
Lecture Notes in Computer Science
Edited by G. Goos and J. Hartmanis

731

Advisory Board: W. Brauer D. Gries J. Stoer

Alexander Schill (Ed.)

DCE
The OSF Distributed
Computing Environment
Client/Server Model and Beyond

International DCE Workshop
Karlsruhe, Germany, October 7-8, 1993
Proceedings

Springer-Verlag
Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

Series Editors

Gerhard Goos
Universit~it Karlsruhe
Postfach 69 80
Vincenz-Priessnitz-StraBe 1
D-76131 Karlsruhe, Germany

Juris Hartmanis
Cornell University
Department of Computer Science
4130 Upson Hall
Ithaca, NY 14853, USA

Volume Editor

Alexander Schill
Institut fur Telematik, Universit~it Karlsruhe
Postfach 6980, D-76128 Karlsruhe, Germany

CR Subject Classification (1991): C.2.1, D.1.3, D.2.6, D.4.2-3

ISBN 3-540-57306-2 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-57306-2 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright
Law.

�9 Springer-Verlag Berlin Heidelberg 1993
Printed in Germany

Typesetting: Camera-ready by author
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

Preface

Client/server applications are of increasing importance in industry; they are a signifi-
cant first step towards a global distributed processing model. A very recent response to
this trend is the Distributed Computing Environment (DCE) of the Open Software
Foundation (OSF), the emerging new industry standard for distributed processing. The
papers in this volume discuss the client/server approach based on DCE, illustrating
and analyzing the functionality of important DCE components and applications. Mo-
reover, a number of contributions also focus on new models beyond traditional
client/server processing and beyond DCE.

The material summarized in this volume was presented at the International Workshop
on the OSF Distributed Computing Environment on October 7 and 8, 1993 in Karlsru-
he, Germany. This workshop was organized by the German Association of Computer
Science (Gesellschaftfar Informatik, GI/ITG), together with the University of Karlsru-
he and the Nuclear Research Center in Karlsruhe.

Major subject areas of the workshop were analysis and overview of DCE, methods
and tools for DCE applications, extensions of the DCE remote procedure call, and di-
stributed object-based systems on top of DCE, including the Object Request Broker
(ORB) of the Object Management Group (OMG). Most papers are of practical orienta-
tion but typically have a strong technical and conceptual background. A more detailed
overview of the papers is given at the end of the first contribution which gives a sur-
vey of distributed systems, DCE, and approaches beyond DCE.

We would like to thank all people who contributed to the success of this workshop.
The members of the program committee did a very good job in reviewing about 10
papers per committee member. The Institute of Telematics of the University of Karls-
ruhe, especially Prof. Dr. Gerhard Kriiger, made the workshop possible by providing a
lot of organizational support. The university supported the workshop by making the
required lecturing halls available. The background organization of the workshop was
made possible by the Gesellschaftfar Informatik, especially by its working groups on
operating systems and on distributed systems (FA 3.1 and 3.3). We would also like to
thank the speakers and authors and the colleagues who did the industry demonstrations
on DCE; their technical contributions were a major prerequisite for this workshop.
Moreover, the work force who helped with the local organization, especially the col-
leagues and students from the Institute of Telematics did an excellent job.

Finally, we would of course like to thank all companies that supported the workshop
in various ways, including Daimler-Benz AG, Digital Equipment Corporation,
Hewlett-Packard, IBM, the Open Software Foundation, Siemens-Nixdorf, and SUN
Microsystems. The local organization was particularly supported by Dr. Lutz Heuser
of Digital Equipment's Campus-based Engineering Center (CEC) in Karlsruhe and by
the Volksbank Karlsruhe. Moreover, we would like to thank all other colleagues who
supported this workshop in one way or the other during the last few months.

Karlsruhe, August 1993 Alexander Schill

Workshop Organization

General organization:

German Association of Computer Science (GI/ITG),
particularly the working groups "Operating Systems"
and "Communication and Distributed Systems"

University of Karlsruhe, Institute of Telematics

Nuclear Research Center Karlsruhe

ITG

KfK

Workshop chair:

Alexander Schill
University of Karlsruhe, Institute of Telematics,
Postfach 6980, 76128 Karlsruhe, Germany
e-mail: schill@ telematik.informatik.uni-karlsruhe.de

Program committee:

Martin Bever (IBM European Networking Center ENC, Heidelberg)
Kurt Geihs (University of Frankfurt)
Lutz Heuser (DEC Campus-based Engineering Center CEC, Karlsruhe)
Elmar Holler (Nuclear Research Center, Karlsruhe)
Winfried Kalfa (Technical University of Chemnitz)
Klaus-Peter L~hr (Free University (FU) of Berlin)
Klaus MUller (R&O Software Technology, Chemnitz)
Max M0hlh~user (University of Karlsruhe)
Alexander Schill (University of Karlsruhe)
Peter Schlichtiger (Siemens-Nixdorf, Munich)
Gerd Schtirmann (GMD Research Center (FOKUS), Berlin)

Local organization:

Lutz Heuser (DEC Campus-based Engineering Center CEC, Karlsruhe)
Monika Joram (University of Karlsruhe)
Ludwig Keller (University of Karlsruhe)
Dietmar Kottmann (University of Karlsruhe)
Gerhard Krtiger (University of Karlsruhe)
Markus Mock (University of Karlsruhe)
Max MUhlh~user (University of Karlsruhe)
Alexander Schill (University of Karlsruhe)
JOrg Sievert (University of Karlsruhe)

Table of Contents

Introduction

Distributed Systems, OSF DCE, and Beyond ...
M. Bever (IBM ENC Heidelberg, Germany), K. Geihs (Univ. Frankfurt),
L. Heuser (DEC CEC Karlsruhe), M. Miihlhiiuser, A. Schill (Univ. Karlsruhe)

DCE Analysis and Comparison

Comparing two Distributed Environments: DCE and ANSAware 21
A. Beitz, P. King, K. Raymond
(CRC for Distributed Systems Technology, Australia)

Comparison of DCE RPC, DFN-RPC, ONC and PVM , 39
R. Rabenseifner, A. Schuch (Univ. Stuttgart, Germany)

Some DCE Performance Analysis Results ... 47
B. Dasarathy, K. Khalil, D.E. Ruddock (Bellcore, New Jersey, USA)

A Performance Study of the DCE 1.0.1 Cell Directory Service:
Implications for Application and Tool Programmers ... 63
J. Martinka, R. Friedrich, P. Friedenbach, T. Sienknecht
(HP Cupertino, California, USA)

Application Support

fidl - A Tool for Using DCE from Fortran .. 78
R. Laifer, A. Knocke (Univ. Karlsruhe, Germany)

Converting Legacy Fortran Applications to Distributed Applications 89
T.M. McDonald (DEC Littleton, Massachusetts, USA)

Using Standard Tools to Build an Open, Client/Server Prototype 104
B.S. Hirsch (HP Richardson, Texas, USA)

Pilgrim's OSF DCE-based Services Architecture ... 120
J.D. Narkiewicz, M. Girkar, M. Srivastava, A.S. Gaylord, M. Rahman
(Univ. Massachusetts, Amherst, USA)

Methods and Tools

Converting Monolithic Programs for DCE Client/server Computing Given
Incomplete Cutset Information ... 135
Y.-H. Wei, S.S~. Shi, D.D.H. Lin (IBM Austin, Texas, USA)

Managing the Transition to OSF DCE Security ... 147
S. Tikku, S. Vinter (SAIl Burlington, Massachusetts, USA),
S. Bertrand (Ibis Communications Inc., L ynnfield, Massachusetts, USA)

DCE Cells under Megascope: Pilgrim Insight into the Resource Status 162
B. ObreniE,, K.S. DiBella, A.S. Gaylord (Univ. Massachusetts, Amherst, USA)

RPC Extensions

Supporting Continuous Media in Open Distributed Systems Architectures 179
P. Adcock, N. Davies, G.S. Blair (Univ. Lancaster, United Kingdom)

Integrating RPC and Message Passing for Distributed Programming 192
Y.-H. Wei, C. Wu (IBM Austin, Univ. Austin, Texas, USA)

Optimized Selection of Servers for Reduced Response Time in RPC 207
C. Mittasch, S.-I. Diethmann (TU Dresden, Germany)

Extending DCE RPC by Dynamic Objects and Dynamic Typing 214
R. Heite, H. Eberle (IBM ENC Heidelberg, Germany)

Object-based Systems

A Simple ORB Implementation on Top of DCE for Distributed
Object-Oriented Programming ... 229
Q. Teng (Bull, France), Y. Xie (T~ldsystdmes, France), B. Martin (Bull, France)

DCE++: Distributing C++-Objects using OSF DCE ... 242
M.U. Mock (Univ. Karlsruhe, Germany)

Object-Oriented Distributed Computing with C++ and OSF DCE 256
J. Dilley (HP Cupertino, California, USA)

Graphical Design Support for DCE Applications ... 267
H.-W. Gellersen (Univ. Karlsruhe, Germany)

Invited Talk

Taming Heterogeneity in Networked Environments ..
L. Svobodova (IBM Research Division, Zurich Research Lab., Switzerland)

282

Appendix

Author Index .. 285

Distributed Systems, OSF DCE, and Beyond

M. Bever 1, K. Geihs 2, L. Heuser 3, M. Miihlh/tuser 4, A. Schill 5

1) IBM European Networking Center, Vangerowstr. 18,
69115 Heidelberg, Germany; e-mail: bever@dhdibml.bimet

2) University of Frankfurt, Dept. of Informatics, P.O. Box 111932,
60054 Frankfurt, Germany; e-mail: geihs@informatik.uni-frankfurt.de

3) Digital Equipment GmbH, CEC Karlsruhe, Vincenz-Priel]nitz-Str. 1,
76131 Karlsruhe, Germany; e-mail: heuser@kampus.enet.dec.com

4) University of Karlsruhe, Institute of Telematics, Postfach 6980,
76128 Karlsruhe, Germany; e-mail: max@tk.telematik.informatik.uni-karlsruhe.de

5) University of Karlsruhe, Institute of Telematics, Postfach 6980,
76128 Karlsruhe, Germany; e-mail: schill@telematik.informatik.uni-karlsruhe.de

Abstract. This introduction paper presents basic foundations of distributed systems
and applications and then shows how OSF DCE addresses the requirements imposed
by distributed enviromnents. The DCE architecture is illustrated, the basic functional-
ity of the DCE components is explained, and the DCE RPC as the major base for cli-
ent/server applications is presented in closer detail.

The paper also discusses requirements and new models beyond DCE in order to en-
able even more advanced distributed applications. In particular, distributed object-
oriented DCE extensions are outlined and directions towards distributed multimedia
applications are pointed out. Moreover, other requirements and trends such as ad-
vanced tool support or distributed transaction facilities are also discussed. Finally, an
overview of the papers within these proceedings is given.

1 Introduction and Overview

The potential benefits of distributed processing systems have been widely recognized
[1,2]. They are due to improved economics, functionality, performance, reliability and
scalability. In order to explore the advantages of distributed processing, appropriate
support is needed that enables the development and execution of distributed applica-
tions. A distributed application consists of separate parts that execute on different
nodes of the network and cooperate in order to achieve a common goal. A supporting
infrastructure should make the inherent complexity of distributed processing transpar-
ent as much as possible. The infrastructure is required to integrate a wide range of
computer system types and should be independent of the underlying communication
technology.

The Open Software Foundation (OSF) has presented such an infrastructure called Dis-
tributed Computing Environment (DCE). It is a collection of integrated software com-
ponents that are added to a computer's operating system. DCE provides means to
build and run distributed applications in heterogeneous environments.

Let us illustrate the role of DCE by an example: Figure 1 shows a distributed office /
manufacturing procedure that implements a product management scenario. Several
distributed activities are performed by a collection of processes. We assume that each
process is allocated to a different network node, and that nodes are connected by a
physical network. The processes cooperate as shown by the arrows by forwarding
forms or control data between each other. Some of the activities can be executed in
parallel (such as the manufacturing and marketing activities) while others are sequen-
tial, or alternative (such as regular quality control, simplified quality control or by-
passing according to the product type). Each activity can be subdivided hierarchically.

~Manufacturin g ~ - - ' - - ~ Q u a l i t y control

6 e t c h p r o d u c ~ t ~t(~Sim, p le -'~ ~ sSalp~)rt
Idesign data / I quality I---"- '- ~ J
k~ ~ f ~ ~appro~.,al ~ -

~p lan .,) ~ e n e r a t i o n)

Fig. 1 Example of a distributed office procedure application

An example of an underlying distributed system is shown in figure 2. Two hosts and
three workstations are interconnected via an Ethernet and a Token Ring. The two net-
works are coupled via a gateway. Each computer system offers local resources (at
least CPU and main memory, but possibly also printers and secondary storage). These
resources can also be accessed remotely and can be shared among different computers.
Resource control is performed in a decentralized and mainly autonomous way. On
each computer system, a set of application processes are operating - as found in our
distributed application. These processes can communicate over the interconnected net-
works via basic interaction mechanisms such as remote procedure call. At this level,
the underlying physical network topology is already considered to be relatively trans-
parent.

Role of DCE and client/server-model: The OSF Distributed Computing Environ-
ment (DCE) can now be classified as being a distributed system, while also offering a
set of services that support the development of distributed applications. Basically,
DCE closes the gap between the physical components of a distributed system and the
application components.

Workstation 2

jJlllllllllllllllj I ~
' Token 'IF ' ~ \ j / N
I* Ring ,11' [~ Application liliil ,,,,0' / \ p(&ess

I station 3 '"',,~,'"' [\

I Gateway I [\
......................... ~__E__~e_me_ t m ! X

 so,,on i
(I- " l l I t - - ' l) (i �9 i)

',,,_, -, /
External storage ~ ~ Printer
media

Fig. 2 Distributed system with communicating application processes

DCE internally works with the client/server model (see fig. 3), and is particularly
well-suited for the development of applications that are structured according to this
model: A server typically offers some service to a population of clients; typical exam-
ples are print services, computational services or name translation services. A client
can make use of a service by sending a service request message to a suitable server.
The request can contain input parameters (e.g. data to be printed). The server performs
the requested service and finally sends a service response back to the client. The re-
sponse can contain output parameters (e.g. a status indication).

Client]] Server
"document I~Service r e que s t "document

editing" [- Service response i archiving"

Service r eques t]

4Service response[

Server
"printing"

Fig. 3 Client/server model

As shown in the figure, a server can also act as a client of another service, i.e. delegate
parts of a service request to a peer server. For example, a document archiving server
could request a print service in order to offer a more complete document management
functionality to its clients.

4

2 DCE: Strategy and Architecture

Based on the introduced foundations, this section presents the general strategy of the
Open Software Foundation towards products for open systems and then illustrates
DCE as one of these products in more detail.

2.1 Goals and Strategy of the Open Software Foundation

The Open Software Foundation (OSF) is a not-for-profit research and development or-
ganization. Its members comprise computer hardware and software vendors, end us-
ers, universities and other research institutions. One of the major goals of the OSF is
to enable global interopcrability among heterogeneous systems by providing a practi-
cal open computing environment [3].

To achieve this, the OSF solicits proposals for open systems software technology, then
evaluates the submissions, and finally licenses the selected solutions for incorporation
into the OSF open computing environment. That environment is a collection of tech-
nologies that provide for interoperability of diverse systems as well as application
portability.

Its main parts are currently

�9 the OSF/1 Unix operating system,

* the OSF/Motif graphical user interface,

�9 the OSF Distributed Computing Environment (DCE) and

* the OSF Distributed Management Environment (DME).

From a distributed systems point of view, DCE and DME are of primary importance.
While DCE is the base for building distributed applications and also offers a set of dis-
tributed services directly to the end user, DME addresses the issues of network and
system management; it should suffice to mention that it offers an object-oriented infra-
structure for distributed management applications, together with support for the man-
agement protocols SNMP and CMIP. It also provides a management user interface
and several supplemental management services [4]. Moreover, DME uses certain DCE
components. The DME development has not yet reached the same mature stage as
DCE.

In the meantime, DCE tends to become an industry standard for distributed process-
ing; most of the major computer vendors are members of the OSF and offer (or have
announced) DCE compliant products for their computing platforms. As opposed to
other standards, the implementation of the components existed first, and standardiza-
tion was performed by the OSF thereafter. This seems to have major advantages con-
ceming the resulting functionality, system performance and timeframe of delivery.

2.2 DCE Architecture and Services

Fig. 4 shows the overall DCE architecture [5-6]. All DCE components are based on
local operating system services (e.g. Unix) and transport services (e.g. TCP/IP). Dis-
tributed applications make explicit use of fundamental DCE services (in italics in the

figure) via C programming interfaces. The other DCE services are used implicitly via
the fundamental services or via modified operating system services.

Fundamental DCE services: The Thread Service provides a portable implementation
of lightweight processes (threads) according to the POSIX Standard 1003.4a. Threads
enable concurrent processing within a shared address space, and are especially used by
RPC for implementing asynchronous, non-blocking remote invocations and multi-
threaded servers.

Distributed applications

Distr. Cell Directory S./ Security
Time Global Directory
Service Service Service

Distr.
File

System

Disk-
less
Support

Remote Procedure Call

Thread Service

Local operating system and transport services

Fig. 4 DCE architecture

The DCE RPC is the major base for heterogeneous systems communication. Based on
RPC, a client request for a remote procedure (i.e. a service request) is transferred to
the server, mapped to a procedure implementation, executed, and finally acknowl-
edged by sending back results to the client. All input data and results are encoded as
RPC parameters similar to local calls. All parameter conversion and transmission tasks
are handled by call marshalling facilities that are part of so-called RPC stub compo-
nents at both sites. This way, the remoteness of a call be be masked to a large degree
at the application level. The stubs are generated automatically from an interface de-
scription which specifies the signatures of the invoked procedures. DCE offers a C-
based Interface Definition Language (IDL), various kinds of call semantics, nested pa-
rameter structures, secure RPC with authentication and authorization based on the
DCE Security Service, global (up to worldwide) naming of servers based on the X.500
directory service standard, backward calls from servers to clients, and bulk data trans-
fer based on typed pipes (logical channels).

The Cell Directory Service (CDS) supports distributed name management within dedi-
cated management domains. Name management basically comprises mapping of (at-
tributed) names to addresses, and update of name information. Most important, it is
the base for mapping RPC server addresses to client requests. Its functionality is inte-
grated into the DCE RPC programming interface via NSI (Name Service Interface).

CDS exploits replication and caching to achieve fault tolerance and efficiency. An ad-
vanced CDS programming interface is offered by the standardized X/Open Directory
Service Interface.

The Security Service implements authentication, authorization, and encryption. These
mechanisms are tighly integrated with DCE RPC; for example, RPC clients and serv-
ers can be mutually authenticated, servers can dynamically check access control lists
for proper client authorization, and all RPC messages can be encrypted on demand.

Finally, the Distributed Time Service (DTS) implements distributed clock synchroniza-
tion, a common problem in distributed environments. It guarantees that local clocks of
participating nodes are synchronized within a given interval. Moreover, synchroniza-
tion with exact external time sources (e.g. with radio clocks) is supported. This func-
tionality is important for implementing timestamp-based distributed algorithms. It is
also directly exploited by other DCE components.

Other DCE services: The Global Directory Service (GDS) extends CDS by global
naming facilities across administrative domains. It is based on the X.500 directory
service standard. Therfore, it enables interoperability not only with other DCE direc-
tory servers but also with other X.500 servers worldwide. As an alternative, the Inter-
net Domain Name Service can also be used for global naming.

The Distributed File System (DFS) implements cell-wide transparent distributed file
management. Files can be stored at different servers and can also be replicated. Cli-
ents, i.e. application programs, can access files by location-transparent names similar
to a local Unix file system. File access is quite efficient based on whole-file caching at
the client site. This technique also supports scalability by offloading work from file
servers to clients during file access [7]. Interoperability with the widely used Network
File System is enabled via an NFS/DFS interface. DFS is augmented with a Diskless
Support component; it provides boot, swap, and file services for diskless workstations.

In summary, DCE provides a rich and integrated functionality for distributed applica-
tions. Moreover, DCE supports heterogeneous systems interoperability and is offered
in product quality.

2.3 DCE System Configurations and Application Example

DCE supports structuring of distributed computing systems into so-called cells in or-
der to keep the size of administrative domains manageable. A cell can consist of all
nodes attached to a local area network but is usually defined according to organiza-
tional considerations rather than physical network structures. Therefore, it is basically
a set of nodes that are managed together by one authority.

Cell characteristics: Most DCE services are especially optimized for intra-cell inter-
actions. While cross-cell communication is possible, interactions within a cell are usu-
ally much more frequent, and can therefore benefit from such optimization signifi-
cantly. Moreover, cell boundaries represent security firewalls; access to servers in a
foreign cell requires special authentication and authorization procedures that are dif-
ferent from secure intra-cell interactions. Finally, the distributed file system within a
cell provides complete location transparence; as opposed to that, explicit cell names
must be specified for file access across cells.

Example: Fig. 5 shows an example of an application framework based on DCE to im-
plement an office / manufacturing scenario as discussed above. It consists of three
cells A-C for product data management, manufacturing and marketing / sales. Within
each cell, various nodes with dedicated application services exist (such as manufactur-
ing control, machine management, and quality control processes on three different
nodes in cell B). Moreover, each cell has a set of DCE system servers, including secu-
rity, directory, time, and file servers. Typically, two or more servers of each kind are
configured within a cell in order to improve availability of DCE services and perform-
ance of service access. One or several global directory servers are available in the ex-
ample to enable cross-cell naming, e.g. to identify and access an application server in
a remote cell. Finally, a diskless workstation pool is part of cell A and is linked to
DFS and other DCE services via the diskless support component of DCE.

MarKeting ana ~ales

Fig. 5 DCE application example and cell structure

All nodes, respectively the application processes, and also the DCE components inter-
act via DCE RPC. For example, this is indicated within cell A and between cell B and
C in the figure. RPC servers are located via CDS based on logical names, and via GDS
across cells. RPC communication can be made secure by the protocols offered by the
security servers. Each process can comprise a number of threads to serve multiple
RPCs concurrently (server site) or to issue multiple RPC requests in parallel (client
site).

Data management can be based on the distributed file system. This way, different
processes such as the management, secretary, and data management components of
cell A can share file data in a location-transparent way. On the other hand, these files
can also be accessed from remote cells upon request, provided that the accessing client
is properly authorized and authenticated in both cases.

3 DCE Remote Procedure Call

As the RPC tends to be the most important mechanism within DCE, it shall be de-
scribed in more detail, augmented with practical examples.

3.1 Properties of DCE RPC

Language integration and data representation: The implementation of DCE RPC is
based on the C programming language; all interface specifications are given in a spe-
cific Interface Definition Language (IDL) that is a superset of the declarative part of
C, corresponding to C header file code portions. Moreover, the RPC programming in-
terface is offered as a C library - similar to the interfaces of other DCE components.

IDL allows the specification of arbitrary parameter data types with virtually the same
facilities as found in C. The RPC runtime system, namely the stubs generated from
IDL, are able to handle nested data structures by flattening them recursively, transmit-
ring them to the server, and rebuilding them there. All differences concerning data rep-
resentations at the client and server sites are masked by DCE by converting data for-
mats accordingly. This principle is called "receiver makes right" and means that data
are transmitted in the sender's representation and are adapted to the receiver's format
at the destination site. The DCE implementation of a particular vendor must therefore
know all other possible data formats of peer nodes - however, in practice, only a few
different formats actually exist.

Call semantics: The application programmer can choose between different kinds of
call semantics. For example, the default, at-most-once, makes sure that a call is exe-
cuted once even if communication messages are temporarily lost. This is achieved by
message retransmission combined with the detection of duplicate messages. Although
node failures cannot be tolerated, message loss can be masked this way. Other select-
able semantics provide weaker guarantees in the case of failure but achieve an im-
proved efficiency.

Thread support: Based on threads, it is possible to implement multithreaded servers;
this just requires an appropriate parameter setting during server initialization. Then a
(static) pool of concurrent server threads is allocated initially. The application pro-
grammer, however, must take care of correct thread synchronization in case of shared

data modifications. On the client site, threads must be started explicitly to do concur-
rent, asynchronous calls to multiple servers. Within its body, each thread then per-
forms a synchronous call while different threads are mutually asynchronous.

Secur i ty : As mentioned above, secure RPC communication is possible based on the
security service. First, the application client and server run a distributed authentication
protocol in cooperation with a security server. In this phase, they mutually validate
their identity based on a private key encryption approach. In a second phase, the actual
call is executed; before the server starts acting upon it, it checks the proper authoriza-
tion of the client based on a local access control list. Finally, the call data can option-
ally be encrypted in order to enable complete privacy during communication.

D i r e c t o r y

S e r v i c e

Cl i en t Import [

- Local call
- Locating a suitable server

(binding)
- Encoding of call and parameter

data
- Call transmission

I
I
I

client blocks

- Receipt of RPC reply ~ I
- Decoding of reply

I - Continuation of client program

- Possible error handling

xpor

RPC

S e r v e r

- Determination o f communication
protocols to be used

- Local installation o f
procedure interfaces

C Export o f procedure interfaces
to directory service

- Waiting fo r incoming calls

- Receiving a call
- Decoding of call data
- Call execution
- Coding of result data
- Transmission of reply

Fig. 6 Typical DCE RPC runtime scenario

3.2 B u i l d i n g A p p l i c a t i o n s w i t h D C E R P C

Building distributed applications with DCE RPC requires the following steps:

�9 Interface definition: An IDL interface must be specified with all procedures that
shall be offered by a server.

10

�9 Server implementation: The server procedures must be implemented as ordinary
C code. Moreover, DCE-specific server initialization steps must be performed by
the implementation.

�9 Client implementation: In the simplest case, the client site is implemented as a
standard C program. Advanced DCE features such as explicit selection among a
group of servers or execution of secure RPC require additional code, however.

RPC runtime aspects: A typical DCE RPC runtime scenario is illustrated in fig. 6,
All functionality that has to be implemented explicitly by the application developer is
shown in italics, everything else is or can be performed automatically by DCE RPC.

The first step is the server initialization. The servers determine which communication
protocols to use (such as TCP/IP or UDP/IP), installs its offered procedure interfaces
with the RPC runtime system, exports the procedure interface information to the direc-
tory service (i.e. CDS), and finally waits for incoming calls.

To invoke an RPC, a client calls the corresponding procedure locally. However, based
on the stubs that are generated from IDL, an internal handler routine is executed in-
stead of a local application procedure implementation. It contacts the directory service
for locating a suitable server. The input is a logical name for the server and the re-
quired procedure interface, the output is a server address, a so-called binding handle.
This whole process is called RPC binding. Then the remote call and its input parame-
ters are encoded and transmitted to the server. While the server executes the call, the
client blocks. The remaining steps of call decoding, execution and result transfer have
already been explained earlier. Finally, the client should include some error handling
due to possible transmission problems etc.

Example: A program example shall illustrate the required code; it implements a re-
mote client query against a server that manages product data. The interface definition
consists of a header with a unique interface number (generated automatically) and
with versioning information. The interface body comprises the required C type defini-
tions and procedure interfaces with fully typed parameter specifications. Some attrib-
utes beyond C are required to distinguish between input and output parameters, for ex-
ample.

[
uuid(765c3b10-100a- 135d- 1568-040034e67831),
version(1.0)
]
interface ProductData {

import "globaldef.idl";
const long maxprod = 10;
typedef [string] char *String;
typedef struct {

String productName;
String productAnnotation;
Plan manufacturingPlan;

} productDescription;

long productQuery (
[in] String productName[maxProd],
[out] ProductDescription *pd[maxProd],
[out] long *status);

/! Interface for product data
//Import of general definitions
/[Maximum number of products
//String type

[[Product name
//Textual annotation
//...Type defined in globaldef.idl
[[Product description data type

[/Remote query procedure
//-> Product names
//<- Product descriptions
[/<- Call status

11

Server: The server initialization implements the steps discussed above by calling a
number of DCE RPC system functions. A simplified example program looks as fol-
lows:

#include "productdata.h"
#define enta'yName "/.:/ProductServer"
#define maxConcCalls 5

//Generated by the IDL compiler
//Name of server's directory entry
//Max. number of concurrent havoc.

main 0 {
tmsigned status;
rpe_.binding_vector_t *bVec;

//Return status
//Vector of binding handles

//*** Perform some local initializations (not detailed here)
//*** Get the actual vector of binding handles: ***
rpc. server__inq_bindings (&bVec, &status);

//*** Register the interface with a machine-local RPC manager process: ***
rpc_ep_register (ProductData vl 0 s ifspee, bVec, NULL, NULL, &status);

[/*** Export the interface to the directory service under the given name: ***
rpc_ns_binding export (rpc_c_ns_syntax_default, entryName,

ProductData vl 0 s jfspec, bVec, NULL, &status);

//*** Now be ready to accept incoming invocations concurrently: ***
rpc_server_listen (maxConcCalls, &status);
)

The implementation of the server's application procedures, i.e. ofproductQuery in this
case, is identical with a local implementation and is therefore not detailed here.

Client: The client site is also independent from DCE or distributed systems aspects (if
no advanced RPC functionality is desired):

#include "productdata.h" [/Interface definition header file

main 0 {
String product[maxProd]; //Product names
ProductDescription *pd[maxProd];
long rc, status;

//Requested product descriptions
[/Status values

inputProductNames (product);
rc = productQuery (product, pd, &status);
//... check status value and handle errors
)

[/Input function (appl. specific)
//RPC

In summary, building DCE applications based on the client/server model is a rela-
tively straightforward task for C programmers. However, the use of advanced features
is more difficult. In the following, such features are summarized briefly; for deatails,
see [6].

12

3.3 Advanced DCE RPC Features

Binding: During binding, the client can control the selection of a specific server ex-
plicitly; this mode is called explicit binding as opposed to the automatic binding ap-
plied above. The implementation of explicit binding is based on directory service in-
teraction procedures to be called by the client via system RPCs. Moreover, DCE offers
facilities to register groups of servers with the directory service and to specify client-
specific search paths through the directory entries. This way, the server selection proc-
ess can be controlled in detail.

Callback: With DCE RPC, it is possible for a server to issue a callback to a client
during remote procedure execution; the client must offer an appropriate call interface
for that. This way, a server can deliver intermediate results or can request further input
data.

Pipes: For bulk data transfer, logical pipes can be established between client and
server by passing pipe references as RPC parameters. A server can then request large
chunks of data via the pipe dynamically from the client, and can also send bulk data
back to the client this way.

Context: For multiple client/server interactions in a row, it is sometimes useful to es-
tablish some context information between both sites. An example is information about
an open file of a file server that is read by a client by several RPCs. DCE RPC offers
explicit mechanisms to handle such context information.

Other features such as asynchronous RPCs and secure RPCs have already been dis-
cussed. Altogether, a quite rich RPC functionality is provided by DCE.

4 Challenges and Models Beyond DCE

While DCE is a major step towards open distributed computing, the approach is still
limited to relatively conventional client/server applications. This presents a number of
ongoing research and development challenges to provide advanced support and new
models beyond DCE. Examples are advanced development and management tools,
distributed object-oriented systems, distributed transaction support, and multimedia
extensions.

4.1 Advanced Method and Tool Support

Only few commercially available dedicated tools exist for client/server type applica-
tions. As a consequence, programmers use design methods, debugging tools and other
software development aids that were developed for the sequential programming lan-
guages used as RPC host languages. The situation is similar for management compo-
nents such as source code control tools. The distribution and parallelism exhibited in
client/server applications, however, requires dedicated development aids. This require-
ment becomes even more important as we move to programming paradigms beyond
client/server, such as the ones described later.

We will, for the remainder, focus on a number of important aspects of tool support
which can be divided into three categories: development tools (here we will discuss
formal specification and design), runtime-level tools (debugging and cooperation), and

13

management tools (runtime management and distributed system management). For
some of these topics, we will separately discuss support for DCE-like client/server ap-
plications and for advanced distributed applications.

Formal specification techniques have gained a lot of attention in the context of com-
munication protocols. This is due to the fact that such protocols are complex (i.e. hard
to describe unambiguously with informal techniques) and that implementations of dif-
ferent vendors have to interoperate in open distributed systems. The formal techniques
used for communication protocols can be applied to distributed applications as well
[8]; the application of Lotos, Z, and SDL to distributed systems is described in [9].
However, the corresponding formal specification techniques usually do not focus on
any of the most interesting aspects of distributed applications, such as dynamic recon-
figuration of the network of processes (active entities and communication links beeing
added and removed at runtime), hierarchical decomposition, and asynchronous com-
munication. Moreover, the feasibility of formal techniques for large software projects,
and the close coupling of formal techniques to DCE (in the sense of automatic code
transformation) have not been achieved to a satisfactory degree yet. Moreover, in the
client/server context, formal techniques for reasoning about the correctness of RPCs as
such ought to be included.

Design: Specific design tools for distributed applications are hardly in use, either. The
software engineer would want them to support visual programming, early animation of
coarse designs, and automatic code generation. An example for a prototype tool with
these features, VDAB, is described in this volume. It also supports the design of the
dynamic behaviour of distributed applications "by example", based on dedicated call
scenarios. The tool translates into a distributed version of C++, which is in turn imple-
mented on top of DCE.

Debugging: Distributed debugging is widely recognized as one of the most important
issues to be resolved on the way to cost-effective development of distributed applica-
tions. This owes to the fact that sequential debuggers do not help resolve some of the
most predominant problems with testing distributed programs: the interference of the
debugger with the code (which can make it impossible to detect the effects of race
conditions), the presence of indeterminisms (which hinder the reproducability of sub-
sequent debugging sessions), the vast amount of parallel events to be perceived by the
user, and the lack of support for notions like "distributed breakpoint" and "distributed
single-step". While uncountable contributions to these issues can be found in the lit-
erature, hardly any commercially available distributed debugging tool exists in the
wider DCE context.

Runtime management: For sequential program development, the management of dif-
ferent versions and branches of source code and executable code in the development
environment has been considered an important problem; to resolve this issue, code
management tools were developed. In contrast, the installation of the final software
version in a target environment (i.e. at the customer site) was usually deferred to a
one-shot installation procedure. The installation of a distributed application however,
i.e. the management of executable code in a distributed environment, is often an itera-
tive and cumbersome task. Executables have to be copied to all sites, parameters and
input files have to be considered at these sites, nameserver, network, and operating
system setups have to be adjusted, etc. During execution, performance monitoring is
desired, e.g,, as a base for reconfiguration decisions. Such tasks are mostly carried out
by hand today. But with the increasing deployment of distributed applications and the

14

continuing sophistication of these applications, the need for user-friendly (e.g.,
graphics-based) and highly automated runtime management tools will increase drasti-
cally.

Distributed system management: As DCE shows, distributed system management is a
rather complex task. For example, CDS or Security servers must be installed, man-
aged, and replicated. Security information such as passwords or access control lists
must be maintained. DFS management comprises an even wider variety of different
tasks. Therefore, graphical management tools are required to provide simplified man-
agement user interfaces. Beyond this, further higher-level programs are desirable
which automate other routine management tasks in a distributed system such as back-
ups or software upgrades.

To summarize, tool support for distributed programming has, for the most part, not yet
left the academic stage. With DCE, however, the development of distributed applica-
tions has left this stage and more and more commercial sites get involved in distrib-
uted programming. The expected aggravating effects on the software crisis will prob-
ably lead to rapid changes in the scene of support tools in the years to come.

4.2 Distributed Object-Oriented Systems

A step beyond RPC are distributed object-based systems as extensions of program-
ming languages like C++, Smalltalk, Trellis, Modula-2 or Eiffel. An object can be de-
fined as a data structure associated with a set of operations. The data structure could
refer to other objects by which an object graph can be built representing a so called
complex object. Thus, as opposed to RPC servers, the granularity of objects is scalable
and ranges, in general, from a couple of bytes up to thousands of bytes.

The fine granularity of objects and their capability to form complex objects lead to a
unit of mobility, i.e. the object, which is easy to handle. Objects interact with each
other through "message passing", i.e. an object sends a remote message to a peer ob-
ject to initiate the execution of one of the provided operations. At the communication
level, message passing is performed by RPC-style location independent object invoca-
tions whereby interacting objects can reside at different nodes.

However, as opposed to RPC with call-by-value parameter semantics, object refer-
ences (i.e. pointers to objects) can also be passed remotely, leading to call-by-object-
reference semantics. In addition, single objects or even complete object graphs could
be passed as parameters to the callee [10].

The resulting approach is more flexible than RPC and, in particular, enables a more
natural modeling of distributed applications. Due to the mobility of objects, they can
be relocated dynamically. This way, communicating objects can be co-located in order
to reduce communication costs or to increase availability during execution of a joint
action of a set of objects.

Example: The discussed office / manufacturing system can directly be mapped to a
distributed environment this way (see fig. 7). Distributed office procedures can be rep-
resented as task objects transferred between server objects. Typical operations of task
objects are start, stop, suspend, or status inquiry while servers provide actual service
invocations, status inquiries, or accounting functions. Data/document objects attached
to an office procedure can also be modeled as objects. Moreover, since each document

15

has a certain structure like chapters, paragraphs and so on, it is likely that such docu-
ment objects are object graphs as mentioned earlier.

I
Object:
Manufacturing
control

Object: 1 Remote r e f e r e n c e s / ~ Quality control

[, . . _ , / rOb iect: ~ , "."_.~" .

~ Migration QObject:
Sales support

Attached data /
document objects 1

Fig. 7 Distributed object-oriented office procedure modeling

-DistributedObject 0;
Location *locate 0;
boolean move (Location*);
boolean fix 0;
boolean unfix 0;
void Invoke (//...);
invocation
I;

Class structure: The mechanisms to create remote objects, to locate and invoke them,
and to relocate them dynamically can be implemented by superclasses from which all
relevant application classes inherit. As an example, a C++ superclass is given below
[11]; it also offers methods to fix objects at a certain location in order to prevent mi-
gration, and to unfix them later:

class DistributedObject {
//... Instance variables like location, size etc.
public:
DistributedObject (Location*);//Constructor to create at a given location

//Destructor
//Locate the object
//Move to a given location
//Fix at current location (prevent from moving)
//Release for migrations
//Perform generic

Such functionality can be implemented on top of DCE RPC as illustrated by other pa-
pers in the proceedings. This requires sophisticated additional mechanisms for locat-
ing mobile objects (e.g. via forwarding addresses), for synchronizing migrations and
computations, for controlling object migrations according to a given goal, and for
monitoring and controlling the overall system behaviour.

OMG/CORBA: The industry consortium Object Management Group (OMG) has de-
fined the Object Management Architecture (OMA) for managing objects in distributed
systems. This approach aims at providing support for distributed object interaction in a

16

heterogeneous environment. In OMA, objects usally tend to be much larger than they
are at programming language level, i.e. a whole application could be an object. This
approach differs from object graphs in the sense that these "coarse-grained objects"
are treated as monoliths.

A key component of OMA it is the Object Services Architecture [12-13] that offers
the required services with a very broad spectrum of functionality. In general, these
services provide a higher level of abstraction than DCE does and cover a broader tech-
nological area. Examples are database- and transaction-oriented services, version con-
trol of software objects, concurrency control, and distributed object replication. Loca-
tion independent object interactions are supported by the Common Object Request
Broker Architecture (CORBA); it supports mechanisms for identifying, locating, and
accessing objects in a distributed environment. However, the Object Management Ar-
chitecture has not yet reached the same level of maturity that DCE has. Moreover,
some functionality of distributed object-oriented systems mentioned above, namely
mobility, is not yet supported by CORBA. Several vendors implement - at least par-
tially - CORBA on top of DCE.

Open Distributed Processing (ODP): Distributed system technology has become a
major focus in international standardisation and harmonisation activities, too. As an
important example, work in ISO and related standardisation committees is in progress
to define a reference model for Open Distributed Processing (ODP). The reference
model will include a descriptive as well as a prescriptive part. The descriptive part
defines terminology and modeling gear that can be used to model arbitrary distributed
systems. The prescriptive part specifies when a distributed system may be called an
ODP system. It prescribes architectural properties that an ODP system must have. Af-
ter the ODP reference model has been finished, individual ODP standards conforming
to the reference model will be defined. Most likely, one will first work on standards
for infrastructure components similar to those that we find in OSF DCE today. ODP
and OSF DCE are two projects that are completely unrelated from an organisational
point of view. However, the ODP work on an abstract reference model benefits sig-
nificantly from the design of an infrastructure such as OSF DCE. The latter shows
what functionality is needed in distributed processing systems and how components
can be integrated into a common framework. Furthermore, when individual ODP stan-
dards will be sought for, the OSF DCE technology will certainly be a suitable and
promising starting point. OSF and OMG (see above) have expressed their interest in
advancing the ODP standardisation.

4.3 Distributed Transactions and Workflows

Transactions are a well-known approach found in database systems. It guarantees so-
called ACID semantics (atomicity, consistency, isolation, and durability). Atomicity
means that an operation is only performed as a unit; it is either fully completed (com-
mit) or its effects do not become visible (abort). Consistency means that a transaction
transforms data from one consistent state into another consistent state. Isolation means
that concurrent transactions execute like in a sequential system without interference.
In particular, a transaction T1 will never see any intermediate state of data caused by
another transaction T2 before T2 is completed. Finally, durability means that the ef-
fects of a transaction (data manipulations etc.) remain persistent after transaction com-
pletion; for example, they do not get lost after a system crash.

17

Distributed transactions: The transaction properties have proven very useful for im-
plementing processing functionality with strict consistency requirements (like
credit/debit transactions). Therefore, extensions of the basic concept towards distrib-
uted systems have been developed [14]. Some of them are based on RPC or distrib-
uted object interactions, others on pure message passing. The implementation typically
relies on the two-phase commit protocol. In the first phase, all transaction participants
are polled by a coordinator whether they are able to successfully commit. In the sec-
ond phase, the uniform decision is propagated to them in order to commit or abort
jointly.

This concept has also been extended towards nested transactions with hierarchical
subtransactions. This allows for running subtransactions in parallel, and for selective
rollback and restart of subtransactions. Standards and implementations on top of DCE:
Meanwhile, there are several emerging product-level implementations of distributed
transactions that conform to new standards. Most notably, the X/Open consortium has
defined the X/Open Distributed Transaction Processing (DTP) application program-
ming interface named XA [15]. This approach is designed to work with standardized
ISO/OSI transaction protocols, namely CCR and TP.

Conforming to the XA standard, there are several implementations available. The ori-
gins of XA have evolved according to the Tuxedo system [16] of Unix System Labora-
tories that is available on numerous hardware platforms and operating systems. The
Encina transaction processing system [17] of Transarc is an open, XA standards-based
family of components that provide online transaction processing based on DCE.
Transactional integrity is added to DCE programs through Transactional-C, Transac-
tional RPC (TRPC), two-phase commit and the management of recoverable data.
Transactional-C consists of C language extensions to indicate transaction demarcation,
concurrency control and exception handling. TRPC adds exactly-once semantics to
DCE RPC. When a remote procedure is called from within a transaction, it is executed
exactly once, if the transaction commits and not at all if the transaction aborts. Besides
this basic support for transactional integrity, Encina offers a Structured File System
(SFS) and a Monitor as an administrative, runtime and development environment for
transactional applications. Functionality of the Monitor comprises, for example, moni-
toring active clients, performing load balancing and connecting front-end tools (like
OSF/Moti0. SFS is an record-oriented file system (in contrast to DCE DFS) that
meets the requirements of transactional systems for record-style and recoverable re-
source managers.

Workflows are a rapidly emerging technology area that deals with long-lived, well-
defined activities like office procedures. A workflow system controls the execution of
the global control flow and in some cases provides certain reliability support by using
transaction mechanisms. Workflows are distributed by nature and thus are one of the
key application domain for distributed processing. On the other hand, workflows in-
troduce a new style of programming since execution order and principles should be
extracted from the single application part and be moved to a separate workflow pro-
gram.

Workflow systems could benefit from all DCE services. Especially RPC for communi-
cation between the workflow and the application parts, authorization and authentica-
tion of users performing the individual steps, and directory services for locating work-
flow servers are important.

18

4.4 Distributed Multimedia Systems

A multimedia system is characterised by the computer controlled generation, manipu-
lation, presentation, storage, and communication of independent discrete media such
as text and graphics and continuous media such as audio and video [18,19]. Applica-
tion domains for multimedia systems are, e.g., multimedia e-mail, multimedia-
supported teaching, virtual reality simulation systems, and workstation conferencing
systems. Many of these domains are inherently distributed. A workstation conferenc-
ing system, for example, allows sharing of window based applications among partici-
pants at different locations supported by multimedia services for audio communication
as well as video conferencing.

Distributed multimedia systems impose new challenges for the communication of con-
tinuous data. Whereas discrete media have time independent values, the values of con-
tinuous media change over time and these changes contribute to the media semantics:
Each single value in an audio or video stream represents stream information for some
fraction of time. Changes in the times at which values are played or recorded result in
the modification of the original data semantics and must not happen unintentionally.
The timing demands of continuous media require operating and transport system sup-
port for connections with guaranteed quality-of-service (QoS) for the transmission of
continuous data [20]. This is achieved by allocating some fraction of the end-system
and network resource capacity and scheduling these resources appropriately. Another
meaningful requirement is the support of multicast since a continuous stream often
must be transmitted from one source to multiple sinks.
For the development of distributed multimedia applications it is reasonable to model
sources (e.g. a microphone) and sinks (e.g. a loudspeaker) of continuous streams as
objects. A source object, for example, offers operations to connect itself to a sink ob-
ject and to start, stop or suspend the production of a stream. This kind of control op-
erations is performed by conventional DCE RPC communication. When control op-
erations must be submitted to multiple sinks, a multicall extension to the RPC is
convenient. Directory and security infrastructure is crucial to identify appropriate
sources and sinks. The establishment work for the respective connections, however,
that comprises the negotiation of the required QoS, and the transmission of the data
itself can be left to the "multimedia" transport system. As a result, sources and sinks
must be able to cope with the coexistence of dedicated runtime systems for conven-
tional RPC communication as well as processing of continuous data.

Special support for producing, processing and consuming continuous data is needed,
when the data get manipulated within the application. Manipulations are, for example,
encrypting or compressing audio or video information, or mixing and synchronising
different but related streams. A useful construction in this context is to conceive the
connection between a source and its sink as an object in its own right. Such an object
exhibits two categories of operations: a lower level category acting on the established
transport connection and a higher level for controlling it.

5 Overview of the Technical Contributions

The technical contributions in this volume are concerned with DCE implementation
issues, with applications and tools, but also with models and approaches beyond DCE.
In particular, the following areas are covered:

19

DCE analysis and comparison: DCE is compared with the ANSAware environment
developed in the UK. Moreover, DCE RPC is compared with SUN RPC and with
other RPC approaches. Two performance analysis studies evaluate DCE RPC and
CDS in detail. This also leads to concrete recommendations, for example concerning
the configuration of a CDS name space. This way, the conceptual overview given
above is augmented with practical DCE analyses and experiences.

Application support: This part focuses on DCE application support tools and on ac-
tual DCE applications. Two different tools for enabling Fortran access to DCE serv-
ices are presented. The first tool supports the conversion of existing non-distributed
Fortran applications to distributed DCE applications. The other approach enables di-
rect program-level access from Fortran to C-based DCE functions. One paper presents
a practical DCE application for stock broker support. This contribution emphasizes
how DCE is used for real-world applications and reports experiences with DCE appli-
cation development. Another application implements print services and a heterogene-
ous interface to various mail systems based on DCE R_PC, using a generic services ar-
chitecture.

Methods and tools: Several other DCE support tools are presented. A formal method
and tool approach focuses on the problem of converting monolithic, non-distributed
programs to distributed applications on top of DCE. A similar transition approach is
presented for DCE Security, helping to incorporate conventional Unix security envi-
ronments into a DCE framework. Finally, advanced tools for resource monitoring in
DCE cells are presented. Altogether, tool examples from all three categories of devel-
opment, system management and runtime-level are discussed.

RPC extensions: This part covers direct extensions of DCE RPC. The first example is
multimedia support based on new media types and quality of service attributes in IDL,
and on runtime mechanisms for time-constrained RPC and realtime thread scheduling.
Another paper introduces an integration of RPC and message passing, leading to a
more flexible set of communication facilities. Moreover, optimized RPC server selec-
tion is also addressed in order to relieve the application developer from the selection
process discussed above. Finally, an ambitious distributed object model is imple-
mented by an object-oriented RPC extension. It provides the facilities discussed
above, but also supports dynamic typing of objects. This allows a more natural inte-
gration of common generic services in a DCE environment.

Object-based systems: Several other papers focus on object-based DCE extensions,
too. An operating implementation of CORBA on top of DCE is presented, showing
that there's a strong practical relationship between CORBA and DCE. The design and
implementation of a distributed object-oriented framework with mobile objects be-
yond CORBA, but on top of DCE, is illustrated by another contribution. A related pa-
per shows how the more conventional DCE functionality can at least be offered via
higher-level, object-oriented class interfaces. This way, an improved abstraction is
provided to the application developer. Finally, an object-based tool for graphical sup-
port of DCE applications is presented. This also extends the tool discussion towards
the early phases of application design.
In summary, the papers in this volume illustrate that DCE is a practical environment
for building distributed programs. However, they also make the need for higher-level
tools, models and abstractions obvious. It is hoped that directions for further research
and development in the context of DCE are pointed out this way, and that such work
will help to make DCE a success for open distributed environments.

20

References
1. Mullender, S. (Ed.): Distributed Systems; Addison-Wesley, Reading,

Massachusetts, 1989
2. Tanenbaum, A.S.: Computer Networks; Prentice Hall; 1991
3. Open Software Foundation: Interoperability: A Key Criterion for Open Systems;

OMG, 1992
4. Open Software Foundation: OSF Distributed Management Environment (DME)

Architecture; OMG , 1992
5. Open Software Foundation: Introduction to OSF DCE; Open Software

Foundation, Cambridge, USA, 1992
6. Open Software Foundation: DCE Application Development Guide; Open

Software Foundation, Cambridge, USA, 1992
7. Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A., Satyanarayanan, M.,

Sidebotham, R.N., West, M.J.: Scale and Performance in a Distributed File
System; ACM Trans. on Computer Systems, Vol. 6, No. 1, Feb. 1988, pp. 51-81

8. Misra, J., Chandy, K.M.: Proofs of networks of processes; 1EEE Trans, on
Software Engineering, Vol. SE-7, 1981, pp. 417-426

9. Special Issue on the Practical use of Formal Definition Techniques in
Communications and Distributed Systems; Computer Communications, Vol. 151
No. 2, March 1992

10. Achauer, B. The DOWL Distributed Object-Oriented Language; Communications
of the ACM, Vol. 36,No. 9, 1993

11. Schill, A., Zitterbart, M.; A System Framework for Open Distributed Processing;
Journal of Network and Systems Management, Vol. 1, No. 1, 1993, pp. 71-93

12. Object Management Group: The Common Object Request Broker: Architecture
and Specification; OMG, 1991

13. Object Management Group: Object Services Architecture; OMG, 1992
14. Gray, J., Reuter, A.: Transaction Processing - Concepts and Techniques;

Morgan Kaufman Publishers, San Mateo, CA, 1993
15. X/Open Distributed Transaction Processing; X/Open Ltd., Reading,

Berkshire, England, 1992
16. Tuxedo System Transaction Manager; Unix System Laboratories, 1992
17. Encina Transaction Processing System; Transarc Corp., Pittsburgh, PA, 1992
18. Herrtwich, R., Steinmetz, R.: Towards Integrated Multimedia Systems: Why and

How; in 21th. Jahrestagung GI, Darmstadt October 1991, lnformatik-
F achbericht 293, Springer-Verlag, 1991

19. Davies, N.A., Nicol, J.R.: Technological Perspective on Multimedia Computing;
Computer Communications, Vol. 14, No. 5, June 1991, pp. 260-272

20. Vogt, C., Herrtwich, R., Nagarajan, R.: HeiRat-The Heidelberg Resource and
Administration Technique Design Philosphy and Goals; in N. Gerner,
H.-G. Hegering, J. Swoboda, Kommunikation in Verteilten Systemen ITG/GI-
Fachtagung, Munich, March 1993

Comparing two Distributed Environments: DCE and
ANSAware

Ashley Beitz 1, Paul King 2 and Kerry Raymond 3

t ashley@dstc.edu.au
CRC for Distributed Systems Technology,

University of Queensland,
Brisbane 4072 Australia

2 king@dstc.edu.au
CRC for Distributed Systems Technology,

Digital Equipment Corporation, Networks and Communications R&D Centre,
Burnett Place, Bond University Research Park, Robina 4226 Australia

3 kerry@dstc.edu.au
CRC for Distributed Systems Technology,

Centre for Information Technology Research, University of Queensland,
Brisbane 4072 Australia

Abstract. A distributed environment is used for the development and operation
of distributed applications. This paper compares two distributed environments:
the Distributed Computing Environment (DCE) from the Open Software Foun-
dation (OSF) and ANSAware from Architecture Projects Management (APM)
Limited. The results indicate that DCE and ANSAware have many differences.
These differences reflect the fact that ANSAware was built up from an innovative
architectural model for distributed systems with a focus on providing a vehicle
for technology transfer, while DCE was built by integrating existing technology
with a focus on providing the functionality necessary for commercial viability.

1 Introduction

Distributed environments are the collection of utilities, languages and libraries which
support the development and operation of distributed applications. A distributed envi-
ronment has a similar purpose to a distributed operating system, but sits on top of an
existing operating system as opposed to replacing it entirely. Therefore, the distributed
environment is easier to port and its installation causes minimal impact to the system
(i.e. the operating system is not replaced). Unfortunately, a distributed environment is
not usually as efficient as a distributed operating system and it is difficult to implement
migration and load balancing in a distributed environment. In this paper, the term dis-
tributed environment is synonymous with the terms: distributed computing environ-
ment, distributed processing environment and distributed systems environment.

This paper compares two prominent distributed environments: DCE 1.0.2 [1] [2] [3]
and ANSAware 4.0 [4]. Distributed Computing Environment (DCE) is produced by
the Open Software Foundation (OSF) through its Request For Technology process. Its
technology originates from a number of vendors and research institutions, including
Digital Equipment Corporation, Hewlett-Packard, Siemens-Nixdorf, Transarc and

22

MIT. ANSAware is the realisation of the Advanced Networked Systems Architecture
(ANSA), an architecture for networked computer systems to support distributed appli-
cations. ANSAware was developed by the research organisation Architecture Projects
Management (APM) Limited to serve as a technology transfer vehicle.

This paper compares DCE and ANSAware from a number of perspectives. Section 2
describes the software components within each distributed environment. Section 3 ex-
amines application development, which covers the computational aspects. Section 4
explores infrastructure issues, including the engineering and technological aspects.
Section 5 addresses system administration and the effort of installing and maintaining
a distributed environment. Our conclusions are presented in Section 6.

2 Software Components
ANSAware and DCE both comprise of a number of software components, shown in
Figure 1 and Figure 2 respectively.

i iiiiii i iiiii i:i iiiii:iii:i ::ii1 iiiiiiiiiiiiiiiiii ii iiiii! Notification[i iiiii i [. ii! ii iiiii~i~n~e!iiiiiiiiii!~ ~
ii::i:::: :::::: ::::::::::::::::::::::::::: Service ~ i i ~ i i ~ ~ ~

Figure 1: ANSAware components

i!ii!!!iiiiiiiiiiiiiiiiiiiiiiiiiiiii i i ii iiiiiii iiiii:i i!iiiiiiii i iiiiiii iiii i i i : ! i i i iii iiiiiiii!iiii ii iiiiiiiiiiiiiiiiiiiiiiii!ii !iiiiiii

• - ` • • • • ` . . . •• ` • •

::

Figure 2: DCE Components

ANSAware and DCE have common components, such as threads and Remote Proce-
dure Call (RPC). The threads component allows the creation, management and syn-
chronisation of multiple threads of control within a single process. The RPC component
allows procedure calls to be invoked remotely.

Both distributed environments have a name service. The name service maps names that

23

a user understands into names that a dislributed environment (computer) understands.
In DCE, the Directory Service component allows information about resources within
the system to be stored and accessed. The directory service functionality is further di-
vided into inter-cell and intra-cell parts. A Cell is a fundamental grouping of nodes into
some administrative domain (see Section 5). A hierarchical naming scheme is provided
by the Cell Directory Service (CDS) for intra-cell use. Inter-cell naming is handled by
the Global Directory Service (GDS) which uses either the X.500 or the Domain Name
Service (DNS) naming scheme. In ANSAware, the trader provides the name service
functionality. The trader allows a client to find the service that it requires via a lookup
based on attributes. ANSAware's and DCE's name services are very different; DCE
provides a white pages service (straightforward name to entry lookup), while ANSA-
ware provides a yellow pages service (lookup based on attributes). DCE provides
groups and profiles for the logical grouping of directory entries; such groupings can be
based on attributes and thus can support a yellow pages style of search.

Both ANSAware and DCE provide a few distinct services of their own. In DCE, these
are the Security service, the Distributed Time Service (DTS) and the Distributed File
Service (DFS). The Security component provides secure communications and control-
led access to resources within a distributed system. The Distributed Time Service com-
ponent provides synchronised time to nodes within the system. The Distributed File
Service component allows users to access and share files anywhere on the network
without having to know their physical location. ANSAware's distinct services are the
Notification Service, the Factory and the Node Manager. The notification service ad-
vises interested parties of the termination of an object. The factory provides the dynam-
ic instantiation and termination of objects. The node manager provides an architectural
interface for the creation, simple monitoring and destruction of ANSAware services on
a node. ANSAware has no distributed file service; it relies on systems such as the Net-
work File System (NFS). As a general comment, ANSAware focuses on distributed
processing and neglects distributed data, whereas DCE caters for both these aspects.

2.1 Summary

Software
Components

~/ame Service

DCE ANSAware
RPC, Threads, Name Service, RPC, Threads, Name Service,
Security Service, DTS and DFS Notification Service, Factory and

Node Manager
Directory Service (white pages) Trader (yellow pages)

3 Applications Development
3.1 Paradigm
The architecture for both DCE and ANSAware is based on the object model [5]. An ob-
ject is a discrete component which makes available a particular resource, or service,
through a restricted set of operations. Objects play an important role in distributed ap-
plications, as they provide a natural partitioning for these applications. In both DCE and
ANSAware, an object's operations are usually partitioned into smaller sets known as
interfaces, where the operations in each interface usually serve some related purpose.

24

Both DCE and ANSAware support the client-server paradigm; the objects which pro-
vide the service are the servers and the objects which use the service are the clients. A
client accesses a service by invoking an operation on the server's interface via an RPC.

3.2 Interface Definition Language

In both DCE and ANSAware, an interface definition language (IDL) is used to specify
the data types and operations applicable to each interface in a platform-independent
manner. Semantically, DCE's IDL and ANSAware's IDL are very similar; syntactical-
ly, they are very different. DCE's IDL builds on the C language syntax for function and
data type definitions, augmented by attributes which define properties not representable
in the C language. Figure 3 illustrates how a simple interface providing Unix-like file
operations is def'med using DCE IDL; the attributes appear in brackets.

[
/* An interlace type kt comprises of a unique universal id (uuid) and a version number. */
P It is required if interfaces of this type are to be registered with name servers. "/
uuid(907FOE10-D3C2-11CB-BCCE-O8002B2D0880),
version(1.0)

]interface UnixCaU
{

typedef struct {
long length;
[lengths(length)] char data[BUFSlZE];
/* length_is 0 indicates the variable which stores the array length */

} Buffer;

/* for the functions below, any error status is returned as the (unnamed) function result */

long Open ([in, string] char pathN, [in] long flags, [in] long mode, [out] long *fd);

long Read ([in] long fd, [in] long nbytes, [out] Buffer *buf, [out] long *nreed);
}

Figure 3: Example of Unix system calls using DCE IDL

ANSAware's IDL is based on the Courier IDL from Xerox [6] and syntactically resem-
bles Modula-2. Figure 4 illustrates the simple file interface using ANSAware IDL.

UnixCall: INTERFACE =
BEGIN

Buffer: TYPE = SEQUENCE OF CHAR;

END.

Open: OPERATION [path: STRING; flags, mode: INTEGER]
RETURNS [fd: INTEGER; err: INTEGER];

Read: OPERATION [fd: INTEGER; nbytes: INTEGER]
RETURNS [buf: Buffer; nread: INTEGER; err: INTEGER];

Figure 4: Example of Unix system calls using ANSAware IDL

25

Data Types
The primitive data types supported in both ANSAware and DCE are very similar. Both
support the common data types: boolean, cardinal, integer, character, real, byte and
string. Variants of the common data types are also supported, e.g. short integer and long
real. The major difference is that DCE alone supports pointers allowing DCE to ex-
change complex pointer-linked structures during an RPC. ANSAware also provides
ANSAware-specific data types; such as object id, interface id and interface reference.

New data types can be constructed using data type constructors. The data types con-
structors supported in both ANSAware and DCE are very similar. Both provide enu-
meration, arrays, records, variant records and aliases. The only difference is that AN-
SAware provides sequences (or variable-sized arrays) directly, while DCE supports
variable-sized arrays by having an explicit length variable indicated by the length_is at-
tribute on the array declaration (see the definition of Buffer in Figure 3).

Operation Signatures
In DCE, there are three methods to exchange information during an RPC: named input
parameters (indicated by the in attribute), named output parameters (indicated by the out
attribute) and the unnamed function value (e.g. the error codes are returned as function
values in Figure 3). There can be any number of input and output parameters (or none),
but there is at most one unnamed function value. A parameter can be used for both input
and output (i.e. declared as [in, out]). ANSAware only has two methods: named input pa-
rameters and optionally named output parameters (which can also be regarded as func-
tion values). ANSAware can have zero or more of the input and output parameters, but
no parameter can be both for input and output.

ANSAware supports two types of operations: interrogations and announcements. Inter-
rogations (the default form) are operations that return results; the client waits until those
results are returned. Announcements do not return results and the client does not await
any response. By not awaiting a response, the client cannot be informed of the failure
of the announcement operation; this is a risk that the client must accept. The normal
RPC in DCE is identical to ANSAware's interrogation operation. ANSAware's an-
nouncement operation is equivalent to DCE's maybe operation (an operation annotated
with a maybe attribute does not return results and is not guaranteed to execute).

Interfaees
Both ANSAware IDL and DCE IDL have a method of inheriting data type definitions
from another IDL file. In ANSAware, it is the NEEDS statement; in DCE, it is the import
statement. Additionally, ANSAware has a means to inherit operation definitions from
another IDL file. The IS COMPATIBLE WITH statement in an ANSAware IDL file inherits
operation definitions while the IMPLEMENTATION IS COMPATIBLE WITH statement also al-
lows code re-use.

In ANSAware, an interface type is identified by a simple name (e.g. tJnixCall in Figure 4).
Although a DCE interface type can be given a simple name (e.g. tJnixCall in Figure 3), a
I)CE interface type is actually identified by its uuid and version attributes. The uuid at-
tribute defines a unique name for the interface while the version attribute indicates the

26

compatibility between different versions of that interface type. The DCE utility uuidgen
generates uuid values making it easy for the application developer to ensure world-wide
uniqueness.

3.3 Distributed Programming Language

Distributed programming languages are used to implement distributed applications.
DCE does not provide a new programming language. DCE applications are written and
compiled using conventional programming languages and compilers, typically C. The
benefits of this approach are that application programmers do not have to learn a new
language and existing applications can be more readily ported to DCE.

In contrast, ANSAware provides a new language, a combination of the C language and
ANSAware's PREPC language, which provides additional syntax for distributed sys-
tems functions. ANSAware applications must first be preprocessed to yield a conven-
tional C program before compilation using a regular C compiler. The advantage of AN-
SAware's distributed programming language is that it gives syntactic support to the
concepts of interfaces, not directly representable in the C language and, hence, in DCE
applications.

Offering an Interface
In order to provide an interface to clients, a server must first create and export its inter-
face. The following code fragments in Figure 5 show how this is done using ANSA-
ware. Note that lines commencing with a '!' are PREPC code.

! DECLARE { itref }" UnixCall SERVER r PREPC declaration for the interlace reference (ffref) */
/* interface type (UnixCall) and role (SERVER) are specified */

ansa_lnterfaceRef if_ref; /* C declaration for the interface reference */

I { iLref } :: UnixCall$Create(...) r create an interface of type UnixCall */
r this operation returns an interface reference */

I { } <- traderRef$Export("UnixCall", ifret) /* export an interlace offer to the trader */
/* traderRef is the trader's interface reference */

I itref$Discard /* withdraw the interlace offer trom the trader */
/* and destroy the interface */

Figure 5: Offering an interface in ANSAware

In comparison with ANSAware, establishing a server's interface in DCE requires a se-
ries of calls to register the interface at a number of levels (viz. RPC runtime, name serv-
ice and endpoint mapper). An outline of the DCE code to establish an interface and the
main loop which provides service at the interface is shown in Figure 6.

27

@c_server_register_if(...);
@c_server use all._protseqs(...);
rpc_.server_inq_bindings(...);
rpc_ns_binding_export(.
rpc_ep_register(...);
TRY

rpc_server_listen(...);
FINALLY

rpc_ep_unregister(...);
rpc_binding_vector_free(...);

ENDTRY

/* register interface with RPC runtime */
/* establish protocol sequences */
/* get binding handles for this sewer */
/* export entry to name service */
/* add endpoints to local endpoint map */

/* listen for dient calls */

/* remove endpoints from endpoint map */
/* relinquish binding handles */

Figure 6: Offering an interface in DCE

An important difference between ANSAware and DCE is that ANSAware treats inter-
faces as "f'trst class" entities. By "first class" entities, we mean that the interfaces are
not contained within an object, instead they are distinct entities which may be offered
by an object. Through ANSAware's support of interfaces as "first class" entities (viz,
the interface reference data type and interface-specific state) ANSAware object's can
offer multiple instances of the same interface type. A DCE object cannot readily offer
multiple interfaces of the same interface type (as an interface can only be identified via
its interface id and its object id); it can, however, be split up into sub-objects and, thus,
offer multiple interfaces through multiple sub-objects.

Implementing the Server's Operations

Servers must provide code for each of the operations defined in the interface type. The
code fragment in Figure 7 shows the ANSAware server code for the Read operation de-
fined in Figure 4. Notice that the interface type has been prepended to the operation
name and that the first parameter_attr (which is used to access interface-specific state)
is added to the parameters defined in the IDL file.

int UnixOall_Read (__attr, fd, nbytes, bur, nread, err)
ansa_lnterfaceAttr *_attr; /* this parameter may be used to access the interfaee's state */
ansa_lnteger fd;
ansa_lnteger nbytes;
Buffer *buf;
ansa_lnteger *nread;
ansa_lnteger *err;

{
buf->data = buffer; /* buffer is a static variable */
*nread = buf->length = read (fd, buf->data, nbytes);
*err = errno;
return Successfullnvocation;

Figure 7: Implementing a Server Operation in ANSAware

Although establishing a DCE interface is rather complex, the code to implement the op-
erations offered by the interface is relatively straightforward as shown in Figure 8. Like
ANSAware, the first parameter IDL_handle is additional to those parameters defined in

28

the IDL file. The IDL_handle parameter can be used to obtain details of the binding.

long Read (IDL_handlo, fd, nbytes, buf, nread)
handle_t IDL_handle;
int fd;
int nbytes;
Buffer *bur;
int *nread;

{
*nread = buf->length = read (fd, buf->data, nbytes);
retum (errno);

)

Figure 8: Implementing a Server Operation in DCE

B i n d i n g Cl ients and Servers

Before a client can invoke the operations of a server, the client must first be bound to
the server's interface. DCE provides three different forms of binding:

�9 automatic, where the client program simply calls the procedures specified in the in-
terface. The client stub binds to any server offering that interface. Successive calls
might be made to different servers.

�9 implicit, where the client program initially binds to a single server. Any call to the
procedures defined in that interface will automatically be made to the bound server.

�9 explicit, where the client program binds to one or more servers. Each call made to
the procedures defined in the interface must specify which bound server is to be
used (the binding handle for that server is passed as the first parameter to the proce-
dure).

Automatic binding is the simplest for the applications programmer, but there is a loss
of control. Explicit binding is the most complex for the applications programmer, but
provides maximum control. Implicit binding lies between the other two. The choice of
binding is expressed as an attribute in an optional Attribute Configuration File (ACF),
which customises the IDL file. In our experience, explicit binding is required for all but
the more trivial applications.

DCE and ANSAware have a different approach to binding. In DCE, the directory serv-
ice provides the node that offers the interface, the node (and the object id) identifies the
endpoint to be used, and then binding can occur. In ANSAware, the trader combines the
ability to select an interface based on quite complex criteria (if desired) with the node
and endpoint information required to establish a binding. Although there is an explicit
binding action in ANSAware, our experiences suggest that the trader's Import operation
(which combines the selection and binding) is normally used.

DCE's two-stage method of locating an interface (node, then endpoint) appears to be
based on the assumption that an interface is unlikely to be offered more than once by a
single node. If multiple instances are offered on a single node, then both entries in the
directory service point to the same node. The interface's object ids are required to ena-
ble the end-point mapper to distinguish between the instances. As ANSAware's trader

29

maps interfaces directly to endpoints, multiple interfaces of the same type offered by
the same node cannot be confused.

The ANSAware code fragment in Figure 9 demonstrates the client code for selecting
and b ind ing to a server interface.

! DECLARE { if._ref } : UnixCaU CLIENT /* PREPC declaration for the interface reference (iLref) */
/* interface type (UnixCall) and role (CLIENT) are specified */

ansa_lnterfaceRef if_ref; /* C declaration for the interface reference */

! {itref } <- traderRef$1mport('UnixCall", ...) /* select an interface offer from the trader */

Figure 9: ANSAware code for selecting and binding to a server interface

The explicit binding process performed by the DCE client is in Figure 10. Again, con-
siderable detail of this complex mechanism has been omitted. Note that this code is not
required if automatic binding is used.

rpc_ns_binding_import_begin(...); /* begin scanning binding handles */
while (1) {

rpc_ns_binding_import_next(...); r import a binding handle *,'
rpc_binding_to_string_binding(...); /* translate to string */
rpc_string_binding_parse(...); /* parse the binding */
rpc_string_free(...); /* free all rpc-allocated strings */
/* exit loop when suitable binding handle is found */

}
rpc_ns binding_import_done(...); /* end of scanning binding handles */

Figure 10: DCE code for selecting and binding to a server interface

Calling Remote Procedure Calls

As DCE uses conventional programming languages for applications development, in-
vocation of RPCs is syntactically similar to the invocation of local procedure calls as
shown in Figure 11. Once the DCE client has established the binding, calls to the op-
erations of the remote interface can be made quite simply. Notice that the first parame-
ter (not present in the IDL file) is the binding handle (this is using explicit binding).

errno = Read (binding_h, td, BUFSIZE, &bur, &nread);

Figure 11: DCE RPC invocation

In contrast, invocation of RPCs in ANSAware is done using PREPC code as shown in
Figure 12.

! {buf, nread, errno} <-if_ref$Read (fd, BUFSlZE)

Figure 12: ANSAware RPC invocation

An ANSAware invocation comprises of five parts. The In'st part is the result list (con-
tained in { }), the second part is the interface reference for the interface being invoked
(if_ret), the third part is the operation name (Read), the fourth part is the argument list
(contained in ()) and the fifth part is used for exception handling (this part is not used
in the above example).

30

As mentioned in Section 3.3, DCE does not give any syntactic support to interfaces.
Therefore, name clashes occur if the client uses another interface which has a Read op-
eration. The simplest solution is to rename the operation in one of the interfaces, but this
affects all existing clients and servers of that interface (and assumes that the program-
mer has the privileges to modify the IDL file). By adopting the convention of prepend-
ing the interface name to each operation name in the IDL f'de, e.g. call the operation Un-
ixCall__Read, these problems can be avoided.

Exception Handling
In ANSAware, exception handling is supported syntactically as part of remote invoca-
tion. As shown in Figure 13, each invocation can choose to continue, abort, or invoke
an exception handler in response to any of 27 invocation outcomes, e.g. ok (when the
operation returns Sueeesslullnvoeation), abnormalReturn (when the operation returns UnSuc-
eessfullnvocation), transmiffimeout (when a communications time-out occurs).

! {b, n, e} <- lile__ops$Read (f, B) Continue ok Signal transmitTimeout Abort *

Figure 13: ANSAware RPC invocation with exception handling

In DCE, invocation failures are separated into two groups: failures of communications
(e.g. time-out) and failure at the server (e.g. unable to make the call). By using the ACF
attributes eomm_status and fault_status, the operations of the interface can be modified to
return these error codes as either output parameters or function results. The programmer
can then test these error codes and react appropriately. DCE provides syntactic support
for exceptions through the use of macros, e.g. RAISE and TRY.

Advanced DPL Concepts
In addition to the DPL concepts discussed in the previous sections, DCE provides two
additional concepts: context handles and pipes. Neither of these concepts are provided
by ANSAware.

A DCE server can store the state (or context) associated with a client's session.This al-
lows the communication overhead to be reduced, as there is no need for the state to be
transferred (back and forth) for each of the client's invocations on the server. The con-
text handle is the reference used by the client to associate itself with a particular state
maintained by the server.

A pipe is a mechanism used to transfer data of a particular type between a client and a
server. This transfer can be bidirectional, i.e. the client can use the pipe to transfer data
to the server and the server can use the same pipe to transfer data to the client. This
mechanism is normally used to transfer large amounts of data or when there might be a
sporadic stream of data between the client and the server. One limitation of the pipe
mechanism is that it cannot transfer pointers or data containing pointers.

3.4 Concurrency

In order to exploit the potential for parallel execution in a distributed system, the appli-
cations must be capable of concurrency. Although the RPC is an excellent paradigm for
programmers, awaiting the return of the call does not exploit the parallelism of the dis-
tributed system. As RPCs are the basis for interworking in both DCE and ANSAware,

31

it is important to understand how the concurrency of applications can be increased when
required.

DCE supports concurrency via three mechanisms: threads, broadcast RPCs and maybe
operations. A thread is a light-weight process and allows an application to have multiple
execution paths. A broadcast RPC is an operation invoked on all servers of a particular
type within the local network; the client awaits the first successful result while the oth-
ers are ignored. Broadcast RPCs are only possible in restricted circumstances; in partic-
ular, the UDP transport protocol is required. Operations with the maybe attribute do not
need to await results.

ANSAware supports three concurrency mechanisms: threads, announcements and
vouchers. ANSAware threads and announcements are similar in concept to DCE's
threads and maybe operations. Vouchers enable an ANSAware interrogation (RPC) to

be invoked without awaiting the results, which are collected later as shown in the code
fragment in Figure 14. Note the use of the := operator rather than the normal <- operator.

ansa_Voucher v; /* declare a voucher */

!{v} := if_ref$Read (fd, BUFSIZE)
/* processing continues without awaiting the results */
! {buf, nread, errno} <-if_refSRedeem (v)

Figure 14: ANSAware vouchers example

3.5 Security

ANSAware has no security mechanisms while DCE provides authentication and au-
thorisation mechanisms directly. DCE also supplies the foundations for the construction
of access control, privacy and integrity mechanisms by the applications developer (see
Section 4.5).

DCE provides a superset of the access control list (ACL) data structure defined in
POSIX 1003.6 to enable the implementation of an ACL manager for a server. Based on
a client's privileges, the ACL manager determines whether that client has permission to
perform the requested server functionality.

In DCE, confidentiality (privacy) can be provided in applications by using the Data En-
cryption Standard (DES) to encrypt/decrypt the parameters of RPCs. DCE provides
conversation keys, which can be used by DES. Note that some implementations of DCE
do not include DES libraries due to export restrictions.

Integrity can be guaranteed if applications include a checksum as one of the parameters
for each of their RPC operations which require integrity.

3.6 Summary

DCE ANSAware
Paradigms Object-based, client-server, RPC Object-based, client-server, RPC
IDL syntax C like Modula-2 like

32

DCE
Supported the common data types, the common
IDL Data Types data type constructors and pointers

Methods of named input parameters, named out-
exchanging infor- put parameters and the unnamed
mation during an function value
RPC

RPC parameter in, out, in/out
direction

Types of RPCs default and maybe

Inheritance from data type definitions
IDL files

Interface type uuid + version number
identifier

DPL C

Offering an must register with RPC runtlme,
interface name server and endpoInt mapper

only with multiple sub-objects

ANSAware
the common data types, the common

i data type constructors, object ld,
Interface ld and Interface referenc~
named input parameters and option-
ally named output parameters

m, out

interrogation (same as DCE default)
md announcement (same as DCE
maybe)

data type definitions and operation
definitions

string

C with embedded ANSAware
PREPC
must register with name server

yes Support for multi-
iple instances of
the same interface
type by an object
:Forms of Binding automatic, implicit, expficit normal (same as explici0

Advanced DPL pipes and context handles none
Concepts

Concurrency threads, maybe operations and threads, announcement operations
broadcast RPCs (same as DCE maybe operations)

and vouchers

Security none authentication and authorlsatlon
mechanisms, and the foundations
to build access control, privacy
and Integrity mechanisms.

4 Infrastructure

4.1 Technology Supported

DCE is available (at various levels of functionality) from a variety o f vendors on a
number of platforms, including MS Windows, OS/2, VMS and UNIX variants. ANSA-
ware is available from APM on a number of platforms, including DOS, VMS and UNIX
variants.

DCE provides interoperability between the platforms on which it is available; so does
ANSAware. Neither DCE nor ANSAware can interoperate with other distributed envi-
ronments.

33

DCE is currently implemented using various transport protocols, including TCP, UDP,
DECnet and Domain. ANSAware is implemented using sockets over TCP and UDP.

4.2 Distribution Transparency

Distribution transparency is the ability to mask some aspect of distribution from the
user. The Basic Reference Model for Open Distributed Processing [6] identifies the fol-
lowing distribution transparencies:

�9 access transparency - hiding the different access mechanisms used for local and re-
mote information and services

�9 location transparency - hiding the physical location and migration of information
and services

�9 replication transparency - hiding the presence of and maintaining the consistency of
multiple copies of information and services.

Location transparency can be regarded as a combination of location independence
transparency (interaction can occur without awareness of physical locations) and relo-
cation transparency (bindings are preserved despite changes in physical location).

For process interaction, ANSAware provides access and location transparency. ANSA-
ware provides access transparency through stubs, which allow remote invocations to
appear local through a combination of message passing and local invocations, l_x~cation
independence is provided by mappings from location-independent service references to
specific locations. If a client calls on a server which has relocated, a binding error will
occur. The binding error triggers an exception handing routine which uses a service
called the relocator (this service is provided by the trader in ANSAware 4.0) to deter-
mine the server's new location, allowing a new binding to be established. Together, the
exception handling routines and the relocator provide relocation transparency.

For process interaction, DCE provides access and location independence transparency;
for data, it provides location transparency and replication transparency. Like ANSA-
ware, DCE provides its access transparency through stubs and its location independ-
ence through mappings. Unlike ANSAware, DCE does not provide relocation transpar-
ency for process interaction. DCE's distributed file service provides location independ-
ence for files (data) and masks the replication and migration of filesets.

4.3 Robustness

Robustness is comprised of three parts: availability, reliability and fault tolerance.

In the context of distributed systems, availability means the level of usage that an object
might have of a particular service. Availability can be improved by minimising the
number of critical components or through adding redundancy (replication). DCE em-
ploys both of these techniques to improve availability. DCE has two critical compo-
nents: the CDS and the security service. DCE system services increase their availability
through caching and replication. ANSAware has only one critical component, the trader
(see Section 1). ANSAware system services do not employ redundancy to increase
availability. Both ANSAware and DCE can provide the duplication of services (on sep-
arate nodes) increasing the availability of a type of service, but not the availability of a
particular service instance.

34

Reliability is the level of trust that the user has in the system's behaviour, which can be
influenced by both availability and fault tolerance. It can also be influenced by security
(which is provided by DCE, but not by ANSAware) and atomicity, which is provided
by neither DCE nor ANSAware as they do not directly provide any transaction process-
ing capabilities.

Fault tolerance is the level of failure handling provided by the system. In both DCE and
ANSAware, objects can be autonomous, so the failure of one object does not imply the
failure of the entire system. Exception handling is provided to recover from errors in
remote invocations. ANSAware also provides a notification service which can notify an
object of the termination of other objects (see Section 1).

4.4 Scalability and Incremental Growth

Both DCE and ANSAware address the issues of scalability. DCE has the concept of a
cell (an administrative domain) which can be used to partition the distributed system
into manageable subdomains. If the performance of a cell is degraded by an overloaded
system service, then the cell can be further partitioned into more cells. In ANSAware,
the most likely bottle-neck is the trader service. ANSAware reduces the scalability
problem by allowing duplication of the trader service and federation of these duplicates.
Federation involves similar independent services working together to enhance the ef-
fectiveness of each service involved in the federation (e.g. by sharing resources).

The naming conventions used in interface definitions have a significant impact on scal-
ability. The simple names used in ANSAware will not be an appropriate solution for a
very large distributed system, whereas DCE's uuids are guaranteed to be unique.

Both DCE and ANSAware provide a dynamically reconfigurable object-oriented envi-
ronment, which allows the introduction of new services and the removal of existing
services. ANSAware's trader uses subtyping to determine which services can substi-
tute for other services. In DCE, version control of the interface types is used for service
substitution. A new service can substitute for an existing service if it has the same major
version number and a larger or equal minor version number.

4.5 System Security

For security to be provided in a distributed environment, it is essential that the infra-
structure provides either security mechanisms or the necessary foundations for an ap-
plications developer to build their own security mechanisms. ANSAware provides nei-
ther, unless the applications developer can modify the ANSAware source code to im-
plement viable security mechanisms (due to the complexity of this task, it is highly
infeasible). DCE provides authentication and authorisation mechanisms and also pro-
vides the foundations for constructing other security mechanisms (see Section 3.5).
DCE's authentication service is based on MIT Project Athena's Kerberos Network Au-
thentication Service Version 5 and provides facilities to authenticate both applications
and users. DCE's authorisation service is based on Hewlett-Packard's privilege service
and can control the extent of access to system resources.

4.6 Summary

35

DCE ANSAware
Platforms MS Windows, OS/2, VMS and DOS, VMS and Unix variants

Unix variants
Interoperability only platforms running DeE only platforms running ANSAware
between heteroge-
neous platforms
Transport Prom- TCP, UDP, DECnet and Domain TCP and UDP
cols
Process interaction access and location Independence !access and location
transparencies
Data transparen- location and replication Not applicable, as ANSAware has no
cies support for distributed data

Support for two critical components, caching, one critical component, autonomous
Robustness replication, security, autonomous objects, exception handling and

objects and exception handling notification service
Support for scala- dynamically recortfigurable object- dynamically reconfigurable object-
bility and incre- oriented environment and cells oriented environment and
mental growth federation

5 System Administration
Administrative tasks include planning, installation, configuration, maintenance and ev-
olution. Typically, such tasks are carried out at various levels of granularity; for exam-
ple, some tasks must be performed once per organisation, others once per node. In this
section, we consider administrative tasks from four levels of granularity (viz: global do-
main, local domain, node and object).

5.1 Global Domain

A global domain involves an entire (enterprise-wide or world-wide) distributed system.
At this level of granularity, administration involves defining sub-system boundaries.
These boundaries allow system resources (potentially users, services and files) to be
partitioned into local domains for management simplicity, performance requirements or
preservation of existing areas of local autonomy. Subsequently, mechanisms to deal
with any resulting boundaries (e.g. naming and security boundaries) must be devised.

In DCE, system resources are partitioned into local domains called cells. Cells are an
integral part of DCE usage. Both administrative and, to a lesser extent, performance is-
sues are used to determine cell boundaries. DCE provides a global naming environment
to identify cells within the global domain (using either the X.500 or DNS naming
scheme). To participate in a world-wide environment, it is necessary to register each
cell name with an appropriate standards body. In addition, inter-cell participation re-
quires sharing of secrets across security boundaries.

In ANSAware, offered services are partitioned into local domains known as trading do-
mains. Trading domain boundaries are determined by considering both performance
and, to a lesser extent, administrative issues. Within each trading domain is a trader.

36

One particular trader will be designated as a master trader; the purpose of this trader is
to share its trading domain (or federate) with all of the other traders (known as local
traders). This allows local traders to learn the location of other local traders and thus
federate with them.

While the trading domain is an important concept within ANSAware, not all parts of
ANS Aware use these domains. For example, the trading domains do not provide a basis
for partitioning fries or users. In addition, some infrastructure facilities such as the no-
tification service and the master trader are required exactly once per global domain re-
gardless of any trading domain requirements. Likewise, for development purposes, AN-
SAware's development environment must be installed on a global basis (at least one
node per platform).

As each ANSAware global domain has only one master trader and one notification
service, the merging of two such global domains involves the selection of a common
master trader and notification service.

5.2 Local Domain

At the local domain level, tasks specific to a particular local administration domain
must be performed. In DCE, this involves the installation of the DCE system services
on nodes within the cell. The cell must contain a minimum set of core services (one se-
curity server, three DTS servers and at least one CDS server) and can make use of ad-
ditional services (e.g. DFS server). All of these services involve ongoing administrative
overheads. In ANSAware, local domain tasks include installing, maintaining and fed-
crating the local trader.

5.3 Node

A node usually denotes a single machine, but it can also refer to a set of machines run-
ning a closely-coupled distributed operating system, or to each of the operating systems
running above a heavy-weight operating system on a single machine (e.g. MVS and
AIX running on top of VM).

For each node, DCE involves the installation and maintenance of the appropriate DCE
development and run-time environments (e.g. the endpoint database). In ANSAware,
node administration involves the installation and maintenance of the factory and node
manager. ANSAware and DCE are similar at this level.

5.4 Object

ANSAware allows sub-entities to exist within a process; these are known as objects.
Each object has a management interface, which allows some of an object's functionality
to be controlled by remote invocations. The only support that DCE provides for object
management below the process level is a means to identify objects.

5.5 Summary

Global Domain
DCE ANSAware

define cell boundaries, devise define trading domains, and
secret sharing mechanisms and administration of master trader
register global names and notification service

37

Local Domain
DCE

administration of core services

Node

Object

administration of DCE runtlme

Identification

ANSAware
administration of local trader
administration of factory and node
manager
management interfaces

6 C o n c l u s i o n

In this paper, we have compared DCE and ANSAware from a number of perspectives
(viz. software components, applications development, infrastructure and systems ad-
ministration) and have summarised our fmdings in the form of tables, one for each of
the perspectives.

DCE was built by integrating existing technology with a focus on providing the func-
tionality necessary for commercial viability. The benefits of this are that DCE offers the
important enterprise functions of security and global naming, and has the ability to read-
ily merge existing global domains. The shortcoming of this is that DCE's architectural
model was drawn from old technologies, and thus requires refinement if it hopes to
compete with emerging distributed environments.

ANSAware was built up from the concepts of an architectural model for distributed sys-
tems in which the interface is a central concept. The benefits of this are that the overall
design philosophy is elegant and offers an interface-oriented approach; this yields a
number of practical benefits: mechanisms for inheritance and subtyping, simpler bind-
ing and the selection of interfaces based on interface properties. ANSAware is limited
by the failure of its architectural model to cater for distributed data and enterprise func-
tionality, such as security and global naming.

A c k n o w l e d g e m e n t s

The work reported in this paper has been funded in part by the Cooperative Research
Centres Program through the departrnent of the Prime Minister and Cabinet of the Com-
monwealth Government of Australia. This research was also supported by Telecom
(Australia) Research Laboratories through the Centre of Expertise in Distributed Infor-
mation Systems (CEDIS).

We would like to thank David Arnold, Andrew Berry, Mark Fox, Barry Kitson and
Ajeet Parhar for their invaluable comments on an earlier version of this document.

R e f e r e n c e s

1. w. Rosenberry, D. Kenney & G. Fisher: Understanding DCE, O'Reilly & As-
sociates Inc, September 1992.

2. J. Shirley: Guide to Writing DCE Applications, O'Reilly & Associates Inc, June
1992.

3. OSF: OSF DCE Application Guide, Prentice Hall, 1992.

,

5.

.

7.

38

Architecture Projects Management Ltd. (APM): ANSAwam 4.0 Application
Programmer's Manual, March 1992.

A.K. Jones, The Object Model: A Conceptual Tool for Structuring Software, in
R. Bayer, R.M. Graham and G. Seemuller (exts.) Operation Systems: An Ad-
vancod Course, Lecture Notes in Computer Science 60, Spdnger-Verlag, 1978.

Xerox Corporation: Document Xerox Systems Integration Standard 038112,
Stanford, Connecticut, December 1981.

ISO/IEC CD 10746-3: Information Technology - Basic Reference Model of
Open Distributed Processing - Part 3: Prescriptive Model, December 1992.

Comparison of DCE RPC, DFN-RPC, ONC
and PVM

Rolf Rabenseifner 1 and Armin Sehuch 2

1 Rechenzentrum der Universits Stuttgart, Allmandring 30, D-70550 Stuttgart,
Germany, Tel. ++49 711 6855530, e-mail: rabenseifnerOrus.uni-stuttgart.de

2 Institut fiir Kernenergetik und Energiesysteme, Pfaffenwaldring 31,
D-70550 Stuttgart, Germany, Tel.: ++49 711 6852122,

e-mail: rpcasQikeuxl.enetgietechnik.uni-stuttgart.de

A b s t r a c t . Taking part in the Early Participation Program of OSF/DCE
on IBM RS/6000 workstations, we have examined the RPC of DCE
between workstation and compute server under aspects of performance,
capability and functionality for scientific-technical applications program-
med in Fortran, under user-account. A brief introduction shows the de-
mands expected from a RPC tool taking a scientific-technical point of
view.

1 I n t r o d u c t i o n

Taking a scientific-technical point of view, the demands, a RPC tool has to
satisfy, are resulting from the profile of the user and from the application itself.

Users of scientific-technical applications are highly specialized, but they nor-
mally have only basic knowledge in computer science. Therefore, the user wants
a short period of learning t ime to get his work done, this means the R P C tool
must be easy to use. The lesser the difference between a distr ibuted and a non-
distributed application is, the better it is. The RPC tool should hide the distribu-
tion to the user as much as possible. The possibility of optimizations, which are
only useful to users with good knowledge of the used tool, are not so impor tant .

The features an application demands from a RPC tool can be shown looking
at a typical, practical example. The program system E S T E R has been developed
for the shared-cost action for the reactor savety of the European Communi ty
[4, 12].

To harmonize the analyse of source terms beyond the countries of the EC,
to strengthen the co-operation of single development groups and to develop a
best-est imate code for source term analysis which can be used everywhere in
Europe are goals of the ESTER development. This best-es t imate code is based
on modules which are developed at different research locations in countries which
are members of the EC. The data exchange between these modules is made using
a da ta base which is kept in the main memory because of efficiency reasons.
These single modules are big program packages which were developed for specific
computers. If you want to connect these modules, this can ' t be done anymore
on a single computer. Therefore, communication between the modules and the
da ta base with RPC tools is necessary.

40

The development of the modules has been done in projects over serveral
years and the programming has been done exclusively in Fortran. At the mo-
ment, Fortran is a very important programming language for scientific-technical
applications. So, a RPC tool must have a Fortran interface to satisfy these requi-
rements. This interface must have the ability that remote procedures as Fortran
subroutines and functions can be called from Fortran programs. Programming
of C routines is undesirable.

The da ta exchange between the modules is made using a common data base
which is kept in the main memory of any computer. When a calculation and
afterwards a visualization is made where several modules take part, there are
big data flows between the modules and the data base. Therefore, the ability of
a RPC tool to use a high transmission speed is desirable.

In the summery, there are three demands a RPC tool has to satisfy: A RPC
tool should be easy to use, should have a Fortran interface and should make it
possible to use a high transmission speed.

2 P e r f o r m a n c e C o m p a r i s o n

To test the performance, we've compared the DCE RPC, IBM-Rel. 1.2.9310.0
(OSF-Release 1.0.1.) [8] with three other tools:

I. the DFN-RPC, Rel. 1.0, a RPC tool for the distribution of Fortran applica-
tions between workstation and compute server developed by us by order s of
the DFN, the German Research Network Society [i, 9, 10, 11],

2. the PVM, Rel. 2.4.1 and 3.0, a message passing library to parallelize Fortran
and C applications in a network of UNIX computers [2],

3. and the SUN RPC (ONC), a RPC tool for system programming [14].

For the first benchmark, shown in Table i, two IBM aS/6000 workstations
have been used, connected with Ethernet, FDDI, Cisco and NSC router. The
RPC of DCE 4 and PVM are using UDP and an own protocol to do end-to-end
flow control, while the DFN-RPC and the SUN RPC 5 are using TCP. The tests
transmitted 1, 3 or 64 kbyte real numbers (each with 4 bytes length) as input
or output arguments, the transmission speed was measured in kbyte/sec. The
delay was measured by the round-trip-time of an empty call in ms/call.

The DFN-RPC was used with the default buffer size of 2400 bytes. The buffer
size can be optimized between 600 bytes and 64 kbytes. Using PVM, the remote
procedure call has been simulated by sending corresponding messages.

The results in per cent compare the speed of the DCE RPCs with the speed
of DFN-RPCs, PVM and SUN RPCs. Looking at the empty calls, the per cent
results are based on calls/ms. The more powerful CPU of the two CPUs taking

3 registration number of the BMFT: TK 558 VA 005.3.
4 In the next release, TCP will be available too.
5 Also UDP is available, but only with may-be semantics, and therefore not evaluated
in this test.

43

T a b l e 1. Throughput and delay between two workstations

Calls with Unit D C E R P C DFN-RPC PVM3.0 SUN RPC
abs. abs. % abs. % abs. % abs. %

64 kbyte In kbyte /s 376 100 499 133 157 42 357 95
64 kbyte Out kbyte /s 326 100 392 120 124 38 260 77

3 kbyte In kbyte /s 141 100 196 139 82 58 134 95
3 kbyte Out kbyte /s 140 100 124 86 78 56 117 84
1 kbyte In kbyte /s 70 100 92 131 38 64 77 110
1 kbyte Out kbyte /s 66 100 90 136 37 56 69 105

Average kbyte /s 187 100 232 124 86 46 167 89

Empty Call ms/CaU 10.3 100 5.8 178 19.7 52 7.3 141

Table 2. Throughput and delay, if client and server process are on the same workstation

Cans with Unit D C E R P C DFN-RPC D F N 6 4 k PVM 3.0 SUN RPC
abs. abs. % abs. % abs. % abs. % abs. %

64 kbyte In kbyte/s 159 100 1081 680 1336 840 286 180 331 208
64 kbyte Out kbyte /s 203 100 1099 541 1481 730 286 141 356 175

3 kbyte In kbyte /s 433 100 593 137 750 173 185 43 268 62
3 kbyte Out kbyte/s 433 100 577 133 778 180 185 43 268 62
1 kbyte In kbyte /s 156 100 366 235 376 241 88 56 145 93
1 kbyte Out kbyte /s 163 100 355 218 385 236 84 52 165 101

Average kbyte/s 258 100 679 263 851 330 186 72 256 99

Empty Call ms/Call 6.0 100 2.4 250 2.3 261 9.0 67 3.8 158

pa r t (the side of the c o m p u t e server) was loaded 100% wi th a d a e m o n . Al l
m e asu remen t s were r epea ted three t imes , and all three resul ts have differed on ly
a l l t t le b i t . Therefore , the average resul ts shown in the tab le can be used to
compare the p roduc t s .

DCE R P C and SUN R P C have nea r ly the same t r ansmis s ion speed. T h e
D F N - R P C is fas ter by 25%, while P V M is slower by 50%. E m p t y cal ls a re r a the r
slow wi th DCE. D C E R P C needs 10.3 ms for a an e m p t y call , th is m e a n s 1.8
t imes longer t han D F N - R P C , a l t hough it uses UDP. On the o the r hand , th is
can be the reason for the slowness, because the end- to -end flow con t ro l has to
be m a d e in the a p p l i c a t i o n process. Looking a t P V M e m p t y calls, you can see
clear ly t ha t ano the r two P V M d e a m o n s are involved.

The a s y m e t r y be tween In and Out m e a s u r e m e n t s looking a t the abso lu t e
numbers is p r o b a b l y caused by the different power of the c ompu te r s . A n o t h e r
reason are the different rou t ing p a t h s t h rough the ne twork for b o t h d i rec t ions ,
while in bo th cases an E the rne t is the bot t le -neck .

42

If client and server are on the same RS/6000 530, the differences are more
visible, see Table 2. These measurements don' t depend on a real network load
and the computer has been used only for these measurements. Using DFN-RPC,
two different buffer sizes have been used for the measurements, one with 2400
bytes (default) and one with 64 kbytes (64 kbytes is the recommendation for high
speed networks >100 tobit/s) . The buffer length can be changed by runtime, but
can also be given in the interface definition file, used for the stub generation.

The DCE RPC shows a weakness if plenty of data has to be transferred.
Other measurements on computers from Sun and Silicon Graphics [6] showed
that SUN RPC has problems with a da ta quantity over 3.9 kbytes, which can
cause in extreme cases a fixed round-trip-time of 200 ms and this means 19.5
kbytes/sec transmission speed for 3.9 kbytes of data, see also next section.

It 's surprising that the performance of DCE, SUN RPC and PVM is so low
in comparison with DFN-RPC, which uses internally only needed BSD socket
system calls for a T C P connection, although the maximum network speed cannot
be achieved with those sockets. To reach the maximum speed, more complex
solutions are necessary, like the implementation in, e.g., the Peregrine High-
performance RPC [3]. At least, the hope remains that a TCP based DCE RPC
for applications under user account shows better performance and that, for kernel
resident applications (like DFS), the UDP basis is not a disadvantage for the
performance.

3 P o s s i b l e R e a s o n s f o r t h e D i f f e r e n t P e r f o r m a n c e

The main topics of optimization of the DFN-RPC are:

- The DFN-RPC is making only an absolute minimal number of sytem calls.
Only bsd socket write and read is done, using a TCP/IP connection, which
is normally established the whole time during the execution of the program.

- The input and output arguments are copied only once within the user's
space. They are copied between the argument list and an input or output
buffer, which is used then for the write and read operations.

- The conversion - if necessary - is integrated into this copy and is done by
loops with maximum length.

- These loops can be vectorized.
- The argument list on server side is allocated on a local stack and not by

malloc.
- As transfer encoding of real and integer numbers one can choose between

four formats: ieee big or little endian, cray or vax.

Because we have used the tools DCE RPC, SUN RPC and PVM only as a
black box, it is difficult to say a lot about the reasons why these products don't
reach the performance of the DFN-RPC. Nevertheless there are a few decisions in
the design of those tools which must have a negative impact on the performance
of these tools.

43

Table 3. In an empty Ethernet between two Silicon Graphics Indigo, IRIX 4.0.5F with
Eq-+, processor R 3000 and R 4000

Calls with Unit DFN-RPC DFN64k PVM3.0 SUN RPC
abs. abs. ~ abs. % abs. % abs. %

64 kbyte In kbyte/s 800 100 663 83 286 36 487 61
64 kbyte Out kbyte/s 699 100 753 108 312 45 499 71

3 kbyte In kbyte/s 524 100 524 100 187 36 410 78
3 kbyte Out kbyte/s 450 100 500 111 182 40 336 75
1 kbyte In kbyte/s 294 100 300 102 92 31 238 81
1 kbyteOut kbyte/s 294 100 307 104 87 30 195 66

Average kbyte/s 510 100 508 100 191 37 361 71

Empty Call ms/Call 2.1 100 1.9 111 8.6 24 2.8 91

Table 4. SUN tLPC with 4 kbyte input or output data in an empty Ethernet between
two Silicon Graphics Indigo, IRIX 4.0.5F with E++, processor R 3000 and R 4000

Calls with Unit DFN-RPC DFN 64k PVM3.0 S~N RPC
abs. abs. % abs. • abs. % abs. %

4 kbyte In kbyte/s 571 100 603 106 116 29 20 3 . 5
4 kbyte Out kbyte/s 500 100 571 114 176 35 309 62

The DCE RPC in the tested release (the newest one that was delivered in the
Early Participa~ior~ Program of IBM in March 1993) is based only on UDP, which
is also the default for system applications as the distributed file system (DFS). To
obtain an at-most-once semantics and to guarantee the end-to-end-flow-contol,
an additional protocol, executed by the RPC stubs, has to be implemented. This
can lead to additional context switches between the application and the sys tem
kernel, which slows down the speed of da ta transfer and empty calls. I hope tha t
this problem has no negative impact on RPC applications, like DFS, which are
running in the kernel.

We have tested the SUN RPC also between two Silicon Graphics systems,
see Tables 3-5. Looking at RPCs with 64 kbyte output da ta in Table 3 the DFN-
RPC transfers 699 kbyte/s , i.e. it needs 5.6 #s for one real number. The SUN
RPC transfers 499 kbyte/s , i.e. it needs 7.8/~s/number. Therefore, the loss of
performance is 2.2/~s for each real number. The SUN RPC makes one conversion
call for each real number (although this procedure makes only a copy). For the
overhead of an additional procedure call on both systems we have measured 0.5
]~s + 0.2 #s = 0.7/~s. This overhead is a significant part of the performance loss.

Table 4 shows a special problem of the SUN RPC. If one is using 4 kbyte of
input arguments in a remote procedure call, then the call needs 200 ms with the
consequence of a transfer rate of only 20 kbyte/s . This effect can be seen in a big

44

Tab le 5. Client and Server on the same Silicon Graphics with 1~ 3000 processor

Calls with Unit DFN-ItPC DFN64k PVM2.4 PVM3.0 SUN ItPC
abs. abs. % abs . % abs. % abs. % abs. %

64 kbyte In kbyte/s 1012 100 1481 146 157 16 486 48 320 32
64 kbyte Out kbyte/s 1040 100 1422 137 123 12 492 47 320 31

3 kbyte In kbyte/s 705 100 868 123 105 15 331 47 450 64
3 kbyte Out kbyte/s 727 100 938 129 91 13 326 45 450 82
1 kbyte In kbyte/s 455 100 455 100 58 13 154 34 250 55
1 kbyte Out kbyte/s 455 100 455 100 53 12 154 34 250 55

Average kbyte/s 732 100 937 128 98 13 324 44 340 46

4 kbyte In kbyte/s 800 100 1000 125 117 15 343 43 20 2.5
4 kbyte Out kbyte/s 800 100 1000 125 100 13 333 42 20 2.5

Empty Call ms/Call 1.4 100 1.4 100 11.4 10 4.9 29 2.1 67

Tab le 6. CPU time used in the experiment, shown in Table 2

Tool process CPU time sum comparison Average from
Table

DCE RPC client 380 sec
server 391 sec

DFN-RPC 6 Server 168 sec
client 168 sec

PVM 3.0 server 363 sec
client 362 sec
daemon 494 sec

SUN l tPC client 365 sec
server 391 sec

sum : 771 sec : DCE-time / 1.00 100 ~o

sum : 336 sec = DCE-time / 2.29 ~63 ~o

sum : 1219 sec : DCE-time / 0.63 7~ ~o

sum = 756 sec = DCE-time / 1.02 99

range of i npu t and o u t p u t quant i t i es larger t h a n 3.88 kbyte, e.g. see values in
Table 5 pr in ted bold. We have tested it too on a SUN and have obta ined similar

results.

PVM is a message passing library. I t was examined because it is also a tool to
d is t r ibute scientific-technical appl icat ions . At the mome n t , PVM is ou t s t and ing
because of its good func t iona l i ty for paral lel applicat ions, bu t it is very slow,
because it uses daemons for da t a transfer . Al though there was an increase of
performance of a factor of 3 between PVM 2.4.1 and PVM 3.0, as shown in
Table 5, there mus t be done a lot to ob t a in full performance.

A fur ther indica tor is the consumpt ion of cpu t ime, as shown in Table 6.
Obviously, there is a correlat ion to the performance shown in Table 2.

6 With a bui~ersize of 2400 bytes.

45

4 F u n c t i o n a l i t y

Fortran application interfaces consisting of subroutines, entries, and functions of
type INTEGER, REAL or DOUBLE with arguments of type INTEGER, REAL, DOUBLE,
COMPLEX and arrays (with fixed lengths) of these types can be distr ibuted without
problems with DCE RPC. DCE RPC has the following problems with other
language elements of Fortran [5]:

- The application interface (function names and argument list) defined in Fort-
ran has to be redone in C, so that a corresponding Interface Definition File
can be written as the input for the DCE RPC stub generator. The lan-
guage transition from Fortran to C depends on the manufacturer, but it is
documented in most cases, products as fidl [7] may also help here.

- I f this manufacturer dependent language transition is different and therefore
a different RPC protocol arises on client and server, the direct use of DCE
RPC for Fortran applications isn' t possible anymore. Examples for this are
functions or arguments of type LOGICAL or CHARACTER. On computers with a
different length of a numerical ~mit (e.g. workstation 4 byte, compute server
8 byte) the type REAL*8 (or equivalent Fortran 90 definitions) is changed to
double in C on the workstation and to f l o a t in C on the compute server.
In this case, DCE RPC doesn't find a proper network presentation between
client and server, so this type can ' t be t ransmit ted. This is also true for
COMPLEX*16. On the contrary, different language transitions of the function
names in Fortran to names in C aren ' t a problem, because only the position
of the function in the IDL file is t ransmit ted.

- For the Fortran language element alternate return no transition into C can
be found and function name arguments are not supported by DCE RPC.

In these last two cases, the application p rogrammer either has to change the
Fortran interface or has to write additional stubs which put his interface into an
interface that can be distributed with the DCE RPC.

Besides this, the possibilities with arrays that have variable dimensions and
different or separated input and output areas are very limited. This can cause the
situation that more elements than the application needs have to be transmit ted.

Therefore, looking at functional aspects, in most cases, tools with a Fortran
interface (e.g. DFN-RPC, PVM) are the better choice for distributing scientific-
technical applications programmed in Fortran.

5 C o n c l u s i o n

Looking at the three requirements, that such tools should be easy to use, should
have a fortran interface and that they must be efficient, it is desirable that the
DCE RPC gets a bet ter performance without weakness in particular environ-
ments. It should get also a Fortran interface like the D F N - R P C and an additional
Fortran message passing library like PVM.

46

References

1. AUrutz 1t., Rabenseifner R.: Der DFN-RPC, ein Remote Procedure Call Tool.
Proceedings, 15. DECUS Mfinchen Symposium (1992) 523-532

2. Geist, A. et al.: PVM 3.0 User's Guide and Reference Manual. ORNL/TM-12187,
Oak Ridge National Laboratory, Tennessee (2/1993)

3. Johnson, D. B., W. Zwaenepoel: The Peregrine High-performance RPC System.
Software-Practice and Experience 23(2) (1993) 201-221

4. Jones, A. V., Shepard, I.: ESTER - a European Source Term Evaluation System.
CEC Joint Research Centre, Salty Technology Institut (6/1991)

5. Kollak, W.: Distribute Fortran Applications using DCE RPC. White Paper. Re-
chenzentrum Universit~t Stuttgart, March 5, 1993.

6. Kollak, W., R. Rabenseifner, H.D. Reimann: RPC Tools im Benchmark-Vergleich:
DFN-RPC, SUN-RPC, DCE RPC, sowie PVM. White Paper. Rechenzentrum Uni-
versit~t Stuttgart, 31.3.1993.

7. Lsifer, It., A. Knocke: fidl, Ein Werkzeug sur einfachen Verteilung yon Fortran-An-
wendungen. Benutzeranleitung, Universit~t Karsruhe, Rechenzentrum, 31.3.1993.

8. Open Software Foundation (OSF): OSF DCE Version 1.0, DCE Application De-
velopment Guide, Part 3: DCE Remote Procedure Call (RPC). Revision 1.0, Dec.
31, 1991.

9. Rabenseifner, R., H.D. Reimann: Verteilte Anwendungen mit dem DFN-KPC.
DFN Mitteilungen 31, Berlin (3/1993)

10. Rabenseifner, R., H.D. Reimann: Verteilte Anwendungen fiber Hochgeschwindig-
keitsdatenkommunikation, der DFN Remote Procedure Call. Benutzerhandbuch,
Rel. 1.0, Rechenzentrum Universit~t Stuttgart, 23.11.1992.

11. Rabenseifner, It.: Distributed Applications between Workstation and Supercom-
purer using ISO/OSI Protocols. Proceedings, Twenty-Seventh Semi-Annual Cray
User Group Meeting, London. April 22-26 (1991) 80-84

12. Schmidt, F., Schuch, A., Hinkelmann, M.: Der Europaeische Quellterm-Code
E S T E R - Grundideen und Werkzeuge sur Kopplung yon ATHLET und ESTER.
Abschlussbericht BMFT-Vorhaben 317-4015-1500945, Universit~t Stuttgart, I K E
4-136 (4/1993)

13. Schuch, A.: Die Anwendung yon Remote Procedure Calls fiir die Verteilung eines
Anwendungsprogramms. Diplomarbeit. Institut ffir Kernenergetik und Energiesy-
sterne, Universit~t Stuttgart (11/1991)

14. SUN microsystems: Network Programming Guide. Part Number 800-3850-00
(1990)

Some DCE Performance Analysis Results
B. Dasarathy, Khalid Khalil, David E. Ruddock

Bellcore, RRC, 444 Hoes lane, Piscataway, NJ 08854, U.S.A.

Abstract. This paper explores the performance behavior of two core services of
the OSF DCE, RPC (Remote Procedure Call) and threads. The RPC perfor-
mance is gauged as a function of the length of argument(s) passed. We show
that:

�9 DCE RPC performance behavior with or without security features is linear
with the length of the messages and is comparable to that of a commonly
available RPC technology once the client and server are fully bound to each
other,

�9 authentication on RPCs is inexpensive, and

�9 encryption and integrity on messages do not come cheap.

We also demonstrate that multi-threading increases throughput even on a single
processor system and how much the throughput is improved in comparison with
multiple single-threaded processes. The effect of multi-threading a client pro-
cess on throughput and response time as a function of the number of threads is
brought out.

1. Introduction
We describe in this paper a performance analysis study of some core O S F M DCE ser-
vices in DCE 1.0.1, a pre-production release of DCE. Experimentation with DCE has
been an ongoing effort since April 1992 in a distributed system testbed environment at
the Computing Technology Integration (CTI) Laboratory at Bellcore. The testbed
environment, as the name implies, is intended to facilitate analysis of emerging distrib-
uted computing platform, transaction monitor and distributed system management
technologies from the perspective of developing inter-operable telephony applications.
DCE in our testbed environment currently runs on several types of platforms. The
study reported in this paper has two major goals: to quantify the cost or overhead asso-
ciated with the remote 12rocedure call (RPC) feature of DCE, annotated with different
levels of security, and the impact of its multi-threading feature, a feature for achieving
concurrency/performance enhancement in applications layered over DCE.

1.1 What is DCE?

DCE is a collection of services for the development, use and maintenance of transpar-
ent distributed systems using the client/server architecture. Enabling application-level
inter-operability (among heterogeneous platforms) is the essence of DCE. The com-
munication paradigm supported by DCE is synchronous RPC across address spaces in
conjunction with multi-threading within an address space for concurrency. Transpar-
ency is provided by a directory service/name server. The security features of DCE in-

48

clude authentication of servers and clients to each other and to the system, support for
resource authorization by an application server in providing services to its clients, and
various levels of message integrity (at different levels of cost) and encryption. For an
overview of DCE, see [1], [2], [3] and the introductory chapter of these proceedings.

1.2 Why DCE Performance Analysis?

DCE has industry-wide support and is, or will become, available as a product on a va-
riety of platforms. It is intended to provide interoperability of an application on heter-
ogeneous platforms regardless of distance between application components and type
of physical connection. DCE, moreover, hides the complexity of distribution. Its RPC
mechanism, which behaves functionally more or less like procedural calls in a sequen-
tial program, permits development of distributed programs as if they were centralized,
i.e., no major paradigm shift is required on the part of a programmer, unless the use of
threads is employed for higher throughput.

Since our experimentation began in April '92, we have found DCE to be usable and to
be working in conformance with its documentation [4]. This report provides informa-
tion regarding DCE performance characteristics. From the performance viewpoint,
distribution has both negative and positive consequences. On the positive side, distri-
bution provides processing concurrency. On the negative side, distribution involves
network delay.

Our performance analysis can be characterized as latency- (response time-) based and
from an application or a client perspective. An alternative approach is a throughput-
based analysis, often carried out at a high utilization rate of a resource. It is our view
that the latency-based analysis is more suitable than throughput-based approach for
measuring performance from an application perspective and the throughput-based ap-
proach is more appropriate for the analysis of a server.

The performance of DCE RPC is analyzed as a function of the length of argument(s)
passed over the network. Most secure features of DCE are associated with its RPC. The
overhead associated with various forms/aspects of security --authentication, authori-
zation, and message integrity and protection ---on DCE RPC is analyzed. To provide
a perspective on the performance of DCE RPC, the "vanilla" form of DCE RPC, i.e.,
one with no secure features, is contrasted with that of a commonly available RPC tech-
nology from a vendor.

We also report here on our performance analysis of the threads feature of DCE. Multi-
threading within an address space has the potential for increasing performance even on
a single processor system as a result of the low context switching associated with
threads. We demonstrate how multi-threading a client address space with n threads
(doing identical work) improves throughput/response time in comparison with n (iden-
tical) single threaded client processes. We also report our analysis of the effect of
multi-threading a single address space on throughput and response time, as a function
of the number of threads.

49

In Section 2, we describe our performance analysis of RPC and various forms of secure
RPCs. Section 3 deals with performance analysis of threads. In Section 4, the Conclud-
ing Remarks Section, we summarize our findings and outline the future directions for
this work.

2. RPC Performance

2.1 Test Environment

All our experiments, except the one reported in Section 2.4, were carried out on a
homogeneous set of RISC workstations running DCE 1.0.1, a pre-production release
of DCE. The MIPS-rating and the SPECint-rating of these machines is 28.5 and 22
respectively.

All our experiments were carried out in an Ethemet LAN, in a typical, every day, oper-
ating environment. 1 Purposely, no traffic/load was added on or removed from the net-
work or the individual machines hosting the client and server processes. This is
because our main goal was to study how DCE behaves in a typical environment (from
an application perspective) and not to study how well DCE behaves under optimal/
stress conditions. In all our experiments, the application client and server were on sep-
arate machines and these machines were different from the machine that hosted the
DCE server processes for Cell Directory Service (CDS), security and DTS so as to sim-
ulate typical application configurations. Moreover, if a client and server were to be on
the same (single processor) machine, the RPC time will be overshadowed/colored by
the context switching time (of the CPU) between the server and client processes.
Although this RPC performance between two processes on the same machine might be
of interest, it does not shed much light on the RPC efficiency or lack of it. All our
experiments were carried out with UDP/IP as the network protocol. Finally, in all our
experiments, neither the client nor the server process carried out computationally
intensive tasks and the single-threaded client process submitted serial requests. (See
Section 3 for the performance analysis of multi-threaded clients.) The effect of concur-
rent requests on the application server was not a focus of study, although application
servers are automatically multi-threaded (to a default maximum of ten) in DCE.

2.2 DCE Vanilla RPC and Secure RPC Performance Analysis

In this set of experiments, we studied the DCE RPC performance as a function of the
length of the message passed across the wire. The data type was restricted to ASCII
character (idl_char) strings. Since the client and server machines were of the same
type, there was little data marshalling/unmarshalling overhead in our experiments/test

1. The network utilization of our operating environment is normally about 5% and about 10% during the
high activity periods. Thus, our Ethemet LAN is a "well behaving" one. Although several utility pro-
grams (e.g., mail, clock), word processors and editors were running and many windows were being
displayed on our application clients and server machines, while our experiments were being con-
ducted, they were often in a dormant state. Neither these machines nor the DCE server machine acted,
for instance, as a file or print server for other machines and, thus, did not have any significant back-
ground load on a sustained basis.

5 0

results. The client in our RPCs made use of CDS for server identification. Once the
binding to the server was obtained, a client made 20 RPCs to the server. (We repeated
the experiments ten times for each length of message studied and each type of security
annotation.) A statistically accurate picture, we felt, required 10 to 20 RPC calls. A lot
more than 20 - -50 for instance - - would have skewed the RPC time appreciably
upward, as elapsed time for some of the RPCs would include context switching and/or
swapping time on either or both client and server processes. (This was especially true
when the message was long and integrity/encryption was required on the parameters
passed.) We separated the behavior of the first RPC from subsequent ones, because the
first RPC from a client to the server (and back) took appreciably more time than the
subsequent RPCs. Subsequent RPC times stabilized and did not differ significantly.
(Occasionally, we saw a few peaks, perhaps due to context switching/swapping.) The
first RPC (before the client and server were fully bound to each other) took more time
(about 30 ms; see the constant factors in Figure 1 and Figure 2 below) because of the
involvement of the rpcd daemon (the endpoint mapper) for allocating/finding the end
points (ports) for the client/server communication.

1200

1000

800
v

E

600
t--

g

~ 400

200

y = 64.397 + 17.345x

Authentication,
Authorization,
& Protection

y = 64.900 + 7 . 1 4 6 8 x ~ .
Authenticatior
Authorization,
& Integrity

O ~
0 20 40 60 80

Message Size (KByte)

100

Figure 1 First RPC Response Time for Different Levels of Protection

1200

51

1000

~ '800
E

E
i~ 600
O0
c

8.
f f l

400

200

y = 25.961 + 1

Authorization,
& Protection

14.734 + 7.1517x

Authorization,
& Integrity

y = 10.279 + 1.8062x

Vanilla RPC

0 2O 4O 6o 8O 1 oo

Message Size (KByte)

Figure 2: Subsequent RPCs Response Time for Different Levels of Protect ion

The following forms of RPCs were studied:

�9 Vanilla RPC (RPC with no security features, but with "explicit" binding
using the CDS)

�9 RPC with authentication and name-based authorization 1

�9 RPC with authentication, name-based authorization, and integrity on mes-
sages (parameters)

�9 RPC with authentication, name-based authorization, and encryption on mes-
sages

1. The response time characteristic curves for the RPCs with just authentication and name-based autho-
rization are not, however, listed in the two figures to follow. This is because we found the response time
characteristic for this case to be (statistically) same as that of the vanilla RPC, i.e., authentication and
simple name-based authorization is almost free.

52

The DCE authentication service is done with software I and is based on DES (Data
Encryption Standard). It is a modified version of the Kerberos TM Network Authentica-
tion Service, Version 5. In our experiments with authenticated RPCs, both clients and
servers authenticated to DCE. The client took on the login context of the user on whose
behalf it ran and the server authenticated using a password file specified by the server.
In the case of name-based authorization, the DCE RPC runtime passes the login id and
other privilege information to the server. It is entirely up to the server to allow resource
authorization based on the login id of the client. The implication of this is that perfor-
mance of resource authorization is very much application-dependent. In our experi-
ments, the part of the server program that performs authorization is about 150 lines
long, with no iteration, for validating client-provided data such as desired protection
level by the client and for granting access to a requested operation based on the client' s
login id. The highest form of protection that DCE provides for the arguments on its
RPCs is encryption. The second highest form of protection is integrity which ensures
none of the data transferred between client and server has been modified. (Other levels
of protection/integrity at low(er) costs include assurance that all packets received by
the server are from the expected client and protection only at the beginning of an RPC.)

In Figure 1 and Figure 2 above, we capture the performance of first and subsequent
RPCs, as a function of the length of the argument(s) of the RPC, respectively. In these
figures, response time is the elapsed time between just before the RPC is made (on the
client side) and just after the RPC is completed (als0 on the client side). As the figures
indicate, message integrity and encryption are not free.

Moreover, as can be seen from the figures, the DCE RPC performance is predictable
and linear with the length of the RPC arguments/messages, i.e.,

�9 2 ms (about) per kilobytes of message for the vanilla RPC and for the RPC
with just authentication and name-based authorization

�9 7 ms per kilobytes of message for the RPC with authentication, name-based
authorization, and integrity on messages

�9 17 ms per kilobytes of message for the RPC with authentication, name-based
authorization and encryption on messages

Finally, a word about constants or null-length RPC time quantities. The constants and
the slopes in the figures are generated by a curve fitting software program which tends
to favor smaller slopes and larger constant values to larger slopes and smaller constant
values. Moreover, as the length increases, our RPC times are skewed upwards as the
result of context switching which in turn has the tendency to exaggerate constant and/
or slope factors as a whole for a given curve. To be more specific, for instance (See
Figure 2.), we clocked null vanilla RPCs (the subsequent ones) at 6 to 7 ms (rather than
at 10 to 1 lms) and authenticated RPCs with message integrity at 9ms (rather than at
14 to 15 ms).

1. The use of a DES hardware chip could improve encrypted RPC performance.

53

2.3 DCE RPC in Comparison To Another RPC Technology/Implementation

Here we provide a perspective on the performance of DCE RPC by contrasting the va-
nilla form of DCE RPC with a commonly available RPC technology from a vendor on
many platforms. The interface definition language compiler program of this RPC tech-
nology generates client/server stubs just as the DCE idl compiler does for marshalling
and unmarshalling data. Just like the DCE RPC, this technology hides communication
complexities by generating stubs that interface to its run-time facilities. This common-
ly available RPC technology using the interface definition compiler program does not,
however, provide location transparency through a directory service and/or support
message protection/integrity and resource authorization support. Moreover, it is also
restrictive in its argument passing. No more than one parameter can be specified for
either input or output. (If more parameters are needed, one must create a structure and
pass it as the single parameter.) We were also hampered by the size restriction imposed
by this RPC mechanism. The largest size of the message we could pass is around 8000
characters/bytes 1. Finally, to our knowledge, no industry-wide secure RPC technolo-
gies exist, i.e., Kerberos-like technology integrated with the RPC technology, against
which we could compare secure RPC features of DCE.

m

8O

E

o

 '2o -I [] average OOE RPO
I ~ & 1St other RPC

0 2 4 6 8 10 12 14 16 18 20
Message Size (KByte)

Figure 3: Response Time: DCE RPC Vs. Another RPC Implementation

I. According to a representative of the vendor of this RPC implementation, this is a restriction imposed
by the UDP protocol and that there is no length restriction in their RPC implementation over TCP/IP.
However, a developer does not encounter any message length limitation with DCE RPCs over UDP.

54

In Figure 3, we contrast the performance of the two RPC implementations. As in Sec-
tion 2.2, we separate the performance of the first RPC between a client and a server
from subsequent ones. It should be noted that this commonly available RPC has a fast-
er response time. However, as the length of the message increases, the difference be-
tween the response time of this RPC implementation and that of DCE RPC remains
constant or decreases slightly. Thus, as the length of the message(s) increases, the per-
formance advantage of this RPC technology over DCE RPC becomes less significant.

2.4 RPC Performance Across Heterogeneous Platforms

The client and server machines involved in this experiment were RISC machines with
the MIPS rating of 37 and 28.5 respectively. Their SPECint ratings, perhaps a better
measure of CPU, are about the same at 22. As in other experiments, the data type of
the arguments passed over the wire was restricted to ASCII character (idl_char)
strings. The response time behavior characteristics for both first RPC and subsequent
ones are given Figure 4. It appears that heterogeneity does incur some performance
penalty (both in constant and slope factors), even when there is little marshalling and
unmarshalling of data.

300

.-.. 200

E

E . m

t-
r

8.
~ 100

First

y = 48.526 + 1.9847x.I

J Subsequent RPC (average)

= 16.266 + 1.9561x

0 - a �9 g " I " I " l �9

0 20 40 60 80

Message Size (Kbyte)

Figure 4: RPC Response Time Across Heterogeneous Platforms

55

3. Thread Performance

3.1 Threads: An Overview

A thread is a single, sequential flow of control within one process.The DCE multi-
threading service allows multiple threads, that is, multiple flows of control within a
single process or address space.

We shall demonstrate that the main advantage of multi-threading is the increased speed
of computation due to parallelism even when there is only one processor involved.
This is because the context switching 1 overhead required to execute a different thread
is less than the context switching overhead to execute a different process.

By using threads, server applications can service multiple clients concurrently. A cli-
ent can use threads to make multiple simultaneous requests to a server or multiple serv-
ers. Each thread progresses independently. Some threads continue processing while
other threads wait for services such as disk I/O.The benefit of multi-threading is
increased throughput, except when the CPU utilization is very high.

Thread Implementation

The threads of DCE 1.0.1 on platforms we have experimented with have been imple-
mented in the user space. This means that the management of threads takes place in
user time and the operating system has no control of the threaded environment. The
management of threads within the process is analogous to the process management
within an operating system: priorities, scheduling and memory allocation still take
place, but at the user level.

Like processes within an operating system, threads have the following states:

�9 Waiting: A thread in this slate is not eligible to execute because it is synchro-
nizing with another thread, or it is waiting for an external event to happen.
This slate is also referred to as "blocked."

�9 Ready: A thread in this state can run but is waiting for other threads to relin-
quish CPU.

�9 Running: A thread in this slate is currently being executed by the processor.

The application assigns a scheduling policy and priority to a thread when it is created.
The scheduler uses this information and the thread state information to determine when
the thread is allotted processor time. The DCE developer kit(s) we have experimented
with only supports a modified Round Robin Scheduling policy that allows the highest
priority thread to run until it blocks. Threads of equal priority are time-sliced.

3.2 Threads Performance Analysis

Two experiments were carried out to measure the performance characteristics of multi-
threaded client and server applications. A multi-threaded client was first written to

1. On a uniprocessor machine, the computer runs one process for a short period of time and then switches

to another. Changing from one process to another is called a "context switch".

56

send 1000 small RPC messages to the server and wait for each reply. (As in our exper-
iments in Section 2, the client and server programs were also not compute-intensive.)
The same program was then modified to send the same 1000 short messages to the
server using multiple single threaded processes. The intent of doing this was to gauge
the performance of:

�9 a multi-threaded client relative to the number of threads used, and

�9 a single multi-threaded client doing the same tasks as performed by multiple
single threaded clients.

As in experiments in Section 2, testing was done on a Ethernet LAN (using only the
UDP/IP protocol) during normal business hours to obtain typical results. To minimize
transient environmental conditions that may have occurred during testing, each test
was performed twelve times and the results averaged (minus the high and low extreme
times before the results were merged).

Testing was performed using single CPU client and server machines. Different test
results would be obtained on a multi-processor machine using an operating system that
supports system level threads (e.g., threads scheduled by the operating system and not
by the user level threads scheduler).

Client efficiency was measured in terms of:

�9 Average time to complete an RPC.

�9 Average time in real seconds (elapsed time for n RPCs divided by n) to com-
plete the task.

�9 Average number of voluntary context switches 1 performed on the client.

�9 Average time in seconds the client spent in user mode.

�9 Average time in seconds the client spent in system mode.

In all these experiments, regardless of whether the client side consisted of a multi-
threaded single process or single threaded multi-processes, the server was multi-
threaded up to a maximum of ten, i.e., up to ten threads could be spun off to process
client requests on an as needed basis. The number of threads on the client side was var-
ied from one to ten in our experiments.

Round Trip RPC Time

The first metric analyzed is the average time to complete a single RPC. The results of
the experiment are shown in Figure 5. This figure shows that the average time to com-
plete a single RPC call increases almost linearly as the number of client threads or pro-
cesses increases. This increase in latency per RPC is to be expected because increasing

1. Voluntary context switches are done when the application performs some task that blocks the process.
The application is not allowed another time quantum until the blocking condition is resolved. Involun-
tary context switches are performed as normal course of events such as when a program time quantum
has expired.

57

the number of concurrent activities decreases the time allotted to any single activity.
This increase in latency is attributed to (but not limited to):

�9 Server loading: A multi-threaded server can process serialized requests faster
than multiple simultaneous requests. In other words, the server can process
individual requests faster if there are no other requests pending. This is
because the server multiplexes time allotments between multiple threads
which cause the total time to complete all threads to increase.

�9 Client loading: As RPC replies are received by a multi-threaded client, the
number of threads ready to execute increases. Since the client can process
only one thread at a time, the amount of time spent processing each thread in
the ready state decreases in a given time period.

30

25

20

E

E
i-7. 15
O
f l_
or"

aJ

m - - multi-threaded

---- multiple processes

0 1 2 3 4 5 6 7 8 9 10
Number of Control Flows in Client

F i g u r e 5: Average RPC Time Versus No. of Control Flows in Client

The average RPC time for a multi-threaded single process application is lower than
that of the single-threaded multi-process application. This is due to fewer context
switches in the former case than in the latter. Further study is required to determine if
client or server loading is the major controlling factor leading to the increase in round-
trip time and the drop of the multiple process curve as the number of processes
increases.

58

Multi-Threaded RPC Throughput

Figure 6 charts the amount of average real time required to complete a single RPC
using multiple threads and multiple processes. The average real-time is the elapsed
time taken by n concurrent conlrol flows on the client side, (each making an RPC) to
the same server divided by n. As noted before, neither the client(s) nor the server were
compute-intensive. The graph demonstrates that a single multi-threaded process per-
forms much better than multiple single-threaded processes.

E

._E
I--
nO
O} u)
O.

LLI
al
=>

<C

3

2

multi-threaded

multiple processes

0 I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10
Number of Control Flows in Client

Figure 6: Throughput as a Function of Number of
Concurrent Processes & Threads

One reason for this striking increase in multi-threaded efficiency is shown in Figure 7.
This graph shows a dramatic decrease in the number of voluntary context switches per-
formed on the multi-threaded client program. It comes about because the client thread
that initiated the RPC blocks while the other threads continue processing using the
remainder of the time quantum. The remainder of the time quantum would have been
forfeited by a block in a single threaded program.

Figure 6 and Figure 7 show that there is an optimal number of threads for this particular
client/server arrangement. This means that there is little if any performance gain when
more than three threads are used. We stress that three threads turned out to be optimal

59

for this application in our environment; it may or may not be optimal for others. Other
studies are needed to show how varying the message size and adding security to the
RPC affect the optimal thread count in an application.

c-

Q)

E
8

1000

800

600

E 400
0 >
"5

JD

E 200
:3 ;z

mm
n

v

multi-threaded

multiple process

O ~

Figure 7: Context Switches as a Function of Number of Control Flows

Threads Overhead

The amount of time the client program (all 1000 threads) spent in user and system
modes is shown in Figure 8 and Figure 9, respectively. Figure 8 shows that the time
spent in the user mode for multi-threaded or multiple process clients varies little with
the number of control flows, i.e., the amount of user level time needed to do the same
tasks is independent of the number of control flows in both the schemes. We conclude
that DCE thread management routines add little user time overhead to the completion
of the same operations.

Figure 9 shows that the time spent in system mode decreases slightly for threaded cli-
ents and linearly increases for multiple process clients. These results are expected
because the multi-threaded client has fewer voluntary context switches, reducing the
amount of time the system dedicates to managing the program. Conversely, the system
mode time increases with the number of processes because the operating system must
manage more programs that have more voluntary context switches.

60

16

v

E 1 4

10
O

r
D12

10

multithreaded

~. multiple processes

l i i I i

0 2 4 6 8 10
Number of Control Flows in Client

Figure 8: Time Spent in User Mode as a Function of Number of Control Flows

"G

E
I-
0}

"10
O

E
O}

u)
m
== multi.threaded

multiple processes

Figure 9: Time Spent in System Mode as a Function
of Number of Control Flows

I g I l I l l i I I "

0 1 2 3 4 5 6 7 8 9 10
Number of Control Flows in Client

61

4. Concluding Remarks

To summarize, this study analyzes the performance characteristics of two core DCE
services, RPC and threads. The performance of the DCE RPC was analyzed as a func-
tion of the length of argument(s) passed over the wire. Most security features of DCE
are associated with its RPC. The overhead associated with various aspects of security
--authentication, authorization, and message integrity/protection ---on DCE RPC was
gauged. Our conclusion is that DCE RPC performance behavior with or without secu-
rity features is linear with the size of the messages (arguments), authentication on
RPCs is almost free and encrypfion and integrity on messages do not come cheap. To
provide a perspective on the performance of DCE RPC, the basic form of DCE RPC,
i.e., one with no secure features, was compared with a commonly available RPC tech-
nology/implementation from a vendor. We note that DCE performance is comparable
to that of this commonly available RPC technology once the server and client are fully
bound to each other.

We also demonstrated how multi-threading increases throughput even on a single pro-
cessor system in view of small context switching overhead associated with threads. In
particular, we demonstrated how multi-threading a client address space with n threads,
l<=n<=lO, the n threads doing identical work, improves throughput/response time in
comparison with n (identical) single threaded processes. We also demonstrated that
multi-threading a client address space increases throughput as the number of threads
used increases. We also showed that the optimal number of threads can be determined
for any application by using techniques similar to the ones used in this study.

This performance analysis study of DCE environments is only the beginning. Many
extensions to our performance analysis are possible and needed. The goals of such
extended studies include:

�9 To understand the effect of multi-processors on multi-threading, whereby
there can be true concurrency among threads of the same process or different
processes.

�9 To determine the optimal number of threads under varying work load condi-
tions of client and server and when messages of different lengths are passed
between them.

To insure that high performance DCE-based applications are designed and deployed
in large scale, several other aspects of DCE should be investigated:

�9 DFS, the DCE Distributed File System

�9 Replication of DCE servers, specifically its Cell Directory Services (CDS)
and security servers.

The replication decision is a trade-off decision among availability, performance and
consistency parameters.

62

5. Acknowledgments

Our appreciation to Terry Barrett, David Bauer, Alan Dickman, Joel Fleck, John
Kaminski, Dennis Mok, Bob Robillard, Diane Ruddock, Suresh Subramanian and
John Unger, all of Bellcore, and Transarc Corporation for their review of this paper.

References

[1] Open Software Foundation, Introduction to OSF DCE, Prentice-Hall,
1992.

[2] W. Rosenbury, and D. Kenney, Understanding DCE, O'Reilly &
Associates, Inc., June 1992.

[3] J. Shirley, Guide to Writing DCE Applications, O'Reilly & Associ-
ates, Inc., June 1992.

[4] B. Dasarathy, Experience with OSF TM DCE: A Perspective, Panel Dis-
cussion on the OSF DCE: User Experiences and Perspective, Proceed-
ings of the UniFomm 1993, San Francisco, 1993, pp. 723-724.

Trademarks

Kerberos is a trademark of the Massachusetts Institute of Technology.
OSF is a trademark of the Open Software Foundation, Inc.

A Performance Study of the
DCE 1.0.1 Cell Directory Service:

Implications for Application and Tool Programmers

Joseph Martinka, Richard Friedrich, Peter Friedenbach, Tracy Sienknecht

martinka@nsa.hp.com, richf@nsa.hp.com
peterf@nsa.hp.com, tracy@nsa.hp.com

Hewlett-Packaxd Company - Networked Systems Architecture
Cupertino, California U.S.A. 95014

Abstract. This paper summarizes performance results of a systematic
evaluation of the Open Software Foundation (OSF) Distributed Computing
Environment (DCE) Cell Directory Service (CDS). The CDS is a distributed
name database which is used to locate servers and objects within a DCE cell.
We designed and built a systematic CDS performance test system and then
characterized and projected the performance of important CDS operations with
the primary focus on the RPC Name Service Independent (NSI) interface. These
results should assist customer application modeling as well as CDS porting and
performance tuning by developers using DCE. We believe CDS in its present
form has performance tuning opportunities and we provide several
recommendations for users of the CDS.

1 I n t r o d u c t i o n
We conducted a systematic study of the performance characteristics of the Cell

Directory Service. This paper discusses some of our performance measurements of
basic CDS services, how and why these measurements were made, and implications
for the design of DCE applications using CDS.

The CDS provides distributed applications with the ability to access servers with-
out a priori knowledge of the server's physical location. This server location transpar-
ency enhances availability by connecting clients with currently available servers.

A distributed application will use the directory service the same way we use a tele-
phone book. The predominate service it provides is the lookup of a server by name:
where is the network location of a requested service? Name lookups are a frequent
operation in distributed applications and must execute efficiently. These requests need
a true distributed and reliable server for which there are few alternatives other than
CDS.

The CDS also provides uniform naming mechanisms for distributed applications,
supports higher application availability by providing for the read-only replication of
the name space, provides client side caching and provides X/OPEN Application Pro-
gram Interface (API) support.

1.1 Overall Conclusions
We worked closely with HP DCE's developers during our investigation in Fall

1992 to provide performance improvements to CDS. Our performance improvements
were on the order of 30-80% and will be made available through OSF to other vendors
of DCE.

For small to medium cells (tens to hundreds of nodes), where the access to the CDS

64

is infrequent, the performance of the CDS makes it a viable distributed name server.
The CDS functions adequately and is viable for the short term. In the longer term it
may be a performance bottleneck for certain classes of applications that depend on
CDS in a critical performance path (such as some OLTP or applications with high
CDS access frequencies). This paper will provide insight into how to use CDS effi-
ciently.

1.2 Paper Organization
In section 2, the CDS test system is explained. We describe our methodology and

cautions for data interpretation in section 3. The performance data for binding import
measurements is presented in section 4, while the performance data for binding
exports is in section 5. In section 6 we briefly describe results for the low level
response times for the cdsclerk and cdsd. The final sections discuss future CDS perfor-
mance improvements, recommendations, and areas for future research.

Figure 1 Description of Test System Boundary

t Application (client or server) .n_c~stnbutea
/ " " NSI" "".. , oth,,'oc aels ,XOI

n,~,~ ~ X/Open Directory
~arme ! I Services (XDS)

, Services i I Directory User Agent
C D S n " ,k C D S n I

i

1 I CDS libraky DCE
Interfa~ Library

J

CDSPI t %

clearinghouse broker

cdsd CDS Name Database ! X.500
GDS DSA Clearinghouse(s)

CDS performance test boundary

r Pdra~edure t ~ e t r I ~1~ RPC

I

I

2 System Description
This section describes the boundaries of the tested subsystems within DCE.
There are two external APIs that DCE application developers can access CDS: the

Name Service Independent (NSI) and X/Open Directory Interface (XDI) [11]. A third
API called the Cell Directory Service Programming Interface (CDSPI) exists. The
CDSPI interface is not available to application programmers as it is an internal DCE
library interface used by NSI and XDI library functions. CDSPI was important for us
to investigate since it represents quantifiable units of work delivered to the CDS dae-
mons.

Figure 1 illustrates the relationships among these APIs. NSI calls are made directly
by application developers, or indirectly from within the IDL-generated stub code and

65

DCE libraries. NSI calls present DCE-knowledgeable access to the name service data-
base. By DCE-knowledgeable, we mean that the DCE/NSI library knows about the
CDS attributes which characterize objects as profiles, groups, or server entries[10].
This functionality is not found in the XDS or lower level CDSPI interfaces.

The DCE library makes all its accesses to the CDS through the CDSPI interface.
There is nearly a one-for-one correspondence of the CDSPI interface calls within the
DCE library to the socket calls actually made out of the library to the cdsclerk.

As shown in Figure 1, the other external API interface to CDS, XDI, is outside the
boundary of our study. However, the programmer using XDS has the choice to use the
GDS X.500 database or CDS through the Directory User Agent (DUA). If the DUA
references the CDS, it generates the accesses to the cdsclerk using the same CDSPI
interface as does the NSI requests. The results of this report (section 6) which address
the primitive response time costs to retrieve and modify attributes as well as to create
and delete objects, can be taken as the minimum bounds for XDS response times for
operations using the CDS.

3 Methodology
The data presented in this report was measured on HP/Apollo 9000/720 worksta-

tions with 64 MB of main memory. The tests used the HP-UX O/S version 8.07, and
OSF's build 26 of the DCE 1.0.1 product release. This DCE version was released to
HP customers in early 1993. Because of the novelty of the DCE CDS, we are unaware
of published accounts of its performance characteristics, although studies of other dis-
tributed directory schemes are available [2].

When faced with the scope of this project, we created three approaches to evaluate
CDS performance. The first approach centered on the NSI access to the CDS and the
parameter space of the individual procedure calls. We implemented a CDS test suite
using a custom performance test framework [1]. Once the test suite was developed, the
parameter space of the selected function calls was examined exhaustively [6]. The sec-
ond approach developed experimental modeling techniques that allowed us to explore
some of the effects of the name space structure on the response times that would be
expected for binding lookup. We explored issues of cdsd remoteness, nested CDS
structures, caching, multiple clearinghouses, softlink pointers, etc.[7]. The third
approach used customized API tracing to get more detailed resource usage across CDS
daemons [9].

We now discuss the various basic types of CDS access and why we emphasized
these activities in our performance study.

3.1 Importing RPC Bindings from the CDS
We believe the retrieval of binding information from the distributed name service is

the predominant mode of CDS access by applications using the CDS service 1.
We were interested not only in the costs to retrieve a single binding, but multiple

bindings as well. The reason to import multiple bindings is that the client application
may need to retrieve several protocol stacks to a server, for load balancing or reliabil-
ity.

3.2 Exporting Bindings to the CI)S
Binding export (or any name space modification) is a function that we estimate will

not be as frequent as binding import discussed in the previous section. The objective

1. There is supporting empirical evidence for this assertion based on performance workload
measurement work from DEC on their own Domain Naming Service[4].

66

of any distributed name service is that it should contain information which is neither
static nor rapidly changing. If it were static, the data should be in some configuration
file somewhere, not cluttering up the name space. If it were rapidly changing, that is,
binding exports and other name space manipulation represent a large majority of all
transactions on the name space, it will cause havoc with the distribution algorithms for
replicas and other clearinghouse housekeeping.

Export performance will be important to some users of CDS. The expectations of
rapid binding export may be part of the performance start-up path. We cannot forget
that CDS may also be used through XDS where modifications of the name space could
be a much more important part of the usage of CDS. In cases of managed objects and
client instrumentation, the export of a client's location to the name space may need to
be efficient.

3.3 Caveats for Direct Application of Results
The reader of this report is advised that the performance data discussed herein does

not necessarily represent the exact performance a real application will experience. The
differences are:
�9 Much of the performance data presented is the running average of multiple,

repetitive operations to the RPC Name Service. Because of the nature of the
CDS, these tests avoid the larger costs associated with initial calls to the name
space and maximize the positive impact the CDS clerk cache has on the results,
Actual applications will typically not exhibit the same repetitive retrieval pat-
terns as our test environment.

�9 Our measurements were performed on a DCE cell linked over an isolated IEEE
802.3 LAN. The CDS directory server was always within a 2 to 3 millisecond
(msec) RPC to the local node's cdsclerk.

�9 Local non-CDS tasks requiring computations or contested network bandwidth
may lengthen the response times in a more typical real world scenario.

�9 The performance test bed used in this report is a synthetic structure, systemati-
cally generated for purposes of this study. Real name spaces will actually evolve
over time, growing in size and complexity.

�9 The DCE CDS is a recently released service which is expected to change and
improve.

4 RPC Binding Import
The response times for the importation of server bindings in DCE 1.0.1 fall in a

wide range depending on whether the attribute information is cached, the number of
bindings requested, whether it was the first or subsequent binding lookup, and the
kinds of group and profile structures encountered.

4.1 Test Case Descriptions
The import binding tests that we want to discuss in this paper are listed in Table 1.

The letters in the first column are the index keys to the graph which follows it.
In Table 1, we used both cached and uncached trials, nested groups and profiles,

and multiple binding lookups to give the reader a sampling of the variety of tests that
we conducted.

4.2 Local Node Binding Retrieval Results
We plot in Figure 2 the first and subsequent response times for each of the import

tests discussed in Table 1. The First Response time includes an Access Control List
(ACL) check to ensure that the user has the permissions to reference the CDS entry.

67

This time also includes preparing DCE library memory structures and other house-
keeping. The Mean Response is the average response times of subsequent imports of
the same CDS objects.

Table 1 Binding Import Test Names

Index [Action taken in test
i

bI Single binding import from a server entry

bL Single binding lookup from server enl~

c 1 The cdsclerk cache hits for server attxibutes
c2 The cdsclerk cache miss on first attribute read

c3 The cdsclerk cache is disabled (high confidence)

bl One binding lookup from a server entry

b2 Two binding lookups from a server entry

b5 Five binding lookups from a server entry

g 1 One binding lookup starting from a group entry
g2 Two binding lookups starting from a group entry

g5 Five binding lookup starting from a group entry

pl One binding lookup starting from a profile entry

p2 Two binding lookups starting from a profile entry
p5 Five binding lookups starting from a profile entry

ngl One binding lookup from a single nested group entry

ng2 One binding lookup from a 2 deep nested groups

ng5 One binding lookup from a 5 deep nested groups

npl One binding lookup from a single nested profile entry

np2 One binding lookup from a 2 deep nested profiles

np5 One binding lookup from a 5 deep nested profiles

Figure 2 Binding Retrieval from Local Clearinghouse

2500

"•2000
g

1500
E

I - -

1000
c
0

n ~ 500

bl cl c3 b2 gl g5 p2 ngl ng5 np2
bL c2 bl b5 g2 pl p5 rig2 npl rip5

I E~ First Response m Mean Response I

68

For name space lookup satisfied by the cdsclerk cache (all tests except bars c2 and
c3), first response times are between 44 milliseconds to over one second. Subsequent
lookups have better response times. Simple non-cached name space lookups requiring
cdsd involvement (tests c2 and c3) have response times range between 550 msecs to
over a second, more than three times longer than the cached counterparts. The non-
cached responses for the more complex tests are not shown, but have similar increases
in response times. Note that since the test clearinghouse was local to the same node,
there were no network latencies in the non-cached response time.

Servers that are found through groups or profiles (tests gl through npS) have
response times for binding lookup from 600 msecs to 2 seconds. Simple modeling
shows that these response times increase markedly when attributes are not cached and
the server cdsd is located at network delays greater than 20 msecs.

4.3 Binding Import Conclusions
Other observations that we made from the binding import measurements include:
�9 CDS Clerk caching has a major impact on performance. Those measurements

which accessed entries that were not already in the CDS Clerk cache took four
times longer to complete. DCE nodes which do not have application sets that
request repetitive retrievals to identical objects may experience low hit rates to
the CDS Clerk cache. In addition, environments with complex or slower network
topologies will experience greater performance increases than documented in
this report.

�9 The CDS name server exhibits linear increases in performance proportional to
the increase in the complexity of a CDS object entry for:

�9 number of binding handles retrieved per entry.
�9 number of members accessed per group or profile
�9 number of attributes accessed per group or profile.
�9 level of nesting of groups/profiles.
While these growth patterns, by themselves, are not a problem for simple uses
of the CDS, it may be of concern when using complex name searches.

�9 The CDS name server exhibits increasing processing behavior when searching
through lists of object UUIDs and profile elements with multiple interfaces or
versions. This is a problem for name bindings that are long-lived and are subject
to numerous updates.

�9 Binding retrievals using rpc ns binding_import_* can produce very unpredict-
able performance results because the operation is actually implemented as calls
to rpc ns binding_lookup_* with a fixed vector size of five. Among the behav-
ior we have seen is:

�9 Simple single binding imports are 25 to 35% higher with rpc ns binding_im-
port* than they are with rpc ns binding_lookup_* using a vector size of
one.

�9 Import performance from a server entry can vary as much as 25% depending
on the number of handles in the entry. Surprisingly, the best performance is
achieved when there are 5 or more handles in the entry.

�9 Importation tests using group and profile entries experienced up to three
times the response time for single binding retrievals based upon the number
of qualifying handles in the compound structure. This phenomena was partic-
ularly evident in a profile structure where multiple elements existed with dif-
ferent, but compatible minor version numbers.

69

�9 Object identifiers, while having minimal impact on the retrieval of binding han-
dles from a server entry, can cause significantly slower performance response
times if used to differentiate server entries within group and profile structures.

4.4 CDS Structure Affect on Response Times
We used experimental design techniques to understand the primary factors which

affect CDS access response time. Several 2-factor combinations (interactions) have
statistically significant effects on binding import response times.

Primary factors that affect average response time (neglecting the cost of the first
CDS response time cost) are listed below. Note that these effects can be multiplicative
for objects with multiple components (e.g., groups, profiles).
�9 The basic cost to retrieve a binding for a server from the name space is 15 to 20

msecs.
�9 A significant incremental response time increase occurs if the server entry is not

found in the cdsclerk cache. This effect is on the order of 40 to 50 msecs.
�9 The number of sofflinks traversed to find a server entry increases response time

incrementally per softlink-indirection level. This affect is on the order of 1 to 2
msecs per softlink.
The only significant 2-factor interactions occurred in the presence of multiple clear-

inghouses. These results have not been fully examined. All of the interaction factors
are on the order of 3 to 4 msec per lookup.
�9 Number of clearinghouses in the search path interacts with softlink depth.
�9 Number of clearinghouses in the search path interacts with entry read from

cache.
�9 Directory depth of server entry interacts with softlink depth.
�9 Number of entries per directory interacts with softlink depth.
�9 Number of entries per directory interacts with entry read from cache.

Our measurements and analysis suggest that there are several CDS access and
structures that do not appear to affect response time.
�9 The size of the name space (up to 1200 directories and objects) did not signifi-

cantly alter the response time as compared to the case of 100 directories and
objects.

�9 The directory depth of a server entry shows no significant effect on response time
in our test environment. This was tested for a server entry at the root of the tree
and 5 levels deep.

�9 The number of other entries in the name space at the same directory as the server
entry shows no significant effect on response time in our test environment. This
was measured for up to 10 objects in the same level in the directory.

* A "remote clearinghouse" containing the server entry (i.e., a clearinghouse that
is one LAN hop away from the client node) has no significant effect on response
time. Intuitively, this result seems surprising since the network delay should
cause accesses to a remote clearinghouse to be longer than for the local node.
However, as confirmed by earlier measurements of DCE RPC performance, the
difference in response times between local and remote RPC is negligible in a
local LAN environment. MANs and WANs, on the other hand, demonstrate a
significant deleterious effect since the WAN delay is additive to response time.

70

4.5 CDS Access Times Across High-Latency Networks
There are network costs that are not part of these measurements where the clearing-

house is located remote from the local node on which the client runs. In fact, this is a
likely real-world situation. Here, we model typical network delays for each RPC to the
remote clearinghouse based on our trace measurements. We measured the underlying
resource demands for various retrieval modes for DCE 1.0.1. We also know the cached
and non-cached behavior of the retrieval mechanisms.

If we assume several network delay scenarios, we can construct a simple model of
the effects. In Table 2 we have modeled different degrees of "remoteness" for the
clearinghouse and its cdsd by choosing typical network delays as a model parameter.

�9 LAN - Local Area Network - cdsd is on the same LAN as the client application.
Assumed a 2 msec round trip time.

�9 MAN - Metropolitan Area Network - cdsd is in the same metropolitan area as the
client application. Assumed a typical 40 msec round trip time.

�9 WAN - Wide Area Network - cdsd is on the same continent as the client applica-
tion. Assumed a typical 80 msec round trip time 1.

Table 2 Modeled Binding Lookup Response Times for Remote Servers (msec)

Remoteness of cdsd: Round trip Time (msec)
Binding Operation to be Performed

-- Single Attribute Read

-- Single Attribute Read
bl One Binding Retrieval

bl One Binding Retrieval

pl One Binding through Profile Retrieval

pl One Binding through Profile Retrieval
g5 Bindings from 5 Servers through a Group

g5 Bindings from 5 Servers through a Group

p5 Bindings from 5 Servers through a Profile

p5 Bindings from 5 Servers through a Profile

rip2 One Binding from 2 nested Profiles

np2 One Binding from 2 nested Profiles

I cache i LAN]MAN [WAN
yes 3 3 3

no 16 55 95

yes 14 14 14

no 45 160 280

yes 37 37 37

no 120 425 750

yes 126 126 126
no 400 1430 2500

yes 130 130 130

no 450 1600 2800

yes 62 62 62
no 195 700 1200

Table 2 presents the modeled response times for various binding lookups for
cached and non-cached situations. This table estimates the response times on HP9000
$720 cdsd servers including the assumed networked delays.

The lines with yes as cache status in the table are from our direct measurements on
DCE 1.0.1. The lines marked no as cache status are generated from a simple model
based on the number of known attribute reads which occur for each of the test cases
multiplied by the round trip RPC time to the cdsd. Our estimates do not include any
additional delays for RPC pings on the longer transactions.

Of course, we expect some of the attributes are cached on a retrieval lookup. There-
fore, the response time is bounded by the cached and uncached results for each of the
test cases.

1. We measured 100 msec DCE RPC round-trip time from Cupertino, Califomia to Chelms-
ford, Massachusetts. Results can vary based on network topology and distance.

71

Response times grow very large when CDS servers are not local. This problem has
motivated the clearinghouse replica capability of CDS. Replicas are not always avail-
able locally to every user, nor are they useful for binding exports which must go to the
master replica. For some users, binding lookup could experience a long wait. For
example, servers that are found through groups or profiles can have response times for
binding lookup on the order of several seconds when attributes are not cached and the
server cdsd is located at network time delays greater than 20 msecs round trip time.

4.6 An Application's Binding Response Time
To determine a particular application's CDS response time, one cannot use these

results without modification. In order to estimate the probability of communicating
with the cdsd for binding lookup, one needs answers to workload characterization
which were not addressed as part of our initial investigation. These questions include:
�9 What percentage of the binding lookups are designated by the application

designers to proceed with high confidence, bypassing the cdsclerk cache? Of the
remaining proportion of binding lookups, some will hit the cdsclerk cache a n d
some will not. What is the probability in a typical client that the binding lookups
actually are found in the cdsclerk cache? This can be highly variable. It may be
based on the default value for attribute time-outs in cache, frequency or rate of
repeated attribute access by clients on a node, the multiple workload composition
on the node, the design of the running client applications on the node.

�9 What is the probability that binding handles found in CDS server entries point to
network ports that have no server's manager currently active?

�9 What is the number of distinct CDS clearinghouses which need traversal before
the retrieval can occur?
The network delays are added in for a miss in the cdsclerk cache for every attribute

read which occurs. The number of attribute reads is highly dependent on the structure
of the binding lookup parameters and name space structure, but can be as few as three
to as much as dozens of read attribute requests.

5 R P C B i n d i n g E x p o r t
We turn now to the area of binding export. This function must be completed as the

server readies itself to accept RPC calls for its services. The export activity requires
that the CDS object be updated (or created) with the correct binding handle informa-
tion.

5.1 Test Case Descriptions
The investigation using API tracing analysis looked at a wide variety of name space

binding [9]. This paper discusses a few of those parameter combinations which appear
to be more interesting from a performance or frequency of occurrence standpoint.

Four classes of assumptions about the aspects of the name space object are made
prior to export. These are:

�9 new object - the server object does not yet exist.
�9 new intfc - the server object exists but does not have the specific interface

registered in the object.
�9 new version- the server object exists and has the interface registered, but

does not yet have a protocol stack with the correct major version number.
�9 existing - the server object with the correct protocol stack already exists prior

to the export.
In each of the above classes the test registers from 1 to 5 protocol stacks. Each pro-

72

tocol could represent a different network protocol offered (UDP, TCP, etc.) or concur-
rent interface IDs'. Object attribute caching in the cdsclerk was enabled.

We traced each API call repeatedly. This allows us to examine both the first
response time, and the subsequent response time exporting to the same name under the
same conditions. These times are rarely the same. This repetition required the test pro-
gram to undo any operations if necessary to put the object back in the same state
between tests. The resulting API traces were examined as well as the measured
response times.

5.2 Simple Export Results
Figure 3 shows the DCE 1.0.1's first and subsequent response times for exported

names. First response times are more variable than the subsequent response time in
our measurements. Measuring the response time of the first binding export by a server,
many components enter into the operation. To isolate some of the long-term CDS code
effects, we also measured the response time average of subsequent exports to the same
object by the same client. We wanted to distinguish between the two because the aver-
age response time of subsequent exports is influenced less by some of the factors that
increase the variability of the first response time. Details of the first response time
incremental costs are beyond the scope of this paper [9].

5.3 Disk I/O Operations for Name Space Changes
For reliability, the CDS changes are written to a log file on the compute node run-

ning cdsd. This log file grows until it exceeds a non-configurable maximum size or a
configurable checkpoint time interval has elapsed. At this time a checkpoint will
occur.

The response time of simple CDS object updates are roughly stable at about 70 to
80 milliseconds. The CPU was 25% idle during export operations when the cdsd is on
the same node as the requesting application and the database is relatively young 2. Sim-
ple calculations based on the I/O rate, service times, and CPU utilization suggest that
the I/O cost is around 18 msecs as expected on the internal disk drives of the tested
workstation.

Figure 3 Binding Export Response from Local Clearinghouse

2~176176 1 n e w I n t f c e

1 5 0 0 T " . ~ h;a'~4- v i i " ~ | 6 " 1

i ~- 1 0 0 0 .

~ 5 0 0

0

e x l s t l r g

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Exported binding handles

[~ F I r s l R e s p o n s e ~ Avg R e s p o n s e]

1. The test changed the RPC port number to distinguish the various binding handles.
2. There is an import and export response time degradation that occurs as a CDS object are

modified, which increases response time as well as lowers I/O rates and CPU idle.

73

We conclude that cdsd performs a single disk I/O per name space modification,
object creation, or object deletion. It appears that this transaction log I/O is synchro-
nous. The log record is written out before the cdsd can return the RPC. Since multiple
attributes must be written, several synchronous disk I/O's are required. There is no
apparent concurrency permitted while the CDS is logging. We observed a 170 byte
increase in log file length per modify_attribute call. About 11 000 bytes on average is
logged for a create and a delete of a name space object. At this file growth rate, 600 to
700 update operations can occur before a checkpoint is started.

5.4 Adjusting for Network Delays
We caution the reader that these measurements were made with the cdsd on the

same node as the test application. The measured response times is higher if the cdsd is
not local to the node.

These basic response times include the full RPC call operations from cdsd to the
cdsclerk. In this test, both processes resided on the same node so the network delay
was zero. Earlier analysis of RPC performance discovered that the overall response
time for both of the processes is roughly equivalent whether or not an actual local
LAN network was used. In [8] we traced the packets for typical RPC calls. In the case
of UDP protocol transactions, we expect that at least two packets are exchanged per
RPC call. Thus if the cdsd was on the other end of a LAN or WAN network, the
response times will be increased by the node-to-node packet transmission cost multi-
plied by the number of packets that make up each RPC.

The best case is two packets for each RPC. In the case of TCP/IP protocol connec-
tions between DCE servers (a possibility in the near future for DCE 1.0.1 or DCE
1.0.2), 5 packets are needed to set up a connection, 2 packets to transfer the data, and 4
packets to take down a connection. The connection setup and takedown costs will
probably be amortized across the numerous concurrent communications between a
cdsd and its cdsclerk on an active system, so in both cases, a two packet delay is more
likely to be added to the average response time per cdsclerk to cdsd communication.

Figure 4 Remote Clearinghouse Effects on Binding Export

3 0 0 0

2 5 0 0

2 0 0 0

1 5 0 0

1 0 0 0

5 0 0

0
g

74

5.5 Remote Clearinghouse Model
We can use our knowledge of the underlying communication packet requirements

to model the export timings for a cdsd server which is remote to the local node. In Fig-
ure 4, we have graphed the measured local cdsd node response times as the white bars.
These test categories are the same as described for Figure 3.

Plotted in dark bars are the results of our modeled response times if the cdsd clear-
inghouse server has a large round trip latency. This latency could be related to dis-
tance, slow-speed communication, routers, or a combination of the three. In this case,
we used a 80 millisecond round-trip time. The response time costs are two to four
times more expensive for the first three test cases, and significantly more expensive for
the last test case when the object's binding already exists in the CDS name space. Very
few export cases are less than one second in response time.

If the application wishes to update a group or profile object as well, the response
time costs to update a second object will double the total costs to several seconds.

6 Basic CDS Attribute and Object Operations
We turn briefly to the underlying services being performed at the CDSPI on behalf

of these binding imports and exports. We instrumented a custom version of a cdsclerk
in order to trace its operations during various test suites. We used the traces produced
with HP DCE toolkit facilities to measure the important cdsd and cdsclerk functions.

From the analysis of API Iraces, we could determine the basic response time costs
of the cdsclerk's operations that were needed to handle the incoming DCE CDSPI
library request; check the caches for attributes, clearinghouses, directories as needed;
get the authenticated binding handle from the cache; if a read attribute from cdsd,
place the attribute into the common cache (shared memory); CMA thread processing;
and other kernel operations (sockets or DCE RPC).

Similarly, the basic response times of calling cdsd via RPC calls from the cdsclerk
were analyzed. In Table 3, we summarize some of the basic measurement comparisons
which do not include network delay. The basic costs for certain canonical CDS opera-
tions are listed for the cdsd and the cdsclerk. We used measurements such as these to
model the performance and improvements for more complex NSI operations.

Table 3 Basic response times for primitive name space activities !

Primitive Activity

cdsd

Typical
Measured
RespTime

Estimated
Non-I/O
RespTime

cdsclerk

Typical
Measured
RespTime

Read Attribute (cached) not used not used 3 msec
Read Attribute (non-cached) 13.4 rnsec 13.4 msec 4 msec

Test Attribute 12.8 msec 12.8 msec 4 msec
Create Object (existing) 11.2 msec 11.2 msec 3 msec

Create Object (not existing) 81 msec 63 msec 5 msec
Modify Attribute of Object 75 msec 57 msec 3 msec

Delete Object 71 msec 53 msec 4 msec

1. These measurements were taken on a HP Series 9000/720. The CPU speed is estimated
as 28 million HP-PA instructions per second for this workload based on instruction path-
length tracing measurements of the DCE library code using H-P internal tools.

75

7 Future CDS Performance Potential
We worked closely with HP developers porting the OSF DCE release to improve

the performance of the CDS during our investigation. There remain substantial poten-
tial for future improvement. These changes may or may not be implemented by a par-
ticipating OSF technology supplier. For example:
�9 Further binding lookup response time improvements could be achieved, conser-

vatively estimated between 13% to 30%, on binding lookups through group or
profile objects if the NSI library is made aware of which attributes exist for an
object. Non-existing atwibute reads are often 1/4 to 1/3 of the total attribute reads
made by these more complex lookups.

�9 Three additional levels of specific performance tuning steps were defined, pro-
riding response time improvements of 20% to 50% for multiple binding handle
exports to local cdsd, and up to 70% for cdsd clearinghouses that are remote (80
msec network round trip).

�9 A large number of unnecessary attribute reads could be saved. In most cases a
quarter to a third of all attribute reads involve lookups that use groups and pro-
files are for non-existent attributes. Enumeration of attribute data can be 'piggy-
backed' on the ubiquitous CDS ClassVersion read. This enhancement could
yield measurable performance sa~ngs in future releases.
Other examples exist of CDS performance improvements, some may occur from a

overhaul of some of the underlying architecture. While no promises should be inferred
from this paper, the authors continue to believe that the performance of CDS can be
improved in the coming releases from DCE vendors.

8 CDS Recommendations for Applications
Based upon these observations, we can offer the following advice for developers

using the RPC Name Service 1.
In general, access to the name space should be minimized to prevent unnecessary

CPU consumption and response time.
�9 Avoid using rpc ns binding_import_* to retrieve binding handles. Use rpc ns -

binding_lookup_* directly. Binding importation is a trade-off between perfor-
mance and the size of the pool of handles from which the name service randomly
selects a server. Unfortunately rpc ns binding i m p o r t * hides this trade-off
from the developer, making an arbitrary choice of a vector size of five. rpc ns -
binding import_* appears to offer simplicity, but is actually only one of an array
of choices available with rpc ns binding_lookup_*. As the data in this report
shows, mixing rpc ns binding import_* with the wrong name space configura-
tion can lead to some serious performance problems.

�9 Avoid the use of object identifiers to differentiate server entries within group and
profile structures. Because of the nature of the search algorithms, mixing object
UUID based lookups with these groups and profiles result in an extensive and
slow search of the name space to retrieve the requested server information.

�9 Clean up obsolete server and binding information from the name space when an
application rolls major and minor version numbers.

�9 Because servers tend to stop and start, the name service provides an application
the capability to overlay the binding and server information stored in the name
space for a specific interface identifier. This capability allows the application to

1. Other CDS recommendations are found in [5].

76

avoid un-exporting the old information and therefore saving on the overall num-
ber of changes to the name space. Unfortunately as application interface versions
are created, this obsolete information can remain orphaned in the name space. As
the data in this report suggests, leaving this information in the name space will
degrade the performance of the name space.

�9 Be careful when using profile and group structures in binding retrievals. Groups
should contain only identical interface ID's. Especially be aware of binding
retrievals that search profiles or nested profiles that encompass an extensive
range of disparate servers in a name space. If an rpc ns binding_import_* uses
such a structure, the name server can end up traversing the entire structure look-
ing for a minimum of five compatible binding handles. This result could also
occur if rpc ns binding_lookup_* is called with a vector size larger than the cur-
rently available bindings in the requested structure.

�9 Disabling of Clerk Cache - avoid setting the cdscp confidence level to HIGH or
setting NSI attribute cache time-out to zero so that NSI lookup routines are
unable to take advantage of the caching capability of the cdsclerk.

�9 Use Softlinks carefully -- In a complex environment with more than one clear-
inghouse, the incremental cost to traverse a softlink is 1.7 msecs per softlink in
the search path.

�9 CDS transaction log file size - We observed on several occasions that the cost of
the CDS recovering its name space from the transaction log file (e.g., after a
crash or cdsd interruption) can delay any pending CDS requests for many min-
utes. The application designer or system administrator cannot control the growth
of the checkpoint log file. However, one can minimize the exposure to long
recovery times by setting the configured intervals between CDS checkpoints to a
value which keeps the transaction log file small using cdscp.

9 Future Research
Although the scope of this project was large, it still represents only a portion of the

performance aspects of CDS. Among the interesting areas of future performance eval-
uation work are:
�9 Name service update times during CDS skulks, or direct update propagation

around a large, extensive DCE cell with multiple replicas of clearinghouse.
�9 Performance of cdscp commands or other name service administrative activities

such as directory, group, or profile creation.
�9 Exhaustive treatment of the security aspects of the name service except as

described within this document.
�9 Global naming services (GDS), intra-ceU naming services, X.500, or cross-cell

caching.
�9 Background, asynchronous, solicitation/advertiser costs on network and CPU

bandwidths.
�9 Local endpoint mapping or protocol stack selection with run-time libraries.
�9 Exception handling, errors and failures of the CDS naming retrieval code.
�9 Differences in client and server nodes' processor speeds effect on retrieval.
�9 Extensive instruction pathlength tracing of any of the test CDS calls.

77

�9 How well cdsclerk caching performs in a dynamic environment. Specifically,
offering the expected hit rates to a cache in a "real" loaded client environment
with the average name lookup response time measurements.

�9 The XDS name service interface performance, We have made only indirect mea-
surements for XDS by looking at basic CDSPI operations.

�9 Understand the cost of CDS updates in the presence of many replicated clearing-
houses for the directory in which the update takes place.

Acknowledgements

We wish to acknowledge the consistent support of HP's NSA management during
this and prior projects as they recognize the value of a strong performance organiza-
tion and the commitment of resources to do a credible, useful analysis. John Grober
from HP CSSL-Chelmsford was especially helpful in patient explanations, prototyp-
ing, and review of this work.

References

1 Basic Systems Services Performance Measurement Suite - User's Guide, Networked
Systems Architecture, Hewlett-Packard Company, Intemal Document: NSA-92-016,
August 1992.

2 Bolot, J., et al, Evaluating Caching Schemes for the XSO0 Directory System, The 13th
International Conference on Distributed Computing Systems, May 1993, 112-119.

3 Box, G., et al., Statist&s for Experimenters, John Wiley and Sons, Inc., New York, 1988.
4 Distributed Name Serv&e Workload Case Study, Digital Equipment Corporation, released to

HP, August 1989.
5 Dilley J., Practical Experiences with the DCE Cell Directory Service, Networked Systems

Architecture, Hewlett-Packard, International Workshop OSF DCE, Karlsruhe, Germany,
October 1993.

6 Friedenbach, P., et al., Performance Characterization of the DCE 1.0.1 RPC Name Service,
Networked Systems Architecture, Hewlett-Packard, Internal Document: NSA-92-018,
December 1992.

7 Friedrich, R., et al., Performance Characterbtics of the DCE 1.0.1 Cell Directory Services
using Experimental Design Techniques, Networked Systems Architecture, Hewlett-Packard,
Internal Document: NSA-92-019, December 1992.

8 Martinka, J., Pathlength Measurements ofDCE's RPC on HP- UX, Information Architecture
Group, Hewlett-Packard Internal Document: IAG-92-004, March 1992.

9 Martinka, J., et al., CDS AP1 Tracing: Performance Tuning and Models, Networked
Systems Architecture, Hewlett-Packard, Internal Document: NSA-92-020, December 1992.

10 OSF DCE 1.0 Application Development Guide, Revision 1.0, Open Software Foundation,
December 31, 1991.

11 OSF DCE 1.0 Application Development Reference, Revision 1.0, Open Software
Foundation, December 31, 1991.

12 Sienknecht, T., et al., A Critical Evaluation of the DCE-CDS Architectural Design as it
Relates to Directory Naming Serv&e Performance, Networked Systems Architecture,
Hewlett-Packard, HP Internal Document: NSA-92-022, December 1992.

TRADEMARKS: HP, HP-UX and HP9000 are trademarks of the Hewlett-Packard Company. UNIX is a
trademark of Unix System Laboratories, Novell. DCE is a trademark of the Open Software Foundation.
DEC is a trademark of Digital Equipment Corporation.

fidl - a t o o l for u s i n g D C E f r o m F o r t r a n

Roland Laifer, Andreas Knocke

University of Karlsruhe, Computing Centre
Zirkel 2, D-76128 Karlsruhe, Fed. Rep. of Germany

E-mail: laifer@rz.uni-karlsruhe.de

Abs t rac t . A tool, called fidl, has been developed which gives the
Fortran programmer an easy access to the Remote Procedure Call
(RPC) of the Distributed Computing Environment (DCE). It supplies
a Fortran application interface by defining a Fortran-like interface
definition language and facilitates the creation of distributed applications
by generating the additional code automatically. As a result, the Fortran
application programmer does not have to learn much about the DCE
RPC system, the programming language C, or the peculiarities between
Fortran and C.
The experiences gained in developing fidl have been collected in the first
part of the article. These experiences will give general hints how to use
DCE RPC from languages other than C.

1 I n t r o d u c t i o n

In a distributed application, different computers work together and parts of the
application are running on different machines. Reasons for creating distributed
applications include the use of special properties of computers (e. g. compute
power, graphics), the common usage of resources (e. g. data, software, printers),
and the distribution of the load to different computers in a network.

Nowadays, there are different systems that support the program developer
in generating distributed applications. Some message passing systems (e. g.
Parallel Virtual Machine PVM, see [1]) can be used to communicate between
machines in a heterogeneous network instead of nodes on parallel computers.
For communication, the programmer has to write code to marshall, unmarshall,
send, and receive messages. On the other hand, Remote Procedure Call (RPC)
systems use the 'natural ' separation of programs into procedures. The system
usually derives the code for marshalling and unmarshalling the parameters and
sending the call over the network from an interface description.

The RPC of the Distributed Computing Environment (DCE) has a number
of advantages compared with other RPC systems and message passing systems.
First, DCE is a proven technology agreed upon and supported by many members
of the computer industry. Most manufacturers of UNIX based systems provide
DCE products, and even on other platforms DCE is and will become available.
Secondly, the DCE RPC is tightly connected with other DCE components: the
DCE Directory Service, the DCE Threads, and the DCE Security Service (see [2]
to [5]), for example. With the help of the DCE Directory Service an RPC client

79

does not have to know where a server is located. Thus, the server can be s tar ted
on another computer to distribute the load or if a computer has crashed down.
The DCE Threads support the parallelization within a process. A client can call
mult iple servers at the same time and a server can handle multiple requests. The
DCE Security Service, among other things, provides secure communicat ion for
the DCE RPC.

A disadvantage of the DCE RPC is that it does not support yet the
distribution of Fortran programs. However, the code for the solution of many
scientific and engineering programs is written in Fortran. Therefore, the first
par t of this article discusses how to use the DCE RPC from Fortran. In the
second par t the tool fidl is described, which preserves the Fortran p rog rammer
f rom writing C code and code calling the DCE library.

2 Using D C E R P C from Fortran

This section describes how the DCE RPC can be used to distribute
Fortran applications. The following subsections show the experiences gained in
developing fidl which have been incorporated into the tool. In the first subsection,
some concepts how to use DCE from Fortran will be discussed. Thereby, general
hints show how to distribute applications from languages other than C. The
second subsection presents the interface between Fortran and C, and the third
subsection shows problems in using DCE from Fortran.

2.1 F u n d a m e n t a l D e c i s i o n s

In order to distribute an application DCE library calls have to be added to the
application. The main tasks of the library functions are to store the interface of
a server and to bind to an appropriate server. At first sight, one could simply
try to call the library from Fortran instead from C. But this is not practicable
because in Fortran it is not possible to define new data types and nearly all DCE
library functions have such newly defined types as arguments in their parameter
list. Furthermore, Fortran only supports call by reference.

As a second a t t empt one could try to write intermediate routines in C which
are called from Fortran and which call the DCE library. However, some library
functions need output parameters of other library functions as input parameters .
Therefore, these parameters have to be declared as global variables which will
produce complex and incomprehensible code.

For this reasons, it is the best to combine the code for the distribution in two
additional C routines. The server routine consists of the server main program
which can be nearly the same as for a C application. Only one entry (the manager
entry point vector which contains the names of the callable Fortran routines) has
to be adapted to Fortran because it has to use the compiler dependent spelling
(see Sect. 2.2). The application part of the server - the manager routines - can
be written in Fortran and need not contain any DCE library call.

80

On the client side, the additional C routine handles the binding. It is possible
to omit this routine by using the automatic binding method, but it is more
flexible to write one's own binding routine. Since it is not possible to define the
data type of a binding handle in Fortran, the favourite binding method is explicit
customized binding.

To use customized binding for a specific function, the type of the
first parameter must have the hand le at tr ibute in the interface definition.
Furthermore, the programmer has to supply a bind and an unbind routine for
every first parameter type (example in Sect. 2.2). These routines are called
automatically from the client stub. If the programmer wants to use different
routines for functions with the same first parameter type, he can use a t y p e d e f
in the interface description to define a new name for that data type. Even if the
first parameter of the RPC is passed to the bind routine, there is no need to
specify the binding depending on this parameter! For example, every function
could use a different global string variable to specify a server name, and this
variable could be set at runtime in the client application code.

As a result, the appropriate concept for the distribution in a language other
than C is the separation of the additional code for the distribution and the
application code. The code for the distribution is contained in the server main
program and in the customized bind and unbind routines and is written in C.
With this concept even the exception handling can be included for client and
server side. Since DCE header files are only necessary in the distribution code,
their inclusion is no problem, contrary to the results of [4]. Another advantage of
the concept is that there is no additional layer between the Fortran application
code and the stubs. Therefore, the performance does not decrease.

2.2 T h e I n t e r f a c e b e t w e e n F o r t r a n a n d C

In order to write an interface definition in the C-like Interface Definition
Language (IDL) and to derive stubs that are suited to the Fortran application,
the programmer has to take notice of the interface between Fortran and C.
However, if he uses the tool fidl there is no need to know the following
peculiarities:

1. In Fortran all parameters (except the internally passed lengths of strings) are
passed by reference. Therefore, the parameters in the idl-file (except arrays
and string lengths) must be declared as pointers.

2. Arrays in C are stored in row-major order, whereas Fortran stores arrays in
column-major order. Because of this, the dimensions of arrays in the idl-file
must be given in reverse order.

3. Fortran passes character strings by using two parameters internally: a pointer
to the first character and an integer (passed by value) specifying the length
of the string. These two parameters have to occur in the parameter list of
the IDL for every Fortran character string.

4. For each Fortran data type equivalent C data types must be declared. Table
1 shows this transformation for HP-UX 8.05 on the series 700. It is machine-
dependent but it should apply to most UNIX workstations. Notice that

81

Table 1 only shows the corresponding data types. In a parameter list the
C types must be declared as pointers and for a character (even if it has the
length 1) there are two corresponding arguments.

5. Some Fortran compilers change the spelling of external names, e. g, FUNCTION
or SUBROUTINE names or names of external variables, by appending
underscores or converting to lowercase letters. The IDL must be suitable;
if necessary it has to differ on client and on server side.

6. External variables have to be declared as names of COMMON blocks in Fortran.
For example, the global variable s e r v e r in C

char server[80] ;

has to be declared in Fortran as

CHARACTER*80 SERV

COMMON /SERVER/ SERV

In this example the Fortran compiler converts the external name SERVER to
lowercase letters. If a Fortran p rogrammer wants to assign a value to SERV
he has to append a null byte (SERV = ' t e x t '//CtlAR(O)) explicitly, because
C strings are terminated by a null byte.

Section 3.3 shows an example how fidl converts the Fortran-like interface
description into the C-like IDL.

Table 1. Data type transformation for most UNIX Workststions

For t ran 77 C

INTEGER X long x;
LOGICAL X long x;
REAL X float x;
DOUBLE PRECISION X double x;
COMPLEX X struct {float re, im;} x;
CHARACTER X char x;

2.3 P r o b l e m s in U s i n g D C E f r o m F o r t r a n

There are a number of problems in using DCE in a heterogeneous system which
occur only in Fortran. They arise from the way Fortran programs are usually
written, from the non-uniform interface between Fortran and C, and from missing
features in the IDL.

One of the most important problems is that a lot of existing Fortran programs
communicate via C01~MON-blocks. In the case of distribution this is not possible,
because the address spaces of client and server are separated. Therefore, the

82

needed variables inside the C011ll0N-blocks must be added to the parameter list,
i, e. changes in the existing code are necessary.

Another problem may occur not only in Fortran but also in C: if the internal
length of a REAL is 4 bytes on one computer and it is 8 bytes on another, the
programmer has to change all REALs into REAL*8 (if the Fortran compiler allows
this data type) or the 4 byte REALs into DOUBLE PRECISION. Data types with
fixed length (like the IDL data types) do not exist in Fortran and therefore it
is difficult to write portable code. The KIND attr ibute of Fortran 90 may help in
this case.

Additional problems may arise if the interface between Fortran and C
differs in a heterogeneous system. For example, the arrangement of the length
parameter of CHARACTER variables, invisible in Fortran, may differ depending on
the compiler. If one Fortran compiler arranges these lengths at the end of the
parameter list and the other after the CHARACTER-parameter (and if there is no
appropriate compiler option), the programmer must write an intermediary C
routine that changes the arrangement of the parameters.

Some Fortran and C compilers do not share a common definition of true and
false. Moreover, the internal representation for false may differ between Fortran
compilers. If the Fortran compiler on the client side uses 1 for false and on the
server it is - 1 , a logical parameter which is false on the client becomes true on
the server.

Other problems are inherent to the IDL. There are some missing features,
and it is not obvious why they are absent:

- It is not possible to specify more than one dimension of an array dynamically,
i.e. to give the l e n g t h _ i s attribute for more than one dimension (see Sect.
3.3). This is particularly a restriction in Fortran, since arrays in Fortran are
often defined very large and only a small range is actually needed.

- There is another limitation for passing arrays dynamically. The variables for
the length_is attribute must occur as an argument of the parameter list,
i.e. they cannot be an expression or a constant. If an existing program has to
be distributed and the desired l e n g t h _ i s variable is not in the parameter
list, the program code has to be changed and an additional integer value
must be transmitted.

- If the explicit customized binding method is used (which is recommended
for Fortran users), the first parameter must have the in attribute. But
sometimes it would not be necessary to send this parameter to the server.

Similar problems have been described in [6]. But it is possible to overcome several
restrictions described therein. For example, it is not necessary to use implicit
binding for a RPC from Fortran (compare Sect. 2.1).

The above listed problems can be solved by making changes in the existing
code, writing intermediate C routines or simply accepting a lack of performance.
Nevertheless, some problems could be solved, if only the compilers supplied
appropriate options. These options are not only necessary for a distributed
program, but also to port easily a program which is written in Fortran and C.

83

Above all it should be possible to control optionally the arrangement of the
character lengths and to change the spelling of external names. The optional
conversion of all REALs to DOUBLE PRECISION and vice versa would be very
helpful, too.

3 The Tool fidl

A Fortran programmer who wants to use DCE RPC must write an interface
description in the C-like Interface Description Language. Therefore, he must
know the peculiarities between Fortran and C. Moreover, he must write the
additional code for the distribution, such as the server main program, in the
language C. This is why a tool called fidl has been developed (see [7]). It was
designed to give the Fortran p rogrammer an easy access to and to facilitate the
use of DCE RPC.

3.1 B e n e f i t s o f t h e T o o l f idl

The first aim - to facilitate the access from Fortran - was met by defining
and converting a Fortran-like interface description language. A Fortran-like
interface definition, based on Fortran 77 syntax with extensions taken from
Fortran 90 whenever possible, was defined (as recommended in [8]). fidl converts
this interface definition to the IDL. Useful error messages and syntax diagrams
help the programmer to correct errors in the Fortran interface description.

The second aim - to facilitate the use of the DCE RPC - was reached by
taking information from the interface description and generating the additional
C code for the distribution automatically. It takes some time to get used to
DCE which could be an essential drawback for the use of DCE. Therefore, fidl
automatical ly generates server main programs and binding routines, which call
the DCE library. As one result, the programmer does not have to call any routines
of the DCE library, and thus saves the t ime of getting used to DCE. As a
second result, the Fortran p rogrammer does not need to have any programming
knowledge in C since all necessary C files are generated by fidl.

But the tool fidl provides still more support: for linking and compiling the
distributed application, it generates 'makefiles'. With the information of these
makefiles, the UNIX tool make can be used to compile and link the necessary
files and libraries automatically.

Of course, fidl does not offer all features included in DCE. But if a
programmer wants to use additional features, he can use the fidl-generated files
and add the desired code.

Figure 1 shows how the tools rid[, make, and the IDL compiler collaborate
to create a distributed application. IF stands for the interface name. fidJ can
also generate code for an application with multiple interfaces, but this is not
shown ill this figure. The file ' IF.fdl ' has to be identical on client and server side.
The generated files ' IF. idl ' are nearly identical, too; only the function names
may differ (see Sect. 2.3). ' IF .uuid ' contains an automatically produced interface

84

identification (UUID), and therefore it has to be generated only on client side
and copied to the server. It is included into the files 'IF.idl'. The information
of 'IF.fdl' is not only used to generate 'IF.idF, but also to generate the files
'IFserver.c', 'IFbind.c' and 'makefile'. The application code of the client and
server is contained in the files 'client.f' and 'IFmanager.f'.

!

. .

fidl ~l
. i l

I 'I~idl,_ I I I IF.uuid I

idl

make I makefilel ii

I client I

o 'files at the client'

fidl

I I ~ idl I

i idl

I IF_sstub.o I IFserver.c

IF.h l i i ! i ~ ~ ! i ~ i]

~!l makefilel make

. i .

I IFserver I

'files at the server'

..... generated files written ~ standard files i', i tools I } files
by the user used by fidl

Fig. 1, Creating a distributed application with fidl, idl and make

3 .2 T h e P r o g r a m m e r ' s R e m a i n i n g Work

The programmer's remaining work is to deliver the originally non-distributed
code which has been separated into client and server parts, the Fortran-like
interface description, and little additional information for the binding.

For the separation, a purely procedural interface must be used: r
between client and server are not allowed because of the separated memory.

85

Function names as parameters and alternative returns from the distributed
function are forbidden, too. Since the network between client and server is often
the bottleneck in an application, the p rogrammer should use a depression of da ta
for the separation with as few as possible data transfer.

The Fortran-like interface description consists of the declarative par t of
the remote procedures with few extensions. Similar to the C-like IDL, these
extensions specify an interface name, the direction in which the parameters
should be sent, and an efficient way for sending only the par ts of arrays and
strings actually used over the network. The p rogrammer must combine all the
procedures to one interface which should form the same server process.

If a remote procedure call occurs in the client, the binding specifies to which
server the call would be sent. For every interface, fidl permits three different
binding methods:

1. The programmer can specify a constant server name.
2. The programmer can give the name within a global variable inside the client

code which is then evaluated at runtime.
3. An appropriate server is searched in the Cell Directory Service if no name

has been provided.

All three binding methods establish a binding handle in the bind routine
depending on a server name. In the unbind routine this name and the handle
are stored. If the next RPC uses the same server name the old binding handle
is used and no t ime-consuming DCE library calls are necessary to generate the
handle.

3.3 E x a m p l e o f t h e I n t e r f a c e C o n v e r s i o n a n d o f t h e b i n d i n g

This section shows an example for the Fortran-like interface description and
the fidl-generated interface description in the IDL. For the syntax definition
of the Fortran-like interface description language extensions to Fortran 77
have been taken from Fortran 90, if possible. Other extensions are marked as
Fortran 90 comments by an exclamation mark so that a Fortran 90 compiler
should compile the interface correctly. For generating the file with the Fortran
interface definition, the programmer can copy the declaration par t of the remote
procedures and add the necessary declarations.

In the example the remote subroutine QREV calculates eigenvalues and
eigenvectors of a hermit ian matrix. The complex matr ix EV holds the input
mat r ix and the eigenvector matr ix on output . The real vector EW returns the
eigenvalues and N stores the dimension. The contents of the file 'QR.fdl ' are as
follows:

INTERFACE ! QR

SUBROUTINE •REV(N, EV, EW)

INTEGER DIM

PARAMETER (DIM = 200)

INTEGER, INTENT(INOUT) : : N

86

COMPLEX*f6, INTENT(INOUT):: EV(DIM,DIM) ! LASTDIM(N)
REAL*8, INTENT(OUT):: EW(DIM) ! LASTDIM(N)
END
END INTERFACE

The fidl-generated file 'QR.idl ' includes the file 'QR.uuid' which contains the
interface UUID (generated by the DCE tool uuidgen). A t y p e d e f defines the first
parameter N as customized handle. The subroutine qREV is translated according
to the description in Sect. 2.2.

[
#include "qR.uuid '~
,version(l.O)
]

interface qR

typedef struct dcomplex { double re, im; } dcomplex;
typedef [handle] long hidce;
void qrev(
[in] hidce *N,
[in,out,length_is(*N)] dcomplex EV[200][2003,
[out,length_is(*N)] double EW[200]);

In this example it can be seen, why it is a problem that IDL cannot specify
more than one dimension of an array dynamically. If the number of elements in
each dimension is 10, 2000 (= 200,10) elements of the matrix EV are transmitted
while only 100 elements contain the necessary information.

In the following an extract of the fidl-generated binding file 'QRbind.c' will be
listed. It is an example for a customized binding which uses the name of a server
contained in the global variable QRSEI~VER. How to set this variable is described
in Sect. 2.2. The status check calls have been omitted in order to shorten the
listing.

#include <dce/rpc.h>
#include <pthread.h>
#include "QR.h"

#define LSTRING 80
unsigned_char_t nils[]= "";

char qrserver[LSTRING] = ;
static rpc_binding_handle_t old_handle;
static int old = O;
static char old_server[LSTRING] = ;

rpc_binding_handle_t hidce_bind(dummy)

87

hidce dummy;
(

u n s i g n e d _ c h a r _ t * s t r i n g _ b i n d i n g ;
unsigned32 st;
rpc_binding_handle_t rpc_handle;

/* if first call or server name was changed */
if (old == 0 J[strcmp(qrserver,old_server) !=0) {

rpc_string_bindingcompose(nils, (ndr_char *)"ncadg_ip_udp",
(ndr_char *)qrserver, nils, nils, ~string_binding, ~st);

rpc_binding_from_string_binding(string_binding, &rpc_handle,
~st);

else rpc_binding_copy(old_handle, ~rpc_handle, &st);
return rpc_handle;

void hidce_unbind(dummy, r p c _ h a n d l e)
h i dce dummy;
r p c _ b i n d i n g _ h a n d l e _ t r p c _ h a n d l e ;
(

unsigned32 s t a t u s ;

o ld = 1;
/* s t o r e the hand le * /
r p c _ b i n d i n g _ c o p y (r p c _ h a n d l e , &old_handle , & s t a t u s) ;
s t r c p y (o l d _ s e r v e r , q r s e r v e r) ;
r p c _ b i n d i n g _ f r e e (& r p c _ h a n d l e , ~ s t a t u s) ;

For subsequent calls with the same server name in the global variable, the
old fully bound binding handle will be used. Therefore, the execution of the bind
routine and the call of the server will be essentially faster.

4 C o n c l u s i o n s

It has been shown that it is possible to use DCE from Fortran. The tool rid] gives
the Fortran programmer an easy access to DCE and facilitates the generation of
distributed applications.

Nevertheless, there are problems that arise only in a heterogeneous
distributed environment. Some of the problems could be solved if the interface
between Fortran and C would be standardized and if the compilers offered
appropriate options (see Sect. 2.3).

In future the support for parallelization and secure communication will be
included into fidl by the use of the DCE Threads and the DCE Security Service.
Additionally, fidl will be accomodated to heterogeneous systems.

88

Acknowledgement

This work has been sponsored by the project distributed applications of
the research network BelWue of the state of Baden-Wiir t temberg and by
the ODIN cooporation of the University of Karlsruhe and Siemens Nixdorf
Informationssysteme.

References

1. A1 Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek: PVM
3.0 - User's Guide and Reference Manual. Oak Ridge National Laboratory, Oak
Ridge, Tennessee (1993)

2. Open Software Foundation: OSF DCE 1.0 - Introduction to DCE. Prentice Hall
(1992)

3. Open Software Foundation: OSF DCE 1.0 - Application Development Guide.
Prentice Hall (1992)

4. Ward Rosenberry, David Kenney, Gerry Fisher: OSF Distributed Computing
Environment: Understanding DCE. O'Reilly & Associates Inc., 136-140 (1992)

5. John Shirley: OSF Distributed Computing Environment: Guide to Writing DCE
Applications. O'Reilly & Associates Inc. (1992)

6. Werner Kollak: Distributing FORTRAN applications using DCE RPC. Report,
Computing Centre, University of Stuttgart (1993)

7. Roland Laifer, Andreas Knocke: fidl - Ein Werkzeug zur einfachen Verteilung yon
Fortran-Anwendungen. Users' Guide, Computing Centre, University of Karlsruhe
(1993)

8. Paul Buis, Wayne Dyksen, John Korb: Fortran Interface Blocks as an Interface
Description Language for Remote Procedure Call. Proceedings of the Conference
'Programming Environments for High Level Scientific Problem Solving' in
Karlsruhe, Computer Science Department, Purdue University, 119-120 (1991)

Converting Legacy FORTRAN
Applications to Distributed Applications

T. Marll McDonald

Digital Equipment Corporation

Mail Stop LKG2-2/Z7

550 King Street

Littleton Massachusetts 01460, USA

e-mail address is M_MCDONALD@TERSE.ENET.DEC.COM

A b s t r a c t .

The standard Distributed Computing Environment (DCE) offering from the Open
Software Foundation implies that the client side of a distributed application, the server
side of the application, and the remote procedures in the server side must be written in
C. Digital Equipment Corporation has enhanced its DCE product so that the client
side of a distributed application and the remote procedures in the server side can be
written in FORTRAN. This enhancement means that, within certain limits, existing
FORTRAN applications can be converted so that compute-intensive subprograms
execute on fast server machines. This paper explains the conversion process and its
limits based on a comprehensive example.

90

I Introduction
The DCE was designed for creating distributed applications and with
no consideration for converting legacy (that is, existing) applications.
Furthermore, the DCE documentation uses C as the only language for
its examples of developing distributed applications. The examples always
show the following high-level language components written in C:

�9 The client side of the application

�9 The server side of the application

�9 The remote procedures that reside within the server side of the
application

Note
The interface definition language (IDL), that creates a network
contract between the client and server sides of the application,
closely resembles the C language.

An advantage of writing these three components in C is that they have
full access to the routines in the remote procedure call (RPC) runtime
library. For example, a client can call routine rpc_binding_free() to
free the memory used by a binding handle. The client can also call
security routines in the DCE runtime library.

All of Digital Equipment Corporation's DCE products allow programmers
to create distributed applications using the C and IDL languages.

Additional DCE documentation from outside the Open Software
Foundation (see [1] and [2]) emphasizes using the C and IDL languages.
However, Rosenberry and Kenney and Fisher [1] summarily answer the
questions "Do I really have to use C?" and "Can I write DCE application
programs in languages other than C? Please?".

2 Using FORTRAN--Overview
Digital adds considerable value to its DCE products. One addition
allows developers of distributed applications to use, with relatively few
exceptions, FORTRAN for the following high-level language components:

�9 The client side of the application

�9 The remote procedures that reside within the server side of the
application

91

As of October 1993, Digitars DCE and FORTRAN combinations are:

�9 Digital DCE Developers' Kit for OpenVMS VAX and VAX FORTRAN
(a superset of FORTRAN 77)

�9 Digital DCE for DEC OSF]I AXP and DEC Fortran

The full Digital documentation for creating distributed applications with
FORTRAN is in the product guides for these two DCE products (see [3]
and [4]). (The README file, mentioned in the FORTRAN chapter of
each product guide, is also helpful.) This paper goes beyond the product
guides to summarize converting legacy FORTRAN applications. You
should read the product guide for your Digital DCE product and this
paper to obtain all available information.

This paper assumes the combination of VAX FORTRAN applications
r u n n i n g on OpenVMS systems. All the principles in this paper apply
to DEC Fortran applications running on DEC OSF/1 AXP systems.

A small number of C routines form the server side of an application.
In fact, programmers frequently use the same C routines, with small
changes to some arguments, as the basis of any server side.

As a result of this FORTRAN capability, programmers can both convert
many existing applications to distributed ones and create new distributed
applications. If much of a program's computations occurs in its
subroutines, programmers can move the subroutines to a fast server
machine. The result will be a distributed application that, overall, can
execute much faster than the original nondistributed application.

2.1 Assumptions
The distributed FORTRAN applications assume that a name service
database exists. They will always have automatic binding between client
and server processes. The binding portions of the applications might
execute a little slower than the binding portions of applications that use
RPC runtime library routines to establish implicit or explicit bindings.
Also, distributed FORTRAN applications cannot be multi threaded.

The distributed FORTRAN applications have no DCE security because
of automatic binding selection and because the client sides, written
in FORTRAN, cannot easily call routines--specifically including
rpc_b ind ing_se t au th_ in fo () - - in the RPC runt ime library. The
applications can have DCE security if programmers establish implicit
or explicit bindings and modify the client FORTRAN modules to call
routines in the RPC runtime library. The modification could include a C

92

module, callable from FORTRAN, that in turn calls routines in the RPC
runtime library. The details of such a modification are beyond the scope
of this paper.

2.2 Example
For an introductory example, consider the following skeleton of a
FORTRAN program in source file MATH1.FOR.

PROGRAM MATH1 ! In file MATH1 .FOR
REAL*4 A, B, C, D, E, F, G, P, Q
INTEGER* 4 M
REAL*4 R, S, T, U, V, RESULT1, RESULT2

C Assign values to the subprograms' arguments.
CALL SUBI(A, B, C)
CALL SUB2 (D, E)
CALL SUB3(E, F, G, M)
CALL SUB4 (P, Q)

C

C

RESULT1 ffi FUNCI (R, S, T)
RESULT2 = FUNC2 (U, V)

STOP
END

Compiling separate source files MATHI.FOR, SUBI.FOR, SUB2.FOR,
SUB3.FOR, SUB4.FOR, FUNC 1.FOR, and FUNC2.FOR followed by link-
ing their object files creates the traditional nondistributed application
completely contained within executable file MATH1.EXE.

Suppose that subroutine subprograms SUB2 and SUB3, and function
subprogram FUNC2, require much computation. Their execution time
is almost all of the time MATH1.EXE requires.

You can convert this nondistributed application to a distributed
application. It is based on the three source files MATH1.FOR, MATH1
IF.IDL, and MATHI_SERVER.C. The first file already exists; you must
create the second and third files.

In the distributed application, source file MATH1.FOR and the six
.FOR files containing the six subprograms remain unchanged with one
exception. MATH1.FOR needs the additional statement

INCLUDE 'MATH1 IF.FOR'

(MATH I_IF.FOR is an interface (IF) file created by the IDL compiler
from file MATHI_IF.IDL.)

93

MATHI_IF.IDL is the second source file in the distributed application. It
contains the names of the three subprograms SUB2, SUB3, and FUNC2
plus descriptions of their arguments D, E, F, G, M, R, S, and T.

Its skeleton is next.

[
uuid (...)
version (I. 0)
]
interface MATH1 IF
{

/* The next four lines correspond to
"CALL SUB2(D, E)" in MATHI.FOR. */

void SUB2(
[in] float D,
[out] float E

)
/* Two more subprogram names (SUB3 and FUNC2)

and argument descriptions are here. ,/

main
{

rpc_server_use_all protseqs(...)
rpc_server_register if(...)
rpc_server inq_bindings(...)
rpc_ep register(...)
rpc ns binding_export(...)
rpc_server_listen(l)

}

In reviewing the three important files that comprise the distributed
application, you can see that:

�9 The original source program file, MATH1.FOR, remains unchanged
except for the addition of one statement. All files containing the local
subprograms (SUB1, SUB4, and FUNC1) remain unchanged. These
four files are part of the client side. All files containing the remote

/* First argument is
always 1 to specify
1 thread (= no
multithreading) . ,/

/* This is file MATH1 SERVER.C */

#include "MATH1 IF.FOR H" /* Interface file created by
the IDL compiler from
source file MATH1 IF.IDL */

()

}

The third source file in the distributed application is MATH1 SERVER.C.
Its skeleton is next.

94

subprograms (SUB2, SUB3, and FUNC2) remain unchanged. These
three files are part of the server side.

�9 The new interface definition file, MATHI_IF.IDL, reflects the
subprograms that will execute on a remote computer and the
arguments in the subprograms.

* The new server program file, MATHI_SERVER.C, remains largely
the same, regardless of what the client program is. The major
changes to the server program, as the client programs change, are
the name of the .C source file and the #include statement for the
generated header file.

Therefore, converting a legacy FORTRAN application to a distributed
application often involves no rewriting of the statements in the
application's source program files.

Note: One small change to the syntax of the command that invokes
the IDL compiler enables much of Digital DCE's support for FORTRAN
applications. The change is the addition of:

�9 option - lang f o r t r a n (universal syntax)

�9 qualifier/LANGUAGE=FORTRAN (OpenVMS DCL syntax)

In the case of IDL file MATH1 IF.IDL, the respective commands that
invoke the IDL compiler are:

�9 $ idl mathl . idl -lang fortran

�9 $ IDL/LANGUAGE=FORTRAN MATHI.IDL

Either command generates files MATHI_IF.FOR and MATHI_
IF.FOR_H for the FORTRAN client and C server source program
units, respectively, to include.

3 Restrictions and Data Types
Two major restrictions apply to converting legacy FORTRAN applications
to distributed ones.

COMMON blocks (labelled and unlabelled) cannot appear in both the
main program and any of its remotely executed subprograms. This is
because a COMMON block is one area of memory in one address space
that separate program units address. In the model of remote procedure
calls, two address spaces exist and a program unit can address only one
of them. However, program units can contain a COMMON block if it

95

is contained within the client process's .EXE file or within the server
process's .EXE file.

The distr ibuted program units mus t be in separate files. In te rms of the
previous example, individual files (with reasonable names) MATH1.FOR,
SUB1.FOR, SUB4.FOR, and FUNC1.FOR existed. However, single file
MATH1.FOR could contain the s ta tements for MATH1, SUB1, SUB4,
and FUNC1.

Similarly, the s tatements for SUB2, SUB3, and FUNC2 could be in
individual .FOR files or in one .FOR file. The s ta tements for SUB1 and
for SUB2 mus t be in different .FOR files because SUB1 executes on a
client computer and SUB2 executes on a server computer.

Digital's DCE product guides (see [3] and [4]) list all the restrictions.

Digital's DCE product guides also list the correspondence between
FORTRAN data types and the data types in an IDL file. For example,
a single-precision, floating-point number is declared in a FORTRAN
program with a REAL*4 statement; it is declared in an IDL file with
a float statement. You can see this by locating single-precision, floating-
point variable D in file MATH1.FOR and in file MATHI_IF.IDL.

4 Overview of the Program Conversion Process
To begin a program conversion, look closely at the files comprising the
application that you want to distribute. Make sure tha t none of the
aforementioned restrictions applies. For example, you might have to
extract program units from a .FOR file tha t contains more than one
program uni t and place them into separate files.

If you have an application with much of its communication between
program units occurring by means of COMMON blocks, it could take
an unreasonable amount of t ime to change it. For example, consider the
following communication structure:

PROGRAM FO0
COMMON /COLD/ A, B, C

CALL FOOl ()

END

96

SUBROUTINE FOOl ()
COMMON /COLD/ X, Y, Z
, . o

RETURN
END

You cannot make subroutine FOOl a remote procedure because it and
main program FOO have the same COMMON block. You would have to
rewrite the application based on the following communicat ion structure:

PROGRAM FOO
. o o

~ . .

CALL FOOl(A, B, C)
~ ~

END

SUBROUTINE FOOl (X, Y, Z)

~ ~

RETURN
END

Once your source files meet the restrictions listed previously, you can

begin bui lding the application. The following sections summarize the
process in terms of the overview example. The summary is based on
the tradit ional VAX FORTRAN program MATH1.FOR tha t runs on the
OpenVMS operating system.

You can easily adapt the example's case of one main program, four
subroutine subprograms, and two function subprograms to meet your
specific needs.

5 Creating Distributed Source Program Units
This section presents the source program units tha t resul t a t runt ime in
the creation of a client process based on MATH1.EXE and in the creation
of a server process based on MATHI_SERVER.EXE. Remote procedures
SUB2, SUB3, and FUNC2 execute within the server process in response
to calls from within the client process.

The source program units are in three groups. They are the interface
definition file MATHI_IF.IDL, the original seven .FOR files, and the
server side of the distr ibuted application in file MATHI_SERVER.C.

97

5. I Interface Definition File
You must create the interface definition file--in this case, MATHI_IF.IDL.
It usually changes considerably from one distributed application to an-
other.

File MATHI_IEIDL begins with the creation of a universal unique
identifier (UUID). This number is an electronic fingerprint tha t identifies
the interface across all t ime and space. A utility program creates
a UUID. One version of the command, using OpenVMS DCL syntax,
follows.

$ IDENTIFIER/GENERATE/OUTPUT=MATH 1 IF.IDL

(Adding the qualifier /FORMAT=IDL would create a more complete
version of MATH I_IEIDL.)

MATH1 IF.IDL contains ASCII text such as

dlbl 4182- 6544-I Icb-bal2-08002bl 7908f

Editing MATHI_IF.IDL according to the current application can result in
the following final version of the file. Note that a rgument G of subroutine
SUB3 is both input to and output from this remote procedure.

[
uuid (dlb14182-6544-11cb-ba12-08002b17908f)
version(l.0)
]
interface MATH1 IF
{

void SUB2 (
[in] float D,
[out] float E
)

void SUB3 (
[in] float E,
[in] float F,
[in,out] float G,
[out] long M
)

float FUNC2 (
[in] float U,
[out] float V
)
}

98

5.2 Original .FOR Files
The seven .FOR files remain unchanged with one exception. You must
add the following statement to file MATH1.FOR:

INCLUDE ' MATH1 IF.FOR'

5.3 Sewer Program File
You must create the sewer program file--in this case, IMATHI_SERVER.C.
I t usually changes little from one ~stributed application to another.

Creating MATHI_SERVER.C according to the current application can
result in the following final version of the file. Note that the names
of the subprograms for the three remote procedures and the names of
the subprograms' arguments do not appear in the file. The information
becomes part of MATHI_SERVER.EXE from MATHI_IF.IDL and from
the commands to the FORTRAN compiler and the Linker. Locate the
seven occurrences of the string ~mathl_if' (including upper case and
comments) in MATHI_SERVER.C. The string has this value because of
the name of the IDL file, MATHI_IF.IDL.

/* This is file MATH1 SERVER.C */
#include <stdio. h>
#include <file.h>
#include <dce/dce error.h>
#include "mathl if.for h" /* The IDL compiler created this

file from file MATH1 IF.IDL.

main ()
{
error status t st;
rpc b~nding_~ector_p_t bvec;

/* Register all supported protocol sequences with the
runtime.

rpc_server_use_all_protseqs(
rpc_c protseq_max_calls default,
&st

(st != error_status_ok)

fprint f (stderr,

exit (i) ;

"Can't use protocol sequence - %s\n",
error text (st)) ;

) ;
i f
{

* /

* /

99

if (st != error_status_ok)
{

fprintf(stderr,"Can't establish protocol sequences - %s\n",
error text (st));

exit (I) ;
}

/* Register the server interface with the runtime. */
rpc_s erver_regi st er i f (

mathl if vl 0 s ifspec, /* From the IDL compiler; "vl_0" */
/* comes from the statement */
/* "version(l.0)" in file */
/* MATH1 IF. IDL. */

NULL,
NULL,
&st

);

if (st != error status ok)
{

printf("Can't register interface - %s\n", error_text (st)) ;
exit (i) ;

}

/* Get the address of a vector of server binding handles. The
call to routine rpc server_use_all protseqs () directed the

runtime to create the binding handles. */
rpc server_inq bindings(&bvec, &st) ;
if (st != error status ok)
{

printf ("Can't inquire bindings - %s\n", error text (st));
exit (i) ;

}

/* Place server address information in local endpoint map. */
rpc ep register(

mathl if vl 0 s ifspec,
bvec,
NULL,
(idI_char*)"FORTRAN Mathl_Interface Test Server",
&st

);
if (st != error_status_ok)
{

printf ("Can't register ep - %skn", error text (st)) ;
}

100

/* Place server address information into the name service
database. */

rpo ns binding_export(
rpc_c_ns_syntaxdefault,
(idl_char*)".:/FORTRAN_mathl if mynode",
mathl if vl 0 s ifspec,
bvec,
NULL,
&st

);
if
{

(st != error_status_ok)

printf("Can't export to name service - %skn",
error_text(st));

}

/* Tell the runtime to listen for remote procedure calls.
Also, FORTRAN cannot support multiple execution threads.

rpc_server_listen((int)l, &st);
if (st != error status_ok)

*/

fprintf(stderr, "Error listening: %s\n", error text(st));

6 Creating Executable Distributed Program Units
The previous section presented the three sets of source program files.
This section explains how you use these files to create client .EXE and
server .EXE files. At runt ime, these files form the two processes tha t
comprise the executing distributed application tha t relies on remote
procedure calls.

6.1 Interface Definition File
You use the IDL compiler to create four files based on MATHI_IF.IDL.
The command, us ing OpenVMS DCL syntax, is:

$ IDL/LANGUAGE=FORTRAN MATHI_IF.IDL

The four files tha t the IDL compiler creates are:

MATH1 IF CSTUB.OBJ

MATH1 IF SSTUB.OBJ

MATHI_IF.FOR

MATHI_IF.FOR_H

(Client stub; for input to Linker)

(Server stub; for input to Linker)

(For inclusion by client, MATH1.FOR)

(For inclusion by server, MATHI_SERVER.C)

101

6.2 Client Program File
The following commands, using OpenVMS syntax, create the client
.EXE file, MATH1.EXE. This file has the same name as the original
nondistributed executable file. Note that the subprograms that remain
local procedures appear in the commands.

$ FORTRAN MATH1.FOR
$ FORTRAN SUB1.FOR, SUB4.FOR, FUNC1.FOR
$ LINK MATH1.OBJ, SUB1.OBJ, SUB4.0BJ, FUNC1.OBJ, -
_$ MATH1 IF_CSTUB.OBJ, SYS$INPUT:/OPTIONS
SYS$SHARE:DCE$LIB_SHR/SHARE
<Ctrl-z>

6.3 Server Program File
The following commands, using OpenVMS syntax, create the server .EXE
file, MATHI_SERVER.EXE. Note that the subprograms that are remote
procedures appear in the commands.

$ CC MATHI_SERVER.C
$ FORTRAN SUB2.FOR, SUB3.FOR, FUNC2.FOR
$ LINK MATHI_SERVER.OBJ, SUB2.OBJ, SUB3.OBJ, FUNC2.OBJ,-
_$ MATH1 IF SSTUB.OBJ, SYS$INPUT:/OPTIONS
SYS$SHARE:DCE$LIB_SHR/SHARE
<Ctrl-z>

7 Running the Distributed Application
The previous two commands to the Linker created client executable
file MATH1.EXE and server executable file MATHI_SERVER.EXE. The
following commands, using OpenVMS syntax, create the two processes
that, running together, form the distributed application.

$! Start searching for bindings in the name service database.
$ DEFINE/NOLOG RPC_DEFAULT_ENTRY -
_$ ".']FORTRAN_math i if_mynode"
$! Create the server process.
$ SPAWN/NOWAIT/INPUT=NL:/OUTPUT=MATHI_SERVER.LOG-
_$/PROCESS=MATHI_SERVER RUN MATHI_SERVER.EXE
$ WAIT 00:00:10 ! Wait for the server process to start.
$ RUN MATH1.EXE ! Create the client process.
$ STOP MATHI_SERVER ! Stop the server process;
$! the client process has already stopped itself.

102

8 Summary Figure

f

UUID , Text
Ge~ratr t Edit=

~ I=+~,= I
i~ co~ �9

I t t t I++
' Cknt O ~ m N m t

R~m~AN Co.p~ O

l
u~,~ O

t I Client oxoa~ble fIIO..MATH 1.EX E

FUNC2.FOR
I SUB3~:OR

MAI~, SSRVER.r~ur~lln~ I I ~'=rc~ FORm.+-

t �88
c c ~ , , O ~ c + . + m , 0

t t

u ~ �9
t I So(vwox~m~l:lefio_I~tdk.n.ll.SERVEREX E [

$ IDENTI FIE PVGEN ERATE/OUTPUT-MATH1 IF.IDL

$ |DL/LANGUAGE=FORTRAN MATHI_.IF.IDL

S FORTRAN MATHI.FOR s FOmRAN SUm .FOR. SUe4.FOR. FUNC2.r<~
e scc ~Tm SERVE~C

$ FORTRAN SUB2J:OR, SUB3.FOR, FUNC2.FOR

_$ MATHI_F cs'rUB.OBJ, SYS$~NPUT '/OPTIONS $ LINK MA'[H1.OBJ, SUBI.OI3J, SUB4.OBJ. FUNCI.OBJ, -
SYS$SHARE:DCE$LIB._SHR/SHARE
<CM-z>

O SLINK MATH1 8ERVER.OBJ, 8UB2.OBJ, SUB3.OBJ, RJNC~..OBJ, -
..S MATHI_IF_SSTUB.OBJ. SYStaNPU'r ~rK~NS
SYS$SHARE:DCESU B SH R/SHARE
<Ctd-z>

ZK-(RS0A-GE

103

9 Experiences and Related Work
The author knows of no experiences or related work with converting
nondistributed FORTRAN applications to distributed ones. The Digital
product guides (see [3] and [4]) each have a complete example of a
distributed FORTRAN example that ran successfully. Digital Equipment
Corporation released its post-Field Test DCE software with FORTRAN
support after this paper was due in late June of 1993.

I0 Conclusion
This paper summarizes the genera] process of converting legacy
FORTRAN applications to distributed applications. For each application,
the process requires:

�9 Verifying that the applications meet a small number of restrictions,
the most important of which concerns COMMON blocks

�9 One small change (adding an include statement) to one of the .FOR
files

�9 Creating a .IDL file describing the data structures of the
subprograms that become remote procedures

�9 Creating a .C source file that changes little, regardless of the
complexity of the original .FOR files of the legacy application

11 References

1. Rosenberry, Ward, and Kenney, David, and Fisher, Gerry.
Understanding DCE, Sebastopol, California, USA: O'Reilly and
Associates, Inc., 1992.

2. Shirley, John. Guide to Writing DCE Applications, Sebastopol,
California, USA: O'Reilly and Associates, Inc., 1992.

3. Digital Equipment Corporation. Digital DCE Developers' Kit for
OpenVMS VAXProduct Guide: 1993. Part number is AA-PV4FA-TE.

4. Digital Equipment Corporation. Digital DCE for DEC OSF/1 AXP
Product Guide: 1993. Part number is AA-PZK4A-TE.

Using Standard Tools to
Build an Open, Client/Server Prototype

Bernard S. Hirsch

Hewlett-Packard Company
930 East Campbell Road

Richardson, Texas 75081 USA
(214) 699-4197

bernie@bsh3185.ssr.hp.com

Abstract. This paper will benefit software developers, MIS managers, and
end users because it will help explain some of the practical benefits and
implications of the Open Software Foundation (OSF) Distributed
Computing Environment (DCE) in the context of a prototype application
environment that was developed using the OSF DCE. The environment, a
Financial Desktop, consists of a series of OSF Motif and
MicrosoftWindows based clients which obtain information and resources
transparently from a series of DCE based services, that reside on a range of
heterogeneous computing hardware and software, including multivendor
operating systems, networks, architectures, and databases. This paper will
explain how DCE was used to implement this Financial Desktop in such a
way that installed assets were leveraged, new technologies were
integrated,and the focus of control for this environment has shifted away from
a single hardware or software vendor. The use of the DCE remote procedure
call (RPC) is discussed with respect to the role that it plays in this
environment.

1 Introduction

The seemingly elusive goal, whereby the wealth of information and services in an
enterprise is transparently accessible to end users on demand, is one about which
much is written and discussed. Furthermore, there is an ever accelerating
requirement to accomplish this in an open, distributed computing environment.

The first requirement that the computing environment be distributed is due to
several ongoing trends in which an organization's business units, functions, data,
users, and computing equipment are all now more and more distributed. The second
requirement that the computing environment be open is resulting due to the need for
these enterprises to control their own destiny. That is, they do not want to be reliant
on a single hardware/software vendor when using information technology to help
meet business goals. With the frantic pace at which new technologies, products, and
methodologies are introduced nowadays, an enterprise would like to be in control to

105

incorporate these to increase its competitive advantage, while still leveraging its
many existing computing investments.

This paper describes how a prototype of an open, distributed application
environment for stock brokers was created in which financial information and
services are transparently accessible across a range of heterogeneous computing
hardware and software, including multivendor operating systems, networks,
architectures, and databases. Further, it is shown how this environment, the
"Financial Desktop" (or FDT), was created using standard, off-the-shelf tools and
technologies including the Open Software Foundation (OSF) Motif graphical user
interface and components of the OSF Distributed Computing Environment (DCE).
Using this open approach it is shown how installed assets are leveraged, new
technologies can be integrated, and how the focus of control for the environment has
shifted away from a single hardware or software vendor.

First the FDT user interfaces and services are described in detail, and the tools and
technologies that were selected to implement the prototype are presented. Next,
implementation details and experiences are discussed, followed by a summary of the
prototype development. Finally, conclusions are drawn on the prototype
environment and related work is introduced.

2 Description of the Prototype Environment

2.1 User View: Graphical User Interfaces

The setting for the prototype is an application environment for a stock broker, that
consists of a series of hardware and software components working together in
unison, so that the stock broker can very efficiently and transparently get his or her
job done, by having presented at their desktop all of the needed information and
services. The software components that come into play in this environment are a
collection of services (or servers) and user interfaces (or clients).

From the stock broker's perspective, four (4) user interfaces "drive" the entire
application (see Figures 1, 2). That is, all interaction with the system is done by
simply entering some information -- such as the customer account number -- and
then pressing a button in the graphical user interface (GUI). All of the information
that the stock broker needs to know about that customer, for example, and the status
of his or her investments are then automatically and transparently presented to the
stock broker in the same unified interface. The four GUIs (e.g., clients) are
described below. [1]

106

Clients

[-~a~ Logi N ~

L - - - - - a C l i e n t 2

~ra~ Logi~Q
t - J C l i e n t 3 ~ \

Get
Customer

Stocks
Servers

Customer
Portfolio

~...~..[Server

~:~ Ticker
�9 ~ Tape

Server

Resources

Data
\ ~ Proprletar y ~------I~-[~

 a LoJSWl Al,orithm t l m
I l- " "~- ~ :] Server [s e n m o m
t ' ----- 'a C l i e n t n ~ ~ J Declsion

Fig. 1. FDT Client/Server Architecture

Marketminder

Using a "real-time" feed to the Dow Jones, Marketminder simultaneously presents
the NYSE and NASDAQ ticker tape data (e.g., latest stock prices) and allows the
stock broker to query the latest price for a particular stock. Specific information on
each stock presented to the stock broker includes:

a) Stock Name.
b) Current, High, and Low stock prices for the current trading period.
c) Stock price change between the current and the previous trading periods.
d) Volume.

Financial Desktop (FDT)

FDT allows the stock broker to query a customer information database for
individual customer and portfolio data. A heuristic function analyzes various data
and suggests whether the time is right to sell particular customer stocks. Specific
information presented to the stock broker includes:

107

a) Customer name, social security number, and address.
b) Stock symbol, number of shares, and purchase price for each customer stock.
c) Current trading price for each customer stock owned.
d) Sell/Hold recommendation for each stock owned.

New Customer

New Customer allows new customer data and customer stock portfolio data to be
added to the customer information database.

Customer Report

Customer Report generates letters to all of the customers of the stock broker that
own a particular stock. The letters advise them of pending recommendations and
actions to sell particular stocks based on some activity. Additional functionality
included in the "Customer Report" client allow the stock broker to either (a) look up
a stock company name based on a Dow Jones stock symbol, or (b) look up Dow
Jones stock symbol based on the company name.

2.2 Resource View: Backend Services

From a functionality perspective, a significant amount of processing is transparently
occurring to be able to present all of this information to the stock broker within each
of these four GUIs (see Figures 1, 2). A description of the various server data
andoperations in this environment will help explain some of this processing. Five
(5) servers provide access to all of the information and services within this prototype
envirnoment. The five servers are described below. [2]

108

i Symb~

T l _ T. ll

Fig. 2. FDT System Architecture

Customer Information Database service

The customer information database service is implemented as an MPE/iX
Turbolmage proprietary network database of customer information that manages the
following data:

a) Customer account number, customer name, social security number, address,
and number of stocks owned.

b) Stock symbol, number of shares, and purchase price for each customer stock
owned.

Its server operations include:

i.) "Get customer data" retrieves all of the data in (a) above, given a customer
ccount number.

ii.) "Get customer portfolio data" iteratively retrieves all of the stock
information in (b) above for each customer stock held.

iii.)"Add new customer" adds the new customer and customer portfolio data
[specified in (a) and (b) above] to the database.

iv.) Get customer owning stock" iteratively retrieves all of the customers that
own a particular stock, given a specific stock symbol.

Dow Jones ticker tape service

The Dow Jones service provides a real-time feed to the latest NYSE and NASDAQ
stock prices. Either the Telerate or Prodigy dialup services can be used as
underlying services.

109

Latest Stock Price Database service

The latest stock price database service is implemented as a UNIX NDBM database
that maintains the latest stock price for each of the stocks coming across the ticker
tape.

Stock "sell/hold" heuristic analysis service

The "sell/hold" analysis service provides a recommendation to the stock broker as to
whether to sell the customer stock or hold onto it, based on historic and current
market conditions.

Stock Symbol Database service

The stock symbol database service provides a mapping from stock name to stock
symbol, or from stock symbol to stock name, for each of the stocks in the NYSE and
NASDAQ. This database service is implemented as a relational database using
Ingres.

The following server operations are supported:

i) "Get stock symbol" retrieves the Dow Jones stock symbol, given the
company name.

ii) "Get company name" retrieves the company name, given the Dow Jones
stock symbol.

2.3 Hardware, Operating Systems, and underlying Network

The customer information database service is implemented using an existing
Turbolmage network database on a HP 3000 Series 900 business computer running
the MPE/iX operating system.

The Dow Jones ticker tape service, latest stock price database service, and the
"sell/hold" analysis service are all implemented on the following hardware and
operating systems:

a) HP 9000 Series 700 workstations and Series 800 servers running the HP/UX
operating system.

b) IBM RS/6000 Model 320 workstation running the A/X operating system.
c) DEC DecStation 3100 workstation running the OSF/1 operating system.
d) DEC VaxStation 3100 running the VMS operating system.
e) DEC DecStation 5000/200 workstation running the Ultrix operating system.
f) Siemens-Nixdorf workstation running the SINIX operating system.

110

g) Groupe Bull workstation running the BOS operating system.
h) Stratus fault-tolerant minicomputer running its variant of the UNIX System V

Release 4 operating system.

The stock symbol database service is implemented using the Ingres relational
database on the HP 9000/730 workstation running the HP/UX operating system.

The clients are implemented on the following platforms:

a) HP 9000 Series 700 workstations running the HP/UX operating system.
b) Intel 80386 PC's running Microsoft DOS 5.0 and Windows 3.0.

The clients and servers are networked together using both Ethemet and IEEE 802.5
token ring, using TCP/IP and UDP/IP protocols.

4 Selected Tools and Technologies

The technologies and tools that were selected to be used to implement the Financial
Desktop application environment are briefly discussed.

4.1 User Interfaces

Motif 1.1 using UIMX interface builder

It was decided that OSF Motif 1.1 was the primary GUI technology to be used to
implement the client user interfaces. The familiar and intuitive appearance and
behavior of an interface that complies with the Motif style guide empowers end
users to be productive immediately. Further, UIMX (also called Interface Architec0
from Visual Edge was selected as the interface builder for the Motif GUI, due to its
ease of use, quick prototyping capability, and ability to generate pure Motif C code,
so that portability to future client platforms can occur very easily. In addition, since
very efficient C source code is generated, the prototype interface code can also be
deployed quite appropriately in a production environment. [2]

Microsoft Windows 3.0 SDK

The Microsoft Windows 3.0 SDK was used as a secondary, supplemental GUI
technology to develop MS Windows interfaces for two of the FDT clients that are to
run natively on the PC platforms. Although MS Windows is not standard or open, it
is the most popular GUI in use today on PCs, and thus it is strategic to many users.

111

4.2 Application Interoperability

DCE Remote Procedure Call (RPC)

It was decided that the OSF DCE RPC would be the enabling technology to be used
to achieve application interoperability between the four FDT clients and the five
FDT servers. The primary decision criteria here was the openness of DCE, as an
enormously popular consortia-sponsored interoperability standard, and as such, the
expectation that it will be increasingly available on almost every computing
platform. For the prototype, early versions of DCE were used for x386
Windows-based PCs, Series 700 HPAIX workstations, and MPE/iX minicomputers,
to achieve interoperability across the various FDT clients and servers.

Other decision criteria also affected the selection of the DCE RPC. First, the
transparency, and scalability afforded the application developer and end users is
much greater for applications architected with DCE RPC than with some of the less
robust, pure messaging technologies. The familiar and intuitive local procedure call
semantics empower software developers to be productive developing distributed
applications with minimal training. Second, DCE RPC greatly simplifies the
development of the clients and servers by automatically generating client and server
stub (or "glue") C code. Most distributed computing complexities are taken care of
automatically by the DCE RPC tools, generated stub code, and the DCE RPC
library. Finally, DCE RPC can just as easily be used to implement a production
worthy implementation as it can to achieve the prototype described in this paper,
since this third generation technology was designed with these goals in mind. [3, 4]

5 Implementation Details and Experiences

5.1 Background

The FDT prototype was originally developed in early 1991 at HP Dallas using
Network Computing System (NCS) 1.5.1 RPC and directory services on HP
Domain/OS, HP/UX, and MPE/XL operating systems. NCS 1.5.1 supports a
non-threaded distributed computing environment with a non-hierarchical name
space with no additional security. [5] This technology was used because DCE,
even in snapshot form, was not yet available from OSF. In addition, the UIMX
Motif prototyper tool was used to generate the client user interfaces. Since one of
the purposes of the prototype was to demonstrate heterogeneous distributed
application interoperability and data access, some rudimentary visual feedback was
added such that the screens of the various RPC servers "light up" green whenever
an RPC request is serviced.

112

DCE Implementation

In July of 1991, OSF decided to use this prototype environment as the basis for its
DCE demonstration to the support the September 17, 1991 worldwide availability
announcement of DCE. As such, the FDT client and server code was reengineered
o use DCE RPC and DCE threads, so that any DCE licensee can utilize the
prototype environmentfor demonstration purposes, by building it with their
DCE implementation. At the time of the implementation, the latest version of the
DCE code was Snapshot 5, and the CDS security services were not yet mature
enough to be used. The FDT code was ported to OSF/1 on the DECstation 3000
workstation and the HP PA-RISC 720 workstation, as the two primary development
environments.

5.2 Utilization of DCE Core Components

RPC and Threads

The DCE remote procedure call was heavily utilized throughout the FDT
environment to accomplish both distributed data access and distributed
computation. Idempotent call semantics were used throughout, since read only
access was he only requirement for the initial implementation. The new DCE
RPC context handle feature was also utilized in the data access interfaces so

that servers can maintain client state and clean up if necessary. The endpoint
mapper daemon (rpcd) was not utilized since well-defined endpoints were used in
the Interface Definition Language (IDL) files. This is poor implementation
practice, in general, but was used here due to the infancy of the DCE software.
Finally, the broadcast attribute was specified for the send_tick() procedure of the
Dow Jones Ticker Tape Service, so that multiple MarketMinder clients/servers
are instantly informed of new ticker tape activity.

Threads were not used explicitly in any client implementation except for a
workaround that was required for some initializations that were not occurring in
early DCE code. Threads were used implicitly by every FDT application server so
that multiple clients are serviced simultaneously. It was for this same reason that
context handles were also required. The manner with which multi-threaded
servers are created in DCE is very straightforward and thread complexities are
transparent to the developer.

Cell Directory Service Emulation

Part of the source code port from NCS to DCE included porting NCS location
broker (lb_$) calls to the DCE NSI calls to register services into and lookup
services from the Cell Directory Service (CDS). The original goal was to utilize
the new automatic binding feature in DCE, whereby with no explicit

113

programming on the part of the application developer, clients will automatically
and seamlessly connect with their appropriate servers, and if those servers
should fail, the clients will then automatically reconnect with other equivalent
servers.

However, since the CDS portions of DCE were not ready at that time, a C library
was created which emulated CDS (actually, RPC NSI) functionality and behavior.
Conditional compilation allowed use of either the native DCE CDS or the emulation
library, while providing transparency to the application. In addition to emulating
the automatic binding and rebinding on server failure, the library randomly picks a
server to which the client will connect, if there are multiple equivalent servers
available. This will, in effect, amortize the various RPC calls -- and thus the RPC
load -- across the various RPC servers, creating a simple form of RPC
load-balancing.

The additional step of emulating CDS required the static definition of server
locations (e.g., hostnames) for each interface definition in a configuration file.
This is sufficient for a small, static prototype environment, but this methodology
will not scale up to a larger, more dynamic, and more realistic environment.

What worked well here, in addition to the transparency to the application
source code, is that clients compiled with the emulation library will interoperate
with both servers compiled with the emulation library as well as with servers
compiled with the true RPC NSI interface--in effect, creating two namespaces.
The converse is not true, however.

5.3 Demonstrating DCE Interoperability

Demonstrating distributed application interoperability and data access is not an
intuitive concept. If application components are interoperating correctly, user
requests are processed and results are presented. However, it is not obvious where
events and actions are happening. As such, a not insignificant amount of effort
went into providing visual feedback as part of the FDT environment, such that one
is able to discern where distributed computing is occurring.

Specifically, the lighting up of screens was expanded to display specific
vendor logos on both client and server machines. To accomplish this, an
additional RPC parameter was added to each function signature in the FDT IDL
files to denote either from which machine an RPC is being called or where it is
being serviced:

[idempotent] void db_stocksopen([inl handle_t h,
[in, out1 long *vendor_id,
[out] file_handle_t *fh);

114

The background of the server machine's screen, for example, will display a
bitmap of the client's vendor logo (i.e., the HP or IBM logo) when the RPC is
serviced. And the client GUI will display a bitmap of the server's vendor logo
when the RPC completes. In this way, it is easy to determine between which
machines an RPC is being rocessed. The user can then press a toggle button which
alternates between visual feedback mode and "live" mode, in which RPCs can
complete at full speed with no visual feedback.

5.4 Replicated Application Servers

FDT application servers were replicated to demonstrate the concepts of utilizing
DCE for high availability, load balancing, and multiple custom server
implementations in a distributed computing environment. High availability is
demonstrated by unplugging the network connection from an FDT server during a
series of RPC calls. Then, when the ensuing RPC is requested on that now
unavailable server, the client delays slightly and then rebinds to another equivalent
server, with its new server vendor logo displayed in the client GUI. In the FDT
clients, the default RPC timeout was changed from about thirty-two (32) seconds
to either four (4) or eight (8) seconds. Depending on which application server to
which a client connects, a different server implementation is executed. For
example, on a customer database lookup, either a Unix flat file is sequentially
searched or an HP MPE Turbolmage network database is searched.

In the prototype environment, the general replication problem is scaled down and
some assumptions are made so that only application servers with no update
interface can be replicated. If no assumptions are made -- which in a real
application environment cannot be done -- either a replicated database or a
distributed transaction processing (TP) monitor would be required for an
application server managing a database. Since the former solution requires a
monolithic, single database vendor implementation, the latter TP monitor
solution would have been preferred, and the Transarc Encina technology would
have been selected since it is already integrated with OSF DCE. In this scenario, an
update is no longer a non-idempotent (i.e., at most once) operation, but instead is
transactional (i.e., exactly once), in which each replicated database is updated
with the scope of that single transaction. In effect, the Encina TP monitor
solution is used to keep heterogeneous databases in synchronization by utilizing a
two-phase commit across the various databases. [6]

5.5 Developers' Skills and Roles

Three developers were intially involved in the building of the FDT prototype.
Each had different backgrounds and skillsets that were effectively utilized in
creating different portions of the FDT clients and servers. It was found that a high
degree of concurrent development was achieved in large part due to the inherent
requirement to first define the client/server interfaces in the DCE IDL files. This is

115

somewhat akin to defining an object in object-oriented analysis and design
methodologies. DCE encourages the view of resources and their services as objects
and methods, and the requirement that this definition be done first allows the DCE
client and server developers to proceed independently once an IDL file is agreed
upon.

The developer with legacy database management skills proceeded to create the
customer database schema, load the database, and develop the interface routines
(e.g., methods) that comply with the service's IDL file. In effect, this developer was
encapsulating the legacy database with a layer of openness that any client developer
could then access once given the IDL file -- and could access it without knowing its
underlying implementation or even being knowledgeable about that implementation.
A customer database object has now been created.

The developer with a background in GUI design was given the liberty to create a
GUI that the user would be comfortable with, and as such dealt primarily with
ergonomic and style-related issues. The third developer, in effect, acted as an
integrator between the user interface object and the customer database object. This
developers' role was to translate user interface messages (e.g., callbacks) into
customer database messages (e.g., business lransactions) and to create the necessary
application logic to have the DCE client perform as desired.

These three roles are prevalent throughout the FDT clients and servers. When an
object and its method already exists, it can simply be reused. This is the case, for
example, in the Latest Stock Price Database with the request_priceO method used
by both the Marketminder client and again later by the FDT client. This reusability
of server operations is one of the primary benefits achieved through thoughtful and
generalized IDL design.

6 Summary of Prototype Development

Before the summary of the steps involved in developing the FDT prototype
application environment is presented, it should be emphasized again that the
selected tools and technologies promote parallel development of the application.
The benefit of this approach is not only that the prototype will be produced more
rapidly since it is produced in parallel, but also that the learning curve is minimized
since current skillsets can be partitioned into these three pieces. That is, user
interface experts can concentrate exclusively on building GUIs, and specific
technology experts can deal solely with providing access to an underlying
technology/service by developing the server and server operations. An expert on the
Turbolmage database can provide access to Turbolmage data by implementing the
previously agreed upon server operations, and a client developer can then access
Turbolmage data without having to know anything about the Turbolmage database,
by simply invoking the appropriate server operation.

116

The primary steps, then, that were followed to create the FDT prototype are outlined
below:

. Client~Server Interface Definition: For each service, the client and server
software developers need to agree upon the client/server interface definition
and its supported server operations. These server operations include the
operation name, input and output parameters required by the operation, and
possibly some additional, optional attributes. This information is specified in
a DCE IDL file. These server interfaces and server operations were
discussed above in "2 Description of the Prototype Environment". One of
the server operations for the customer information database service is
specified as:

[idempotent] void get_customer_data(lin] handle_t h,
[in] char acctNum[4],

lout1 customer_t *custData,
[out] long *numStocks,
[out] long *status);

. Interface Compilation: For each interface, the DCE IDL compiler is
executed taking the DCE IDL file as input and producing as output the
respective client and server side stub code.

3. At this point, the client and server software developers can start their parallel
developments, since their interface has now been formally defined.

3a. Server Implementation: The server software developer will develop the
implementation for the server operations agreed to in Step 1, above. In
the implementation of each server operation, the server developer needs
to manipulate the underlying resource as specified by the operation.
This entails using Turbolmage system calls, for example, in the
customer information database server, to query or update this database.
In the stock symbol service, the server developer needs to issue
imbedded SQL statements to retrieve the requested stock symbol or
company name.

3b. Client Implementation: Development of the client application can also
be done in parallel here, by first specifying the formal interfaces
between the GUI and the application logic. What needs to be agreed to
and specified up front are (1) the callback function names and
parameters, so that the appropriate function can be called when the user
presses a button, and (2) the names and types of the GUI
objects/widgets so that the client software developer can read from and
write back to the appropriate user interface elements.

117

3b-i. GUI Development: The user interface developer will create the
appearance and behavior of the GUI and will link the user
requests for action (e.g., button presses) with client application
"callback" functions. The information presented in the user
interfaces was discussed above in "2 Description of the
Prototype Environment". UIMX was used here to create the
Motif GUIs, and the Microsoft SDK was used to create the MS
Windows GUIs.

3b-ii. Client Application Logic: The client software developer will
develop the necessary "callback" functions and client application
logic, and will call the server interface operations as needed.
Also, the client software developer needs to read from and write
to the appropriate graphical user interface elements. Some
pseudo-code for the FDT client shows a sample of the flow of
processing that occurs when the stock broker enters a customer
account number and presses the "OK" button:

void ok_callback();
{

/*

* First read the customer account number from the GUL
*/

acctNum = XmTextGetString(textWidget);
. . .

/*

* Next invoke the customer data "query" operation.
* Note: This is an RPC call.
*/

getcustomer_data(bindingHandle, acctNum, &custData,
&numStocks, &status);

o . .

/*

* Then, put the customer data just obtained to the screen.
*/

XtSetValues(firstNameLabel, data1, count1);
XtSetValues(lastNameLabel, data2, count2)
XtSetValues(ssnLabel, data3, count3);
XtSetValues(addrLabel, data4, count4);

}

118

7 Conclusions

A prototype client/server financial application for stock brokers was developed
using standard, off-the-shelf technologies and tools -- OSF Motif and OSF DCE.
The technologies and tools that were used to develop the application were selected
primarily due to their openness, standards compliance, and their capability to also
be deployed in a production environment. By prioriting openness as the highest
decision criteria, it is shown how installed assets can be leveraged, new technologies
can be integrated, and how the focus of control for the environment can be shifted
away from the vendor and back to the customer, where it belongs. By using
standard compliant APIs that are portable to many different systems (PCs, MPE/iX,
and Unix), by using standard compliant protocols that are interoperable with other
vendors' tools, technologies, and implementations, by using tools and technologies
that are widely available by tens and hundreds of vendors, and by using tools and
technologies that scale well from a prototype application to a fully deployed
application, an enterprise can start to regain control of its computing destiny.

Specifically, it is seen that by using these open technologies, the investment in
installed assets, such as the Turbolmage database, can be protected, and in fact
enhanced, by opening up access to the data to the entire enterprise. In this fashion,
where the enterprise's business units can use this technology to methodically open
up the access to their business data and services to anyone who needs to use them,
business processes can start to be better optimized and reshaped.

It is also seen how new technologies, such as the Ingres relational database (and in
the future, object-oriented databases and audio and video), can then also be easily
added to the environment for the additional benefits of those latest technologies.

Finally, the client/server development process has demonstrated to lend itself very
nicely to rapid and effective systems development, in part by allowing the capability
for parallel software development, in part because the development tools (the DCE
IDL compiler and the UIMX interface builder) automatically generate much of the
source code, and in part because if the services are developed in a generalized
manner, they can be reused many times over by many new clients.

8 Related Work

The FDT prototype is currently being used as an educational tool to help
demonstrate some of the features and benefits of OSF DCE. An HP customer
education course entitled "Hands-On With Open, Client/Server Technologies"
(HOW) has been developed to give information technology professionals a hands-on
exposure on what is involved in developing a client/server solution using true,
standards-based tools and technologies, such as OSF Motif and OSF DCE. The

119

class is four (4) days long -- half lecture and half lab -- and utilizes the FDT
prototype for the lab exercises. Two new clients and one new server have been
added to the FDT environment in the development of this class to allow students to
be added as customers, to allow customer reports to be generated, and to allow a
two-way mapping between stock symbol and company name. [7]

Several other enhancements to the FDT prototype are currently planned or are
already completed. The first enhancement is introduced in "5.4 Replicated Servers"
in which the Transarc Encina TP monitor will be used to keep the replicated FDT
application servers in synch with each other by the XA-compliant two-phase
commit protocol. If it is determined that this significantly degrades interactive
performance, then the Encina RQS technology will also be used to batch
transactions into persistent queues for later processing. [6]

Another enhancement request is for better use of the DCE core components
including rpcd, cdsd, and secd (for authentication, integrity, and privacy). Better
illustration of the distributed computing is also planned, in particular with the use of
multimedia features such as audio on the clients and servers. Additional
functionality such as the ability to track and analyze specific stocks or customer
portfolios over a period of time is planned with the purpose of better illustrating the
benefits of reusability of DCE server interfaces.

References

1. Hirsch, B.: Building an Open, Client/Server Application, Interact, Volume
12, Issue 10, 100-115 (October 1992)

2. HP Interface Architect 2.0 Developer's Guide, Hewlett-Packard Company
(1993)

3. OSF DCE Application Development Guide, Volumes I and II, Open
Software Foundation (1993)

4. OSF DCE Application Development Reference, Open Software Foundation
(1993)

5. Lyons, T.: Network Computing System Tutorial, Prentice-Hall (1991)
6. Spector, A.Z.: Preparing for Distributed Computing and Open OLTP,

Transarc Corporation (1992)
7. Hands-On with Open Client/Server Technologies, HP Computer/Instrument

Systems Training Course (1992)

Pilgrim's OSF 1 DCE-based Services Architecture 2

J. David Narkiewicz Mahesh Girkar Manoj Srivastava
Arthur S. Gaylord Mustafizur Rahman

Project Pilgrim a
University of Massachusetts

Amherst MA 01003

Abstract

Within a heterogeneous distributed computing environment, it is necessary to inte-
grate services, such as printing and mail, that are scattered throughout the environment
and which perform single logical tasks. This paper discusses a general purpose archi-
tecture which provides a framework for designing complex multi-user systems capable
of interfacing with these services. The merits of this generalized approach are reflected
in the following two case studies of applications being developed by the University of
Massachusetts' Project Pilgrim: PIMS (Pilgrim Interface to Mail Systems) and PIPS
(Pilgrim Interface to Print Systems). These designs incorporate the principles of this
architecture and utilize OSF DCE.

PIPS permits the uniform access of a heterogeneous system's printing facilities
and provides support for printing complex multi-document jobs. This interface is plat-
form independent, supports flexible mappings between logical and physical printers
and permits all printing resources to be visible throughout the cell. ISO DPA is used
for specifying print job attributes and non-DCE systems are also supported. PIMS
similarly allows distributed mail clients to work directly with a set of uniform, sys-
tem independent primitives. This interface remains consistent regardless of the mail
environment/system-architecture native to the client or that used to store a given user's
mailbox and folders. These primitives allow multiple mailboxes to appear as a single
unified (coheren0 postbox. This enables operations to be performed on individual mes-
sages or folders residing on several different machines regardless of underlying mail
protocol, the user's present host, hardware or operating system. PIMS supports vari-
able format messages (multimedia) including executable code, alternate display/audio
forms, and message indirection. Various levels of mail access are supported on clients
ranging from laptop PCs to supercomputers.

1 Introduction

A computing enviromnent which is distributed introduces a new parad igm for designing
applications. At the same time, managing such applications poses new challenges for the
designer. Techniques for handling these issues are being deve loped and should reflect

iOSF is a trademark of Open Software Foundation
2Developed at Project Pilgrim, University of Massachusetts, Amherst
3project Pilgrim is partially funded in part by Digital Equipment Corporation, Hewlett-Packard Company,

and University of Massachusetts

121

the fact that such environments are likely to be heterogeneous in nature. Services on
these heterogeneous platforms have traditionally relied on proprietary standards and hence
frequently do not facilitate interoperability. Additionally, these services have not been
designed to utilize DCE, nor can they be replaced with equivalent, DCE-aware services
without substantial modification. Given the importance of these services, a primary task
in a distributed environment is to insure their integration and also to provide a means of
managing these (now distributed) applications in a standard conformant fashion. By its
very nature, DCE is designed to provide a means by which to simplify access to services
within a heterogeneous environment, otherwise it would not fulfill its purpose.

A consistent architecture allows a number of applications to pool knowledge and
techniques for addressing issues associated with a distributed environment. There are
numerous ways that an application designer can choose to resolve these problems. As is
usually the case, there is a tradeoff between the generality of a solution and the number of
issues that it can address.

This paper addresses the previously discussed issues by reviewing the basic client/server
model within the context of a distributed environment (Section 2). Section 3 presents
the Pilgrim Services Architecture, which is a uniform approach to developing complex
client/server applications. Following this section the PIPS (Section 4) and PIMS (Sec-
tion 5) case studies are presented. Utilities developed by Project Pilgrim and lower level
DCE design issues are disscussed in Section 6. The conclusion (Section 7) evaluates both
case studies within the context of the other tools and utilities being developed at Project
Pilgrim.

2 Beyond the Basic Client/Server Model

Project Pilgrim has been developing OSF/DCE applications at the University of Mas-
sachusetts for the last three years. This suite of tools provides services to users in a dis-
tributed environment and the facilities the administration of these tools. Furthermore, the
integration of legacy applications and personal computers into the OSF DCE environment
are also goals for the project. Pilgrim's environment includes PCs, mainframes, worksta-
tions and super-computers. Nodes are connected by LAN's and are organized in a loose
knit hierarchy based on administrative, departmental and research group. The University is
a diverse environment (as is any 5000+ computer shop) in that system management must
address the restrictions associated with the business-oriented, heavily security conscious
administrative community while adapting to the flexibility and openness inherent in an
academic/research-oriented institution. In this section, we describe our experiences with
working in such a computing environment, and the common methodology, or architecture,
that has evolved as we developed some of the more complex applications.

The basic client-server model as described in [1, 2, 3] works very well for simple
applications. However, for complex applications, especially those which attempt to connect
multiple service providers to several users, this model is inadequate. Furthermore, under
this scheme, managing such an application would be difficult. If we had n users and m
services, this would potentially require n • m client-server connections. However, if

122

we simply introduce a single extra layer, then this number reduces to n + m. Extending
applications by adding a new service is simpler in the latter scheme that is, it requires just
one new connection instead of the m connections required in the former scheme. Managing
the application and the services it interfaces to is also simplified, since the new layer could
provide a management API as well as information caching and logging.

By adopting the basic Client/Server model, the Server module has to cater to the
disparate access methods required by the different services. This constitutes the access
method dependent part of the Server. The Server also contains a common application
specific portion that remains independent of the service being accessed. Similarly, the
client module needs to provide various styles of user-interfaces, and it also contains an
application specific (i.e., user-interface independent) part. This motivates us to consider
partitioning the Server as well as the Client, into two components - - one of which deals
with the intricacies of accessing the service or a particular style of user-interface, and the
other more stable component, which is dependent upon the needs of the application.

For example, printers may be available at different locations, and accessing them
from a VMS machine differs considerably than accessing them from a UNIX machine.
Furthermore, even different flavors of UNIX, such as BSD or SYS V, have different print
interfaces, lpr and lp respectively. Similarly, electronic mail poses similarly complexities.
RFC 822 specifies a format for lnternet text messages as [4] does for multimedia style
messages. Such standards can conflict with proprietary mail environments (such as certain
PC and mainframe based systems). Mail access can also vary from being system-based
(VMS) to file/directory-based as are most Unix variants. Thus application design has to
account for such diversity, and provide a homogeneous interface to access these services.
A similar diversity is present in designing a user interface to the application. The style
of the interface can vary widely, often on a platform or in a site-specific manner, and
regardless of graphical capabilities inherent in an architecture, a command-line interface
(CLI) to an application is an important consideration. Whether an interface is graphical or
command-line in nature, this module should be small and lightweight in order to enable
small machines to interact with the application.

For some applications, context has to be maintained between user requests, and some
applications need a common context to be maintained for all users. In the latter case and
especially if this common context is modifiable, maintaining it in the user-interface module
would cause inconsistency. Further more, this context may contain local information, that
is, information that may not be accessible from any one point in the environment. Any
transient Client (e.g., a command line interface) may not be able to maintain this context
even for subsequent user requests. Thus, for certain complex applications, a single layer in
between the two modules (obtained by splitting the Client and Server as described above) is
inadequate (for example, the single layer proves to be a bottleneck, or the information that
needed to be cached may not have been available at any one location in the environment).

There were a number of other issues of concern, such as integrating security, ease of
management and control, flexibility and configurability, and the potential for providing
as well as accessing services on platforms that did not support OSF DCE. All the issues
previously discussed are addressed by the Pilgrim Services Architecture.

Application
C l i e n t

123

Non - RPC

< >
c r e t a r y :~erver

4-->
RPC

Non - RPC

<--->

�9 �9 o
Service I I

interface ~

Aa*uPUoaon p e r v i s o r

Figure 1: Components of the Architecture and their Interaction

3 Pilgrim Services Architecture

The services architecture adopted by Project Pilgrim is general enough to accommodate
most of the applications that seek to provide an interface for existing services to multiple
users. This architecture consists of four components - - Client, Supervisor, Secretary and
Server. It should be noted, that Client and Server components are not to the same as those
referred to using DCE terminology in [1, 2, 3]. Any of these components may be DCE
Servers of Clients in their own right. The Client and Supervisor form the outer layer of the
applications while the Secretary and Server comprise the inner or core layer.

A particular application may choose to collapse one or more of these components as per
their individual requirements. More over, the architecture does not impose any restriction on
the number of instances of any component of an application, leaving those considerations
to the application designer and site administrator. It is envisaged that the most common
configuration of an application will be a single (or small number of) Server; a number of
Supervisors (dependent on the accessibility and the number of services available); multiple
Clients (typically a small number per user); and a number of Secretaries depending upon
various factors (such as, complexity of the application, local site configuration, etc).

3.1 Inner Layer

The inner layer components are designed to be system independent, relatively stable and
robust, and may provide various levels of caching. Additionally, a management AP1 should
be provided by these components.

The Server is the core of the application and represents the primary mechanism in

124

an implemention. If necessary, it should cache any global information pertaining to the
application. The Server should receive requests from one or more Secretaries and dispatch
it to one or more Supervisors, possibly returning the results of the transction back to the
Secretaries. The dispatching needs to be done only if the service needed is not local to
the host running the Server. Additionally, the server interacts with the Supervisor using an
application specific common protocol, thus avoiding host specific dependencies needed to
access the service. The Server should implement all the dynamic aspects of an application,
such as dispatching requests to Supervisors according to their priorities (if any); choosing
the best Supervisor to service every request if more than one is available; and implementing
an application specific queueing mechanism for the requests.

The Secretary acts as the liaison between the Client and the Server. Unlike the Server,
the Secretary may cache local information that may not be accessible to the Server or Client
specific information, which could help provide a context between subsequent Client calls or
in between calls from different Clients. It is meant to take over some of the mundane tasks
such as authenticating a Client thus relieving the Server from these duties. The Secretary
may be responsible for setting up the Client request. It should handle any translation,
if required, to and from the internal application specific common protocol to the format
required by the Client.

Note that no assumption is made regarding the nature of the Clients which interface
to a Secretary; these need not be just users, but could be parts of a different application.
For example, in a mail application, its Server could connect to a local Secretary of a print
application in order to print a mail message on behalf of a mail user. This makes it easier
for the mail application to use the print services in the environment, as it obviates the need
to know the locale of a Server responsible for printing, thereby leaving that job to the
Secretary of the print application.

In summary, dividing the inner layer into a Secretary and a Server is essential for
the following fundamental reason: The task load of several complex applications can be
partitioned into a static and a dynamic part. The static part could vary depending upon
the site. By making the Secretary responsible for the static portion, and the Server for the
dynamic part, a flexible organization of the application can be achieved in the environment.

3.2 Outer Layer

The outer layer should encapsulate all the operating system or environmental dependencies.
The components of this layer should be small and lightweight, hence enhancing the porta-
bility of the application. The communication between the inner and outer layers should use
non-DCE transport.

The Supervisor acts as a liaison between the Server and any external service that the
application interacts with. It is essentially a wrapper around the host specific interface to
the service, hiding the intricacies of accessing this service from the rest of the application.
If required, the Supervisor can translate the information provided by the service to an
application specific common protocol and vice-versa.

The Client serves as the user interface to the application and should use the interface
provided by the Secretary to request a service. Using this interface, a Client may be designed

125

to provide a variety of user interfaces that are as simple as a command line interface or as
complex as a graphical user interface.

4 Case Study: PIPS

PIPS, Pilgrim Interface to Print Systems, is a system designed to uniformly interface with
the various facilities for printing within a distributed environment. The fundamental premise
is not to rewrite the existing print systems, but to provide a homogeneous interface to them.
PIPS therefore fits the profile of applications that could benefit from this architecture.

4.1 PIPS: Pilgrim Interface to Print Systems

The fundamental object processed by PIPS is a "job". By definition a job is a collection
of documents (files) to be printed. For example, a teacher in a school might use a job in
order to print a set of materials needed for a class. This job could consist of documents
such as exams or a syllabi. PIPS allows users to print these materials while maintaining a
permanent list of jobs.

Using PIPS, the user can specify ISO DPA (ISO DP1 O175 Document Printing Appli-
cation (DPA) Draft Service and Protocol Standard) options for the job as a whole or for
any of its individual documents thus hiding the vagaries of the individual print system
commands from the user. The ISO DPA options, as well as their translations to the format
of the print system specified is performed by storing this information in the Cell Directory
Service.

PIPS provides a notion of logical printers. A number of logical printers may map to a
single physical printer. Information of this map is also stored in the Cell Directory Service.
Access control for each of these logical printers is implemented as part of PIPS.

4.2 PIPS Design

PIPS has four components a prescribed in the architecture description in Section 3. We
begin with a description of the outer layer components. The supervisor in PIPS dispatches
pre-formatted print requests to the print system. It queries the print system upon request
from the server about the status of the print system queue, parses the output, and returns it
in a format understood by the server.

The client connects to a secretary to send a job for printing, or to find the status of
submitted jobs, or the status of a logical printer. Currently, using the interface provided by
the secretary, twoclients have been developed - - one is a simple tty client, and the other
is a complex client which uses Motif 4

The server manages jobs submitted for printing. It performs printer or queue specific
translations needed to print the documents in a print job. For example, if the number of
copies for a document to be printed is "2" (specified by ISO DPA option copy-count), and
the logical printer for this document is provided by print system "lpr" of UNIX, then the

4Motif is a trademark of OSE

126

server translates this option to the lpr option "-02". In lpr, "-#" is an option for printing
several copies of a document. The server also keeps track of the progress of the information
and statistics regarding jobs on a queue.

The secretary manages static description of the jobs belonging to a singe user. It also
aids a user in creating new jobs and modifying existing ones. It reads valid job and document
ISO DPA options from the Cell Directory Service and caches this information, which could
be used to validate requests from any client that connects to it.

The secretary authenticates the user submitting the request and sends the user's identity
to the server with this and every request. The server verifies that all requests to it come
from an authenticated secretary. Once it authenticates the secretary, it trusts the user identity
provided to it, and uses that information to implement access control on the logical printers.
Similarly, the supervisor verifies the server before dispatching the request. PIPS uses OSF
DCE Security core component to perform authentication and implement the access control.

Thus, a print request from a client, undergoes some preliminary checking at the secretary
(validation of ISO DPA options), is sent to the server, which expands the job into its
constituent documents and provides printer specific translations for each document. These
documents in turn are sent to the corresponding supervisor which submits them to the
underlying print system. The progress of this job is monitored by the server and the final
status is sent back to the user. Pilgrim Event Notification Service[5] is responsible for
returning this status.

PIPS simplifies the management of the print services within a given environment. For
example, to allow or remove access to a new printer, the administrator adds a logical printer
in the Cell Directory Service. The printers is then mapped to the new printer by storing such
information as the print system to be used, the translations (or pointer to these) from ISO
DPA options to the print system specific options, the supervisor that needs to be contacted
for this printer, etc. Then, by using the server management API, the server is refreshed, so
that any new request to this printer can now be serviced.

5 Case Study: PIMS

PIMS, Pilgrim Interface to Mail Systems, is designed to simplify mail access within a
distributed environment. Each user is no longer described as a "usemame/address" pair
but simply by the user's principal name - this despite an extensive host environment with
decentralized control and policy enforcement. The principal name maps directly to their
primary mailbox which is stored in the Cell Directory Service. For a given user, this
mailbox represents where all PIMS mail is delivered as well as mail from outside the cell.
This mailbox specification can be changed only by the system administrator. Given the
loosly structured nature of the University's LAN hierarchy, which is similar to that of any
compartmentalized corporation or organization, mandating a policy of a single mailbox
per-user is unenforceable. Within the environment, PIMS allows the typical user (such as
the 15,000 undergraduates at UMass) to simply receive all mail at their primary mailbox
and hence literally have a centralized mail repository.

Also associated with each user is a pointer to a set of configuration files which includes

127

the PIMS setup file. This file allows configuration information to be standardized across all
platforms, allows all incorporated mail environments to fully support folders and aliases,
and provides a locale in which users can store mailbox locations in addition to their
primary mailbox. This later feature allows transparent folder/message migration across
platforms and mail systems. Setup information of a more general nature is also stored at
this configuration file.

Given PIMS's generic representation, entire sets of user mailboxes can be migrated
to new hosts/mail-formats without the user's knowledge or being affected; thus backups,
system upgrades, maintenance and fault-tolerance are readily supported. Related to this,
privacy issues exist in the event of an underlying mail system storing folders in "user-
space" as opposed to "system-space," but these are political rather than technical. PIMS
use of certain aspects of the MIME standard saves disk space in that messages to multiple
users (especially broadcast style messages) can be shared through indirect addressing.
Also a policy of user transparent data compression can be instituted. Image and graphical
messages can similarly be retrieved from a set of such libraries or user space such as when
a user's picture is included with each message they may send. This feature will be further
advantageous given the development of special purpose architectures, storage devices and
algorithms for handling such data.

5.1 Rationale

Regardless of their size, many computing environments inevitably support legacy mail sys-
tems. The reasons for maintaining multiple mail protocols and access tools are numerous
- most notably the cost of retraining personnel and user resistance to change. Obviously
ensuring that individual mail systems can intercommunicate with each other and the main-
tenance of user interfaces is itself expensive. Resolving misaddressed mail sent within the
local environment, insuring that a diverse set of mail systems are properly backed-up and
user migration given system modifications can be daunting tasks given the diversity and
backwards compatibility requirements inherent in supporting legacy mail systems. With
messages potentially arriving for a single user at multiple locales and under separate pro-
tocols, a variety of ad hoc schemes have been introduced in order to provide some sense of
system coherency. Users seeking to maintain access to their preferred mail reader often use
"forwarding" or simply "login" to each host where their mail resides. Forwarding requires
constant maintenance and is susceptible to cyclic forwarding, while users who maintain
multiple mailboxes face both the possible task of mastering multiple interfaces as well as
the reality that crucial messages can be left unread in infrequently accessed mailboxes.

Additionally, mail setup information must be maintained independently on each plat-
form and must be changed with each system upgrade. A policy mandating a single-
user/single-mailbox is often too restrictive considering it is difficult to compartmentalize
certain anomalous classes of users and that users have traditionally utilized their mailboxes
as folders or as temporary file storage depending on such factors as the quota allotted them
on a given system. It is recognized that certain environments can maintain site-wide aliases,
but this assumes that a single mailbox is enforceable and that the entire environment is
capable of accessing alias tables.

128

Pilgrim Interface to Mail Systems (PIMS) addresses and offers solutions to the pre-
viously mentioned shortcomings inherent in many current computing environments' mail
systems. Additionally, its use is not precluded within environments either supporting only
a single mail protocol/accessing-tool or where users are associated with only a single
mailbox. Using the Distributed Computing Environment (DCE), PIMS provides a set of
primitives designed to enable system independent access to numerous mail systems. It is
neither another new mail protocol nor yet-another-graphical-interface to mail, rather PIMS
is a generic representation that masks mail locale and format from the user. Within this
environment, each mailbox appears as if it resides on the host the user is accessing without
requiting the user to log into remote hosts. Similarly the folders associated with each mail-
box are also visible and appear as if they reside on the present host. Mail setup information
is also represented by this general format and hence regardless of the underlying mail
environment this information is consistent and requires no modification in the event of
system modification or upgrading.

From the system managerial level, PIMS provides a logical methodology and frame-
work for organizing the potentially thousands of mail users within a cell and allows for
enforcement and "persuasive" migration toward a truly centralized single mailbox. A
single-mailbox/single-user environment is preferable for many reasons: it more readily
facilitates fault-tolerance through replication; simplifies many mail addressing formats and
hence reduces misaddressed mail; decreases the chance of stale messages; makes indirectly
referenced message bodies and shared message bodies simpler to implement; and can aid
in backing up procedures and enforcing quotas for various mail systems.

The benefit of PIMS's independent representation is that only a single translator is
required in order to incorporate a new mail format into the environment. This is because
once a message has been converted to its PIMS representation, a translator for any mail
format can be used to convert it into that representation. PIMS performs the lowest level
mail manipulations using the local mail environment and hence can rely on lightweight
translators making conversion all the simpler. Once in the PIMS general form, any mail
system can communicate with any other supported by the PIMS environment by simply
converting between genetic and native formats. This approach is superior to translating
directly between each format because for accessing N mail systems only N translators are
required compared with N ~. Furthermore, this generic representation is designed to handle
non-text (multimedia) mail messages sent under the MIME protocol[4]. Facilitating this is
that message bodies are not viewed as a single entity but are composed of multiple parts and
text need not be necessarily 7-bit American ASCII, but can be any width representation.
The generality inherent in PIMS insures that in the future, it will be capable of handling
alternate multimedia standards once they are established.

PIMS is further enhanced in that the Application Programmer Interface (API) provided
for communicating with mail system front- ends is asynchronous. This non-blocking nature
greatly enhances any mail client's ability to optimize it's performance through multi-
threading. In order to achieve coherency certain objects (mailboxes, folders and messages)
are locked and restrictions placed on write, rename and delete operations. Despite these
requisite constraints, a significant amount of low-level parallelism can be exploited.

129

5.2 The PIMS Architecture

PIMS unifies mail within its diverse environment through a three level architecture: mail

client, communications server and mail server. It should be recognized that mail differs
from printing in that, except for sending an individual message, accessing electronic mail
typically involves a multi-command session and that in order to unify scattered mailboxes,
potentially three RPC layers are required. In order to reduce the number of levels requiring
communications across the network the client and secretary portion have been combined
into a single module, the mail client. The client portion accesses the secretary (acting as
a local secretary) through the PIMS provided API. The communications server acts as a
global secretary for multiple clients. It accesses mail servers which are composed of an
applications server and an applications supervisor. On a lower level, each of the three
fundamental PIMS components acts as both a DCE client and server. This asynchronous
architecture allows data requests to be spawned by the mail client and hence allows
continued operation rather than the synchronous waiting for data or status to be return.
This organization is specific enough to suit this particular application's needs and general
enough to be applied to other client-server based applications.

A "typical" PIMS session sees a user access their preferred mailer/mail-reader which
has been modified to interface with the PIMS API, hence providing seamless access to
a distributed mail environment (see Figure 2). This action activates a PIMS mail client

which accesses the Cell Directory Service (1). This globally accessible database provides
a profile on the user and a binding handle to a communications server (2). The mail client

then initiates a session with the communications server by passing it a list of auxiliary

mailboxes a user seeks access to (3). This server is responsible for determining the validity
of a user and determining their primary mailbox by accessing the Cell Directory Service.
The Cell Directory Service also provides binding handles so that the communications server

can access the mailbox server associated with each mailbox a user seeks access to. Once
this information has been determined, the communications server requests information
pertaining to each mailbox (4). Each mailbox server contains a set of back-end interfaces
which translate between PIMS's generic representation and the local mail format (5) (e.g.
Unix, X.400, VMS). These back-end interfaces provide the requested information which is
passed back to the communications server (6) followed by to the mail client that initiated
the request (7).

5.3 F u n d a m e n t a l C o m p o n e n t s

5.3.1 Mail Client:

A typical mail client's access to the Cell Directory Service allows it to interpret multimedia
messages. Host profiles contain each host's abilities in system independent form. Using this
information each multimedia message can be accessed based on the constraints placed on
it due to the viewing/audio environment it is accessed from. In support of this information
source, a set of interfaces exist between the mail client and the local host, which permits
generic queries as to each host's capabilities to be made, this augments the information
stored in the Cell Directory Service.

130

nix (BSD)

~ 7 _ _ ~ ~ 4 0 0

Figure 2: PIMS Overview

Key

APi Translator

] Architecture
Component

RPC

The standard mail client is multi-threaded, with a client portion making command

requests to the communications server. Such commands are detached from the main thread
through a threadpool (a virtually infinite pool of threads). Each mail client also contains
a server portion "listening" for messages sent by the communications server (e.g. client
requested data, new mail or error/warning status).

5.3.2 Communicat ions Server:

Unlike potential mail clients, communications servers are required to be deployed on
powerful hosts with a full access to each DCE component. This allows such servers to access
any required mail serverand act as a caching service and Cell Directory Service liaison for
mail clients with limited resources. Information retrieved from the Cell Directory Service
is cached primarily because such entries as a user's primary mailbox are for all intensive
purposes static at the communications server level. Similarly binding handles associated
with mailbox servers are cached. In the event of such a server's graceful termination, the
communications server will be informed directly and hence only the initial access to the
Cell Directory Service is required for each mail server.

Although the entire system is designed to perform asynchronously, it is recognized
that user's can potentially be blocked waiting for data/status to be returned. In order to
circumvent this, the sending of mail and informing the user of the arrival of new mail are
designated as low priority tasks while processing requested information and commands are
designated as higher priority task.

5.3.3 Mail Server:

Mail servers are divided into two categories: send and access. A send server's primary
role is to handle the sending of mail and hence contains a local cache of user addresses
resolved. Their back-end interface interfaces to the local mail system (e.g. Unix mail, VMS
mail, X.400) in order to "send" mail within the cell while other interfaces provide access

131

to mail gateways or routines that access such gateways (e.g. SMTP, Unix sendmail). This
centralized sending locale allows quotas and restrictions on sending mail to be readily
enforced and facilitates such features as mail messages with indirectly accessed bodies.

The access flavor of this server manipulates user mail data (read, delete, change read
status and general folder access). Again this centralized controller aides in enforcing quota
and mail policy. User data is cached in order to determine a user's specific mail location
and to maintain a list of active users whose mail is currently being monitored.

It is recognized that the mail access through two levels of server (e.g. two levels of
RPC interconnection) can present a potential bottleneck, especially given the transfer of
large messages. Similarly, copying messages from mail server to mail server would be an
extremely slow process if a postbox server's interaction/control were mandatory. Direct
communications between mail servers, and mail servers and clients is permitted and fa-
cilitated by passing the appropriate binding handles with each operation performed. This
allows the postbox server level to be bypassed and thus streamlines network communica-
tions.

5.4 Client Support and Server Interaction

As stated previously, a mail client host can vary from laptop to super-computer. Given
the various levels of power associated with each potential client host, a spectrum of client
performance must be supported. The optimal client machine (a workstation or larger host)
will have complete DCE access, have the ability to store a full caching of a user's mail
environment locally (either in memory or on disk) and possess a graphics/audio capable
terminal. Restricting mail to only such hosts is an unrealistic limitation; therefore each
client contains a snapshot of the user's mail and the remaining messages operated on are
stored over the network. Local caching of messages is handled at a level behind the PIMS
provided API as are cache-misses which are resolved over the network.

Clients are configurable based on each host's power, current load and the accessibility
of each DCE component. The most restrictive form of client is the batch-client. Such a
client might be a remote PC seeking to access their mail over a limited baud rate modem
and with none of the DCE components available. Such a client would be required to
login to a DCE accessible host and establish security credentials. Messages would then
be checked-out of the PIMS environment in order to permit for remote operation (e.g.
modification external to the formal PIMS environment). This would allow expensive/slow
communication links to be disconnected while actual modifications are made to the mail
messages that are checked out. Locks would insure that certain messages could not be
deleted/moved while checked-out. At the same time mail retrieval occurs, mail messages
generated on PC could be sent by the remote host with DCE access. The batch-client
presents numerous security holes and would therefore be permissible for only certain low
security mail-groups and based on a user option set during a previously held secure PIMS
session.

It is also permissible to have a mail client-lite which would be an extremely limited
host capable of little or no caching and with no access to facilities such as the Cell Directory
Service. In this event the communications server, a powerful host, would maintain a user's

132

data cache and serve as liaison for accessing user information from the Cell Service.
A myriad of techniques could be used to provide such a mail client with access to a
communications server. These include communicating over a well known endpoint, reading
a string binding from a shared file or regression into system dependent features such as
sockets. The system power model with respect to the mail client is similar to the memory
hierarchy found in hardware environments (cache, primary memory and disk). Local RAM
storage, local storage to disk, communicat ions server store and mail server store represent
the PIMS hierarchy.

Allowing each communications server to act as both a pure communications channel
and a client mail cache makes gauging the number of such servers required more difficult
and adds undue overhead to servers that maintain no client storage. In recognition of this, a
set of server decision rules are maintained in the namespace. Using the criteria established,
certain classes of clients will be restricted to using certain communications servers. By
the same token, this set of rules will be used in order to allow clients to interact with
logical servers (servers on the local host or servers the same local host as a requested mail

server). Accessing the Cell Directory Service in order to retrieve this choice profile will
be a significantly more expensive operation than simply retrieving a binding handle; hence
mail clients will not have access to such information. Clients will automatically contact
the first detected communications server. Using the server choice profile and accessing
its own load status, the contacted server will chose to either accept or reject the client. In
the event of a rejection, this communicat ions server assumes the responsibility of locating
other such servers in order to find an accepting agent capable of handling the inquiring
client. Again, maintaining a list of communicat ions server binding handles is expensive
with respect to Cell Directory Service access, so for obvious reason this is an operation
limited to communications servers. This feature will also aid in the migration of servers
given a server being brought down gracefully or in the event servers are added due to
the present pool becoming too heavily loaded. This configuration in general is extremely
scalable and given an enforced hierarchy of servers can readily be deployed in support of
thousands of hosts.

6 DCE Design and Integration Issues

Applications development within Project Pilgrim is aided by a robust suite of DCE based
utilities. Conventional utilities are frequently nonreentrant in nature and hence are not
suitable for use in a multi-threaded environment. Lex, Yacc and various regular expres-
sion packages are examples of this present limitation. Furthermore, DCE specific utilities
expedite development as does Project Pilgrim's "build" environment which makes archi-
tecture specifications transparent to applications developers. Project Pilgrim has developed
various common data structures (queues and trees), a regular expression interpreter, gener-
alized RPC initialization, generalized security verification and a threadpool package which
provides what appears to the program to be virtual infinite pool of threads.

As previously stated, the PIMS environment is asynchronous in nature; this perfor-
mance feature being implemented utilizing the aforementioned utilities. Queues are used

133

within all three components in order to transmit commands, data and status information.
Each queue is allocated a thread and entries being dequeued are given a thread from
the threadpool. Mail clients can either assign a function to be executed once a command
has been processed and hence exploit the environment's asynchronous nature. Addition-
ally, a mail client can walt (block) on the result of a command. This synchronous behavior
facilitates PIMS integration with legacy mail readers which inherently do not exploit multi-
threaded capabilities. In a similar manner PIPS uses queues so as to provide non-blocking
RPC. Jobs are submitted and initially error checked before being enqueued. As mentioned
previously; status is returned using PEN.

7 Conclusion

In this paper, we have outlined an architecture which provides a framework for designing
systems which seek to integrate services in a distributed environment in a uniform way.
We have considered two systems, PIPS and PIMS, in detail and discussed how their design
fits in this framework. We believe that our architecture provides adequate flexibility and
control needed in building such distributed systems.

Any operating system dependencies are localized in the Supervisor and the Client. Both
of these are small lightweight processes which should be easy to implement. By isolating
host specific dependencies in the outer layer, adding a new service or user interface does
not change the core components. The links between the Supervisor and Client modules and
the rest of the application may be non-DCE, thereby allowing the application to access
non-DCE services and allowing a non-DCE client to use the application 5. Overall, new
user interfaces are easier to make available and new service providers are easy to add
since only a new Supervisor has to be added. The rest of the application is not impacted 6.
Therefore, porting to a new operating system maybe done incrementally. Porting a Client
and/or a Supervisor is all that would be required.

Both the Secretary and Server cache information, thus, saving on accesses to the
Cell Directory Service. This is importanted because our experience at Project Pilgrim
has demonstrated that accessing this DCE component could prove to be a bottleneck in
large environments. Since the Secretary is designed to perform tasks such as validating
the end user and maintaining static information related to the application, it relieves the
Server which deals solely with the dynamic aspects of the application. Apart from such an
advantage this also avoids the possibility of the Server becoming a bottleneck during the
operation of the application.

The Secretary can spawn threads to handle requests from different users. Similarly,
the Server can handle requests from different Secretaries. By allowing several Servers and
Secretaries in the environment, we can distribute the task load of users, thus achieving a
high degree of parallelism.

5Security issues, such as, is the end user a valid user will also need to be addressed, if one assumes a n o n - D C E
communicat ion model.

6If the Server and Supervisor were not separated, adding new interfaces would impact the server. Since the

server would change, each new interface would mean a new version o f the server, and different versions maybe
running on different machines on the cell.

134

Management of the application is easier because of the hooks provided in the secretary
and server modules. Since most of the application's critical operations are performed in
these modules, a high degree of control is obtained. By formally separating the modules,
and by making each module configurable, a high degree of flexibility is achieved in the
organization of the application. By not restricting the instances of any of the components,
the application may be reconfigured to meet the changing needs of the environment.

In conclusion, the architecture discussed in this paper provides a methodology for
designing both a complicated distributed print and mail application. Both applications
are operational and are being used in our environment. We believe that our architecture
simplifies the process of designing distributed applications which aim at providing a
consistent access to the services in a heterogeneous environment for the end users. Also,
management of these services, as well as the application itself, is easier for the administrator.
At Project Pilgrim, other systems are being designed based on this architecture, such as
Pilgrim User Information Services (UslS).[6].

References

[1] Open Software Foundation. Introduction to DCE, Revision 1.0. Open Software Foun-
dation, 1991.

[2] Open Software Foundation. Administration Reference. Open Software Foundation,
1991.

[3] Open Software Foundation. Application Development Reference. Open Software
Foundation, 1991.

[4] N. Borenstein and N Freed. MIME (Multipurpose lnternet Mail Extensious): Mech-
anisms for Specifying and Describing the Format of Internet Message Bodies, June
1992. RFC 13XX.

[5] Nehru Bhandaru and Kathleen DiBella. Pilgrim event notifier (version 1.0). Under
Preparation, 1992.

[6] Rajeev Koodli. Usis: Pilgrim user information service - - design document (version
1.0.2). Under Preparation, 1992.

Converting Monolithic Programs for DCE Client-Server
Computing Given Incomplete Cutset Information

Yi-Hsiu Wei, Shepherd S.B. Shi and David D.H. Lin

Distributed Systems Services

Personal Software Products Division

IBM Austin 11400 Burnet Road Austin,

Texas 78750, USA
{ywei, sshi, dlin}@ausvml.vnet.ibm..com

Abstract. Migrating monolithic sequential programs to distributed client-server
environments enables the programs to access rich networked computing
resources, distribute data to proper locations, and obtain other capabilities
offered by distributed systems. However the migration task is often enormous.
This paper presents a semi-automatic process for converting existing monolithic
sequential programs to DCE applications. An incomplete-grouping based pro-
gram partitioning algorithm is used to determine a complete partitioning strategy
and to obtain a complete cutset for the program graph from a given incomplete
minimal grouping information. The complete cutset determines the client-server
relations among program components and defines the RPC interfaces for their
interactions.

1.0 Introduction

Migrating monolithic sequential programs to the OSF's Distributed Computing Envi-
ronment (DCE) [6,9] for client-server processing allows the programs to access rich
network resources, distribute data to proper locations, and obtain other capabilities that
distributed systems may offer (e.g. locating services dynamically, secured access).

However the migration task is often enormous. The efforts required may include:

�9 Reorganizing user programs to fit in client-server model.

�9 Partitioning user programs into subgroups of code for running on different
�9 systems.

�9 Defining remote procedure calls (RPC) interfaces for client-server interac-
tions between the groups.

�9 Wrapping each group into a process which may behave as a client, a server or
both in the network of program groups.

136

This work should be done automatically as much as possible to reduce the develop-
ment cost and increase the reliability of the program conversion.

This paper presents a semi-automatic process for converting existing monolithic
sequential programs to DCE applications. An incomplete-group based program parti-
tioning algorithm is used to determine a complete cutset for the program graph from a
given incomplete grouping information. The complete cutset defines client-server rela-
tions and forms RPC interfaces between the groups.

Given a sequential program, one needs to first analyze the program and mark a few key
procedures in the program which are more significant than others: Some may carry out
intensive computing task. Others may perform intensive data manipulation, or provide
essential graphical user interface functions, etc. A partition algorithm will take this
minimal information to derive a complete cutset for partitioning the program. Accord-
ing to the complete cutset, the client-server relations among the pieces of the parti-
tioned program, and the RPC interfaces can then be generated.

In section 2, we describe the requirements of program partitioning for client-server
computing and rationalize the need for key partition information from program inves-
tigator. A formal context is set up for describing the program conversion. The overall
conversion process is described in section 3. The partition algorithm used in the con-
version process is presented in section 4. In section 5, an example illustrates the con-
version process and shows how the algorithm works.

2.0 Program Partitioning for Client-Server Computing

The general problem of program partitioning has been addressed in many previous
works [7,8,11,4,2]. Most of them focused on partitioning a numerical intensive pro-
gram into parallel tasks for execution on a multiprocessor system [1,3]. However,
these previous researches differ from our work presented in many ways. The program
partitioning algorithms on multiprocessor systems often target their goals at optimiz-
ing metrics such as job completion time, latency, load balancing, or system through-
put,. A program partitioner usually have no prior information that demands certain cut-
points to use. It has to determine on its own an (sub)optimal complete cutset for the
program graph using heuristic approaches to achieve the defined partition goals.

On the other hand, partitioning software for client-server computing may intend to 1)
facilitate client access to software tools, 2) harness the power of networked computers,
and/or 3) re-arrange resources (e.g. data or databases) to appropriate machines. This
observation leads to a quite different view as to how the program conversion should be
proceeded. Rather than optimizing those metrics for numerical computing and relying
on a fully automated tool, a small set of high level information is used to guide a semi-
automated conversion process.

137

The useful information may include but not limit to:

1. The procedure calls can be made remote.

2. The procedures which are better to run on high speed processors due to the
computing intensive nature.

3. The procedures which are more appropriate to run on special data servers for
intensive large data set manipulation.

4. The procedures which provide advanced user interfaces should run closer to
users, for example on desktop systems.

We define a formal model for the program partitioning. In its context, we describe: 1)
how a monolithic program is interpreted as a client-server application with a given
complete cutset, 2) what information is needed to guide the program partitioning when
a complete cutset is not available, and 3) how the partition algorithm derives a com-
plete cutset from this information.

A procedural program can be modelled as a directed graph with global state. Each
node of the graph is a procedure, and each arc is an ordinary local procedure call. The
graph is cyclic when there are self-recursive or mutual-recursive calls. A node may
have access to the global state and/or may privately hold a local state.

A complete cutset is a set of arcs in the graph for which when all arcs in the set are
removed from the graph, the graph is broken up to a set of disjoint subgraphs. Each
subgraph contains a group of nodes and arcs.

Given a complete cutset, a monolithic sequential program can be converted into a cli-
ent-server application by having each subgroup wrapped into a single execution unit
(process) which can be independently allocated resources and scheduled. For example,
two processes may be running on the same or different machines.

The arc within a group represents a local procedure call. Whereas the arc at each cut
point between two groups represents a remote procedure call. An arc going out of a
group is a remote service requested from the group. An arc coming into a group indi-
cates a remote service provided by the group. When a group has only outgoing arcs,
the process for the group is a pure client. When a group has only incoming arcs, the
process of the group is a pure server. Otherwise when a group has mixed incoming and
outgoing arcs, the process is both a client and a server.

An incomplete cutset is a set of arcs for which when all the arcs are removed from the
graph there are remaining connections between groups. An incomplete cutset may be
given as a result of the desire to decouple particular caller/callee pairs and to make
them run in different address spaces, possibly on different systems.

138

Since an incomplete cutset is a proper subset of a number of complete cutsets, there are
many different grouping strategies available for completing the program partitioning.
Thus the information defines neither the number of groups nor allocation of certain
nodes to certain groups. A default option is to group each involved callee or caller
node in a separate group. Otherwise more information is needed for the partitioner to
come up with a more intelligent and useful grouping decision.

Therefore, a program investigator may also want to determine, in addition to which
arcs to break, how nodes under consideration are grouped. For example, if a program
has 10 procedures, among them the investigator is more concerned of four procedures:

1. procedure 1 has to run on different machine from procedure 2 which is the
former call,

2. procedure 3 has to run closely with procedure 1, and

3. procedure 4 has to run closely with procedure 2

He should provide an incomplete grouping { { 1, 3 } { 2, 4 } } and have the partitioner
to start from this point and find out a complete grouping and cutset.

3.0 Program Conversion Process

As shown in Figure 1, the conversion process consists of a number of steps:

1. A sequential program is observed by an investigator. The procedures of con-
cern are marked. The marked procedures are grouped.

2. A program graph generator analyzes the program source and produces a call
graph for the program. This graph is augmented with the access relations of
each procedure node to the global states.

3. The graph partitioner takes the augmented call graph and the minimal group-
ing strategy suggested by the investigator to re-arrange the elements of graph.
It completes the grouping task and derives a complete cutset from the graph.

4. Given the complete cutset, client-server relations of the program subgroups
are established. The RPC Interfaces (RPC idl files) are identified and built by
an interface generator.

139

II

Sequential Program

Program Graph

Generator
Investigator

Graph - , - , , , ,~ ,~ / , Grouping

Graph

Partitioner

~ Complete Grouping
and Cutset

Client-Serve~
Interface
Generator

Interface

Generator IDL Compiler

Stub and Header Fil~l~
T

Driver Routines
Client-Server
Program

Figure 1. Converting Sequential Programs to DCE applications

140

.

.

The driver routine for each group is generated by a client-server driver gener-
ator. The driver routine is the wrapper for the program group which contains
operations for setting up DCE client/server operating environment for client-
server processing.

The RPC stubs and header files are generated by IDL compiler.

Together with the original program, the driver routines, the RPC stubs and header files
form the converted DCE client-server application of the program.

4.0 Program Partitioning Algorithm

In this section, we presents the algorithm used by the program partitioner. This algo-
rithm completes the grouping task from the given incomplete information about the
intended grouping of the procedures of concern. This algorithm determines how the
unmarked procedures are merged into the groups. Given a sequential program, the call
graph contains a set of procedure nodes and a set of global data units.

Let
M = set of global data units
P = list of the unmarked nodes plus the global data units

Repeat
dequeue an element from P
if it has no connection with any group

enqueue the element back to P
else if it is a stateless procedure node or
a system/language/common-environment runtime function
copy the node to every group which has procedure call connections to it, and move

the associated connections into the group
else if it is a global data unit

move the unit to the group which has more access connections
to it than other groups, and move the associated connections
to the group

else if it is a procedure node
(with local state and/or access to global states)

if it has memory connections to global states
move the node to the group which has more memory
connections to this node than other groups

else
move the node to the group which has more procedure
call connections to this node than other groups

Until P is empty

141

Repeat
get an element from M
if the global data unit has cross-group access connection(s)

construct remote access procedure(s) in the group where the
data unit resides, connect these access procedures to the
unit, convert the cross group access connections to remote
procedure calls to the access procedures.

Until M is empty

We adopt a centralized shared memory strategy[5,10] by keeping one instance of each
global data item in one group. Different global data items may be assigned to different
groups though. These data items are centrally managed by the associated reading and
writing functions in the same group. The functions can be called from other groups via
RPC. The 'read' operations on the global data item, which is assigned to different
group than those where the operations are, will be replaced by RPC calls to the data
reading functions. The data reading functions return the desired data. Similarly, global
variable assignment statements are replaced by RPCs to the data writing functions.
The data reading and writing functions are generated and exported from the interface
of the group.

5.0 Example

This example illustrates how the algorithm works. Given a sequential program, the
graphical representation of the program is shown in Figure 2. There are 12 procedure
nodes, nl ... n12, and three global data units, ml ... m3. The solid arrows are procedure
calls. The dashed lines are global memory access connections, n5 is a stateless func-
tion which does not access to any global state, n2 holds a local state. {nl, n i l , n12},
{nl, n3, n4} and {n2, n3, n4} have mutual recursive call relations.

142

I,
n i l ~ I~ // n2 - ~ _ . - - ~ 3 " /

.~2 ~ - " /'",,,,, 9 " ~ " :757"1 / .../ .X:: ' '

n5 I ' ' " I :[::::::: n9

n7 n8

Figure 2. A Monolithic Sequential Program

An investigator examines the program. Among others, he is more concerned of four
procedures. Procedure nl processes large amount of data in m3. This work could be
assigned to and run on a data server. Since both procedures n3 and n4 perform comput-
ing intensive task and closely interact to each other, the investigator decided to have
them wrapped together for possibly being assigned to and run on a high-speed proces-
sor. He also recognizes that procedure n6 provides major graphical user interface func-
tions. It has to be in a separate process to be run on a desktop or workstation with a
high-function terminal. Therefore, this investigator decide to provide a simple guide-
line for breaking up the program: four procedure nodes must be separated in three
groups: { { nl }, { n3, n4 }, { n6 } }.

With this incomplete partition information (Figure 3), we apply the partition algorithm
described earlier to break up the program into a completely defined set of groups
which contains all program components. The following reveals the algorithm applied
to this program:

1. Common interface calls: calls to language runtime functions or operating sys-
tem services, cl ... c4, are made locally in each group. This assumes that
every system supports the common application interfaces used by the pro-
gram. (e.g. printf in C)

143

c, ha~

c4 --~ ~ c 3

n7 n8

Figure 3. Procedure node marking and grouping

.

.

.

.

6.

.

Stateless procedures: procedure n5 does not access to global state neither hold
a local state. The node is replicated in both G1 and G3.

Procedures with state: procedure n2 has two procedure call connections with
G2 and has one with G1. It is merged into G2. The call connection with G1
becomes a RPC.

Global memory: ml has two access connections with G2 and one with G3. It
is merged to G2. A remote procedure n13 is constructed to provide G3 remote
access to ml.

m2 and m3 each has one access connection with G1. Both are moved into G 1.

n9 has one call connection with G2 and one memory access connection with
G1. It is moved to G1 to avoid the need for construction of a remote proce-
dure for memory access.

Procedures connecting to only one group: Since n7, n8, nl0, n l l , n12 have no
access to the global states and attach to only one group, they are included in
the group.

As a result, the program graph is completely partitioned into groups G1, G2, and G3 as
shown in Figure 4. A complete cutset is therefore found. GI , G2, and G3 are wrapped
into three separate processes. G1 and G2 processes behave both as client and server.
G3 is a pure client process. The cut points, the arcs, between G 1, G2, and G3 are
remote procedure calls. The arcs within the same groups remain ordinary local proce-

144

dure calls. Two interfaces are identified: one for the services exported by G2 contain-
ing remote procedures n2, n3, n4, and n13, another for the services exported by
process G1 containing remote procedures nl and n9. The RPC driver programs and
stubs files are then generated for G1, G2, and G3.

cl
n11~ �9 ~ ~

nl ~ ~ ' ~ T . . ' " [r n 3 1 (c2 ' ~

~ - - - - - - ~ 1 ~ ~ n2~4~

c4 / n 5 ..n9 .~1.. ~ / ~/n3.. . . . ~ 1

........... /

/~n5 ~._.__.__ n6 ~ -'~

c4"/~n8 G3

n7

Figure 4. Complete grouping

6.0 Concluding Remarks

In this paper, we have described a program conversion process for migrating a mono-
lithic sequential program to the DCE environment for client-server processing. We
have differentiated the requirements of program partitioning for client-server comput-
ing from those for multiprocessing and rationalize the need of critical partition hints to
be supplied by an program investigator. The mapping from monolithic sequential pro-
grams to client-server applications is defined via augmented program call graph. A

145

partitioning algorithm is presented which derives a complete cutset for a graph from
the hints. An example is given to illustrate the conversion processes and shows how
the algorithm works.

We are beginning to prototype the system. In particular the focus is on the graph parti-
tioner. There are efforts in progress on the design and implementation of the interface
generator and the driver generator.

In fact, the described conversion process does not include the steps for parallelizing a
sequential program. It only distributes a monolithic program. In other words, the exe-
cution of the resulting client-server program remains sequential. Since the program has
no concurrency, there is no need for access serialization to global states and event syn-
chronization for calls to procedures with local state.

In spite of having more issues involved, parallelizing program is still one of the major
goals to distribute the program. Jade [4] describes a methodology for parallelizing
sequential programs while maintaining the execution semantics. In the next step, we
will investigate the way of adding concurrency to the program while converting a
monolithic sequential program to a client-server application. We will also exploit the
possibility of adding constraint-based information, in addition to the minimal group-
ing, for guiding the partitioning process. For example, if a particular group have to be
kept as small as possible, the algorithm will move the unmarked nodes to other groups
if possible. More heuristics will be investigated to optimize other metrics such as net-
work traffic and the number of RPC calls.

References:

1. M.L. Campbell. Static allocation for a dataflow multiprocessor. In Proceed-
ings of the International Conference on Parallel Processing, Pages 511-517,
Aug. 1985

2. Wilson C. Hsieh. Extracting parallelism from sequential programs. Technical
report, MIT, May 1988

3. P. Hudak and B. Goldberg. Serial combinators: Optimal grains of parallelism.
In Proceedings of the conference on Functional Programming Languages and
Computer Architecture, Pages 627-637, Jul. 1985

4. M.S. Lam and M.C. Rinard. Coarse-grain parallel programming in Jade. In
Proceedings of the 3rd ACM SIGPLAN Symposium on Principles and Prac-
tice of Programming, 1991

5. B. Nitzberg and C. Lo, Distributed Shared Memory: A survey of issues and
algorithms. IEEE Computer, Aug. 1991

.

.

.

.

1 0 .

1 1 .

146

DCE Version 1.0 DCE Application Development Guide. Open Software
Foundation, June 1992

V. Sarkar. Automatic partitioning of a program dependence graph into paral-
lel tasks. In IBM Journal of Research and Development, pages 779-804, Nov.
1991

V. Sarkar and J. Hennessy. Partitioning parallel programs for macro-dataflow.
IN ACM Conference on Lisp and Functional Programming, pages 201-211,
Aug. 1986

J. Shirley. Guide to Writing DCE Applications. O'ReiUy and Associates, Inc.,
June 1992

M. Stumm and S. Zhou. Algorithms implementing distributed shared mem-
ory. IEEE COmputer, May 1990

M. Weiser. Program slicing. IEEE Trans. on Software Engineering, July 1984

Managing the Transition to OSF DCE Security
Sanjay Tikku

Stephen Vinter
Siemens Nixdorf Information Systems

Burlington, MA 01803
fikk-u@sni-usa.com, vinter@sni-usa.com

Stephen Berlrand
Ibis Communications Inc.

Lynnfield, MA 01940
ibis@world.std.com

Abstract. OSF DCE security and UNIX system security each support indepen-
dent representations of user identities. We infer from OSF's implementation of
DCE security that either the two security environments are to be kept separate, or
that UNIX system security is to be strictly aligned with DCE Security. Neither so-
lution is usually practical for established UNIX system installations that are only
beginning to use DCE technology. This paper describes a set of tools that enables
the compatible and secure coexistence of the two security environments. These
tools are provided with SNI's DCE product for our System V Release 4 based
SINIX operating system and UNIX Systems Laboratories' (USL) DCE product.
They are intended to be used as transition aids until migration to DCE is complete.
They introduce no compromises to either security system, and they accommodate
familiar and well-established UNIX system security administration practices and
policies.

1 T h e Secur i ty A d m i n i s t r a t i o n P r o b l e m
DCE introduces a new security administration model which involves the centralized
management of users and groups that have consistent, global meanings throughout
the cell [1, 2, 3]. This administration model is unlike many typical UNIX system
security administration models, which involve per-host administration and, perhaps
also, the host-specific identities of users and groups [5, 6].

These different administrative models follow directly from the differences between the
DCE security environment, with its replicated but logically centralized database of ac-
count information (the DCE registry); and the UNIX system security environment, with
its multiple and dispersed/etc/passwd,/ete/shadow and/etc/group files on the UNIX
hosts (referred to as UNIX security files in this paper). (Note: the registry represents users
and groups as UUIDs (Universal Unique Identifiers), but also maintains a mapping of
UUIDs to UNIX UIDs and GIDs for UNIX compatibility.)

There are difficulties in adopting DCE security administration when DCE is introduced to
sites where the UNIX security files on each host are not globally administered. In this
case, users and groups may be defined inconsistently across hosts, and administrators will
be concemed about the security ramifications of a global administration model,

148

The OSF does not define the administrative practices and policies for DCE integration
with established UNIX security administration. However, the implementation of DCE se-
curity suggests two ways to handle the disparities between the two security environments:

�9 Maintain completely separate DCE and UNIX system securhy environments. The
dce_login command establishes separate DCE privileges for each user who has al-
ready acquired UNIX system privileges via/bin/login (Figure 1).

�9 Thoroughly integrate the two security environments. The tools passwd_import
and passwd export unify and synchronize local UNIX security files on all hosts
with the registry; this approach permits use of a single, integrated login mecha-
nism (Figure 2).

Each of these choices, however, presents its own administrative challenges (if not prob-
lems) to the administrator, and sometimes to the user as well.

1.1 Maintaining Separate DCE and UNIX System Security Environments
The problems inherent in maintaining separate DCE and UNIX security environments
affect both users and administrators. The notion of a user with multiple identities is
completely contrary to the intent of DCE security, but perhaps more important, hav-
ing multiple c o n c u r r e n t identities could be very confusing to the users themselves,
even though they may be at ease with having different variations of their identities at
different hosts. Furthermore, this scheme introduces new opportunities for unintended
violations of security policy: users might inadvertently commit such violations when
they are unaware of which set of local credentials, from DCE registry or from UNIX
security files, is in effect at any given time.

I /etc/passwd Registry

User login

User UID User UUID
UNIX

Privileges
Group UIDs Group UUIDs

Enables access to Enables access to
SINIX entities DCE entities

Fig. 1. Separate Logins for DCE and UNIX

DCE
Credentials

149

The administrator's burden is also increased, since every DCE user represents an addi-
tional user to manage. Last, this approach makes DCE appear to be a poorly integrated
add-on, which will delay its acceptance.

Because of the serious problems associated with this approach, we could not recommend
this strategy for accommodaling DCE users in a UNIX system environment.

1.2 Synchronizing DCE and UNIX System Accounts
Ideally, all UNIX system users at a DCE site would be DCE users (unified security
administration under DCE is, in fact, our ultimate goal). However, this means that, as
administrators import UNIX system account and group information from individual
hosts to the registry (using the OSF DCE tool, passwd_import) , they must resolve all
inconsistencies related to the identities of UNIX system users and groups across all
hosts.

User login

UNIX
Privileges

] Registry]

User UID

Group UIDs

User UUID

Group UUIDs
DCE

Credentials

Enables access to Enables access to
SINIX entities DCE entities

Fig. 2. Integrated DCE login from OSF

The types of inconsistencies that they must resolve are as follows:

�9 The system accounts (such as bin and sys) on a host may have different UIDs than
those in the registry (this is bound to happen in a cell consisting of hosts running
different variants of UNIX).

�9 A user is identified by the same name, but different UIDs, at different hosts.

�9 Two user accounts at different hosts have different user names (and may represent
different users), but have the same UID.

�9 A group is identified by the same name, but different GIDs at different hosts.

�9 Two groups at different hosts have different names, but are associated with the
same GID.

150

�9 A group is identified by the same name and GID at different hosts, but the two in-
stances of the group define different sets of members.

Table 1 illustrates examples of these conflicts.

Table 1. Potential Conflicts

Users Registry /etc/passwd (host A)
name conflict jones::10 jones::15
UID conflict thomas:: 10 smith::10

Groups Registry /etc/group (host A)
name conflict dev:: 10 dev::20
GID conflict test::10 QA:: 10
membership conflict dev::10:admin dev:: 10:admin, sys

Unresolved UID or GID conflicts can cause serious security violations if not properly re-
solved. For example, unresolved UID conflicts can result in DCE users logging into local
UNIX hosts and assuming the identities of local users. Table 1 shows an entry for the
UNIX user thomas (UID 10) and another for the DCE user smith (also UID 10). When th-
omas logs into the cell from host A, for example, he obtains the privileges of smith on
that host.

Resolving these inconsistencies involves reassigning UNIX UIDs and GIDs for those ac-
counts that conflict, and changing the permissions of all affected files accordingly.
There must also be a method for handling backed up files, as these can reintroduce identity
conflicts when the files are restored.

Since all DCE users and groups must be established at a single global registry, this ap-
proach requires all conflicts to be resolved at the time the host is added to the cell. How-
ever, it is not always practical to force synchron~ation of the account data, partly because
it may delay acceptance of DCE, and partly because of administrators' commitment to ex-
isting tools and procedures.

2 Goals for the Transition

It became apparent that achieving our ultimate goal of global security administration
via DCE would take time. We realized that the problem of adopting DCE security was
chiefly one of managing the transition necessary to achieve it

Our approach was to create transition aids to be used temporarily until DCE is widely ac-
cepted by our UNIX system users. We sought to avoid institutionalizing DCE and UNIX
system security coexistence, because we do not believe coexistence is a correct long-term
solution. We felt that this was best achieved by supporting non-DCE users (referred to as

151

local users in this paper) on a DCE host. The goals we defined for our UNIX-to-DCE se-
ctwity transition model are as follows:

1. To disrupt as little as possible the administration and established practices of exist-
ing local users

2. To introduce no compromises to UNIX system or DCE security

3. To cause no performance degradation for local users

4. To accommodate UNIX administration tools, especially since they are often cus-
tomized for site-specific needs

5. To maintain interoperability with other implementations of OSF DCE

6. To augment, rather than replace, the standard OSF DCE security tools

3 The Transition Approaches Considered
we first investigated whether our goals could be achieved within the framework of
the tools supplied by OSE

With the OSF DCE integrated login, when a host is to become a member of a cell, then all
users of the host are considered DCE users. It does not offer the capability to support local
users on a DCE host, so we disqualified it from further consideration.

We then investigated ways to support local users using the passwd_override file and the
passwd_import and passwdexport tools.

3.1 passwd_override File for Local Users
We considered using the OSF DCE passwd_override file to list local users. This
restricts a DCE user to a host-specific identity by overriding the user's network iden-
tity at the host on which passwd_override resides.

We first thought that the issue of local and DCE users could be solved simply by creating
accounts for all users in the registry and then creating pa~wd_override file entries for lo-
cal users. However, using the passwd_override file mechanism would create a new set of
problems:

�9 Specifying local users in passwd_override file would call for mechanisms that
would enable existing UNIX tools to reference the file (for example, the program
Is reads/etc/passwd; in this scheme, it would have to reference passwd_override
instead) (compromises Goal 4).

�9 The passwd_override file does not allow group overrides (compromises Goal 2)

�9 We would need to provide a mechanism by which system administrators could add
or remove local users using their existing UNIX tools and without DCE expertise.
Cloning passwd_override files from the/etc/passwd files would have accom-
plished this, but then local users would be listed in two places, necessitating the
synchronization of these files (compromises Goal 4).

152

�9 The password for the local user is stored in the passwdover r ide file itself (fol-
lowing UNIX conventions). In SINIX, however, the user password is stored in the
/etc/shadow file (which is a preferable scheme). There was no clean solution to
this problem (compromises Goal 2).

�9 With the p a s s w d o v e r r i d e mechanism, the local user actually logs through the
registry which is a slower process than the standard SINIX login (compromises
Goal 3).

For all of these reasons we abandoned the idea of using passwd_override files for defin-
ing local users on DCE hosts.

3.2 Resolving User and Group ID Conflicts
Another problem that we had to solve was how to import users into the registry from
different hosts and resolve potential user (and group) name and ID conflicts. In exist-
ing configurations at customer sites we found that although UNIX hosts were net-
worked, in some cases each had its own set of UNIX security files. Accounts
representing a single user or group had different names and IDs at different hosts. If
all of these systems were to be incorporated into a DCE cell, all the name and ID con-
flicts would have to be resolved. Our original plan was to require that when DCE is
installed in a network then all UID conflicts be resolved at the time hosts are incorpo-
rated into the cell. Resolving all conflicts meant that at the time of importing a host
into a cell:

�9 Any users being imported would need to be assigned new names or UIDs if they
conflicted with existing names or UIDs in the registry.

�9 Any groups being imported would need new names or GIDs if they conflicted with
existing names or GIDs in the registry.

�9 The ownership on all files on that host, that were owned by the user or group
whose ID was changed, needed to be updated.

The requirement to resolve all conflicts at the start was not acceptable to our customers
and compromised Goal 1.

We then considered allowing the mapping of DCE users to different UIDs and GIDs on
different hosts. This would have enabled us to incorporate hosts in a cell that have con-
flicts in the UNIX security files. This idea was derived from the USL's Remote File Sys-
tem (RFS) approach [7].

Using this approach, the cell administrator would enter local UIDs and GIDs that conflict
with registry entries into a local (per host) mapping table. Every host in the cell would op-
tionally have a table of mapping from UUIDs to UIDs and GIDs.

Properly maintaining the mapping table would involve modifying UNIX tools that manip-
ulate UNIX security files, compromising Goal 4. We also believed that this approach
would institutionalize the mapping table, which is conWary to our intention to create tran-
sition aids.

153

4 The Transition Approach Adopted
We finally decided to implement a set of tools that enable administrators to manage
UNIX system user account and group inconsistencies in the DCE security environ-
ment, and so allow the local and DCE security environments to coexist despite incon-
sistencies that cannot be immediately resolved [8, 9]. The tools we implemented for
SNI's DCE product:

�9 Accommodate (rather than prohibit) inconsistencies between local UNIX system
and registry accounts

�9 Increase the system administrator's ability to limit the privileges of DCE users on
the UNIX system hosts for accounts that conflict

�9 Enable user participation in DCE to be determined by whether or not the UNIX
user wishes to become a DCE user, rather than by whether or not the user's host is
configured as a member of a DCE cell

We identified three development efforts that were necessary to achieve our goals:

1. Developing a mechanism to distinguish between local and DCE users, and
between local groups and DCE groups.

2. Developing an integrated login that would recognize the distinctions

3. Extending the OSF DCE account import and export mechanisms (passwd_import
and passwd_export).

The next three sub-sections elaborate on these mechanisms.

4.1 Local Users and Protected Groups
To distinguish local users from DCE users, entries corresponding to DCE users in the
local password file are annotated as such. Unannotated entries in the password file
correspond to local users. When new user entries are exported from the registry, they
are automatically annotated as DCE users (refer to description of rgy_export_accts).

We used DCE as a marker string in the password field of/etc/passwd file. We felt this was
a valid approach because the password field contains only special marker tags (in SINIX
and other System V implementations the tag x indicates that the password is in the/etc/
shadow file). Adding a new tag for that field does not disturb any existing UNIX system
feature known to us.

We used a similar mechanism to handle groups. Entries in/etc/group files may be anno-
tated as PROTECTED from DCE users. This means that when the registry provides
a DCE user with privileges that include membership in a protected group, then the host at
which the group is protected denies that privilege to the DCE user. Only if the DCE user is
explicitly listed as a member of that group in the/etc/group file at the host is the privilege
of group membership recognized at that host. The PROTECTED annotation appears in
the password field of the/etc/group file.

In the case of an unprotected group in/etc/group, the host grants the privilege of mem-
bership in that group to DCE users even if they are not explicitly listed as members in/etc/

154

group. During export we also append all groups from the registry to the/etcJgroup file
(without membership lists so as to avoid any impact on local security) so the group per-
missions for files created by a user in a DCE-only group are displayed properly.

4.2 The SINIX DCE Login Facility
To interpret these annotated UNIX system accounts, we implemented a special ver-
sion of Iogin (to replace the standard UNIX login) that recognizes the distinctions
between local and DCE users, and between protected and unprotected groups. In
doing so, it enforces the security policy that favors local users and groups when con-
flicts occur.

Login Behavior
When a user logs into a host, and the user's name corresponds to an unannotated
(local user) entry in the UNIX password file, then that user does not obtain DCE cre-
dentials, even if an account with the same user name exists in the registry. This
behavior favors local users when user name conflicts occur (preventing denial of ser-
vice to local users).

When a DCE user attempts to log into an account with a UID that conflicts with the UID
of a local user, the DCE login is denied on that host. This behavior guarantees that the
DCE user will not obtain privileges that are associated with a local user.

Table 2 shows some these conflicts and the policies adopted to deal with them.

Table 2. Login Policy for Resolving Conflicts

Users Registry
name conflict jones:: 10
UID conflict jones:: 10
Groups
name conflict dev:: 10
GID conflict dev:: 10
membership conflict dev:: 10:admin

/etc/passwd
jones:: 15
smith:: 10

Policy
login for local jones only
DCE jones denied login

dev::20 none necessary

qa:: 10 protected-group policy*
dev:: 10:admin:d protected-group policy*

* If the group is protected, grant the privilege of group membership to the DCE user
only if the user is listed as a member of that group in/etc/group; if the group is un-
protected, grant the privilege of membership to the DCE user if the DCE credentials
specify membership in the group.

As Table 2 shows, this login also handles protected groups. Suppose the DCE user smith
is listed as a member of the group admin in the registry. At host A, this group is protected
and smith is not a member; at host B, this group is protected and smith is a member; at
host C this group is unprotected:

�9 When smith logs in at host A, he does not obtain the admin privilege.

155

�9 When smith logs in at host B, he obtains the admin privilege.

�9 When smith logs in at host C, he obtains the admin privilege.

As we noted previously, UNIX security files are automatically synchronized with the reg-
isa'y. Through the use of our version of login, system adminisU'ators are guaranteed that
modifications to the registry (likely to be outside of their control) will not change the priv-
ileges of local users nor the locally effective membership of protected groups.

Login Implementation
The integrated SINIX DCE login has been implemented by applying DCE changes to
the UNIX system login implementation. Our integrated DCE login implementation
first looks up the user name in the/etc/passwd file to determine whether the user is a
local user or a DCE user (local users appear before DCE users in the file).

For a local user, the code path taken is the same as the standard SINIX login imple-
mentation. This preserves the SINIX login "feel" and performance characteristic.

For a DCE user, the login logic is described next (all sec_ function calls are from the DCE
security API [3, 4]):

1 Invoke sec_login_setup_identity to setup a DCE identity.

2 Prompt user for DCE password and validate that password by calling sec_iogin_-
valid_and_cert_identity. If password validation fails then call sec_login_purge_-
context to destroy the login context that was just created and restart the login
process; else if password validation succeeds then proceed with login.

3 Call see_login_get_pwent to get the password entry for the DCE user from the
registry.

4 Call getpwnid [10] to get (from the UNIX security files) the password entry corre-
sponding to the UID for the DCE user

5 If the UID of the DCE user conflicts with that of a local user then deny login to the
DCE user; else call setuid to set the UID of the process. At this point, the login is
committed.

6 Call sec_login set context to create network credentials for the login context.

7 If the primary group of the DCE user is protected and the DCE user is not listed as
a member of that group, then set the principal group of the user to none. Call set-
gid to set the GID of the process.

8 Call ser to get all groups to which the DCE user belongs.

9 For each group, test whether the group is protected (in the/etc/group file) and
whether the user is a member. If the group is protected AND the user is not a
member, remove that group from the membership set.

10 Call setgroups to set the locally effective supplementary group set of the process.

11 If the DCE user needs to set a new password then invoke chpass [10].

12 Add KRB5CCNAME environment variable to the startup environment of the user.

13 exec the login shell for the user.

156

The initial lookup of the UNIX security files and steps 4, 5, 7 and 9 distinguish the SINIX
DCE login from the one supplied by OSF.

4.3 Account Import/Export Extensions
A key property of the existing OSF approach is that DCE accounts from the registry
are automatically propagated to the local/etc/passwd files periodically, using the
passwd_export command. DCE and UNIX system administrators need not partici-
pate in, or review the results of, this updating process.

Therefore, the critical problem to solve was how to guarantee to system administrators
that the account export feature would not make changes without regard for local security
policies. We did this by creating two tools, r g y i m p o r t a c c t s and rgy_export_accts (de-
scribed in section 5), which are wrappers for passwdimpor t and passwd_export, re-
spectively

5 T h e Transit ion Tools
We designed several tools that aid the transition to DCE security for our customers.
Our overall goal is to make the transition easy, and to that end we have developed
tools that automate, to the extent possible, the associated tasks. Because they are either
local in effect or wrappers for standard DCE security tools, none of our tools affect DCE
in terms of behavior or interoperability.

Our Iransition tools are fully compatible with the tools provided with OSF DCE and
in addition provide:

�9 A greater level of automation

�9 A friendlier user interface

�9 Clearer output

As with any implementation of DCE, cell administrators must first decide

�9 Which hosts are to be members of the cell

�9 The configuration of DCE services in the cell

The cell administrator and the system administrator then have to decide

�9 Which users on these hosts are to have DCE accounts

�9 Which groups on these hosts are to be protected

�9 How to resolve various conflicts between user and group IDs

5.1 Summary of the SINIX DCE Transition Tools

This section summarizes the transition tools we developed [8].

rgy_mark_dce_user annotates entries in the/etc/passwd file that are to be DCE
users with the string DCE. This tool is typically run before the host is configured as a
member of a DCE cell but it can be used at any time.

157

rgy_unmark dce user removes the DCE annotation from the entries in the/etc/passwd
file that are to be DCE users. This tool is used:

�9 When a user wants to revert to being a local user on the DCE host

�9 To preserve local accounts for DCE users after DCE deinstallation. Normally, all
DCE users are removed from the UNIX security files when DCE is deinstalled.

rgy_mark_prot_group annotates entries in the/etc/group file that the system adminis-
trator wants to protect. This tool can be run at any time and all groups marked protected
will be excluded from the local group set of a DCE user.

r gy_d i f f_aec t s reports on the differences between local and regis t ry account
information that, unless the differences are resolved, will result in conflicts when the host
is added to the cell.This tool is typically run before user accounts from UNIX security files
are imported into the registry. It gives the system and cell administrators a chance to plan
how to resolve the conflicts when the accounts are actually imported.

rgy_import..aeets is a wrapper for the OSF DCE tool passwd_import. It enables the ad-
ministrator to import local account information into the registry and resolve conflicts be-
tween local and regis t ry account informat ion. Unl ike p a s s w d _ i m p o r t , this
tool recognizes UNIX password file entries that are annotated as DCE users, and can se-
lectively import only those users. Also, when users are being selectively imported, it im-
ports only those groups that are needed by the users being imported into the registry. This
tool retains all passwd_import options that are simply passed through. It is typically run,
in lieu of passwd_import, to import user accounts into the registry. It can be run any num-
ber of times to import users in groups.

rgy_export_accts is a wrapper for the OSF DCE tool passwd_export. It updates the local
UNIX security files with account information from the registry. It annotates the exported
entries as DCE users, and appends the entries to the/etc/passwd file. This tool also anno-
tates and appends group entries that were exported to the/ere/group file. This tool is typi-
cally run in lieu of passwd_export to refresh the local UNIX security files, on a regular
basis and manually as needed.

rgy_init_aects is a wrapper for the OSF DCE tool rgy_edit. It establishes valid pass-
words and enables the accounts for the imported DCE users in the registry. When user ac-
counts are imported into the cell they are set up (by default DCE security policy) with ran-
dom passwords and are marked as invalid. This tool enables the cell administrator to eas-
ily turn on an account and also assign a valid starting password in a single step. The cell
administrator can run this tool from any host in the cell, to turn on a DCE user account.

dce_install_login installs the integrated SINIX DCE login on the system and saves the
state of the UNIX security files. This is typically run just after installing DCE onto a host
but it can be run any time.

dce_deinstall_login removes the integrated SINIX DCE login program from the system
and restores the original system login program. It also removes all DCE users and DCE
groups from the UNIX security files. This is typically run just before removing DCE (if
necessary) from a host.

158

6 A Sample Session
Following is a sample session that illustrates the use of the transition tools [8]. It
shows the steps involved in importing selected user accounts from a host to the regis-
try. It assumes that DCE installation and configuration have already been done:

1 The system administrator determines which of the local users are going to be DCE
users and then runs rgy_lnark..dce_user. For example,

rgy_mark_dce_user smith jones

annotates two users in the UNIX password files, smith and jones, as DCE users.

2 The system administrator next decides which of the groups in the UNIX security
files should be protected from DCE users and runs rgy mark_prot_group. For
example,

rgy_mark_prot_group wheel

annotates the group wheel (in/etc/group) as protected from DCE users at the
host.

3 The system administrator next informs the cell administrator that the host is ready
for integration with the cell.

The cell administrator runs rgy diff_accts to review the differences between
account information at the host and account information in the registry that would
result in conflicts. For example,

rgy_diff_acct a -i

would prompt the cell administrator as follows:

[i] Pick up only users marked DCE

[2] Pick up only local users

[3] Pick up all users

(default: 3) [1-3, ?]

The cell administrator is expected to pick option 1 (since he is planning to import
annotated accounts only) and that would report on conflicts related to users
marked as DCE users and their groups.

Using the information gained in the previous step, the system and cell
administrators should now plan how the conflicts are to be resolved when the
accounts are actually imported into the registry.

4 The cell administrator next runs rgy_import_accts to import these accounts in to
the registry. The command

rgy_impo rt_acct s -m

159

imports all user entries that arc marked (-m) as DCE users. It also imports only
those groups to which these users belong. At this time the cell administrator
resolves the conflicts between local and registry account data.

When this step is completed, new DCE accounts have been established in the reg-
istry for all annotated user entries.

5 The cell administrator then runs rgy_export_accts to propagate registry account
data to the local host. For example, the command

rgy_export_acct s

exports registry accounts. Now the UNIX security files have been updated with
data from the registry. As they are exported, registry entries are appended to the
UNIX security files and annotated as DCE entries.

6 The system administrator then runs dee_ins ta l / Iogin program to install the inte-
grated SINIX DCE login onto the host.

7 The process of installing DCE on the host is now complete and all DCE accounts
are set up. However, none of the newly added DCE accounts can be used until the
cell administrator explicitly turns them on.

To turn on the account for one of the imported DCE users the cell administrator
runs rgy. init acets to establish valid passwords for the imported user account
and to mark the account and password as valid for login. For example, the com-
mand dialog

rgy_init_acct s

Principal Name: jones

Principal's Password: jones" password

Cell Administrator Password: cell admin's password

establishes the password for the user jones and activates the account. This user can
now log into the cell as a DCE user from this host.

Steps 1 through 6 are repeated on every host that is a member of the cell. Step 7 is exe-
cuted for each DCE user that has been imported into the registry. It would be relatively
straightforward to extend this mechanism to turn on a group of accounts using the same
default password for each account or a customized password for each account.

The cell administrator would use rgy_export__accts regularly to keep the local user and
group information synchronized with the DCE registry database. Like passwd_export,
rgy_export_accts is intended to be run automatically on a regular basis (For example, as
a cron job every night).

160

7 Experiences and Future Enhancements
At the time of this writing, we have released the SINIX DCE product to pilot custom-
ers. Among the suggestions these customers have made, two are notable:

�9 Enhance rgy_diff_accts utility to enable it to report on conflicts across multiple
hosts; this would enable the administrator to gain a more global perspective on ac-
counts in a cell to facilitate planning. The current implementation only lists con-
flicts between account entries in the registry and those being imported from one
host.

�9 Enhance dce_deinstall_login so that it would restore the UNIX security files to
their former state without any explicit action by the system administrator. The cur-
rent tool requires the system administrator to run rgy_unmark dce user for all
those accounts that need to be retained when DCE is removed from the host.

While we plan to incorporate these enhancements in our tools, we do not intend to
continue upgrading and maintaining these tools beyond the time it takes for our cus-
tomers to become full-fledged DCE users.

8 Conclusion
We refer to the tools we have described as transition aids because they will become
unnecessary when the registry is uniformly used for UNIX security administration.
Until that time, we have attempted to provide DCE cell administrators with all the
advantages of the DCE without:

�9 Forcing administrators to make major changes to their existing system to resolve
conflicts, or

�9 Compromising the security policies implemented on local hosts.

We believe our transition aids will speed up the acceptance of the DCE without funda-
mentally changing its basic approach to security administration.

9 References
1. OSF DCE Administration Reference, Revision 1.0 (Prentice-Hall, 1993)

2. OSF DCE Version 1.0 Administration Guide, Core Components, Update 1.0.2 (unpublished;
Copyright 1993, Open Software Foundation)

3. OSF DCE Application Development Guide, Revision 1.0 (Prentice-Hall, 1993)

4. OSF DCE Application Development Reference, Revision 1.0 (Prentice-Hall, 1993)

5. UNIX System V/386 Release 4 System Administrator's Reference Manual (Prentice-Hall, 1985)

6. UNIX System V Release 4 System Administrator's Guide (prentice-Hall, 1983)

7. UNIX System V/386 Release 4 Network User's and Administrator 's Guide (Prentice-Hall, 1990)

8. DCE (SINIX) Administration Guide- Introduction, Revision 1.0 (unpublished; Copyright 1993,
Siemens Nixdorf Information Systems)

161

9. SINIX DCE Compatibility and Integration Issues (unpublished SNI Document Volume 1019,
Chapter 61, Section 3; Copyright 1993, Siemens Nixdorf Information Systems)

10. UNIX System V Release 4 Programmer's Reference Manual (Prentice-Hall, 1990)

10 Acknowledgments
The authors thank the members of the DCE Group at Siemens Nixdorf; in particular,
the expertise of Gregory Carpenter and Victor Voydock in DCE security was invalu-
able in designing and implementing the transition tools. We also thank the DCE engi-
neers at Pyramid Technology and UNIX Systems Laboratories for many stimulating
discussions.

11 About the Authors
Sanjay Tikku is a senior member of the DCE Group at Siemens Nixdorf, Burlington,
Massachusetts. Mr. Tikku is the lead engineer of the effort to productize DCE for all
Siemens Nixdorf platforms. The tools described in this paper were developed as part
of that effort. He was previously the Project Leader for a multiprocessor implementa-
tion of SVR4 at Samsung Software America.

Stephen Vinter is the Project Manager of the DCE Group at Siemens Nixdorf, Burlington,
Massachusetts. Dr. Vinter directs the development of the SINIX DCE Secure Core prod-
uct, the OSF DCE SVR4 reference port, and the USL DCE product. Dr. Vinter previously
managed the Cronus Project at Bolt, Beranek, and Newman.

Stephen Bertrand is a technical writer at Ibis Communications Inc., Lynnfield, Massachu-
setts. Mr. Bertrand writes user documentation for SNI's and USL's DCE Secure Core
products. He was previously a Project Manager for OSF DCE 1.0 documentation, and a
coauthor of OSF DCE 1.0 Application Development Guide.

DCE Cells under Megascope:
Pilgrim Insight into the Resource Status

Bojana Obrenid

Kathlecn S. DiBella

Arthur S. Gaylord

Project Pilgrim I
Department of Computer Science

University of Massachusetts at Amherst

<last-name>@pilgrim.umass.edu

Abstract. Megascope is the Pilgrim utility for monitoring, reporting, managing, and
presenting status information about the resources of computer systems and environ-
ment services in large, heterogeneous distributed cnvironrnents.

Mcgascope is an autonomous distributed application, built on top of the OSF DCE. 2
It extends the basic functionality of the DCE by adding a service to it that provides
the cell resource information to other applications. Most notably, Megascope provides
data input necessary for successful distributed system management.

This paper discusses the functionality of Megascope and its major design characteris-

tics.

1 Goals of Resource Monitoring in DCE Cells

The Megascope endeavor at Project Pilgrim [9] is engaged in the analysis of the specific
problems associated with the resource monitoring in large, heterogeneous, DCE-based
environments. This work is aimed at building a prototype of a resource status monitoring
service that collects, reports, manages, and presents the status data about various environ-
ment resources.

By its structure and functions of an autonomous subsystem, Megascope follows the
ovtxall current Pilgrim strategy of building comprehensive, coherent, self-regulating en-
vironments for large-scale heterogeneous distributed computing. Central to this strategy
are the DCE [7] primitives for remote procedure call, timing, naming, file system, and
security. Pilgrim constructs distributed applications [10] on top of these DCE primitives,
the most visible of which are user-oriented utilities that support various generic processing
tasks, such as printing, mailing, user information, conferences. To secure the integrity,
coherence, and stability of the environment, Pilgrim supports its user-oriented utilities by
another group of distributed applications. These are the system-oriented services that are
perceived by the user-oriented applications as an effective extension of the basic DCE
support. The system-oriented facilities of Pilgrim include asynchronous event notification,
generic and dynamic server instantiation, specialized editors of the cell namespace, and
Megascope.

1Project Pilgrim is supported in part by Digital Equipment Corporation, Hewlett-Packard Company, and
University of Massachusetts.

2OSF is a trademark of the Open Software Foundation.

163

Due to their dynamic nature, distributed environments, including DCE-based environ-
ments such as Pilgrim, require regulation. To support regulation, these environments must
be able to sense their status, make decisions on the basis of their status information, and
apply the necessary control actions. Megascope is designed to perform this status-sensing
task. In the regulation of distributed computing environments, the essential challenge is to
achieve and verify the efficient use of environment resources. Megascope is a part of the
Pilgrim response to this challenge, since it provides the resource status information, which
is a necessary input for successful resource management.

This paper reports on our approach to resource monitoring and on the design of
Megascope.

Resource monitoring and cell management. DCE environments and, in particular, the
Pilgrim environment can meet the expectations of their (prospective) users only if a cell in
such an environment is capable of presenting to its users a credible illusion of functioning
as an integrated unit that accepts and fulfills the tasks assigned to it. In the user communities
whose (current) alternative to DCE are centralized mainframe-based computing systems,
the assumption of efficient and handy central management is taken for granted and built
into the administrative and technical definition of such facilities. In those user communities
whose highly decentralized and poorly coordinated information processing now demands
higher integration, the unifying functions of the DCE are often seen as the only technically
and economically feasible way to a meaningful consolidation of the available resources.
Therefore, the purpose of the cell management is to enable a cell to behave as an integrated
system, to maximize the efficiency of the cell operation, and to obtain the evidence of cell
efficiency. Opposing this goal are several intrinsic properties of the DCE.

At the level of the basic DCE components, a DCE cell appears to be a "fiat" struc-
ture consisting of a number of autonomous computing systems. The management of these
individual systems is, traditionally, well understood and typically satisfactory. However,
the overwhelming number of such systems (perhaps thousands of systems) expected to
operate simultaneously in a cell precludes the human involvement on the level required
for efficient management of individual facilities by the traditional procedures. The ex-
pected heterogeneity of DCE cells, where different systems mandate essentially different
management procedures, only adds a new quality to the already prohibitive volume of
the management tasks. The major goal of advanced cell management is to bridge this gap
between the resource management of individual systems and the management goals of
the cell as a unit. The role of resource monitoring services, in particular of Megascope,
is to provide a unified view of the cell state information, which can be used as input to
automated cell administration procedures (e.g., decision support, task scheduling, capacity
planning.)

The role of resource monitoring services goes beyond extending the perception of
human managers to cope with the number and specifics of individual providers of classic
resources, namely computation time and memory. The adequacy of such low-level re-
source representations is now challenged by the synergy of distributed environments and
sophistication of the expected processing tasks. The diversity of applications handled by

164

a single cell, combined with the "maturity" and specifics of abstractions engaged by such
applications, calls for a more elaborate interface between the service providers and con-
sumers than that of traditional system management. Software and hardware compatibility,
potential parallelism, communication cost and properties, geography and administrative
structure, security, etc., are some of the issues arising between a cell and its users that
are neither explicit in classic computing environments nor easily represented in terms of
processor cycles, storage space, I/O bandwidth, or similar standard parameters based on the
traditional resource models. Formulating an adequate resource description is a prerequisite
for the development of successful resource monitoring services and an important goal of
our Megascope project.

The sophisticated applications of the present and the future are likely to be presented to
DCE cells by a broad user community consisting of individuals of diverse background and
often non-expert abilities. Such users may have prerogatives sufficient for engaging sub-
stantial environment resources and may even command information sufficient for efficient
scheduling of their tasks, while lacking the technical competence required for effecting
the necessary management. The success of a cell management support, including its re-
source monitoring component, may turn out to depend essentially on achieving successful
interaction with this class of users. The Pilgrim environment concept and, in particular,
Megascope are conscious of this goal.

Understanding and defining the resource status in distributed environments. One
of the goals of the Megascope project is to define and analyze a set of parameters that
collectively represent the state of a DCE cell or the state of specific environments, includ-
ing Pilgrim, that a cell supports. Thus defined, the cell status must be informative enough
to serve as the input to the cell management services, while lending itself to technically
feasible monitoring by Megascope. We believe that suitable cell-status descriptions will
evolve together with the practice and the concepts of the DCE. Our analytical efforts aim
at understanding the inherent characteristics of the DCE that must be captured by such
status descriptions. Our design and implementation efforts aim at providing an operational,
flexible, and extensible status monitoring service that satisfies the requirements of its dis-
tributed environment, and affords us a convenient platform for testing alternative concepts
and experimenting with various types of instrumentation.

The cell resource status includes the status of the individual systems in the cell, so the
innermost part of the status information managed by Megascope consists of the standard
resource parameters of operating systems and computer hardware, e.g., processing time,
memory space in various memory hierarchies, I/O capabilities, devices, etc. (cf. [15]).

The next layer of the monitored resources are the basic DCE components (name service,
security service, file system, etc.). The exact set of monitored variables that covers the
functionality of the basic DCE components is a research topic within the DCE community.
The DCE SIG Instrumentation Work Group [8] considers general queuing theory metrics,
applied to the cell as a system. It proposes a set of specific variables whose values should be
observed in the course of the cell operation (e.g., counts of remotely executed calls, elapsed
time per call, counts of requests per server, counts of directory accesses, counts of supported

165

connections, etc.). Megascope design allows easy accommodation and modification of
various data items in the status it monitors, so as to adjust easily to the imminent refinements
of applicable metrics and, more importantly, to serve as a tool in the assessment of the
quality of such metrics.

DCE environments may (as the Pilgrim environment does) provide their own services
and utilities that act as extensions of the basic DCE functionality. The normal operation
of such dedicated applications is in itself a resource, so the status of these applications
is subject to reporting by Megascope. A detailed content of this status information also
awaits further refinements. Typically, this information includes available capacity of various
servers.

The Pilgrim environment offers an example of a novel level of management that
accompanies the exploitation of the DCE capabilities and power. Precisely, the Pilgrim
environment is able to instantiate servers dynamically [10], in response to run-time requests
for services. In this complex situation, it is not only the capacity and behavior of cell servers,
but the very existence, number, disposition, and properties of servers that are subject to
continuous change, explicit management, and, consequently, monitoring.

Megascope, as a resource monitoring service, differs from its current alternatives in
that Megascope is designed to be a monitor of distributed environments, while the alterna-
tives are designed as monitors ofinterconnection networks for such environments. Intemet
Advisory Board has proposed [3] such a network management standard, the Simple Net-
work Management Protocol (SNMP) [2, 16, 11], while the International Organization for
Standardization (ISO) has recommended the Common Management Information Services
/ Common Management Information Protocol (CMIS/CMIP) [17, 4, 5, 13]. The two stan-
dards are now dominant among the non-proprietary network management protocols; both
are well suited for network monitoring, and have been subsequently adapted to include
monitoring of systems connected into the network. (See e.g., [1] for an illustration of
such evolution.) However, the information and communication structure of these protocols
remains oriented toward network entities rather than toward higher-level DCE-based ab-
stractions of advanced distributed-computing environments. Through its own information
and communication structure, Megascope attempts to report the behavior of DCE cells in
more natural terms. Sophisticated monitored entities that do not map trivially onto physical
systems, processing tasks that must be expressed with a high degree of independence from
the physical systems, performance metrics and management actions that are defined only
with respect to the cell as an integrated system, etc., have all prompted our design of
Megascope. This design is presented in the following section.

2 Megascope Design

Megascope recognizes a dynamically modifiable set of systems that it monitors. Members
of this set are computer systems as well as the utilities and services of the distributed
computing environment. Monitored systems are characterized by various resources, whose
status is followed by Megascope.

Megascope consists of four major components: sensors, panel, observers, and links.
(See Figure 1.)

166

�9 / ~ ~ (~ I ' ~ i e n s ~ {observer} ~ ' ~ ~

r e c i p i e n t ~ j c e l l

Figure 1: The Major Components of Megascope.

Sensors are components that are conceptually in one-to-one correspondence with mon-
itored systems. Sensors continuously run, collect findings about the resources of their
monitored systems, recognize those findings that qualify for reporting, and send the re-
ported findings to interested recipients within Megascope and outside it.

Megascope panel is an on-line, in-memory database that defines and manages the
instantaneous description and most recent history of the resource profile of the entire cell.
The panel information content is continuously updated by sensor data and queried by
Megascope users. Panels must receive and temporarily store sensor data, interpret sensor
data to form system status information, request sensor actions in order to maintain its
information content, and respond to remote queries that retrieve panel information.

Observers are consumers of the resource status information. Each observer corresponds
to a user, i.e., a person or a program inquiring about the cell status. Observers interface
users with Megascope panels; form, partially evaluate, and send user queries to panels;
receive panel responses to the user queries; and present query results to users.

Links transmit data between sensors, panels, and observers, and encapsulate those
transmission issues that depend on network protocols and on details of the RPC support.

The remainder of this section discusses individual Megascope components, after

167

dwelling on those parts of the information structure of Megascope that are essential for the
coordinated operation of these components.

Megascope data organization. Megascope data organization derives from the panel
database (cf. Section 2.2.) The panel defines the data it manages and the data that circulates
through the Megascope system. (A more detailed description of the panel database in
terms of the relational data model is given in [10].) The panel data definition has some
Megascope-specific characteristics, such as the following:

The Megascope data definition associates every collected value with a unique data item
name, and it assigns to each item name a unique Megascope data type. The type description
relation is unique within Megascope; it associates with each type a set offunetions that can
be legally applied to it. Most importantly, this description points to the function that decides
equality between two values of the type and to the function that determines the reporting
policy for items of the given type. The notion of equality is exploited by sensor schedulers
(cf. Section 2.1) to detect changes in the values they collect. The reporting policy indicates
whether the data item value should be reported periodically, asynchronously, etc.; it may
include access control indicators that govern the visibility of the data item to individual
recipients.

To assist sensors in their detection of interesting changes in the behavior of the mon-
itored variables, the Megascope data organization allows the type functions to have mod-
ifiers, i.e., additional arguments that may alter the final result of a function application.
These modifiers are associated with individual data values; the item description relations
record such modifiers. The panel stores the default values of the modifiers, while sensors
build a copy of their own item description relation for each recipient they serve. The
purpose of this design may be illustrated by the following scenario.

Assume a data item client-count belongs to the data type count, with which Megascope
associates a suitable equality function. Given two counts, say x and y, a possible choice
of an equality function may be one that decides that x = y if Ix - y[_< zA, where A
is a modifier. Thus the equality of any pair of counts is always determined by the same
function, specified in the count type description; the outcome of the comparison, however,
depends on the value of the modifier A, which characterizes the instance of the comparison.
Consider a sensor that detects an absolute change in the client-count of a server in a DCE
cell, while reporting simultaneously to two applications. The first application is a security
service, while the second application is a service that automatically generates and terminates
servers of a certain kind, in accordance with the number of clients that contend for that
service. The latter application may wish to be informed of a change in the client-count only
if it is detected when A _> 5, while the security service may require z~ = 0. To perform
its task correctly for both recipients, the sensor applies the same equality function, defined
by the panel database, to the same collected values, but allows its recipients to supply their
modifiers. By the conceptual separation of the intrinsic proceduresthat govern the behavior
of a data type from the interpretation of its values, Megascope keeps its data definition
reasonable and manageable, and still sufficiently flexible.

The sensor data values passed between various Megascope components are themselves

168

tuples whose relation schemes are defined by the panel. For each domain in such a relation
scheme, the corresponding tuple contains a pair consisting of the name of the domain
(item) and its value. Since the value representation is a part of the type description, these
sensor data values are guaranteed to be interpreted identically throughout Megascope. The
streamlined relational format of Megascope is expected to be compatible with the existing
data management and presentation tools, thus enabling Megascope to exploit such tools for
its conventional database functions. In particular, Megascope sensor data structure can be
manipulated so that sensor data be made available in a manner compatible with the SNMP
[11, 16] and CMIS/CMIP [13, 6] frameworks.

2.1 Sensors

I SCHEDULER t

�9 t
recipient

II

f DATA TYPES]

- . C,.onOm)

/
. . , (. , u m o . , s y

T T T ~ JUDGE

S~:Z:Z:Z:Z:D.. Q .Z~:Z:Z:Z~Z~

Figure 2: Megascope Sensor Structure.

Sensors are autonomous and responsible for their own configuration, startup, and
correct operation. Once assigned to a system, a sensor is expected to operate whenever its
monitored system operates. The functions actually performed by a sensor depend on the
services requested from the sensor by its environment. Its main function is to collect data

169

from its monitored system and to send the collected data to the recipients in the cell. The
recipients of an individual sensor are those agents in the cell that have contacted the sensor
with a request for receiving its data.

The power of sensors. Every sensor consists of one scheduler, one supervisor, and
several probes. The scheduler, the supervisor, and the probes are each represented (con-
ceptually) by a separate process or a thread. These processes communicate and cooperate,
but are asynchronous to one another. The probes are responsible for gathering the resource
findings and converting them into the internal Megascope representation. The scheduler is
responsible for the sensor control and the actual data flow from the probes to the recipients,
while the supervisor receives recipient requests. (See Figure 2.) 3

The autonomous, sophisticated sensors are the vehicle that we expect will take Megas-
cope to very large DCE cells of the future. Sensors report their findings and are polled
only in exceptional circumstances. While alternative, poUing-hased monitoring schemes
(SNMP and CMIS/CMIP) certainly give the inquirers the maximum flexibility as to the
content and dynamics of their inquiries, this flexibility is paid by the inquirers' overhead,
once for every monitored system, and once by every inquirer. As cells grow, this cost
becomes prohibitive. Megascope approach attempts to distribute the responsibility for the
collection task among a multitude of sensors rather than to concentrate it in individual
recipients. In contrast to the SNMP approach, in which every polling request initiates a
sampling on the part of the SNMP agent, Megascope design relies on the sensor-driven
data gathering. In such approach each collected data value is time-stamped, kept for an
appropriate time extent, and offered to multiple recipients. While both schemes have their
advantages, the anticipated development of DCE-based environments gives preference to
the approach adopted by Megascope. As the cell size grows, the number of recipients
interested in a particular data item increases, while the cost of individual data sampling
rises as the monitored systems become more sophisticated and their probes more complex.
Spreading the collection cost over a group of recipients thus becomes more attractive.

The comparative advantages of polling and reporting monitoring schemes are a current
research topic in the distributed-computing community. (See e.g., [14] for a survey of
the problem.) One of the major perceived deficiencies of the reporting schemes is in their
impact on the performance of the monitored systems through the sensor operation overhead.
The expected amount of work performed by Megascope sensors is negligible, therefore
their resource usage is also negligible. All sensor components are idle most of the time.
When they operate, they perform rather straightforward processing on a small number of
data items that are to be collected by an individual computer system. Presently, hundreds
or even thousands of such data items can be justifiably deemed a small processing task,
and will be even more so in the future.

Further potential disadvantage of reporting schemes is seen in the danger of over-
whelming the inquirers by an uncontrolled concentration of unsolicited data. Our strategy

3Within the figures in this document, the individual boxes correspond to processing agents or large data
objects, while the arcs depict data paths. The line thickness indicates the volume of flow (e.g., collected data vs.
control messages) and the line continuity indicates the frequency of transmission (e.g., continuous sending vs.
exceptional messages).

170

is to avoid this danger by investing local resources available to sensors so as to reduce the
communication and processing required from recipients and other components of Megas-
cope. The challenge is to design these components so that autonomous sensor processing
matches the needs of diverse recipients. The internal sensor functions and components,
designed towards this goal, are discussed in the remainder of this subsection.

Megascope probes. The repertoire ofresource data monitored by Megascope ranges from
events and counts associated with physical devices to possibly sophisticated descriptions
of the behavior of environment utilities. To obtain these data, sensors invoke the services
of the systems they monitor. These services and their invocation mechanisms vary across
the set of monitored systems and the set of monitored data. The Megascope response to
this diversity in the monitored data is its variety of sensor probes.

Each probe is a processing agent that obtains some subset of the monitored data. This
subset contains findings that are related by their origin, so that they are best collected
together. For example, a standard system call in an operating system that inquires into the
status of a device usually returns exhaustive status data containing several related data
items. Such a system call is typically utilized by one probe. Similarly, another probe may
report several data items that together describe the transaction activity of a distributed
database. Probes manage invocations of their underlying system services, select the data
items of interest, and make these items available to sensor schedulers.

Every probe is special for its specific gathering goals and mechanisms. To avoid a
potential pitfall of profusion of various probes, each of them being an ad hoc solution
to a particular monitoring problem, Megascope insists on keeping the probe functions
restricted to immediate gathering of lindings and their conversion to the canonical data
format. Once the data items are encoded in this universal format, their semantics becomes
virtually transparent to sensor schedulers.

Probe templates. Given the size and the diversity of the environment, it is inevitable
and desirable that a multitude of designers and implementors come to be concerned with
the probe repertoire, while having insight into only a small subset of mutually related
probes. To ensure compatibility among the probes, Megascope insists on keeping the
system-dependent probe components, probe pick-ups, as simple and isolated and possible.
Megascope strategy is to build and administrate various probe templates, which are incom-
plete probe modules that become probes by including pick-up components. Templates are
responsible for probe control, interaction with the scheduler, and in general for those issues
in the probe operation that are critical for maintaining the proper structure and functioning
of Megascope system as a whole.

Individual probe templates correspond to specific gathering situations and anticipate
them. For example, one probe template may drive various pick-ups that are all associated
with a particular operating system. The structure of this template is dominated by its
association with a single computer system, by the mainly periodic invocation of its pick-ups,
and by its relying on the standard application interface to its monitored system. In contrast to
this template type, another template is required for monitoring the level of activity in video

171

conferences, travel reservation services, or banks. The pick-ups for all these applications
may be driven by a single template type, which must enable distributed and asynchronous
collection, and may require explicit cooperation of the monitored applications.

Sensor control and communication structure is identical throughout Megascope and,
for a given sensor, independent of its probes. The variety of probe templates is such that
can be managed by Megascope administration, while specific pick-ups are free to fill the
open-ended Megascope collection repertoire, on condition that they fit properly into their
templates.

Reporting changes only. Schedulers are designed so as to keep the tasks of collection
and sending separated. While the collection dynamics is maintained by probes, the sending
is organized by schedulers so as to satisfy the recipient preferences. The generic strategy
of Megascope is to let the sensors send only those Jindings whose value is not equal to the
last value actually reported.

To implement their strategy, sensors remember the last value of every data item sent to
every recipient. To test for equality, sensors compare the old and new values by invoking the
Megascope-specific equality function associated with the given data type in the Megascope
data definition. The modifiers to this function are supplied by each recipient, thus allowing
for different interpretations of the same absolute findings by different recipients.

Schedulers may deviate from their strategy of reporting changes only and decide
to report data even when no significant change has occurred. Schedulers do so when
the elapsed time since the last sending is long enough to mislead a recipient to deduce
that the sensor is no longer operating. Since the sensor is the active party in a regular
communication, the recipient cannot distinguish a missing sensor from one that does
not have any interesting findings. This problem is believed to be inherent in reporting
schemes, while those based on polling may reliably detect failures of monitored systems
by registering the absence of a response to their request. In reality, the anticipated size of
DCE cells precludes any inquirer from exhaustive polling; it also makes it difficult for a
monitored system to service polls from all interested inquirers. The Megascope approach
enables sensors to confirm their existence only as often as is necessary, while the recipients
may have to poll only when there is a good evidence that the sensor is not operating. The
implied uncertainty in this method of failure detection depends solely on the confirmation
interval, which is a part of the sensor reporting policies that can be selected and tuned in
accordance with recipient preferences.

Sensor ability to avoid redundant transmission comes with a very modest cost in sensor
information and control complexity. By exploiting a modest amount of those resources that
are likely to be abundant in DCE cells: local memory for storing the recipient context and
processing cycles for evaluating it, sensors enable their recipients to engage only in the
reception of customized, relevant information.

Sensor command interface. To establish connections with recipients, sensor supervisors
support a simple Megascope-specific command interface that enables sensors to receive and
service recipient requests. Sensor commands arrive asynchronously to sensor operation;

172

they are always initiated by sensor recipients. The first command that a recipient must
issue to start receiving data from a sensor is a connect request to the sensor. The connect,
disconnect, and modify requests are the core of the sensor command interface.

As a result of a successful connect request, the sensor scheduler builds the context
information that records the specific preferences of the individual recipient as to the content
and intensity of data communication. The transmission of collected data is thereafter
initiated by the sensor scheduler, not by its recipient. Once the recipient has delivered its
connect request to the sensor supervisor, the recipient is free to be a passive parmer in
the data communication, whose task is limited to the reception of the sensor data. Ideally,
a sensor supports an arbitrary number of recipient connections, where each connection is
unaware of the others, and serviced in a customized way.

The simplicity found in polled sensors and in their interface to inquirers is often seen as
an advantage of polling schemes over the reporting schemes. Indeed, Megascope sensors
are more complex than, e,g., SNMP agents (cf. [2].) However, once Megascope sensors
are configured and running in the environment, their dialog with recipients is neither
substantially more complex nor does it demand more communication resources than the
dialog between management stations and agents of SNMP. Sensor command repertoire
is small, while the commands have simple, value-setting meaning within the recipient
context. Sensor commands issued by recipients having sufficient privileges are always
accepted and executed unconditionally. However, the semantics of our command interface
differs essentially from that of SNMP in what may be termed an extra level of indirection.
While SNMP commands are issued regularly to solicit the transmission of actual sensor
data values, Megascope sensor commands operate relatively infrequently on the data
definition of these values. The flow of actual sensor data in Megascope has an extremely
simple form: it is unconditional and asynchronous, and since it is unidirectional (from
schedulers to recipients), it consumes only about one half of the bandwidth that would be
required by a polling scheme operating on identical data.

Dynamically modifiable sensor policies. The recipient context kept by the sensor sched-
uler associates with every requested data item the modifiers required for evaluating its
equality function and its actual transmission frequency, as preferred by the individual re-
cipient. To change these preferences, or to modify the reception repertoire, the recipient
issues a modify command to the scheduler. The modify command associates the specified
data items with new values of their description fields, thereby establishing new reception
dynamics, which remains in effect until overridden by another command. Schedulers thus
support a flexible interface to multiple mutually independent parties. This interface affords
a recipient an efficient feedback path to its sensors, through which the recipient may tune
its reception to suit its instantaneous needs. In a special case of the modify command, the
recipient may demand immediate transmission of its monitored repertoire, thus emulating
polling.

Polling schemes are often preferred for their simplicity of sensor configuration. Such
simplicity is, however, a result of the total absence of flexibility in sensor structure and
operation, as all such sensors are equal and respond equally to all inquirers. Reporting

173

schemes tend to develop many distinct specialized sensors, whose management becomes
burdensome because of their diversity. While Megascope sensors all have identical control
structure, each sensor may be configured for a distinct collection repertoire, and may be
reconfigured to respond to specific recipient preferences. Megascope sensors thus may be
all effectively distinct, while being managed identically throughout Megascope. Partially
responsible for this flexibility is the panel database.

2.2 Panel

[� 9

II~!nt 1 : 7 :?..:: �9;.. �9~.

I L
1; I i I - ~ sensors [�9 �9 �9 �9 �9 �9

observers
sensors

BACK PANEL

: volatile data

k
(-(r "k~--~aggregates

q ,(C on x-- ~ functi
"K._..._.~, , , , , , , v, , , ,,L,,,, :. ~-.-.K- - t

[T/~::!::!::!::!::!i:::!ili!:S:!i!i!~,,~ history

~ m o s t recent ~

resident data requests
ouncements

~ a r c h i v e s

Figure 3: Megascope Panel Structure.

In the Pilgrim environment, the Megascope panel receives the data collected by all
sensors. Panel stores the sensor information, maintains it for a limited period of time in its
recent history space, and computes various aggregate functions on the sensor data. Panel
responds to observer queries that retrieve the sensor information.

The Megascope panel runs continuously on its host. We assume that in very large
environments it may require a dedicated computer system.

Panel database. The ultimate purpose of the panel database is to answer observer in-
quiries about the resource status. We term this resource information volatile, to emphasize
its ephemeral character within the panel, and to contrast it to the resident information, which
is persistent but dynamically modifiable. The resident information consists of two parts.
The first part is the data definition of the volatile data, as found in standard database sys-
tems. The second part is a description of the relevant static characteristics of the monitored

174

systems, on which the volatile information is superimposed. In terms of the relational data
model one of the most important views supported by the panel database has the following
relational scheme:

relational scheme MainView :
<system-name > <system-resident-fields> <system-volatile-fields> <time-fields>.

Although the resident database is designed to be modifiable dynamically, these modifi-
cations need not be inexpensive. While the volatile data follows frequent fluctuations in the
environment behavior, the resident database accomodates only the relatively infrequent
changes in the environment structure. Dynamic modifications of the resident database
grant a degree of flexibility to Megascope that is not present in the original lAB frame-
work, where the repertoire of the monitored data is fairly static in that it cannot be easily
extended by individual sensors. (See [1] for more details on the problem and a version of
the solution.) Megascope design enables convenient dynamic modification of the sensor
and recipient repertoire. A recompilation is required only when new data-type functions
are introduced.

The power of dynamic modification of the resident database is especially important in
the case of system families.

System families. A system family partitions the set of monitored systems in two subsets,
one of which comprises the members of the family. The member set of each family is in
turn partitioned into several subsets, where each member subset is a distinct gender of
that family. Every system may be a member of several families, but belongs to a single
gender in each family. Every family has at least one gender. One example of a conceivable
system family could be a family "operating system", whose members would be only
those monitored systems that are computers (rather than envirinment services), with every
operating system being an individual gender.

Families and their genders are defined so as to group together those monitored systems
whose equally named resources can be meaningfully compared, aggregated, and substituted
for one another. Every family corresponds to such a grouping criterion; the members of the
family are those systems to which the criterion applies; the family members of the same
gender are equal by that criterion. Families are a means of managing the cell heterogeneity
by making it explicit where appropriate. If type-function modifiers depend on the sensor
family membership, then simple modifications of the relatively few family relations can
produce far-reaching and fine-tuned impact on the behavior of many sensors and the entire
Megascope system.

Families should be defined so as to represent those characteristics of monitored systems
that are relevant for the interpretation of resource data in a specijic cell. Some families
may turn out to be readily accepted, like those that reflect technological, topological,
or administrative properties of the monitored systems. Some families may be defined
in order to improve the efficiency of Megascope administration, by associating certain
properties with large groups of related systems rather than with individual systems. Obvious
candidates for such management-related families are those that define access-rights and

175

those that define arguments for normalization functions. (Normalization functions render
absolute values of equal-named monitored variables in mutually compatible form, e.g., by
recognizing that equal time extents on processors of different speeds amount to different
processing capacities.)

Panel queries. Most of the queries retrieve items from the volatile data set; retrieval is
the only operation that can be aplied to the volatile data. The resident database admits
appropriately administered retrieval, storage, and modification.

The retrieval queries may be thought of as addresing the MainView scheme; their
general form may be outlined as follows:

select <system-name><volatile-fields> from MainView where
<system-resident-fields > satisfy "expression" and
<system-volatile-fields> satisfy "simple-expression"

To understand the content and the form of <volatile-fields> and the selection expressions,
the query should be viewed as consisting of two sequential stages, where the first-stage
query is issued to the resident database, while the second-stage query retrieves the volatile
data. The first stage selects a set of interesting systems, while the second stage retrieves the
resource data of the selected systems. We anticipate that the evaluation of the selected set
may involve the unrestricted set of the standard database operations over the resident data. In
contrast to the first stage, the second stage is essentially a projection with simple selections
based on values of individual items, followed by applications of simple aggregate functions
on the result. Two explicit stages in the query structure respond to anticipated observer
interests in large homogeneous substructures within the heterogeneous environment. The
first stage establishes such a substructure, while the second stage explores it.

Panel control. Most of the panel tasks are essentially parallel and mutually asynchronous.
It is therefore conceptually appealing and practically advantageous to view the panel as
if it were a set of largely independent agents that interact with the outside world and
interfere with one another in a controlled fashion. This concept is preferable to that of a
single compact panel for one more reason: facilitating distribution of panel operation over
several physical hosts. On the highest level, the panel tasks are classified in two groups:
the foreground tasks executed by the front panel, and the background tasks executed by
the back panel.

The front panel communicates with sensors and observers. Its operation is completely
driven by the events generated by sensors and observers. Upon receiving a sensor message,
the front panel decodes it and stores its content into the volatile database. To avoid delays,
the front panel does not attempt to analyze the received data in any way other than
identifying it to the extent that is required to store it. Upon receiving an observer query,
the front panel computes its response and sends it to the observer.

The back panel is mostly engaged in computation and its schedule is based on timing
rather than on event occurrence. The background tasks in general consist of continuous
inspection and filtering of the panel database, so that various regular and exceptional

176

operations are performed on the data. Rich and exploitable data-level parallelism is inherent
in the background processing. The background tasks include: maintaining the resident
database, maintaining the recent history of the volatile data, handling exceptional values
discovered in the volatile set or received by a sensor, archiving the volatile data, etc.

2.3 Observers

a liaion anelll
111

I

,,
user I

I �9 optional

Figure 4: Megascope Observer Structure.

Observers are started on the request of users or programs that wish to retrieve the panel
information. They run on the host that initiates the request.

Observer responsibilities. Observers collect valid queries from the user and present
them to the panel, and receive query responses from the panel and present them to the user.
As a part of this task, observers offer a convenient user interface.

In an attempt to distribute the processing task, Megascope observers assume partial
responsibility for computing query results. This responsibility implies decomposing user
queries into two parts whose composition is equivalent to the original query: the basicpart,
which is forwarded to the panel, and the local part, which is evaluated by the observer. The
local part factors out those query evaluation steps that only rearrange the already retrieved

177

data. Such steps can be performed at the user site rather than by the panel. For instance, if
the user requests a normalized, sorted selection, the observer breaks this query into a basic
selection plus a local normalization and sort.

2.4 Links

Megascope uses PEN [10], the Pilgrim asynchronous event notification utility, as its link
component. PEN provides all the functionality required from the Megascope links and
guarantees a degree of independence from the low-level communication mechanisms.
Finally, as a general event notification mechanism, PEN can make sensor data available to
external recipients in a convenient way.

To enable Megascope sensors to function in those DCE cells that do not support the
Pilgrim environment, Megascope schedulers are designed to support communication with
their recipients via basic DCE RPC services.

3 Conclusion

The success of Megascope design [10] depends crucially on its commitment to the advanced
role of primary data collectors, sensors, in the monitoring process. Sensors are charged with
the responsibility to configure and maintain themselves, obtain findings and judge their
interestingness, engage in dialogs with recipients, even cope with some of the possible
environment faults. Sensors dominate the monitoring process.

To perform their tasks, sensors operate as collections of concurrent asynchronous
processes. The correct coordination of the sensor subsystems, although conceptually clear in
our design, presents an implementation challenge that has to be met in this early stage of the
DCE development, while the basic environment components are still going through frequent
revisions. Even though the sensors are designed to be able to operate without the panel,
their operation depends on their compliance with the panel data definition, which must be
enforced manually in the absence of the real panel. This information structure, designed
to support autonomous and ambitious sensor operation, is also challenging, because of its
nonstandard meaning and nontrivial behavior.

Our proposal of sensors and the entire Megascope attempts to overcome the imminent
polling bottleneck of traditional monitors by investing a moderate amount of the local
computation resources and by insisting on the high-quality design and implementation. Our
present work on the implementation of sensors looks for a confirmation of our concepts.

References

[1] G. Carpenter and B. Wijnen (1991): SNMP-DPI, Simple network management pro-
tocol distributed program interface, lAB RFC 1228.

[2] J. Case, M. Fedor, M. Schoffstall, J. Davin (1990): A simple network management
protocol (SNMP). lAB RFC 1157.

178

[3] Cerf, V. (1988): IAB recommendations for the development of intemet network
management standards, lAB RFC 1052.

[4] International organization for standardization (1988): Information processing
systems - Open systems interconnection, Management information service defini-
tion, Part 2: Common management information service. ISO 9595.

[5] International organization for standardization (1988): Information processing
systems - Open systems interconnection, Management information protocol spec-
ification, Part 2: Common management information protocol. ISO 9596.

[6] OIM Working Group (1991): OSI intemet management: Management information
base. L. Labarre, ed., IAB RFC 1214.

[7] Open Software Foundation (1992): Introduction to DCE. Open Software Foundation,
Cambridge, Massachusetts.

[8] OSF DCE SIG Instrumentation Work Group (1993): Requirements for performance
instrumentation of DCE RPC and CDS services. R. Friedrich, ed., OSF DCE SIG
RFC 32.0.

[9] Project Pilgrim (1992): Pilgrim Newsletter. May 1992, University of Massachusetts.

[10] Project Pilgrim (1992): Project Pilgrim Document Set. November 1992, University
of Massachusetts.

[11] M. Rose and K. McCloghrie (1990): Structure and identification of management
information for TCP/IP-based intemets. IAB RFC 1155.

[12] B. Searle (1993): DCE managed objects. OSF DCE SIG RFC 38.0.

[13] SNMP Working Group (1991): Management information base for network manage-
ment of TCP/IP-based intemets: MIB-II. K. McCloghrie and M. Rose, ed., lAB RFC
1213.

[14] L. Steinberg (1991): Techniques for managing asynchronously generated alerts, lAB
RFC 1224.

[15] UNIX International (1993): Requirements and draft speciJications for the Universal
Measurement Architecture (UMA). UNIX Intemational, Parsippany, New Jersey.

[16] S. Waldbusser (1991): Remote network monitoring management information base.
IAB RFC 1271.

[17] U. Warrier, L. Besaw, L, LaBarre, B. Handspicker (1990): The common management
information services and protocols for the internet. IAB RFC 1189.

Supporting Continuous Media in Open Distributed
Systems Architectures

Phil Adcock, Nigel Davies, Gordon S. Blair

Distributed Multimedia Research Group,
Department of Computing,

Lancaster University,
Bailrigg,
Lancaster,
LAI 4YR,

U.K.

telephone: +44 (0)524 65201
e-mail: mpg@comp.lancs.ac.uk

Abstrac t . Recent developments in high-speed networks and high-
performance workstations have led to the emergence of a new class of
applications termed distributed multimedia applications. However, the
range of distributed systems architectures currently being proposed to
support open systems integration were largely conceived prior to these
developments. Initial work directed towards the introduction of multimedia
in environments compatible with ISO's Open Distributed Processing (ODP)
standard has suggested that significant developments to the underlying
architecture are required. These developments are now being reflected in
new versions of the ODP standard. However, OSF's Distributed Computing
Environment (DCE), currently emerging as a de-facto standard for
distributed processing, does not fully address the requirements of
multimedia computing. This paper reports on the impact that multimedia
has had on the ODP community and examines how the community's
experiences can be used as a basis for incorporating multimedia in DCE.

1 Introduction

Widespread recognition of the potential benefits of multimedia computing has
prompted significant research interest in this field in recent years. A range of single
workstation multimedia applications are now available combining varying sources of
information such as voice, video, audio, text and graphics. Examples of these stand-
alone multimedia applications include interactive video systems and computer aided
leaming packages.

Further benefits from multimedia computing can be achieved if support for
multiple media types is provided within a distributed environment. Such support
allows the realisation of applications including video conferencing systems,

180

collaborative working and multimedia design environments. The emergence of high-
speed networks and protocols (e.g. FDDI, ATM), high-performance workstations
(executing many millions of instructions per second) and large-capacity storage
devices (e.g. optical disks, disk arrays) has enabled researchers to construct such
distributed multimedia systems [1].

However, in order to address the problems of operating in a hetrogeneous
environment, Open Distributed Architectures must evolve to meet the requirements
of this new class of applications. Researchers at a number of institutions are
considering the implications of multimedia on distributed architectures (e,g. Comet
[2] and the Touring Machine [3]). The results of this work are now beginning to
impact on ISO's emerging standard for Open Distributed Processing (ODP) [4]. This
work has not yet been mirrored in OSF's Distributed Computing Environment
(DCE) which is rapidly becoming the industrial de-facto standard for distributed
systems [5].

This paper describes the impact which providing support for multimedia
applications has had on the ODP community and highlights aspects of DCE which
will need extending if a similar level of functionality is to be provided. Section 2 of
the paper presents a summary of the key requirements of any platform designed to
support distributed multimedia applications. Section 3 considers the impact these
requirements have had on the ODP architecture and describes a set of ODP compatible
services which have been developed to support distributed multimedia applications (a
brief introduction to the relevant sections of the ODP architecture is also included).
Section 4 then highlights aspects of DCE which, in the authors opinion, will need to
be extended in order for DCE to provide a similar level of functionality. Section 5
contains some concluding remarks.

2 Requirements of M u l t i m e d i a

Experimental distributed multimedia applications are being developed in many
areas such as educational systems [6], medical systems [7] and computer based
conferencing [8]. In this section we consider system support requirements derived
from a wide ranging study of distributed multimedia applications [9], under the
following headings:-

i) explicit support for continuous media,

ii) quality of service (QoS) specification,

iii) synchronisation, and,

iv) support for group communication.

These requirements are discussed in more detail in the following sections.

2.1 Support for Continuous Media

The various forms of media in a multimedia system can be categorised as either
static or continuous. Static media are those which do not have a temporal dimension.
In contrast, continuous media (e.g. video and audio) have an implied temporal
dimension, i.e. they are presented at a particular rate for a particular length of time

181

[10]. These real-time characteristics of continuous media demand a continuing
commitment from the underlying system in terms of services provided. Since
continuous media require sustained system support over a period of time, a means of
resource reservation is required such that resources can be reserved in advance for the
time they are needed. Continuous media types also require the development of new
programming abstractions to model communications and storage which capture the
concept of information flowing over time [11].

2.2 Quality of Service

Continuous media applications make heavy use of underlying support systems
in terms of processing, storage and communications. Research effort is therefore
being directed towards the development of tailorable systems which can meet the
diverse requirements of such applications. A tailorable system is able to adapt itself
according to application quality of service requests and resource availability.

It is important to note that, within a multimedia system, quality of service must
be provided on an end-to-end basis. Applications need to control resource allocation
completely from the information source to the information sink. Typical components
in this control path include I/O devices, operating system processes and a
communications network.

Quality of service configurability is also applicable to control information sent
between system components. Control messages with bounded delay characteristics
must be available to allow the system to react to real-time events in a timely
manner. Again, control messages require end-to-end guarantees of service which take
into account all the system components which make up the message's path.
Programmers must be provided with a means of specifying their QoS requirements
for both continuous media transmissions and control messages.

2.3 Synchronisa t ion

Multimedia applications require an extensive range of synchronisation
mechanisms. Synchronisation is required to control the event orderings and precise
timings of multimedia interactions. In analysing the requirements of multimedia
applications, two styles of synchronisation can be identified [12]:-

i) real-time events, and

ii) continuous synchronisation.

Real-time events occur when it is necessary to initiate an action (such as
displaying a caption) in a distributed system. The timing of this action may
correspond to a reference point such as a particular video frame being displayed.

Continuous synchronisation arises when data presentation devices must be tied
together so that they consume data in fixed ratios. The primary example of this type
of synchronisation is a 'lip-sync' relationship between a video transmission and a
separately stored soundtrack.

From our experiences in handling audio and video, we believe it is likely that
these styles of real-time synchronisation require a global time service providing a
granularity of the order of 1 millisecond, for example to bound the latency of real-
time events [13].

182

2.4 Support for Group Communications

The concept of process groups has been demonstrated as a useful tool for
constructing distributed applications [14]. The use of this technique is likely to
increase as more applications are designed to support groups of collaborating users
(as is the case in many CSCW applications). The introduction of support for
multimedia demands that the ability to message process groups is matched by a
corresponding ability to transmit continuous media to groups of users. This
requirement is particularly evident when considering the implementation of
applications such as video conferencing systems where a single speaker may wish to
communicate with a group of colleagues.

3 The Impact of Multimedia on ODP

The Distributed Multimedia Research Group at Lancaster has developed an
application platform which addresses many of the requirements described in section 2.
The platform has been designed to conform to ISO's ODP draft standards where
possible and the platform and the issues it raises are described from both
computational and engineering viewpoints in the following sections.

3.1 The Computational Model

The programming interface presented to the application is based on the
computational model developed as part of the ANSA/ISA project [15]. The
ANSA/ISA (Integrated Systems Architecture) project is funded within the C.E.C.'s
Esprit program and is playing an important role in the development of standards for
Open Distributed Processing.

The ANSA computational model provides a programming language model of
potentially distributed objects and their modes of interaction. All interacting entities
are treated uniformly as objects. Objects are accessed through interfaces which define
named operations together with constraints on their invocation.

Services are made available for access by exporting an interface to a trader. The
trader therefore acts as a database of services available in the system. Each entry in
this 'database' describes an interface in terms of an abstract data type signature for the
object and a set of attributes associated with the object. A client wishing to interact
with a service interface must import the interface by specifying a set of requirements
in terms of operations and attribute values. This is matched against the available
services in the trader and a suitable candidate selected. Note that an exact match is not
required: ANSA supports a subtyping policy whereby an interface providing at least
the required behaviour can be substituted. Once an interface has been selected, the
system can arrange a binding to the appropriate implementation of that object and
thus allow operations to be invoked. The ANSA consortium have released a software
suite called ANSAware which is a partial implementation of the ANSA model.

The authors have proposed a number of extensions to the ANSA architecture to
allow the integration of continuous media types such as audio and video [12].
Support for these media types has been implemented without substantial

183

modifications to the basic model of objects and invocation. Instead, integration has
been achieved through the introduction of a number of new services. We call this set
of new services the base service platform. It consists principally of two types of
object: devices and streams. These are both seen by the higher layers as ANSA
services with standard abstract data type interfaces, but they encapsulate the control,
manipulation and communication of continuous media.

Devices are an abstraction of physical devices, stored continuous media, or
software processes. They may be either sinks, sources or transformers of continuous
media data. Most devices present two interfaces: a device dependent interface which
contains operations specific to the device (e.g. a camera might have operations such
as pan or tilt) and a generic control interface for controlling the device's production
and consumption of continuous media. Using the control interface, clients of a device
may create an endpoint interface on the device. This interface abstracts over all
aspects of a device which are concerned with the transport of continuous media data.

Streams are the services used to connect devices together via their endpoint
interfaces. They are abstractions of continuous media transmissions which map down
on to underlying transport protocols. Streams may be tailored to provide a particular
QoS (e.g. high-throughput, low error-rate etc.). Streams support M:N connections,
i.e. they allow M sources to be connected to N sinks. This is modelled by allowing
endpoint interfaces to be grouped together, and ensuring streams interconnect these
groups as shown in figure 1. Note that endpoint interfaces may be dynamically added
to or removed from groups.

Source

group

Control
i n t e r f ace s~

Sink
group

data

Stream I ~ ~

interfaces

i n ~ |
group group k . / " = "

A device dependent
interface

Figure 1 : Using streams to connect endpoint interface groups.

In section 2 we identified two distinct forms of synchronisation, i.e. real-time
events and continuous synchronisation. Implementing both of these forms of
synchronisation requires the transmission of timely control messages. At the
computational level this implies that programmers may specify time bounds (i.e.
earliest and latest return times) for invocations. Application synchronisation

184

requirements may be specified using a number of techniques including complex
(compound) object structures [16] and languages which include a temporal dimension
[17]. Further details of the approach to multimedia synchronisation being adopted at
Lancaster may be found in [17].

A prototype implementation of this model was carded out in a standard UNIX
workstation environment to allow the validation of the programming interface. This
has proved successful, and a number of applications including an audio/video
conferencing facility have been implemented [18].

3.2 Engineering Issues

A computational model must be supported at the systems level in order to
function. This is achieved by defining an engineering model which specifies the
guidelines, concepts and specifications required to provide adequate support. Objects
visible from the engineering viewpoint include transparency and control mechanisms,
processors, memory and communications networks.

The ANSAware package provides a fairly complete implementation of the
ANSA engineering model described in the ANSA Reference Manual [15]. It provides
an Interface Definition Language (IDL) which allows interfaces to be defined in terms
of their operations and a Distributed Processing Language (prepc) which allows a
programmer to specify interactions between programs which support those interfaces.
Prepc statements, which are embedded in a host language such as C, allow servers to
export their services to a trader and allow clients to import any required services,
establishing a binding in the computational model. Clients may then invoke
operations on a server's interface.

Communications support for the invocation model is provided by a remote
execution protocol (REX) which is layered on top of a message passing service
(MPS). REX is a remote procedure call protocol which supports the binding
necessary for invocations. MPS is a generic transport layer which provides
communications support.

The functionality of the engineering model is integrated into a library which is
linked with application code to form a capsule which may implement several
computational objects. In a UNIX environment a capsule is implemented as a
process. In order that objects may deal with invocations concurrently, support is also
provided for multiple lightweight threads within capsules.

To meet the requirements of continuous media, the engineering model must
include support for a time-constrained remote procedure call mechanism which
supports the transmission of timely control messages. By specifying both a lower
and an upper bound on the time at which a message should be delivered to its
destination the system is able to compensate for the problem of latency (mainly
network latency) inherent in remote procedure calls. Furthermore, the need to not
only deliver control messages in real-time, but to have their recipients carry out the
required processing within certain time bounds requires support from both the
recipients operating system's scheduler and the capsule's thread scheduler. In
particular, support is required at the threads level in the form of a pre-emptive
deadline scheduling policy which chooses the next thread to run based on the deadline
of its next waiting message. Additional support is required for streams in terms of

185

high performance communications protocols which provide the QoS characteristics
necessary for continuous media [19].

4 Implications for DCE

This section discusses the implications of supporting multimedia for the DCE
architecture. The approach we adopt is similar to that described in section 3, namely
to wherever possible augment DCE's computational and engineering models with
new services without modifying existing ones. As a starting point we map the
required multimedia support services on to a new set of Fundamental Distributed
Services (figure 2).

I~ ~ ~i:~iii~!!!!~iii~!iiiii~i!i~iii!ii~:i!!iiiiii~ �84 ~ i ~i~ ~A~licati~s!iiiii~ii~ii!i~!i!iiii~iii~iiii~i~iii!~i~!!iii!i~i!i~i ~ ~?~ ~ ~ ! ~ ~ ~l
~iii!~!i~iiiii~i~iii~ii~!!i~!~iii~i~!i!~!!i!~!~!:i!ii~i~!!!~i!i:~i~i~:!~i!!~L~!i~!~!? !~!~i!ii~L~!~:/~!i:ii~i!~:~i~!!i!!?~i~!~i~:~i!~i~i~i~ii~!:~:.?~!~iii!:~i~!:!~i~i~?~!~i~ii~!!~i!~i!i~i~!~i~ii:~ii~i~ii!iii~i~ii~iii?

Security

Diskless Other Distributed Services

Distributed File Services

Time Naming ~ ~ I Other

Manage
ment

j RPC and Presentation Services

Threads

Operating System and Transport Services I

Figure 2 : Integrating multimedia services into DCE.

4.1 Computational Issues

The computational model provided by DCE is not as clearly defined as the
computational model in ANSA. An interface definition language (IDL) exists in
DCE which defines attributes for controlling features of distribution such as
bindings. However, no attempt has been made to provide programmers with a
uniform set of abstractions for programming distributed systems. Instead, those
features of distribution defined by the integrated set of services (figure 2) are accessed
by calls to subroutines (e.g. rpe ns binding_import_begin which establishes
the beginning of a search for binding information in the name service database).

The integration of continuous media into the DCE computational model has

186

repercussions for the attributes defined in the IDL such as pipes, bindings, the name
service and for IDL itself. The following section discusses the impact of continuous
media on the DCE computational model by considering how the device and stream
abstractions defined in section 3 could be realised within a DCE system.

Modelling Devices
Devices are supported by two generic interfaces; a control interface which

provides generic control operations over a continuous source or sink and an endpoint
interface which abstracts over the transport of continuous media. Control interfaces
can be provided as standard DCE interface types. However, the introduction of
endpoint interfaces into DCE has implications most notably for the IDL which has
no concept of media type, quality of service or continuous media. Introducing the
functionality required to support endpoints can be achieved by providing the IDL with
a mechanism for specifying whether an interface is discrete or continuous and by
providing type/QoS annotations on the continuous interface.

The DCE attribute configuration file (ACF) provides additional information
about an interface. Current attributes in this file control binding methods, error
handling and marshalling/unmarshalling. We will introduce an attribute continuous
into the ACF to indicate that the interface supports continuous media. If this
attribute is not present in the ACF then the interface is discrete by default. Media
type will be denoted by media type attributes such as video_media and audio_media.

We can specify the level of QoS in DCE by introducing a QoS attribute into the
interface definition language (figure 3) which states the required level of QoS in terms
of factors such as throughput, jitter and latency. A richer language than that
illustrated in figure 3 will eventually be required to capture QoS requirements. QoS
constraint languages containing declarative statements of QoS are currently under
investigation [20].

I
uuid (A985C864-243G-22C9-D50H-06043C1 FCGA3),
version (1.0),
QoS ([Throughput, 8Mbps] [Jitter, 10ms] [Latency, 20ms])
] interface example_continuous
{

status get_data(parameters);
status put_data(parameters);

}
Figure 3 : An IDL specification including QoS information.

As discussed in section 2.4, multimedia also demands a rich model of group
communications. DCE currently provides a grouping mechanism in the form of cells
(a logical grouping of machines, resources and users). Objects within cells generally
share a common purpose (for example a department or a research group) and have a
greater level of trust with each other than with objects in other cells. However, cells
do not provide a sufficiently general method of specifying groups to meet the
requirements in section 2. Cells are intended to be reasonably static in nature while
groups in continuous media systems tend to be highly dynamic (for example in a
conferencing system with members joining and leaving the conference). A more
flexible approach to groups is required. It is possible to denote groups by storing the

187

relevant binding information in the name service using a group entry facility. This
must support richer forms of group messaging than is currently possible (including
multi-party continuous media connections).

DCE currently provides facilities to message single nodes and a broadcast
attribute which is attributed to operations in the IDL. Any invocation on an
operation with a broadcast attribute is automatically transmitted to all local nodes.
The client which made the invocation uses the first reply received and discards the
rest. This is not sufficient to implement the messaging of arbitrary groups and a
multicast protocol is required.

Modelling Streams
Streams are created as the result of a binding between two continuous interfaces.

A binding in the traditional distributed sense denotes a relationship between a client
and a server that are involved in a remote procedure call. Binding information is
stored in a data structure holding information describing the binding state such as the
internet address of the machine bound to, the protocol sequence used (such as TCP or
UDP) and a server process address on the host. This data structure is referenced by a
pointer commonly known as a binding handle.

The DCE environment supports automatic, implicit and explicit bindings, each
providing an application programmer with differing degrees of control over bindings.
The automatic method provides the least control as bindings are managed by the
client stubs. Once a remote procedure call is made, the stubs locate an appropriate
server from the name service and make the call. Binding handles are invisible and the
client has no choice regarding which server is used. The implicit method requires
slightly more programming effort as application code must locate the required server
using the name service and obtain the binding information. This allows a client to
bind to a specific server. Finally, the explicit method allows a programmer to pass a
binding handle explicitly as the first parameter in each remote procedure call. This
allows a client to bind to a different server after each remote procedure call.

The binding models described provide no support for the binding of continuous
interfaces. In particular they have no embedded notion of quality of service,
continuous media types or streams. It is therefore necessary to provide a method of
accommodating stream bindings (figure 1) in DCE. This can be achieved by defining
a customised binding handle to store the additional binding information relating to
the stream, i.e. the type and QoS of the stream. An IDL operation continuous bind
can be used to create a continuous stream binding between two continuous interfaces
using the customised handle. The establishment of the binding must ensure
compatibility between the required type/QoS of the stream and types/QoS capabilities
of the interfaces involved in the connection. This might involve negotiation with the
service requestor.

It is worth noting at this point the role of DCE pipes in the transmission of
continuous media. Pipes provide a method of efficiently transmitting large amounts
of typed data between a client and a server. However, they do not provide a suitable
abstraction for transmitting continuous media. In particular, since pipes are
invocation based there is no mechanism for expressing the continuous commitment
and synchronisation requirements which can be captured using an explicit stream
binding. By adding explicit stream objects to DCE the approaches to specifying

188

synchronisation requirements in ODP (section 3) can also be used within a DCE
environment.

4.2 Engineering Issues

The mechanism used to support invocation in DCE is the remote procedure call
(RPC) which we use in our model as a method of communicating control
information. The semantics of RPC in DCE provide a level of QoS control.
However, the parameter of latency is not considered and must be addressed in order to
provide a level of real-time control which in turn provides real-time guarantees. Our
solution is to augment the current RPC model by including a timestamp as a
parameter in the call to the remote procedure which specifies a deadline by which the
remote procedure must be executed and the result returned. As stated earlier, such
augmentation requires support from the threads scheduler. The DCE threads package
supports three priority based scheduling policies, first in first out, round robin and a
timesliced policy which is the default. However, to support time-stamped RPCs a
deadline based scheduling policy is required and this will need to be added to DCE's
range of scheduling policies.

In order to identify objects uniquely anywhere in a DCE network, a Universal
Unique Identifier (UUID) facility is provided. There are two classes of UUID provided
by DCE; Interface UUIDs and Object UUIDs. Interface UUIDs are used in remote
procedure calls to give each interface type a unique signature. Object UUIDs are used
to map a call to an interface to the appropriate type managers which execute the
correct server code. No mechanism exists for the subtyping of interfaces as in
ANSAware.

An example of the use of object UUIDs is the implementation of a print
manager object which implements a range of generic print operations. Although there
is only one interface, there may be several type managers, each of which provide
different implementations for different models of printer. An object UUID is
associated with each printer type and the correct type manager is referenced when an
operation is called according to the UUID received with the invocation.

This is important when considering control interfaces which provide a user with
a generic point of access to devices, for example when initiating and terminating a
video connection. The control interface must be accessible through the name service.
Since there is one generic interface which maps on to several implementations for
specific multimedia devices, a relationship exists between control interfaces and
interface and object UUIDs in DCE. This relationship may be used to map a call to a
generic interface to instance-specific manager routines.

It is unclear whether the DCE distributed time service provides sufficient
granularity to support the real-time synchronisation requirements of multimedia
applications (see section 2.3) and further work must be carried out to establish
whether a finer granularity is required. It is clear however that additional engineering
support will be required from the underlying operating system which underpins DCE.
For example, to support continuous media traffic, it must be assumed that the
operating system provides a QoS constrained high performance transport service.
Similarly, concepts such as split level scheduling may be required to provide the
necessary real-time guarantees for DCE threads [21].

189

5 Concluding Remarks

Multimedia applications are likely to represent a significant percentage of all
future distributed applications and distributed systems architectures must evolve to
provide them with adequate support. In the first section of this paper we presented our
experiences of extending one such architecture (ODP) to provide the required level of
support. Based on these experiences the second section considered how a similar level
of functionality could be provided within the framework of OSF's DCE.

The approach adopted is to introduce a new set of fundamental services (i.e.
multimedia services) and to modify the existing services as little as possible. We can
now be more specific about the contents of the fundamental multimedia services, i.e.
they will include stream services and multimedia device abstractions. However,
investigation has revealed that some extensions are required in at least three of the
existing fundamental services: threads, RPC and the directory (name) service:-

i) Introduction of a continuous attribute for continuous interfaces in
the IDL.

ii)

iii)

iv)

v)

vi)

vii)

IDL specification of media types with appropriate attributes.

Definition of the required level of QoS in the IDL for an interface
using a required QoS statement.

New customised binding handle for continuous media bindings.

Continuous media bind operation for the IDL.

Introduction of time constrained RPC with bounded delay
characteristics

Deadline scheduling policy for threads to enable engineering of
time constrained RPCs.

viii) Use of the name service for storing continuous media binding
information and group-related bindings.

ix) Potentially finer granularity for the distributed time service.

x) Additional support from the underlying operating system and
transport services in terms of the communications subsystem and
operating system scheduling.

As a future work item the authors hope to investigate a number of these issues
further by carrying out a prototype implementation of support for continuous media
devices and streams within DCE.

References
1. N.A. Davies and J.R. Nicol: A Technological Perspective on Multimedia
Computing. Computer Communications Vol. 14 No, 5, June 1991, Pages 260-272.

190

2. D.P. Anderson and P. Chan: Comet - A Toolkit for Multiuser Audio/Video
Applications, Technical Report Computer Science Division, EECS Department,
University of California at Berkeley, U.S.A., October 1991.
3. P.C. Bates and M.E. Segal: Touring Machine - A Video Telecommunications
Software Testbed. Proc. International Workshop on Network and Operating System
Support for Digital Audio and Video, International Computer Science Institute,
Berkeley, University of California at Berkeley, U.S.A., 8-9 November, 1990.
4. ISO. Draft Recommendation X.901: Basic Reference Model of Open Distributed
Processing - Partl: Overview and Guide to Use. Draft Report ISO WG7
Commitee,1992.
5. Open Software Foundation: OSF DCE Application Development Guide. Revl.0
Update 1.01, 1992.
6. R. Beckwith, D.G. Jameson and W. Tuck. Distance Learning and LiveNet.
Computer Bulletin Vol. 2 No. 5, June 1990, Pages 2-4.
7. M. Goldberg, N.D. Georganas, J. Robertson, J. Mastronardi and S. Reed: A
Prototype Multimedia Radiology Communication System. Proc. 2nd IEEE
International Workshop on Multimedia Communication, Ottawa, Canada, April
1989.
8. S.R. Ahuja, J.R. Ensor and D.N. Horn: The Rapport Multimedia Conferencing
System. Proc. Conference on Office Information Systems, Palo Alto, California,
U.S.A., March 23-25, 1988.
9. N. Williams, G.S. Blair and R.A. Head: Multimedia Computing:Applying the
Technology. Internal Report MPG-91-10, Computing Dept., Lancaster University,
Bailrigg, Lancaster LA1 4YR, U.K., 1991.
10. D.P. Anderson, S. Tzou, R. Wahbe, R. Govindan and M. Andrews: Support for
Continuous Media in the Dash System. Proc. lOth International Conference on
Distributed Computer Systems, Paris, France, May 1990.
11. G.S. Blair, G. Coulson, N. Davies and N. Williams: Incorporating Multimedia
into Distributed Open Systems. Proc. EurOpen'91, Tromsr Norway, May 1991.
12. G. Coulson, G.S. Blair, N. Davies and N.Williams: Extensions to ANSA for
Multimedia Computing. Computer Networks and ISDN Systems, Vol. 25, 1992,
Pages 305-323.
13. D.B. Hehmann, M.G. Salmony, H.J. Stiittgen: Transport Services for
Multimedia Applications on Broadband Networks. Computer Communications, Vol.
13, No. 4, 1990, Pages 197-204.
14. K.P. Birman: The Process Group Approach to Reliable Distributed Computing.
Technical Report Dept. of Computer Science, Cornell University, U.S.A., July
1991.
15. Architecture Projects Management Ltd.: The ANSA Reference Manual Release
01.00, Architecture Projects Management Ltd., Cambridge, U.K., March 1989.
16. P. Hoepner: Synchronising the Presentation of Multimedia Objects - ODA
Extensions -. Proc. Eurographics Multimedia Workshop, Stockholm, Sweden, April
1991.
17. G. Coulson, G.S. Blair, F. Horn, L. Hazard and J.B Stefani: Supporting the
Real-Time Requirements of Continuous Media in Open Distributed Processing.
B.S.I. Document BSI/IST21/-[1/5:94, also available as Internal Report MPG-92-35,
Computing Dept., Lancaster University, Bailrigg, Lancaster LA1 4YR, 1992.
18. N. Davies, G. Coulson, N. Williams and G.S. Blair: Experiences of Handling
Multimedia in Distributed Open Systems. Proc. 3rd Usenix International
Symposium on Experiences with Distributed and Multiprocessor Systems, Newport

191

Beach, California, U.S.A., March 1992.
19. A. Campbell, G. Coulson, F. Garcia and D. Hutchinson: A Continuous Media
Transport and Orchestration Service. Proc. ACM SIGCOMM'92, Baltimore,
Maryland, U.S.A., 1992.
20. J.B. Stefani: Some Computational Aspects of QoS on ANSA, Internal Report,
CNET, 92131 Issy-les-Moulineaux, France.
21. G.S. Blair, G. Coulson, N. Davies and N. Williams: The Role of Operating
Systems in Object-Oriented Distributed Multimedia Platforms. Proc. 2nd
International Workshop on Object-Orientation in Operating Systems, Dourdan,
France, September 24-25, 1992, Pages 134-141.

Integrating RPC and Message Passing
for Distributed Programming

Yi-hsiu Wei 1 and Chuan-lin Wu 2

IIBM Austin, Austin TX 78758, USA. ywei@ausvml.vnet.ibm.com
2The University of Texas at Austin, Department of Electrical and Computer

Engineering, Austin TX 78712, USA. clwu@emx.utexas.edu

Abstract. Client-server and cooperative processing are two models for distributed
programming. The client-server style is simple and powerful. Remote procedure
call (RPC) is its communication mechanism. However, the cooperative process-
ing style is more appropriate for expressing parallelism. Message passing is its
communication method. In this paper, we describe a combined programming
style and present a technique to integrate RPC and message passing in Open
Software Foundation's Distributed Computing Environment (DCE). This DCE
extension allows DCE applications to be designed and implemented in client-
server, peer cooperative processing or a combination of both.

I. Introduction

Distributed programming may adopt one of two general models: client-server comput-
ing and peer cooperative processing. These two models take different approaches to
the distribution of work to multiple systems in the network. In the client-server model,
clients are programmed to rely on access to the data, devices or computational
resources of servers to accomplish work. Remote procedure calls (RPCs) [3] are used
by clients in distributed client-server programs for clients to access remote resources.
On the other hand, peer cooperative processing is a good model for coarse granularity
concurrent processing. A peer-to-peer program contains a set of active components
running concurrently. These peer components interact with each other by exchanging
messages synchronously or asynchronously [1].

The client-server model is simple and powerful, but cooperative processing is more
suited for expressing parallelism. A combination of the two may allow a more flexible
way of designing and programming distributed applications. In the mixed style, the
components of a program may communicate with each other via RPC and message
passing at the same time, as appropriate, in different parts of the program.

The Open Software Foundation's (OSF) Distributed Computing Environment (DCE)
[11] provides a synchronous RPC facility as a uniform high-level communication
abstraction. This makes DCE a good client-server computing environment and thus
promotes client-server model of programming. DCE RPC has been used throughout
DCE core components and in all DCE applications. In this paper, we introduce an
extension to the DCE programming model to allow peer cooperative processing as

193

well as RPC to be used in programming distributed applications on DCE. An inte-
grated facility provides for both synchronous RPC and synchronous/asynchronous
message passing primitives in a single underlying RPC framework. As a result, DCE
applications can be designed as a set of cooperative concurrent peer entities communi-
cating with each other by exchanging messages and also accessing servers using
RPCs.

Both synchronous RPC and major message passing primitives such as synchronous/
asynchronous, single/multiple-point-connected, typed-data messaging and remote ren-
dezvous calls are supported in a consistent design. Since the DCE RPC facility comes
with three important capabilities: data representation conversion, typed-data marshal-
ling/unmarshalling and support for multiple transport protocols, the integrated facility
takes advantage of these capabilities to allow passing typed messages between
machines in heterogeneous network environments at a low cost.

Section 2 discusses cooperative processing, client-server computing and a mixed pro-
gramming style. Section 3 presents the technique for incorporating message passing
capability into DCE and shows how the messaging facility is used. Section 4 describes
the implementation of the integration. Section 5 is a conclusion.

2. Distributed Programming Models

In this section, we first discuss peer cooperative processing and client-server comput-
ing and then introduce a mixed style of both for programming distributed applications.

2.1. Cooperative Processing

Distributed cooperative processing extends parallel execution of programs on multi-
processors to distributed systems. In general, a parallel algorithmic solution to a prob-
lem can be represented by a directed graph, which can be considered an abstract
parallel program. A node of the graph contains a number of operations. An arc repre-
sents the data flow from one node to another. Nodes cooperate with each other by
exchanging data via arcs. Data may be produced during or at the end of node process-
ing and consumed at the beginning of or during node processing. A parallel program
can be executed in a distributed system by assigning its nodes to multiple machines in
the network.

The abstract data flow can be implemented by either shared memory or message pass-
ing method. With shared memory, a producer node updates variables and the consumer
node reads the variables. Concurrency control and synchronization between these
operations are normally accomplished using semaphores, conditional variables or
monitors. With message passing, the producer sends a copy of the data to the con-
sumer. The consumer synchronizes with the producer at data 'receive' operation. These
two methods are equally powerful and abstract. Either one may simulate the other [7].
Therefore, either method may be adopted exclusively as a uniform communication

194

abstraction in a programming system. For example, NIL [8] uses message passing as
the communication abstraction between its processes. While Linda [6] uses logically
shared data (tuples) for program communications.

However, these two methods are also complementary to each other in the sense of exe-
cution performance. Shared memory method is efficient when two nodes are running
on the same machine and have access to a common physical memory. On the other
hand, message passing fits well when two nodes are located on different physical
machines. Message passing across machines normally involves data copying. A local
message passing between nodes in the same system may be optimized to avoid data
copying at all through shared memory lazy-copying technique [10].

Since message passing is suited for communications between loosely coupled nodes
running on different machines and shared memory is efficient for the communications
between tightly coupled nodes running on the same machine, a refined graph model
(Figure 1) allows a choice of implementation for the abstract data flow between nodes:

1. A node is a sequential thread of execution. (A node can be mapped to a thread
in DCE).

2. A cluster contains a number of tightly coupled nodes which have access to a
common memory in the cluster. (A cluster can be mapped to a process in DCE)

3. Inter-cluster node communication is accomplished via message passing.
4. Communications between nodes in the same cluster can be accomplished via

shared memory or local message passing.

 . ,uster2

c usterl imap

network

Figure 1. A refined cooperative processing model

A cluster is assigned to a physical machine as a whole. Therefore if two nodes are to be
running on different machines, they have to be wrapped in different clusters. Given a

195

number of program clusters distributed on multiple machines, the execution of all
active nodes of all clusters is parallel distributed solution of the problem. This model
and its variants have been adopted by a few advanced distributed programming sys-
tems [2].

The DCE process/thread model is similar to this cluster/node model except that com-
munications between DCE clients and servers are accomplished via synchronous RPC.
There is no direct communications between two peer nodes (threads). This limits the
expressiveness for parallelism and the interaction among peer programs.

2.2. Client-Server Model

Other than assigning active nodes to multiple machines, work can also be distributed
in a client-server style. In a client-server model, servers provide a set of services and
clients request and obtain services through synchronous RPCs. Distributed processing
is achieved when servers and clients are assigned to multiple machines for execution.
This model is well suited to two application domains: 1) remote data services and 2)
remote computation services. Example applications are distributed transaction pro-
cessing and remote numerical intensive computation.

A problem with pure client-server model is that the model offers neither concurrent
semantics nor a concept of communications between active program components.
Therefore, programming systems such as DCE have to resort to other methods, out
side of pure client-server model, for expressing parallelism. Parallelism is at least as
important as work distribution. Without parallelism, a distributed processing is merely
a sequential execution of work multiplexed by several machines. This is why DCE has
to heavily rely on the thread package for application programming, to complete its pro-
gramming model.

Application parallelism can be expressed using a thread package, but in a limited fash-
ion. Parallelism in DCE applications is primarily exploited by multi-threading the cli-
ents. A multi-threaded client may make several concurrent RPCs to servers residing on
multiple machines to process its work in parallel. The client and server processes are
not peer entities though. On the other hand, since a process may be both a client as
well as a server at the same time, the combined client/server processes in DCE applica-
tions may look like uniform disllibuted peer entities. However, there is still no facility
for direct communications between the multiple peer client threads in separate pro-
cesses. When direct communications are desirable, DCE developers have to simulate,
in various ways, the capability using RPC and shared memory.

Asynchronous RPC has been considered as an alternative to synchronous RPC to pro-
vide some concurrent semantics [4]. An asynchronous RPC immediately returns and
continues the execution of local thread after it has sent its input parameters and acti-
vated the remote procedure. The result may be left in the server environment or
returned and cached in the client side for pick-up later by a subsequent synchronous

196

RPC from the client. Parallelism can be exploited in the sense that the client and the
server can be running in parallel.

This model is restricted. Normally, a client process starts a server process by issuing an
asynchronous RPC. The server process gets the input data at the beginning of its exe-
cution. It terminates when runs through the end of its routine. The two processes may
not communicate freely in the middle of server routine execution. The processes are
not peers, and the communication is not symmetric.

Synchronous and asynchronous RPC are therefore not sufficient for programming gen-
eral peer cooperative applications. Distributed systems, such as DCE, using R I ~ as
the only communication mechanism may not be able to directly support the program-
ming and execution of parallel peer-to-peer applications.

2.3. The Combined Model

There are many situations in the real world where many activities are more like peer-
to-peer processing than client-server computing. In the case of a project team, it is very
hard (or mind-twisting) to model the activities of team members, who cooperate with
each other to get a project finished, as client-server relations. It is even harder to figure
out how parallelism due to the activities of individual members can be mapped to
multi-threading of clients, the way DCE applications express parallelism.

Nevertheless, the client-server model is still conceptually simple for programming and
powerful for reaching distributed services. Indeed, there are many real world systems
which can be perfectly modeled by client-server relations. An example is that you may
call a plumber to come by and fix your kitchen sink. In addition, the notion of multiple
clients accessing the same server concurrently and potentially being serviced in paral-
lel (if the server is on a multiprocessor machine) is very useful. Also, a client may con-
tact a server any time and access it for its services dynamically. It is less
straightforward to model these situations in peer-to-peer style than in client-server one.

Therefore, both models are important for describing the real world systems. They are
not competitive but complementary. One is simple to program and powerful. The other
has inherent parallel semantics. To allow both programming styles to co-exist in an
execution environment, the environment has to provide both synchronous RPC and
asynchronous/synchronous message passing facilities.

RPC involves one active program accessing remote (conceptually) passive resources.
It gives the illusion of transparency. Message passing, on the other hand, involves two
active programs exchanging data in various fashions: synchronous/asynchronous,
blocking/nonblocking, one/two-directional, and pair/multi-party communications.
Each particular message passing model is implemented by a special communication
channel, which sits in between the communicating parties. We call this, a port. A port
has a queue of message buffers and two operations: send and receive. With the mes-

197

sage port, a node may send messages to another node which may in turn receive the
messages.

In the combined model, a distributed program is composed of a set of clusters running
on multiple machines in the network. Each cluster contains a shared global state and a
set of active nodes, passive procedures and message ports. In the DCE environment,
clusters are mapped to processes and nodes are mapped to POSIX threads. Threads
and procedures in the same process may exchange data via shared variables. They may
invoke external service operations exported by other processes. Procedures and port
operations can be exported for access by other processes.

exported s

e;Podrted ~ i 1 , , , ~ ",, thread

Figure 2. A process with a thread, an exported procedure, a port and a global state.

For example, the process in Figure 2 contains a global memory, a thread, an exported
procedure and a port with its send operation exported. The process may contain many
internal procedures not shown in the figure. Threads in other processes may send mes-
sages to the port by invoking the exported send operation of the port. The thread in
this process may receive the messages by invoking the receive operation of the port.

The example distributed application shown in Figure 3 is based on the combined
model. This application consists of three processes interacting with each other in a
combination of client-server computing and peer cooperative processing.

198

process 1
/ ,

/ [iill,. ~'''|) mes~ge (..,l|,,.i ~

',, '" ,,, RPC R P C ~
Av JY

server
process

process 2

)

Figure 3. Combined client-server computing and peer cooperative processing

3. Integrating RPC and Messaging Facility

To extend DCE for peer cooperative processing, a message passing abstraction has to
be provided by the environment. Three important capabilities of DCE RPC are re-used
to provide this abstraction:

1. Parameter marshalling/unmarshalling service to enable passing typed data
between machines.

2. Data conversion capability to enable computing in heterogeneous
environments.

3. Transport independent communications to protect applications from directly
using low-level

multiple transport protocols

Being built around the RPC facility, the message passing abstraction is automatically
granted these high-level features. In other words, a message port can be typed and a
message can contain an ordered set of typed data. A message maintains the same
meaning after being transmitted from one machine to another in a heterogeneous net-
work. And, messages can be actually transported by RPC. Thus, a powerful high-level
messaging abslraction can be built at a low cost.

What needs be done to extend the system is:

1. Implement the various messaging semantics in a consistent manner
2. Provide a small but rich set (API) of messaging primitives
3. Extending IDL for defining messaging interfaces

199

In the following, we first summarize the features of messaging systems, then describe
how various messaging semantics are implemented by abstract message ports, and
show how the messaging facility can be used in peer programs.

3.1. Message Passing Abstraction

There are a number of features that characterize messaging primitives:

1. Synchronous vs. asynchronous messaging:
In synchronous message passing, the execution of message sender is
blocked until message receivers have received the message. In asyn-
chronous message passing, the sender continues its execution once the
message is sent and implicitly buffered somewhere in the underlying
message delivery subsystem. The message can be received by the
receiver later.

2. Blocking vs. nonblocking messaging:
In asynchronous messaging, the number of message buffers may be lim-
ited by implementation. When a sender tries to send a message while all
buffers are full, a blocking send operation will block waiting for a buffer
to become available. A nonblocking send operation will return immedi-
ately with an error and drop the message.

3. One/two-directional messaging:
Normally, send and receive operations are one directional. A two-direc-
tional messaging delivers both forward and backward messages. When
a message initiator sends a message to a message responder, it blocks at
the operation until a message is returned from the responder. An exam-
pie of two directional messaging is Ada's entry calls to the rendezvous
point in another process (Ada's Task).

4. Pair/multi-party message connection:
There may be one/multiple senders and one/multiple receivers partici-
pate in the same messaging connection. One-sender-to-one-receiver
connection is for private conversation. One-to-many connection is a
broadcast. Many-to-one connection realizes a mailbox. Many-to-many
connection appears in forums, newsgroups or bulletin boards.

5. Persistent Messaging:
A message may be inspected rather than simply received so that it
remains in the message buffer for others to access. This property is use-
ful in forum type messaging.

Various combinations of these features result in versatile messaging systems. For
examples, CSP and Occam use synchronous one-to-one-connected one-directional
messaging. The Ada's rendezvous calls and Concurrent C's transaction calls [5] are
synchronous many-to-one-connected two-directional communications. Concert RPC

200

[9] can be either synchronous or asynchronous, many-to-one-connected two-direc-
tional communications�9 Most systems have asynchronous many-to-one-connected
one-directional communications. The tuple space in Linda may allow asynchronous
many-to-many one-directional communications�9

3.2. IDL Extens ion for Port Specifications

The DCE interface definition language (IDL) must be extended for specifying messag-
ing interfaces�9 A messaging interface may define a number of message ports. Each port
is characterized by the type of messages it delivers and the port features it has. A mes-
sage port is defined by a signature (similar to a remote operation), an operation
attribute port and associated features:

�9 A port name
�9 A list of message data types
�9 Exported port operations
�9 The number of message buffers
�9 BlockingJnonblocking send/entrycaU
�9 Persistent/non-persistent messaging

The following is an informal syntax of port definition:

[port(export(send I recl call I accept), size(n), blocking, persist)]
portname(dtypel, dtype2);

A message port contains a queue of message buffers and two or three operations. Each
message buffer holds a message. A message is an ordered set of typed data. A port
which exports send or rec is one-directional. This port thus provides operations send
and receive. A send operation enqueues a message and a receive operation dequeues
the message. The exported operation can be called from other processes via a normal
RPC. Message queue size specifies the number of message buffers available at the
port�9 A port is synchronous if its queue size is zero. A port is asynchronous if its queue
size is non-zero�9 For asynchronous ports, the send operation is a blocking operation if
the blocking flag is specified. Nonblocking is the default�9 A negative queue size
means that the number of message buffers is not limited, only subject to the availabil-
ity of runtime physical storage. When one-directional ports have persist flag specified,
they also provide peek operation, in addition to send and receive operations. With
these ports, receivers may choose to peek a message rather than receive a message�9
When call or accept (or both) are specified for export in the port definition, the port is
a two-directional port. This port provides operations entrycall and accept for remote
rendezvous calls. Port implementation ensures serialization and synchronization of
multiple concurrent send and receive operations�9

201

3.3. Using the Messaging Facility

In peer processing mode, application program components export DCE interfaces with
port definitions. They use send and receive (or entrycall and accept) operations pro-
vided by the ports to exchange messages. In client-server mode, DCE applications
export the interfaces with remote procedures specified as usual. In a mixed client-
server and peer processing mode, the program components of an application export the
interfaces with both port and procedure definitions. The program components may
send and receive messages to each other and at the same time make RPCs to the ser-
vices exported by others, In the following, my_message_if defines three message
ports:

interface my_message_if
{ :

[port(export(send), (size 0))] portl(dtypel);
[port(export(send), (size 10))] port2(dtype2, dtype3);
[port(export(call), (size 5))] port3([in] in_dtype, [out] ouldtype);

}

port1 is a synchronous port, which carries a message with one data element of type
dtypel, port2 is an asynchronous port which carries messages with two data elements
of types dtype2 and dtype3, port3 is for remote rendezvous call which takes one
input parameter of type in_dtype and returns one output parameter of type out dtype.
The send operations of portl and port2 and the call operation of port3 are exported.
Therefore, procedures portl_send and portl_rec are provided by port1, portl_s-
end can be invoked remotely by other processes, port rec can be invoked by any
thread in the same process. Similarly, procedures port2_send and port2 rec are pro-
vided by port2, port3 has procedures port3_entrycall and port3_accept, port3_en-
trycall can be invoked from other processes, port3_accept can be inserted at any
desirable rendezvous points in the local thread routines. The last argument of
por3_accept specifies the rendezvous service function, which may be a local or
remote procedure. This argument is implied and is not shown in the port signature.
However, the rendezvous service function must have the same signature as that of
port3.

Two peer program components my use this messaging interface:
process1 :
{ :

portl_send(datal);
port2_send(data2, data3);
port3_ent rycall(in_data, out_data);

}

process2:
{ :

portl_rec(datal);

202

port2_rec(data2, data3);
port3 accept(in_data, out_data, entry_function);

}
The program component in process1 sends a synchronous message and an asynchro-
nous message. It also issues a remote rendezvous call. The messages are received by
the program component in process2. The rendezvous call is also accepted and han-
dled by the same program component. The result of the call is returned to process1
through out_data.

4. Implementation

IDL compiler is extended to generate the implementation of the specified message
ports. The extended IDL implements different port types, defined in interface defini-
tion files, using a few code templates. These templates contain program structures that
ensure serialization of access to a port's message queue and synchronization of send
and receive (or entrycall and accept) operations for different port types.

4.1. Port Implementation

In Figure 4, myport is an asynchronous one-directional message port. The implemen-
tation of this port provides two operations: send and receive. They correspond to
mypoa__send and myport_rec procedures. The send operation enqueues messages,
which is a list of input parameters of the specialized mypoa_send for the port. The
receive operation dequeues messages, which is a list of output parameters of the spe-
cialized myport rec for the port. The output parameters of mypo~__rec correspond to
the input parameters of mypoa_send. Only one instance of myport__send or mypor-
l rec is running at one time. This preserves the integrity of port data. The send opera-
tion is further regulated by "buffer_full" condition to handle the situation when all
buffers are full. In this situation, a send operation may either block or return immedi-
ately with an error code, depending on whether the nonblocking flag is specified in the
port definition or not. Similarly, the receive operation is regulated by "buffer_empty"
condition to handle the situation when no message is available. In this situation, a
receive operation may either block waiting or return with a no-message error code.

203

process boundary

exported
myport_send ',iiii:....~

\

send op rec op

myport

........ . i : ~ "'::iii'''
myport_rec

receiver
thread

Figure 4. Port Implementation
The RPC server stub unmarshals the input parameters and passes them to mypo~._s-
end, the DCE RPC manager routine. The local procedure call (LPC) returns pointers
to these parameters to the receiver thread. The copy of the parameters created by the
RPC server stub is used by the receiver thread.

4.2. Building and Using Message Ports

In Figure 5, foo.idl is the definition of interface foo exported by process B. This inter-
face defines a message port porlb and exports its send operation. The IDL compiler
generates the implementation of portb and the client and server stub for portb_send
procedure. The port implementation contains a queue of message buffers, portb_send
and portb_rec procedures. If the port is persist, procedure portb_peek is also gener-
ated. portb is compiled and linked to program B and becomes part of process B. Since
the send operation of the port is exported, a message sender process A can make RPCs
to portb_send to enqueue messages into portb. The receiver thread of process B can
dequeue the messages via LPCs to porlb__rec.

204

/

. -.:f
process A

portb_send~

, ,

foo.idl

IDL compiler ~

i : \ \ . .
. , .

imessagd
r ~ t

sender client stub j

for portb_send

I
J

I send rec

portb

portb_rec

',.server stub receiver /

for portb_send

Figure 5. IDL generates a message port and RPC stubs for the interface foo

The message is in the form of RPC input parameters and the LPC output parameters.
As such, the parameters of an exported send operation correspond to the [in] parame-
ters in the stub implementation. The parameters of a receive operation, if exported,
correspond to the [out] parameters in the stub implementation. In order to keep the
function signature of both send and receive operations exactly the same for consis-
tent usage of the two messaging operations, each parameter in the port definition must
be a pointer to message data. The message data may be of any type.

The control flow of a message passing includes the cooperation of a message sending
RPC and a message receiving LPC. The client stub of the message sender marshals
RPC parameters into linear buffers and transmits them to the server stub of the mes-
sage receiver. The server stub unmarshals the parameters, converts data format as nec-
essary and invokes portb_send procedure to enqueue the message to podb. If the port
is asynchronous, the enqueue operation will return quickly to the server stub which
will again return immediately back to the client. Since portb...send is a simple routine
which lakes very little time to process, the entire event appears to be asynchronous to
the sender. If the port is synchronous, the execution of portb._send will block at the
port until a corresponding portb__rec is executed.

If porlb is a rendezvous port, as being by exporting call or accept operation, the IDL
compiler will generate a rendezvous implementation which contains portb._entrycall
and portb_accept procedures. If call operation is exported, the client stub and server

205

stub for portb._ento/call procedure will be generated. Unlike the stubs for one-direc-
tional messaging operations, these stubs both have marshalling code as well as unmar-
shaUing code to handle both [in] parameters and [out] parameters, similar to a regular
RPC with both [in] and [out] parameters.

4.3. Exporting Operations of Message Ports

The receive operation can be exported just like the send operation. This allows other
processes to receive the messages of the port in addition to the port owner process.
Similarly, accept operation can be exported, which allows other processes to respond
to remote rendezvous calls.

Exporting only sand (or ante/call) operation virtually puts the message port in the
address space of the message receiver (or rendezvous responder) process. In this case,
many other processes may obtain bindings and make RPCs to perth_send (or port-
b._ento/call) procedure of interface leo. However only the local process can invoke
portb__rac or perth _accept procedure. Therefore it allows a many-to-one connection
to be established. If the binding information is restricted to only one other process, the
connection is reduced to one-to-one. On the other hand, exporting only receiver (or
accept) operation will put the message port in the address space of the message sender
(or the rendezvous caller) process. Thus it allows an one-to-many connection to be
established. Similarly, if the binding to the porlb__rec procedure is restricted to only
one other process, the relation reduces to one-to-one connection again. If both send
and receive (or both call and accept) operations are exported, the port can become a
many-to-many connection port. If the port is the only program existing in the process,
this process is a simple stand-alone mailbox server.

5. Conclusion

Client-server computing is a powerful and conceptually simple paradigm for distrib-
uted programming. However, peer cooperative processing can expresses parallelism of
distributed applications in a more natural fashion. There are real world systems which
fit very well into either one model. We have presented a technique to extend the DCE
RPC facility to incorporate support for message passing. This extension allows DCE
applications to be designed freely using client-server computing, peer cooperative pro-
cessing or a combination of both. The technique takes advantage of DCE RPC capabil-
ities: the data conversion, data type support, and transparent access to multiple
transport protocols. As a result, a message may contain a number of high-level typed
data elements and be sent across machines in heterogeneous networks.

206

References

1. Andrews, G.: Paradigms for Process Interaction in Distributed Programs. Comput.
Survey, Vol. 23, March 1991, 49-90.

2. Bal, H., Tanenbaum, A.: Distributed Programming with Shared Data. Comput.
Lang., Vol. 16, No. 2, 1991, 129-146.

3. Birrell A., Nelson, B.: Implementing Remote Procedure Calls. ACM Trans. on
Comput. Syst., Feb. 1984, 39-59.

4. Chang, C.: REXDC-A Remote Execution Mechanism. Symp. of Commu. Archi. &
Protocols, SIGCOMM 1989, 106-115.

5. Gehani, N., Roome, W.: The Concurrent C programming Language. Silicon Press,
1989.

6. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7, 1, Jan. 1985, 80-112.

7. Li, K., Hudak, P.: Memory coherence in shared virtual memory systems. Proc. of the
5th Ann. ACM Symp. on Princ. of Dislx. Comput. Aug. 1986, 229-239.

8. Strom, R., Yemini, S.: NIL: An Integrated Language and System for Distributed
Programming. IBM T. J. Watson Research Center, Res. Report RC 9949, April
1983.

9. Yemini, S., Goldszmidt, G., Stoyenko, A., Wei, Y., Beeck, L.: Concert: A High-
Level-Language Approach to Heterogeneous Distributed Systems. Proc. of IEEE
Int. Conf. on Distr. Comput. Syst., 1989.

10. Acetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., Young,
A.: Mach: A New Kernel Foundation for UNIX Development. Proc. of the 1986
USENIX, Atlanta, GA, 1986, 93-112.

11. OSF DCE Version 1.0 DCE Application Development Guide. Open Software
Foundation, June, 1992.

Optimized Selection of Servers for Reduced Response
Time in RPC

Mittasch, Christian and Diethmann, Sven-Ingmar

Teclmische Universitit Dresden, Fak. lnformatik IBC, D-01062 Dresden Mommsenstr. 13
email: mittaseh@ freia.in f.tu-dresden .de

Abstract: Advanced concepts are available based on the Remote Procedure
Call (RPC). They help to extend the basic functions, the techniques for error
handling and to decrease the response time.
This contribution is dealing with a mechanism for reduced response time,
developted and tested in the environment of DECrpo using the so called
Location Broker (i.e. an agent process that provides to a client dynamic~dly
and transparently the remote server interface for the application depending on
server performance and load balancing.
After a short introduction to the possiblities to reduce the response time of
RPCs, the basic idea and the functionality of this tool are discussed followed
by the next steps to implement and improve the tool also in the DCE/RPC
environment.

1. Introduction

The response time is an essential criterion to optimize RPC-applications.
Fundamental ways to decrease the response time are:
1) to feedback partial and provisional results of the server (so called bidirectional
RPC, server callbacks),
2) to split the application into parallel processes, that only have to await a minimum
of results of remote procedures (lightweight processes),
3) to provide RPC-server processes several times and to select dynamically the
fastest one and
4) to move dynamically server procedures to other machines.
This paper is concerned with a mechanism for the load balanced selection of an
RPC-server (3). That delivers primarily advantages opposite to the dynamic loading
of procedures (4) - by the small amount of data to be transferred over the LAN.
Purpose of the tool is to route the remote procedure call to that service provider
(server), that should bring the shortest response time at the moment of calling. The
decision depends on static factors such as data rate and transmission time between
client and servers, server performance and on dynamic factors such as network load
and server load. Another basic criterion is to make sure that the intended mechanism
may be applicable in an advanced RPC as DCE/RPC and also may be addable in
other RPC expanding mechanisms as in REV [1] (shorter.response times) or in
Radjoot [2] (higher level of error tolerance). Main goal is surely to be open for the

208

supplementation of asynchronous mechanisms such as futures [1], [5] or optimized
sending rules for instance without transmit-buffers (System Cronus [1]) or to buffer
often called rpc's (or such with many parameters) and send them bundled (System
Mercury [1]).

2 . F u n c t i o n a l p r i n c i p l e

With the RPC implementation DECrpc by the Digital Equipment Corporation the
developer is made available a tool, that manages information about remote interfaces
by usable servers. It's called the Location Broker and it works very similar to the
Request Broker of the RPC in the NCP (Network Control Program) by Apollo.
With its help it is possible to determine the location and the port number of the
server of a requested service dynamically (at the run time). That means, it realizes
the principle to produce a remote procedure call transparently (from the client's
view).
At the moment of providing a service, its interface is registered in the database of
the Global Location Broker (GLB). It means, there exists a database containing the
interfaces of all RPC services at this time. On every machine resides a so called
Local Location Broker (LLB). If a client starts a RPC for the first time, it gets by
means of a short data exchange between its LLB and the GLB the corresponding
server interface. Repeating the same RPC simplifies the mechanism to only read the
interface entry in the LLB-database. Therefore it becomes possible to the client to
determine the location of the server at the runtime and so to be independent of for
instance changes in the network configuration and to be able to select the server
dynamically.
A possiblity to increase the performance of the client - server principle under RPC
is to provide several uniform servers within a network. Up to now it is not useful to
create such a redundancy. The reason is that it's only possible to register uniform
servers in the GLB-database. If a client's LLB asks for an interface it gets only the
first appropriate entry. The mode of operation of the location broker intends to
provide to a client information about a unique service. But there is a lack, that the
functionality to administrate several uniform server entries in the GLB-database and
to select one of them is not possible.
A new tool shall take over these functions. It has to manipulate the database of the
GLB in a manner, so that a client's LLB finds in the first entry of the uniform
servers the fastest at this moment. For instance it is easily imaginable that different
server machines depending on the cpu-load at different times promise to process the
RPC optimally. The advantage of such a tool is to obtain dynamical mapping
between the client and one of the servers. So it will be possible to take advantage of
the redundancy for reducing the response time on the other side to balance the load
of the service providing machines. Of course it's necessary to do this manipulation
transparently to client and server processes.
The dynamic server selection causes also a disadvantage that decreases the
performance of the rpc-mechanism: To make this redundanc~ available to the calls
of the clients it is necessary to disconnect every client-server connection (using this

209

tool) after every use so that a new RPC causes a new connection establishment
calling the GLB.

3. Realization of the tool

The realization of this tool [3], called the dynamic_glb_manager, is distributed
among two processes: dgm_sampler and dgm_provider.

client machine

client applicatior
uses the remote
procedure xyz

A

GLB machine

Server 1

...................................... T:S.-.SE' S ~
LLB

I

GLB-databaee

t
- service xyz by machine 1
- service xyz by machine 2

LLB i
- service xyz

- service xyz by machine n

$
dynamio-GLB-manager

dgm provider [~

server application I

V
- service xyz I

3~-,s- ' [d gm_sampler ~ .

Server 2

server application I

LLB ~f'
~ service xyz I

cu .s J dgm_aampJer

i r n

server application 1
!

LLB ~f
- service xyz J

cu's I dgm-sampler

.. communication between client and server in DECrpo

-I" communication of the tool dynamic-GLB-manager

Figure 1: Functional principle of the dynamic_glb_manager .

210

The process dgm_sampler is located on every server machine, that exports an RPC-
interface. So it has to be started automatically when the first service is registered in
the GLB. This process determines cyclically an average value of the cpu-load and a
value representing the performance of the concerned machine. The value cpu-load is
determined with the help of the system command "cpustat'. To determine the
performance of the machine it measures the time used for the processing of a small
load function. It would also be useful to evaluate benclmmrk-tests or to estimate the
value depending on different priorities instead. Furthermore, the tool uses these
values to determine the so called system factor that is presented for further
processing.
The process dgm_provider is located exactly on the same machine as the GLB and
exists only one time in the network. It processes parallel to the GLB-database an
own database with the system factors of the participating servers. Its main task is to
manipulate the GLB-database in such a manner, that the interface entry of the best
server is set at the first position in a way that it changes its position with the
previous best server. The selection of the servers is caused by the cyclic evaluation
of the concerned system factors of the servers. Hence in this first realization of the
tool the GLB-database is updated depending on requests of the GLB machine. Later
on this principle will be replaced by a better mechanism. There are system factors
only reported to the dgm_provider process if the dgm_sampler processes
recognize a significant change in their system values and send a message to the
dgm_provider.
I f a special service is not intending to use the dynamic_glb_manager, it has no entry
in the database respectively and naturally its function is not disturbed.
The communication between the processes dgm_sampler and dgm_provider is
realized with an own rpc connection. It transmits the system factor (cu_s -
communication unit - server) or receives and records it respectively in the database
of the dgm provider (cu_c - communication unit - client).
The principal work of the dynamic_glb_manager achieves that the general
communication between rpc client and server works unchanged. An application of
this tool (based on DECrpc) allows the user of distributed applications to use its
advantages with only insignificant changes in its client program. Besides the starting
of the parts of the dynamic_glb_manager on the concerned machines - realizable
parallely by the management of the rpc, it's necessary in the client program to
disconnect an rpc connection after every use (by additional order) and so to
determine a GLB request before every rpe.

realized rpc's

211

90

70

client d

50

40

30

20

10
rain

3 Calls/
min

3 Calls/
min

average difference
between client s
and client d

0 1 2 3

all servers with
low load

4 5 6

the server

of client s
with high-
load

7 8 9 10

1 of the 2 servers
of client d also
with high load

1 min

Figure 2: Difference between a static rpc (clients) and a dynamic rpe (client_d)
based on the dynamic_glb_manager measured in a subnet without other load

First tests with the dynamic_GLB-manager showed the dependence of the speed
advantage of different factors: For instance it is proportional to the work load of the
remote function. Furthermore it depends on the difference between the instantaneous
server performance (load dependent) of the redundant servers.

4. F u r t h e r ana lys i s

An aspect for the optimization of the tool dynamic_GLB-manager is the question,
how often this factor (representing the relative performance of the servers) should be
refreshed. It seems, that a period of a few minutes is sufficient, if one of the servers

212

possesses an essentially higher performance than the others. In this case switch over
would only take place in the case of heavy load of this fast server. For equivalent
servers for instance in a local subnet it is required to shorten the interval.
For that purpose measurements are carried out to determine an average request
interval in dependance of the number of offered servers in the LAN.
Comparable with the problems of the dynamic flow control mechanisms in meshed
networks for the utilization of this tool the following problems occur:
a) The servers are requested too often and increase the load (local and on the
network). This problem intensifies if the transmission time between server and
client increases.
b) The interval between two requests for a system factor is too long and the
likelihood is high, that a rpc doesn't get the interface of the - at this time - fastest
server. If this service is called in shorter intervals than the processing of such a
server routine the problem intensifies - the recommended server selection increases
the server load once more.
In the first realization of the tool the additional load of the participant machines is
restricted to 5 % of the cpuoload. Measurements showed that an interval of three
minutes allows to manage six servers. With other words to request ten servers in
about three minute, s results in an additional load of 10% cpu-load.
That illustrates that the principle has to be improved. To reach that, two different
ways are intended:
1) The load of the servers shall be reported event controlled. The events should
result to essentially more efficient mechanisms to determine the system factor. In
this way the server load is decreased and so it will be possible to limit it on 2 % of
the cpu-load and it will be possible to determine the factor in intervals of 0.1 - 0.2
seconds.
It is followed by the insertion of an additional barrier. This barrier should limit the
minimum interval between two messages of the system factor to the dgm_provider
process in dependence on the number of registered servers and call frequency or
processing time on the server. The load of the machine running the GLB and the
dgm_provider is also thus limited.

2) The system factor reported to the dgm_proyider process will be extended with
data about the frequency of calling the (uniform) servers. Using that allows the tool
to react on a high number of (uniform) rpc's by changing the server selection
principle into either a random selection or a selection dependent on the static
performance of the servers (equally distributed).
The efficiency of the dgm..provider is fundamentally determined by the restricted
functionality for manipulating the GLB-database. Some more comfortable read/write
functions and the possibility to insert a flag into the GLB-database, that announces
whether the dynamic_glb_manager is used or not, may solve the mentioned
problem.

In the next stage of the problems investigation, it is planned to transfer this
functional principle to DCE/RPC (under IBM's AIX). The basically analogous

213

endpoint map [4] and its database respectively permit to do that without greater
alterations. Naturally there exist more comfortable services of the CDS (Cell
Directory Service) as for instance profile entries usable for the management of the
dynamic_glb_manager.

References:

.

.

.

4.

5.

Schill, A.: Remote Procedure Call: Fortgeschrittene Konzepte und
Systeme - ein Uberblick, Teil2: Erweiterte RPC = Ans~tze. - Informatik
Spektrum 15 (1992), S. 145 - 155
Panzieri, F.: Shrivastata, S .K. : Radjoot: A Remote Procedure Call
Facility Supporting Orphan Detection and Killing. - IEEE Trans.
Softw. Eng. 14 (1988), p. 30 - 37
Diethmann, S.: Verteilte Verarbeitung auf der Basis v o n R P C . -
Diplomarbeit, TU Dresden, Fakult~t Informatik, 1993
IBM: AIX Infoexplorer- DCE Part- as online documentation of the
referenced software, IBM, 1993
Crowcroft, J.: Lessons and Challenges of Distributed Computing. -
RN/92/xx - culled from the network (anonym. ftp by cs.ucl.cc.uk),
Dep. of Comp. Science, Uni. College London 1992

Extending DCE RPC by Dynamic Objects and Dynamic
Typing

R. Heite and H. Eberle

IBM European Networking Center
P.O. Box 10 30 68

D-69020 Heidelberg Germany
heite@ dhdibm 1 .bitnet

Abstract: Current DCE RPC offers an object model which is static in that
objects are assumed permanent and published within a directory. Moreover,
all parameters of an object's interface are typed statically. We argue that this
object model should be enhanced by dynamic objects which are created as the
result of a client/server interaction with parameters whose types are conveyed
at creation- or call-time. Dynamic objects are a common model for context-
handles and callback, as well as delegation scenarios. Dynamic typing
facilitates access to generic servers through RPC. In this paper our emphasis
is on motivating the need for the proposed extensions, and on showing that
they can be integrated into current DCE RPC in an upward compatible
m a n n e r .

Introduction
With the appearance of modern workstation technology, client/server computing has
become an important programming paradigm. Besides distributed file or database
servers, new applications which provide services for cooperation among users, based
on shared graphical interfaces, have gained momentum. Programming environments
for distributed applications should provide a systematic approach for the development
of these applications[4]. They should offer higher level abstractions, either at the
operating system or programming language level, that shield the developer from the
details of communication and heterogeneity. Based on these, but orthogonal to them,
they should additionally offer integrated services such as directories, security services,
or transaction processing.

Of special importance is the support of arbitrary programming languages,
which should offer a systematical approach to export services within a distributed
system based on the interfaces. Exporting a service makes it available on arbitrary
platforms as a local interface to clients. This approach not only accelerates the
development through reuse of existing servers and transparent access, but also
improves maintainability in case of service changes.

OSF-DCE [2] meets these requirements due to its wide-spread availability on
many different platforms and its powerful RPC with integrated infrastructure for
security and directory services. RPC is fundamental but still has functional deficiencies
[10]. By their very nature, common servers are generic but cannot be integrated

215

directly because of RPC's lack of dynamic typing. Scenarios with dynamically
determined resource sharing requirements are insufficiently supported due to the static
object model.

In this paper we present extensions, which offer a fuller object model, but
which are nevertheless upward compatible with DCE. These extensions result in a way
to offer complex servers based on their interfaces, enable new applications, and
providing a scheme for shifting authorisation and access control from the application
into the runtime system. By completing the object model we also get a better
understanding of the current DCE object model.

We will start with a description of the object model within DCE RPC. Then
we will discuss dynamic objects and dynamic typing as a completion of the existing
RPC. In the fourth chapter we discuss the integration of the extensions into the DCE
RPC. There we outline, how the existing IDL, stub structures and authorisation
services are affected. Thereby upward compatibility will be the major concern. Finally
we compare our extensions to the new emerging proposal of OMG-CORBA.

I. The Object Model within current DCE RPC

In order to motivate our extensions, we first characterise the current notion of objects
within DCE RPC. We start with a rather simple model of objects within client/server
computing. The active entities and units of distribution within this model are
processes. Objects denote resources (data + operations) that are bound to a process.
A process is called a server of an object if it offers the object to a distributed
environment. A process holding a reference to an object is called a client of that
object. Using this reference a client is able to call the object (i.e. client = caller).
Client and server are not permanent properties of a process but a role a process
assumes with respect to some object.

The sole informations a client has about an object are an opaque reference
(also called a handle) and an interface. The reference uniquely identifies the object.
It can be used to route a request to the object. The interface describes the operations
applicable on the object and thus the visible effects from accessing it. Besides this
interface, a client knows nothing about the internal object structure. This internal
structure is provided by the server. It consists of a local state, a set of operations
executing on that state (called together the local object), and the runtime environment
for the object. The server is completely free in selecting an object structure, as long
as that structure fulfils the contract defined by the interface,

DCE RPC provides a framework for realising objects accessible within an
open system in languages that offer no direct support for distributed computing. A
client accesses an object through a client stub that, when instantiated with a server
binding handle imported from the directory, acts as a proxy object to the actual remote
object. At a client side, creation of a DCE object happens at importing time.

At a server side, the local objects are called by the runtime system on an
incoming request (Figure 1). The actual implementation of a local object is outside the

This does not mean that any client/server computation within DCE RPC follows this model, but
that it is possible to realise this model within the current DCE.

216

Figure 1: DCE Object at s e r v e r s ide

scope of DCE. Local objects are encapsulated into a DCE object. The state of this
DCE object consists of the entry point vector (EPV) to the manager operations, the
operations are those of the server stub. A DCE object is created when it has been
made accessible to clients. This means that the DCE object must have been registered
to the runtime, and the binding handle of the object is exported under a name and
annotated with the object's unique identifier (UUID) to the directory.

Of special importance for the discussion here is the DCE RPC facility to
protect objects against unauthorised access. It is based on the fact that any acting
entity, called principal within the context of protection, can obtain a unique identity.
Authentication allows principals to certify their unique identity to each other. For
authorisation, an object at the server side can be associated with an access control list
(ACL) that defines permissions that various principals have on the object.

Whereas authentication to a large extent is a runtime matter, authorisation lies
within the responsibility of the application. DCE defines an interface for remote ACL-
manipulation and local ACL-management. However, any server that wants to control
access to its objects, must itself provide the manager operations to these interfaces
within its application. Access control is performed within the envelope operations.
This part of the manager operations works on the client binding handle and
additionally maps the the object UUID to the local handle of the object's state. Thus,
the envelope is an application dependent stub to the server operations which, for
example, might be defined within a local library.

2. Dynamic Objects

Objects denote resources (data + operations) that are bound to the server process. DCE
RPC offers static, global objects. Independent of any prior client/server interaction, a
server creates a DCE object at startup time, thereby publishing it within a directory
under a name. Since the directory is replicated, publishing is an expensive operation.
It can be justified only for long-lived objects.

This notion of a static object is not adequate to model all kinds of server-
bound resources, especially when they are of a more transient or dynamic nature.
Examples of such resources are

217

instantiation of a new resource on a client's behalf at a server side
granting temporary and perhaps limited access to an existing resource

the state of a client's operation on an existing resource
the state of a bulk data transfer

Therefore we need a counterpart to the static objects which we term dynamic objects.
The following table gives some characteristic differences between static and dynamic
objects:

Static Objects

created at the server's discretion
exported into a (replicated) directory
under a name
usually long-lived
uncoupled to any client
protected through static ACLs

Dynamic Ob/ects

created as a result of cooperation
exported through reference passing
as an anonymous reference
usually short-lived
available to specific clients
protected through dynamic ACLs

To some extent, DCE RPC supports already something like dynamic objects with
context handles and callbacks. These mechanisms are described in section 2.1. The
subsequent subsections will then inlroduce the proposed extensions.

2.1 Context -Handle and Cal lback

Context-Handles: Consider a fileserver Rt~cver
object that creates a file as the result . . I
of an open call. A more general j . ~ ,~a~A11
example in object-oriented terms are the
class operations new in the Smalltalk
sense. What these operations have in
common is that they return references Ctlant
to the created objects as result /:
parameters (therefore we call these
objects also return objects). Conceptually, the created (or dynamic) object is dedicated
to the client. This must be enforced by the server on each subsequent access to the
object. By default, the lifetime of the dynamic object is bound to that of the client.
When the server detects that the client no longer runs, it deletes the dynamic object.
Thus in this scenario dynamic objects realize a creation on behalf relationship.

Callback: Consider an object O that
has to callback its client during
performing some work on behalf of the
client. The client creates a dynamic
object P whose reference it passes as
an input parameter of an operation call
to O . After receiving this reference O
performs the callback on P.

I] Client ~

218

Examples of such a scenario occur, for example, in bulk data transfer as
exemplified by pipes, when modeling procedure parameters or notifications. The
examples exhibit different requirements of visibility of P from within O: Within the
first two scenarios P is accessible to O only during executing the operation to which
P was submitted as an input parameter. In the notification scenario, P is actually used
to notify the client about an event that happens within O asynchronously after return
of the passing request. Thus there exist two parameter passing modes for input
references: Transient input references, where the lifetime of a dynamic object is
restricted to the duration of a request (granting temporary access) and static input
references, where the lifetime is restricted to the lifetime of the receiver.

Note the role change as a result of passing a reference to an object as an input
parameter: The process that is a client of object O becomes a server of the created
object P whereas the process that is the server of O becomes a client of P .

2.2 Third-Party Reference Passing

Thus far the dynamic objects of DCE
are used to model reference passing as
it occurs within usual client/server
relationships. However it must be
possible for a client of a dynamic object
to grant its reference to a third process.
The need for this can be demonstrated
when we combine the above two
scenarios, that is, a client wants to print
a file F that is located on a remote file
server.

In this case, the client grants
the printer a reference to a remote
object rather than to a local object. As
within the callback scenario the printer
can itself fetch the data by calling the

PrlrttSorvw

read operation on the file object. It should be opaque to the printer that it is getting
the data from a different process.

Granting a reference to a third party strongly affects the access monitoring
performed at the dynamic object. So far the server of a dynamic object has to ensure
that only calls that originate from the client may be executed on F .

If a client wants to make its private object available to another process, it has
to authorise this process at the object. Different techniques for this exist. In DCE
authorisation, the client has to set the read permissions for the printer at the ACL-
Manager responsible for F . The ACL-Manager for dynamic objects needs a special
structure [5] which we will describe in section 4.3. The client remains the owner of
the private object. As within the callback scenario, the printer is only temporarily
authorised at F in order to perform some tasks on behalf of the client.

During this task, the printer itself may pass the reference of F to another
object that then acts on the printer's behalf on F , but this time only within the limits
of the printer's access permissions. In general the granter trusts the grantee, and this

219

relationship is transitive. If transivity is not desired, the granter can pass the reference
in private mode ensuring that the reference is limited to the grantee.

When the printer has finished its print task, the client revokes the
corresponding read permission at F . This implies the revocation of all those
permissions that were set by the printer for other processes, and so forth.

If an object should be used exclusively by only one client, the server passes
its reference in exclusive passing mode. The client will lose access to the object as
soon as it passes the reference to a third-party. Here, access rights are moved but not
objects.

Passing a reference to a third-party as a result parameter must also be
possible. An example of third-party reference passing with the static input references
is a generalisation of the notification scenario, where the notify object P is remote to
the client itself. A typical application is a customer scenario, where a client tells an
object O to send the result of the request to another object P that acts as a
replacement of the client. In both cases, passing a reference requires an authorise call,
but the revoke either is related with receiver termination or must be performed
explicitly.

2.3 References as Access Rights

When a process creates an object and passes its reference to another process, it sets
automatically access rights on that object. If we assume that the authorisation
described above always happens in conjunction with passing a reference to a third
party we get as a higher level abstraction that a reference to a dynamic object
embodies a potential access right for the receiver of a reference. Although the granter
of the reference has done its best to make an object available to the receiver, the
server can always deny access to a special process. Possible reasons for this will be
outlined below.

Reference passing offers a new way of access right management or
configuration. Consider a process A
that owns several device objects. The
owner can build a compound object
consisting of the references of its
devices and pass that to another process
B , thereby authorising the receiver with
only one request. Implicit revocation
through transient input and client
rundown, as well as the various passing
modes, ensure the desired limitations on
the lifetime of the passed references.

Z

f:q

2.4 A Dynamic Object View on a Static Object

A process may import a reference of a static object from the directory and pass it as
an operation parameter to another process. Such a scenario occurs, for instance, within
the above file/printer scenario when the client has imported the file reference from the
directory. Here the client puts a dynamic object view on a static object without the

220

object server needing to be aware o f it. The reason for doing this is to use the
semantics associated with reference passing that extends the authorisation capabilities
on static objects.

This scenario is often described as delegation. In a world of static objects
with static access control, the access permissions defined within an object's ACL are
usually defined in such a way that they statically cover all possible access scenarios.
However, this approach is not in accordance with the need-to-know principle. For
example, a printer should not be authorised on a static file permanently, but only while
executing the print job. Delegation provides an appropriate mechanism to express the
required kind of dynamic authorisation. Within the printer scenario it means that the
client delegates its read-permission on the file object to the printer, in order for the
printer to act on behalf of the client.

Delegation is commonly understood as [12] .. a principal (= delegator)
authorises another principal (= delegate) to perform some tasks using some of the
rights of the delegator.

Reference passing expresses a special form of delegation in that a granter
delegates an access right on a well defined object. Delegation in its general form
includes the granting of rights to a group of objects or to any object to which the
granter has access (= impersonation). Note that passing a reference to a static object
is more than merely calling the ACL-manipulation operations from within the client
dynamically. A client may access the file but may not have the right to change its
ACL. Reference passing expresses the fact that the printer is acting on behalf of the
client and thus is given some possible set of rights that a client would have there.

3. Dynamic Typing

Stub compilation within DCE RPC is based on the fact that all IDL interface
parameters are typed statically. This allows the associaton of each parameter with a
compiled marshal procedure and tag-free data representations. However this scheme
does not give appropriate support for generic servers within the IDL. A generic server
can be regarded as a container object that offers operations, e.g., to insert and
retrieve data of arbilrary type. Predominant examples are those servers that deal with
persistent data, for example, structured file servers or database servers. For local
clients such servers typically offer interfaces of the following form:

op_name (data-identification, format-specification-string, untyped-buffer)

Within the body of op_name the data in the buffer get interpreted according to the
format specification. In other words, the data in the buffer are dynamically typed
according to the format description.

A stub for such an interface would need to mimic the same behaviour: The
format string drives an interpreter for placing the data into the stream at the sender
side and exctracting plus converting the data at the receiver side. Although the number
of different types, that are specified within a format description, are usually limited,
IDL unions, even in their non-encapsulated form [7], provide no direct solution to
model these interfaces within the IDL. But without IDL support, the stubs to these
interfaces would have to be hand coded.

221

A reasonable concept for getting automatically generated stubs to generic
servers is to make the standard generation of marshaling code

application interface --> IDL interface specification -~ marshal operations

available at runtime.

In order to become application-independent we assume that the formats of dynamically
typed data are described in a subset of IDL comprising basic and constructed types.
The IDL is extended by a new parameter type type. A parameter of type type, called
a type variable, contains a description of an IDL type. A parameter may reference a
type variable as its parameter type, which means that its contents are dynamically
typed according to the type value of the type variable.The association between a
dynamically typed parameter and its type variable is analogous to the one between
an open array and the parameter specifying its length.

In contrast to many other approaches (e.g., basic encoding rules in [1]) we
separate the type descriptions from the data they type. We regard this approach as
being superior to using a s t r e am of tagged ("self-describing") data because the
separation exists in most local interfaces to generic servers. Moreover, it is in the spirit
of RPC type handling and thus does not need to modify the network data
representation of the existing IDL data types. For arrays and bulk data transfer it saves
bandwidth, since formats are only specified once.

Nevertheless expressing streams is possible with our concept, since type
variables and dynamically typed data can be used as any other IDL data type and thus
be a part of a structure. In addition type variables provide the expressive power for
extending the concept of dynamically typed data to dynamically typed objects.

3.1 Dynamically Typed Objects

We will now extend a server that acts as a container object for arbitrary data types,
to a server for container objects, whose type is determined dynamically but which
remains fixed during their existence. A natural example is a fileserver of a structured
file system that must be able to manage files whose structure is determined by a client
at file creation time. Thus, what we need is object creation with dynamically
determined types. Let us first clarify what type means within this context.

Within our object model the structure of an object's state is not visible to the
DCE object unless it is reflected as a parameter type of some operation defined within
the object's interface. Let Pdyn be some parameter within an object's interface
whose structure is determined by the object's state (e.g., a parameter representing
records of the structured file).

The server of container objects with dynamically determined structure cannot
have prepared a special interface for each possible structure, since every different
structure implies a different type of Pdyn . Therefore the server offers one interface
I for its dynamic objects, where Pdyn is typed dynamically. For a dynamically typed
object the type-description of Pdyn is determined once at object creation time and
remains fixed during the lifetime of that object. Object creation is extended by
associating a type description for Pdyn with the created (dynamic) object. At the

222

server side, this type description belongs to the runtime-data of the object, whereas at
the client side it is associated with the received reference. After object creation, the
type-description is available at the server as well as at the client side. On each object
request it is interpreted for marshaling Pdyn without having to be transmitted as a
parameter of the request.

Let us restate the performance benefits gained from shifting the determination
of type descriptions from call time to creation time: The type descriptions need to be
provided, evaluated, and transmitted only once at DCE object-creation time. This
makes a dynamic object view interesting for any application where the dynamic
parameter type is determined once and remains fixed during a set of repeated operation
calls, for example, general iteration scenarios or dynamically typed pipes. However,
the interpretation of the type variable on each call remains. A scheme would be
especially attractive for bulk data transfer and persistent dynamic objects, where the
type variable gets dynamically compiled at object creation time, resulting in marshal
operations that can be dynamically loaded at object call time.

4. Integration of the Extensions into DCE RPC

This section discusses the integration of the extensions into DCE RPC. It is assumed
that the reader is familiar with the DCE IDL and DCE runtime.

One major concern of the extensions should be to maintain upward compatibifity.
Static objects as defined in current RPC should run in an extended system without
restrictions. Thereby local runtime and stub structure may be extended, but existing
formats and protocols should not get affected. It is obvious that the most crucial
component for the extensions is the IDL. Additionaly, modifications are needed for the
authorisation. For dynamic object creation and deletion we assume the API defined
within [9].

4.1 DCE IDL Extensions

The following IDL support is needed for dynamic objects and dynamic typing:

Interfaces as parameter types of object references
Type variables and dynamically typed parameters
Parameterized interfaces for dynamically typed objects

For a complete discussion of the extensions see [11]. Here we demonstrate the various
extensions by means of the interface to the server of container objects, mentioned in
section 3.1.

version (0), formal_is (Pdyn)]
interface container
{

error_status_t insert([in] Pdyn rec);
error_status_t retrieve([out] Pdyn* rec);

[delete] error_status_t close();
}

223

[version (0)]
interface container server
{

error_status_t create ([in] char * name, [in] type t,
[out, actual_is(t)] container * c);

error_status_t open ([in] char * name, [out] type* t,
[out, actual_is(t)] container * c);

The container__server offers operations that return references to container objects. A
container offers operations to insert or retrieve data. The structure of the data, that is
inserted into or retrieved from a container, is determined when the container object is
created. Afterwards, it remains fixed during the existence of the container object.

In order to describe this mechanism in the IDL, parameterized interfaces are
introduced. Such an interface describes a template, akin to a C++ template, where the
formal interface parameter Pdyn is referenced as a type of those operation parameters,
whose structure is determined at object creation time in the container example above.

Object creation in this context happens when a reference is passed. Thus, when
a parameterized interface is used as a parameter type, here in create and open, an
actual interface parameter must be supplied. The actual parameter for a dynamically
typed object is a type variable. Valid inputs to the type Variable t are strings describing
IDL data types, except pipes. Note that for the container object the type value is either
specified by its client (with create) or its server (with open).

Object references are passed with the usual [in] and [out] directions. They may
have additional attributes that indicate the various passing modes ([static], [exclusive]
and [private], see 2.2). When an operation call results in the deletion of a dynamic
object, like close, then it will be indicated through the attribute [delete].

Upward Compatibilty: Upward compatible extension of IDL means that a stub
compiler understanding extended IDL is able to compile standard IDL. This is usually
achieved by leaving the existing features of the IDL untouched and merely adding new
parameter types. However, interfaces as parameter types supersede context handles and
function pointers. In order to avoid confusion between a typed reference parameter and
the untyped canonical handle parameter, we assume that the handle parameter is an
implicit one. Therefore customised handles are superfluous. We take the convention
that these constructs may only appear in interfaces offered by servers that do not
require the RPC extensions.

4.2 ACF Support for the IDL Extensions

The stub compiler performs a default mapping from the IDL to the application
language. Default mapping of an object reference parameter, for example, is based on
the assumption that DCE object creation happens within the application. Therefore, a
reference parameter is mapped to an opaque handle of type handle__t within the
interfaces of the sender as well as the receiver side.

Through the introduction of the ACF concept, DCE RPC has already recognised the
need for declarative support to specify alternative local stub structures and interfaces

224

from the stub compiler. The rationale behind this is to shift envelope functionality into
the stub, saving execution and development costs. In the following we will sketch the
ACF support for object creation and for static clients to a dynamic server (for a more
complete list see [11]).

Consider a manager operation for the create of the container_server interface that
returns a local handle to a file from which a container object is to be built. If creation
of this object should happen within the server stub, the stub compiler must know the
local handle structure and the entry point vector to the manager operations. This
information is supplied by extending the ACF attribute represent_as to be an interface
attribute or even a parameter attribute for object types.

Usually a client of a dynamically typed object knows which actual type of the object
is needed, for example, the structure of a file to be created. The new ACF parameter
attribute set_value sets the value of a parameter to a constant expression. Applied to
a type variable, as for instance within the create operation of the container_server
interface ereato([sot_value(my_ree)]), this means that the client needs a container
object of an actual type my_roe. This actual type itself is specified in an idl file. The
type variable parameter t disappears from the client stub interface of create as a
result of this specification, and the client stubs of the dependent interface container
become statically typed with the actual type my_roe.

4.3 Dynamic Object Authorisation

Authorisation for dynamic objects is based, as with static objects, on client PACs and
on ACLs associated with the object. However, the ACL structure for dynamic objects
differs from that for static objects with respect to construction, entry structure, and
access checking algorithm [5].

Passing a reference of an object with interface I from a granter A to a grantee B
results in the entry:

<B, I [+restrictions], A, UUID> (*)
I" I" 1̀ 1̀

grantee permissions granter entry UUID

The permissions field lists the interface of an object, since permissions are defined in
terms of operations. Optional restrictions define those operations of an interface which
the grantee may not call. This field may also contain expiration dates. Based on the
granter field, the entries belonging to a given object and user can be organised into
a tree representing the reference passing history that originated from the user. This
organisation provides efficient support for revocation. When the reference of this user
is revoked, all the ACL entries that are part of the sub-tree rooted by that user entry
are deleted.

When an object reference gets passed multiple times between a granter and
a grantee, the pair (user, granter) is not sufficient to uniquely identify an ACL entry.
The grantee may hold multiple references to the same object that all originate from
the same granter but are associated with different restrictions. In order to distinguish
the different references the entry UUID field is added.

Dynamic ACLs are manipulated through the basic operations authorise and
revoke. Unlike the see acl * interface to a static ACL, these operations manipulate

225

only distinguished ACL-entries. The operations belong to the management operations
of the object server. A handle to them can be constructed from the respective object
handle. The default behaviour of an authorise-request is first to test whether the caller
is a valid granter, that is either registered as the owner or a user of the object. Then
it constructs the user-entry for the grantee and returns the constructed entry UUID.

The granter inserts the returned UUID as the new object UUID into the
handle that subsequently is passed to the grantee. This is necessary since we do not
want to extend the network representation of binding handles to dynamic objects.
However, it implies a modification of the server's object dispatching. The granter has
to store the returned UUID when it wants to revoke the passed reference
subsequently.

On receiving an object call from the grantee, the server tests the dynamic
ACL with the is_authorised operation. This operation checks the existence of an entry
for the caller with the entry UUID and that the required operation belongs to the
permission set of the entry. To that end the caller must present its PAC so that the
server can check that it is a valid grantee with respect to the passed reference.

4.4 Handling a Dynamic Object View on a Static Object

When a reference to a static object is distributed through parameter passing, the object
server might be unware of it and thus not offer dynamic ACLs. Alternative mechanism
for realising the delegation semantics inherent in reference passing are discussed in [3,
8, 12]. These mechanisms have in common that they encrypt the entry (*) into the
PAC of the granter and the grantee, instead of logging it within the dynamic ACL at
the object server.

The encryption method may save at most one communication step at passing
time, when the entry (*) is part of the granter's PAC to the grantee [11]. However,
it drastically lengthens the PAC in case of chained delegation and fails to provide
efficient support for the revocation step, which is an operation frequently within
reference passing.

Therefore we propose the dynamic ACL approach as described above for any
reference passing. This implies that every server offers the respective interface for
authorise and revoke. The authorise implementation may work together with the static
ACLs as follows: If there exists no user-entry for the caller, authorise checks the static
ACL to see whether the caller has the required permissions before it inserts the
required entry. The sec acl mgr_is_authorised operation, that is called from within
the server application to test the access right, must be extended to find the right ACL
manager. Thus it must be determinable from a handle whether it is a reference to a
dynamic or a static object.

4.5 Stub Structure for the IDL Extensions

Stub Code for Reference Parameter: Passing a reference is always accompanied by
authorising the receiver to access the dynamic object. Therefore the authorise call can
be put into the stub of the passing operation, where it is part of marshaling the
reference parameter. Transient input references, that are passed, are registered
internally within the stub in order to revoke them after the operation returns.

226

The string binding of the respective handle is the network presentation of a
reference parameter (although there may be more efficient ones). The DCE RPC string
binding is extended by authentication annotations, containing the name of the object
server, the protection level and the authentication service. The object server determines
the authentication annotations. Unmarshaling a received reference then consists of
generating a handle from the string binding and annotating it with the received
authentication information.

A server stub for a dynamic object contains by default processing of the client
binding handle, comprising access control and object dispatching. For access control,
the client PAC is retrieved from the binding handle and used as input to the
is authorised call on the dynamic ACE For object dispatching, an object table is
inlroduced into which the pair (object UUID, local object handle) is inserted at object
creation time. At access time, the server stub retrieves the local handle from the table
based on the object UUID within the binding handle.

Stub Code for Dynamic Typing" For the handling of dynamic typing we use a
scheme similar to that described within [13].The IDL string as input to a type variable
is converted into an internal format that is efficient for interpretation of the dependent
dynamic data. The components of the internal format are indices into a table of
extended marshal operations for those IDL types that are allowed to appear within a
type variable. Besides the usual marshal operations, the extended operations contain
the handling of the input and internal buffer.

Marshaling of dynamic data then consists of calling an interpreter operating
on the two inputs, the internal format and the data to be marshaled, and producing the
marshaling output. Marshaling of a reference to a dynamically typed object is extended
by storing the internal format of the actual parameter into the object table. A similar
table is needed for a client stub, since it can be called with different handles. On each
subsequent access to the reference, regardless of whether used as a server- or a client-
binding handle, the format is retrieved from the reference and used for marshaling
typed parameters through the formal interface parameter.

As an alternative to the interpretable internal format, machine code could be
generated from the contents of a type variable and then directly executed in memory.
Such a scheme makes sense, where the additional costs for code generation
compensate the costs for marshaling based on the interpretation scheme. The decision
which scheme to use is a local matter and therefore controllable through a respective
ACF attribute.

5. DCE RPC and its Extensions versus OMG CORBA

The extensions defined in this paper would enable DCE IDL to become object-based
with object types that may be typed dynamically. The question now arises whether
there is a need for the extensions at all, since there already exists the object-oriented
IDL defined within OMG CORBA [6].

OMG IDL allows interfaces to occur as parameter types. However, since the
CORBA document does not elaborate on security infrastructure, the implications of
such a facility on object protection are not discussed. OMG IDL offers dynamic typing
through the type any for "self-describing" data. Hence, it lacks the flexibility of

227

separating type-descrpfion from dynamic data. In addition, OMG IDL does not
recognise the need for parameterised interfaces for dynamically typed objects.

OMG IDL has been derived from C++, whereas DCE IDL has emerged from
the already existing NIDL used within NCS [14]. DCE IDL reflects much more the
need to have a source for stub compilation. Therefore it offers a set of special data
types (e.g. non-encapsulated unions, conformant arrays, full-pointer concept and pipes),
interface-,type-, parameter- and operafion-attrbutes, richer than OMG IDL. In addition
DCE already has acknowledged the need for a two-step interface specification scheme,
whereas CORBA understands language mapping only as the default mapping the stub
compiler performs.

OMG IDL is superior to our extended DCE IDL with respect to interface
inheritance, more rigorous scoping rules, and attributes as abbreviations of operations.
These features simplify the definition of interfaces, although they do not affect stub
logic. Inheritance may define a subtyping relationship, which is almost covered by the
DCE IDL concept of interface compatibility as far as binding handles are concerned.

Our concept of dynamic typing supports generic servers. Through the dynamic
invocation interface CORBA supports generic clients who can call an object whose
interfaces they do not know a priori. This is in contrast to dynamically typed objects
where only parameters of an interface may be determined dynamically.

Dynamic invocation consists of a higher level interface of the RPC runtime
primitives to send a request and receive a result. The parameters to these primitives
are dynamically typed, but usually only at the client side. Within our context dynamic
invocation combined with the concept of an interface repository may be useful when
a process becomes a client of an object through receiving its references as part of a
dynamically typed parameter. The type description of the reference within the
corresponding type variable comprises only the name of the object type. Based on this
name, the structure of the interfaces is retrieved from the repository. Interfaces stored
there can be directly called by dynamic invocation. This means that any operation
parameter is annotated by a type variable containing its type description. The type
variable is already initialised by its internal format, which can be easily interpreted or
even compiled at call time.

As a summary, we claim that it makes sense to extend DCE RPC even en face of
CORBA because DCE provides an elaborate infrastructure consisting of stub compiler,
runtime, communication, directory and security services. Moreover, the extensions
defined herein are useful for CORBA since they result in stub and runtime extensions
that are of general use.

6. Conclusion

The extensions proposed herein aim at completing the object model within DCE RPC
and providing a facility for integrating the interfaces to complex servers. We have
introduced dynamic objects as a uniform model for context-handles, callback,
delegation and access right configuration. Besides offering new applications, dynamic
objects simplify the development of client/server applications through integrated
authorisation and access control. Extending the IDL by dynamic typing solves the data

228

heterogeneity problem of generic servers by the same IDL as introduced for RPC,
which is the most economical.

Acknowledgment: Hermann Schmutz, Ulf Hollberg, both of IBM ENC, and Kurt
Geihs, Univ. Frankfurt, were at the origin of many ideas discussed here. We thank
F.Hofmann, Univ.Erlangen, for his support and enouragement on this work. Hermann
Schmutz and Keith Hall, IBM ENC, made significant suggestions to earlier versions
of this text.

References

1. International Organization for Standardization: Specification of Abstract Syntax
Notation One (ASN.1). ISO 8824: 1989(E)

2. Open Software Foundation: DCE Application Development Guide and
Development Reference. Documents available from OSF, Cambridge MA,
Revision 1.0, Dec 31, 1991.

3. Gasser, Morrie and McDermott, Ellen: An Architecture for practical Delegation
in a Distributed System. Proc. of the 1990 IEEE Computer Society Symposium
on Research in Security and Privacy, (1990) pp.20-30.

4. Geihs, K: Infrastrukturen fOr heterogene verteilte Systeme, Informatik
Spektrum,Band 16, Heft 1 (1993) pp 11-24.

5. Geihs, K., Heite, R. and Hollberg,U.: Protected Object References in
Heterogeneous Distributed Systems. Accepted for publication

6. Object Management Group: The Common Object Request Broker - Architecture
and Specification: OMG Document Number 91.12.1., Rev. 1.1, December 1991

7. Harrow,J: Proposed Enhancements for DCE 1.1. IDL. OSF DCE RFC 2.1, July
1992

8. Pato, J:. Extending the DCE Authorisation Model to Support Practical
Delegation. OSF DCE RFC 3.0, June 1992

9. Mishkin, N.: DCE RPC API Extensions for Modular Servers. OSF DCE RFC
21.0, November 1992

10. Schmutz,H.: Autonomous Heterogeneous Computing - Some Open Problems, in
Operating Systems of the 90s and Beyond, A.Karshmer J.Nehmer (Eds.), Lecture
Notes in Computer Science 563, Springer-Verlag, 1991, pp. 63 - 71

11. Heite, R., Eberle, H.: DCE RPC Extensions: IDL, ACF and Runtime System
Extensions. Available from the authors

12. Varadharajan,V., Allen, P. and Black, S.: An Analysis of the Proxy Problem in
Distributed Systems. Proc. of the 1991 IEEE Computer Society Symposium on
Research in Security and Privacy (1991) pp. 255-275

13. Wild, G., ZOller, M. Eine LOsung der Darstellungsproblematik for ein
heterogenes verteiltes System, in Kommunikation in Verteilten Systemen 1987,
Informatik Fachbericht 130, Springer Verlag (1987) pp 290-301

14. L. Zahn et.al., Network Computing Architecture, Prentice Hall, Englewood Cliffs,
New Jersey, USA (1990)

A Simple ORB Implementation on Top of DCE

for Distributed Object Oriented Programming

Qun TENG*, Yin XIE**, Bernard MARTIN*

* BULL S.A. 7, rue Aml~re 91343 MASSY; Q.Teng@frmy.bull.fr

** T616syst~mes 3-5 rue H61~ne Boucher 78280 Guyancourt; yx@synergie.fr

Abstract

Recent advances on object oriented computing and distributed processing have
resulted in developing new approaches for distributed application
programming. The platform Object Request Broker (ORB) from the Object
Management Group (OMG) proposes an elegant solution. However, the
implementation of such an architecture in a heterogeneous network
environment remains an open problem, due to the complexity of the
communication infrastructure. In this paper, we describe a simple ORB
implementation on top of OSF's DCE basic services. The benefits of using the
DCE services will be demonstrated.

Key words: DCE, Object Oriented Programming, Object Request
Broker

1. Introduction

Today, the requirements of the co-operative distributed processing become well
known. However, the traditional network programming tools usually lack efficiency to
construct high-performance and robust distributed applications, because there is no
sufficient abstraction provided. The Object Request Broker [1] of the Object
Management Group (OMG) proposes a attractive solution by combining object
oriented programming and distributed computing. It offers a collection of mechanisms

230

allowing objects to exchange messages across networks, as though they are local. The
main functional components of the ORB platform will be briefly examined in the next
section.

In a distributed environment, the objects are spread in the network. Thus, they do not
necessarily share the same address space. They exchange messages across networks
by using communications services. Therefore, a number of problems arise, for
example :

�9 The objects should no longer be represented by their address pointer, as they
may be referenced by objects in remote machines;

�9 Since objects can be created on whatever machine in the network and may
move from one machine to another, they are not easy to be located;

The communication services carrying invocation messages are subject to be
lost or damaged, because the underlying networks are not necessarily
reliable;

That is why the communication services in the ORB should be able to provide
relevant mechanisms to make the distribution transparent.

DeE [2] is the perfect candidate, since it provides integrated and flexible tools and
services which make the implementation of distributed applications much easier. The
DCE RPC can meet the primary requirement of ORB in term of remote execution;
The directory service makes the ORB applications location transparent; The DCE
threads can allow ORB objects to accept several simultaneous invocations, etc.

The ORB implementation we propose in this paper is simple, because it utilises as
much as possible the mechanisms provided by DCE, so as to minimise the
development effort. Our implementation model will be described in the section 3. The
programming language C++ will be used for the illustration purpose.

The utilisation of the DCE's remote execution mecanism requires the mapping of the
ORB interface description on the DCE counterpart. In the section 4, an IDL lranslator
is described.

The conclusion is given in the section 5.

231

2. ORB Architecture and Components

The Object Request Broker specifies an architecture in which an objet can
Iransparently invoke operations on another objet within heterogeneous distributed
environments. The client/server model is respected in the ORB architecture. The client
is the code or the process invoking an operation on the object which is implemented in
the server process. The ORB is responsible for locating the server, issueing a request
to the server and returning the results to the client.

The interface between the client and the server is described in ORB IDL, an interface
description language which permits powerful features such as interface inheritance.
Each ORB interface specifies a type of object, which consist of a set of operations,
and attributes.

The picture below shows this architecture :

Dynamic
Invocation

IDL
Stubs

ORB

i~iii::7::i::i~i~i~i::i::i~iiiiii~i::iii::i::i::i~i8

Object Adapter

ORB Core

Figure 1. ORBArchitecture

ORB core is the basic component of the ORB, which provides the representation of
object reference and the communication support for remote operations.

ORB interface offers common ORB functions such as object reference manipulation.

Object Adapter provides the interface allowing an object implementation to access
ORB functions : generation of object reference, activation/deactivation of object class
implementation or individual objects, invocation of methods, etc.

IDL Skeleton implements an up-call mechanism which allows the object adapter to
call the particular methods.

232

Dynamic Invocation Interface permits the client to construct and to issue a request
at run time, rather than calling a client stub via IDL definition. Using this interface, the
client can dynamically specify the object to be invoked, the operation to be performed,
the set of the parameters to be passed in the operation, and so on.

IDL Stub masks to the user language the complexity of ORB remote operation
mechanisms. The user request is presented by the stub in order to be forwarded to the
server. The result of the invocation is then decoded and returned to the invoker.

The user application consists of a collection of objects communicating through the
ORB platform. An object can play both client and server roles.

3. ORB implementation architecture

3.1. Principle

The functional specification of ORB can result in a number of implementation
solutions. The system designer ought to make trade-offs such as :

* on which language (or languages) ORB interface should be mapped,

�9 to what extent the user language should be modified to be supported in ORB,

�9 how to organise the application process (single object per process or
multiple),

�9 how to provide the distribution transparency,

�9 how to dynamically create objects and make them visible to other objects,

�9 etc.

In this section, we will present an implementation architecture of ORB on top of DCE
services. To illustrate the language mapping, we will use the C++ language.
Nevertheless, the mechanisms developped can also be used for other languages.

The key idea in the proposed ORB implementation is to avoid modifications in the
user host programming language, i.e. The C++ programmer does not need learning
new C++ extension. He or she can develop ORB based applications just like an
ordinary C++ program. Besides, the development effort for ORB may be reduced, as
no C++ grammar analyser is required.

233

To make this challenge possible, the ORB environment should give to the application
an illusion of working with local objects. Thus, we inlroduce the concept of proxy
object. The main objective of this object is to offer the same interface than that of the
server object. This object acts exactly like the invoked object, except that it does not
contain the real object implementation.

Client ProgO
{

Proxy_ServerObj.mtdl(pl , p2, ,.);
I I Proxy_ServerObj is the local name of ServerObj;

In fact, the proxy object performs the functions of ORB stubs. It permits the client
object to bind to, make the invocation on and unbind from the remote object, as shown
in the code below :

Proxy_ServerObj::mtdl(pl, p2)
{

/*

* bind to the server object using the Naming Service
*/

binding_handle = bind(ServerObjDceUuid);
/*

* RPC call to the server procedure
*/

ServerObj_RPC_mtdl(pl , p2);
/*

* unbind from the server object
*/

unbind(binding_handle);

234

There is always one proxy object for each remote object I on which clients of that
server object may issue invocations. The reason for this is to keep the server object's
behavior uniform for all the client objects in the same process and to avoid
redundancy.

At the server side, the RPC procedure performs the functions of ORB object adapter
and skeleton. It invokes the method implementation and returns results. The code
below shows the RPC function making the up-call to the server object :

ServerObj_RPC_mtdl(pl, p2)
{

ServerObj.mtdl(pl, p2);
o . ,

}

3.2. Architecture

The principle is quite simple. But, to achieve this in the DCE environment, we should
be able to answer the following questions :

�9 how to locate objects?

�9 how to create proxy object for a object dynamically bound?

�9 how to organise object implementations?

The implementation architecture we propose is fully bsed on the DCE distributed
services. An ORB application involves several processes distributed in the network. A
ORB process can support both client and server functions which are implemented in
the DCE client and server stub procedures. The ORB core functions are provided by
the DCE RPC service.

1To ensure the uniformity, the local invocations are treated as remote.

235

The following picture shows the proposed implementation architecture :

user objects

DCE RPC

Figure 2. ORB implementation architecture

The user application is made of one or more objects which can be created statically or
at run time. The object implementations 2 are distributed in the network according to
the configuration policy defined by the application designer(i.e, processing power,
storage capacity, security measure, etc.). The instances of an object type can only be
created on the hosts which support that particular implementation. One object can
invoke another by issuing an ORB request containing the reference of the invoked
object. The invocation is performed without knowledge about the location of the
object. However, an invocation is possible only if the invoker succeeds to import the
service interface exported by the server objet.

Since DCE provides location transparency for RPC procedures, ORB implementation
can directly make use of this mechanism. Therefore, An ORB object invocation is
mapped on a DCE RPC call. This mapping will be straightforward if the semantic of
the invocation is preserved. Thus, the ORB IDL interfaces must be translated into
DCE IDL interfaces. For this effect, we have developed a IDL translation tool which
will be presented later in this section. Furthermore, there must be an one-to-one
relation between an ORB object and its DCE interface. Fortunately, DCE provides
object oriented programming capacity. One server can support more than one type of
DCE object and manage several object UUID of the same type. The objects of the

2The term "object implementation" here refers to the notion of the class of the object
oriented languages.

236

same type share the same set of stubs. This feature allows to dynamically create
objects without changing the stub procedures.

When an ORB object is created, it will be allocated an ORB reference. The reference
will contain the uuid of the corresponding DCE object, which allows the ORB to take
advantage of the location transparency provided by the DCE.

The ORB maintains a reference table in which an object is represented as a 3-tuple
<localReference, ORBReference, DCEuuid>. If the object implementation is local, the
localReference is the C++ reference of the object. If the object is remote, it contains
the C++ reference of the proxy object. ORBReference contains the ORB reference of
the object. DCEuuid contains the uuid of the corresponding DCE RPC object. Each
time that a new object is created, one entry with the object's C++ reference is added to
the local table. However, when a new object is referenced by the client for the first
time, a new entry with its proxy reference is added to the table. Within the same ORB
entity, there is only one proxy object for a referenced remote object.

The host language such as C++ usually provides the class definition which describes
the behaviour of the objects of the same implementation. This class definition can be
completely or partially mapped on the ORB interface. Thus, each ORB object may
perform the same or a subset of behaviour of its corresponding C++ object. The ORB
interface is then translated to the DCE interface to generate stub procedures. This
translation is performed by using the IDL translator.

3.3. Example

The example given here attempts to show the mechanisms described above.

The object objectX invokes the method mtdA10 of the object ObjectA with a
argument containing the reference of ObjectC. In the mtdA10, ObjectA will create
ObjectB and invoke mtdC 10 of ObjectC.

, i ~iii::iiii::iiiiiiiiiiiii::iiiiiii::iii~ ii,, ~:
"ii i iiiii(:ili~.*::~iliii::iiii::::::iiiii i 1. ObjectA.mtdAl(ObjecCC)>: : ~ i ~ ,

-::!~ :i!:.i:.!i!!i::i:;i!!!:;:.!::!i:!~: V

3. ObjectC.mtdC10

i
�9 ~25~ii!!~i!:.~:i= : .:~:::!i::.;~!!212:j:!: :.i:i::

Figure 3. Example

237

The object ObjectX is the client of ObjectA. we suppose that ObjectX utilises the
service of ObjectA in the method progO :

The client procedure in ObjectX is as follows :

ClassX::progO
{

/*

* invokes Object, &,
*/

Proxy_ObjectA.mtdA1 (ClassC &proxy_refC);

}

The invocation is not performed directly on ObjectA, but on its proxy in the local
ORB process.

�9 The mtdA0 of the proxy object for ObjectA :

Proxy_ClassA::mtdA1 (ClassC &proxy_refC)
{

/*

* bind to the ObjectA using the Naming Service
*/

binding_handle = bind(ObjectADceUuid);
/*

* The proxy object makes a RPC call to the server
* procedure, passing the ORB reference of ObjectC
* in the argument.
* This ORB reference can be found in the reference table
* by making a search for the proxy object reference.
*/

DCE_lnterfaceA_mtdA1 (ORB_getORBRef(proxy_refC));
/*

* unbind from the server object
*/

unbind(binding_handle);

}

The proxy object offers exactly the same interface than the server object. It makes a
DCE RPC call to invoke the remote object.

238

ObjectA is the server of ObjectX and the client of ObjectC. In addition, it dynamicly
creates the ObjectB. Its ORB interface is translated into DCE interface. Its DCE
server procedure is shown below :

DCE_lnterfaceA_mtdAl(ORBRefType ocRef)
{

ClassC &proxyC1;
/*

*/

call DCE primitive to obtain the object uuid from
the binding handle

rpc_binding_inq_object(binding_handle, &uuid, status);
/*

* search for local object reference in reference
* table using its DCE uuid
*/

objRef = ORB_getObjRefFromDCEuuid(uuid);
r

search for entry corresponding to OC from ORB
reference table

*/

proxyC1
/*

*/

= ORB_getObjRefFromORBRef(ocRef);

If this object reference ocRef is found in the reference
table, e.g. the ObjectC has been referenced,
The ORB run time can take the its proxy object and
pass it as parameter in the method call.
If not, the ORB run time should invoke the operator New
to bind to the object and create its proxy object.

if (proxyC1 t= nullRef)
{

/*

* object C1 has been already referenced
*/

((ClassA &)objRef)->mtdA1 (proxyC 1);
}
else
{

/*

* the object reference is missing from the
* reference table.
*/

proxyC1 = new (ocRet) ClassC0;

239

((ClassA &)objRef)->mtdA1 (proxyC 1);
}

}

In order to make invocation on the ORB server object (ObjectA), the DCE procedure
needs the ORB object's local reference which can be obtained by its DCE uuid. This
invocation requires the reference of ObjectC. However, the local ORB process may
never refer to this object before. I f so, the proxy object for ObjectC ought to be
created to perform this dynamic binding.

The ORB object implementation for ObjectA is shown below :

ClassA::mtdA1 (ClassC &refC1)
{

/*

*/

create dynamically an instance of ClassB
Only the proxy object is created
The server object will be generated by
the proxy object in the implementation site

ClassB proxyB1 = new ClassBO;

/*

* Invoke a method on the proxy object.
*/

refC1 .mtdClO;

}

When an object creation is required, only its proxy is created in the user code. The
real object is created during the construction of this proxy object.

Only this part of code is writen by the user. It does not require any language
extension.

4. ORB/DCE interface translator

To meet the ORB to DCE interface mapping requirements, we have developed a tool
which performs the translation from ORB IDL interfaces to DCE IDL interfaces.

The syntax of the DCE IDL is quite similar to that of the ORB IDL. The translation
might be straightforward, if the ORB interface definition did not provide special
features.

240

Unfortunately, the ORB IDL allows a number of features which are not directly
supported in the DCE IDL such as: attribute definition, interface inheritance, etc.
Therefore, the ORB/DCE interface translator aims to provide relevant mechanisms to
facilitate this mapping.

The translator performs normal syntax conversion from the ORB interface definition
to the its symmetry in the DCE IDL.

If the ORB interface definition uses the direct attribute manipulation feature, we
define a pair of operations : "get" and "set" in the DCE interface to perform the
counterpart in the DCE IDL. The "get" operation reads the attribute value; The "set"
operation changes this attribute to a specified value. If the ORB IDL attribute is read
only. Only the "get" operation is specified.

i.e.

IDL interface definition :

interface A {
attribute long x;
readonly attribute short y;

};

Corresponding DCE interface definition :

interface A
{

long _getx();
void _set_x([in] long x);
short _get_y();

}

The interface inheritance mapping is more complicated. Suppose that we have the
following ORB interface definition :

interface A: B, C{
void mAlO;

};

The ORB interface A is derived from B and C which are defined as follows :

interface B{
void mBlO;

};
interface C{

void mClO;
};

241

When the interface A is directly translated to its DCE interface, it will only contain the
operation mA1. Thus, the translator should be able to recognise the inheritance, to
include mB1 and mC1 and to create the corresponding stubs. One solution is to copy
all the operations and attributes of the base interfaces in the derived interface
according to inheritance rules (ex. overloading, conflict resolution) and to generate the
stub procedures. A naming problem may arise when overloaded operations are
defined. Therefore, the name of the DCE procedures should take into account the
number of arguments and their types (i.e. DCE_lntfA_mtdA int char_float() for
mtdA(int x, char y,float z)).

5. Conclusion

This paper has proposed a simple ORB platform implementation using DCE services.
It is demonstrated that the development effort can be reduced, since DCE provides
effective communication mechanisms. The key idea of this implementation is the
utilisation of the proxy object concept. A proxy object offers to the client the same
interface as that of the server objet. It encapsulates the ORB client stub procedures.

This implementation architecture is under prototype development in the aim of
providing a simple object oriented programming environment over the DCE. The
performance aspects are not yet taken into account in this phase.

6. Reference

[1]

[2]

[3]

"The Common Object Request Broker: Architecture and Specification",
OMG Document, Draft 1991.

"Introduction to BULL DCM/DCE", BULL, 1992.

"Application Development Guide DCM/DCE", BULL, 1992.

DCE++: Distributing C++-Objects using OSF DCE

Markus U. Mock

University of Karlsruhe, Institute of Telematics
76128 Karlsruhe, Germany; e-mail: mock@ira.uka.de

Abstract
This paper describes the design and implementation of an extended distributed
object-oriented environment, DCE++, on top of DCE. The design goal was to
overcome some observed shortcomings of DCE namely that is only well-suited
for client-server applications. Opposed to DCE DCE++ supports a uniform ob-
ject model, location independent invocation of fine-grained objects, remote ref-
erence parameter passing, dynamic migration of objects between nodes, and
C++ language integration. Moreover, the implementation is fully integrated
with DCE, using DCE UUIDs for object identification, DCE threads for in-
terobject concurrency, DCE RPC for remote object invocation, and the DCE
Cell Directory Service (CDS) for optional retrieval of objects by name. An ad-
ditional stub compiler enables automatic generation of C-H--based object com-
munication interfaces. Low-level parameter encoding is done by DCE RPC's
stub generation facility using the C-based DCE interface definition language
(IDL). The system has been fully implemented and tested by implementing an
office application. Experiences with the existing system and performance results
are also reported in the paper.

1 Introduction

The OSF Distributed Computing Environment (DCE) [6,7,8,9] is becoming an indus-
try standard for open distributed computing. It offers a rich set of services such as
RPC, threads, naming, to enumerate just a few. For these reasons, DCE has been the
choice for our research and development projects, too. However, like other authors
[5], we have also observed several deficiencies of the traditional client/server-model
supported by DCE:

�9 Granularity: Clients and servers are heavyweight instances. Therefore, it is costly
to install them dynamically and it is virtually impossible to relocate them at run-
time.

�9 C o m m u n i c a t i o n : The communication paradigm in asymmetric: Invocations are
usually client-to-server round-trip. Server-to-client invocations require cumber-
some implementation techniques but are desirable within many applications.

�9 P a r a m e t e r s e m a n t i c s : RPC reference parameters are dereferenced and their con-
tents are copied by value into the peer's address space. This can lead to anomalies

243

in case of concurrent access to client and server copies. Moreover, parameter
passing by remote reference would also be more efficient in some cases.

�9 Remote data access: Data structures managed by a server can only be accessed in-
directly, i.e. by invoking data management operations of the server. Many appli-
cations could be facilitated by enabling direct remote access to data objects.

�9 Entity identity: Data objects do not have a globally unique identity. Therefore,
they cannot be arbitrarily addressed from remote locations, one of the reasons for
the lack of direct remote data access. Client and server entities only have a global
identity by application-specific composition of low-level address and identifier in-
formation.

We designed and implemented a distributed object-oriented extension of DCE to ad-
dress these problems. It supports the following features:

�9 Fine-grained distributed objects: The programming model is based on fine-
grained, dynamically created C++ objects located at several distributed network
nodes. An initial remote location can optionally be specified at object creation
time. C++ objects therefore are the basic units of distribution. However, objects
can also contain nested C++ data structures, leading to objects of arbitrary granu-
larity.

�9 Systemwide identity: All distributable objects are internally referenced via system-
wide unique identifiers based on DCE's universal unique identifiers (UUIDs).

�9 Location independent invocation: Objects communicate by method invocations,
no matter whether the peer object is local or remote. The task of locating peer ob-
jects is performed by our system. Remote invocations are internally mapped onto
DCE RPC. This is achieved by an own stub generation facility working together
with DCE's IDL-based stub compiler.

�9 Dynamic object migration: Upon request by the application, objects can dynami-
cally move between nodes, e.g. to co-locate communicating objects or to distribu-
te parallel computations onto different nodes. An important property of our ap-
proach is that migrated objects can still be accessed in a uniform way, and that
concurrent migration and invocation requests are synchronized.

�9 Concurrency support: Object invocations at a given node can be performed con-
currently based on multithreaded RPC servers. Moreover, applications can expli-
citly create concurrent computations by using a thread-related class library; this
class library of our system is internally mapped onto DCE threads.

�9 Decentralization and dynamics: The implementation is based on a decentralized
architecture. In particular, the algorithm to locate objects is fully decentralized.
Moreover, object creation and deletion is fully dynamic, and the node structure
can also be reconfigured dynamically. Based on these properties, there are no
system-inherent scalability limitations.

�9 Full integration with DCE: One of the most important and distinguishing proper-
ties of our system is its full integration with DCE mechanisms. It solely uses DCE

244

RPC for implementing interobject communication, and DCE threads for concur-
rency. Moreover, UUIDs serve as object identifiers, nodes are addressed by DCE
binding handles, and the DCE Cell Directory Service is used for optionally regi-
stering objects by logical names. Based on DCE, the implementation is highly
portable and enables heterogeneous systems interoperability.

The approach is based on concepts introduced by earlier approaches such as Emerald
[1], Amber [2], Arjuna [12], and Amadeus [4]. However, as opposed to these systems,
it is integrated with DCE mechanisms, an issue that guided many detailed design
choices. Moreover, the approach does not introduce any C++ language modifications -
therefore, it is a system service on top of DCE and C++ and not a new language.

We first discuss our system architecture and design choices. Thereafter, we describe
details of our implementation and discuss experiences and performance results. We
also illustrate the functionality by an example application.

1.1 DCE++ Architecture and Basic Concepts

DCE++ uses fundamental DCE services, namely threads, RPC, and CDS. The time
service is also operating in our environment but is only exploited internally, especially
by CDS timestamps for name entries. The other services can be integrated with our
approach in the future. Fig. 1 shows the extended architecture of DCE++ based on a
simple example configuration.

! L

D~DS r L
er ~ I

. . . . I I

r
:

RPC " " " " " . . . Threads I
I

Threads ,, - i

Fig. 1: DCE++ Architecture

On each node, a DCE RPC demon is installed and serves RPC invocations. Moreover,
threads are used for handling concurrent invocation requests and can be exploited by
the application with object-oriented class capsules. Distributed objects are allocated at
various nodes and have local and remote interobject references. A remote reference is

245

implemented by a proxy indirection; a proxy contains a location hint for the refer-
enced object and transparently forwards invocations based on DCE RPC. Each node
maintains a hash table for mapping the global object identifiers within incoming invo-
cations onto actual storage addresses of C++ objects.

One or mole DCE CDS servers are also part of the environment. Objects can be
named upon creation which has the side effect that their names are registered with the
name server along with the binding handle for the creating node. This mechanism is
used to obtain initial references to objects and solve the problem of binding. However,
it is not necessary to name an object. In fact, most objects will be nameless and refer-
ences to them will only be obtained as references in remote method calls. While this
gives the application developer some control over the accessibility of objects its main
purpose is performance. Accessing the name service is an expensive operation taking
several hundreds of milliseconds while passing object references in a method call re-
quires only in the order of ten milliseconds making it one order of magnitude faster,

1.2 Proxy Management and Object Access

A proxy is installed whenever a node learns about the existence of a remote object.
This is the case when a reference to a remote object is passed as a parameter of an
invocation. In addition, when an object moves and has references to remote objects,
proxies must be installed at the destination node for each reference. Moreover, a mi-
grating object leaves a proxy at its former location. This results in forwarding chains
of proxies that are followed when an object is invoked. The location information
within the whole chain is updated upon stepwise return of the call. This way, forward-
ing chains will usually have a length of only one hop - assuming that invocations are
more frequent than migrations.

The alternative of immediately updating all remote proxies whenever an object moves
would improve invocation performance of mobile objects and is found in some distrib-
uted Smalltalk implementations (see [3], for example). However, it has two major
problems: (1) migrations are more expensive, and the approach is not scalable since
migration costs increase significantly in large systems; (2) each object would have to
maintain backward references to all proxies; this requires significant storage space and
leads to orphaned references in case of node failures.

As a trade-off between a pure forward addressing technique and an immediate proxy
update approach, we integrated an additional technique: Objects register their current
location at their "birthnode", i.e. at the node where they were created. That is, after
having performed a migration, an RPC is sent to the birthnode containing the new lo-
cation. From each proxy, the birthnode's address can be derived, either by extracting
the node identifier out of the object identifier or by explicitly registering the node
identifier with each proxy. Therefore, an object can be located by either following the
forwarding chain or by querying the birthnode. The first option is used in the fault-free
case. However, if a forwarding chain is broken by a failed intermediate node, the
birthnode is queried for an object's location. In the normal case, forward addressing is
more efficient - it requires one RPC if the location information is up-to-date, while the
birthnode option would require at least two RPCs for locating the object at a third-
party node.

246

1.3 Object Mobility

Object migrations are requested by the application by calling an automatically gener-
ated method of an object. Basically, a migration consists of the following internal op-
erations (see fig. 2 for an example of moving an object 01 from node 1 to node 2): (1)
First, the object to be moved is locked by a semaphore. This is required for synchroni-
zation with ongoing invocation requests. (2) Then the object is replaced by a proxy at
the source node and unlocked; however, the object data is still kept for failure recov-
ery. (3) Next, an RPC installation operation is invoked remotely at the destination
node, passing the object's data as an RPC parameter. All object data structures are de-
fined in IDL so that marshalling and unmarshalling can be done completely by DCE
RPC. (4) The destination node installs the object and inserts its identifier into the local
hash table. If there has been a proxy before, it is replaced by the object. (5) Upon re-
ceiving the reply of the remote installation RPC, (6) the source node of the migration
informs the birthnode about the new location. (7) Finally, the original object data is
deleted at the source node.
This approach has some interesting characteristics: Although migrations and invoca-
tions are synchronized by semaphores, locks are not held at the source node until the
migration has fully completed. This is not necessary as the source node can immedi-
ately forward invocations when the proxy has been installed. The birthnode is in-
formed only when a migration is completed so that it does not receive incorrect infor-
mation if a migration fails. If an object should be located via the birthnode in the
meantime, the operation would still work: The birthnode would direct the invocation
to the former location of the object which then already has a proxy pointing to the new
destination. Migration requests can also go to remote objects. In this case, the request
is forwarded like a usual method invocation until it reaches the destination node. Then
the migration is performed as discussed above.

Instead of specifying an absolute destination, a relative migration method is also sup-
ported. It takes a peer object as a relative destination specification, locates the given
object as discussed above, and then performs the regular migration to the found loca-
tion.

Since IDL requires the interface definition to be available before compiling and link-
ing the application the current system does not allow new object types (i.e. classes) to
be added dynamically to a running application. Also, all the code implementing the
methods must be available at all nodes, such that an object of each defined class can
possibly migrate to every node in the system.

1.4 Class Structure

The described functionality is offered by a set of classes shown in fig. 3 together with
the most important relationships with application and system components. The class
Object_Reference implements all required data and basic functionality for remote ob-
ject access and object migration.

247

proxy for O1
I %

/ / (6) RPC

proxy for O1 t ~ x..

(1) lock
(2) replace

Node 1 (7) delete

(3) RPC
P 4

(5) reply

Birthnode of O1

%

~ (4) install

Node 2

Fig. 2: Object Migration

For each application class with distributed instances, two implementations are re-
quired. The first one, denoted _<Application_Class> in the figure, is derived from
Object_Reference and represents an auxiliary class. It mainly implements the proxies
with code to distinguish between local and remote invocations. However, an instance
of an auxiliary class is also present for each local object as an external capsule for
each class. The class offers the required code to migrate objects with application-
specific data slxuctures, too. In case of remote invocations and migrations, it makes
direct use of DCE RPC as indicated in the figure. Most importantly, this class can be
generated automatically based on an interface description as described below.

The "real" implementation of each application class, denoted <Application_Class> in
the figure, is identical with a regular class implementation as found in a corresponding
non-distributed application. Each object of an auxiliary class has a local reference to
the associated "real" object of the application class.

<Application code>]

(_--~ in heri~j ~ ~ DCE RPC I

Fig. 3: Class/Module Structure

248

Network nodes are also represented by objects, for example to specify destination lo-
cations of migrations. The derived class Node offers the corresponding functionality.
In particular, each object of class node contains the required address information as a
DCE RPC binding handle. An application only uses objects of class Node and of aux-
iliary application classes directly. Several other auxiliary classes are part of the sys-
tem, namely classes for threads, semaphores, hash tables, and directory service name
entries.

The concrete structure, use, and automatic generation of these classes are described
below.

2 Implementation

The implementation was done on a network of DECStations 5000 and 5240 under U1-
trix 4.2, using AT&T C++ 2.1 and DEC's C++ compiler, named cxx. Our DCE proto-
type has been provided by DEC (version 1.0). Basic transport-level communication is
performed by TCP/IP, UDP/IP or DECnet via an Ethernet. The actual communication
protocol can be selected at RPC initialization time. For implementing the stub genera-
tion, the Unix tools awk and sed have been used.

The following subsections describe our implementation. We first discuss the system
classes provided by our approach and then show some uxiliary application classes.

2.1 System Classes

Object_Reference: Much of the functionality of our approach is given by class Ob-
jectReference. It has the following (simplified) structure:

class Object_Reference {
private:

uuid_t object_id;
char *object_name;
Node *suspected_loc;

ily curren0 location
Node *creating_node;
pthread_mutex_t mutex;

public: Object_Reference (char*);
jects and nodes

Object_Reference (RPC_Obj_Ref*);
and location hint evaluation

--ObjectReference 0;
void lock();
void unlock();
uuid_t getoid 0;
char* get_name 0;
Node* geLcre_loc 0;
Node* geLsus loc 0;
void update (Location *loc);
int
virtual int

[[object UUID
//object name
//suspected (NOT necessar-

//creating node of object
//semaphore
// used for application ob-

/ /used for migrated objects

//destructor
//lock semaphore
//unlock semaphore
//return id
//return name
//return birthnode
//return location hint
//update location hint

migrate (Object_Reference*);//relative migration
migrate (Node*); //absolute migration

249

virtual Location* locate 0; //locate objects
];

Objects of this class contain a DCE UUID to identify them (objectid). It is generated
by the constructor using a DCE system function. They also have an optional name
(objectname) that is registered with CDS. The location hint of proxies and the birth-
node of the corresponding object are stored in separate instance variables, sus-
pected_loc and creating_node, respectively. In principle, it would be possible to de-
rive the birthnode from the object UUID (the node address would be part of the UUID
to make it globally unique); however, this did not work with the given DCE imple-
mentation. The semaphore for synchronizing invocations and migrations is also part of
Object_Reference.

Most of the methods are pretty straightforward. It may be worthwhile to note that the
second contructor is used to install proxies when a new object reference is passed to a
given node. The required address information is provided via a parameter of type
RPC_ObjRe f that contains the internal RPC address information for an object's loca-
tion. The update method is called when a proxy chain is updated upon return of a re-
mote invocation. The relative migration method is application-independent as it only
calls the absolute migration method after having located the object. However, the ab-
solute migration method that performs the physical migration must be provided by the
application-specific subclass and is therefore virtual. The method to locate an object is
implemented differently by application objects and nodes and is therefore also virtual.

Node: An object of class Node is created locally for each node that is known by a
given peer node, including itself. It provides the required information to invoke an
RPC at a suspected object location. This includes a unique identifier for the node, and
a corresponding RPC binding handle.

class Node : public Object Reference {
private:

uuid t loc_id; //id from binding handle
rpc_binding_handle_t binding_handle; //DCE binding handle

public: Node (char*); / /nodes defined by applica-
tion

-Node 0; //destructor
Location* locate 0; //return suspected_loc from

base
void Shutdown 0; //stop RPC listener
uuid_t get_id 0; //get node id
rpc_binding_handle_t get_bh 0; //get binding handle

};

The constructor of this class creates a representative for foreign nodes if a node name
is given. In this case, a CDS inquiry is performed for importing the required binding
handle and identifier information (using the CDS interface operations
rpc ns binding_import_begin _next _done). Otherwise, the representative for the
local node is generated. In this case, the constructor exports the local binding informa-
tion to CDS (using rpc ns binding_export) so that other nodes can import it. The lo-
cate method just retums the suspected location of the superclass component as nodes
never move. In addition to basic access operations for instance variables for internal

250

use, a method to shut down the RPC server of a node is provided. It is useful for re-
mote housekeeping within an application. It is implemented by calling a remote DCE
RPC management function at the actual location. Note that all other methods can be
implemented locally - except the interaction with CDS within the constructors.

The implementation of the other application classes, namely of the threads and hash
tables are relatively straightforward and are therefore not described in closer detail.

2.2 Application Classes

Class structure: The actual implementation of the "real" application classes is similar
to ordinary C++. However, the auxiliary application classes, i.e. the capsule classes
around the real classes, are generated automatically. They basically have the following
class structure (_<A>) for an application class <A>:

class _<A> : public Object__Reference
private:

proxies
public:

ject

migration

evaluation

object

_.<A> (char*);

<A> *obj_ptr;

_<A> (<A>_data*, RPC_Obj_Ref*);

_<A> (RPC_Obj_Ref*);

-__<A> 0;
int migrate (Node*);
static _<A>* get__ref_by_name (char*);

/ /for all application-specific constructors:

// internal constructor for

!/pointer to application ob-

/! used within manager after

// used within location hint

//destructor
//absolute migration
// get reference to existing

_<A> :: _<A> (.... Object_Reference *or = here, char* name = "");
// regular application-

specific constructor
/! for all application-specific methods:
resulLtype < A > :: method_name (.... Object_Reference *or = NULL,

RPC call data *cd = NULL);

Each object has an internal pointer to the actual object data of class <A> (obj_ptr).
This pointer is dereferenced for all local invocations, passing them to the real object.
Two internal constructors are used for installing objects after a migration and for gen-
erating proxies, respectively. <A>_data* is a pointer to the data structure of the appli-
cation class, however given in C instead of C++ for conformance with DCE's IDL.
The implementation of the migrate method also accesses this data structure definition
in order to perform the remote object installation by an RPC call. Details are ex-
pounded in [11].

251

3 Example Application

To test our system we implemented a small application, modeling an office scenario,
see figure 4.

m,,ratio.

.a,, f

I head hunter "1-1~ I.form filler l - - ~ a t e computer ~ POlicy sender 1

Fig. 4: Example Application

A "head hunter" creates a number of customers and for each customer a form is cre-
ated that has to be filled out. After initializing and filling in some basic data such as
the customer name the head hunter is done. The form filler periodically checks the
forms' state and as soon as they are available for further processing it requests them
being migrated to its own node and fills in more data. Likewise the "rate computer"
periodically checks whether the form filler is done, as soon as the form is in state
"form_filled_in" it requests a migration to its own node. Then it computes the rates for
the customers (we model insurance policies being filled out). Finally the filled-in poli-
cies are migrated to the "policy sender" upon request by the policy sender. As can be
inferred from the description of the scenario various migrations are involved. More-
over, the form filler, rate computer and policy sender access the forms remotely to find
out in which state they are. Therefore the application also makes use of remote method
invocations.

To develop an application one has to go through the following steps:

�9 write the application classes

* write a corresponding IDL-description

�9 write a corresponding DCE++ description

Once one has gone through those steps one generates the migration code by running
the DCE++ stub generator, then the IDL-compiler, and finally the C++ compiler and
linker to create the application code. More details on the development process and the
way the code really looks like can be found in [11].

252

4 Performance and Experiences

In this section we will look at the performance of the system. Moreover, we will dis-
cuss the general experiences gained by designing and implementing DCE++.

Performance:

To gather performance data of our DCE++ system we chose to time migration within
our sample application. For that purpose we used different amounts of data within the
form that is filled in and migrated in the application. First, we timed the migration of
the form containing only system relevant data that is inherited by each appliation class
such as the object's ID. Then we increased the additional user data from 100 bytes to
1000 bytes and finally 10000 bytes. All reported times are in milli-seconds and short-
est, longest and median time to complete the migration are shown. The measurements
were made on lightly loaded DEC 5000 stations connected by an Ethemet. The com-
munication protocol chosen to be used for RPC was UDP.

The figures show that the overhead incurred by DCE++ is negligable. In previous
measurements in the same environment we had measured about 6 ms for a raw empty
RPC call. Moreover, the figures show that the migration time is not very sensitive to
the amount of data being transfered. This, however, must be attributed to the tested
data sizes - which all fit into a UDP packet - and the type of data used (arrays) which
allows the IDL-compiler an efficient and fast encoding and decoding. A median time
of 35 ms for the migration of an object containing about 1000 bytes makes DCE++
suited for use in real applications.

time [ms] Empty 100 bytes 1000 bytes 10000
bytes

Minimum 16 16 16 59

Maximum 176 254 176 543

Median 31 31 35 82

Fig 5: Performance

Experiences:

Based on our implementation and on the example application, we gathered a number
of important experiences:

�9 Object model: The object model seems to be more suited for distributed program-
ming than the traditional client/server approach. Within our application (and

253

within former projects), we observed that a uniform object model simplifies appli-
cation design. Location independent invocation based on globally unique object
identifiers makes distribution lransparent to a large degree - except the problem of
failure handling, of course. Remote object reference passing contributes to this
fact as it is a natural passing mechanism in local applications, too.

�9 Object mobility: Mobility is an essential feature of distributed object-oriented ap-
proaches. It allows for modeling physical data transfer (such as document ship-
ping) at a very high level of abstraction. Moreover, it provides explicit control of
distribution when an application requires it (e.g. to co-locate communicating ob-
jects).

�9 Use o f RPC: In spite of our criticism of RPC, this mechanism has proven as a
workable base for implementing such a distributed object management facility.
Based on the one-to-one mapping of method invocations onto application-specific
RPCs, most of the parameter marshalling problems were just passed down to the
RPC level; this simplified our implementation significantly. Moreover, the recur-
sive implementation of the algorithm to locate objects based on RPC has proven
quite elegant and easy to test and maintain. It would be more efficient to send re-
sults back to the caller via a direct message from the callee, but this slight disad-
vantage is outweighed by the chance of updating all intermediate location infor-
mation.

�9 Use o f standards: The use of DCE as an industry standard also had many advan-
tages. As opposed to ad-hoc mechanisms, the environment was rather stable.
Moreover, we did not have to deal with heterogeneity problems; they are hidden
by the RPC protocol. Finally, the high portability of applications based on a stan-
dardized platform is an important advantage in open systems.

�9 Use of system services: The use of system services as offered by DCE made a
rapid implementation possible. In particular, we exploited CDS for node and ob-
ject management and threads for concurrency support - in addition to RPC, of
coarse.

�9 Interface definition: Our interface definition and stub generation approach is only
an intermediate solution. Its capabilities regarding the language syntax are lim-
ited. Moreover, a partially redundant specification must be given. Therefore, a
major goal of our future work is a full C++-based interface definition and stub
generation facility.

5 Limitations

Although we think that our current system is already usable for application develop-
ment, it still has its shortcomings.

Most notably there are currendy two description files the user has to write: the IDL-
description to be used by the IDL-compiler and the DCE++ description file that is
used to generate support code for migration and remote access. However, this is not a

254

design limitation, since it is possible to generate the DCE++ description file from an
augmented IDL-description. Work is in progress to enhance the IDL-description to al-
low the description of C++ class interfaces. From such a description the DCE++ de-
scription file could be generated automatically, maybe even by the IDL-compiler it-
self. This would render the need for writing a second (redundant) description unneces-
sary, which - apart from being a nuisance - also introduces the possibility of errors.

Another limitation of the system related to the IDL-description restricts the range of
data types that can be used in migratable objects. Since the IDL-description must con-
form with the corresponding C++ classes it it currently impossible to support class hi-
erarchies with virtual member functions.

Finally, although IDL allows complex data types such as linked lists it is currently im-
possible to migrate them. The reason is that the RPC runtime system allocates some
parameters of a RPC on the server's stack and deallocates them once the call has com-
pleted. This is desired behavior for RPC and for a remote method invocation as well,
however, when sending object data to another node to install the object there, i.e.
when a migration is being performed, the data on the (RPC) server's side must persist.
For simple fiat data types DCE++ can simply do the allocation itself, when more com-
plex (user-defined) data structures are involved, though, it would be necessary to have
access to the IDL-description to take appropriate action. A possible solution would be
to allow an attribute for an RPC call specifying that parameter data has to persist after
the call completes thus enabling migration. How to do this exactly is another topic
being investigated.

6 Conclusion

This paper described the design and implementation of a distributed object-oriented
extension of the OSF Distributed Computing Environment. The major features of the
approach, location independent object invocation and object mobility, have proven
very useful for application development. Moreover, the use of DCE as a standard has
provided significant implementation benefits.

Acknowledgements: I would like to thank Markus Person who implemented the de-
scribed concepts within his diploma thesis [10].

References

1. Black, A., Hutchinson, N., Jul, E., Levy, HI, Carter, L.: Distribution and Abstract
Types in Emerald; IEEE Trans. on Soflw. Eng., Vol. 13, No. 1, Jan. 1987, pp. 65-75

2. Chase, J.S., Amador, F.G., Lazowska, E.D., Levy, H.M., Littlefield, R.J.: The Am-
ber System: Parallel Programming on a Network of Multiprocessors; 12th ACM Symp.
on Operating Systems Principles, Litchfield Park, Arizona, 1989, pp. 147-158

3. Decouchant, D.: Design of a Dislributed Object Manager for the Smalltalk-80 Sy-
stem; ACM OOPSLA Conf., Portland, Oregon 1986, pp. 444-452

255

4. Horn, C., Cahill, V.: Supporting Distributed Applications in the Amadeus Environ-
ment; Computer Communications, Vol. 14, No. 6, Juli/Aug. 1991, pp. 358-365

5. Levy, H.M., Tempero, E.D.: Modules, Objects and Distributed Programming: Is-
sues in RPC and Remote Object Invocation; Software - Practice and Experience, Vol.
21, No. 1, Jan. 1991, pp. 77-90

6. Open Software Foundation: Introduction to OSF DCE; Open Software Foundation,
Cambridge, USA, 1992

7. Open Software Foundation: DCE Users Guide and Reference; Open Software
Foundation, Cambridge, USA, 1992

8. Open Software Foundation: DCE Application Development Guide; Open Software
Foundation, Cambridge, USA, 1992

9. Open Software Foundation: DCE Application Development Reference; Open Soft-
ware Foundation, Cambridge, USA, 1992

10. Person, M.: Verteilte Objektverwaltung auf der Basis von DCE; Diplomarbeit an
der Fakultdt fiir Informatik der Universitdt Karlsruhe, 1993 (in German)

11. Schill A., Mock M.: DCE++ - Distributed Object-Oriented Support on Top of
OSF DCE, Submitted for Publication

12. Shrivastava, S.K., Dixon, G.N., Parrington, G.D.: An Overview of the Arjuna Di-
stributed Programming System; IEEE Software, Jan. 1991, pp. 66-73

Object-Oriented Distributed Computing
With C++ and OSF DCE

John Dilley <jad@nsa.hp.com>
Distributed Systems Architecture Team

Hewlett-Packard Company
19410 Homestead Road, MS 43UA

Cupertino, California 95014-9810 USA

HP Document Number NSA-93-014

Abstract. This paper suggests a method for developing object-oriented
distributed applications using the C++ and DCE technologies. It presents the
benefits provided by the use of object-oriented design and development
techniques when writing distributed applications. It describes a model to map
DCE onto C++, a structure for distributed C++ applications and it presents a set
of challenges we encountered while integrating C++ with DCE, along with the
solutions we chose for them. Through this approach we saw a significant
decrease in application code size as well as an increase in developer
productivity.

1 Overview
This paper reports on the results of a project aimed at simplifying the development

of distributed applications based upon the OSF Distributed Computing Environment.

This project defines a class library that hides complexity from DCE developers and
a compiler that converts DCE interface definition files into customized C++ client and
server classes. Server developers implement the server class methods to implement
server behavior. Client developers use the client class methods to access correspond-
ing servers across the network. Using this approach, client writers use the same model
they use for making local method calls, but an RPC is being made transparently for
them.

Standard DCE functions such as security and namespace registration can be pack-
aged in C++ classes and reused automatically by applications. This reduces applica-
tion complexity and can increase the consistency of distributed applications.

By integrating the DCE exception model with C++ exceptions we were able to
make consistent use of language support for remote and local exceptions.

1.1 Why DCE in C++

We chose to use C++ to encapsulate and abstract DCE functionality for a number of
reasons.

�9 Object orientation provides many benefits for abstracting interfaces and hiding
data, allowing developers to work at a higher level. C++ also facilitates inter-
face and code reuse.

�9 C++ is becoming a very prevalent language for object-based systems develop-
ment. Increasing numbers of C++ class libraries and development tools are
becoming available.

257

�9 C++ has a clean and natural interface to C, and therefore to the existing DCE
implementation.

�9 The C++ object model is also similar to the object model used in DCE.

These last two factors make the resulting system more intuitive and therefore easier
to learn.

1.2 Benefits

The benefits of building systems using object-oriented techniques have been well
studied in the literature. Korson and McGregor [1] provide a thorough examination of
the concepts and benefits of object-oriented development. Nicol, et al [2] present some
benefits of object orientation for building distributed systems and discuss some current
distributed object-based systems including the existing DCE object model and OMG's
CORBA [3] distributed object system.

In our work the primary benefits that relate to the construction of DCE-based dis-
tributed applications were the abstraction of complex DCE interfaces and integration
of the DCE object and exception models with the C++ language. Other benefits were
seen in the use of encapsulation, error handling, initialization, and cleanup.

A higher-level interface to the DCE allows greater productivity because less code
needs to be written to deal with the DCE in each new application. Access to DCE
functionality is provided through common access to base class member functions.
Encapsulation of DCE data types within C++ types allows convenient access to DCE
data through C++-supported type conversions. And integrating the DCE object model
into C++ provides access to that model in a more natural, language supported way.

We believe that using the DCE class libraries will produce more readable and reli-
able code, and make it easier for new DCE users to learn how to create their first DCE-
based distributed applications. This is mainly due to the complexity of the environ-
ment which is hidden by the class libraries.

2 T h e D C E O b j e c t M o d e l

DCE interfaces (IDL specifications) define a set of related data types and remote
operations that can be performed using those data types. A client performs a remote
operation by making a Remote Procedure Call to a compatible server (a server which
implements the interface the client wishes to use).

A DCE object is a logical entity supported by a DCE server. Each object has an
implementation type which is effectively the class of the object. Each implementation
type is supported by a set of manager routines that perform remote operations defined
in an interface definition file. A server can support multiple interfaces; each interface
can have multiple implementation types associated with it. Implementation types are
typically associated with different categories of entities the server is manipulating. For
example, a server could support database access by its clients. The server may support
multiple database implementations transparently, while providing clients the same
logical view (interface). The server in Figure 1 supports multiple interfaces; within its
database interface it has implementation types A and B, with associated manager rou-
tines.

Each implementation type can have a set of objects associated with it. These
objects are often logical representations of the entities the server manages, such as
individual databases or perhaps tables in a database.

258

FIGURE 1. DCE Object Model

A server registers the interfaces and objects it supports with the DCE environment
and awaits incoming RPCs. Each RPC is dispatched by the runtime to the specific
manager function that supports the interface and object requested by the client.

DCE clients establish a binding to an object by specifying an interface and object
identifier. The client and the DCE runtime use this information to select an appropriate
server and initiate the RPC. By selecting an object, the client can select which logical
entity it wishes to access; in Figure 1 the client has bound to the object obj3.

3 Description of Approach
We considered two approaches to constructing a set of class libraries for use as an

interface to a particular technology (in this case DCE). One was to write wrapper
classes for each of the basic data types and wrapper functions for each of the inter-
faces defined by the technology. These classes and functions are patterned directly
after the data types and functions defined in the technology specification and tend to
look and operate just like the underlying types and functions.

The other approach was to create a set of classes that build an abstract model of the
data and functions needed by an application. These classes are not patterned after the
data types themselves but rather based upon a set of tasks or responsibilities. The
implementations use the underlying data types but do so within an infrastructure that
may be independent of those data types.

With the wrapper classes, each underlying interface is typically mapped into a
method call, providing little simplification over the current API. With wrapper classes
you are tied to a particular implementation of the underlying technology. To work with
a different implementation or underlying technology you will need to write and use
another set of wrapper classes. Wrapper classes are still essential in many instances to
encapsulate basic data types even when using a task-based model. One example is to
encapsulate native data types into cleaner objects making use of polymorphism or
C++ operators.

259

FIGURE 2. DCE Class Library Architecture

The task-based approach requires more up-front design work by the package devel-
oper, but in the end can yield a system that is cleaner and more consistent for the appli-
cation developer. Task-based systems may also be able to survive changes in
underlying technologies, provided the model presented by the technology remains
similar.

We chose to create a set of task-based classes to support the DCE object model,
along with a set of wrapper classes to encapsulate basic DCE data types.

4 T h e D C E C++ O b j e c t M o d e l

The DCE C++ object model attempts to preserve the DCE object model while pro-
viding convenient, natural C++ access to DCE objects. In the DCE C++ object model
an interface defines a set of abstract client and server classes. Member functions of
these abstract classes correspond to the remote operations defined in the IDL file.
Additional abstract classes are provided that encapsulate and simplify the interaction
with DCE and a set of wrapper classes are provided to encapsulate the basic DCE data
types into a C++ representation consistent with the DCE object model. On the server
side DCE objects provide the desired behavior; on the client side they provide trans-
parent access to the object via the DCE RPC mechanism.

4.1 Class Library Components

The components of the class library include the core abstract base classes providing
the framework for the object model and a set of utility (wrapper) classes that encapsu-
late the basic DCE data types.
DCE Core Abstract Base Classes

The DCE core classes are responsible for providing the DCE interface abstraction.
They define the view of the distributed object system with which you interact. Client
and server implementation classes, generated by the IDL to C++ compiler, inherit their
interface and default behavior from these core classes, which provide members corn-

260

mon to all interfaces. The core classes are:

�9 Server--this class implements the portion of the server that interacts with the
DCE environment. A single instance of the server class registers the objects,
interfaces and bindings supported by the server process with the DCE runtime.
The server class also takes an optional location in the name space under which
the server should register itself. The server class has a listen method that per-
forms all the necessary registration with the environment and begins listening
for incoming RPC requests.

�9 InterfaceMgr--this is the server-side abstract base class. Each interface man-
ager is associated with a DCE interface handle and optional type and object
identifiers (UUIDs). The interface manager class defines a set of conversions
and access routines to get the stored data. Derived classes of InterfaceMgr, gen-
erated by the IDL to C++ compiler, provide the member functions that must be
implemented by the server developer corresponding to the interface-defined
remote operations. These classes are referred to as implementation classes.

�9 Interface--this is the client abstract base class. It holds the common client
functions for specifying a remote object with which to communicate. The con-
structor requires as parameters interface and server binding information. The
Interface class provides the ability to control binding policies, and to convert an
Interface object to a string binding representation. Derived classes of Interface,
generated by the IDL to C++ compiler provide the client member functions to
access the interface-defined remote operations. These classes are referred to as
client access classes.

Utility Classes
The utility classes encapsulate the behavior of basic DCE data types to make their

use more convenient within C++. The purpose of these wrappers is to allow conve-
nient construction and use of these data types. Many of them provide conversions to
the corresponding DCE representation (such as to string or uuid_t) , allowing them to
be passed directly to DCE calls without need for separate translation. The primary util-
ity classes are:

�9 Binding--encapsulates rpc__binding_handle._t. Can be constructed from
string or from binding handle components. Provides conversion back to
rpc_binding_handle t or to char*.

�9 Uuid----encapsulates uuid_t. Can be constructed from string form or uuid t.
Equality tests against u u i d t and char* are provided for convenience. C~n-
version operators are provided for u u i d _ t and char* , as well as to hash value.

�9 BindingVec--implements a vector of binding handle objects. Can be converted
into the DCE vector type. There is also a UuidVec class.

Generated Classes
The generated classes are created from the interface definition by the IDL to C++

compiler. Their structure is described in detail in the following sections.
Developer-Defined Classes

The solid ovals represent classes the developer defines (derives) to provide the
implementation and access to the distributed functionality.

4.2 IDL to C++ Compiler
The idl++ "compiler" is actually a per1 script that translates an interface definition

261

into the interface-specific client and server access classes. The compiler first runs the
standard DCE IDL compiler to create the client and server C stubs and the interface
header file containing the operation and data type declarations. The compiler parses
the header file to create a set of C++ classes for each interface defined in the IDL file.
The client access classes contain member functions that allow C++ method calls to
invoke the RPCs defined in the IDL file. On the server side the compiler generates two
classes: an abstract implementation class corresponding to the interface defined in the
IDL file and a default instantiable implementation class derived from this abstract
class (see Figure 3).

In addition to the server-side implementation classes the compiler generates a C++
entry point vector (EPV) data su'ucture, and an object mapper, which maps an inter-
face and object ID pair to a C++ object instance. The C++ EPV is called by the DCE
runtime when an RPC is received for a given interface. The C++ EPV calls the object
mapper to get the specific C++ object instance to which the call is being made. The
C++ EPV calls the desired member function on the object returned by the object map-
per and handles the mapping of DCE exceptions; see {}7.2 for a discussion of excep-
tions.

The data types specified in the header file are left untouched by idl++: no mapping
of user data types for C++ is done. Data types defined in the IDL file are simply used
by the application developer as basic C++ data types. IDL data types are a subset of
C++ types (see the IDL specification [4]). This prototype does not permit the passing
of C++ objects as arguments to remote procedure calls.

4.3 Client Access Class
The client-side access class inherits from the abstract base class Interface. The

access class includes the methods corresponding to the operations (remote procedures)
defined in the IDL interface. The client access methods manage binding to a server
and then call the corresponding C stub generated by the DCE IDL compiler. The client
methods also map DCE exceptions returned by the RPC into C++ exceptions.

4.4 Server Implementation Class
For the server the compiler generates an k,~terIacexv~g~j,

abstract implementation class derived from Inter-
faceMgr. The implementation abstract class pro-
vides specifications for the member functions ~/'Y"~ .~-S~-,,~
corresponding to the remote operations declared
in the interface definition file. Instantiable classes
derived from the abstract implementation class
must implement the member functions defined in @ f r y ~ y , ~ f T y ~ ' ~
the abstract implementation class to provide the
operational characteristics of the server. Each of FIGURE 3. Server Derived Class
these instantiable classes is of a distinct imple-

mentation type (i.e., has an associated manager type UUID). The compiler generates
one such class by default with a nil manager type UUID (the nil manager class). If
multiple implementation types (and therefore multiple managers) are to be used, you
must derive additional classes from the abstract manager class.

Each object (instance) of an implementation class must have its own object UUID
and must be registered with the server class so the C++ runtime (object mapper) can
locate it when a call comes in for that object UUID.

262

The implementation classes implement the manager methods in C++ in the same
way the manager functions are implemented in a C-based DCE server. The manager
methods use the data passed in as arguments, perform their task, and possibly return
data to the caller.

If manager methods throw C++ exceptions they will be caught in the C++ EPV and
transmitted back to the C++ client (as a DCE-compatible data type) where they are
raised again as C++ exceptions for the client to handle.

5 Applications Ported
We ported a set of sample applications from the HP DCE Toolkit to experiment

with the class libraries, with the InterViews C++-based GUI [5] [6], and with object
database technologies. The applications ported are described in the following sections.
More detail about these applications can be found in [7].

Our application development environment was HP-UX 8.0 and 9.0, with the HP
DCE Developer's Environment release, based upon OSF DCE 1.0.1.

5.1 sleeper
The sleeper sample application is a very simple application whose interface takes

an integer number of seconds to sleep. The manager sleeps for that many seconds and
then returns. We used this application for basic experimentation and testing of the
libraries.

5.2 rmt load
The remote load application is used to monitor the load average of a group of server

systems. The application client concurrently requests the load average of each of a set
of servers by doing RPCs in separate threads. Each server returns its one-minute load
average (as emitted by the standard upe..i.~ program) which is then reported by the
client.

In our prototype, the remote load client was given an InterViews-based GUI to dis-
play the load averages. Only the client was ported; it contacted existing C-based serv-
ers to demonstrate interoperability between C and C++ DCE applications.

5.3 phone_db
The phone database application is used to look up personal phone and email infor-

mation. The UI allows specification of name or regular expression search criteria.
With that information the client makes an RPC to the database server and displays the
results. The phone_rib server maintains a database of names and related information.
It is implemented in C++ and uses the HP OpenODB object database to hold the data.

The interface for this application defines data types for a database entry, a simple
structure of strings, and a linked list of database entries. Operations defined include a
search by name (the name is set up as the key field in the database), an arbitrary search
for an intersection of fields, and operations to add and remove entries from the data-
base. The server exports its bindings to the namespace and the client uses the name
service interface to locate a compatible server.

The server manager functions were leveraged from the C version. They maintained
the same interface but were reimplemented to use OpenODB underneath. The client
was almost entirely rewritten due to the new InterViews graphical user interface.

263

6 Resul t s
Porting the existing C applications to C++ took very little time--the main time-

consuming tasks were the removal of the code to interface with the DCE and the addi-
tion of the InterViews GUI. Since the interface definitions remained the same, the code
dealing with the data types and remote procedures was highly leveraged. In some of
the applications the manager code remained in C, as it was perfectly adequate. This
saved development time, and illustrates the integration of the C and C++ environ-
ments.

All the GUI work was done in C++. Since we were using a new technology that the
sample applications had not been using previously, this was all new code. We found
that interfacing the GUI code with the C++ client access class was quite natural.

6.1 Benefits
The primary benefits we experienced after use of this technology were:

�9 Providing powerful abstractions on top of DCE allowed us to concentrate on
the application, not the environment.

�9 Application development and debugging time were shortened because the
basic DCE calls are encapsulated in an already-tested library. Also, having sen-
sible defaults for many DCE values prevented the need for much redundant
code by allowing code reuse.

�9 The C++ DCE application code size is significantly smaller than the C code.
We noted a five-to-one decrease in the actual lines of code that dealt with the
DCE environment in the sleeper application. The new C++ code was also eas-
ier to develop than it had been to develop the original equivalent code in C.

�9 The C++ DCE application object size is predictably larger than the C version.
The object size grew by 30-40%, mainly due to the addition of the C++ excep-
tion mechanism and the DCE C++ exception model we added. Use of shared
libraries should minimize this increase.

�9 The C++ exception model is more powerful and useful than the DCE exception
model. A greater variety of exceptions can be transmitted more easily across
the RPC and handled in the client in a natural way supported by the language.

�9 Having standard policies defined for namespace registration and security
should assist in making future applications using this code more consistent
with each other. This will reduce the management effort required to maintain a
set of client/server applications.

�9 The higher-level abstractions seem to be easier to learn than when using DCE
directly. It is hard for us to judge this fairly as we were all proficient with DCE
before porting the sample applications.

7 Issues with technology
The main issues encountered in integrating the DCE with C++ were in the areas of

threads and exceptions.

7.1 Handling DCE Threads
The DCE threads package provides significant benefits but places the requirement

of being threadsafe on all components linked into an application. Be sure to verify
whether your C++ compiler emits thread-safe code (most do), and whether its libraries

264

are thread-safe (most aren'0. Also, if using Xl 1 or other libraries, be sure to determine
whether they can be called from multiple threads concurrently. If not you will have to
wrap calls to those subsystems to prevent reentrance problems.

7.2 Mapping DCE Exceptions into C++
The area of exceptions required quite a bit of work in the design of the class library.

The C++ language-based exception model is by far more powerful and better inte-
grated than the DCE exception package. It was used as the basis for all exception han-
dling in our prototype since DCE exceptions are incompatible with C++ destructors.

The first challenge was that the C++ and C-based DCE exception mechanisms can-
not interoperate--an exception thrown or raised by one mechanism cannot be caught
and interpreted by the other. Furthermore, an exception raised in one language context
cannot be allowed to pass through blocks from the other language. If this is allowed to
happen, cleanup code might not be properly executed. The DCE exception facility
uses the setjmp and longjmp calls. The longjmp call allows control to pass from
one slick frame to another frame, possibly much earlier in the call stack. The trouble
is the C++ compiler can emit code at the end of blocks to call destructors for automatic
variables and to handle C++ exceptions. Allowing a DCE exception to skip over this
code can cause consistency problems and memory leaks in the C++ application.
Exception Model

To model exceptions in C++ an abstract base class OSFException was defined to
specify the common behavior for all exceptions. Two more base classes, DCEexcep-
tion and CMAexception, were derived from OSFException to model the distinct types
of exceptions that can be raised by the DCE and CMA (threads) subsystems. The
DCEexception class was further subdivided into RPC, security, and directory service
exceptions. Each exception that can be raised either by the DCE or CMA subsystem
was created as a subclass derived from one of these base classes. Each of the specific
exception classes has a method that will print out an informative description of the
exception, and can be converted into a string through an o p e r a t o r can-r*.

The choice to model exceptions as individual classes, instead of as a generic class
with an exception value, allows individual exceptions to be caught by class--in the
C++ exception model any specified data type can be caught. With the generic excep-
tion with value model, fewer classes would be needed but if you want to catch a partic-
ular exception you must catch the generic exception and test its value.
Server Stubs

C++ exceptions cannot be passed across the network back to the DCE client. Any
exceptions raised by the C++ manager methods must be caught and translated into a
data type that can be raised again as a C++ exception in the client. To facilitate this,
the idl++ compiler adds a hidden slims parameter to the interface definition. That sta-
tus parameter is used to hold the unique integer value of the exception that was raised.
On the client-side that integer is thrown again as a C++ exception. Since an integer
type is used, only the DCE error status t and unsigned32 data types can cur-
rently be transmitted back to the client. Any other exception type is mapped to a
generic exception code.
Client Stubs

The C++ access method calls the DCE C stub, which can raise a variety of DCE
exceptions, including communication status, fault status, and user defined DCE excep-
tions. To prevent problems caused by the inconsistent DCE and C++ exception mod-

265

els, the DCE C stub call is wrapped by a CMA TRY/OaXTelt clause. If an exception is
caught in the C++ stub, it is rethrown in C++ as the corresponding exception subclass.

8 Recommendations
We have demonstrated it is possible and useful to develop object-oriented distrib-

uted applications with C++ and DCE, but there are still technical issues with doing so.
We have come up with a set of recommendations intended to smooth the road for oth-
ers developing distributed object-oriented applications using DCE and C++. Our rec-
ommendations fall into two classes: vendor and user recommendations.

8.1 Vendor Recommendations

The sooner thread-safe libraries are available, the easier it will be to develop appli-
cations using DCE threads. In particular, the C++ runtime library, X l l and GUI tech-
nologies built upon it, and commercial products such as databases must be made
thread-safe.

The availability of thread-aware distributed debuggers will also greatly aid in the
creation of DCE applications.

8.2 User Recommendations

The most important issues to be aware of are those that would impede integration
of the object-oriented and distributed computing technologies.

�9 Determine which system components are thread-safe. Develop a plan for work-
ing around the non-thread-safe components, either by writing wrappers, serial-
izing, or ensuring that only a single manager thread will run.

�9 Make sure the DCE exception mechanism is properly dealt with: do not allow
DCE or CMA exceptions to escape past C++ blocks.

9 Related Work
There are many distributed object systems documented in the literature with a vari-

ety of goals. The Arjuna system [8][9] focuses on fault tolerance and persistence using
a custom RPC mechanism built atop an existing kernel. The Clouds project [10] built a
distributed, object-based operating system using a custom microkernel and remote
object invocation implementation. Like Clouds, Emerald [11] uses an object-thread
approach to provide distributed object communication. These are primarily research
projects exploring the operation of distributed object systems using custom platforms.
Schill [12] presents a model for building an object-oriented distributed system within
the framework of Open Distributed Processing (ODP) on top of an existing OSI-based
infrastructure.

By contrast, our work focuses on integrating C++ within the existing DCE system
infrastructure, and to simplify the use of the DCE object model.

OMG CORBA[3] will address creating distributed object systems in C++; some
implementations will run on top of DCE. CORBA IDL provides for interface inherit-
ance, which DCE IDL is lacking, and provides a more C++-like syntax for interface
specification. The CORBA object model is different from the DCE model, but not sig-
nificantly-both are distributed object models with the concepts of interfaces, remote
operations, and data hiding.

We suggest that our work may assist in the migration from DCE to CORBA by pro-
viding an intermediate C++-based distributed object system until CORBA implemen-

266

rations are widely available. Migrating from DCE/C++ to CORBA should be much
easier than migrating directly from C or from C++ using direct DCE calls.

10 Conclusions
Our conclusion from this work is that using object-oriented design and develop-

ment techniques can provide significant benefits in distributed systems. In particular,
the class libraries and compiler we developed significantly reduced the burden of cre-
ating DCE-based object systems.

There are several enhancements that we have considered for this work. The obvious
candidates are other DCE-based systems, such as threads, naming, security, and trans-
action processing with Encina. Migration of this approach to the CORBA environment
should also be studied.

U Acknowledgments
The idea and initial design and implementation of this project were done by Jeff

Morgan. We wish to thank Bob Fraley for his expert advice and contribution to this
effort.

12 References
1. T. Korson, J. McGregor: Understanding Object-Oriented: A Unifying Paradigm. CACM

Vol. 33, No. 9, September, 1990, p 40-60.
2. J. Nicol, C. Wilkes, F. Manola: Object Orientation in Heterogeneous Distributed Computing

Systems. IEEE Computer, Vol. 26 No. 6, June 1993, p 57-67.
3. Common Object Request Broker Architecture and Specification. Object Management Group

Document Number 91.12.1, Revision 1.1.
4. Open Software Foundation: OSF DCE Application Development Guide.
5. M. Linton, J. Vlissides, E Calder: Composing User Interfaces With InterViews. IEEE

Computer, Vol 22, No 2, February 1989.
6. InterViews Plus Programmer's Guide. Hewlett-Packard, 1992.
7. tip DCE Sample Applications Overview, Hewlett-Packard Document NSA-92-024, 1992.
8. S. Shrivastava, G. Dixon, G. Parrington: An Overview of the Arjuna Distributed

Programming System. IEEE Software, Vol. 8, No. 1, January, 1991.
9. G. Parrington: Reliable Distributed Programming in C ++ : the Arjuna Approach. USENIX

C++ 1990.
10. P. Dasgupta, R. LeBlanc Jr., M. Ahamad, U. Ramachandran: The Clouds Distributed

Operating System. IEEE Computer (to appear).
11. R. Raj, E. Tempero, H. Levy, A. Black, N. Hutchinson, E. Jul: Emerald: A General-Purpose

Programming Language. Software Practical Experiences, Vol. 21 No. 1, January, 1991.
12. A. Schill: OSL ODP and Distributed Applications: Towards and Integrated Approach. IEEE

Global Telecommunications Conference and Exhibition, 1991. p 638-642.

OSF is a trademark of the Open Software Foundation.

Graphical Design Support for DCE Applications

Hans-W. Gellersen

Telecooperations Group, Institute of Telematics, University of Karlsruhe,
76128 Karlsruhe, Germany; e-mail: hwg@tk.telematik.informatik.uni-karlsruhe.de

Abstract. DCE and especially object-oriented extensions on top of it provide
rich functionality for implementation of distributed applications. Yet, we observe
a lack of support for the design of distributed applications. Available object-
oriented design methods do not cater for distribution. In this paper, the Visual
Distributed Application Builder (VDAB), a new graphical model for design of
distributed applications is presented. VDAB extends common object-oriented
design support towards distribution and introduces new visual programming con-
cepts to address the inherent complexity of large distributed applications. VDAB
is integrated with DCE and its object-oriented extension DCE++. VDAB appli-
cation designs are eventually mapped automically to DCE++.

1 Introduction

The development of distributed applications is considerably more difficult than the de-
velopment of centralized software due to their well-known characteristics, such as
low-level communication, locality, heterogeneity, risk of node failure. The complexity
of developing distributed applications requires dedicated lifecycle spanning software
engineering support.

The OSF Distributed Computing Environment eases the task of developing distributed
software by providing RPC as communication mechanism, threads for concurrency
support, distributed name management, distributed file management and security serv-
ices [15]. Moreover, DCE supports interoperability in heterogeneous environments.
However, it has been pointed out, that the support is limited to client/server-style ap-
plications. A number of deficiencies inherent with client/server computing are listed in
[16], namely the coarse distribution grain, the asymmetric communication, the pa-
rameter semantics and the lack of systemwide data object identity.

DCE++ has been implemented as an extended distributed object-oriented system on
top of DCE. It tightly integrates distributed o-o concepts introduced by approaches
such as Emerald [2], Amber [5], and DOWL [1], with DCE mechanisms. DCE++
makes DCE available for the o-o programming community; it even stays within the
language boundaries of C++. Further, it achieves a high extent of distribution transpar-
ency. Moreover, it overcomes the listed shortcomings of client/server computing.
DCE and DCE++ on top of it simplify the task of distributed programming consider-
ably. Yet, they tocus on implementation and do not address upper CASE issues.

268

Object-oriented design methods like OOD [3], OOA [6], and HOOD [10] do support
early lifecycle stages, yet they do not support much more semantics than common o-o
programming languages. In fact, they do not treat distribution aspects at all. An excep-
tion is the IX)CASE system around the distributed o-o design and implementation lan-
guage DODL [7, 13]. VDAB is based on the DOCASE experience, but is rather a too!
than a language approach. Instead of providing the application developer with yet an-
other language (and it would be a complex one due to distribution), VDAB provides
tool support on top of widely accepted environments. DCE was chosen as it promises
to become an industry standard. C and later C++ were chosen because of their wide-
spread acceptance. A first prototype was based on C and DCE, a second one is now
fully integrated with the recently developed DCE++.

In the following section the VDAB design model for distributed applications will be
introduced. Section 3 describes the graphical design concepts and tools implemented
in VDAB. The integration of VDAB and DCE is discussed in section 4. VDAB's
functionality from early graphical design to code generation is illustrated along a sam-
ple application development in section 5. Finally, a conclusion summarizes the ideas
introduced and points out future work.

2 The VDAB Model for Design of Distributed Applications

In this section we first describe the distributed object-oriented approach and its exten-
sion to object categories. These concepts form the foundation of the VDAB model,
which is described in terms of design elements, design steps and design rules.

2.1 Objects and Categories

Distribution and Objects: In order to simplify the task of developing distributed ap-
plications it is desirable to achieve a large extent of distribution transparency. The dis-
tributed object-oriented approach has been proven to be adequate for hiding unpleas-
ant distribution characteristics from the developer. In this approach, objects are not
only units of modularization, but function also as units of distribution (moreover, they
can also be used as units of concurrency).

A basic feature of this approach is location independent method invocation. That is,
the invocation syntax and semantics is the same for both local and remote invocations,
thus implementing abstraction from low-level communication and from locality. An-
other important feature of the distributed o-o approach is object mobility, i. e. the fa-
cility to dynamically migrate objects between system nodes. The ability to migrate ob-
jects dynamically has an often underestimated and disregarded impact on availability,
reliability, and performance of a distributed application. Of course, the distributed o-o
approach also inherits the well-known o-o characteristics encapsulation, data abstrac-
tion and inheritance. These features have been proven to ease the development of
complex applications and to increase software reusability.

The Category Approach for Structuring Objects: The distributed o-o approach fits
best into our requirements. Yet, it is not sufficient as it lacks expressive design ele-
ments. In the o-o model everything is an object, but not more. When it comes to mod-
eling large real-world applications, a larger set of distinguished design elements is re-
quired.

269

The category approach addresses this concern by structuring objects into distinct cate-
gories with predefined semantics. This approach has already been implemented in the
DOCASE project [13]. To the user (the application developer) the object categories
appear as a complete set of orthogonal building blocks. The user defines each applica-
tion object class as a descendent of a category, thus combining user defined semantics
with the system defined eategory-specific semantics. This violation of the small is
beautiful rule introduces additional system complexity which requires countermea-
sures to increase ease-of-use. First of all, the design methodology has to assist the ap-
plication developer in categorizing his class definitions. Further, the category-specific
semantics have to be made visible for all tools and to be supported throughout the
software lifecycle.

While the categories appear as a canonical set on the user-level, they form a single
rooted hierarchy on system-level. Obviously, a root category has to define all seman-
tics that are common for all categories (e.g., objects of all categories have a location).
Subcategories are defined in a single inheritance tree. Category inheritance has to be
clearly distinguished from application inheritance. Category inheritance specifies the
inheritance of category semantics to be provided by subcategories, and is invisible for
the user. Application inheritance is specified by the user and defines the inheritance of
behavior along the class hierarchy [8].

The current VDAB prototype implements five object categories, which are described
subsequently. We think of the category system as extensible to cater for future require-
ments (e.g. support of multimedia, CSCW, etc.). Introduction of additional categories
will require extension of the graphical language and of the VDAB tools.

2.2 VDAB Design Framework

The VDAB Design Elements: Object Categories and Relations

Currently, five object categories are defined and supported by VDAB. They serve as
design elements for the application developer:

�9 Active Objects have a highly independent activity (own thread of control). Ac-
tive Objects are the substantial components of an application. They are thought of
as instances, i.e. in known or predictable quantities, and they are rather long-lived.

�9 Passive Objects are controlled by Active Objects. They are thought of in a type-
oriented way. Instances would be created dynamically, be mobile (probably ex-
changed between Active Objects) and have a rather short lifetime.

�9 Logical Nodes are required to express locality of distributed objects while ab-
stracting from physical network nodes. They allow for definition of initial object
placement and other object configuration issues. At first glance, the strong sup-
port of locality may seem to contradict the stated goal of hiding distribution as-
pects from the user. Nevertheless, we found Logical Nodes an essential design
element required for modeling locality aspects which are inherent in real-world
applications.

�9 UI Agents are for the encapsulation of user interface functionality to increase
portability and interoperability. UI Agent objects communicate with other objects
thru a distinct interaction protocol.

270

�9 Environment Agents support the integration of legacy software.

Further, VDAB defines a number of built-in relations between VDAB objects for
modeling structural (is part of, knows), behavioral (creates, deletes, uses, activates,
...) and distribution aspects (moves to, visits).

Design Elements, Design Steps and Design Rules

Gerteis describes a set-theoretic model for design methods, and the generic Design
Method Assistant (DMA), a tool-building-tool for guided interactive design [9]. A de-
sign method is defined as a system consisting of a set of design elements, a set of de-
sign steps, a set of design rules and a design procedure.

The DMA is currently customized into the VDAB Design Method Assistant. In the
VDAB model we have object categories and inter-object relations as design elements.
Design steps are the operations that can be performed on design elements (creation,
modification, deletion), e.g., the assertion of a relation between VDAB objects. De-
sign rules are predefined constraints between design elements. In VDAB, they specify
how VDAB objects can be interrelated, e.g., Passive Objects can not create or use Ac-
tive Objects. Finally, the design procedure specifies the process of design reasoning
and decision making. Design decisions result in distinct design steps.

3 The VDAB Graphical Design Tool Set

Analogous to the design method we can describe a graphical design method as con-
sisting of a set of graphical elements, a set of graphical rules, a set of graphical steps
and a graphical design method. In order to build a graphical tool for a given design
method graphical equivalents for the design elements have to be defined, thereby in-
troducing the graphical notation. Further, design steps and design rules have to be
mapped into the tool. This is considerably more difficult as human interaction aspects
introduce graphical rules which are not related to application semantics.

3.1 Customization of a Tool-Building-Tool for Graphical Editors

The development of graphical tools for the VDAB design model was based on the fol-
lowing goals:

1. Customization of a tool-building-tool for rapid prototyping of graphical editing
facilities

2. Strict separation of design and graphical representation

3. Extensive support of the design method in the tools (by achieving a good mapping
of design steps and rules to graphical steps and rules)

For building the VDAB graphical editing tools we chose to costumize ODE, an exten-
sible tool-building-tool [12]. ODE provides powerful visualization techniques and is
highly customizable and extensible based on a simple yet expressive functional lan-
guage. ODE proved to meet the desired rapid prototyping requirements. Further, ODE
also supported the second goal, as it enforces strict distinction of models (e.g. design
artifacts) and views (e.g. graphical design techniques), similar to the model-view-

271

controler paradigm in Smalltalk [14]. ODE's constraint evaluation mechanism sup-
ported the third goal. It allowed implementation of consistency constraints among dif-
ferent views of the same model, and other graphical rules like context-sensitive dis-
abling/enabling of command buttons. Constraint maintenance among graphical
representations further requires automatic graph layout, which is also provided by
ODE.

3.2 VDAB Graphical Views

Subsequently, we will refer to the various graphical editors of VDAB simply as views.
Recently, a number of graphical notations for visualization of object-oriented software
structures have been introduced: e.g. OOD allows for graphical specification of class
structure, object structure, modules and processes [3]. For description of dynamics, a
state transition diagram and a timing diagram are provided. OOA [6], OOSD [18] and
OOSE [11] suggest similar notations. All these notations focus mainly on visualizing
structural aspects. Description of behavior is poor. Distribution is not considered. We
further criticize the poor support for identification of required objects and methods.

VDAB Control Window
File Options Layout~

I call Stenarlo View
i Appllca, on Scenario View

I Call
Scenarios

~6~,~Ap pile atlo n
c ~ Scenario

/ \
 Lo0.oons

c~%~ Collaboration 1~

III

Help

Figure 1: VDAB Control View

272

The VDAB tool set introduces new graphical design concepts to address the listed
concerns. First of all, instance-oriented scenario views are introduced to support intui-
tive problem solving strategies. These views aim at very intuitive identification of sys-
tem requirements. Further, VDAB introduces an intuitive notation for system behav-
ior. To cater for distribution, object configuration views are defined. Finally, VDAB
introduces a visualization of the graphical design process itself to guide the developer
thru application design.

Subsequently, we first describe the Control View. Next, the instance-oriented Applica-
tion and Call Scenario Views are described. Then, a brief overview over type-oriented
VDAB views is given. Finally, we reflect how distribution aspects are addressed in the
VDAB tool environment.

Development Guidance: As stated above, the complexity of distributed application
development requires measures to ease the application developer's task. The VDAB
approach to this end is to provide different views for different application aspects and
application contexts, thus allowing the developer to concentrate on certain aspects
while the system keeps track of side effects. Yet, the developer needs guidance lest he
gets lost in a jungle of views. Therefore, VDAB visualizes the design procedure in its
Control View (fig. 1). Further, it implements a dynamic hyperstructure among views
for navigation thru the design process.
Note: the depicted graph in figure 1 suggests a sequential development process to give
the developer a general idea of how to proceed. VDAB allows for much more flexibil-
ity, e.g. additional call scenarios can be specified at any time, of course.

Application Scenario View: The application scenario view has been designed in
analogy to what a developer might put down on a notepad or whiteboard as first
sketch of an application. The view is instance-oriented as we believe a first draft of a
problem would rather be in terms of instances or examples than in more abstract type-
oriented terms. To underline instance-orientation, cloning is among the design steps
supported by the application scenario view. The graphical design elements are the ob-
ject categories and abstract relations such as uses, is collocated with, is UI of. As in
most VDAB views, the design elements are provided on a palette. Selected objects can
be placed anywhere in the graph area, selected relations can be drawn from one object
to another (unless a graphical design rule prohibits it!). Objects and relations can both
be manipulated directly thru popup menus.

At any time, certain aspects of the scenario, e.g. user interaction or locality, can be
folded away, allowing to concentrate on other aspects, or simply to reduce the number
of visible items. As the application scenario is supposed to be developed rather intui-
tively, graphical design decisions are of course reversible (that holds for all VDAB
views). An application scenario provides an easy to grasp overview of an application.
As it is supposed to be a first draft it does not claim completeness. Rather, it is sup-
posed to assist the developer with identifying application requirements, e.g. classes
that need to be defined.

User guidance for design of the application scenario will be based on a dictionary of
keywords generated from the list of requirements. These keywords may directly hint
to the object categories, e.g. they might denote a location. Throughout application de-
sign the dictionary can serve for appropriate naming of design elements and relations.

Call Scenario Views: While the application scenario view aims at capturing an appli-
cation overview, call scenario views display arbitrarily chosen behavioral aspects.

273

They describe call chains, thus defining timethreads taking place on certain events.
The graphical notation was inspired by work of Buhr [4] and implemented in VDAB
with extensions for description of synchronization aspects. Call scenarios support ex-
plorative specification of operational interfaces. They further help gathering require-
ments for method implementation. Moreover, call scenarios can be envisioned as test
scenarios for validation of application functionality.

Type-oriented VDAB Views:

�9 Class Collaboration View: the type-oriented equivalent to the application sce-
nario; it displays application classes and knows relations. The knows relations can
be qualified as persistent (permanent reference from one class to another) or tem-
porary (temporary reference in the form of a parameter or local variable).

�9 Inheritance View: displays the subclass relations.

�9 Decomposition View: specification of the knows and has part relations of ob-
jects, thereby defining their data structure.

�9 Interface View: specification of the operational interfaces.

�9 Method Implementation View: editor for method bodies; this view is not fully
integrated with the others; changes in it are not reflected by other views.

The Distribution Aspect in VDAB Views: VDAB provides the developer with very
simple means to describe the distribution inherent in his application: he can specify
the initial object configuration and he can select routines to run at startup time on the
application's logical nodes. Object configuration can be specified explicitly by bind-
ing objects to logical nodes or implicitly by binding objects to each other (colloca-
tion).

Runtime object configuration aspects remain hidden to the developer. Yet, he is pro-
vided with means to specify object migrations explicitly or implicitly (by specifying
collocations). Further, he can specify distribution attributes for parameter objects: they
can either stay where they are, move to the called object or visit the called object for
the time of method execution.

4 From Design to Implementat ion: Integration of V D A B and D C E

Fig. 2 depicts the integration of VDAB and DCE. A number of graphical tools allow
for manipulation of the VDAB model of an application; the model itself is a graph of
interconnected design elements. Based on the internal design model, VDAB generates
input files for the DCE++ system. Based on these files, DCE++ generates additional
code to implement low-level communication for the distributed application. This addi-
tional code, which remains hidden in the VDAB environment, customizes the DCE
RPC, threads, and naming services. The VDAB code generation facility abstracts from
DCE. Only the threads service is used directly (to implement Active Objects), other
services are only indirectly used thru DCE++.

In this section, we first sketch out how distributed applications are implemented with
DCE++. Then, we will describe the VDAB code generation facility. Finally, we will
discuss the need for tight integration of design and implementation in general, and
compare a desired integrated framework with the VDAB reality.

274

I DCE++

OSF/DCE

VDAB Tools

VDAB Model

Figure 2: VDAB integration with DCE and DCE++

4.1 Programming with DCE++

DCE++ programming is only roughly sketched out here, for details cf. [16]. The de-
scription refers to an early DCE++ implementation; future versions are expected to
hide even more of the underlying communication, e.g. by means of a stub compiler.

In order to enable C++ objects in the DCE++ system to be invoked location-
independently and to migrate across node boundaries, additional classes have to be
provided for each application class. This tedious task is, fortunately!, hidden from the
developer by the DCE++ system. Yet, DCE++ requires the developer to provide a
specification common.dee++ of all remote classes and their methods. Further, DCE++
requires the user to write an IDL file common.idl describing all remote methods. Fi-
nally, the developer has to fill in a template for each logical node in his DCE++ appli-
cations, thereby defining the initial object configuration. The implementation of the
actual application objects does not differ from ordinary C++ coding. Yet, the devel-
oper has to take care for consistency of application object implementation and the
common.dee+ + and common.idl descriptions.

4.2 VDAB Code Generation

VDAB does not only support design of distributed applications but is also capable of
writing most of the code an application developer otherwise would have to provide. In
a first prototype, VDAB designs were mapped to C and DCE code. A major part of the
code generation was for implementation of the low-level communication based on
DCE services. The use of DCE++ as intermediate layer allows VDAB to abstract from
low-level communication. The VDAB code generation now only specifies what com-
munication is required; how the communication is realized is responsibility of
DCE++.

The graphical specification of classes and their operational interface is sufficient for
automatic generation of the common.dee++, common.idl and application object header
files. The graphical specification of logical nodes allows for automatic generation of
DCE++ logical node files. Finally, even rudimentary implementations of method bod-
ies can be generated based on call scenario specifications.

275

VDAB allows for extensive code generation, yet it does not allow for complete imple-
mentation of distributed applications. The developer is required to finish up the imple-
mentation with C++ coding of method bodies. In order to ease this task, VDAB gener-
ated code was designed to be human readable. All generated files follow DCE++ con-
ventions. Sample generated code will be explained in section 5, where an application
is developed from early design thru to code generation.

4.3 From Design to Implementation: Desiderata and VDAB Reality

Even with a good design of a large distributed application, its implementation will still
be complex and difficult. Therefore, the ultimate goal is to maintain the same high
level of support throughout the software lifecycle. In terms of the VDAB design
model the goal is to integrate implementation support for category-specific semantics.
Design-level support in the implementation phase would allow for a seamless transi-
tion from design to implementation. Yet, current implementation languages are not
sufficient to achieve this goal. With current languages, important application aspects
are often handled by calling out to libraries and toolkits, which only allows for syntac-
tic but not for semantic checking.

The VDAB reality is far from an integrated design and implementation modeling
framework. Yet, VDAB goes well beyond other graphical design methods by generat-
ing effective and human readable code. That means, based on the design VDAB al-
ready provides a good deal of the implementation. Moreover, the generated code is in
a form which makes it relatively easy for the application developer to provide the rest
of the implementation. Still, once the developer moves from graphical design to tex-
tual implementation he loses VDAB support irreversibly. As VDAB does not (yet) un-
derstand DCE++ files (C++, IDL and DCE++ class descriptions), VDAB semantics
can not be checked and iterations over design and implementation remain unsup-
ported. In order to overcome this shortage to some degree, we are now working on
interpretation of DCE++ files for VDAB. This will be restricted to a subset of C++
and IDL.

In comparison with DODL, the design and implementation language of the DOCASE
system [7], the integration of design and implementation is less tight in VDAB. Yet,
VDAB as opposed to DODL is of immediate use for application developers, as it does
not require the developer to learn a new language. While VDAB does not provide suf-
ficient means for implementation, it eases the implementation task considerably by
generating highly comprehensible code.

5 A Sample Application: Automatic Call Distribution

In this section, a sample application is developed with VDAB. Automatic Call Distri-
bution (ACD), a telecommunications application, was chosen to highlight the applica-
bility of VDAB to real-world task. ACD distributes telephone calls in switch systems
automically. Incoming telephone calls are directed by ACD (instead of an intermediate
operator) to certain operators who then process the telephone calls (using a central cli-
ent database). This system is inherently distributed: a central node (probably a work-
station) processes incoming calls; operators work on operator nodes (e.g. PCs); client
and statistics databases are located on database server nodes.

276

File Options Layout View

I / ' - i

x i

l:Swttch 1

t ~ew_call

I '
~ DIs~ribut~ I

all

Help

File Optlolls Layout View

r -
I I U[- Ase.nt ii J

I Operator

Client DR

Help

L Distributor
S ",*dtch

a
aa

Figure 3: ACD Call Scenarios Incoming Call and Process Call

5.1 ACD Call Scenarios

How ACD works is best described along typical scenarios: e.g. What does happen,
when a telephone call comes in ? VDAB supports this approach and allows us to
sketch an "Incoming calr' scenario as given in figure 3, upper window. The scenario
specifies that in the event "Incoming Call" the Switch sends a new call message to the
Distributor. The Distributor then sends a put message to the Queue instance. Note that

277

"the Queue was designed to be a Passive Object whereas the other instances were
picked from the Active Object category. This is an intuitive decision based on the as-
sumption that queues usually do not have any activity of their own.

To learn more about ACD, we have a look at another scenario: How are telephone
calls processed ? The second window in figure 3 shows a screenshot Of the corre-
sponding VDAB view. An Operator sends a getnext message to the Queue. He also
sends a query to the Client DB. The order of calls is relevant in this case, therefore
ordinals have been attachedto the arcs. Note that the Queue instance was picked from
a list of already specified instances (in the top right of the view). This list is constantly
updated: if another instance is defined in some other view, it would appear in the in-
stance list as soon as this view gets revisited.

Figure 4: ACD Application Scenario and Location View

5.2 ACD Application Scenario

With the quick specification of call scenarios we have already introduced major com-
ponents of the ACD system and gathered some information about how they interact.
Yet, so far the information is distributed over a number of views. What we would like
to have now is some sort of overview displaying all yet specified components and
their interrelations. VDAB provides the application scenario view to this end. It gener-
ates automatically an application overview based on call scenario specifications. The
larger window in figure 4 shows the resulting view.

As the application scenario gives an overview over system components it is a good
place to say something about their distribution. We can either explicitly introduce

278

logical node instances and place application instances on them (graphically), or we
can define collocations among application objects. In our sample design we decided to
collocate Switch, Distributor and Queue on a logical node Distributor Node. A loca-
tion view displays the result and allows for specification of further co~figuration de-
tails (fig. 4, small window). The application scenario further allows for identification
of classes and thus to proceed from instance-orientation to type-orientation. Yet, the
developer is not forced to explicitly classify his instances. In that case, the system
takes care for implicit generation of class definitions while the developer keeps his
instance-oriented view, which is often more intuitive.

Figure 5: ACD Class Collaboration

5.3 Type-oriented Views of ACD

Based on the instance-oriented specifications in call and application scenarios VDAB
can generate a Class Collaboration View (fig. 5). It shows which classes have to be
known by others. Classes in this view can be further specified by bringing up Decom-
position Views for description of their data structure, or Interface Views for description
of their operational interfaces. It is important to note, that the developer can return
from a type-oriented view to an instance-oriented view at any time: e.g. it will in gen-
eral be more intuitive to specify method parameter lists in the context of call scenarios
than in an abstract type-oriented view.

5.4 Automatically Generated ACD Code

Subsequently, the code generation will be illustrated for the Distributor class of the
ACD system. First, the class description for common,dce++ is shown:

class block form class Distributor_CI

279

A.__Distributor_CI : Distributor_CI : A_Distributor CI data

: Distributor
void : newcall :
void :new call thread :

In a class block form the DCE++ system is provided with the information i t needs to
make classes remote. The description specifies A_Distributor_CI as DCE++ internal
name for the application class. The initial class name will be used by DCE++ as name
for a generated class which introduces distribution features to the class. This naming is
somewhat confusing for the DCE++ programmer, but is made transparent by VDAB.
A third identifier is specified for a struct that contains the object's complete data struc-
ture. A struct like that is required for each remote class to allow for object migration.
The rest of the class block form describes methods with their return type and their pa-
rameters (there are no parameters in this example).

Next, the header file of the Distributor class is shown.

class Distributor_CI;

class A_Distributor_CI {
private:

string Queue_name;
public:

A Distributor CI 0;
~A Distribut~ CI 0;
void new_call 0;
void new call thread 0;

Based on the graphically specified knows relation of the Distributor class to the Queue
class, Queue_name is specified for reference by name. The method new_call 0 is de-
rived from our call scenario specification.. As for all methods of active objects, VDAB
generates an additional method, in this case new call thread 0- These additional
methods implement asynchronous method execution using the DCE Threads service;
this remains transparent for the developer.

Finally, let us have a look at the common.idl file which VDAB generates for DCE++,
and which the DCE++ system uses for stub compilation:

~ ############ Class Distributor CI #################### */
typedef struct {

string Queuename;
} A_Distributor CI data;

void A_Distributor CI Migrate (
[in] handle t bh,
[in] uuid_t old,
[out, ref] error_status_t *status,
[in, string] char *loc);

280

void A_Distributor CI install_object (
[in] handle t bh,
[in] RPC_ObLRef r,
[in] A_Distributor CI data *p);

void A_Distributor CI newcal l (
[in] handle_t bh,
[in,out] RPC call data *data);

void A_Distributor CI new call thread (
[in] handle_t bh,
[in,out] RPC call data *data);

For each class a struct containing its data structure has to be defined for the idl com-
piler. Further, Migrate and install_object methods have to described for each class.
The actual methods are generated by DCE++. Finally, all user defined methods have
to be specified here, too.

6 Conclusion

This paper described VDAB, a new approach for extensive design support for large
distributed applications. Whereas existing support for distributed applications and in
particular for DCE applications focuses on implementation issues, VDAB aims at life-
cycle spanning support. The strong emphasis on instance-oriented intuitive views sup-
ports early design. Iteration over a number of graphical design tools allows for in-
creasing detail. Finally, the code generation facility produces most of the application
code in a human readable form, thus catering for further manual coding and mainte-
nance. The applicability of VDAB has been demonstrated along a sample application
development.

VDAB has been designed to be immediately applicable for development of DCE ap-
plications, but also to be extensible towards further application aspects. Future design
model extensions (implemented as additional object categories), will support team-
work, multimedia and workflows to meet the huge demand for support of physically
remote teams, long-lived business procedures, and human-human interaction. Further,
advanced support for human interaction development will be incorporated in VDAB.
DCE supports portability and interoperability, yet platform-bound user interfaces re-
main the portability bottlenecks of DCE applications. As opposed to currently devel-
oped GUI portability kits which only support the least common denominator of a
number of GUI toolkits [17], we will investigate in paradigm-independent human in-
teraction.

281

References

1. B. Achauer: The DOWL distributed object-oriented language. Communications of
the ACM, Vol. 36, No. 9, Sep. 1993.

2. A. Black, N. Hutchinson, E. Jul, H. Levy, L. Charter: Distribution and abstract
types in Emerald. IEEE Trans. on Software Engineering, Vol. 13, No. 1, Jan. 1987, pp.
65-75

3. G. Booch: Object Oriented Design with Applications, The Benjamin/Cummings
Publishing Company, 1991.

4. R. Buhr, R. Casselman. Architectures With Pictures. In Proc. of OOPSLA '92, Van-
couver, BC, Oct. 1992, pp. 466-483

5. J. Chase, F. Amador, E. Lazowska. H. Levy, R. J. Littlefield: The Amber system:
Parallel programming on a network of multiprocessors. 12th ACM Symposium on Op-
erating Systems principles, Litchfield Park, Ar, 1989, pp. 147-158

6. P. Coad, E. Yourdon: Object-Oriented Analysis. Prentice-Hall, 1990.

7. W. Gerteis, Ch. Zeidler, L. Heuser, M. Mtihlh~iuser: DOCASE: A Development En-
vironment and a Design Language for Distributed Object-Oriented Applications. In
Proc. of TOOLS Pacific '90 (Technology on Object-Oriented Languages and Sys-
tems), Sydney, Auslralia. Nov. 1990, pp. 298-312.

8. W. Gerteis, L. Heuser, M. Mtihlh~iuser: The ABCD-Architecture of Hybrid De-
sign/Implementation Languages for Large Distributed Applications. OOPSLA '91
Workshop OLDA-1, Phoenix, Ar, Oct. 1991.

9. W. Gerteis: An Approach Towards Guided Interactive Design. Proc. 2nd Great
Lakes Computer Science Conf., Kalamazoo, Mi, Oct. 1991.

10. M. Heitz: HOOD Reference Manual. CISI Ingenierie, Midi Pyr6n6es, Sep. 1989.

11. I. Jacobsen: Object-Oriented Software Engineering. Addison Wesley, 1992.

12. T. Leidig, M. Mtihlh~iuser. Graphische Untersttitzung der Entwicklung verteilter
Anwendungen (in german). In Proc. of GI/NTG-Fachtagung Kommunikation in ver-
teilten Systemen, pp. 494-508, GI, Springer Verlag, 1991.

13. M. Miihlhauser, W. Gerteis: DOCASE: A Methodic Approach to Distributed
Object-Oriented Programming. Communications of the ACM, Vol. 36, No. 9, Sep.
1993.

14. MVC Architecture. ObjectWork / Smalltalk, User's Guide, Part Three.

15. Open Software Foundation: Introduction to OSF DCE. Cambridge, Ma, 1992.

16. A. Schill, M. Mock: DCE++: Distributed Object-Oriented System Support on top
of OSF DCE. Submitted for publication.

17. G. Singh: Requirements for User Interface Programming Languages. In B. Myers,
editor, Languages for Developing User Interfaces. Jones and Bartlett Publishers, 1992.

18. A. Wasserman, P. Pircher, R. Mtiller: The object-oriented structured design nota-
tion for software design representation. IEEE Computer, March 1990, pp. 50-62.

Author Index

A d c o c k , P . 179
Be i t z , A . 21

B e r t r a n d , S . 147

B e v e r , M .. 1
Bla i r , G .S . 179
D a s a r a t h y , B . 47

D a v i e s , N . 179
D i B e l l a , K . S . 162

D i e t h m a n n , S . - I . 2 0 7
D i l l ey , J . 2 5 6
E b e r l e , H . 2 1 4
F r i e d e n b a c h , P . 63
F r i ed r i ch , R . 63
G a y l o r d , A . S . 1 2 0 , 1 6 2

G e i h s , K . 1
G e l l e r s e n , H . - W .. 2 6 7
Gi rka r , M .. 120
He i t e , R . 2 1 4
H e u s e r , L . 1
H i r s c h , B .S . 104
K h a l i l , K . 47

K i n g , P . 21
K n o c k e , A .. 78
La i fe r , R . 78
L in , D . D . H .. 135
M a r t i n , B . 2 2 9

M a r t i n k a , J . 63
M c D o n a l d , T . M .. 89
M i t t a s c h , C . 207
M o c k , M . U .. 2 4 2
Mi ih lh / lu se r , M .. 1
N a r k i e w i c z , J .D . 120

O b r e n i C B .. 162
R a b e n s e i f n e r , R . 39
R a h m a n , M .. 120
R a y m o n d , K .. 21

R u d d o c k , D . E . 47
Schi l l , A . 1

S c h u c h , A .. 39
Shi , S .S .B .. 135
S i e n k n e c h t , T . 63
S r i v a s t a v a , M .. 120
S v o b o d o v a , L . 2 8 2
T e n g , Q .. 2 2 9

T i k k u , S . 147
V in t e r , S . 147
W e i , Y . - H .. 1 3 5 , 1 9 2

Wu, C . 192
Xie , Y .. 229

Lecture Notes in Computer Science
For information about Vols. 1-655
please contact your bookseller or Springer-Verlag

Vol, 656: M. Rusinowitch, J. L. Rrmy (Eds.), Conditional
Term Rewriting Systems. Proceedings, 1992. XI, 501 pages.
1993.

Vol. 657: E. W. Mayr (Ed.), Graph-Theoretic Concepts in
Computer Science, Proceedings, 1992, VIII, 350 pages.
1993.

Vol. 658: R. A. Rueppel (Ed.), Advances in Cryptology -
EUROCRYPT '92. Proceedings, 1992. X, 493 pages. 1993.

Vol. 659: G. Brewka, K. P. Jantke, P. H. Schmitt (Eds.),
Nonmonotonic and Inductive Logic. Proceedings, 1991.
VIII, 332 pages. 1993. (Subseries LNAI).

Vol. 660: E. Lamma, P. MeUo (Eds.), Extensions of Logic
Programming. Proceedings, 1992. VIII, 417 pages. 1993.
(Subseries LNAI).

Vol. 661 : S. J. Hanson, W. Remmele, R. L. Rivest (Eds.),
Machine Learning: From Theory to Applications. VIII, 271
pages. 1993.

Vol. 662: M. Nitzberg, D. Mumford, T. Shiota, Filtering,
Segmentation and Depth. VIII, 143 pages. 1993.

Vol. 663: G. v. Bochmann, D. K. Probst (Eds.), Computer
Aided Verification. Proceedings, 1992. IX, 422 pages.
1993.

Vol. 664: M. Bezem, J. F. Groote (Eds.), Typed Lambda
Calculi and Applications. Proceedings, 1993. VIII, 433
pages. 1993.

Vol. 665: P. Enjalbert, A. Finkel, K. W. Wagner (Eds.),
STACS 93. Proceedings, 1993. X1V, 724 pages. 1993.

Vol. 666: J. W. de Bakker, W.-P. de Roever, G. Rozenberg
(Eds.), Semantics: Foundations and Applications. Proceed-
ings, 1992. VIII, 659 pages. 1993.

Vol. 667: P. B. Brazdil (Ed.), Machine Learning: ECML -
93. Proceedings, 1993. XII, 471 pages. 1993. (Subseries
LNAI).

Vol. 668: M.-C. Gaudel, J.-P. Jouannaud (Eds.), TAPSOFF
'93: Theory and Practice of Software Development. Pro-
ceedings, 1993. XII, 762 pages. 1993.

Vol. 669: R. S. Bird, C. C. Morgan, J. C. P. Woodcock
(Eds.), Mathematics of Program Construction. Proceedings,
1992. VIII, 378 pages. 1993.

Vol. 670: J. C. P. Woodcock, P. G. Larsen (Eds.), FME
'93: Industrial-Strength Formal Methods. Proceedings,
1993. XI, 689 pages. 1993.

Vol. 671: H. J. Ohlbach (Ed.), GWAI-92: Advances in
Artificial Intelligence. Proceedings, 1992. XI, 397 pages.
1993. (Subseries LNAI).

Vol. 672: A. Barak, S. Guday, R. G. Wheeler, The MOSIX
Distributed Operating System. X, 221 pages. 1993.

Vol. 673: G. Cohen, T. Mora, O. Moreno (Eds.), Applied
Algebra, Algebraic Algorithms and Error-Correcting
Codes. Proceedings, 1993. X, 355 pages 1993.

Vol. 674: G. Rozenberg (Ed.), Advances in Petri Nets 1993.
VII, 457 pages. 1993.

Vol. 675: A. Mulkers, Live Data Structures in Logic Pro-
grams. VIII, 220 pages. 1993.

Vol. 676: Th, H. Reiss, Recognizing Planar Objects Using
Invariant Image Features. X, 180 pages. 1993.

Vol. 677: H. Abdulrab, J.-P. P6cuchet (Eds.), Word Equa-
tions and Related Topics. Proceedings, 1991. VII, 214
pages. 1993.

Vol. 678: F. Meyer auf der Heide, B. Monien, A. L.
Rosenberg (Eds.), Parallel Architectures and Their Effi-
cient Use. Proceedings, 1992. XII, 227 pages. 1993.

Vol. 679: C. Fermiiller, A. Leitsch, T. Tammet, N. Zamov,
Resolution Methods for the Decision Problem. VIII, 205
pages. 1993. (Subseries LNAI).

Vol. 680: B. Hoffmann~ B. Krieg-Brfickner (Eds.), Program
Development by Specification and Transformation. XV,
623 pages. 1993.

Vol. 681: H. Wansing, The Logic of Information Struc-
tures. IX, 163 pages. 1993. (Subseries LNAI).

Vol. 682: B. Bouchon-Meunier, L. Valverde, R. R. Yager
(Eds.), IPMU '92 - Advanced Methods in Artificial Intel-
ligence. Proceedings, 1992. IX, 367 pages. 1993.

Vol. 683: G.J. Milne, L. Pierre (Eds.), Correct Hardware
Design and Verification Methods. Proceedings, 1993. VIII,
270 Pages. 1993.

Vol. 684: A. Apostolico, M. Crochemore, Z. Galil, U.
Manber (Eds.), Combinatorial Pattern Matching. Proceed-
ings, 1993. VIII, 265 pages. 1993.

Vol. 685: C. Rolland, F. Bodart, C. Cauvet (Eds.), Ad-
vanced Information Systems Engineering. Proceedings,
1993. X1, 650 pages. 1993.

Vol. 686: J. Mira, J. Cabestany, A. Prieto (Eds.), New
Trends in Neural Computation. Proceedings, 1993. XVII,
746 pages. 1993.

Vol. 687: H. H. Barrett, A. F. Gmitro (Eds.), Information
Processing in Medical Imaging. Proceedings, 1993. XVI,
567 pages. 1993.

Vol. 688: M. Gauthier (Ed.), Ada-Europe '93. Proceedings,
1993. VIII, 353 pages. 1993.

Vol. 689: J. Komorowski, Z. W. Ras (Eds.), Methodolo-
gies for Intelligent Systems. Proceedings, 1993. XI, 653
pages. 1993. (Subseries LNAI).

Vol. 690: C. Kirchner (Ed.), Rewriting Techniques and
Applications. Proceedings, 1993. XI, 488 pages. 1993.

Vol. 691: M. Ajmone Marsan (Ed.), Application and Theory
of Petri Nets 1993. Proceedings, 1993. IX, 591 pages. 1993.

Vol. 692: D. Abel, B.C. Ooi (Eds.), Advances in Spatial
Databases, Proceedings, 1993. XIII, 529 pages. 1993.

Vol. 693: P. E. Lauer (Ed.), Functional Programming,
Concurrency, Simulation and Automated Reasoning, Pro-
ceedings, 1991/1992. XI, 398 pages. 1993.

Vol. 694: A. Bode, M. Reeve, G. Wolf (Eds.), PARLE '93.
Parallel Architectures and Languages Europe. Proceedings,
1993. XVII, 770 pages. 1993.

Vol. 695: E. P. Klement, W. Slany (Eds.), Fuzzy Logic in
Artificial Intelligence. Proceedings, 1993. VIII, 192 pages.
1993. (Subseries LNAI).

Vol. 696: M. Worboys, A. F. Grundy (Eds.), Advances in
Databases. Proceedings, 1993. X, 276 pages. 1993.

Vol. 697: C. Courcoubetis (Ed.), Computer Aided Verifi-
cation. Proceedings, 1993. IX, 504 pages. 1993.

Vol. 698: A. Voronkov (Ed.), Logic Programming and
Automated Reasoning. Proceedings, 1993. XIII, 386 pages,
1993. (Subseries LNAI).

Vol. 699: G. W. Mineau, B. Moulin, J. F. Sowa (Eds.),
Conceptual Graphs for Knowledge Representation. Pro-
ceedings, 1993. IX, 451 pages. 1993. (Subseries LNAI).

Vol. 700: A. Lingas, R. Karlsson, S. Carlsson (Eds.), Au-
tomata, Languages and Programming. Proceedings, 1993.
XII, 697 pages. 1993.

Vol. 701: P. Atzeni (Ed.), LOGIDATA+: Deductive
Databases with Complex Objects. VIII, 273 pages. 1993.

Vol. 702: E. Btirger, G, J~iger, H. Kleine Biining, S. Mar-
tipi, M. M. Richter (Eds.), Computer Science Logic. Pro-
ceedings, 1992. VIII, 439 pages. 1993.

Vol. 703: M. de Berg, Ray Shooting, Depth Orders and
Hidden Surface Removal. X, 201 pages. 1993.

Vol. 704: F. N. Paulisch, The Design of an Extendible
Graph Editor. XV, 184 pages. 1993.

Vol. 705: H. Grtinbacher, R. W. Hartenstein (Eds.), Field-
Programmable Gate Arrays. Proceedings, 1992. VIII, 218
pages. 1993.

Vol. 706: H. D. Rombach, V, R. Basili, R. W. Selby (Eds.),
Experimental Software Engineering Issues. Proceedings,
1992. XVIII, 261 pages, 1993.

Vol. 707: O. M. Nierstrasz (Ed.), ECOOP '93 - Object-
Oriented Programming. Proceedings, 1993. XI, 531 pages.
1993.

Vol. 708: C. Laugier (Ed.), Geometric Reasoning for Per-
ception and Action. Proceedings, 1991. VIII, 281 pages.
1993.

Vol. 709: F. Dehne, J.-R. Sack, N. Santoro, S. Whitesides
(Eds.), Algorithms and Data Structures. Proceedings, 1993.
XI1, 634 pages. 1993.

Vol. 710: Z. I~sik (Ed.), Fundamentals of Computation
Theory. Proceedings, 1993. IX, 471 pages. 1993.

Vol. 711: A. M. Borzyszkowski, S. Sokotowski (Eds:),
Mathematical Foundations of Computer Science 1993. Pro-
ceedings, 1993. XIII, 782 pages. 1993.

Vol. 712: P. V. Rangan (Ed.), Network and Operating Sys-
tem Support for Digital Audio and Video. Proceedings,
1992. X, 416 pages. 1993.

Vol. 713: G. Gottlob, A, Leitsch, D. Mundici (Eds.), Com-
putational Logic and Proof Theory. Proceedings, 1993. XI,
348 pages. 1993.

Vol. 714: M. Bruynooghe, J. Penjam (Eds.), Programming
Language Implementation and Logic Programming. Pro-
ceedings, 1993. XI, 421 pages. 1993.

Vol. 715: E. Best (Ed.), CONCUR'93. Proceedings, 1993.
IX, 541 pages. 1993.

Vol. 716: A. U. Frank, I. Campari (Eds.), Spatial Informa-
tion Theory. Proceedings, 1993. XI, 478 pages. 1993.

Vol. 717: I. Sommerville, M. Paul (Eds.), Software Engi-
neering - ESEC '93. Proceedings, 1993. XII, 516 pages.
1993.

Vol. 718: J. Seberry, Y. Zheng (Eds.), Advances in
Cryptology- AUSCRYPT '92. Proceedings, 1992. XIII,
543 pages. 1993.

Vol. 719: D. Chetverikov, W.G. Kropatsch (Eds.), Compu-
ter Analysis of Images and Patterns. Proceedings, 1993.
XVI, 857 pages. 1993.

Vol. 720: V.Ma~ik, J. La~ansk3~, R.R. Wagner (Eds.), Data-
base and Expert Systems Applications. Proceedings, 1993.
XV, 768 pages. 1993.

Vol. 721: J. Fitch (Ed.), Design and Implementation of
Symbolic Computation Systems. Proceedings, 1992. VIII,
215 pages. 1993.

Vol. 722: A, Miola (Ed.), Design and Implementation of
Symbolic Computation Systems. Proceedings, 1993. XII,
384 pages. 1993.

Vol. 723: N. Aussenac, G. Boy, B. Gaines, M. Linster, J.-
G. Ganascia, Y. Kodratoff (Eds.), Knowledge Acquisition
for Knowledge-Based Systems. Proceedings, I993. XIII,
446 pages. 1993. (Subseries LNAI).
Vol. 724: P. Cousot, M. Falaschi, G. Fil~, A. Rauzy (Eds.),
Static Analysis. Proceedings, 1993. IX, 283 pages. 1993.

Vol. 725: A. Schiper (Ed.), Distributed Algorithms. Pro-
ceedings, 1993. VIII, 325 pages. 1993.

Vol. 726: T. Lengauer (Ed.), Algorithms - ESA '93. Pro-
ceedings, 1993. IX, 419 pages. 1993

Vol. 727: M. Filgueiras, L. Damas (Eds.), Progress in Ar-
tificial Intelligence. Proceedings, 1993. X, 362 pages. 1993.
(Subseries LNAI).

Vol. 728: P. Torasso (Ed.), Advances in Artificial Intelli-
gence. Proceedings, 1993. XI, 336 pages. 1993. (Subseries
LNAI).

Vol. 729: L. Donatiello, R. Nelson (Eds.), Performance
Evaluation of Computer and Communication Systems. Pro-
ceedings, 1993. VIII, 675 pages. 1993.

Vol. 730: D. B. Lomet (Ed.), Foundations of Data Organi-
zation and Algorithms. Proceedings, 1993. XII, 412 pages.
1993.

Vol. 731: A. Schill (Ed.), DCE - The OSF Distributed
Computing Environment. Proceedings, 1993. VIII, 285
pages. 1993.

Vol. 732: A. Bode, M. Dal Cin (Eds.), Parallel Computer
Architectures. IX, 311 pages. 1993.

Taming Heterogeneity in Networked Environments
Liba Svobodova

IBM Research Division
Zurich Research Laboratory

Saumerstrasse 4
8803 Rilschlikon

Switzerland
e-mail: svo@zurich.ibm.com

- Invited Talk -

Distributed computing has been a very active research area for at least fifteen years.
Many research projects focused on the development of a native distributed operating
system that would support distributed processing in a natural and efficient way. New
kernels, distribution and communication paradigms and protocols, languages, abstrac-
tions and algorithms were developed to enable and facilitate distributed computing,
and many interesting experimental systems incorporating the new ideas and concepts
were built. Distributed environments based on local-area networks that not only inter-
connect personal computers and workstations but also provide low-cost resource shar-
ing became attractive for many business and industry applications; a variety of com-
mercial solutions emerged. There is now a steadily growing need to interconnect the
various LAN-based systems and to enable distributed applications across an entire en-
terprise and even across networked environments encompassing several companies.
The multifaceted heterogeneity of such environments has been hindering the develop-
ment and deployment of distributed applications; the developers have to deal with dif-
ferent operating systems, file systems, naming conventions, user interfaces, communi-
cation subsystems, management procedures. It is clearly not feasible to replace the
installed systems with a common homogeneous base; instead, it is necessary to agree
on common standards at some level of abstraction that can be supported by most exist-
ing systems.

The OSF DCE constitutes a major step towards interoperability at the distributed sys-
tem level. Still, many open issues remain, and new ones are emerging. The overview
paper [1] presents quite a comprehensive list of topics to be addressed. There are two
additional fundamental issues that are beyond the scope of the DCE, yet crucial to
conquering the heterogeneity and complexity of the networked environments: interop-
erability of the communication subsystems, and distributed system/network manage-
ment. As DCE does not prescribe the communication protocols below its RPC, it is
necessary to provide a separate solution to the heterogeneity at this level, such as the
multi-protocol Iransport networking (MPTN) architecture [2,3]; the X/Open consor-
tium is evaluating MPTN for potential standardization. The overall management of
distributed systems presents a great technical challenge. It must be linked to network
management, yet hide low-level network management problems. It must be user-
friendly and highly automated. It must be capable of scaling up to tens and hundreds
of thousands of nodes, and of accommodating the growing population of mobile users.
Although several projects under the EC programs RACE and ESPRIT are working on
relevant issues, a comprehensive integrated solution is not yet in sight. This is clearly
an area that requires a major effort in research, experimental work, and standardiza-
tion.

283

References
1. B e v e r et al.: Distributed Systems, OSF DCE, and Beyond; these proceedings.

2. Multiprotocol Transport Networking (MPTN) Architecture" Technical Overview;
GC31-7073, IBM Corp., April 1993.

3. Britton et al.: Multiprotocol Transport Networking: A General Intemetworking So-
lution; Proc. IEEE Intl. Conf. on Network Protocols, San Francisco, October 19-22,
1993.

