications. Research effort is therefore 
being directed towards the development of tailorable systems which can meet the 
diverse requirements of such applications. A tailorable system is able to adapt itself 
according to application quality of service requests and resource availability. 

It is important to note that, within a multimedia system, quality of service must 
be provided on an end-to-end basis. Applications need to control resource allocation 
completely from the information source to the information sink. Typical components 
in this control path include I/O devices, operating system processes and a 
communications network. 

Quality of service configurability is also applicable to control information sent 
between system components. Control messages with bounded delay characteristics 
must be available to allow the system to react to real-time events in a timely 
manner. Again, control messages require end-to-end guarantees of service which take 
into account all the system components which make up the message's path. 
Programmers must be provided with a means of specifying their QoS requirements 
for both continuous media transmissions and control messages. 

2.3 Synchronisa t ion  

Multimedia applications require an extensive range of synchronisation 
mechanisms. Synchronisation is required to control the event orderings and precise 
timings of multimedia interactions. In analysing the requirements of multimedia 
applications, two styles of synchronisation can be identified [12]:- 

i) real-time events, and 

ii) continuous synchronisation. 

Real-time events occur when it is necessary to initiate an action (such as 
displaying a caption) in a distributed system. The timing of this action may 
correspond to a reference point such as a particular video frame being displayed. 

Continuous synchronisation arises when data presentation devices must be tied 
together so that they consume data in fixed ratios. The primary example of this type 
of synchronisation is a 'lip-sync' relationship between a video transmission and a 
separately stored soundtrack. 

From our experiences in handling audio and video, we believe it is likely that 
these styles of real-time synchronisation require a global time service providing a 
granularity of the order of 1 millisecond, for example to bound the latency of real- 
time events [13]. 
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2.4 Support for Group Communications 

The concept of process groups has been demonstrated as a useful tool for 
constructing distributed applications [14]. The use of this technique is likely to 
increase as more applications are designed to support groups of collaborating users 
(as is the case in many CSCW applications). The introduction of support for 
multimedia demands that the ability to message process groups is matched by a 
corresponding ability to transmit continuous media to groups of users. This 
requirement is particularly evident when considering the implementation of 
applications such as video conferencing systems where a single speaker may wish to 
communicate with a group of colleagues. 

3 The Impact of Multimedia on ODP 

The Distributed Multimedia Research Group at Lancaster has developed an 
application platform which addresses many of the requirements described in section 2. 
The platform has been designed to conform to ISO's ODP draft standards where 
possible and the platform and the issues it raises are described from both 
computational and engineering viewpoints in the following sections. 

3.1 The Computational Model 

The programming interface presented to the application is based on the 
computational model developed as part of the ANSA/ISA project [15]. The 
ANSA/ISA (Integrated Systems Architecture) project is funded within the C.E.C.'s 
Esprit program and is playing an important role in the development of standards for 
Open Distributed Processing. 

The ANSA computational model provides a programming language model of 
potentially distributed objects and their modes of interaction. All interacting entities 
are treated uniformly as objects. Objects are accessed through interfaces which define 
named operations together with constraints on their invocation. 

Services are made available for access by exporting an interface to a trader. The 
trader therefore acts as a database of services available in the system. Each entry in 
this 'database' describes an interface in terms of an abstract data type signature for the 
object and a set of attributes associated with the object. A client wishing to interact 
with a service interface must import the interface by specifying a set of requirements 
in terms of operations and attribute values. This is matched against the available 
services in the trader and a suitable candidate selected. Note that an exact match is not 
required: ANSA supports a subtyping policy whereby an interface providing at least 
the required behaviour can be substituted. Once an interface has been selected, the 
system can arrange a binding to the appropriate implementation of that object and 
thus allow operations to be invoked. The ANSA consortium have released a software 
suite called ANSAware which is a partial implementation of the ANSA model. 

The authors have proposed a number of extensions to the ANSA architecture to 
allow the integration of continuous media types such as audio and video [12]. 
Support for these media types has been implemented without substantial 
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modifications to the basic model of objects and invocation. Instead, integration has 
been achieved through the introduction of a number of new services. We call this set 
of new services the base service platform. It consists principally of two types of 
object: devices and streams. These are both seen by the higher layers as ANSA 
services with standard abstract data type interfaces, but they encapsulate the control, 
manipulation and communication of continuous media. 

Devices are an abstraction of physical devices, stored continuous media, or 
software processes. They may be either sinks, sources or transformers of continuous 
media data. Most devices present two interfaces: a device dependent interface which 
contains operations specific to the device (e.g. a camera might have operations such 
as pan or tilt) and a generic control interface for controlling the device's production 
and consumption of continuous media. Using the control interface, clients of a device 
may create an endpoint interface on the device. This interface abstracts over all 
aspects of a device which are concerned with the transport of continuous media data. 

Streams are the services used to connect devices together via their endpoint 
interfaces. They are abstractions of continuous media transmissions which map down 
on to underlying transport protocols. Streams may be tailored to provide a particular 
QoS (e.g. high-throughput, low error-rate etc.). Streams support M:N connections, 
i.e. they allow M sources to be connected to N sinks. This is modelled by allowing 
endpoint interfaces to be grouped together, and ensuring streams interconnect these 
groups as shown in figure 1. Note that endpoint interfaces may be dynamically added 
to or removed from groups. 

Source  

group 

Control 
i n t e r f ace s~  

Sink 
group 

data 

Stream I ~ ~  

interfaces 

i n ~  | 
group group k . /  " = "  

A device dependent 
interface 

Figure 1 : Using streams to connect endpoint interface groups. 

In section 2 we identified two distinct forms of synchronisation, i.e. real-time 
events and continuous synchronisation. Implementing both of these forms of 
synchronisation requires the transmission of timely control messages. At the 
computational level this implies that programmers may specify time bounds (i.e. 
earliest and latest return times) for invocations. Application synchronisation 



184 

requirements may be specified using a number of techniques including complex 
(compound) object structures [ 16] and languages which include a temporal dimension 
[17]. Further details of the approach to multimedia synchronisation being adopted at 
Lancaster may be found in [17]. 

A prototype implementation of this model was carded out in a standard UNIX 
workstation environment to allow the validation of the programming interface. This 
has proved successful, and a number of applications including an audio/video 
conferencing facility have been implemented [18]. 

3.2 Engineering Issues 

A computational model must be supported at the systems level in order to 
function. This is achieved by defining an engineering model which specifies the 
guidelines, concepts and specifications required to provide adequate support. Objects 
visible from the engineering viewpoint include transparency and control mechanisms, 
processors, memory and communications networks. 

The ANSAware package provides a fairly complete implementation of the 
ANSA engineering model described in the ANSA Reference Manual [15]. It provides 
an Interface Definition Language (IDL) which allows interfaces to be defined in terms 
of their operations and a Distributed Processing Language (prepc) which allows a 
programmer to specify interactions between programs which support those interfaces. 
Prepc statements, which are embedded in a host language such as C, allow servers to 
export their services to a trader and allow clients to import any required services, 
establishing a binding in the computational model. Clients may then invoke 
operations on a server's interface. 

Communications support for the invocation model is provided by a remote 
execution protocol (REX) which is layered on top of a message passing service 
(MPS). REX is a remote procedure call protocol which supports the binding 
necessary for invocations. MPS is a generic transport layer which provides 
communications support. 

The functionality of the engineering model is integrated into a library which is 
linked with application code to form a capsule which may implement several 
computational objects. In a UNIX environment a capsule is implemented as a 
process. In order that objects may deal with invocations concurrently, support is also 
provided for multiple lightweight threads within capsules. 

To meet the requirements of continuous media, the engineering model must 
include support for a time-constrained remote procedure call mechanism which 
supports the transmission of timely control messages. By specifying both a lower 
and an upper bound on the time at which a message should be delivered to its 
destination the system is able to compensate for the problem of latency (mainly 
network latency) inherent in remote procedure calls. Furthermore, the need to not 
only deliver control messages in real-time, but to have their recipients carry out the 
required processing within certain time bounds requires support from both the 
recipients operating system's scheduler and the capsule's thread scheduler. In 
particular, support is required at the threads level in the form of a pre-emptive 
deadline scheduling policy which chooses the next thread to run based on the deadline 
of its next waiting message. Additional support is required for streams in terms of 
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high performance communications protocols which provide the QoS characteristics 
necessary for continuous media [19]. 

4 Implications for DCE 

This section discusses the implications of supporting multimedia for the DCE 
architecture. The approach we adopt is similar to that described in section 3, namely 
to wherever possible augment DCE's computational and engineering models with 
new services without modifying existing ones. As a starting point we map the 
required multimedia support services on to a new set of Fundamental Distributed 
Services (figure 2). 
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Figure 2 : Integrating multimedia services into DCE. 

4.1 Computational Issues 

The computational model provided by DCE is not as clearly defined as the 
computational model in ANSA. An interface definition language (IDL) exists in 
DCE which defines attributes for controlling features of distribution such as 
bindings. However, no attempt has been made to provide programmers with a 
uniform set of abstractions for programming distributed systems. Instead, those 
features of distribution defined by the integrated set of services (figure 2) are accessed 
by calls to subroutines (e.g. rpe ns binding_import_begin which establishes 
the beginning of a search for binding information in the name service database). 

The integration of continuous media into the DCE computational model has 
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repercussions for the attributes defined in the IDL such as pipes, bindings, the name 
service and for IDL itself. The following section discusses the impact of continuous 
media on the DCE computational model by considering how the device and stream 
abstractions defined in section 3 could be realised within a DCE system. 

Modelling Devices 
Devices are supported by two generic interfaces; a control interface which 

provides generic control operations over a continuous source or sink and an endpoint 
interface which abstracts over the transport of continuous media. Control interfaces 
can be provided as standard DCE interface types. However, the introduction of 
endpoint interfaces into DCE has implications most notably for the IDL which has 
no concept of media type, quality of service or continuous media. Introducing the 
functionality required to support endpoints can be achieved by providing the IDL with 
a mechanism for specifying whether an interface is discrete or continuous and by 
providing type/QoS annotations on the continuous interface. 

The DCE attribute configuration file (ACF) provides additional information 
about an interface. Current attributes in this file control binding methods, error 
handling and marshalling/unmarshalling. We will introduce an attribute continuous 
into the ACF to indicate that the interface supports continuous media. If this 
attribute is not present in the ACF then the interface is discrete by default. Media 
type will be denoted by media type attributes such as video_media and audio_media. 

We can specify the level of QoS in DCE by introducing a QoS attribute into the 
interface definition language (figure 3) which states the required level of QoS in terms 
of factors such as throughput, jitter and latency. A richer language than that 
illustrated in figure 3 will eventually be required to capture QoS requirements. QoS 
constraint languages containing declarative statements of QoS are currently under 
investigation [20]. 

I 
uuid (A985C864-243G-22C9-D50H-06043C1 FCGA3), 
version (1.0), 
QoS ( [Throughput, 8Mbps] [Jitter, 10ms] [Latency, 20ms] ) 
] interface example_continuous 
{ 

status get_data(parameters); 
status put_data(parameters); 

} 
Figure 3 : An IDL specification including QoS information. 

As discussed in section 2.4, multimedia also demands a rich model of group 
communications. DCE currently provides a grouping mechanism in the form of cells 
(a logical grouping of machines, resources and users). Objects within cells generally 
share a common purpose (for example a department or a research group) and have a 
greater level of trust with each other than with objects in other cells. However, cells 
do not provide a sufficiently general method of specifying groups to meet the 
requirements in section 2. Cells are intended to be reasonably static in nature while 
groups in continuous media systems tend to be highly dynamic (for example in a 
conferencing system with members joining and leaving the conference). A more 
flexible approach to groups is required. It is possible to denote groups by storing the 
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relevant binding information in the name service using a group entry facility. This 
must support richer forms of group messaging than is currently possible (including 
multi-party continuous media connections). 

DCE currently provides facilities to message single nodes and a broadcast 
attribute which is attributed to operations in the IDL. Any invocation on an 
operation with a broadcast attribute is automatically transmitted to all local nodes. 
The client which made the invocation uses the first reply received and discards the 
rest. This is not sufficient to implement the messaging of arbitrary groups and a 
multicast protocol is required. 

Modelling Streams 
Streams are created as the result of a binding between two continuous interfaces. 

A binding in the traditional distributed sense denotes a relationship between a client 
and a server that are involved in a remote procedure call. Binding information is 
stored in a data structure holding information describing the binding state such as the 
internet address of the machine bound to, the protocol sequence used (such as TCP or 
UDP) and a server process address on the host. This data structure is referenced by a 
pointer commonly known as a binding handle. 

The DCE environment supports automatic, implicit and explicit bindings, each 
providing an application programmer with differing degrees of control over bindings. 
The automatic method provides the least control as bindings are managed by the 
client stubs. Once a remote procedure call is made, the stubs locate an appropriate 
server from the name service and make the call. Binding handles are invisible and the 
client has no choice regarding which server is used. The implicit method requires 
slightly more programming effort as application code must locate the required server 
using the name service and obtain the binding information. This allows a client to 
bind to a specific server. Finally, the explicit method allows a programmer to pass a 
binding handle explicitly as the first parameter in each remote procedure call. This 
allows a client to bind to a different server after each remote procedure call. 

The binding models described provide no support for the binding of continuous 
interfaces. In particular they have no embedded notion of quality of service, 
continuous media types or streams. It is therefore necessary to provide a method of 
accommodating stream bindings (figure 1) in DCE. This can be achieved by defining 
a customised binding handle to store the additional binding information relating to 
the stream, i.e. the type and QoS of the stream. An IDL operation continuous bind 
can be used to create a continuous stream binding between two continuous interfaces 
using the customised handle. The establishment of  the binding must ensure 
compatibility between the required type/QoS of the stream and types/QoS capabilities 
of the interfaces involved in the connection. This might involve negotiation with the 
service requestor. 

It is worth noting at this point the role of DCE pipes in the transmission of 
continuous media. Pipes provide a method of efficiently transmitting large amounts 
of typed data between a client and a server. However, they do not provide a suitable 
abstraction for transmitting continuous media. In particular, since pipes are 
invocation based there is no mechanism for expressing the continuous commitment 
and synchronisation requirements which can be captured using an explicit stream 
binding. By adding explicit stream objects to DCE the approaches to specifying 
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synchronisation requirements in ODP (section 3) can also be used within a DCE 
environment. 

4.2 Engineering Issues 

The mechanism used to support invocation in DCE is the remote procedure call 
(RPC) which we use in our model as a method of communicating control 
information. The semantics of RPC in DCE provide a level of QoS control. 
However, the parameter of latency is not considered and must be addressed in order to 
provide a level of real-time control which in turn provides real-time guarantees. Our 
solution is to augment the current RPC model by including a timestamp as a 
parameter in the call to the remote procedure which specifies a deadline by which the 
remote procedure must be executed and the result returned. As stated earlier, such 
augmentation requires support from the threads scheduler. The DCE threads package 
supports three priority based scheduling policies, first in first out, round robin and a 
timesliced policy which is the default. However, to support time-stamped RPCs a 
deadline based scheduling policy is required and this will need to be added to DCE's 
range of scheduling policies. 

In order to identify objects uniquely anywhere in a DCE network, a Universal 
Unique Identifier (UUID) facility is provided. There are two classes of UUID provided 
by DCE; Interface UUIDs and Object UUIDs. Interface UUIDs are used in remote 
procedure calls to give each interface type a unique signature. Object UUIDs are used 
to map a call to an interface to the appropriate type managers which execute the 
correct server code. No mechanism exists for the subtyping of interfaces as in 
ANSAware. 

An example of the use of object UUIDs is the implementation of a print 
manager object which implements a range of generic print operations. Although there 
is only one interface, there may be several type managers, each of which provide 
different implementations for different models of printer. An object UUID is 
associated with each printer type and the correct type manager is referenced when an 
operation is called according to the UUID received with the invocation. 

This is important when considering control interfaces which provide a user with 
a generic point of access to devices, for example when initiating and terminating a 
video connection. The control interface must be accessible through the name service. 
Since there is one generic interface which maps on to several implementations for 
specific multimedia devices, a relationship exists between control interfaces and 
interface and object UUIDs in DCE. This relationship may be used to map a call to a 
generic interface to instance-specific manager routines. 

It is unclear whether the DCE distributed time service provides sufficient 
granularity to support the real-time synchronisation requirements of multimedia 
applications (see section 2.3) and further work must be carried out to establish 
whether a finer granularity is required. It is clear however that additional engineering 
support will be required from the underlying operating system which underpins DCE. 
For example, to support continuous media traffic, it must be assumed that the 
operating system provides a QoS constrained high performance transport service. 
Similarly, concepts such as split level scheduling may be required to provide the 
necessary real-time guarantees for DCE threads [21]. 
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5 Concluding Remarks 

Multimedia applications are likely to represent a significant percentage of all 
future distributed applications and distributed systems architectures must evolve to 
provide them with adequate support. In the first section of this paper we presented our 
experiences of extending one such architecture (ODP) to provide the required level of 
support. Based on these experiences the second section considered how a similar level 
of functionality could be provided within the framework of OSF's DCE. 

The approach adopted is to introduce a new set of fundamental services (i.e. 
multimedia services) and to modify the existing services as little as possible. We can 
now be more specific about the contents of the fundamental multimedia services, i.e. 
they will include stream services and multimedia device abstractions. However, 
investigation has revealed that some extensions are required in at least three of the 
existing fundamental services: threads, RPC and the directory (name) service:- 

i) Introduction of a continuous attribute for continuous interfaces in 
the IDL. 

ii) 

iii) 

iv) 

v) 

vi) 

vii) 

IDL specification of media types with appropriate attributes. 

Definition of the required level of QoS in the IDL for an interface 
using a required QoS statement. 

New customised binding handle for continuous media bindings. 

Continuous media bind operation for the IDL. 

Introduction of time constrained RPC with bounded delay 
characteristics 

Deadline scheduling policy for threads to enable engineering of 
time constrained RPCs. 

viii) Use of the name service for storing continuous media binding 
information and group-related bindings. 

ix) Potentially finer granularity for the distributed time service. 

x) Additional support from the underlying operating system and 
transport services in terms of the communications subsystem and 
operating system scheduling. 

As a future work item the authors hope to investigate a number of these issues 
further by carrying out a prototype implementation of support for continuous media 
devices and streams within DCE. 
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Abstract. Client-server and cooperative processing are two models for distributed 
programming. The client-server style is simple and powerful. Remote procedure 
call (RPC) is its communication mechanism. However, the cooperative process- 
ing style is more appropriate for expressing parallelism. Message passing is its 
communication method. In this paper, we describe a combined programming 
style and present a technique to integrate RPC and message passing in Open 
Software Foundation's Distributed Computing Environment (DCE). This DCE 
extension allows DCE applications to be designed and implemented in client- 
server, peer cooperative processing or a combination of both. 

I. Introduction 

Distributed programming may adopt one of two general models: client-server comput- 
ing and peer cooperative processing. These two models take different approaches to 
the distribution of work to multiple systems in the network. In the client-server model, 
clients are programmed to rely on access to the data, devices or computational 
resources of servers to accomplish work. Remote procedure calls (RPCs) [3] are used 
by clients in distributed client-server programs for clients to access remote resources. 
On the other hand, peer cooperative processing is a good model for coarse granularity 
concurrent processing. A peer-to-peer program contains a set of active components 
running concurrently. These peer components interact with each other by exchanging 
messages synchronously or asynchronously [1]. 

The client-server model is simple and powerful, but cooperative processing is more 
suited for expressing parallelism. A combination of the two may allow a more flexible 
way of designing and programming distributed applications. In the mixed style, the 
components of a program may communicate with each other via RPC and message 
passing at the same time, as appropriate, in different parts of the program. 

The Open Software Foundation's (OSF) Distributed Computing Environment (DCE) 
[11] provides a synchronous RPC facility as a uniform high-level communication 
abstraction. This makes DCE a good client-server computing environment and thus 
promotes client-server model of programming. DCE RPC has been used throughout 
DCE core components and in all DCE applications. In this paper, we introduce an 
extension to the DCE programming model to allow peer cooperative processing as 
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well as RPC to be used in programming distributed applications on DCE. An inte- 
grated facility provides for both synchronous RPC and synchronous/asynchronous 
message passing primitives in a single underlying RPC framework. As a result, DCE 
applications can be designed as a set of cooperative concurrent peer entities communi- 
cating with each other by exchanging messages and also accessing servers using 
RPCs. 

Both synchronous RPC and major message passing primitives such as synchronous/ 
asynchronous, single/multiple-point-connected, typed-data messaging and remote ren- 
dezvous calls are supported in a consistent design. Since the DCE RPC facility comes 
with three important capabilities: data representation conversion, typed-data marshal- 
ling/unmarshalling and support for multiple transport protocols, the integrated facility 
takes advantage of these capabilities to allow passing typed messages between 
machines in heterogeneous network environments at a low cost. 

Section 2 discusses cooperative processing, client-server computing and a mixed pro- 
gramming style. Section 3 presents the technique for incorporating message passing 
capability into DCE and shows how the messaging facility is used. Section 4 describes 
the implementation of the integration. Section 5 is a conclusion. 

2. Distributed Programming Models 

In this section, we first discuss peer cooperative processing and client-server comput- 
ing and then introduce a mixed style of both for programming distributed applications. 

2.1. Cooperative Processing 

Distributed cooperative processing extends parallel execution of programs on multi- 
processors to distributed systems. In general, a parallel algorithmic solution to a prob- 
lem can be represented by a directed graph, which can be considered an abstract 
parallel program. A node of the graph contains a number of operations. An arc repre- 
sents the data flow from one node to another. Nodes cooperate with each other by 
exchanging data via arcs. Data may be produced during or at the end of node process- 
ing and consumed at the beginning of or during node processing. A parallel program 
can be executed in a distributed system by assigning its nodes to multiple machines in 
the network. 

The abstract data flow can be implemented by either shared memory or message pass- 
ing method. With shared memory, a producer node updates variables and the consumer 
node reads the variables. Concurrency control and synchronization between these 
operations are normally accomplished using semaphores, conditional variables or 
monitors. With message passing, the producer sends a copy of the data to the con- 
sumer. The consumer synchronizes with the producer at data 'receive' operation. These 
two methods are equally powerful and abstract. Either one may simulate the other [7]. 
Therefore, either method may be adopted exclusively as a uniform communication 
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abstraction in a programming system. For example, NIL [8] uses message passing as 
the communication abstraction between its processes. While Linda [6] uses logically 
shared data (tuples) for program communications. 

However, these two methods are also complementary to each other in the sense of exe- 
cution performance. Shared memory method is efficient when two nodes are running 
on the same machine and have access to a common physical memory. On the other 
hand, message passing fits well when two nodes are located on different physical 
machines. Message passing across machines normally involves data copying. A local 
message passing between nodes in the same system may be optimized to avoid data 
copying at all through shared memory lazy-copying technique [10]. 

Since message passing is suited for communications between loosely coupled nodes 
running on different machines and shared memory is efficient for the communications 
between tightly coupled nodes running on the same machine, a refined graph model 
(Figure 1) allows a choice of implementation for the abstract data flow between nodes: 

1. A node is a sequential thread of execution. (A node can be mapped to a thread 
in DCE). 

2. A cluster contains a number of tightly coupled nodes which have access to a 
common memory in the cluster. (A cluster can be mapped to a process in DCE) 

3. Inter-cluster node communication is accomplished via message passing. 
4. Communications between nodes in the same cluster can be accomplished via 

shared memory or local message passing. 

 . ,uster2 

c usterl imap   

network 

Figure 1. A refined cooperative processing model 

A cluster is assigned to a physical machine as a whole. Therefore if two nodes are to be 
running on different machines, they have to be wrapped in different clusters. Given a 
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number of program clusters distributed on multiple machines, the execution of all 
active nodes of all clusters is parallel distributed solution of the problem. This model 
and its variants have been adopted by a few advanced distributed programming sys- 
tems [2]. 

The DCE process/thread model is similar to this cluster/node model except that com- 
munications between DCE clients and servers are accomplished via synchronous RPC. 
There is no direct communications between two peer nodes (threads). This limits the 
expressiveness for parallelism and the interaction among peer programs. 

2.2. Client-Server Model 

Other than assigning active nodes to multiple machines, work can also be distributed 
in a client-server style. In a client-server model, servers provide a set of services and 
clients request and obtain services through synchronous RPCs. Distributed processing 
is achieved when servers and clients are assigned to multiple machines for execution. 
This model is well suited to two application domains: 1) remote data services and 2) 
remote computation services. Example applications are distributed transaction pro- 
cessing and remote numerical intensive computation. 

A problem with pure client-server model is that the model offers neither concurrent 
semantics nor a concept of communications between active program components. 
Therefore, programming systems such as DCE have to resort to other methods, out 
side of pure client-server model, for expressing parallelism. Parallelism is at least as 
important as work distribution. Without parallelism, a distributed processing is merely 
a sequential execution of work multiplexed by several machines. This is why DCE has 
to heavily rely on the thread package for application programming, to complete its pro- 
gramming model. 

Application parallelism can be expressed using a thread package, but in a limited fash- 
ion. Parallelism in DCE applications is primarily exploited by multi-threading the cli- 
ents. A multi-threaded client may make several concurrent RPCs to servers residing on 
multiple machines to process its work in parallel. The client and server processes are 
not peer entities though. On the other hand, since a process may be both a client as 
well as a server at the same time, the combined client/server processes in DCE applica- 
tions may look like uniform disllibuted peer entities. However, there is still no facility 
for direct communications between the multiple peer client threads in separate pro- 
cesses. When direct communications are desirable, DCE developers have to simulate, 
in various ways, the capability using RPC and shared memory. 

Asynchronous RPC has been considered as an alternative to synchronous RPC to pro- 
vide some concurrent semantics [4]. An asynchronous RPC immediately returns and 
continues the execution of local thread after it has sent its input parameters and acti- 
vated the remote procedure. The result may be left in the server environment or 
returned and cached in the client side for pick-up later by a subsequent synchronous 
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RPC from the client. Parallelism can be exploited in the sense that the client and the 
server can be running in parallel. 

This model is restricted. Normally, a client process starts a server process by issuing an 
asynchronous RPC. The server process gets the input data at the beginning of its exe- 
cution. It terminates when runs through the end of its routine. The two processes may 
not communicate freely in the middle of server routine execution. The processes are 
not peers, and the communication is not symmetric. 

Synchronous and asynchronous RPC are therefore not sufficient for programming gen- 
eral peer cooperative applications. Distributed systems, such as DCE, using R I ~  as 
the only communication mechanism may not be able to directly support the program- 
ming and execution of parallel peer-to-peer applications. 

2.3. The Combined Model 

There are many situations in the real world where many activities are more like peer- 
to-peer processing than client-server computing. In the case of a project team, it is very 
hard (or mind-twisting) to model the activities of team members, who cooperate with 
each other to get a project finished, as client-server relations. It is even harder to figure 
out how parallelism due to the activities of individual members can be mapped to 
multi-threading of clients, the way DCE applications express parallelism. 

Nevertheless, the client-server model is still conceptually simple for programming and 
powerful for reaching distributed services. Indeed, there are many real world systems 
which can be perfectly modeled by client-server relations. An example is that you may 
call a plumber to come by and fix your kitchen sink. In addition, the notion of multiple 
clients accessing the same server concurrently and potentially being serviced in paral- 
lel (if the server is on a multiprocessor machine) is very useful. Also, a client may con- 
tact a server any time and access it for its services dynamically. It is less 
straightforward to model these situations in peer-to-peer style than in client-server one. 

Therefore, both models are important for describing the real world systems. They are 
not competitive but complementary. One is simple to program and powerful. The other 
has inherent parallel semantics. To allow both programming styles to co-exist in an 
execution environment, the environment has to provide both synchronous RPC and 
asynchronous/synchronous message passing facilities. 

RPC involves one active program accessing remote (conceptually) passive resources. 
It gives the illusion of transparency. Message passing, on the other hand, involves two 
active programs exchanging data in various fashions: synchronous/asynchronous, 
blocking/nonblocking, one/two-directional, and pair/multi-party communications. 
Each particular message passing model is implemented by a special communication 
channel, which sits in between the communicating parties. We call this, a port. A port 
has a queue of message buffers and two operations: send and receive. With the mes- 
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sage port, a node may send messages to another node which may in turn receive the 
messages. 

In the combined model, a distributed program is composed of a set of clusters running 
on multiple machines in the network. Each cluster contains a shared global state and a 
set of active nodes, passive procedures and message ports. In the DCE environment, 
clusters are mapped to processes and nodes are mapped to POSIX threads. Threads 
and procedures in the same process may exchange data via shared variables. They may 
invoke external service operations exported by other processes. Procedures and port 
operations can be exported for access by other processes. 

exported s 

e;Podrted ~ ........ i 1 , , , ~  ........... ",, thread 

Figure 2. A process with a thread, an exported procedure, a port and a global state. 

For example, the process in Figure 2 contains a global memory, a thread, an exported 
procedure and a port with its send operation exported. The process may contain many 
internal procedures not shown in the figure. Threads in other processes may send mes- 
sages to the port by invoking the exported send operation of the port. The thread in 
this process may receive the messages by invoking the receive operation of the port. 

The example distributed application shown in Figure 3 is based on the combined 
model. This application consists of three processes interacting with each other in a 
combination of client-server computing and peer cooperative processing. 
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Figure 3. Combined client-server computing and peer cooperative processing 

3. Integrating RPC and Messaging Facility 

To extend DCE for peer cooperative processing, a message passing abstraction has to 
be provided by the environment. Three important capabilities of DCE RPC are re-used 
to provide this abstraction: 

1. Parameter marshalling/unmarshalling service to enable passing typed data 
between machines. 

2. Data conversion capability to enable computing in heterogeneous 
environments. 

3. Transport independent communications to protect applications from directly 
using low-level 

multiple transport protocols 

Being built around the RPC facility, the message passing abstraction is automatically 
granted these high-level features. In other words, a message port can be typed and a 
message can contain an ordered set of typed data. A message maintains the same 
meaning after being transmitted from one machine to another in a heterogeneous net- 
work. And, messages can be actually transported by RPC. Thus, a powerful high-level 
messaging abslraction can be built at a low cost. 

What needs be done to extend the system is: 

1. Implement the various messaging semantics in a consistent manner 
2. Provide a small but rich set (API) of messaging primitives 
3. Extending IDL for defining messaging interfaces 
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In the following, we first summarize the features of messaging systems, then describe 
how various messaging semantics are implemented by abstract message ports, and 
show how the messaging facility can be used in peer programs. 

3.1. Message Passing Abstraction 

There are a number of features that characterize messaging primitives: 

1. Synchronous vs. asynchronous messaging: 
In synchronous message passing, the execution of message sender is 
blocked until message receivers have received the message. In asyn- 
chronous message passing, the sender continues its execution once the 
message is sent and implicitly buffered somewhere in the underlying 
message delivery subsystem. The message can be received by the 
receiver later. 

2. Blocking vs. nonblocking messaging: 
In asynchronous messaging, the number of message buffers may be lim- 
ited by implementation. When a sender tries to send a message while all 
buffers are full, a blocking send operation will block waiting for a buffer 
to become available. A nonblocking send operation will return immedi- 
ately with an error and drop the message. 

3. One/two-directional messaging: 
Normally, send and receive operations are one directional. A two-direc- 
tional messaging delivers both forward and backward messages. When 
a message initiator sends a message to a message responder, it blocks at 
the operation until a message is returned from the responder. An exam- 
pie of two directional messaging is Ada's entry calls to the rendezvous 
point in another process (Ada's Task). 

4. Pair/multi-party message connection: 
There may be one/multiple senders and one/multiple receivers partici- 
pate in the same messaging connection. One-sender-to-one-receiver 
connection is for private conversation. One-to-many connection is a 
broadcast. Many-to-one connection realizes a mailbox. Many-to-many 
connection appears in forums, newsgroups or bulletin boards. 

5. Persistent Messaging: 
A message may be inspected rather than simply received so that it 
remains in the message buffer for others to access. This property is use- 
ful in forum type messaging. 

Various combinations of these features result in versatile messaging systems. For 
examples, CSP and Occam use synchronous one-to-one-connected one-directional 
messaging. The Ada's rendezvous calls and Concurrent C's transaction calls [5] are 
synchronous many-to-one-connected two-directional communications. Concert RPC 
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[9] can be either synchronous or asynchronous, many-to-one-connected two-direc- 
tional communications�9 Most systems have asynchronous many-to-one-connected 
one-directional communications. The tuple space in Linda may allow asynchronous 
many-to-many one-directional communications�9 

3.2. IDL Extens ion for Port  Specifications 

The DCE interface definition language (IDL) must be extended for specifying messag- 
ing interfaces�9 A messaging interface may define a number of message ports. Each port 
is characterized by the type of messages it delivers and the port features it has. A mes- 
sage port is defined by a signature (similar to a remote operation), an operation 
attribute port and associated features: 

�9 A port name 
�9 A list of message data types 
�9 Exported port operations 
�9 The number of message buffers 
�9 BlockingJnonblocking send/entrycaU 
�9 Persistent/non-persistent messaging 

The following is an informal syntax of port definition: 

[port(export(send I recl  call I accept), size(n), blocking, persist)] 
portname(dtypel,  dtype2 .... ); 

A message port contains a queue of message buffers and two or three operations. Each 
message buffer holds a message. A message is an ordered set of typed data. A port 
which exports send or rec is one-directional. This port thus provides operations send 
and receive. A send operation enqueues a message and a receive operation dequeues 
the message. The exported operation can be called from other processes via a normal 
RPC. Message queue size specifies the number of message buffers available at the 
port�9 A port is synchronous if its queue size is zero. A port is asynchronous if its queue 
size is non-zero�9 For asynchronous ports, the send operation is a blocking operation if 
the blocking flag is specified. Nonblocking is the default�9 A negative queue size 
means that the number of message buffers is not limited, only subject to the availabil- 
ity of runtime physical storage. When one-directional ports have persist flag specified, 
they also provide peek operation, in addition to send and receive operations. With 
these ports, receivers may choose to peek a message rather than receive a message�9 
When call or accept (or both) are specified for export in the port definition, the port is 
a two-directional port. This port provides operations entrycall and accept  for remote 
rendezvous calls. Port implementation ensures serialization and synchronization of 
multiple concurrent send and receive operations�9 
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3.3. Using the Messaging Facility 

In peer processing mode, application program components export DCE interfaces with 
port definitions. They use send and receive (or entrycall and accept) operations pro- 
vided by the ports to exchange messages. In client-server mode, DCE applications 
export the interfaces with remote procedures specified as usual. In a mixed client- 
server and peer processing mode, the program components of an application export the 
interfaces with both port and procedure definitions. The program components may 
send and receive messages to each other and at the same time make RPCs to the ser- 
vices exported by others, In the following, my_message_if defines three message 
ports: 

interface my_message_if 
{ : 

[port(export(send), (size 0))] portl(dtypel); 
[port(export(send), (size 10))] port2(dtype2, dtype3); 
[port(export(call), (size 5))] port3([in] in_dtype, [out] ouldtype); 

} 

port1 is a synchronous port, which carries a message with one data element of type 
dtypel, port2 is an asynchronous port which carries messages with two data elements 
of types dtype2 and dtype3, port3 is for remote rendezvous call which takes one 
input parameter of type in_dtype and returns one output parameter of type out dtype. 
The send operations of portl and port2 and the call operation of port3 are exported. 
Therefore, procedures portl_send and portl_rec are provided by port1, portl_s- 
end can be invoked remotely by other processes, port rec can be invoked by any 
thread in the same process. Similarly, procedures port2_send and port2 rec are pro- 
vided by port2, port3 has procedures port3_entrycall and port3_accept, port3_en- 
trycall can be invoked from other processes, port3_accept can be inserted at any 
desirable rendezvous points in the local thread routines. The last argument of 
por3_accept specifies the rendezvous service function, which may be a local or 
remote procedure. This argument is implied and is not shown in the port signature. 
However, the rendezvous service function must have the same signature as that of 
port3. 

Two peer program components my use this messaging interface: 
process1 : 
{ : 

portl_send(datal); 
port2_send(data2, data3); 
port3_ent rycall(in_data, out_data); 

} 

process2: 
{ : 

portl_rec(datal); 
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port2_rec(data2, data3); 
port3 accept(in_data, out_data, entry_function); 

} 
The program component in process1 sends a synchronous message and an asynchro- 
nous message. It also issues a remote rendezvous call. The messages are received by 
the program component in process2. The rendezvous call is also accepted and han- 
dled by the same program component. The result of the call is returned to process1 
through out_data. 

4. Implementation 

IDL compiler is extended to generate the implementation of the specified message 
ports. The extended IDL implements different port types, defined in interface defini- 
tion files, using a few code templates. These templates contain program structures that 
ensure serialization of access to a port's message queue and synchronization of send 
and receive (or entrycall and accept) operations for different port types. 

4.1. Port Implementation 

In Figure 4, myport is an asynchronous one-directional message port. The implemen- 
tation of this port provides two operations: send and receive. They correspond to 
mypoa__send and myport_rec procedures. The send operation enqueues messages, 
which is a list of input parameters of the specialized mypoa_send for the port. The 
receive operation dequeues messages, which is a list of output parameters of the spe- 
cialized myport rec for the port. The output parameters of mypo~__rec correspond to 
the input parameters of mypoa_send. Only one instance of myport__send or mypor- 
l rec is running at one time. This preserves the integrity of port data. The send opera- 
tion is further regulated by "buffer_full" condition to handle the situation when all 
buffers are full. In this situation, a send operation may either block or return immedi- 
ately with an error code, depending on whether the nonblocking flag is specified in the 
port definition or not. Similarly, the receive operation is regulated by "buffer_empty" 
condition to handle the situation when no message is available. In this situation, a 
receive operation may either block waiting or return with a no-message error code. 
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Figure 4. Port Implementation 
The RPC server stub unmarshals the input parameters and passes them to mypo~._s- 
end, the DCE RPC manager routine. The local procedure call (LPC) returns pointers 
to these parameters to the receiver thread. The copy of the parameters created by the 
RPC server stub is used by the receiver thread. 

4.2. Building and Using Message Ports 

In Figure 5, foo.idl is the definition of interface foo exported by process B. This inter- 
face defines a message port porlb and exports its send operation. The IDL compiler 
generates the implementation of portb and the client and server stub for portb_send 
procedure. The port implementation contains a queue of message buffers, portb_send 
and portb_rec procedures. If the port is persist, procedure portb_peek is also gener- 
ated. portb is compiled and linked to program B and becomes part of process B. Since 
the send operation of the port is exported, a message sender process A can make RPCs 
to portb_send to enqueue messages into portb. The receiver thread of process B can 
dequeue the messages via LPCs to porlb__rec. 



204 

/ 

. . . . . . . . . . . . . . . . . . . . . .  -.:f 
process A 

portb_send~ 

, , 

foo.idl 

IDL compiler ~ 

i : \ \ . .  
. . . . . . . . .  . . . . . . . . .  . . . . .  , .  

imessagd 
r ~ t 

sender client stub j 

for portb_send 

I 
J 

I send rec 

portb 

portb_rec 

',.server stub receiver / 

for portb_send 

Figure 5. IDL generates a message port and RPC stubs for the interface foo 

The message is in the form of RPC input parameters and the LPC output parameters. 
As such, the parameters of an exported send operation correspond to the [in] parame- 
ters in the stub implementation. The parameters of a receive operation, if exported, 
correspond to the [out] parameters in the stub implementation. In order to keep the 
function signature of both send and receive operations exactly the same for consis- 
tent usage of the two messaging operations, each parameter in the port definition must 
be a pointer to message data. The message data may be of any type. 

The control flow of a message passing includes the cooperation of a message sending 
RPC and a message receiving LPC. The client stub of the message sender marshals 
RPC parameters into linear buffers and transmits them to the server stub of the mes- 
sage receiver. The server stub unmarshals the parameters, converts data format as nec- 
essary and invokes portb_send procedure to enqueue the message to podb. If the port 
is asynchronous, the enqueue operation will return quickly to the server stub which 
will again return immediately back to the client. Since portb...send is a simple routine 
which lakes very little time to process, the entire event appears to be asynchronous to 
the sender. If the port is synchronous, the execution of portb._send will block at the 
port until a corresponding portb__rec is executed. 

If porlb is a rendezvous port, as being by exporting call or accept operation, the IDL 
compiler will generate a rendezvous implementation which contains portb._entrycall 
and portb_accept procedures. If call operation is exported, the client stub and server 
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stub for portb._ento/call procedure will be generated. Unlike the stubs for one-direc- 
tional messaging operations, these stubs both have marshalling code as well as unmar- 
shaUing code to handle both [in] parameters and [out] parameters, similar to a regular 
RPC with both [in] and [out] parameters. 

4.3. Exporting Operations of Message Ports 

The receive operation can be exported just like the send operation. This allows other 
processes to receive the messages of the port in addition to the port owner process. 
Similarly, accept  operation can be exported, which allows other processes to respond 
to remote rendezvous calls. 

Exporting only sand (or ante/call) operation virtually puts the message port in the 
address space of the message receiver (or rendezvous responder) process. In this case, 
many other processes may obtain bindings and make RPCs to perth_send (or port- 
b._ento/call) procedure of interface leo. However only the local process can invoke 
portb__rac or perth _accept procedure. Therefore it allows a many-to-one connection 
to be established. If the binding information is restricted to only one other process, the 
connection is reduced to one-to-one. On the other hand, exporting only receiver (or 
accept) operation will put the message port in the address space of the message sender 
(or the rendezvous caller) process. Thus it allows an one-to-many connection to be 
established. Similarly, if the binding to the porlb__rec procedure is restricted to only 
one other process, the relation reduces to one-to-one connection again. If both send 
and receive (or both call and accept) operations are exported, the port can become a 
many-to-many connection port. If the port is the only program existing in the process, 
this process is a simple stand-alone mailbox server. 

5. Conclusion 

Client-server computing is a powerful and conceptually simple paradigm for distrib- 
uted programming. However, peer cooperative processing can expresses parallelism of 
distributed applications in a more natural fashion. There are real world systems which 
fit very well into either one model. We have presented a technique to extend the DCE 
RPC facility to incorporate support for message passing. This extension allows DCE 
applications to be designed freely using client-server computing, peer cooperative pro- 
cessing or a combination of both. The technique takes advantage of DCE RPC capabil- 
ities: the data conversion, data type support, and transparent access to multiple 
transport protocols. As a result, a message may contain a number of high-level typed 
data elements and be sent across machines in heterogeneous networks. 
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Abstract: Advanced concepts are available based on the Remote Procedure 
Call (RPC). They help to extend the basic functions, the techniques for error 
handling and to decrease the response time. 
This contribution is dealing with a mechanism for reduced response time, 
developted and tested in the environment of DECrpo using the so called 
Location Broker (i.e. an agent process that provides to a client dynamic~dly 
and transparently the remote server interface for the application depending on 
server performance and load balancing. 
After a short introduction to the possiblities to reduce the response time of 
RPCs, the basic idea and the functionality of this tool are discussed followed 
by the next steps to implement and improve the tool also in the DCE/RPC 
environment. 

1. Introduction 

The response time is an essential criterion to optimize RPC-applications. 
Fundamental ways to decrease the response time are: 
1) to feedback partial and provisional results of  the server (so called bidirectional 
RPC, server callbacks), 
2) to split the application into parallel processes, that only have to await a minimum 
of  results of  remote procedures (lightweight processes), 
3) to provide RPC-server processes several times and to select dynamically the 
fastest one and 
4) to move dynamically server procedures to other machines. 
This paper is concerned with a mechanism for the load balanced selection of an 
RPC-server (3). That delivers primarily advantages opposite to the dynamic loading 
of  procedures (4) - by the small amount of  data to be transferred over the LAN. 
Purpose of the tool is to route the remote procedure call to that service provider 
(server), that should bring the shortest response time at the moment of  calling. The 
decision depends on static factors such as data rate and transmission time between 
client and servers, server performance and on dynamic factors such as network load 
and server load. Another basic criterion is to make sure that the intended mechanism 
may be applicable in an advanced RPC as DCE/RPC and also may be addable in 
other RPC expanding mechanisms as in REV [1] (shorter.response times) or in 
Radjoot [2] (higher level of  error tolerance). Main goal is surely to be open for the 
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supplementation of  asynchronous mechanisms such as futures [1], [5] or optimized 
sending rules for instance without transmit-buffers (System Cronus [1]) or to buffer 
often called rpc's (or such with many parameters) and send them bundled (System 
Mercury [1]). 

2 .  F u n c t i o n a l  p r i n c i p l e  

With the RPC implementation DECrpc by the Digital Equipment Corporation the 
developer is made available a tool, that manages information about remote interfaces 
by usable servers. It's called the Location Broker and it works very similar to the 
Request Broker of the RPC in the NCP (Network Control Program) by Apollo. 
With its help it is possible to determine the location and the port number of the 
server of a requested service dynamically (at the run time). That means, it realizes 
the principle to produce a remote procedure call transparently (from the client's 
view). 
At the moment of providing a service, its interface is registered in the database of 
the Global Location Broker (GLB). It means, there exists a database containing the 
interfaces of all RPC services at this time. On every machine resides a so called 
Local Location Broker (LLB). If  a client starts a RPC for the first time, it gets by 
means of a short data exchange between its LLB and the GLB the corresponding 
server interface. Repeating the same RPC simplifies the mechanism to only read the 
interface entry in the LLB-database. Therefore it becomes possible to the client to 
determine the location of the server at the runtime and so to be independent of for 
instance changes in the network configuration and to be able to select the server 
dynamically. 
A possiblity to increase the performance of  the client - server principle under RPC 
is to provide several uniform servers within a network. Up to now it is not useful to 
create such a redundancy. The reason is that it's only possible to register uniform 
servers in the GLB-database. If  a client's LLB asks for an interface it gets only the 
first appropriate entry. The mode of operation of the location broker intends to 
provide to a client information about a unique service. But there is a lack, that the 
functionality to administrate several uniform server entries in the GLB-database and 
to select one of them is not possible. 
A new tool shall take over these functions. It has to manipulate the database of  the 
GLB in a manner, so that a client's LLB finds in the first entry of  the uniform 
servers the fastest at this moment. For instance it is easily imaginable that different 
server machines depending on the cpu-load at different times promise to process the 
RPC optimally. The advantage of such a tool is to obtain dynamical mapping 
between the client and one of the servers. So it will be possible to take advantage of 
the redundancy for reducing the response time on the other side to balance the load 
of  the service providing machines. Of course it's necessary to do this manipulation 
transparently to client and server processes. 
The dynamic server selection causes also a disadvantage that decreases the 
performance of the rpc-mechanism: To make this redundanc~ available to the calls 
of  the clients it is necessary to disconnect every client-server connection (using this 
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tool) after every use so that a new RPC causes a new connection establishment 
calling the GLB. 

3. Realization of the tool 

The realization of this tool [3], called the dynamic_glb_manager, is distributed 
among two processes: dgm_sampler and dgm_provider. 
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Figure 1: Functional principle of the dynamic_glb_manager . 
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The process dgm_sampler is located on every server machine, that exports an RPC- 
interface. So it has to be started automatically when the first service is registered in 
the GLB. This process determines cyclically an average value of the cpu-load and a 
value representing the performance of the concerned machine. The value cpu-load is 
determined with the help of the system command "cpustat'. To determine the 
performance of the machine it measures the time used for the processing of a small 
load function. It would also be useful to evaluate benclmmrk-tests or to estimate the 
value depending on different priorities instead. Furthermore, the tool uses these 
values to determine the so called system factor that is presented for further 
processing. 
The process dgm_provider is located exactly on the same machine as the GLB and 
exists only one time in the network. It processes parallel to the GLB-database an 
own database with the system factors of the participating servers. Its main task is to 
manipulate the GLB-database in such a manner, that the interface entry of the best 
server is set at the first position in a way that it changes its position with the 
previous best server. The selection of the servers is caused by the cyclic evaluation 
of the concerned system factors of the servers. Hence in this first realization of the 
tool the GLB-database is updated depending on requests of the GLB machine. Later 
on this principle will be replaced by a better mechanism. There are system factors 
only reported to the dgm_provider process if the dgm_sampler processes 
recognize a significant change in their system values and send a message to the 
dgm_provider. 
I f  a special service is not intending to use the dynamic_glb_manager, it has no entry 
in the database respectively and naturally its function is not disturbed. 
The communication between the processes dgm_sampler and dgm_provider is 
realized with an own rpc connection. It transmits the system factor (cu_s - 
communication unit - server) or receives and records it respectively in the database 
of the dgm provider (cu_c - communication unit - client). 
The principal work of the dynamic_glb_manager achieves that the general 
communication between rpc client and server works unchanged. An application of  
this tool (based on DECrpc) allows the user of distributed applications to use its 
advantages with only insignificant changes in its client program. Besides the starting 
of the parts of the dynamic_glb_manager on the concerned machines - realizable 
parallely by the management of the rpc, it's necessary in the client program to 
disconnect an rpc connection after every use (by additional order) and so to 
determine a GLB request before every rpe. 
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Figure 2: Difference between a static rpc (clients) and a dynamic rpe (client_d) 
based on the dynamic_glb_manager measured in a subnet without other load 

First tests with the dynamic_GLB-manager showed the dependence of the speed 
advantage of different factors: For instance it is proportional to the work load of the 
remote function. Furthermore it depends on the difference between the instantaneous 
server performance (load dependent) of the redundant servers. 

4. F u r t h e r  ana lys i s  

An aspect for the optimization of the tool dynamic_GLB-manager is the question, 
how often this factor (representing the relative performance of the servers) should be 
refreshed. It seems, that a period of a few minutes is sufficient, if one of the servers 
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possesses an essentially higher performance than the others. In this case switch over 
would only take place in the case of  heavy load of  this fast server. For equivalent 
servers for instance in a local subnet it is required to shorten the interval. 
For that purpose measurements are carried out to determine an average request 
interval in dependance of the number of offered servers in the LAN. 
Comparable with the problems of  the dynamic flow control mechanisms in meshed 
networks for the utilization of  this tool the following problems occur: 
a) The servers are requested too often and increase the load (local and on the 
network). This problem intensifies if the transmission time between server and 
client increases. 
b) The interval between two requests for a system factor is too long and the 
likelihood is high, that a rpc doesn't get the interface of the - at this time - fastest 
server. If this service is called in shorter intervals than the processing of  such a 
server routine the problem intensifies - the recommended server selection increases 
the server load once more. 
In the first realization of the tool the additional load of the participant machines is 
restricted to 5 % of  the cpuoload. Measurements showed that an interval of three 
minutes allows to manage six servers. With other words to request ten servers in 
about three minute, s results in an additional load of 10% cpu-load. 
That illustrates that the principle has to be improved. To reach that, two different 
ways are intended: 
1) The load of  the servers shall be reported event controlled. The events should 
result to essentially more efficient mechanisms to determine the system factor. In 
this way the server load is decreased and so it will be possible to limit it on 2 % of  
the cpu-load and it will be possible to determine the factor in intervals of 0.1 - 0.2 
seconds. 
It is followed by the insertion of  an additional barrier. This barrier should limit the 
minimum interval between two messages of the system factor to the dgm_provider 
process in dependence on the number of registered servers and call frequency or 
processing time on the server. The load of the machine running the GLB and the 
dgm_provider is also thus limited. 

2) The system factor reported to the dgm_proyider process will be extended with 
data about the frequency of calling the (uniform) servers. Using that allows the tool 
to react on a high number of (uniform) rpc's by changing the server selection 
principle into either a random selection or a selection dependent on the static 
performance of the servers (equally distributed). 
The efficiency of  the dgm..provider is fundamentally determined by the restricted 
functionality for manipulating the GLB-database. Some more comfortable read/write 
functions and the possibility to insert a flag into the GLB-database, that announces 
whether the dynamic_glb_manager is used or not, may solve the mentioned 
problem. 

In the next stage of the problems investigation, it is planned to transfer this 
functional principle to DCE/RPC (under IBM's AIX). The basically analogous 
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endpoint map [4] and its database respectively permit to do that without greater 
alterations. Naturally there exist more comfortable services of  the CDS (Cell 
Directory Service) as for instance profile entries usable for the management of the 
dynamic_glb_manager. 
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Abstract: Current DCE RPC offers an object model which is static in that 
objects are assumed permanent and published within a directory. Moreover, 
all parameters of an object's interface are typed statically. We argue that this 
object model should be enhanced by dynamic objects which are created as the 
result of a client/server interaction with parameters whose types are conveyed 
at creation- or call-time. Dynamic objects are a common model for context- 
handles and callback, as well as delegation scenarios. Dynamic typing 
facilitates access to generic servers through RPC. In this paper our emphasis 
is on motivating the need for the proposed extensions, and on showing that 
they can be integrated into current DCE RPC in an upward compatible 
m a n n e r .  

Introduction 
With the appearance of modern workstation technology, client/server computing has 
become an important programming paradigm. Besides distributed file or database 
servers, new applications which provide services for cooperation among users, based 
on shared graphical interfaces, have gained momentum. Programming environments 
for distributed applications should provide a systematic approach for the development 
of these applications[4]. They should offer higher level abstractions, either at the 
operating system or programming language level, that shield the developer from the 
details of communication and heterogeneity. Based on these, but orthogonal to them, 
they should additionally offer integrated services such as directories, security services, 
or transaction processing. 

Of  special importance is the support of arbitrary programming languages, 
which should offer a systematical approach to export services within a distributed 
system based on the interfaces. Exporting a service makes it available on arbitrary 
platforms as a local interface to clients. This approach not only accelerates the 
development through reuse of existing servers and transparent access, but also 
improves maintainability in case of service changes. 

OSF-DCE [2] meets these requirements due to its wide-spread availability on 
many different platforms and its powerful RPC with integrated infrastructure for 
security and directory services. RPC is fundamental but still has functional deficiencies 
[10]. By their very nature, common servers are generic but cannot be integrated 
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directly because of RPC's lack of dynamic typing. Scenarios with dynamically 
determined resource sharing requirements are insufficiently supported due to the static 
object model. 

In this paper we present extensions, which offer a fuller object model, but 
which are nevertheless upward compatible with DCE. These extensions result in a way 
to offer complex servers based on their interfaces, enable new applications, and 
providing a scheme for shifting authorisation and access control from the application 
into the runtime system. By completing the object model we also get a better 
understanding of the current DCE object model. 

We will start with a description of the object model within DCE RPC. Then 
we will discuss dynamic objects and dynamic typing as a completion of the existing 
RPC. In the fourth chapter we discuss the integration of the extensions into the DCE 
RPC. There we outline, how the existing IDL, stub structures and authorisation 
services are affected. Thereby upward compatibility will be the major concern. Finally 
we compare our extensions to the new emerging proposal of OMG-CORBA. 

I. The Object Model within current DCE RPC 

In order to motivate our extensions, we first characterise the current notion of objects 
within DCE RPC. We start with a rather simple model of objects within client/server 
computing. The active entities and units of distribution within this model are 
processes. Objects denote resources (data + operations) that are bound to a process. 
A process is called a server of an object if it offers the object to a distributed 
environment. A process holding a reference to an object is called a client of that 
object. Using this reference a client is able to call the object (i.e. client = caller). 
Client and server are not permanent properties of a process but a role a process 
assumes with respect to some object. 

The sole informations a client has about an object are an opaque reference 
(also called a handle) and an interface. The reference uniquely identifies the object. 
It can be used to route a request to the object. The interface describes the operations 
applicable on the object and thus the visible effects from accessing it. Besides this 
interface, a client knows nothing about the internal object structure. This internal 
structure is provided by the server. It consists of a local state, a set of operations 
executing on that state (called together the local object), and the runtime environment 
for the object. The server is completely free in selecting an object structure, as long 
as that structure fulfils the contract defined by the interface, 

DCE RPC provides a framework for realising objects accessible within an 
open system in languages that offer no direct support for distributed computing. A 
client accesses an object through a client stub that, when instantiated with a server 
binding handle imported from the directory, acts as a proxy object to the actual remote 
object. At a client side, creation of a DCE object happens at importing time. 

At a server side, the local objects are called by the runtime system on an 
incoming request (Figure 1). The actual implementation of a local object is outside the 

This does not mean that any client/server computation within DCE RPC follows this model, but 
that it is possible to realise this model within the current DCE. 
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Figure 1: DCE Object at s e r v e r  s ide  

scope of DCE. Local objects are encapsulated into a DCE object. The state of this 
DCE object consists of the entry point vector (EPV) to the manager operations, the 
operations are those of the server stub. A DCE object is created when it has been 
made accessible to clients. This means that the DCE object must have been registered 
to the runtime, and the binding handle of the object is exported under a name and 
annotated with the object's unique identifier (UUID) to the directory. 

Of special importance for the discussion here is the DCE RPC facility to 
protect objects against unauthorised access. It is based on the fact that any acting 
entity, called principal within the context of protection, can obtain a unique identity. 
Authentication allows principals to certify their unique identity to each other. For 
authorisation, an object at the server side can be associated with an access control list 
(ACL) that defines permissions that various principals have on the object. 

Whereas authentication to a large extent is a runtime matter, authorisation lies 
within the responsibility of the application. DCE defines an interface for remote ACL- 
manipulation and local ACL-management. However, any server that wants to control 
access to its objects, must itself provide the manager operations to these interfaces 
within its application. Access control is performed within the envelope operations. 
This part of the manager operations works on the client binding handle and 
additionally maps the the object UUID to the local handle of the object's state. Thus, 
the envelope is an application dependent stub to the server operations which, for 
example, might be defined within a local library. 

2. Dynamic Objects 

Objects denote resources (data + operations) that are bound to the server process. DCE 
RPC offers static, global objects. Independent of any prior client/server interaction, a 
server creates a DCE object at startup time, thereby publishing it within a directory 
under a name. Since the directory is replicated, publishing is an expensive operation. 
It can be justified only for long-lived objects. 

This notion of a static object is not adequate to model all kinds of server- 
bound resources, especially when they are of a more transient or dynamic nature. 
Examples of such resources are 
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instantiation of a new resource on a client's behalf at a server side 
granting temporary and perhaps limited access to an existing resource 

the  state of a client's operation on an existing resource 
the state of a bulk data transfer 

Therefore we need a counterpart to the static objects which we term dynamic objects. 
The following table gives some characteristic differences between static and dynamic 
objects: 

Static Objects 

created at the server's discretion 
exported into a (replicated) directory 
under a name 
usually long-lived 
uncoupled to any client 
protected through static ACLs 

Dynamic Ob/ects 

created as a result of cooperation 
exported through reference passing 
as an anonymous reference 
usually short-lived 
available to specific clients 
protected through dynamic ACLs 

To some extent, DCE RPC supports already something like dynamic objects with 
context handles and callbacks. These mechanisms are described in section 2.1. The 
subsequent subsections will then inlroduce the proposed extensions. 

2.1 Context -Handle  and Cal lback 

Context-Handles: Consider a fileserver Rt~cver  
object that creates a file as the result . .  I 
of  an open call. A more general j . ~ ,~a~A11  
example in object-oriented terms are the 
class operations new in the Smalltalk 
sense. What  these operations have in 
common is that they return references Ctlant 
to the created objects as result /: 
parameters (therefore we call these 
objects also return objects). Conceptually, the created (or dynamic) object is dedicated 
to the client. This must be enforced by the server on each subsequent access to the 
object. By default, the lifetime of the dynamic object is bound to that of  the client. 
When the server detects that the client no longer runs, it deletes the dynamic object. 
Thus in this scenario dynamic objects realize a creation on behalf relationship. 

Callback: Consider an object O that 
has to callback its client during 
performing some work on behalf of  the 
client. The client creates a dynamic 
object P whose reference it passes as 
an input parameter of  an operation call 
to O .  After receiving this reference O 
performs the callback on P. 

I] Client ~ 
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Examples of such a scenario occur, for example, in bulk data transfer as 
exemplified by pipes, when modeling procedure parameters or notifications. The 
examples exhibit different requirements of visibility of P from within O: Within the 
first two scenarios P is accessible to O only during executing the operation to which 
P was submitted as an input parameter. In the notification scenario, P is actually used 
to notify the client about an event that happens within O asynchronously after return 
of the passing request. Thus there exist two parameter passing modes for input 
references: Transient input references, where the lifetime of a dynamic object is 
restricted to the duration of a request (granting temporary access) and static input 
references, where the lifetime is restricted to the lifetime of the receiver. 

Note the role change as a result of passing a reference to an object as an input 
parameter: The process that is a client of object O becomes a server of the created 
object P whereas the process that is the server of O becomes a client of P .  

2.2 Third-Party Reference Passing 

Thus far the dynamic objects of DCE 
are used to model reference passing as 
it occurs within usual client/server 
relationships. However it must be 
possible for a client of a dynamic object 
to grant its reference to a third process. 
The need for this can be demonstrated 
when we combine the above two 
scenarios, that is, a client wants to print 
a file F that is located on a remote file 
server. 

In this case, the client grants 
the printer a reference to a remote 
object rather than to a local object. As 
within the callback scenario the printer 
can itself fetch the data by calling the 

PrlrttSorvw 

read operation on the file object. It should be opaque to the printer that it is getting 
the data from a different process. 

Granting a reference to a third party strongly affects the access monitoring 
performed at the dynamic object. So far the server of a dynamic object has to ensure 
that only calls that originate from the client may be executed on F .  

If a client wants to make its private object available to another process, it has 
to authorise this process at the object. Different techniques for this exist. In DCE 
authorisation, the client has to set the read permissions for the printer at the ACL- 
Manager responsible for F .  The ACL-Manager for dynamic objects needs a special 
structure [5] which we will describe in section 4.3. The client remains the owner of 
the private object. As within the callback scenario, the printer is only temporarily 
authorised at F in order to perform some tasks on behalf of the client. 

During this task, the printer itself may pass the reference of F to another 
object that then acts on the printer's behalf on F ,  but this time only within the limits 
of the printer's access permissions. In general the granter trusts the grantee, and this 
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relationship is transitive. If transivity is not desired, the granter can pass the reference 
in private mode ensuring that the reference is limited to the grantee. 

When the printer has finished its print task, the client revokes the 
corresponding read permission at F . This implies the revocation of all those 
permissions that were set by the printer for other processes, and so forth. 

If an object should be used exclusively by only one client, the server passes 
its reference in exclusive passing mode. The client will lose access to the object as 
soon as it passes the reference to a third-party. Here, access rights are moved but not 
objects. 

Passing a reference to a third-party as a result parameter must also be 
possible. An example of third-party reference passing with the static input references 
is a generalisation of the notification scenario, where the notify object P is remote to 
the client itself. A typical application is a customer scenario, where a client tells an 
object O to send the result of the request to another object P that acts as a 
replacement of the client. In both cases, passing a reference requires an authorise call, 
but the revoke either is related with receiver termination or must be performed 
explicitly. 

2.3 References as Access Rights 

When a process creates an object and passes its reference to another process, it sets 
automatically access rights on that object. If we assume that the authorisation 
described above always happens in conjunction with passing a reference to a third 
party we get as a higher level abstraction that a reference to a dynamic object 
embodies a potential access right for the receiver of a reference. Although the granter 
of the reference has done its best to make an object available to the receiver, the 
server can always deny access to a special process. Possible reasons for this will be 
outlined below. 

Reference passing offers a new way of access right management or 
configuration. Consider a process A 
that owns several device objects. The 
owner can build a compound object 
consisting of the references of its 
devices and pass that to another process 
B ,  thereby authorising the receiver with 
only one request. Implicit revocation 
through transient input and client 
rundown, as well as the various passing 
modes, ensure the desired limitations on 
the lifetime of the passed references. 

Z 

f:q 

2.4 A Dynamic Object View on a Static Object 

A process may import a reference of a static object from the directory and pass it as 
an operation parameter to another process. Such a scenario occurs, for instance, within 
the above file/printer scenario when the client has imported the file reference from the 
directory. Here the client puts a dynamic object view on a static object without the 
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object server needing to be aware o f  it. The reason for doing this is to use the 
semantics associated with reference passing that extends the authorisation capabilities 
on static objects. 

This scenario is often described as delegation. In a world of static objects 
with static access control, the access permissions defined within an object's ACL are 
usually defined in such a way that they statically cover all possible access scenarios. 
However, this approach is not in accordance with the need-to-know principle. For 
example, a printer should not be authorised on a static file permanently, but only while 
executing the print job. Delegation provides an appropriate mechanism to express the 
required kind of dynamic authorisation. Within the printer scenario it means that the 
client delegates its read-permission on the file object to the printer, in order for the 
printer to act on behalf of the client. 

Delegation is commonly understood as [12] .. a principal (= delegator) 
authorises another principal (= delegate) to perform some tasks using some of the 
rights of the delegator. 

Reference passing expresses a special form of delegation in that a granter 
delegates an access right on a well defined object. Delegation in its general form 
includes the granting of rights to a group of objects or to any object to which the 
granter has access (= impersonation). Note that passing a reference to a static object 
is more than merely calling the ACL-manipulation operations from within the client 
dynamically. A client may access the file but may not have the right to change its 
ACL. Reference passing expresses the fact that the printer is acting on behalf of the 
client and thus is given some possible set of rights that a client would have there. 

3. Dynamic Typing 

Stub compilation within DCE RPC is based on the fact that all IDL interface 
parameters are typed statically. This allows the associaton of each parameter with a 
compiled marshal procedure and tag-free data representations. However this scheme 
does not give appropriate support for generic servers within the IDL. A generic server 
can be regarded as a container object that offers operations, e.g., to insert and 
retrieve data of arbilrary type. Predominant examples are those servers that deal with 
persistent data, for example, structured file servers or database servers. For local 
clients such servers typically offer interfaces of the following form: 

op_name (data-identification, format-specification-string, untyped-buffer) 

Within the body of op_name the data in the buffer get interpreted according to the 
format specification. In other words, the data in the buffer are dynamically typed 
according to the format description. 

A stub for such an interface would need to mimic the same behaviour: The 
format string drives an interpreter for placing the data into the stream at the sender 
side and exctracting plus converting the data at the receiver side. Although the number 
of different types, that are specified within a format description, are usually limited, 
IDL unions, even in their non-encapsulated form [7], provide no direct solution to 
model these interfaces within the IDL. But without IDL support, the stubs to these 
interfaces would have to be hand coded. 
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A reasonable concept for getting automatically generated stubs to generic 
servers is to make the standard generation of marshaling code 

application interface --> IDL interface specification -~ marshal operations 

available at runtime. 

In order to become application-independent we assume that the formats of dynamically 
typed data are described in a subset of IDL comprising basic and constructed types. 
The IDL is extended by a new parameter type type. A parameter of type type, called 
a type variable, contains a description of an IDL type. A parameter may reference a 
type variable as its parameter type, which means that its contents are dynamically 
typed according to the type value of the type variable.The association between a 
dynamically typed parameter and its type variable is analogous to the one between 
an open array and the parameter specifying its length. 

In contrast to many other approaches (e.g., basic encoding rules in [1]) we 
separate the type descriptions from the data they type. We regard this approach as 
being superior to using a s t r e am of tagged ("self-describing") data because the 
separation exists in most local interfaces to generic servers. Moreover, it is in the spirit 
of RPC type handling and thus does not need to modify the network data 
representation of the existing IDL data types. For arrays and bulk data transfer it saves 
bandwidth, since formats are only specified once. 

Nevertheless expressing streams is possible with our concept, since type 
variables and dynamically typed data can be used as any other IDL data type and thus 
be a part of a structure. In addition type variables provide the expressive power for 
extending the concept of dynamically typed data to dynamically typed objects. 

3.1 Dynamically Typed Objects 

We will now extend a server that acts as a container object for arbitrary data types, 
to a server for container objects, whose type is determined dynamically but which 
remains fixed during their existence. A natural example is a fileserver of a structured 
file system that must be able to manage files whose structure is determined by a client 
at file creation time. Thus, what we need is object creation with dynamically 
determined types. Let us first clarify what type means within this context. 

Within our object model the structure of an object's state is not visible to the 
DCE object unless it is reflected as a parameter type of some operation defined within 
the object's interface. Let Pdyn be some parameter within an object's interface 
whose structure is determined by the object's state (e.g., a parameter representing 
records of the structured file). 

The server of container objects with dynamically determined structure cannot 
have prepared a special interface for each possible structure, since every different 
structure implies a different type of Pdyn .  Therefore the server offers one interface 
I for its dynamic objects, where Pdyn is typed dynamically. For a dynamically typed 
object the type-description of Pdyn is determined once at object creation time and 
remains fixed during the lifetime of that object. Object creation is extended by 
associating a type description for Pdyn with the created (dynamic) object. At the 
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server side, this type description belongs to the runtime-data of the object, whereas at 
the client side it is associated with the received reference. After object creation, the 
type-description is available at the server as well as at the client side. On each object 
request it is interpreted for marshaling Pdyn without having to be transmitted as a 
parameter of the request. 

Let us restate the performance benefits gained from shifting the determination 
of type descriptions from call time to creation time: The type descriptions need to be 
provided, evaluated, and transmitted only once at DCE object-creation time. This 
makes a dynamic object view interesting for any application where the dynamic 
parameter type is determined once and remains fixed during a set of repeated operation 
calls, for example, general iteration scenarios or dynamically typed pipes. However, 
the interpretation of the type variable on each call remains. A scheme would be 
especially attractive for bulk data transfer and persistent dynamic objects, where the 
type variable gets dynamically compiled at object creation time, resulting in marshal 
operations that can be dynamically loaded at object call time. 

4. Integration of the Extensions into DCE RPC 

This section discusses the integration of the extensions into DCE RPC. It is assumed 
that the reader is familiar with the DCE IDL and DCE runtime. 

One major concern of the extensions should be to maintain upward compatibifity. 
Static objects as defined in current RPC should run in an extended system without 
restrictions. Thereby local runtime and stub structure may be extended, but existing 
formats and protocols should not get affected. It is obvious that the most crucial 
component for the extensions is the IDL. Additionaly, modifications are needed for the 
authorisation. For dynamic object creation and deletion we assume the API defined 
within [9]. 

4.1 DCE IDL Extensions 

The following IDL support is needed for dynamic objects and dynamic typing: 

Interfaces as parameter types of object references 
Type variables and dynamically typed parameters 
Parameterized interfaces for dynamically typed objects 

For a complete discussion of the extensions see [11]. Here we demonstrate the various 
extensions by means of the interface to the server of container objects, mentioned in 
section 3.1. 

version (0), formal_is (Pdyn)] 
interface container 
{ 

error_status_t insert([in] Pdyn rec); 
error_status_t retrieve([out] Pdyn* rec); 

[delete] error_status_t close( ); 
} 
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[version (0)] 
interface container server 
{ 

error_status_t create ([in] char * name, [in] type t, 
[out, actual_is(t)] container * c ); 

error_status_t open ([in] char * name, [out] type* t, 
[out, actual_is(t)] container * c); 

The container__server offers operations that return references to container objects. A 
container offers operations to insert or retrieve data. The structure of the data, that is 
inserted into or retrieved from a container, is determined when the container object is 
created. Afterwards, it remains fixed during the existence of the container object. 

In order to describe this mechanism in the IDL, parameterized interfaces are 
introduced. Such an interface describes a template, akin to a C++ template, where the 
formal interface parameter Pdyn is referenced as a type of those operation parameters, 
whose structure is determined at object creation time in the container example above. 

Object creation in this context happens when a reference is passed. Thus, when 
a parameterized interface is used as a parameter type, here in create and open, an 
actual interface parameter must be supplied. The actual parameter for a dynamically 
typed object is a type variable. Valid inputs to the type Variable t are strings describing 
IDL data types, except pipes. Note that for the container object the type value is either 
specified by its client (with create ) or its server (with open ). 

Object references are passed with the usual [in] and [out] directions. They may 
have additional attributes that indicate the various passing modes ([static], [exclusive] 
and [private], see 2.2). When an operation call results in the deletion of a dynamic 
object, like close, then it will be indicated through the attribute [delete]. 

Upward Compatibilty: Upward compatible extension of IDL means that a stub 
compiler understanding extended IDL is able to compile standard IDL. This is usually 
achieved by leaving the existing features of the IDL untouched and merely adding new 
parameter types. However, interfaces as parameter types supersede context handles and 
function pointers. In order to avoid confusion between a typed reference parameter and 
the untyped canonical handle parameter, we assume that the handle parameter is an 
implicit one. Therefore customised handles are superfluous. We take the convention 
that these constructs may only appear in interfaces offered by servers that do not 
require the RPC extensions. 

4.2 ACF Support for the IDL Extensions 

The stub compiler performs a default mapping from the IDL to the application 
language. Default mapping of an object reference parameter, for example, is based on 
the assumption that DCE object creation happens within the application. Therefore, a 
reference parameter is mapped to an opaque handle of type handle__t within the 
interfaces of the sender as well as the receiver side. 

Through the introduction of the ACF concept, DCE RPC has already recognised the 
need for declarative support to specify alternative local stub structures and interfaces 
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from the stub compiler. The rationale behind this is to shift envelope functionality into 
the stub, saving execution and development costs. In the following we will sketch the 
ACF support for object creation and for static clients to a dynamic server (for a more 
complete list see [11]). 

Consider a manager operation for the create of the container_server interface that 
returns a local handle to a file from which a container object is to be built. If creation 
of this object should happen within the server stub, the stub compiler must know the 
local handle structure and the entry point vector to the manager operations. This 
information is supplied by extending the ACF attribute represent_as to be an interface 
attribute or even a parameter attribute for object types. 

Usually a client of a dynamically typed object knows which actual type of the object 
is needed, for example, the structure of a file to be created. The new ACF parameter 
attribute set_value sets the value of a parameter to a constant expression. Applied to 
a type variable, as for instance within the create operation of the container_server 
interface ereato([sot_value(my_ree)]), this means that the client needs a container 
object of an actual type my_roe. This actual type itself is specified in an idl file. The 
type variable parameter t disappears from the client stub interface of create as a 
result of this specification, and the client stubs of the dependent interface container 
become statically typed with the actual type my_roe. 

4.3 Dynamic Object Authorisation 

Authorisation for dynamic objects is based, as with static objects, on client PACs and 
on ACLs associated with the object. However, the ACL structure for dynamic objects 
differs from that for static objects with respect to construction, entry structure, and 
access checking algorithm [5]. 

Passing a reference of an object with interface I from a granter A to a grantee B 
results in the entry: 

<B, I [+restrictions], A, UUID> (*) 
I" I" 1̀ 1̀ 

grantee permissions granter entry UUID 

The permissions field lists the interface of an object, since permissions are defined in 
terms of operations. Optional restrictions define those operations of an interface which 
the grantee may not call. This field may also contain expiration dates. Based on the 
granter field, the entries belonging to a given object and user can be organised into 
a tree representing the reference passing history that originated from the user. This 
organisation provides efficient support for revocation. When the reference of this user 
is revoked, all the ACL entries that are part of the sub-tree rooted by that user entry 
are deleted. 

When an object reference gets passed multiple times between a granter and 
a grantee, the pair (user, granter) is not sufficient to uniquely identify an ACL entry. 
The grantee may hold multiple references to the same object that all originate from 
the same granter but are associated with different restrictions. In order to distinguish 
the different references the entry UUID field is added. 

Dynamic ACLs are manipulated through the basic operations authorise and 
revoke. Unlike the see acl * interface to a static ACL, these operations manipulate 
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only distinguished ACL-entries. The operations belong to the management operations 
of  the object server. A handle to them can be constructed from the respective object 
handle. The default behaviour of an authorise-request is first to test whether the caller 
is a valid granter, that is either registered as the owner or a user of the object. Then 
it constructs the user-entry for the grantee and returns the constructed entry UUID.  

The granter inserts the returned UUID as the new object UUID into the 
handle that subsequently is passed to the grantee. This is necessary since we do not 
want to extend the network representation of binding handles to dynamic objects. 
However, it implies a modification of the server's object dispatching. The granter has 
to store the returned UUID when it wants to revoke the passed reference 
subsequently. 

On receiving an object call from the grantee, the server tests the dynamic 
ACL with the is_authorised operation. This operation checks the existence of an entry 
for the caller with the entry UUID and that the required operation belongs to the 
permission set of the entry. To that end the caller must present its PAC so that the 
server can check that it is a valid grantee with respect to the passed reference. 

4.4 Handling a Dynamic Object View on a Static Object 

When a reference to a static object is distributed through parameter passing, the object 
server might be unware of it and thus not offer dynamic ACLs. Alternative mechanism 
for realising the delegation semantics inherent in reference passing are discussed in [3, 
8, 12]. These mechanisms have in common that they encrypt the entry (*) into the 
PAC of the granter and the grantee, instead of logging it within the dynamic ACL at 
the object server. 

The encryption method may save at most one communication step at passing 
time, when the entry (*) is part of the granter's PAC to the grantee [11]. However, 
it drastically lengthens the PAC in case of chained delegation and fails to provide 
efficient support for the revocation step, which is an operation frequently within 
reference passing. 

Therefore we propose the dynamic ACL approach as described above for any 
reference passing. This implies that every server offers the respective interface for 
authorise and revoke. The authorise implementation may work together with the static 
ACLs as follows: If there exists no user-entry for the caller, authorise checks the static 
ACL to see whether the caller has the required permissions before it inserts the 
required entry. The sec acl mgr_is_authorised operation, that is called from within 
the server application to test the access right, must be extended to find the right ACL 
manager. Thus it must be determinable from a handle whether it is a reference to a 
dynamic or a static object. 

4.5 Stub Structure for the IDL Extensions 

Stub Code for Reference Parameter: Passing a reference is always accompanied by 
authorising the receiver to access the dynamic object. Therefore the authorise call can 
be put into the stub of the passing operation, where it is part of marshaling the 
reference parameter. Transient input references, that are passed, are registered 
internally within the stub in order to revoke them after the operation returns. 
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The string binding of the respective handle is the network presentation of a 
reference parameter (although there may be more efficient ones). The DCE RPC string 
binding is extended by authentication annotations, containing the name of the object 
server, the protection level and the authentication service. The object server determines 
the authentication annotations. Unmarshaling a received reference then consists of 
generating a handle from the string binding and annotating it with the received 
authentication information. 

A server stub for a dynamic object contains by default processing of the client 
binding handle, comprising access control and object dispatching. For access control, 
the client PAC is retrieved from the binding handle and used as input to the 
is authorised call on the dynamic ACE For object dispatching, an object table is 
inlroduced into which the pair (object UUID, local object handle) is inserted at object 
creation time. At access time, the server stub retrieves the local handle from the table 
based on the object UUID within the binding handle. 

Stub Code for Dynamic Typing" For the handling of dynamic typing we use a 
scheme similar to that described within [13].The IDL string as input to a type variable 
is converted into an internal format that is efficient for interpretation of the dependent 
dynamic data. The components of the internal format are indices into a table of 
extended marshal operations for those IDL types that are allowed to appear within a 
type variable. Besides the usual marshal operations, the extended operations contain 
the handling of the input and internal buffer. 

Marshaling of dynamic data then consists of calling an interpreter operating 
on the two inputs, the internal format and the data to be marshaled, and producing the 
marshaling output. Marshaling of a reference to a dynamically typed object is extended 
by storing the internal format of the actual parameter into the object table. A similar 
table is needed for a client stub, since it can be called with different handles. On each 
subsequent access to the reference, regardless of whether used as a server- or a client- 
binding handle, the format is retrieved from the reference and used for marshaling 
typed parameters through the formal interface parameter. 

As an alternative to the interpretable internal format, machine code could be 
generated from the contents of a type variable and then directly executed in memory. 
Such a scheme makes sense, where the additional costs for code generation 
compensate the costs for marshaling based on the interpretation scheme. The decision 
which scheme to use is a local matter and therefore controllable through a respective 
ACF attribute. 

5. DCE RPC and its Extensions versus OMG CORBA 

The extensions defined in this paper would enable DCE IDL to become object-based 
with object types that may be typed dynamically. The question now arises whether 
there is a need for the extensions at all, since there already exists the object-oriented 
IDL defined within OMG CORBA [6]. 

OMG IDL allows interfaces to occur as parameter types. However, since the 
CORBA document does not elaborate on security infrastructure, the implications of 
such a facility on object protection are not discussed. OMG IDL offers dynamic typing 
through the type any for "self-describing" data. Hence, it lacks the flexibility of 
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separating type-descrpfion from dynamic data. In addition, OMG IDL does not 
recognise the need for parameterised interfaces for dynamically typed objects. 

OMG IDL has been derived from C++, whereas DCE IDL has emerged from 
the already existing NIDL used within NCS [14]. DCE IDL reflects much more the 
need to have a source for stub compilation. Therefore it offers a set of special data 
types (e.g. non-encapsulated unions, conformant arrays, full-pointer concept and pipes), 
interface-,type-, parameter- and operafion-attrbutes, richer than OMG IDL. In addition 
DCE already has acknowledged the need for a two-step interface specification scheme, 
whereas CORBA understands language mapping only as the default mapping the stub 
compiler performs. 

OMG IDL is superior to our extended DCE IDL with respect to interface 
inheritance, more rigorous scoping rules, and attributes as abbreviations of operations. 
These features simplify the definition of interfaces, although they do not affect stub 
logic. Inheritance may define a subtyping relationship, which is almost covered by the 
DCE IDL concept of interface compatibility as far as binding handles are concerned. 

Our concept of dynamic typing supports generic servers. Through the dynamic 
invocation interface CORBA supports generic clients who can call an object whose 
interfaces they do not know a priori. This is in contrast to dynamically typed objects 
where only parameters of an interface may be determined dynamically. 

Dynamic invocation consists of a higher level interface of the RPC runtime 
primitives to send a request and receive a result. The parameters to these primitives 
are dynamically typed, but usually only at the client side. Within our context dynamic 
invocation combined with the concept of an interface repository may be useful when 
a process becomes a client of an object through receiving its references as part of a 
dynamically typed parameter. The type description of the reference within the 
corresponding type variable comprises only the name of the object type. Based on this 
name, the structure of the interfaces is retrieved from the repository. Interfaces stored 
there can be directly called by dynamic invocation. This means that any operation 
parameter is annotated by a type variable containing its type description. The type 
variable is already initialised by its internal format, which can be easily interpreted or 
even compiled at call time. 

As a summary, we claim that it makes sense to extend DCE RPC even en face of 
CORBA because DCE provides an elaborate infrastructure consisting of stub compiler, 
runtime, communication, directory and security services. Moreover, the extensions 
defined herein are useful for CORBA since they result in stub and runtime extensions 
that are of general use. 

6. Conclusion 

The extensions proposed herein aim at completing the object model within DCE RPC 
and providing a facility for integrating the interfaces to complex servers. We have 
introduced dynamic objects as a uniform model for context-handles, callback, 
delegation and access right configuration. Besides offering new applications, dynamic 
objects simplify the development of client/server applications through integrated 
authorisation and access control. Extending the IDL by dynamic typing solves the data 
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heterogeneity problem of generic servers by the same IDL as introduced for RPC, 
which is the most economical. 
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Abstract 

Recent advances on object oriented computing and distributed processing have 
resulted in developing new approaches for distributed application 
programming. The platform Object Request Broker (ORB) from the Object 
Management Group (OMG) proposes an elegant solution. However, the 
implementation of such an architecture in a heterogeneous network 
environment remains an open problem, due to the complexity of the 
communication infrastructure. In this paper, we describe a simple ORB 
implementation on top of OSF's DCE basic services. The benefits of using the 
DCE services will be demonstrated. 

Key words: DCE, Object Oriented Programming, Object Request 
Broker 

1. Introduction 

Today, the requirements of the co-operative distributed processing become well 
known. However, the traditional network programming tools usually lack efficiency to 
construct high-performance and robust distributed applications, because there is no 
sufficient abstraction provided. The Object Request Broker [1] of the Object 
Management Group (OMG) proposes a attractive solution by combining object 
oriented programming and distributed computing. It offers a collection of mechanisms 
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allowing objects to exchange messages across networks, as though they are local. The 
main functional components of the ORB platform will be briefly examined in the next 
section. 

In a distributed environment, the objects are spread in the network. Thus, they do not 
necessarily share the same address space. They exchange messages across networks 
by using communications services. Therefore, a number of problems arise, for 
example : 

�9 The objects should no longer be represented by their address pointer, as they 
may be referenced by objects in remote machines; 

�9 Since objects can be created on whatever machine in the network and may 
move from one machine to another, they are not easy to be located; 

The communication services carrying invocation messages are subject to be 
lost or damaged, because the underlying networks are not necessarily 
reliable; 

That is why the communication services in the ORB should be able to provide 
relevant mechanisms to make the distribution transparent. 

DeE [2] is the perfect candidate, since it provides integrated and flexible tools and 
services which make the implementation of distributed applications much easier. The 
DCE RPC can meet the primary requirement of ORB in term of remote execution; 
The directory service makes the ORB applications location transparent; The DCE 
threads can allow ORB objects to accept several simultaneous invocations, etc. 

The ORB implementation we propose in this paper is simple, because it utilises as 
much as possible the mechanisms provided by DCE, so as to minimise the 
development effort. Our implementation model will be described in the section 3. The 
programming language C++ will be used for the illustration purpose. 

The utilisation of the DCE's remote execution mecanism requires the mapping of the 
ORB interface description on the DCE counterpart. In the section 4, an IDL lranslator 
is described. 

The conclusion is given in the section 5. 
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2. ORB Architecture and Components 

The Object Request Broker specifies an architecture in which an objet can 
Iransparently invoke operations on another objet within heterogeneous distributed 
environments. The client/server model is respected in the ORB architecture. The client 
is the code or the process invoking an operation on the object which is implemented in 
the server process. The ORB is responsible for locating the server, issueing a request 
to the server and returning the results to the client. 

The interface between the client and the server is described in ORB IDL, an interface 
description language which permits powerful features such as interface inheritance. 
Each ORB interface specifies a type of object, which consist of a set of operations, 
and attributes. 

The picture below shows this architecture : 

Dynamic 
Invocation 

IDL 
Stubs 

ORB 

i~iii::7::i::i~i~i~i::i::i~iiiiii~i::iii::i::i::i~i8 

Object Adapter 

ORB Core 

Figure 1. ORBArchitecture 

ORB core is the basic component of the ORB, which provides the representation of 
object reference and the communication support for remote operations. 

ORB interface offers common ORB functions such as object reference manipulation. 

Object Adapter provides the interface allowing an object implementation to access 
ORB functions : generation of object reference, activation/deactivation of object class 
implementation or individual objects, invocation of methods, etc. 

IDL Skeleton implements an up-call mechanism which allows the object adapter to 
call the particular methods. 



232 

Dynamic Invocation Interface permits the client to construct and to issue a request 
at run time, rather than calling a client stub via IDL definition. Using this interface, the 
client can dynamically specify the object to be invoked, the operation to be performed, 
the set of the parameters to be passed in the operation, and so on. 

IDL Stub masks to the user language the complexity of ORB remote operation 
mechanisms. The user request is presented by the stub in order to be forwarded to the 
server. The result of the invocation is then decoded and returned to the invoker. 

The user application consists of a collection of objects communicating through the 
ORB platform. An object can play both client and server roles. 

3. ORB implementation architecture 

3.1. Principle 

The functional specification of ORB can result in a number of implementation 
solutions. The system designer ought to make trade-offs such as : 

* on which language (or languages) ORB interface should be mapped, 

�9 to what extent the user language should be modified to be supported in ORB, 

�9 how to organise the application process (single object per process or 
multiple), 

�9 how to provide the distribution transparency, 

�9 how to dynamically create objects and make them visible to other objects, 

�9 etc. 

In this section, we will present an implementation architecture of ORB on top of DCE 
services. To illustrate the language mapping, we will use the C++ language. 
Nevertheless, the mechanisms developped can also be used for other languages. 

The key idea in the proposed ORB implementation is to avoid modifications in the 
user host programming language, i.e. The C++ programmer does not need learning 
new C++ extension. He or she can develop ORB based applications just like an 
ordinary C++ program. Besides, the development effort for ORB may be reduced, as 
no C++ grammar analyser is required. 
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To make this challenge possible, the ORB environment should give to the application 
an illusion of working with local objects. Thus, we inlroduce the concept of proxy 
object. The main objective of this object is to offer the same interface than that of the 
server object. This object acts exactly like the invoked object, except that it does not 
contain the real object implementation. 

Client ProgO 
{ 

Proxy_ServerObj.mtdl(pl ,  p2, ,.); 
I I  Proxy_ServerObj is the local name of ServerObj; 

In fact, the proxy object performs the functions of ORB stubs. It permits the client 
object to bind to, make the invocation on and unbind from the remote object, as shown 
in the code below : 

Proxy_ServerObj::mtdl(pl,  p2 .... ) 
{ 

/* 

* bind to the server object using the Naming Service 
*/ 

binding_handle = bind(ServerObjDceUuid); 
/* 

* RPC call to the server procedure 
*/ 

ServerObj_RPC_mtdl(pl ,  p2 .... ); 
/* 

* unbind from the server object 
*/ 

unbind(binding_handle); 
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There is always one proxy object for each remote object I on which clients of that 
server object may issue invocations. The reason for this is to keep the server object's 
behavior uniform for all the client objects in the same process and to avoid 
redundancy. 

At the server side, the RPC procedure performs the functions of ORB object adapter 
and skeleton. It invokes the method implementation and returns results. The code 
below shows the RPC function making the up-call to the server object : 

ServerObj_RPC_mtdl(pl, p2 .... ) 
{ 

ServerObj.mtdl(pl, p2); 
o . ,  

} 

3.2. Architecture 

The principle is quite simple. But, to achieve this in the DCE environment, we should 
be able to answer the following questions : 

�9 how to locate objects? 

�9 how to create proxy object for a object dynamically bound? 

�9 how to organise object implementations? 

The implementation architecture we propose is fully bsed on the DCE distributed 
services. An ORB application involves several processes distributed in the network. A 
ORB process can support both client and server functions which are implemented in 
the DCE client and server stub procedures. The ORB core functions are provided by 
the DCE RPC service. 

1To ensure the uniformity, the local invocations are treated as remote. 
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The following picture shows the proposed implementation architecture : 

user objects 

DCE RPC 

Figure 2. ORB implementation architecture 

The user application is made of one or more objects which can be created statically or 
at run time. The object implementations 2 are distributed in the network according to 
the configuration policy defined by the application designer(i.e, processing power, 
storage capacity, security measure, etc.). The instances of an object type can only be 
created on the hosts which support that particular implementation. One object can 
invoke another by issuing an ORB request containing the reference of the invoked 
object. The invocation is performed without knowledge about the location of the 
object. However, an invocation is possible only if the invoker succeeds to import the 
service interface exported by the server objet. 

Since DCE provides location transparency for RPC procedures, ORB implementation 
can directly make use of this mechanism. Therefore, An ORB object invocation is 
mapped on a DCE RPC call. This mapping will be straightforward if the semantic of 
the invocation is preserved. Thus, the ORB IDL interfaces must be translated into 
DCE IDL interfaces. For this effect, we have developed a IDL translation tool which 
will be presented later in this section. Furthermore, there must be an one-to-one 
relation between an ORB object and its DCE interface. Fortunately, DCE provides 
object oriented programming capacity. One server can support more than one type of 
DCE object and manage several object UUID of the same type. The objects of the 

2The term "object implementation" here refers to the notion of the class of the object 
oriented languages. 
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same type share the same set of stubs. This feature allows to dynamically create 
objects without changing the stub procedures. 

When an ORB object is created, it will be allocated an ORB reference. The reference 
will contain the uuid of the corresponding DCE object, which allows the ORB to take 
advantage of the location transparency provided by the DCE. 

The ORB maintains a reference table in which an object is represented as a 3-tuple 
<localReference, ORBReference, DCEuuid>. If the object implementation is local, the 
localReference is the C++ reference of the object. If the object is remote, it contains 
the C++ reference of the proxy object. ORBReference contains the ORB reference of 
the object. DCEuuid contains the uuid of the corresponding DCE RPC object. Each 
time that a new object is created, one entry with the object's C++ reference is added to 
the local table. However, when a new object is referenced by the client for the first 
time, a new entry with its proxy reference is added to the table. Within the same ORB 
entity, there is only one proxy object for a referenced remote object. 

The host language such as C++ usually provides the class definition which describes 
the behaviour of the objects of the same implementation. This class definition can be 
completely or partially mapped on the ORB interface. Thus, each ORB object may 
perform the same or a subset of behaviour of its corresponding C++ object. The ORB 
interface is then translated to the DCE interface to generate stub procedures. This 
translation is performed by using the IDL translator. 

3.3. Example 

The example given here attempts to show the mechanisms described above. 

The object objectX invokes the method mtdA10 of the object ObjectA with a 
argument containing the reference of ObjectC. In the mtdA10, ObjectA will create 
ObjectB and invoke mtdC 10 of ObjectC. 

, i ~iii::iiii::iiiiiiiiiiiii::iiiiiii::iii~ ii,, ~: 
"ii i iiiii(:ili~.*::~iliii::iiii::::::iiiii i 1. ObjectA.mtdAl(ObjecCC)>: : ~ i ~  , 

-::!~ :i!:.i:.!i!!i::i:;i!!!:;:.!::!i:!~: V 

3. ObjectC.mtdC10 

i 
�9 ~25~ii!!~i!:.~:i= : .:~:::!i::.;~!!212:j:!: :.i:i:: .... 

Figure 3. Example 
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The object ObjectX is the client of ObjectA. we suppose that ObjectX utilises the 
service of ObjectA in the method progO : 

The client procedure in ObjectX is as follows : 

ClassX::progO 
{ 

/* 

* invokes Object,  &, 
*/ 

Proxy_ObjectA.mtdA1 (ClassC &proxy_refC); 

} 

The invocation is not performed directly on ObjectA, but on its proxy in the local 
ORB process. 

�9 The mtdA0 of the proxy object for ObjectA : 

Proxy_ClassA::mtdA1 (ClassC &proxy_refC) 
{ 

/* 

* bind to the ObjectA using the Naming Service 
*/ 

binding_handle = bind(ObjectADceUuid); 
/* 

* The proxy object makes a RPC call to the server 
* procedure, passing the ORB reference of ObjectC 
* in the argument. 
* This ORB reference can be found in the reference table 
* by making a search for the proxy object reference. 
*/ 

DCE_lnterfaceA_mtdA1 (ORB_getORBRef(proxy_refC)); 
/* 

* unbind from the server object 
*/ 

unbind(binding_handle); 

} 

The proxy object offers exactly the same interface than the server object. It makes a 
DCE RPC call to invoke the remote object. 
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ObjectA is the server of ObjectX and the client of ObjectC. In addition, it dynamicly 
creates the ObjectB. Its ORB interface is translated into DCE interface. Its DCE 
server procedure is shown below : 

DCE_lnterfaceA_mtdAl(ORBRefType ocRef) 
{ 

ClassC &proxyC1; 
/* 

*/ 

call DCE primitive to obtain the object uuid from 
the binding handle 

rpc_binding_inq_object(binding_handle, &uuid, status); 
/* 

* search for local object reference in reference 
* table using its DCE uuid 
*/ 

objRef = ORB_getObjRefFromDCEuuid(uuid); 
r 

search for entry corresponding to OC from ORB 
reference table 

*/ 

proxyC1 
/* 

*/ 

= ORB_getObjRefFromORBRef(ocRef); 

If this object reference ocRef is found in the reference 
table, e.g. the ObjectC has been referenced, 
The ORB run time can take the its proxy object and 
pass it as parameter in the method call. 
If not, the ORB run time should invoke the operator New 
to bind to the object and create its proxy object. 

if (proxyC1 t= nullRef) 
{ 

/* 

* object C1 has been already referenced 
*/ 

((ClassA &)objRef)->mtdA1 (proxyC 1); 
} 
else 
{ 

/* 

* the object reference is missing from the 
* reference table. 
*/ 

proxyC1 = new (ocRet) ClassC0; 
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((ClassA &)objRef)->mtdA1 (proxyC 1); 
} 

} 

In order to make invocation on the ORB server object (ObjectA), the DCE procedure 
needs the ORB object's local reference which can be obtained by its DCE uuid. This 
invocation requires the reference of ObjectC. However, the local ORB process may 
never refer to this object before. I f  so, the proxy object for ObjectC ought to be 
created to perform this dynamic binding. 

The ORB object implementation for ObjectA is shown below : 

ClassA::mtdA1 (ClassC &refC1) 
{ 

/* 

*/ 

create dynamically an instance of ClassB 
Only the proxy object is created 
The server object will be generated by 
the proxy object in the implementation site 

ClassB proxyB1 = new ClassBO; 

/* 

* Invoke a method on the proxy object. 
*/ 

refC1 .mtdClO; 

} 

When an object creation is required, only its proxy is created in the user code. The 
real object is created during the construction of this proxy object. 

Only this part of code is writen by the user. It does not require any language 
extension. 

4. ORB/DCE interface translator 

To meet the ORB to DCE interface mapping requirements, we have developed a tool 
which performs the translation from ORB IDL interfaces to DCE IDL interfaces. 

The syntax of the DCE IDL is quite similar to that of the ORB IDL. The translation 
might be straightforward, if the ORB interface definition did not provide special 
features. 
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Unfortunately, the ORB IDL allows a number of features which are not directly 
supported in the DCE IDL such as: attribute definition, interface inheritance, etc. 
Therefore, the ORB/DCE interface translator aims to provide relevant mechanisms to 
facilitate this mapping. 

The translator performs normal syntax conversion from the ORB interface definition 
to the its symmetry in the DCE IDL. 

If the ORB interface definition uses the direct attribute manipulation feature, we 
define a pair of operations : "get" and "set" in the DCE interface to perform the 
counterpart in the DCE IDL. The "get" operation reads the attribute value; The "set" 
operation changes this attribute to a specified value. If the ORB IDL attribute is read 
only. Only the "get" operation is specified. 

i.e. 

IDL interface definition : 

interface A { 
attribute long x; 
readonly attribute short y; 

}; 

Corresponding DCE interface definition : 

interface A 
{ 

long _getx(  ); 
void _set_x( [in] long x); 
short _get_y( ); 

} 

The interface inheritance mapping is more complicated. Suppose that we have the 
following ORB interface definition : 

interface A: B, C{ 
void mAlO; 

}; 

The ORB interface A is derived from B and C which are defined as follows : 

interface B{ 
void mBlO; 

}; 
interface C{ 

void mClO; 
}; 
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When the interface A is directly translated to its DCE interface, it will only contain the 
operation mA1. Thus, the translator should be able to recognise the inheritance, to 
include mB1 and mC1 and to create the corresponding stubs. One solution is to copy 
all the operations and attributes of the base interfaces in the derived interface 
according to inheritance rules (ex. overloading, conflict resolution) and to generate the 
stub procedures. A naming problem may arise when overloaded operations are 
defined. Therefore, the name of the DCE procedures should take into account the 
number of arguments and their types (i.e. DCE_lntfA_mtdA int char_float() for 
mtdA(int x, char y,float z)). 

5. Conclusion 

This paper has proposed a simple ORB platform implementation using DCE services. 
It is demonstrated that the development effort can be reduced, since DCE provides 
effective communication mechanisms. The key idea of this implementation is the 
utilisation of the proxy object concept. A proxy object offers to the client the same 
interface as that of the server objet. It encapsulates the ORB client stub procedures. 

This implementation architecture is under prototype development in the aim of 
providing a simple object oriented programming environment over the DCE. The 
performance aspects are not yet taken into account in this phase. 
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Abstract 
This paper describes the design and implementation of an extended distributed 
object-oriented environment, DCE++, on top of DCE. The design goal was to 
overcome some observed shortcomings of DCE namely that is only well-suited 
for client-server applications. Opposed to DCE DCE++ supports a uniform ob- 
ject model, location independent invocation of fine-grained objects, remote ref- 
erence parameter passing, dynamic migration of objects between nodes, and 
C++ language integration. Moreover, the implementation is fully integrated 
with DCE, using DCE UUIDs for object identification, DCE threads for in- 
terobject concurrency, DCE RPC for remote object invocation, and the DCE 
Cell Directory Service (CDS) for optional retrieval of objects by name. An ad- 
ditional stub compiler enables automatic generation of C-H--based object com- 
munication interfaces. Low-level parameter encoding is done by DCE RPC's 
stub generation facility using the C-based DCE interface definition language 
(IDL). The system has been fully implemented and tested by implementing an 
office application. Experiences with the existing system and performance results 
are also reported in the paper. 

1 Introduction 

The OSF Distributed Computing Environment (DCE) [6,7,8,9] is becoming an indus- 
try standard for open distributed computing. It offers a rich set of  services such as 
RPC, threads, naming, to enumerate just a few. For these reasons, DCE has been the 
choice for our research and development projects, too. However, like other authors 
[5], we have also observed several deficiencies of  the traditional client/server-model 
supported by DCE: 

�9 Granularity: Clients and servers are heavyweight instances. Therefore, it is costly 
to install them dynamically and it is virtually impossible to relocate them at run- 
time. 

�9 C o m m u n i c a t i o n :  The communication paradigm in asymmetric: Invocations are 
usually client-to-server round-trip. Server-to-client invocations require cumber- 
some implementation techniques but are desirable within many applications. 

�9 P a r a m e t e r  s e m a n t i c s :  RPC reference parameters are dereferenced and their con- 
tents are copied by value into the peer's address space. This can lead to anomalies 
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in case of concurrent access to client and server copies. Moreover, parameter 
passing by remote reference would also be more efficient in some cases. 

�9 Remote data access: Data structures managed by a server can only be accessed in- 
directly, i.e. by invoking data management operations of the server. Many appli- 
cations could be facilitated by enabling direct remote access to data objects. 

�9 Entity identity: Data objects do not have a globally unique identity. Therefore, 
they cannot be arbitrarily addressed from remote locations, one of the reasons for 
the lack of direct remote data access. Client and server entities only have a global 
identity by application-specific composition of low-level address and identifier in- 
formation. 

We designed and implemented a distributed object-oriented extension of DCE to ad- 
dress these problems. It supports the following features: 

�9 Fine-grained distributed objects: The programming model is based on fine- 
grained, dynamically created C++ objects located at several distributed network 
nodes. An initial remote location can optionally be specified at object creation 
time. C++ objects therefore are the basic units of distribution. However, objects 
can also contain nested C++ data structures, leading to objects of arbitrary granu- 
larity. 

�9 Systemwide identity: All distributable objects are internally referenced via system- 
wide unique identifiers based on DCE's universal unique identifiers (UUIDs). 

�9 Location independent invocation: Objects communicate by method invocations, 
no matter whether the peer object is local or remote. The task of locating peer ob- 
jects is performed by our system. Remote invocations are internally mapped onto 
DCE RPC. This is achieved by an own stub generation facility working together 
with DCE's IDL-based stub compiler. 

�9 Dynamic object migration: Upon request by the application, objects can dynami- 
cally move between nodes, e.g. to co-locate communicating objects or to distribu- 
te parallel computations onto different nodes. An important property of our ap- 
proach is that migrated objects can still be accessed in a uniform way, and that 
concurrent migration and invocation requests are synchronized. 

�9 Concurrency support: Object invocations at a given node can be performed con- 
currently based on multithreaded RPC servers. Moreover, applications can expli- 
citly create concurrent computations by using a thread-related class library; this 
class library of our system is internally mapped onto DCE threads. 

�9 Decentralization and dynamics: The implementation is based on a decentralized 
architecture. In particular, the algorithm to locate objects is fully decentralized. 
Moreover, object creation and deletion is fully dynamic, and the node structure 
can also be reconfigured dynamically. Based on these properties, there are no 
system-inherent scalability limitations. 

�9 Full integration with DCE: One of the most important and distinguishing proper- 
ties of our system is its full integration with DCE mechanisms. It solely uses DCE 
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RPC for implementing interobject communication, and DCE threads for concur- 
rency. Moreover, UUIDs serve as object identifiers, nodes are addressed by DCE 
binding handles, and the DCE Cell Directory Service is used for optionally regi- 
stering objects by logical names. Based on DCE, the implementation is highly 
portable and enables heterogeneous systems interoperability. 

The approach is based on concepts introduced by earlier approaches such as Emerald 
[1], Amber [2], Arjuna [12], and Amadeus [4]. However, as opposed to these systems, 
it is integrated with DCE mechanisms, an issue that guided many detailed design 
choices. Moreover, the approach does not introduce any C++ language modifications - 
therefore, it is a system service on top of DCE and C++ and not a new language. 

We first discuss our system architecture and design choices. Thereafter, we describe 
details of our implementation and discuss experiences and performance results. We 
also illustrate the functionality by an example application. 

1.1 DCE++ Architecture and Basic Concepts 

DCE++ uses fundamental DCE services, namely threads, RPC, and CDS. The time 
service is also operating in our environment but is only exploited internally, especially 
by CDS timestamps for name entries. The other services can be integrated with our 
approach in the future. Fig. 1 shows the extended architecture of DCE++ based on a 
simple example configuration. 

! L 

D~DS r L 
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r 
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Threads ,, - . . . . . .  i 

Fig. 1: DCE++ Architecture 

On each node, a DCE RPC demon is installed and serves RPC invocations. Moreover, 
threads are used for handling concurrent invocation requests and can be exploited by 
the application with object-oriented class capsules. Distributed objects are allocated at 
various nodes and have local and remote interobject references. A remote reference is 
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implemented by a proxy indirection; a proxy contains a location hint for the refer- 
enced object and transparently forwards invocations based on DCE RPC. Each node 
maintains a hash table for mapping the global object identifiers within incoming invo- 
cations onto actual storage addresses of C++ objects. 

One or mole DCE CDS servers are also part of the environment. Objects can be 
named upon creation which has the side effect that their names are registered with the 
name server along with the binding handle for the creating node. This mechanism is 
used to obtain initial references to objects and solve the problem of binding. However, 
it is not necessary to name an object. In fact, most objects will be nameless and refer- 
ences to them will only be obtained as references in remote method calls. While this 
gives the application developer some control over the accessibility of objects its main 
purpose is performance. Accessing the name service is an expensive operation taking 
several hundreds of milliseconds while passing object references in a method call re- 
quires only in the order of ten milliseconds making it one order of magnitude faster, 

1.2 Proxy Management and Object Access 

A proxy is installed whenever a node learns about the existence of a remote object. 
This is the case when a reference to a remote object is passed as a parameter of an 
invocation. In addition, when an object moves and has references to remote objects, 
proxies must be installed at the destination node for each reference. Moreover, a mi- 
grating object leaves a proxy at its former location. This results in forwarding chains 
of proxies that are followed when an object is invoked. The location information 
within the whole chain is updated upon stepwise return of the call. This way, forward- 
ing chains will usually have a length of only one hop - assuming that invocations are 
more frequent than migrations. 

The alternative of immediately updating all remote proxies whenever an object moves 
would improve invocation performance of mobile objects and is found in some distrib- 
uted Smalltalk implementations (see [3], for example). However, it has two major 
problems: (1) migrations are more expensive, and the approach is not scalable since 
migration costs increase significantly in large systems; (2) each object would have to 
maintain backward references to all proxies; this requires significant storage space and 
leads to orphaned references in case of node failures. 

As a trade-off between a pure forward addressing technique and an immediate proxy 
update approach, we integrated an additional technique: Objects register their current 
location at their "birthnode", i.e. at the node where they were created. That is, after 
having performed a migration, an RPC is sent to the birthnode containing the new lo- 
cation. From each proxy, the birthnode's address can be derived, either by extracting 
the node identifier out of the object identifier or by explicitly registering the node 
identifier with each proxy. Therefore, an object can be located by either following the 
forwarding chain or by querying the birthnode. The first option is used in the fault-free 
case. However, if a forwarding chain is broken by a failed intermediate node, the 
birthnode is queried for an object's location. In the normal case, forward addressing is 
more efficient - it requires one RPC if the location information is up-to-date, while the 
birthnode option would require at least two RPCs for locating the object at a third- 
party node. 
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1.3 Object Mobility 

Object migrations are requested by the application by calling an automatically gener- 
ated method of an object. Basically, a migration consists of the following internal op- 
erations (see fig. 2 for an example of moving an object 01 from node 1 to node 2): (1) 
First, the object to be moved is locked by a semaphore. This is required for synchroni- 
zation with ongoing invocation requests. (2) Then the object is replaced by a proxy at 
the source node and unlocked; however, the object data is still kept for failure recov- 
ery. (3) Next, an RPC installation operation is invoked remotely at the destination 
node, passing the object's data as an RPC parameter. All object data structures are de- 
fined in IDL so that marshalling and unmarshalling can be done completely by DCE 
RPC. (4) The destination node installs the object and inserts its identifier into the local 
hash table. If there has been a proxy before, it is replaced by the object. (5) Upon re- 
ceiving the reply of the remote installation RPC, (6) the source node of the migration 
informs the birthnode about the new location. (7) Finally, the original object data is 
deleted at the source node. 
This approach has some interesting characteristics: Although migrations and invoca- 
tions are synchronized by semaphores, locks are not held at the source node until the 
migration has fully completed. This is not necessary as the source node can immedi- 
ately forward invocations when the proxy has been installed. The birthnode is in- 
formed only when a migration is completed so that it does not receive incorrect infor- 
mation if a migration fails. If an object should be located via the birthnode in the 
meantime, the operation would still work: The birthnode would direct the invocation 
to the former location of the object which then already has a proxy pointing to the new 
destination. Migration requests can also go to remote objects. In this case, the request 
is forwarded like a usual method invocation until it reaches the destination node. Then 
the migration is performed as discussed above. 

Instead of specifying an absolute destination, a relative migration method is also sup- 
ported. It takes a peer object as a relative destination specification, locates the given 
object as discussed above, and then performs the regular migration to the found loca- 
tion. 

Since IDL requires the interface definition to be available before compiling and link- 
ing the application the current system does not allow new object types (i.e. classes) to 
be added dynamically to a running application. Also, all the code implementing the 
methods must be available at all nodes, such that an object of each defined class can 
possibly migrate to every node in the system. 

1.4 Class Structure 

The described functionality is offered by a set of classes shown in fig. 3 together with 
the most important relationships with application and system components. The class 
Object_Reference implements all required data and basic functionality for remote ob- 
ject access and object migration. 
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Fig. 2: Object Migration 

For each application class with distributed instances, two implementations are re- 
quired. The first one, denoted _<Application_Class> in the figure, is derived from 
Object_Reference and represents an auxiliary class. It mainly implements the proxies 
with code to distinguish between local and remote invocations. However, an instance 
of an auxiliary class is also present for each local object as an external capsule for 
each class. The class offers the required code to migrate objects with application- 
specific data slxuctures, too. In case of remote invocations and migrations, it makes 
direct use of DCE RPC as indicated in the figure. Most importantly, this class can be 
generated automatically based on an interface description as described below. 

The "real" implementation of each application class, denoted <Application_Class> in 
the figure, is identical with a regular class implementation as found in a corresponding 
non-distributed application. Each object of an auxiliary class has a local reference to 
the associated "real" object of the application class. 

<Application code> ] 

(_--~ in heri~j ~ ~  DCE RPC I 

Fig. 3: Class/Module Structure 
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Network nodes are also represented by objects, for example to specify destination lo- 
cations of migrations. The derived class Node offers the corresponding functionality. 
In particular, each object of class node contains the required address information as a 
DCE RPC binding handle. An application only uses objects of class Node and of aux- 
iliary application classes directly. Several other auxiliary classes are part of the sys- 
tem, namely classes for threads, semaphores, hash tables, and directory service name 
entries. 

The concrete structure, use, and automatic generation of these classes are described 
below. 

2 Implementation 

The implementation was done on a network of DECStations 5000 and 5240 under U1- 
trix 4.2, using AT&T C++ 2.1 and DEC's C++ compiler, named cxx. Our DCE proto- 
type has been provided by DEC (version 1.0). Basic transport-level communication is 
performed by TCP/IP, UDP/IP or DECnet via an Ethernet. The actual communication 
protocol can be selected at RPC initialization time. For implementing the stub genera- 
tion, the Unix tools awk and sed have been used. 

The following subsections describe our implementation. We first discuss the system 
classes provided by our approach and then show some uxiliary application classes. 

2.1 System Classes 

Object_Reference: Much of the functionality of our approach is given by class Ob- 
jectReference. It has the following (simplified) structure: 

class Object_Reference { 
private: 

uuid_t object_id; 
char *object_name; 
Node *suspected_loc; 

ily curren0 location 
Node *creating_node; 
pthread_mutex_t mutex; 

public: Object_Reference (char*); 
jects and nodes 

Object_Reference (RPC_Obj_Ref*); 
and location hint evaluation 

--ObjectReference 0; 
void lock(); 
void unlock(); 
uuid_t getoid 0; 
char* get_name 0; 
Node* geLcre_loc 0; 
Node* geLsus loc 0; 
void update (Location *loc); 
int 
virtual int 

[[ object UUID 
//object name 
//suspected (NOT necessar- 

//creating node of object 
//semaphore 
// used for application ob- 

/ /used for migrated objects 

//destructor 
//lock semaphore 
//unlock semaphore 
//return id 
//return name 
//return birthnode 
//return location hint 
//update location hint 

migrate (Object_Reference*);//relative migration 
migrate (Node*); //absolute migration 
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virtual Location* locate 0; //locate objects 
]; 

Objects of this class contain a DCE UUID to identify them (objectid). It is generated 
by the constructor using a DCE system function. They also have an optional name 
(objectname) that is registered with CDS. The location hint of proxies and the birth- 
node of the corresponding object are stored in separate instance variables, sus- 
pected_loc and creating_node, respectively. In principle, it would be possible to de- 
rive the birthnode from the object UUID (the node address would be part of the UUID 
to make it globally unique); however, this did not work with the given DCE imple- 
mentation. The semaphore for synchronizing invocations and migrations is also part of 
Object_Reference. 

Most of the methods are pretty straightforward. It may be worthwhile to note that the 
second contructor is used to install proxies when a new object reference is passed to a 
given node. The required address information is provided via a parameter of type 
RPC_ObjRe f  that contains the internal RPC address information for an object's loca- 
tion. The update method is called when a proxy chain is updated upon return of a re- 
mote invocation. The relative migration method is application-independent as it only 
calls the absolute migration method after having located the object. However, the ab- 
solute migration method that performs the physical migration must be provided by the 
application-specific subclass and is therefore virtual. The method to locate an object is 
implemented differently by application objects and nodes and is therefore also virtual. 

Node: An object of class Node is created locally for each node that is known by a 
given peer node, including itself. It provides the required information to invoke an 
RPC at a suspected object location. This includes a unique identifier for the node, and 
a corresponding RPC binding handle. 

class Node : public Object Reference { 
private: 

uuid t loc_id; //id from binding handle 
rpc_binding_handle_t binding_handle; //DCE binding handle 

public: Node (char*); / /nodes defined by applica- 
tion 

-Node 0; //destructor 
Location* locate 0; //return suspected_loc from 

base 
void Shutdown 0; //stop RPC listener 
uuid_t get_id 0; //get node id 
rpc_binding_handle_t get_bh 0; //get binding handle 

}; 

The constructor of this class creates a representative for foreign nodes if a node name 
is given. In this case, a CDS inquiry is performed for importing the required binding 
handle and identifier information (using the CDS interface operations 
rpc ns binding_import_begin .... _next .... _done). Otherwise, the representative for the 
local node is generated. In this case, the constructor exports the local binding informa- 
tion to CDS (using rpc ns binding_export) so that other nodes can import it. The lo- 
cate method just retums the suspected location of the superclass component as nodes 
never move. In addition to basic access operations for instance variables for internal 
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use, a method to shut down the RPC server of a node is provided. It is useful for re- 
mote housekeeping within an application. It is implemented by calling a remote DCE 
RPC management function at the actual location. Note that all other methods can be 
implemented locally - except the interaction with CDS within the constructors. 

The implementation of the other application classes, namely of the threads and hash 
tables are relatively straightforward and are therefore not described in closer detail. 

2.2 Application Classes 

Class structure: The actual implementation of the "real" application classes is similar 
to ordinary C++. However, the auxiliary application classes, i.e. the capsule classes 
around the real classes, are generated automatically. They basically have the following 
class structure (_<A>) for an application class <A>: 

class _<A> : public Object__Reference 
private: 

proxies 
public: 

ject 

migration 

evaluation 

object 

_.<A> (char*); 

<A> *obj_ptr; 

_<A> (<A>_data*, RPC_Obj_Ref*); 

_<A> (RPC_Obj_Ref*); 

-__<A> 0; 
int migrate (Node*); 
static _<A>* get__ref_by_name (char*); 

/ /for all application-specific constructors: 

// internal constructor for 

!/pointer to application ob- 

/! used within manager after 

// used within location hint 

//destructor 
//absolute migration 
// get reference to existing 

_<A> :: _<A> ( .... Object_Reference *or = here, char* name = ""); 
// regular application- 

specific constructor 
/! for all application-specific methods: 
resulLtype < A >  :: method_name ( .... Object_Reference *or = NULL, 

RPC call data *cd = NULL); 

Each object has an internal pointer to the actual object data of class <A> (obj_ptr). 
This pointer is dereferenced for all local invocations, passing them to the real object. 
Two internal constructors are used for installing objects after a migration and for gen- 
erating proxies, respectively. <A>_data* is a pointer to the data structure of the appli- 
cation class, however given in C instead of C++ for conformance with DCE's IDL. 
The implementation of the migrate method also accesses this data structure definition 
in order to perform the remote object installation by an RPC call. Details are ex- 
pounded in [11]. 
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3 Example Application 

To test our system we implemented a small application, modeling an office scenario, 
see figure 4. 

m,,ratio. 

.a,, f 

I head hunter "1-1~ I.form filler l - - ~ a t e  computer ~ POlicy sender 1 

Fig. 4: Example Application 

A "head hunter" creates a number of customers and for each customer a form is cre- 
ated that has to be filled out. After initializing and filling in some basic data such as 
the customer name the head hunter is done. The form filler periodically checks the 
forms' state and as soon as they are available for further processing it requests them 
being migrated to its own node and fills in more data. Likewise the "rate computer" 
periodically checks whether the form filler is done, as soon as the form is in state 
"form_filled_in" it requests a migration to its own node. Then it computes the rates for 
the customers (we model insurance policies being filled out). Finally the filled-in poli- 
cies are migrated to the "policy sender" upon request by the policy sender. As can be 
inferred from the description of the scenario various migrations are involved. More- 
over, the form filler, rate computer and policy sender access the forms remotely to find 
out in which state they are. Therefore the application also makes use of remote method 
invocations. 

To develop an application one has to go through the following steps: 

�9 write the application classes 

* write a corresponding IDL-description 

�9 write a corresponding DCE++ description 

Once one has gone through those steps one generates the migration code by running 
the DCE++ stub generator, then the IDL-compiler, and finally the C++ compiler and 
linker to create the application code. More details on the development process and the 
way the code really looks like can be found in [11]. 
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4 Performance and Experiences 

In this section we will look at the performance of the system. Moreover, we will dis- 
cuss the general experiences gained by designing and implementing DCE++. 

Performance: 

To gather performance data of our DCE++ system we chose to time migration within 
our sample application. For that purpose we used different amounts of data within the 
form that is filled in and migrated in the application. First, we timed the migration of 
the form containing only system relevant data that is inherited by each appliation class 
such as the object's ID. Then we increased the additional user data from 100 bytes to 
1000 bytes and finally 10000 bytes. All reported times are in milli-seconds and short- 
est, longest and median time to complete the migration are shown. The measurements 
were made on lightly loaded DEC 5000 stations connected by an Ethemet. The com- 
munication protocol chosen to be used for RPC was UDP. 

The figures show that the overhead incurred by DCE++ is negligable. In previous 
measurements in the same environment we had measured about 6 ms for a raw empty 
RPC call. Moreover, the figures show that the migration time is not very sensitive to 
the amount of data being transfered. This, however, must be attributed to the tested 
data sizes - which all fit into a UDP packet - and the type of data used (arrays) which 
allows the IDL-compiler an efficient and fast encoding and decoding. A median time 
of 35 ms for the migration of an object containing about 1000 bytes makes DCE++ 
suited for use in real applications. 

time [ms] Empty 100 bytes 1000 bytes 10000 
bytes 

Minimum 16 16 16 59 

Maximum 176 254 176 543 

Median 31 31 35 82 

Fig 5: Performance 

Experiences: 

Based on our implementation and on the example application, we gathered a number 
of important experiences: 

�9 Object model: The object model seems to be more suited for distributed program- 
ming than the traditional client/server approach. Within our application (and 
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within former projects), we observed that a uniform object model simplifies appli- 
cation design. Location independent invocation based on globally unique object 
identifiers makes distribution lransparent to a large degree - except the problem of 
failure handling, of course. Remote object reference passing contributes to this 
fact as it is a natural passing mechanism in local applications, too. 

�9 Object mobility: Mobility is an essential feature of distributed object-oriented ap- 
proaches. It allows for modeling physical data transfer (such as document ship- 
ping) at a very high level of abstraction. Moreover, it provides explicit control of 
distribution when an application requires it (e.g. to co-locate communicating ob- 
jects). 

�9 Use o f  RPC: In spite of our criticism of RPC, this mechanism has proven as a 
workable base for implementing such a distributed object management facility. 
Based on the one-to-one mapping of method invocations onto application-specific 
RPCs, most of the parameter marshalling problems were just passed down to the 
RPC level; this simplified our implementation significantly. Moreover, the recur- 
sive implementation of the algorithm to locate objects based on RPC has proven 
quite elegant and easy to test and maintain. It would be more efficient to send re- 
sults back to the caller via a direct message from the callee, but this slight disad- 
vantage is outweighed by the chance of updating all intermediate location infor- 
mation. 

�9 Use o f  standards: The use of DCE as an industry standard also had many advan- 
tages. As opposed to ad-hoc mechanisms, the environment was rather stable. 
Moreover, we did not have to deal with heterogeneity problems; they are hidden 
by the RPC protocol. Finally, the high portability of applications based on a stan- 
dardized platform is an important advantage in open systems. 

�9 Use of  system services: The use of system services as offered by DCE made a 
rapid implementation possible. In particular, we exploited CDS for node and ob- 
ject management and threads for concurrency support - in addition to RPC, of 
coarse. 

�9 Interface definition: Our interface definition and stub generation approach is only 
an intermediate solution. Its capabilities regarding the language syntax are lim- 
ited. Moreover, a partially redundant specification must be given. Therefore, a 
major goal of our future work is a full C++-based interface definition and stub 
generation facility. 

5 Limitations 

Although we think that our current system is already usable for application develop- 
ment, it still has its shortcomings. 

Most notably there are currendy two description files the user has to write: the IDL- 
description to be used by the IDL-compiler and the DCE++ description file that is 
used to generate support code for migration and remote access. However, this is not a 
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design limitation, since it is possible to generate the DCE++ description file from an 
augmented IDL-description. Work is in progress to enhance the IDL-description to al- 
low the description of C++ class interfaces. From such a description the DCE++ de- 
scription file could be generated automatically, maybe even by the IDL-compiler it- 
self. This would render the need for writing a second (redundant) description unneces- 
sary, which - apart from being a nuisance - also introduces the possibility of errors. 

Another limitation of the system related to the IDL-description restricts the range of 
data types that can be used in migratable objects. Since the IDL-description must con- 
form with the corresponding C++ classes it it currently impossible to support class hi- 
erarchies with virtual member functions. 

Finally, although IDL allows complex data types such as linked lists it is currently im- 
possible to migrate them. The reason is that the RPC runtime system allocates some 
parameters of a RPC on the server's stack and deallocates them once the call has com- 
pleted. This is desired behavior for RPC and for a remote method invocation as well, 
however, when sending object data to another node to install the object there, i.e. 
when a migration is being performed, the data on the (RPC) server's side must persist. 
For simple fiat data types DCE++ can simply do the allocation itself, when more com- 
plex (user-defined) data structures are involved, though, it would be necessary to have 
access to the IDL-description to take appropriate action. A possible solution would be 
to allow an attribute for an RPC call specifying that parameter data has to persist after 
the call completes thus enabling migration. How to do this exactly is another topic 
being investigated. 

6 Conclusion 

This paper described the design and implementation of a distributed object-oriented 
extension of the OSF Distributed Computing Environment. The major features of the 
approach, location independent object invocation and object mobility, have proven 
very useful for application development. Moreover, the use of DCE as a standard has 
provided significant implementation benefits. 

Acknowledgements: I would like to thank Markus Person who implemented the de- 
scribed concepts within his diploma thesis [ 10]. 
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Abstract. This paper suggests a method for developing object-oriented 
distributed applications using the C++ and DCE technologies. It presents the 
benefits provided by the use of object-oriented design and development 
techniques when writing distributed applications. It describes a model to map 
DCE onto C++, a structure for distributed C++ applications and it presents a set 
of challenges we encountered while integrating C++ with DCE, along with the 
solutions we chose for them. Through this approach we saw a significant 
decrease in application code size as well as an increase in developer 
productivity. 

1 Overview 
This paper reports on the results of a project aimed at simplifying the development 

of distributed applications based upon the OSF Distributed Computing Environment. 

This project defines a class library that hides complexity from DCE developers and 
a compiler that converts DCE interface definition files into customized C++ client and 
server classes. Server developers implement the server class methods to implement 
server behavior. Client developers use the client class methods to access correspond- 
ing servers across the network. Using this approach, client writers use the same model 
they use for making local method calls, but an RPC is being made transparently for 
them. 

Standard DCE functions such as security and namespace registration can be pack- 
aged in C++ classes and reused automatically by applications. This reduces applica- 
tion complexity and can increase the consistency of distributed applications. 

By integrating the DCE exception model with C++ exceptions we were able to 
make consistent use of language support for remote and local exceptions. 

1.1 Why DCE in C++ 

We chose to use C++ to encapsulate and abstract DCE functionality for a number of 
reasons. 

�9 Object orientation provides many benefits for abstracting interfaces and hiding 
data, allowing developers to work at a higher level. C++ also facilitates inter- 
face and code reuse. 

�9 C++ is becoming a very prevalent language for object-based systems develop- 
ment. Increasing numbers of C++ class libraries and development tools are 
becoming available. 
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�9 C++ has a clean and natural interface to C, and therefore to the existing DCE 
implementation. 

�9 The C++ object model is also similar to the object model used in DCE. 

These last two factors make the resulting system more intuitive and therefore easier 
to learn. 

1.2 Benefits  

The benefits of building systems using object-oriented techniques have been well 
studied in the literature. Korson and McGregor [1] provide a thorough examination of 
the concepts and benefits of object-oriented development. Nicol, et al [2] present some 
benefits of object orientation for building distributed systems and discuss some current 
distributed object-based systems including the existing DCE object model and OMG's 
CORBA [3] distributed object system. 

In our work the primary benefits that relate to the construction of DCE-based dis- 
tributed applications were the abstraction of complex DCE interfaces and integration 
of the DCE object and exception models with the C++ language. Other benefits were 
seen in the use of encapsulation, error handling, initialization, and cleanup. 

A higher-level interface to the DCE allows greater productivity because less code 
needs to be written to deal with the DCE in each new application. Access to DCE 
functionality is provided through common access to base class member functions. 
Encapsulation of DCE data types within C++ types allows convenient access to DCE 
data through C++-supported type conversions. And integrating the DCE object model 
into C++ provides access to that model in a more natural, language supported way. 

We believe that using the DCE class libraries will produce more readable and reli- 
able code, and make it easier for new DCE users to learn how to create their first DCE- 
based distributed applications. This is mainly due to the complexity of the environ- 
ment which is hidden by the class libraries. 

2 T h e  D C E  O b j e c t  M o d e l  

DCE interfaces (IDL specifications) define a set of related data types and remote 
operations that can be performed using those data types. A client performs a remote 
operation by making a Remote Procedure Call to a compatible server (a server which 
implements the interface the client wishes to use). 

A DCE object is a logical entity supported by a DCE server. Each object has an 
implementation type which is effectively the class of the object. Each implementation 
type is supported by a set of manager routines that perform remote operations defined 
in an interface definition file. A server can support multiple interfaces; each interface 
can have multiple implementation types associated with it. Implementation types are 
typically associated with different categories of entities the server is manipulating. For 
example, a server could support database access by its clients. The server may support 
multiple database implementations transparently, while providing clients the same 
logical view (interface). The server in Figure 1 supports multiple interfaces; within its 
database interface it has implementation types A and B, with associated manager rou- 
tines. 

Each implementation type can have a set of objects associated with it. These 
objects are often logical representations of the entities the server manages, such as 
individual databases or perhaps tables in a database. 
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FIGURE 1. DCE Object Model 

A server registers the interfaces and objects it supports with the DCE environment 
and awaits incoming RPCs. Each RPC is dispatched by the runtime to the specific 
manager function that supports the interface and object requested by the client. 

DCE clients establish a binding to an object by specifying an interface and object 
identifier. The client and the DCE runtime use this information to select an appropriate 
server and initiate the RPC. By selecting an object, the client can select which logical 
entity it wishes to access; in Figure 1 the client has bound to the object obj3. 

3 Description of Approach 
We considered two approaches to constructing a set of class libraries for use as an 

interface to a particular technology (in this case DCE). One was to write wrapper 
classes for each of the basic data types and wrapper functions for each of the inter- 
faces defined by the technology. These classes and functions are patterned directly 
after the data types and functions defined in the technology specification and tend to 
look and operate just like the underlying types and functions. 

The other approach was to create a set of classes that build an abstract model of the 
data and functions needed by an application. These classes are not patterned after the 
data types themselves but rather based upon a set of tasks or responsibilities. The 
implementations use the underlying data types but do so within an infrastructure that 
may be independent of those data types. 

With the wrapper classes, each underlying interface is typically mapped into a 
method call, providing little simplification over the current API. With wrapper classes 
you are tied to a particular implementation of the underlying technology. To work with 
a different implementation or underlying technology you will need to write and use 
another set of wrapper classes. Wrapper classes are still essential in many instances to 
encapsulate basic data types even when using a task-based model. One example is to 
encapsulate native data types into cleaner objects making use of polymorphism or 
C++ operators. 
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FIGURE 2. DCE Class Library Architecture 

The task-based approach requires more up-front design work by the package devel- 
oper, but in the end can yield a system that is cleaner and more consistent for the appli- 
cation developer. Task-based systems may also be able to survive changes in 
underlying technologies, provided the model presented by the technology remains 
similar. 

We chose to create a set of task-based classes to support the DCE object model, 
along with a set of wrapper classes to encapsulate basic DCE data types. 

4 T h e  D C E  C++ O b j e c t  M o d e l  

The DCE C++ object model attempts to preserve the DCE object model while pro- 
viding convenient, natural C++ access to DCE objects. In the DCE C++ object model 
an interface defines a set of abstract client and server classes. Member functions of 
these abstract classes correspond to the remote operations defined in the IDL file. 
Additional abstract classes are provided that encapsulate and simplify the interaction 
with DCE and a set of wrapper classes are provided to encapsulate the basic DCE data 
types into a C++ representation consistent with the DCE object model. On the server 
side DCE objects provide the desired behavior; on the client side they provide trans- 
parent access to the object via the DCE RPC mechanism. 

4.1 Class Library Components 

The components of the class library include the core abstract base classes providing 
the framework for the object model and a set of utility (wrapper) classes that encapsu- 
late the basic DCE data types. 
DCE Core Abstract Base Classes 

The DCE core classes are responsible for providing the DCE interface abstraction. 
They define the view of the distributed object system with which you interact. Client 
and server implementation classes, generated by the IDL to C++ compiler, inherit their 
interface and default behavior from these core classes, which provide members corn- 
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mon to all interfaces. The core classes are: 

�9 Server--this class implements the portion of the server that interacts with the 
DCE environment. A single instance of the server class registers the objects, 
interfaces and bindings supported by the server process with the DCE runtime. 
The server class also takes an optional location in the name space under which 
the server should register itself. The server class has a listen method that per- 
forms all the necessary registration with the environment and begins listening 
for incoming RPC requests. 

�9 InterfaceMgr--this is the server-side abstract base class. Each interface man- 
ager is associated with a DCE interface handle and optional type and object 
identifiers (UUIDs). The interface manager class defines a set of conversions 
and access routines to get the stored data. Derived classes of InterfaceMgr, gen- 
erated by the IDL to C++ compiler, provide the member functions that must be 
implemented by the server developer corresponding to the interface-defined 
remote operations. These classes are referred to as implementation classes. 

�9 Interface--this is the client abstract base class. It holds the common client 
functions for specifying a remote object with which to communicate. The con- 
structor requires as parameters interface and server binding information. The 
Interface class provides the ability to control binding policies, and to convert an 
Interface object to a string binding representation. Derived classes of Interface, 
generated by the IDL to C++ compiler provide the client member functions to 
access the interface-defined remote operations. These classes are referred to as 
client access classes. 

Utility Classes 
The utility classes encapsulate the behavior of basic DCE data types to make their 

use more convenient within C++. The purpose of these wrappers is to allow conve- 
nient construction and use of these data types. Many of them provide conversions to 
the corresponding DCE representation (such as to string or uuid_t ) ,  allowing them to 
be passed directly to DCE calls without need for separate translation. The primary util- 
ity classes are: 

�9 Binding--encapsulates rpc__binding_handle._t. Can be constructed from 
string or from binding handle components. Provides conversion back to 
rpc_binding_handle t or to char*. 

�9 Uuid----encapsulates uuid_t. Can be constructed from string form or uuid t. 
Equality tests against u u i d t  and char* are provided for convenience. C~n- 
version operators are provided for u u i d _ t  and char* ,  as well as to hash value. 

�9 BindingVec--implements a vector of binding handle objects. Can be converted 
into the DCE vector type. There is also a UuidVec class. 

Generated Classes 
The generated classes are created from the interface definition by the IDL to C++ 

compiler. Their structure is described in detail in the following sections. 
Developer-Defined Classes 

The solid ovals represent classes the developer defines (derives) to provide the 
implementation and access to the distributed functionality. 

4.2 IDL to C++ Compiler 
The idl++ "compiler" is actually a per1 script that translates an interface definition 
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into the interface-specific client and server access classes. The compiler first runs the 
standard DCE IDL compiler to create the client and server C stubs and the interface 
header file containing the operation and data type declarations. The compiler parses 
the header file to create a set of C++ classes for each interface defined in the IDL file. 
The client access classes contain member functions that allow C++ method calls to 
invoke the RPCs defined in the IDL file. On the server side the compiler generates two 
classes: an abstract implementation class corresponding to the interface defined in the 
IDL file and a default instantiable implementation class derived from this abstract 
class (see Figure 3). 

In addition to the server-side implementation classes the compiler generates a C++ 
entry point vector (EPV) data su'ucture, and an object mapper, which maps an inter- 
face and object ID pair to a C++ object instance. The C++ EPV is called by the DCE 
runtime when an RPC is received for a given interface. The C++ EPV calls the object 
mapper to get the specific C++ object instance to which the call is being made. The 
C++ EPV calls the desired member function on the object returned by the object map- 
per and handles the mapping of DCE exceptions; see {}7.2 for a discussion of excep- 
tions. 

The data types specified in the header file are left untouched by idl++: no mapping 
of user data types for C++ is done. Data types defined in the IDL file are simply used 
by the application developer as basic C++ data types. IDL data types are a subset of 
C++ types (see the IDL specification [4]). This prototype does not permit the passing 
of C++ objects as arguments to remote procedure calls. 

4.3 Client Access Class 
The client-side access class inherits from the abstract base class Interface. The 

access class includes the methods corresponding to the operations (remote procedures) 
defined in the IDL interface. The client access methods manage binding to a server 
and then call the corresponding C stub generated by the DCE IDL compiler. The client 
methods also map DCE exceptions returned by the RPC into C++ exceptions. 

4.4 Server Implementation Class 
For the server the compiler generates an k,~terIacexv~g~j, 

abstract implementation class derived from Inter- 
faceMgr. The implementation abstract class pro- 
vides specifications for the member functions ~/'Y"~ .~-S~-,,~ 
corresponding to the remote operations declared 
in the interface definition file. Instantiable classes 
derived from the abstract implementation class 
must implement the member functions defined in @ f r y ~ y , ~  f T y ~ ' ~  
the abstract implementation class to provide the 
operational characteristics of the server. Each of FIGURE 3. Server Derived Class 
these instantiable classes is of a distinct imple- 

mentation type (i.e., has an associated manager type UUID). The compiler generates 
one such class by default with a nil manager type UUID (the nil manager class). If 
multiple implementation types (and therefore multiple managers) are to be used, you 
must derive additional classes from the abstract manager class. 

Each object (instance) of an implementation class must have its own object UUID 
and must be registered with the server class so the C++ runtime (object mapper) can 
locate it when a call comes in for that object UUID. 
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The implementation classes implement the manager methods in C++ in the same 
way the manager functions are implemented in a C-based DCE server. The manager 
methods use the data passed in as arguments, perform their task, and possibly return 
data to the caller. 

If manager methods throw C++ exceptions they will be caught in the C++ EPV and 
transmitted back to the C++ client (as a DCE-compatible data type) where they are 
raised again as C++ exceptions for the client to handle. 

5 Applications Ported 
We ported a set of sample applications from the HP DCE Toolkit to experiment 

with the class libraries, with the InterViews C++-based GUI [5] [6], and with object 
database technologies. The applications ported are described in the following sections. 
More detail about these applications can be found in [7]. 

Our application development environment was HP-UX 8.0 and 9.0, with the HP 
DCE Developer's Environment release, based upon OSF DCE 1.0.1. 

5.1 sleeper 
The sleeper sample application is a very simple application whose interface takes 

an integer number of seconds to sleep. The manager sleeps for that many seconds and 
then returns. We used this application for basic experimentation and testing of the 
libraries. 

5.2 rmt load 
The remote load application is used to monitor the load average of a group of server 

systems. The application client concurrently requests the load average of each of a set 
of servers by doing RPCs in separate threads. Each server returns its one-minute load 
average (as emitted by the standard upe..i.~ program) which is then reported by the 
client. 

In our prototype, the remote load client was given an InterViews-based GUI to dis- 
play the load averages. Only the client was ported; it contacted existing C-based serv- 
ers to demonstrate interoperability between C and C++ DCE applications. 

5.3 phone_db 
The phone database application is used to look up personal phone and email infor- 

mation. The UI allows specification of name or regular expression search criteria. 
With that information the client makes an RPC to the database server and displays the 
results. The phone_rib server maintains a database of names and related information. 
It is implemented in C++ and uses the HP OpenODB object database to hold the data. 

The interface for this application defines data types for a database entry, a simple 
structure of strings, and a linked list of database entries. Operations defined include a 
search by name (the name is set up as the key field in the database), an arbitrary search 
for an intersection of fields, and operations to add and remove entries from the data- 
base. The server exports its bindings to the namespace and the client uses the name 
service interface to locate a compatible server. 

The server manager functions were leveraged from the C version. They maintained 
the same interface but were reimplemented to use OpenODB underneath. The client 
was almost entirely rewritten due to the new InterViews graphical user interface. 
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6 Resul t s  
Porting the existing C applications to C++ took very little time--the main time- 

consuming tasks were the removal of the code to interface with the DCE and the addi- 
tion of the InterViews GUI. Since the interface definitions remained the same, the code 
dealing with the data types and remote procedures was highly leveraged. In some of 
the applications the manager code remained in C, as it was perfectly adequate. This 
saved development time, and illustrates the integration of the C and C++ environ- 
ments. 

All the GUI work was done in C++. Since we were using a new technology that the 
sample applications had not been using previously, this was all new code. We found 
that interfacing the GUI code with the C++ client access class was quite natural. 

6.1 Benefits 
The primary benefits we experienced after use of this technology were: 

�9 Providing powerful abstractions on top of DCE allowed us to concentrate on 
the application, not the environment. 

�9 Application development and debugging time were shortened because the 
basic DCE calls are encapsulated in an already-tested library. Also, having sen- 
sible defaults for many DCE values prevented the need for much redundant 
code by allowing code reuse. 

�9 The C++ DCE application code size is significantly smaller than the C code. 
We noted a five-to-one decrease in the actual lines of code that dealt with the 
DCE environment in the sleeper application. The new C++ code was also eas- 
ier to develop than it had been to develop the original equivalent code in C. 

�9 The C++ DCE application object size is predictably larger than the C version. 
The object size grew by 30-40%, mainly due to the addition of the C++ excep- 
tion mechanism and the DCE C++ exception model we added. Use of shared 
libraries should minimize this increase. 

�9 The C++ exception model is more powerful and useful than the DCE exception 
model. A greater variety of exceptions can be transmitted more easily across 
the RPC and handled in the client in a natural way supported by the language. 

�9 Having standard policies defined for namespace registration and security 
should assist in making future applications using this code more consistent 
with each other. This will reduce the management effort required to maintain a 
set of client/server applications. 

�9 The higher-level abstractions seem to be easier to learn than when using DCE 
directly. It is hard for us to judge this fairly as we were all proficient with DCE 
before porting the sample applications. 

7 Issues with technology 
The main issues encountered in integrating the DCE with C++ were in the areas of 

threads and exceptions. 

7.1 Handling DCE Threads 
The DCE threads package provides significant benefits but places the requirement 

of being threadsafe on all components linked into an application. Be sure to verify 
whether your C++ compiler emits thread-safe code (most do), and whether its libraries 
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are thread-safe (most aren'0. Also, if using Xl 1 or other libraries, be sure to determine 
whether they can be called from multiple threads concurrently. If not you will have to 
wrap calls to those subsystems to prevent reentrance problems. 

7.2 Mapping DCE Exceptions into C++ 
The area of exceptions required quite a bit of work in the design of the class library. 

The C++ language-based exception model is by far more powerful and better inte- 
grated than the DCE exception package. It was used as the basis for all exception han- 
dling in our prototype since DCE exceptions are incompatible with C++ destructors. 

The first challenge was that the C++ and C-based DCE exception mechanisms can- 
not interoperate--an exception thrown or raised by one mechanism cannot be caught 
and interpreted by the other. Furthermore, an exception raised in one language context 
cannot be allowed to pass through blocks from the other language. If this is allowed to 
happen, cleanup code might not be properly executed. The DCE exception facility 
uses the setjmp and longjmp calls. The longjmp call allows control to pass from 
one slick frame to another frame, possibly much earlier in the call stack. The trouble 
is the C++ compiler can emit code at the end of blocks to call destructors for automatic 
variables and to handle C++ exceptions. Allowing a DCE exception to skip over this 
code can cause consistency problems and memory leaks in the C++ application. 
Exception Model 

To model exceptions in C++ an abstract base class OSFException was defined to 
specify the common behavior for all exceptions. Two more base classes, DCEexcep- 
tion and CMAexception, were derived from OSFException to model the distinct types 
of exceptions that can be raised by the DCE and CMA (threads) subsystems. The 
DCEexception class was further subdivided into RPC, security, and directory service 
exceptions. Each exception that can be raised either by the DCE or CMA subsystem 
was created as a subclass derived from one of these base classes. Each of the specific 
exception classes has a method that will print out an informative description of the 
exception, and can be converted into a string through an o p e r a t o r  can-r*. 

The choice to model exceptions as individual classes, instead of as a generic class 
with an exception value, allows individual exceptions to be caught by class--in the 
C++ exception model any specified data type can be caught. With the generic excep- 
tion with value model, fewer classes would be needed but if you want to catch a partic- 
ular exception you must catch the generic exception and test its value. 
Server Stubs 

C++ exceptions cannot be passed across the network back to the DCE client. Any 
exceptions raised by the C++ manager methods must be caught and translated into a 
data type that can be raised again as a C++ exception in the client. To facilitate this, 
the idl++ compiler adds a hidden slims parameter to the interface definition. That sta- 
tus parameter is used to hold the unique integer value of the exception that was raised. 
On the client-side that integer is thrown again as a C++ exception. Since an integer 
type is used, only the DCE error status t and unsigned32 data types can cur- 
rently be transmitted back to the client. Any other exception type is mapped to a 
generic exception code. 
Client Stubs 

The C++ access method calls the DCE C stub, which can raise a variety of DCE 
exceptions, including communication status, fault status, and user defined DCE excep- 
tions. To prevent problems caused by the inconsistent DCE and C++ exception mod- 
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els, the DCE C stub call is wrapped by a CMA TRY/OaXTelt clause. If an exception is 
caught in the C++ stub, it is rethrown in C++ as the corresponding exception subclass. 

8 Recommendations 
We have demonstrated it is possible and useful to develop object-oriented distrib- 

uted applications with C++ and DCE, but there are still technical issues with doing so. 
We have come up with a set of recommendations intended to smooth the road for oth- 
ers developing distributed object-oriented applications using DCE and C++. Our rec- 
ommendations fall into two classes: vendor and user recommendations. 

8.1 Vendor Recommendations 

The sooner thread-safe libraries are available, the easier it will be to develop appli- 
cations using DCE threads. In particular, the C++ runtime library, X l l  and GUI tech- 
nologies built upon it, and commercial products such as databases must be made 
thread-safe. 

The availability of thread-aware distributed debuggers will also greatly aid in the 
creation of DCE applications. 

8.2 User Recommendations 

The most important issues to be aware of are those that would impede integration 
of the object-oriented and distributed computing technologies. 

�9 Determine which system components are thread-safe. Develop a plan for work- 
ing around the non-thread-safe components, either by writing wrappers, serial- 
izing, or ensuring that only a single manager thread will run. 

�9 Make sure the DCE exception mechanism is properly dealt with: do not allow 
DCE or CMA exceptions to escape past C++ blocks. 

9 Related Work 
There are many distributed object systems documented in the literature with a vari- 

ety of goals. The Arjuna system [8][9] focuses on fault tolerance and persistence using 
a custom RPC mechanism built atop an existing kernel. The Clouds project [10] built a 
distributed, object-based operating system using a custom microkernel and remote 
object invocation implementation. Like Clouds, Emerald [11] uses an object-thread 
approach to provide distributed object communication. These are primarily research 
projects exploring the operation of distributed object systems using custom platforms. 
Schill [12] presents a model for building an object-oriented distributed system within 
the framework of Open Distributed Processing (ODP) on top of an existing OSI-based 
infrastructure. 

By contrast, our work focuses on integrating C++ within the existing DCE system 
infrastructure, and to simplify the use of the DCE object model. 

OMG CORBA[3] will address creating distributed object systems in C++; some 
implementations will run on top of DCE. CORBA IDL provides for interface inherit- 
ance, which DCE IDL is lacking, and provides a more C++-like syntax for interface 
specification. The CORBA object model is different from the DCE model, but not sig- 
nificantly-both are distributed object models with the concepts of interfaces, remote 
operations, and data hiding. 

We suggest that our work may assist in the migration from DCE to CORBA by pro- 
viding an intermediate C++-based distributed object system until CORBA implemen- 
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rations are widely available. Migrating from DCE/C++ to CORBA should be much 
easier than migrating directly from C or from C++ using direct DCE calls. 

10 Conclusions 
Our conclusion from this work is that using object-oriented design and develop- 

ment techniques can provide significant benefits in distributed systems. In particular, 
the class libraries and compiler we developed significantly reduced the burden of cre- 
ating DCE-based object systems. 

There are several enhancements that we have considered for this work. The obvious 
candidates are other DCE-based systems, such as threads, naming, security, and trans- 
action processing with Encina. Migration of this approach to the CORBA environment 
should also be studied. 
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Abstract. DCE and especially object-oriented extensions on top of it provide 
rich functionality for implementation of distributed applications. Yet, we observe 
a lack of support for the design of distributed applications. Available object- 
oriented design methods do not cater for distribution. In this paper, the Visual 
Distributed Application Builder (VDAB), a new graphical model for design of 
distributed applications is presented. VDAB extends common object-oriented 
design support towards distribution and introduces new visual programming con- 
cepts to address the inherent complexity of large distributed applications. VDAB 
is integrated with DCE and its object-oriented extension DCE++. VDAB appli- 
cation designs are eventually mapped automically to DCE++. 

1 Introduction 

The development of distributed applications is considerably more difficult than the de- 
velopment of centralized software due to their well-known characteristics, such as 
low-level communication, locality, heterogeneity, risk of node failure. The complexity 
of developing distributed applications requires dedicated lifecycle spanning software 
engineering support. 

The OSF Distributed Computing Environment eases the task of developing distributed 
software by providing RPC as communication mechanism, threads for concurrency 
support, distributed name management, distributed file management and security serv- 
ices [15]. Moreover, DCE supports interoperability in heterogeneous environments. 
However, it has been pointed out, that the support is limited to client/server-style ap- 
plications. A number of deficiencies inherent with client/server computing are listed in 
[16], namely the coarse distribution grain, the asymmetric communication, the pa- 
rameter semantics and the lack of systemwide data object identity. 

DCE++ has been implemented as an extended distributed object-oriented system on 
top of DCE. It tightly integrates distributed o-o concepts introduced by approaches 
such as Emerald [2], Amber [5], and DOWL [1], with DCE mechanisms. DCE++ 
makes DCE available for the o-o programming community; it even stays within the 
language boundaries of C++. Further, it achieves a high extent of distribution transpar- 
ency. Moreover, it overcomes the listed shortcomings of client/server computing. 
DCE and DCE++ on top of it simplify the task of distributed programming consider- 
ably. Yet, they tocus on implementation and do not address upper CASE issues. 
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Object-oriented design methods like OOD [3], OOA [6], and HOOD [10] do support 
early lifecycle stages, yet they do not support much more semantics than common o-o 
programming languages. In fact, they do not treat distribution aspects at all. An excep- 
tion is the IX)CASE system around the distributed o-o design and implementation lan- 
guage DODL [7, 13]. VDAB is based on the DOCASE experience, but is rather a too! 
than a language approach. Instead of providing the application developer with yet an- 
other language (and it would be a complex one due to distribution), VDAB provides 
tool support on top of widely accepted environments. DCE was chosen as it promises 
to become an industry standard. C and later C++ were chosen because of their wide- 
spread acceptance. A first prototype was based on C and DCE, a second one is now 
fully integrated with the recently developed DCE++. 

In the following section the VDAB design model for distributed applications will be 
introduced. Section 3 describes the graphical design concepts and tools implemented 
in VDAB. The integration of VDAB and DCE is discussed in section 4. VDAB's 
functionality from early graphical design to code generation is illustrated along a sam- 
ple application development in section 5. Finally, a conclusion summarizes the ideas 
introduced and points out future work. 

2 The VDAB Model for Design of Distributed Applications 

In this section we first describe the distributed object-oriented approach and its exten- 
sion to object categories. These concepts form the foundation of the VDAB model, 
which is described in terms of design elements, design steps and design rules. 

2.1 Objects and Categories 

Distribution and Objects: In order to simplify the task of developing distributed ap- 
plications it is desirable to achieve a large extent of distribution transparency. The dis- 
tributed object-oriented approach has been proven to be adequate for hiding unpleas- 
ant distribution characteristics from the developer. In this approach, objects are not 
only units of modularization, but function also as units of distribution (moreover, they 
can also be used as units of concurrency). 

A basic feature of this approach is location independent method invocation. That is, 
the invocation syntax and semantics is the same for both local and remote invocations, 
thus implementing abstraction from low-level communication and from locality. An- 
other important feature of the distributed o-o approach is object mobility, i. e. the fa- 
cility to dynamically migrate objects between system nodes. The ability to migrate ob- 
jects dynamically has an often underestimated and disregarded impact on availability, 
reliability, and performance of a distributed application. Of course, the distributed o-o 
approach also inherits the well-known o-o characteristics encapsulation, data abstrac- 
tion and inheritance. These features have been proven to ease the development of 
complex applications and to increase software reusability. 

The Category Approach for Structuring Objects: The distributed o-o approach fits 
best into our requirements. Yet, it is not sufficient as it lacks expressive design ele- 
ments. In the o-o model everything is an object, but not more. When it comes to mod- 
eling large real-world applications, a larger set of distinguished design elements is re- 
quired. 



269 

The category approach addresses this concern by structuring objects into distinct cate- 
gories with predefined semantics. This approach has already been implemented in the 
DOCASE project [13]. To the user (the application developer) the object categories 
appear as a complete set of orthogonal building blocks. The user defines each applica- 
tion object class as a descendent of a category, thus combining user defined semantics 
with the system defined eategory-specific semantics. This violation of the small is 
beautiful rule introduces additional system complexity which requires countermea- 
sures to increase ease-of-use. First of all, the design methodology has to assist the ap- 
plication developer in categorizing his class definitions. Further, the category-specific 
semantics have to be made visible for all tools and to be supported throughout the 
software lifecycle. 

While the categories appear as a canonical set on the user-level, they form a single 
rooted hierarchy on system-level. Obviously, a root category has to define all seman- 
tics that are common for all categories (e.g., objects of all categories have a location). 
Subcategories are defined in a single inheritance tree. Category inheritance has to be 
clearly distinguished from application inheritance. Category inheritance specifies the 
inheritance of category semantics to be provided by subcategories, and is invisible for 
the user. Application inheritance is specified by the user and defines the inheritance of 
behavior along the class hierarchy [8]. 

The current VDAB prototype implements five object categories, which are described 
subsequently. We think of the category system as extensible to cater for future require- 
ments (e.g. support of multimedia, CSCW, etc.). Introduction of additional categories 
will require extension of the graphical language and of the VDAB tools. 

2.2 VDAB Design Framework 

The VDAB Design Elements: Object Categories and Relations 

Currently, five object categories are defined and supported by VDAB. They serve as 
design elements for the application developer: 

�9 Active Objects have a highly independent activity (own thread of control). Ac- 
tive Objects are the substantial components of an application. They are thought of 
as instances, i.e. in known or predictable quantities, and they are rather long-lived. 

�9 Passive Objects are controlled by Active Objects. They are thought of in a type- 
oriented way. Instances would be created dynamically, be mobile (probably ex- 
changed between Active Objects) and have a rather short lifetime. 

�9 Logical Nodes are required to express locality of distributed objects while ab- 
stracting from physical network nodes. They allow for definition of initial object 
placement and other object configuration issues. At first glance, the strong sup- 
port of locality may seem to contradict the stated goal of hiding distribution as- 
pects from the user. Nevertheless, we found Logical Nodes an essential design 
element required for modeling locality aspects which are inherent in real-world 
applications. 

�9 UI Agents are for the encapsulation of user interface functionality to increase 
portability and interoperability. UI Agent objects communicate with other objects 
thru a distinct interaction protocol. 
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�9 Environment Agents support the integration of legacy software. 

Further, VDAB defines a number of built-in relations between VDAB objects for 
modeling structural (is part of, knows .... ), behavioral (creates, deletes, uses, activates, 
...) and distribution aspects (moves to, visits .... ). 

Design Elements, Design Steps and Design Rules 

Gerteis describes a set-theoretic model for design methods, and the generic Design 
Method Assistant (DMA), a tool-building-tool for guided interactive design [9]. A de- 
sign method is defined as a system consisting of a set of design elements, a set of de- 
sign steps, a set of design rules and a design procedure. 

The DMA is currently customized into the VDAB Design Method Assistant. In the 
VDAB model we have object categories and inter-object relations as design elements. 
Design steps are the operations that can be performed on design elements (creation, 
modification, deletion), e.g., the assertion of a relation between VDAB objects. De- 
sign rules are predefined constraints between design elements. In VDAB, they specify 
how VDAB objects can be interrelated, e.g., Passive Objects can not create or use Ac- 
tive Objects. Finally, the design procedure specifies the process of design reasoning 
and decision making. Design decisions result in distinct design steps. 

3 The VDAB Graphical Design Tool Set 

Analogous to the design method we can describe a graphical design method as con- 
sisting of a set of graphical elements, a set of graphical rules, a set of graphical steps 
and a graphical design method. In order to build a graphical tool for a given design 
method graphical equivalents for the design elements have to be defined, thereby in- 
troducing the graphical notation. Further, design steps and design rules have to be 
mapped into the tool. This is considerably more difficult as human interaction aspects 
introduce graphical rules which are not related to application semantics. 

3.1 Customization of a Tool-Building-Tool for Graphical Editors 

The development of graphical tools for the VDAB design model was based on the fol- 
lowing goals: 

1. Customization of a tool-building-tool for rapid prototyping of graphical editing 
facilities 

2. Strict separation of design and graphical representation 

3. Extensive support of the design method in the tools (by achieving a good mapping 
of design steps and rules to graphical steps and rules) 

For building the VDAB graphical editing tools we chose to costumize ODE, an exten- 
sible tool-building-tool [12]. ODE provides powerful visualization techniques and is 
highly customizable and extensible based on a simple yet expressive functional lan- 
guage. ODE proved to meet the desired rapid prototyping requirements. Further, ODE 
also supported the second goal, as it enforces strict distinction of models (e.g. design 
artifacts) and views (e.g. graphical design techniques), similar to the model-view- 
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controler paradigm in Smalltalk [14]. ODE's constraint evaluation mechanism sup- 
ported the third goal. It allowed implementation of consistency constraints among dif- 
ferent views of the same model, and other graphical rules like context-sensitive dis- 
abling/enabling of command buttons. Constraint maintenance among graphical 
representations further requires automatic graph layout, which is also provided by 
ODE. 

3.2 VDAB Graphical Views 

Subsequently, we will refer to the various graphical editors of VDAB simply as views. 
Recently, a number of graphical notations for visualization of object-oriented software 
structures have been introduced: e.g. OOD allows for graphical specification of class 
structure, object structure, modules and processes [3]. For description of dynamics, a 
state transition diagram and a timing diagram are provided. OOA [6], OOSD [18] and 
OOSE [11] suggest similar notations. All these notations focus mainly on visualizing 
structural aspects. Description of behavior is poor. Distribution is not considered. We 
further criticize the poor support for identification of required objects and methods. 

VDAB Control Window 
File Options Layout~ 

I call Stenarlo View 
i Appllca, on Scenario View 

I Call 
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~6~,~Ap pile atlo n 
c ~  Scenario 

/ \  
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III 

Help 

Figure 1: VDAB Control View 
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The VDAB tool set introduces new graphical design concepts to address the listed 
concerns. First of all, instance-oriented scenario views are introduced to support intui- 
tive problem solving strategies. These views aim at very intuitive identification of sys- 
tem requirements. Further, VDAB introduces an intuitive notation for system behav- 
ior. To cater for distribution, object configuration views are defined. Finally, VDAB 
introduces a visualization of the graphical design process itself to guide the developer 
thru application design. 

Subsequently, we first describe the Control View. Next, the instance-oriented Applica- 
tion and Call Scenario Views are described. Then, a brief overview over type-oriented 
VDAB views is given. Finally, we reflect how distribution aspects are addressed in the 
VDAB tool environment. 

Development Guidance: As stated above, the complexity of distributed application 
development requires measures to ease the application developer's task. The VDAB 
approach to this end is to provide different views for different application aspects and 
application contexts, thus allowing the developer to concentrate on certain aspects 
while the system keeps track of side effects. Yet, the developer needs guidance lest he 
gets lost in a jungle of views. Therefore, VDAB visualizes the design procedure in its 
Control View (fig. 1). Further, it implements a dynamic hyperstructure among views 
for navigation thru the design process. 
Note: the depicted graph in figure 1 suggests a sequential development process to give 
the developer a general idea of how to proceed. VDAB allows for much more flexibil- 
ity, e.g. additional call scenarios can be specified at any time, of course. 

Application Scenario View: The application scenario view has been designed in 
analogy to what a developer might put down on a notepad or whiteboard as first 
sketch of an application. The view is instance-oriented as we believe a first draft of a 
problem would rather be in terms of instances or examples than in more abstract type- 
oriented terms. To underline instance-orientation, cloning is among the design steps 
supported by the application scenario view. The graphical design elements are the ob- 
ject categories and abstract relations such as uses, is collocated with, is UI of. As in 
most VDAB views, the design elements are provided on a palette. Selected objects can 
be placed anywhere in the graph area, selected relations can be drawn from one object 
to another (unless a graphical design rule prohibits it!). Objects and relations can both 
be manipulated directly thru popup menus. 

At any time, certain aspects of the scenario, e.g. user interaction or locality, can be 
folded away, allowing to concentrate on other aspects, or simply to reduce the number 
of visible items. As the application scenario is supposed to be developed rather intui- 
tively, graphical design decisions are of course reversible (that holds for all VDAB 
views). An application scenario provides an easy to grasp overview of an application. 
As it is supposed to be a first draft it does not claim completeness. Rather, it is sup- 
posed to assist the developer with identifying application requirements, e.g. classes 
that need to be defined. 

User guidance for design of the application scenario will be based on a dictionary of 
keywords generated from the list of requirements. These keywords may directly hint 
to the object categories, e.g. they might denote a location. Throughout application de- 
sign the dictionary can serve for appropriate naming of design elements and relations. 

Call Scenario Views: While the application scenario view aims at capturing an appli- 
cation overview, call scenario views display arbitrarily chosen behavioral aspects. 
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They describe call chains, thus defining timethreads taking place on certain events. 
The graphical notation was inspired by work of Buhr [4] and implemented in VDAB 
with extensions for description of synchronization aspects. Call scenarios support ex- 
plorative specification of operational interfaces. They further help gathering require- 
ments for method implementation. Moreover, call scenarios can be envisioned as test 
scenarios for validation of application functionality. 

Type-oriented VDAB Views: 

�9 Class Collaboration View: the type-oriented equivalent to the application sce- 
nario; it displays application classes and knows relations. The knows relations can 
be qualified as persistent (permanent reference from one class to another) or tem- 
porary (temporary reference in the form of a parameter or local variable). 

�9 Inheritance View: displays the subclass relations. 

�9 Decomposition View: specification of the knows and has part relations of ob- 
jects, thereby defining their data structure. 

�9 Interface View: specification of the operational interfaces. 

�9 Method Implementation View: editor for method bodies; this view is not fully 
integrated with the others; changes in it are not reflected by other views. 

The Distribution Aspect in VDAB Views: VDAB provides the developer with very 
simple means to describe the distribution inherent in his application: he can specify 
the initial object configuration and he can select routines to run at startup time on the 
application's logical nodes. Object configuration can be specified explicitly by bind- 
ing objects to logical nodes or implicitly by binding objects to each other (colloca- 
tion). 

Runtime object configuration aspects remain hidden to the developer. Yet, he is pro- 
vided with means to specify object migrations explicitly or implicitly (by specifying 
collocations). Further, he can specify distribution attributes for parameter objects: they 
can either stay where they are, move to the called object or visit the called object for 
the time of method execution. 

4 From Design to Implementat ion:  Integration of  V D A B  and  D C E  

Fig. 2 depicts the integration of VDAB and DCE. A number of graphical tools allow 
for manipulation of the VDAB model of an application; the model itself is a graph of 
interconnected design elements. Based on the internal design model, VDAB generates 
input files for the DCE++ system. Based on these files, DCE++ generates additional 
code to implement low-level communication for the distributed application. This addi- 
tional code, which remains hidden in the VDAB environment, customizes the DCE 
RPC, threads, and naming services. The VDAB code generation facility abstracts from 
DCE. Only the threads service is used directly (to implement Active Objects), other 
services are only indirectly used thru DCE++. 

In this section, we first sketch out how distributed applications are implemented with 
DCE++. Then, we will describe the VDAB code generation facility. Finally, we will 
discuss the need for tight integration of design and implementation in general, and 
compare a desired integrated framework with the VDAB reality. 
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Figure 2: VDAB integration with DCE and DCE++ 

4.1 Programming with DCE++ 

DCE++ programming is only roughly sketched out here, for details cf. [16]. The de- 
scription refers to an early DCE++ implementation; future versions are expected to 
hide even more of the underlying communication, e.g. by means of a stub compiler. 

In order to enable C++ objects in the DCE++ system to be invoked location- 
independently and to migrate across node boundaries, additional classes have to be 
provided for each application class. This tedious task is, fortunately!, hidden from the 
developer by the DCE++ system. Yet, DCE++ requires the developer to provide a 
specification common.dee++ of all remote classes and their methods. Further, DCE++ 
requires the user to write an IDL file common.idl describing all remote methods. Fi- 
nally, the developer has to fill in a template for each logical node in his DCE++ appli- 
cations, thereby defining the initial object configuration. The implementation of the 
actual application objects does not differ from ordinary C++ coding. Yet, the devel- 
oper has to take care for consistency of application object implementation and the 
common.dee+ + and common.idl descriptions. 

4.2 VDAB Code Generation 

VDAB does not only support design of distributed applications but is also capable of 
writing most of the code an application developer otherwise would have to provide. In 
a first prototype, VDAB designs were mapped to C and DCE code. A major part of the 
code generation was for implementation of the low-level communication based on 
DCE services. The use of DCE++ as intermediate layer allows VDAB to abstract from 
low-level communication. The VDAB code generation now only specifies what com- 
munication is required; how the communication is realized is responsibility of 
DCE++. 

The graphical specification of classes and their operational interface is sufficient for 
automatic generation of the common.dee++, common.idl and application object header 
files. The graphical specification of logical nodes allows for automatic generation of 
DCE++ logical node files. Finally, even rudimentary implementations of method bod- 
ies can be generated based on call scenario specifications. 
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VDAB allows for extensive code generation, yet it does not allow for complete imple- 
mentation of distributed applications. The developer is required to finish up the imple- 
mentation with C++ coding of method bodies. In order to ease this task, VDAB gener- 
ated code was designed to be human readable. All generated files follow DCE++ con- 
ventions. Sample generated code will be explained in section 5, where an application 
is developed from early design thru to code generation. 

4.3 From Design to Implementation: Desiderata and VDAB Reality 

Even with a good design of a large distributed application, its implementation will still 
be complex and difficult. Therefore, the ultimate goal is to maintain the same high 
level of support throughout the software lifecycle. In terms of the VDAB design 
model the goal is to integrate implementation support for category-specific semantics. 
Design-level support in the implementation phase would allow for a seamless transi- 
tion from design to implementation. Yet, current implementation languages are not 
sufficient to achieve this goal. With current languages, important application aspects 
are often handled by calling out to libraries and toolkits, which only allows for syntac- 
tic but not for semantic checking. 

The VDAB reality is far from an integrated design and implementation modeling 
framework. Yet, VDAB goes well beyond other graphical design methods by generat- 
ing effective and human readable code. That means, based on the design VDAB al- 
ready provides a good deal of the implementation. Moreover, the generated code is in 
a form which makes it relatively easy for the application developer to provide the rest 
of the implementation. Still, once the developer moves from graphical design to tex- 
tual implementation he loses VDAB support irreversibly. As VDAB does not (yet) un- 
derstand DCE++ files (C++, IDL and DCE++ class descriptions), VDAB semantics 
can not be checked and iterations over design and implementation remain unsup- 
ported. In order to overcome this shortage to some degree, we are now working on 
interpretation of DCE++ files for VDAB. This will be restricted to a subset of C++ 
and IDL. 

In comparison with DODL, the design and implementation language of the DOCASE 
system [7], the integration of design and implementation is less tight in VDAB. Yet, 
VDAB as opposed to DODL is of immediate use for application developers, as it does 
not require the developer to learn a new language. While VDAB does not provide suf- 
ficient means for implementation, it eases the implementation task considerably by 
generating highly comprehensible code. 

5 A Sample Application: Automatic Call Distribution 

In this section, a sample application is developed with VDAB. Automatic Call Distri- 
bution (ACD), a telecommunications application, was chosen to highlight the applica- 
bility of VDAB to real-world task. ACD distributes telephone calls in switch systems 
automically. Incoming telephone calls are directed by ACD (instead of an intermediate 
operator) to certain operators who then process the telephone calls (using a central cli- 
ent database). This system is inherently distributed: a central node (probably a work- 
station) processes incoming calls; operators work on operator nodes (e.g. PCs); client 
and statistics databases are located on database server nodes. 
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Figure 3: ACD Call Scenarios Incoming Call and Process Call 

5.1 ACD Call Scenarios 

How ACD works is best described along typical scenarios: e.g. What does happen, 
when a telephone call comes in ? VDAB supports this approach and allows us to 
sketch an "Incoming calr' scenario as given in figure 3, upper window. The scenario 
specifies that in the event "Incoming Call" the Switch sends a new call message to the 
Distributor. The Distributor then sends a put message to the Queue instance. Note that 
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"the Queue was designed to be a Passive Object whereas the other instances were 
picked from the Active Object category. This is an intuitive decision based on the as- 
sumption that queues usually do not have any activity of their own. 

To learn more about ACD, we have a look at another scenario: How are telephone 
calls processed ? The second window in figure 3 shows a screenshot Of the corre- 
sponding VDAB view. An Operator sends a getnext message to the Queue. He also 
sends a query to the Client DB. The order of calls is relevant in this case, therefore 
ordinals have been attachedto the arcs. Note that the Queue instance was picked from 
a list of already specified instances (in the top right of the view). This list is constantly 
updated: if another instance is defined in some other view, it would appear in the in- 
stance list as soon as this view gets revisited. 

Figure 4: ACD Application Scenario and Location View 

5.2 ACD Application Scenario 

With the quick specification of call scenarios we have already introduced major com- 
ponents of the ACD system and gathered some information about how they interact. 
Yet, so far the information is distributed over a number of views. What we would like 
to have now is some sort of overview displaying all yet specified components and 
their interrelations. VDAB provides the application scenario view to this end. It gener- 
ates automatically an application overview based on call scenario specifications. The 
larger window in figure 4 shows the resulting view. 

As the application scenario gives an overview over system components it is a good 
place to say something about their distribution. We can either explicitly introduce 
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logical node instances and place application instances on them (graphically), or we 
can define collocations among application objects. In our sample design we decided to 
collocate Switch, Distributor and Queue on a logical node Distributor Node. A loca- 
tion view displays the result and allows for specification of further co~figuration de- 
tails (fig. 4, small window). The application scenario further allows for identification 
of classes and thus to proceed from instance-orientation to type-orientation. Yet, the 
developer is not forced to explicitly classify his instances. In that case, the system 
takes care for implicit generation of class definitions while the developer keeps his 
instance-oriented view, which is often more intuitive. 

Figure 5: ACD Class Collaboration 

5.3 Type-oriented Views of ACD 

Based on the instance-oriented specifications in call and application scenarios VDAB 
can generate a Class Collaboration View (fig. 5). It shows which classes have to be 
known by others. Classes in this view can be further specified by bringing up Decom- 
position Views for description of their data structure, or Interface Views for description 
of their operational interfaces. It is important to note, that the developer can return 
from a type-oriented view to an instance-oriented view at any time: e.g. it will in gen- 
eral be more intuitive to specify method parameter lists in the context of call scenarios 
than in an abstract type-oriented view. 

5.4 Automatically Generated ACD Code 

Subsequently, the code generation will be illustrated for the Distributor class of the 
ACD system. First, the class description for common,dce++ is shown: 

######################################################## 
# class block form class Distributor_CI 
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######################################################## 
A.__Distributor_CI : Distributor_CI : A_Distributor CI data 
# 

: Distributor 
void : newcall  : 
void :new call thread : 

In a class block form the DCE++ system is provided with the information i t  needs to 
make classes remote. The description specifies A_Distributor_CI as DCE++ internal 
name for the application class. The initial class name will be used by DCE++ as name 
for a generated class which introduces distribution features to the class. This naming is 
somewhat confusing for the DCE++ programmer, but is made transparent by VDAB. 
A third identifier is specified for a struct that contains the object's complete data struc- 
ture. A struct like that is required for each remote class to allow for object migration. 
The rest of the class block form describes methods with their return type and their pa- 
rameters (there are no parameters in this example). 

Next, the header file of the Distributor class is shown. 

class Distributor_CI; 

class A_Distributor_CI { 
private: 

string Queue_name; 
public: 

A Distributor CI 0; 
~A Distribut~ CI 0; 
void new_call 0; 
void new call thread 0; 

Based on the graphically specified knows relation of the Distributor class to the Queue 
class, Queue_name is specified for reference by name. The method new_call 0 is de- 
rived from our call scenario specification.. As for all methods of active objects, VDAB 
generates an additional method, in this case new call thread 0- These additional 
methods implement asynchronous method execution using the DCE Threads service; 
this remains transparent for the developer. 

Finally, let us have a look at the common.idl file which VDAB generates for DCE++, 
and which the DCE++ system uses for stub compilation: 

~ ############ Class Distributor CI #################### */ 
typedef struct { 

string Queuename; 
} A_Distributor CI data; 

void A_Distributor CI Migrate ( 
[in] handle t bh, 
[in] uuid_t old, 
[out, ref] error_status_t *status, 
[in, string] char *loc ); 
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void A_Distributor CI install_object ( 
[in] handle t bh, 
[in] RPC_ObLRef r, 
[in] A_Distributor CI data *p ); 

void A_Distributor CI newcal l  ( 
[in] handle_t bh, 
[in,out] RPC call data *data ); 

void A_Distributor CI new call thread ( 
[in] handle_t bh, 
[in,out] RPC call data *data ); 

For each class a struct containing its data structure has to be defined for the idl com- 
piler. Further, Migrate and install_object methods have to described for each class. 
The actual methods are generated by DCE++. Finally, all user defined methods have 
to be specified here, too. 

6 Conclusion 

This paper described VDAB, a new approach for extensive design support for large 
distributed applications. Whereas existing support for distributed applications and in 
particular for DCE applications focuses on implementation issues, VDAB aims at life- 
cycle spanning support. The strong emphasis on instance-oriented intuitive views sup- 
ports early design. Iteration over a number of graphical design tools allows for in- 
creasing detail. Finally, the code generation facility produces most of the application 
code in a human readable form, thus catering for further manual coding and mainte- 
nance. The applicability of VDAB has been demonstrated along a sample application 
development. 

VDAB has been designed to be immediately applicable for development of DCE ap- 
plications, but also to be extensible towards further application aspects. Future design 
model extensions (implemented as additional object categories), will support team- 
work, multimedia and workflows to meet the huge demand for support of physically 
remote teams, long-lived business procedures, and human-human interaction. Further, 
advanced support for human interaction development will be incorporated in VDAB. 
DCE supports portability and interoperability, yet platform-bound user interfaces re- 
main the portability bottlenecks of DCE applications. As opposed to currently devel- 
oped GUI portability kits which only support the least common denominator of a 
number of GUI toolkits [17], we will investigate in paradigm-independent human in- 
teraction. 
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- Invited Talk - 

Distributed computing has been a very active research area for at least fifteen years. 
Many research projects focused on the development of a native distributed operating 
system that would support distributed processing in a natural and efficient way. New 
kernels, distribution and communication paradigms and protocols, languages, abstrac- 
tions and algorithms were developed to enable and facilitate distributed computing, 
and many interesting experimental systems incorporating the new ideas and concepts 
were built. Distributed environments based on local-area networks that not only inter- 
connect personal computers and workstations but also provide low-cost resource shar- 
ing became attractive for many business and industry applications; a variety of com- 
mercial solutions emerged. There is now a steadily growing need to interconnect the 
various LAN-based systems and to enable distributed applications across an entire en- 
terprise and even across networked environments encompassing several companies. 
The multifaceted heterogeneity of such environments has been hindering the develop- 
ment and deployment of distributed applications; the developers have to deal with dif- 
ferent operating systems, file systems, naming conventions, user interfaces, communi- 
cation subsystems, management procedures. It is clearly not feasible to replace the 
installed systems with a common homogeneous base; instead, it is necessary to agree 
on common standards at some level of abstraction that can be supported by most exist- 
ing systems. 

The OSF DCE constitutes a major step towards interoperability at the distributed sys- 
tem level. Still, many open issues remain, and new ones are emerging. The overview 
paper [1] presents quite a comprehensive list of topics to be addressed. There are two 
additional fundamental issues that are beyond the scope of the DCE, yet crucial to 
conquering the heterogeneity and complexity of the networked environments: interop- 
erability of the communication subsystems, and distributed system/network manage- 
ment. As DCE does not prescribe the communication protocols below its RPC, it is 
necessary to provide a separate solution to the heterogeneity at this level, such as the 
multi-protocol Iransport networking (MPTN) architecture [2,3]; the X/Open consor- 
tium is evaluating MPTN for potential standardization. The overall management of 
distributed systems presents a great technical challenge. It must be linked to network 
management, yet hide low-level network management problems. It must be user- 
friendly and highly automated. It must be capable of scaling up to tens and hundreds 
of thousands of nodes, and of accommodating the growing population of mobile users. 
Although several projects under the EC programs RACE and ESPRIT are working on 
relevant issues, a comprehensive integrated solution is not yet in sight. This is clearly 
an area that requires a major effort in research, experimental work, and standardiza- 
tion. 
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