Convert, Edit, and Compose Images

ImageM agick User’s Guide version 5.4.8

John Cristy
Bob Friesenhahn
Glenn Randers-Pehrson

ImageM agick StudioLLC
http://wmww.imagemagick.org

Copyright

Copyright (C) 2002 ImageMagick Studio, a non-profit organization dedicated to
making software imaging solutions freely available.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (“ImageMagick™), to deal
in ImageMagick without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
ImageMagick, and to permit persons to whom the ImageMagick is furnished to
do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of ImageMagick.

The software is provided “as is”, without warranty of any kind, express or im-
plied, including but not limited to the warranties of merchantability, fitness for a
particular purpose and noninfringement. In no event shall ImageMagick Studio
be liable for any claim, damages or other liability, whether in an action of con-
tract, tort or otherwise, arising from, out of or in connection with ImageMagick
or the use or other dealings in ImageMagick.

Except as contained in this notice, the name of the ImageMagick Studio shall not
be used in advertising or otherwise to promote the sale, use or other dealings in
ImageMagick without prior written authorization from the ImageMagick Studio.

Contents

PrE aCE . . e
Part 1: Quick Start Guide
1 Introduction.........
1.1 WhatisImageMagick i,
1.2 GettingHelp.... ...
2 Image Primer.

21
2.2
2.3
24
2.5
2.6
2.7

Image Tools

Whatisanimage i

Image Depth

Colormapped IMagesS. . ..o

COMPIESSION . .« vttt

COolOrSPaCE . ..ot

Meta-Information.......... ...

Image Formatst

Image Transformations
41 Howtospecifyanimage.covviiiiiiiiiiiii..
4.2 Convert from one Image Format to Another.................
4.3 Colormap Manipulation
44 ResizeanImagecoviiiiiii
T O o o
4.6 ENhance ...

Vi

Contents Vii
47 Effects. ... 7

4.8 DeCOrate ... 7

49 ANNOALE 7
410 Draw ..o 7
411 COMPOSIE. o vttt 7
4.12 Meta-Information..............ccoiiiiii i 7
4.13 Miscellanious Transforms..............ooviiiiiinnnn.. 7

5 Advanced ImageMagick Features 8
5.1 Working with Multi-resolutionImages 9

5.2 Working with an Image Sequence 9

5.3 WorkingwithaGroupofimages.......................... 9

54 WorkingwithRaw Images 9

5.5 Using ImageMagick from a Web Browser 9
Part 2: Application Programming Interface 11
6 C Application Programming Interface......................... 13
6.1 WorkingwithBlobs............. 13

6.2 Workingwith Threads............ it 13

7 C++ Application Programming Interface 14
7.1 WorkingwithBlobs............. i 14

7.2 Workingwith Threads............ot 14

8 Perl Application Programming Interface....................... 15
8.1 Background 15

9 PHP Application Programming Interface 16
9.1 Backgroundoii e 16

10 Other Application Programming Interfaces 17
0 N - - 17

10.2 PYythONn . ..o 17

viii

Contents

10.3 ImageMagick Integration Project.......................... 17
Part3: User'sGuide.....................coiiiiiiii.... 19
11 ImageChannels. 21
11.1 Working with Image Channelsccooinnnn 21

12 ImagePaintingi it e 22
12.1 ImagePaintingt 22

13 Color Profiles.o 23
13.1 Working with Color Profiles.....................cooinnn 23

14 IMage Drawingo 24
141 SVG . i 24
142 MVG . 24
Part 4: Installation And Administration Guide 25
15 InstallingfromBinary 27
15.1 Downloading ... e 27
152 LINUXRPM ... 27
15.3 WINOWSo e 27
15.4 VIS L 27
15,5 UNiX. .o 27
156 Other e e 27

16 Installing from Source ... 28
16.1 Downloading ... 28
16.2 UNiX. .ot 28
16.3 WINOWSo e 28
16.4 Macintosh 28

16.5 VMS . 28

Contents ix
17 Customizing ImageMagick i 29
17.1 ImageDepth. e 29
17.2 ImageCache.t 29
17.3 Delegates ... 29
174 magicmgK ... e 29
17.5 fontmap.mgk ..o 29
Part 5: Reference Manual 31
18 Supported Image Formats ... 33
19 Commandline OptioNSt e 38
20 API Structures and Enumerationso 73
20.1 APISHUCIUIES . ..o 73
20.2 APIENUMENAtioNS . ..ottt i 91

21 CAPIMethods ... o 111
21.1 Methodsto Constitutean Image................. ...t 111
21.2 ImageMagick Image Methods 113
21.3 Working With Image Lists ... 123
21.4 Methods to Countthe ColorsinanlImage................... 128

21.5 Methods to Reduce the Number of Unique Colors in an Image . 131
21.6 Methods to Segment an Image with Thresholding Fuzzy c-

Means ... e 133
21.7 Methodsto ResizeanImage...................oiii.t. 134
21.8 Methodsto Transformanimaget 136
21.9 Methods to Shear or Rotate an Image by an Arbitrary Angle ... 139
21.10 Methods to Enhanceanlimage 140
21.11 ImageMagick Image Effects Methods 142
21.12 ImageMagick Image Decoration Methods 151
21.13 Methods to Annotatean Image............................ 152
21.14 Methodsto Drawonanimagecove... 153

21.15 Methods to CreateaMontage.coveiiiiinnne... 157

22

23

24

Contents

21.16 Image Text Attributes Methods 158
21.17 Methods to Compute a Digital Signature foran Image 159
21.18 Methods to Interactively Animate an Image Sequence 160
21.19 Methods to Interactively Display and Editan Image 160
21.20 Methods to Get or Set Image Pixels........................ 161
21.21 ImageMagick Cache Views Methods 163
21.22 Image Pixel FIFO e 165
21.23 Methods to Read or Write Binary Large Objects 165
21.24 ImageMagick Registry Methods 166
21.25 Methods to Read or List ImageMagick Image formats 168
21.26 ImageMagick Error Methodsl 170
21.27 ImageMagick Memory Allocation Methods 173
21.28 ImageMagick Progress Monitor Methods 174
CH+ APIMethodso 175
221 Magick:Blob 178
22.2 Magick::CoderInfo ... 180
22.3 Magick:Color ... 181
224 Magick::Drawable o 185
22,5 Magick::Exception Classes. ... 199
22.6 Magick:Geometry ... 201
22.7 Magick::Image Class. 205
3 232
22,9 Magick:Pixels 237
22.10 Magick++STL Supporto 240
22.11 Magick::TypeMetrico 260
22.12 Special Format Charactersccoviiiiinne .. 261
Perl API Methods 262
23.1 Image::Magick Attributesl 262
23.2 Image::Magick Methodso 274
23.3 Image:MagickErrors o i i 293

Recognized Color Keyword Namesc.o.eviiiinnnn... 295

Contents

REfEIrENCES . . o .ot

A APPENIX A

Xi

Preface

About This Book

Acknowledgement

Xiii

Part 1
Quick Start Guide

Introduction

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

1.1 What is ImageMagick

1.1.1 Command-line Utility
1.1.2 Application Programming Interface
1.1.3 Scripting Language

1.1.4 General Purpose Imaging Solution

1.2 Getting Help

1.2.1 Web Site
1.2.2 Mailing List

1.2.3 Defect Tracking System

Image Primer

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

2.1 What is an Image
2.2 Image Depth
2.3 Colormapped Images

2.4 Compression

2.4.1 Lossless
24.2 Lossy

2.5 Colorspace
251 RGB

252 CMYK

2.6 Meta-Information

2.7 Image Formats

Image Tools

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

3.0.1 Identify
3.0.2 Convert
3.0.3 Mogrify
3.0.4 Composite
3.0.5 Montage
3.0.6 Display
3.0.7 Animate
3.0.8 Import

3.0.9 Conjure

Image Transformations

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

4 Image Transformations

4.1

41.1
4.1.2
4.1.3

4.2
4.3
4.4
4.5
4.6

4.7

4.7.1
4.7.2

4.8

How to specify an image

Implicitly
Explicitly
By URL

Convert from one Image Format to Another
Colormap Manipulation

Resize an Image

Crop

Enhance

Effects

Special Effects

Image Preview

Decorate

4.9 Annotate

4.10
411

4.12

Draw
Composite

Meta-Information

4.12.1 Comment

4.13

Miscellanious Transforms

4.13.1 Append

Advanced ImageMagick
Features

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

5 Advanced ImageMagick Features

5.1 Working with Multi-resolution Images
5.1.1 PCD

5.1.2 PTIF

5.2 Working with an Image Sequence
5.2.1 Animation

5.2.2 Delay

5.2.3 Loop

5.3 Working with a Group of Images

5.4 Working with Raw Images

5.4.1 Size
5.4.2 Depth

5.4.3 Interlace

5.5 Using ImageMagick from a Web Browser

11

Part 2
Application Programming Interface

C Application Programming
Interface

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

6.1 Working with Blobs

6.2 Working with Threads

6.2.1 Posix

6.2.2 Windows

13

C++ Application
Programming Interface

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

7.1 Working with Blobs

7.2 Working with Threads

7.2.1 Posix

7.2.2 Windows

14

Perl Application
Programming Interface

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage

of text in order to avoid a simple listing of different hierarchies.

8.1 Background

15

PHP Application
Programming Interface

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage

of text in order to avoid a simple listing of different hierarchies.

9.1 Background

16

Other Application
Programming Interfaces

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

10.1 Java
10.2 Python

10.3 ImageMagick Integration Project

17

Part 3
User’s Guide

19

Image Channels

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage

of text in order to avoid a simple listing of different hierarchies.

11.1 Working with Image Channels

21

Image Painting

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

12.1 Image Painting

12.1.1 Paint Type

Color

Matte

12.1.2 Paint Method
Floodfill

Point
Replace
FillToBorder
Reset

12.1.3 Fuzz Factor

22

Color Profiles

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

13.1 Working with Color Profiles

23

Image Drawing

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

14.1 SVG

14.2 MVG

24

Part 4
Installation And Administration Guide

Installing from Binary

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

15.1 Downloading

15.1.1 web

15.1.2 ftp

15.2 Linux RPM

15.3 Windows

15.4 VMS
15.5 Unix
15.6 Other

27

Installing from Source

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

16.1 Downloading

16.1.1 FTP
16.1.2 CVS

16.2 Unix
16.2.1 Configure
16.2.2 Modules
16.3 Windows
16.3.1 Configure
16.3.2 Modules

16.4 Macintosh

16.5 VMS

28

Customizing
ImageMagick

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

17.1 Image Depth

17.1.1 8-bit

17.1.2 16-bit

17.2 Image Cache

17.2.1 Persistent Cache

17.3 Delegates

17.3.1 Library Delegates

17.3.2 Delegates.mgk

17.4 magic.mgk

17.5 fontmap.mgk

29

Part 5
Reference Manual

31

Supported Image
Formats

Listed here are the various file formats supported by ImageMagick. The Format
is the image format identifier and is typically used as the image file extension
(e.g. image.png for the PNG image format). The mode shows the type of support:
r = read; w = write; + = multi-image files. So for example, a mode of rw+ means
ImageMagick can read, write, and save more than one image of a sequence to the
same blob or file. Finally the description tells what the image format is in case
you cannot tell directly from the format identifier (e.g. 8BIM is the Photoshop
resource format).

Table18.1: Supported Image Formats

Supported Image Formats

Format Mode |Description

8BIM rw- |Photoshop resource format

AFM r— TrueType font

APP1 rw- |Photoshop resource format

ART r— PF1: 1st Publisher

AVI r— Audio/Visual Interleaved

AVS rw+ |AVS X image

BIE rw- [Joint Bi-level Image experts Group interchange format

BMP rw+ |Microsoft Windows bitmap image

CAPTION *r+ |Caption (requires separate size info)

CMYK rw- |Raw cyan, magenta, yellow, and black samples
(8 or 16 bits, depending on the image depth)

CMYKA rw- |Raw cyan, magenta, yellow, black, and matte samples
(8 or 16 bits, depending on the image depth)

CUT r— DR Halo

DCM r- Digital Imaging and Communications in Medicine image

33

ImageMagick

Supported Image Formats (continued)

Format Mode |Description

DCX rw+ [ZSoft IBM PC multi-page Paintbrush

DIB rw+ |Microsoft Windows bitmap image

DPS r— Display Postscript

DPX r- Digital Moving Picture Exchange

EPDF rw- |Encapsulated Portable Document Format

EPI rw- |Adobe Encapsulated PostScript Interchange format

EPS rw- |Adobe Encapsulated PostScript

EPS2 -w- |Adobe Level Il Encapsulated PostScript

EPS3 -w- |Adobe Level 11l Encapsulated PostScript

EPSF rw- |Adobe Encapsulated PostScript

EPSI rw- |Adobe Encapsulated PostScript Interchange format

EPT rw- |Adobe Encapsulated PostScript with TIFF preview

FAX rw+ |Group 3 FAX

FILE r— Uniform Resource Locator

FITS rw- |Flexible Image Transport System

FPX rw- FlashPix Format

FTP r— Uniform Resource Locator

G3 rw- Group 3 FAX

GIF rw+ |CompusServe graphics interchange format

GIF87 rw- |CompusServe graphics interchange format (version 87a)

GRADIENT |r- Gradual passing from one shade to another

GRANITE r— Granite texture

GRAY rw+ |Raw gray samples (8 or 16 bits, depending on the
image depth)

H rw- Internal format

HDF rw+ Hierarchical Data Format

HISTOGRAM|-w- |Histogram of the image

HTM -w- |Hypertext Markup Language and a client-side image map

HTML -w- |Hypertext Markup Language and a client-side image map

HTTP r— Uniform Resource Locator

ICB rw+ |Truevision Targa image

ICM rw- ICC Color Profile

ICO r— Microsoft icon

ICON r— Microsoft icon

IMPLICIT |—

IPTC rw- IPTC Newsphoto

JBG rw+ [Joint Bi-level Image experts Group interchange format

JBIG rw+ [Joint Bi-level Image experts Group interchange format

JP2 rw- |JPEG-2000 JP2 File Format Syntax

JPC rw- JPEG-2000 Code Stream Syntax

JPEG rw- |Joint Photographic Experts Group JFIF format

18 Supported Image Formats

35

Supported Image Formats (continued)

Format Mode |Description

JPG rw- [Joint Photographic Experts Group JFIF format

LABEL r— Text image format

LOGO rw- ImageMagick Logo

M2v rw+ |MPEG-2 Video Stream

MAP rw- |Colormap intensities (8 or 16 bits, depending on
the image depth) and indices (8 or 16 bits, depending
on whether colors < 256).

MAT -w+ |MATLAB image format

MATTE -w+ |MATTE format

MIFF rw+ |Magick image format

MNG rw+ |Multiple-image Network Graphics

MONO rw- |Bi-level bitmap in least-significant-byte first order

MPC rw- Magick Persistent Cache image format

MPEG rw+ |MPEG-1 Video Stream

MPG rw+ |MPEG-1 Video Stream

MPR r— Magick Persistent Registry

MSL r— Magick Scripting Language

MTV rw+ |MTV Raytracing image format

MVG rw- |Magick Vector Graphics

NETSCAPE |r- Netscape 216 color cube

NULL r— Constant image of uniform color

oTB rw- |On-the-air bitmap

P7 rw+ [Xv thumbnail format

PAL rw- |16bit/pixel interleaved YUV

PALM rw- |PALM Pixmap

PBM rw+ |Portable bitmap format (black and white)

PCD rw- Photo CD

PCDS rw- Photo CD

PCL -W- Page Control Language

PCT rw- |Apple Macintosh QuickDraw/PICT

PCX rw- |ZSoft IBM PC Paintbrush

PDB r— Pilot Image Format

PDF rw+ |Portable Document Format

PFA r— TrueType font

PFB r- TrueType font

PFM r- TrueType font

PGM rw+ |Portable graymap format (gray scale)

PICON rw- Personal Icon

PICT rw- |Apple Macintosh QuickDraw/PICT

PIX r— Alias/Wavefront RLE image format

PLASMA r— Plasma fractal image

36

ImageMagick

Supported Image Formats (continued)

Format Mode |Description

PM rw- | X Windows system pixmap (color)

PNG rw- |Portable Network Graphics

PNM rw+ |Portable anymap

PPM rw+ |Portable pixmap format (color)

PREVIEW |-w- |Show a preview an image enhancement, effect, or f/x

PS rw+ |Adobe PostScript

PS2 -w+ |Adobe Level Il PostScript

PS3 -w+ |Adobe Level 111 PostScript

PSD rw- |Adobe Photoshop bitmap

PTIF rw- |Pyramid encoded TIFF

PWP r— Seattle Film Works

RAS rw+ |SUN Rasterfile

RGB rw+ |Raw red, green, and blue samples (8 or 16 bits,
depending on the image depth)

RGBA rw+ |Raw red, green, blue, and matte samples (8 or 16
bits, depending on the image depth)

RLA r— Alias/Wavefront image

RLE r— Utah Run length encoded image

ROSE *rw- |70x46 Truecolor test image

SCT r— Scitex HandShake

SFW r— Seattle Film Works

SGI rw+ |Irix RGB image

SHTML -w- |Hypertext Markup Language and a client-side image map

STEGANO |r- Steganographic image

SUN rw+ |SUN Rasterfile

SVG rw+ |Scalable Vector Gaphics

TEXT rw+ |Raw text

TGA rw+ |Truevision Targa image

TIF rw+ |Tagged Image File Format

TIFF rw+ |Tagged Image File Format

TILE r— Tile image with a texture

TIM r—- PSX TIM

TTF r— TrueType font

TXT rw+ |Raw text

UIL -w- | X-Motif UIL table

uyvy rw- |16bit/pixel interleaved YUV

VDA rw+ |Truevision Targa image

VICAR rw- |VICAR rasterfile format

VID rw+ |Visual Image Directory

VIFF rw+ |Khoros Visualization image

VST rw+ |Truevision Targa image

18 Supported Image Formats

37

Supported Image Formats (continued)

Format Mode |Description

WBMP rw- |Wireless Bitmap (level 0) image

WMF r— Windows Metafile

WPG r- Word Perfect Graphics

X rw- | X Image

XBM rw- | X Windows system bitmap (black and white)
XC r— Constant image uniform color

XCF r- GIMP image

XML r- Scalable Vector Gaphics

XPM rw- | X Windows system pixmap (color)

XV rw+ |Khoros Visualization image

XWD rw- | X Windows system window dump (color)
YUV rw- |CCIR 601 4:1:1

Your installation might not support all of the formats in the list. To get an up-
to-date listing of the formats supported by your particular configuration, run

convert

-list format”.

Commandline Options

This is a combined list of the commandline options used by the ImageMag-
ick utilities (animate, composite, convert, display, identify, import, mogrify and
montage).

In this document, angle brackets (“<>") enclose variables and curly brack-
ets (“{}”) enclose optional parameters. For example, “-fuzz <distance>{%}”
means you can use the option" - fuzz 10" or"-fuzz 2% .

-adjoin join images into a single multi-image file

By default, all images of an image sequence are stored in the same file. However,
some formats (e.g. JPEG) do not support more than one image and are saved to
separate files. Use +adjoin to force this behavior.

-affine <matrix> drawing transform matrix

This option provides a transform matrix {sx, rx, ry, sy, tx, ty} for use by
subsequent -draw or -transform options.

-antialias remove pixel aliasing

By default antialiasing algorithms are used when drawing objects (e.g. lines) or
rendering vector formats (e.g. WMF and Postscript). Use +antialias to disable
use of antialiasing algorithms. Reasons to disable antialiasing

include avoiding increasing colors in the image, or improving rendering speed.

-append append a set of images

This option creates a single image where the images in the original set are
stacked top-to-bottom. If they are not of the same width, any narrow images
will be expanded to fit using the background color. Use +append to stack im-
ages left-to-right. The set of images is terminated by the appearance of any op-

38

19 Commandline Options 39

tion. If the -append option appears after all of the input images, all images are
appended.

-average average a set of images

The set of images is terminated by the appearance of any option. If the -average
option appears after all of the input images, all images are averaged.

-backdrop <color> display the image centered on a backdrop.

This backdrop covers the entire workstation screen and is useful for hiding other
X window activity while viewing the image. The color of the backdrop is speci-
fied as the background color. The color is specified using the format described in
the “Color Names” section of X(1). Refer to “X Resources” in the manual page
for display for details.

-background <color> the background color

The color is specified using the format described in the “Color Names” section
of X(1).

-blur <radius>x<sigma> blur the image with a Gaussian operator
Blur with the given radius and standard deviation (sigma).

-border <width>x<height> surround the image with a border of color
See -geometry for details about the geometry specification.

-bordercolor <color> the border color

The color is specified using the format described in the “Color Names” section
of X(1).

-borderwidth <geometry> the border width

-box <color> set the color of the annotation bounding box

The color is specified using the format described in the “Color Names” section
of X(1).

See -draw for further details.

40 ImageMagick

-cache <threshold> megabytes of memory available to the pixel cache

Image pixels are stored in memory until 80 megabytes of memory have been
consumed. Subsequent pixel operations are cached on disk. Operations to mem-
ory are significantly faster but if your computer does not have a sufficient amount
of free memory you may want to adjust this threshold value.

-channel <type> the type of channel
Choose from: Red, Green, Blue, Opacity, Cyan, Magenta, Yellow, or Black.

Use this option to extract a particular channel from the image. Matte, for exam-
ple, is useful for extracting the opacity values from an image.

-charcoal <factor> simulate a charcoal drawing

-chop <width>x<height>{+-}<x>{+-}<y>{%} remove pixels from the in-
terior of an image

Width and height give the number of columns and rows to remove, and x and
y are offsets that give the location of the leftmost column and topmost row to
remove.

The x offset normally specifies the leftmost column to remove. If the -gravity
option is present with NorthEast, East, or SouthEast gravity, it gives the distance
leftward from the right edge of the image to the rightmost column to remove.
Similarly, the y offset normally specifies the topmost row to remove, but if the -
gravity option is present with SouthWest, South, or SouthEast gravity, it specifies
the distance upward from the bottom edge of the image to the bottom row to
remove.

The -chop option removes entire rows and columns, and moves the remaining
corner blocks leftward and upward to close the gaps.

-clip apply the clipping path, if one is present
If a clipping path is present, it will be applied to subsequent operations.
For example, if you type the following command:

convert -clip -negate cockatoo.tif negated.tif

only the pixels within the clipping path are negated.

The -clip feature requires the XML library. If the XML library is not present,
the option is ignored.

19 Commandline Options 41

-coalesce merge a sequence of images

Each image N in the sequence after Image O is replaced with the image created
by flattening images 0 through N.

The set of images is terminated by the appearance of any option. If the -coalesce
option appears after all of the input images, all images are coalesced.

-colorize <value> colorize the image with the pen color

Specify the amount of colorization as a percentage. You can apply separate col-
orization values to the red, green, and blue channels of the image with a col-
orization value list delineated with slashes (e.g. 0/0/50).

-colormap <type> define the colormap type
Choose between shared or private.

This option only applies when the default X server visual is PseudoColor or
GRAYScale. Refer to -visual for more details. By default, a shared colormap
is allocated. The image shares colors with other X clients. Some image colors
could be approximated, therefore your image may look very different than in-
tended. Choose Private and the image colors appear exactly as they are defined.
However, other clients may go technicolor when the image colormap is installed.

-colors <value> preferred number of colors in the image

The actual number of colors in the image may be less than your request, but
never more. Note, this is a color reduction option. Images with less unique colors
than specified with this option will have any duplicate or unused colors removed.
Refer to quantize for more details.

Note, options -dither, -colorspace, and -treedepth affect the color reduction
algorithm.

-colorspace <value> the type of colorspace

Choices are: GRAY, OHTA, RGB, Transparent, XYZ, YCbCr, YIQ, YPbPr,
YUV, or CMYK.

Color reduction, by default, takes place in the RGB color space. Empirical ev-
idence suggests that distances in color spaces such as YUV or YIQ correspond
to perceptual color differences more closely than do distances in RGB space.
These color spaces may give better results when color reducing an image. Refer
to quantize for more details.

The Transparent color space behaves uniquely in that it preserves the matte
channel of the image if it exists.

The -colors or -monochrome option is required for this option to take effect.

42 ImageMagick

-comment <string> annotate an image with a comment

Use this option to assign a specific comment to the image. You can include
the image filename, type, width, height, or other image attribute by embedding
special format characters:

% file size

% comment

%l directory

% fil enane extension
% fil enane

%h hei ght

% i nput filenane

%K nunber of uni que colors
% | abel

% magi ck

9% nunmber of scenes
%0 output fil enane
% page numnber

% guant um dept h

%s scene numnber

% top of filenane
% uni que tenporary fil enane
%v width

4 X resolution

% y resolution

%t signature

\n new i ne

\r carriage return

For example,
-coment "%mn % %wY%h"

produces an image comment of MIFF:bird.miff 512x480 for an image titled
bird.miff and whose width is 512 and height is 480.

If the first character of string is @, the image comment is read from a file titled
by the remaining characters in the string.

-compose <operator> the type of image composition

[This option is not used by convert but this section is included because it de-
scribes the composite operators that are used by the -draw option of convert.]

By default, each of the composite image pixels are replaced by the corresponding
image tile pixel. You can choose an alternate composite operation:

19 Commandline Options 43

Over

In

Qut

At op

Xor

Pl us

M nus

Add

Subt r act
Di fference
Mul tiply
Bunmpmap
Copy
CopyRed
CopyG een
CopyBl ue

CopyOpaci ty
How each operator behaves is described below.

Over
The result will be the union of the two image shapes, with opaque areas of
composite image obscuring image in the region of overlap.
In
The result is simply composite image cut by the shape of image. None of the
image data of image will be in the result.
Out
The resulting image is composite image with the shape of image cut out.
Atop
The result is the same shape as image image, with composite image obscur-
ing image where the image shapes overlap. Note this differs from over be-
cause the portion of composite image outside image’s shape does not appear
in the result.
Xor
The result is the image data from both composite image and image that is
outside the overlap region. The overlap region will be blank.
Plus
The result is just the sum of the image data. Output values are cropped to
255 (no overflow). This operation is independent of the matte channels.
Minus
The result of composite image - image, with underflow cropped to zero. The
matte channel is ignored (set to 255, full coverage).
Add
The result of composite image + image, with overflow wrapping around
(mod 256).

44

ImageMagick

Subtract
The result of composite image - image, with underflow wrapping around
(mod 256). The add and subtract operators can be used to perform re-
versible transformations.

Difference
The result of abs(composite image - image). This is useful for comparing
two very similar images.

Multiply
The result of composite image * image. This is useful for the creation of
drop-shadows.

Bumpmap
The result image shaded by composite image.

Copy
The resulting image is image replaced with composite image. Here the matte
information is ignored.

CopyRed
The resulting image is the red layer in image replaced with the red layer in
composite image. The other layers are copied untouched.

CopyGreen
The resulting image is the green layer in image replaced with the green layer
in composite image. The other layers are copied untouched.

CopyBlue
The resulting image is the blue layer in image replaced with the blue layer
in composite image. The other layers are copied untouched.

CopyOpacity
The resulting image is the matte layer in image replaced with the matte layer
in composite image. The other layers are copied untouched.

The image compositor requires a matte, or alpha channel in the image for some
operations. This extra channel usually defines a mask which represents a sort of a
cookie-cutter for the image. This is the case when matte is 255 (full coverage) for
pixels inside the shape, zero outside, and between zero and 255 on the boundary.
For certain operations, if image does not have a matte channel, it is initialized
with 0 for any pixel matching in color to pixel location (0,0), otherwise 255 (to
work properly borderwidth must be 0).

-compress <type> the type of image compression

Choices are: None, BZip, Fax, Group4, JPEG, Lossless, LZW, RLE or Zip.

Specify +compress to store the binary image in an uncompressed format. The
default is the compression type of the specified image file.

If LZW compression is specified but LZW compression has not been enabled,
the image data will be written in an uncompressed LZW format that can be read
by LZW decoders. This may result in larger-than-expected GIF files.

19 Commandline Options 45

“Lossless™ refers to lossless JPEG, which is only available if the JPEG library
has been patched to support it.

Use the -quality option to set the compression level to be used by JPEG, PNG,
MIFF, and MPEG encoders. Use the -sampling_factor option to set the sam-
pling factor to be used by JPEG, MPEG, and YUV encoders for downsampling
the chroma channels.

-contrast enhance or reduce the image contrast

This option enhances the intensity differences between the lighter and darker
elements of the image. Use -contrast to enhance the image or +contrast to
reduce the image contrast.

-crop <width>x<height>{+-}<x>{+-}<y>{%} preferred size and location
of the cropped image

See -geometry for details about the geometry specification.

The width and height give the size of the image that remains after cropping, and
x and y are offsets that give the location of the top left corner of the cropped
image with respect to the original image. To specify the amount to be removed,
use -shave instead.

To specify a percentage width or height to be removed instead, append %. For
example to crop the image by ten percent (five percent on each side of the im-
age), use -crop 10%.

If the x and y offsets are present, a single image is generated, consisting of the
pixels from the cropping region. The offsets specify the location of the upper
left corner of the cropping region measured downward and rightward with re-
spect to the upper left corner of the image. If the -gravity option is present with
NorthEast, East, or SouthEast gravity, it gives the distance leftward from the
right edge of the image to the right edge of the cropping region. Similarly, if
the -gravity option is present with SouthWest, South, or SouthEast gravity, the
distance is measured upward between the bottom edges.

If the x and y offsets are omitted, a set of tiles of the specified geometry, covering
the entire input image, is generated. The rightmost tiles and the bottom tiles are
smaller if the specified geometry extends beyond the dimensions of the input
image.

-cycle <amount> displace image colormap by amount
Amount defines the number of positions each colormap entry is shifted.

-debug enable debug printout

46 ImageMagick

-deconstruct break down an image sequence into constituent parts

The sequence of images is terminated by the appearance of any option. If the
-deconstruct option appears after all of the input images, all images are decon-
structed.

-delay <1/100ths of a second> display the next image after pausing

This option is useful for regulating the animation of image sequences Delay/100
seconds must expire before the display of the next image. The default is no delay
between each showing of the image sequence. The maximum delay is 65535.

You can specify a delay range (e.g. -delay 10-500) which sets the minimum and
maximum delay.

-density <width>x<height> vertical and horizontal resolution in pixels of the
image

This option specifies an image density when decoding a PostScript or Portable
Document page. The default is 72 dots per inch in the horizontal and vertical
direction. This option is used in concert with -page.

-depth <value> depth of the image

This is the number of bits in a color sample within a pixel. The only acceptable
values are 8 or 16. Use this option to specify the depth of raw images whose
depth is unknown such as GRAY, RGB, or CMYK, or to change the depth of
any image after it has been read.

-descend obtain image by descending window hierarchy

-despeckle reduce the speckles within an image

-displace <horizontal scale>x<vertical scale> shift image pixels as defined
by a displacement map

With this option, composite image is used as a displacement map. Black, within
the displacement map, is a maximum positive displacement. White is a max-
imum negative displacement and middle gray is neutral. The displacement is
scaled to determine the pixel shift. By default, the displacement applies in both
the horizontal and vertical directions. However, if you specify mask, composite
image is the horizontal X displacement and mask the vertical Y displacement.

19 Commandline Options

-display <host:display[.screen]> specifies the X server to contact

a7

This option is used with convert for obtaining image or font from this X server.

See X(1).

-dispose <method> GIF disposal method

Here are the valid methods:

0 No di sposal specified.

1 Do not di spose between franes.

2 Overwrite frame with background col or
from header.

3 Overwite with previous frane.

-dissolve <percent> dissolve an image into another by the given percent

The opacity of the composite image is multiplied by the given percent, then it is

composited over the main image.

-dither apply Floyd/Steinberg error diffusion to the image

The basic strategy of dithering is to trade intensity resolution for spatial reso-
lution by averaging the intensities of several neighboring pixels. Images which
suffer from severe contouring when reducing colors can be improved with this

option.

The -colors or -monochrome option is required for this option to take effect.

Use +dither to turn off dithering and to render PostScript without text or graphic

aliasing.

-draw <string> annotate an image with one or more graphic primitives

Use this option to annotate an image with one or more graphic primitives. The
primitives include shapes, text, transformations, and pixel operations. The shape

primitives are

poi nt X,y

line x0, y0
rectangl e x0, y0
roundRect angl e x0, y0
arc x0, y0
el lipse x0, y0
circle x0, y0

pol yl i ne x0, yO

x1l,yl
x1,yl
x1,yl
x1,yl
rx,ry
x1l,yl

we, he
a0, al
a0, al

XN, yn

48

ImageMagick
pol ygon x0,y0 ... Xxn,yn
Bezi er x0,y0 ... Xxn,yn
pat h path specification
i mge operator x0,y0 w,h filenane

The text primitive is
t ext x0,y0 string

The transformation primitives are

rotate degrees
transl ate dx, dy
scal e SX, sy
skewX degrees
skewY degrees

The pixel operation primitives are

col or x0, yO net hod
matte x0, yO net hod

The shape primitives are drawn in the color specified in the preceding -stroke
option. Except for the line and point primitives, they are filled with the color
specified in the preceding -fill option. For unfilled shapes, use - fi | I none.

Point requires a single coordinate.
Line requires a start and end coordinate.
Rectangle expects an upper left and lower right coordinate.

RoundRectangle has the upper left and lower right coordinates and the width
and height of the corners.

Circle has a center coordinate and a coordinate for the outer edge.

Use Arc to circumscribe an arc within a rectangle. Arcs require a start and end
point as well as the degree of rotation (e.g. 130,30 200,100 45,90).

Use Ellipse to draw a partial ellipse centered at the given point with the x-
axis and y-axis radius and start and end of arc in degrees (e.g. 100,100 100,150
0,360).

Finally, polyline and polygon require three or more coordinates to define its
boundaries. Coordinates are integers separated by an optional comma. For ex-
ample, to define a circle centered at 100,100 that extends to 150,150 use;

-draw 'circle 100, 100 150, 150

19 Commandline Options 49

Paths (See Paths) represent an outline of an object which is defined in terms of
moveto (set a new current point), lineto (draw a straight line), curveto (draw a
curve using a cubic Bezier), arc (elliptical or circular arc) and closepath (close
the current shape by drawing a line to the last moveto) elements. Compound
paths (i.e., a path with subpaths, each consisting of a single moveto followed by
one or more line or curve operations) are possible to allow effects such as “donut
holes” in objects.

Use image to composite an image with another image. Follow the image key-
word with the composite operator, image location, image size, and filename:

-draw ' i mage Over 100, 100 225, 225 image.jpg’

You can use 0,0 for the image size, which means to use the actual dimensions
found in the image header. Otherwise, it will be scaled to the given dimensions.
See -compose for a description of the composite operators.

Use text to annotate an image with text. Follow the text coordinates with a string.
If the string has embedded spaces, enclose it in double quotes. Optionally you
can include the image filename, type, width, height, or other image attribute by
embedding special format character. See -comment for details.

For example,
-draw 'text 100,100 "%n % %wx%h"’

annotates the image with M FF: bi rd. mi ff 512x480 for an image titled
bi rd. m f f and whose width is 512 and height is 480.

If the first character of string is @, the text is read from a file titled by the
remaining characters in the string.

Rotate rotates subsequent shape primitives and text primitives about the origen
of the main image. If the -region option precedes the -draw option, the origen
for transformations is the upper left corner of the region.

Translate translates them.
Scale scales them.

SkewX and SkewY skew them with respect to the origen of the main image or
the region.

The transformations modify the current affine matrix, which is initialized from
the initial affine matrix defined by the -affine option. Transformations are cu-
mulative within the -draw option. The initial affine matrix is not affected; that
matrix is only changed by the appearance of another -affine option. If another
-draw option appears, the current affine matrix is reinitialized from the initial
affine matrix.

Use color to change the color of a pixel to the fill color (see -fill). Follow the
pixel coordinate with a method:

50

ImageMagick

poi nt

repl ace
floodfil
filltoborder
reset

Consider the target pixel as that specified by your coordinate. The point method
recolors the target pixel. The replace method recolors any pixel that matches the
color of the target pixel. Floodfill recolors any pixel that matches the color of
the target pixel and is a neighbor, whereas filltoborder recolors any neighbor
pixel that is not the border color. Finally, reset recolors all pixels.

Use matte to the change the pixel matte value to transparent. Follow the pixel
coordinate with a method (see the color primitive for a description of meth-
ods). The point method changes the matte value of the target pixel. The replace
method changes the matte value of any pixel that matches the color of the target
pixel. Floodfill changes the matte value of any pixel that matches the color of
the target pixel and is a neighbor, whereas filltoborder changes the matte value
of any neighbor pixel that is not the border color (-bordercolor). Finally reset
changes the matte value of all pixels.

You can set the primitive color, font, and font bounding box color with -fill, -
font, and -box respectively. Options are processed in command line order so be
sure to use these options before the -draw option.

-edge <radius> detect edges within an image

-emboss emboss an image

-encoding <type> specify the font encoding

Choose from AdobeCustom, AdobeExpert, AdobeStandard, AppleRoman, BIG5,
GB2312, Latin 2, None, SJIScode, Symbol, Unicode, Wansung.

-endian <type> specify endianness (MSB or LSB) of output image

Use +endian to revert to unspecified endianness.

-enhance apply a digital filter to enhance a noisy image

-equalize perform histogram equalization to the image

19 Commandline Options 51

-fill <color> color to use when filling a graphic primitive

The color is specified using the format described in the “Color Names” section
of X(1).

See -draw for further details.

-filter <type> use this type of filter when resizing an image

Use this option to affect the resizing operation of an image (see -geometry).
Choose from these filters:

Poi nt
Box
Triangl e
Hermte
Hanni ng
Hanmi ng
Bl ackman
Gaussi an
Quadratic
Cubi c
Catrom
M t chel |
Lanczos
Besse

Si nc

The default filter is Lanczos

-flatten flatten a sequence of images

The sequence of images is replaced by a single image created by composing
each image after the first over the first image.

The sequence of images is terminated by the appearance of any option. If the
-flatten option appears after all of the input images, all images are flattened.

-flip create a “mirror image”
reflect the scanlines in the vertical direction.

-flop create a “mirror image”

reflect the scanlines in the horizontal direction.

52 ImageMagick

-font <name> use this font when annotating the image with text

You can tag a font to specify whether it is a PostScript, TrueType, or OPTION1
font. Forexample, Ari al . tt f isa TrueType font, ps: hel vet i cais PostScript,
and x: fi xed is OPTIONL1.

-foreground < color> define the foreground color

The color is specified using the format described in the “Color Names” section
of X(1).

-format <type> the image format type

This option will convert any image to the image format you specify. See Im-
ageMagick(1) for a list of image format types supported by ImageMagick.

By default the file is written to its original name. However, if the filename exten-
sion matches a supported format, the extension is replaced with the image format
type specified with -format. For example, if you specify tiff as the format type
and the input image filename is image.qgif, the output image filename becomes
image.tiff.

-format <string> output formatted image characteristics

Use this option to print information about the image in a format of your choos-
ing. You can include the image filename, type, width, height, or other image
attributes by embedding special format characters:

% file size

% conment

%l directory

% fil enane extension
% filenane

% hei ght

% i nput filenane

%K nunber of uni que colors
% | abel

%m nmagi ck

% nunmber of scenes

%0 out put fil ename

% page nunber

% quant um dept h

% scene nunber

% top of filenane

% uni que tenporary fil enanme
%v width

9 X resolution

19 Commandline Options 53

% y resolution

%t signature

\n new i ne

\r carriage return

For example,

-format "%m % %w%h"
displays MIFF:bird.miff 512x480 for an image titled bird.miff and whose
width is 512 and height is 480.

If the first character of string is @, the format is read from a file titled by the
remaining characters in the string.

-frame <width>x<height>+<outer bevel width>+<inner bevel width>
surround the image with an ornamental border

See -geometry for details about the geometry specification. The -frame option
is not affected by the -gravity option.

The color of the border is specified with the -mattecolor command line option.
-frame include the X window frame in the imported image

-fuzz <distance>{%} colors within this distance are considered equal

A number of algorithms search for a target color. By default the color must be
exact. Use this option to match colors that are close to the target color in RGB
space. For example, if you want to automatically trim the edges of an image with
-trim but the image was scanned and the target background color may differ by
a small amount. This option can account for these differences.

The distance can be in absolute intensity units or, by appending “%”, as a per-
centage of the maximum possible intensity (255 or 65535).

-gamma <value> level of gamma correction

The same color image displayed on two different workstations may look differ-
ent due to differences in the display monitor. Use gamma correction to adjust for
this color difference. Reasonable values extend from 0.8 to 2.3.

You can apply separate gamma values to the red, green, and blue channels of the
image with a gamma value list delineated with slashes (e.g., 1.7/2.3/1.2).

Use +gamma value to set the image gamma level without actually adjusting the
image pixels. This option is useful if the image is of a known gamma but not set
as an image attribute (e.g. PNG images).

54 ImageMagick

-Gaussian <radius>x<sigma> blur the image with a Gaussian operator
Use the given radius and standard deviation (sigma).

-geometry <width>x<height>{+-}<x>{+-}<y>{%}{@} {!}{<}{>} pre-
ferred size and location of the Image window.

By default, the window size is the image size and the location is chosen by you
when it is mapped.

By default, the width and height are maximum values. That is, the image is ex-
panded or contracted to fit the width and height value while maintaining the as-
pect ratio of the image. Append an exclamation point to the geometry to force the
image size to exactly the size you specify. For example, if you specify 640x 480!
the image width is set to 640 pixels and height to 480.

If only the width is specified, the width assumes the value and the height is
chosen to maintain the aspect ratio of the image. Similarly, if only the height is
specified (e.g., - geomet ry x256), the width is chosen to maintain the aspect
ratio.

To specify a percentage width or height instead, append %. The image size is
multiplied by the width and height percentages to obtain the final image dimen-
sions. To increase the size of an image, use a value greater than 100 (e.g. 125%).
To decrease an image’s size, use a percentage less than 100.

Use @Xo specify the maximum area in pixels of an image.

Use > to change the dimensions of the image only if its width or height exceeds
the geometry specification. < resizes the image only if both of its dimensions are
less than the geometry specification. For example, if you specify * 640x480>’
and the image size is 256x256, the image size does not change. However, if the
image is 512x512 or 1024x1024, it is resized to 480x480. Enclose the geometry
specification in quotation marks to prevent the < or > from being interpreted by
your shell as a file redirection.

When used with animate and display, offsets are handled in the same manner
as in X(1) and the -gravity option is not used. If the x is negative, the offset
is measured leftward from the right edge of the screen to the right edge of the
image being displayed. Similarly, negative y is measured between the bottom
edges. The offsets are not affected by “%”; they are always measured in pixels.

When used as a composite option, -geometry gives the dimensions of the im-
age and its location with respect to the composite image. If the -gravity option
is present with NorthEast, East, or SouthEast gravity, the x represents the dis-
tance from the right edge of the image to the right edge of the composite image.
Similarly, if the -gravity option is present with SouthWest, South, or SouthEast
gravity, y is measured between the bottom edges. Accordingly, a positive offset
will never point in the direction outside of the image. The offsets are not affected
by “%”; they are always measured in pixels. To specify the dimensions of the
composite image, use the -resize option.

19 Commandline Options 55

When used as a convert, import or mogrify option, -geometry is synonymous
with -resize and specifies the size of the output image. The offsets, if present,
are ignored.

When used as a montage option, -geometry specifies the image size and border
size for each tile; default is 256x256+0+0. Negative offsets (border dimensions)
are meaningless. The -gravity option affects the placement of the image within
the tile; the default gravity for this purpose is Center. If the “%” sign appears in
the geometry specification, the tile size is the specified percentage of the original
dimensions of the first tile. To specify the dimensions of the montage, use the
-resize option.

-gravity <type>> direction primitive gravitates to when annotating the image.

Choices are: NorthWest, North, NorthEast, West, Center, East, South\West, South,
SouthEast.

The direction you choose specifies where to position the text or other graphic
primitive when annotating the image. For example Center gravity forces the text
to be centered within the image. By default, the image gravity is NorthWest. See
-draw for more details about graphic primitives.

The -gravity option is also used in concert with the -geometry option and other
options that take <geometry> as a parameter, such as the -crop option. See
-geometry for details of how the -gravity option interacts with the <x> and
<y> parameters of a geometry specification.

When used as an option to composite, -gravity gives the direction that the image
gravitates within the composite.

When used as an option to montage, -gravity gives the direction that an image
gravitates within a tile. The default gravity is Center for this purpose.

-help print usage instructions

-iconGeometry <geometry> specify the icon geometry

Offsets, if present in the geometry specification, are handled in the same manner
as the -geometry option, using X11 style to handle negative offsets.

-iconic iconic animation

-immutable make image immutable

-implode <factor> implode image pixels about the center

56 ImageMagick

-intent <type> use this type of rendering intent when managing the image color

Use this option to affect the the color management operation of an image (see
-profile). Choose from these intents: Absolute, Perceptual, Relative, Satura-
tion

The default intent is undefined.

-interlace <type> the type of interlacing scheme
Choices are: None, Line, Plane, or Partition. The default is None.

This option is used to specify the type of interlacing scheme for raw image for-
mats such as RGB or YUV.

None means do not interlace (RGBRGBRGBRGBRGBRGB...),
Line uses scanline interlacing (RRR...GGG...BBB...RRR...GGG...BBB...), and
Plane uses plane interlacing (RRRRRR...GGGGGG...BBBBBB...).

Partition is like plane except the different planes are saved to individual files
(e.g. image.R, image.G, and image.B).

Use Line or Plane to create an interlaced PNG or GIF or progressive JPEG
image.

-label <name> assign a label to an image

Use this option to assign a specific label to the image. Optionally you can include
the image filename, type, width, height, or other image attribute by embedding
special format character. See -comment for details.

For example,
-1 abel "%mn % %w%"

produces an image label of MIFF:bird.miff 512x480 for an image titled bird.miff
and whose width is 512 and height is 480.

If the first character of string is @, the image label is read from a file titled by
the remaining characters in the string.

When converting to PostScript, use this option to specify a header string to print
above the image. Specify the label font with -font.

-level <value> adjust the level of image contrast

Give three point values delineated with commas: black, mid, and white (e.g.
10,1.0,65000). The white and black points range from 0 to MaxRGB and mid
ranges from 0 to 10.

19 Commandline Options 57

-linewidth the line width for subsequent draw operations

-list <type> the type of list
Choices are: Delegate, Format, Magic, Module, or Type.
This option lists entries from the ImageMagick configuration files.

-loop <iterations> add Netscape loop extension to your GIF animation

A value other than zero forces the animation to repeat itself up to iterations
times.

-magnify <factor> magnify the image

-map <filename> choose a particular set of colors from this image
[convert or mogrify]

By default, color reduction chooses an optimal set of colors that best represent
the original image. Alternatively, you can choose a particular set of colors from
an image file with this option.

Use +map to reduce all images in the image sequence that follows to a single
optimal set of colors that best represent all the images. The sequence of images
is terminated by the appearance of any option. If the +map option appears after
all of the input images, all images are mapped.

-map <type> display image using this type.
[animate or display]
Choose from these Standard Colormap types:

best
def aul t
gray
red
green
bl ue

The X server must support the Standard Colormap you choose, otherwise an
error occurs. Use list as the type and display searches the list of colormap types
in top-to-bottom order until one is located. See xstdcmap(1) for one way of
creating Standard Colormaps.

58 ImageMagick

-mask <filename> Specify a clipping mask

The image read from the file is used as a clipping mask. It must have the same
dimensions as the image being masked.

If the mask image contains an opacity channel, the opacity of each pixel is used
to define the mask. Otherwise, the intensity (gray level) of each pixel is used.

Use +mask to remove the clipping mask.

It is not necessary to use -clip to activate the mask; -clip is implied by -mask.

-matte store matte channel if the image has one
If the image does not have a matte channel, create an opaque one.

Use +matte to ignore the matte channel and to avoid writing a matte channel in
the output file.

-mattecolor <color> specify the color to be used with the -frame option

The color is specified using the format described in the “Color Names” section
of X(1).

-median <radius> apply a median filter to the image

-mode <value> mode of operation

-modulate <value> vary the brightness, saturation, and hue of an image

Specify the percent change in brightness, the color saturation, and the hue sepa-
rated by commas. For example, to increase the color brightness by 20% and de-
crease the color saturation by 10% and leave the hue unchanged, use: -modulate
120,90.

-monochrome transform the image to black and white

-morph <frames> morphs an image sequence

Both the image pixels and size are linearly interpolated to give the appearance
of a meta-morphosis from one image to the next.

The sequence of images is terminated by the appearance of any option. If the
-morph option appears after all of the input images, all images are morphed.

19 Commandline Options 59

-mosaic create a mosaic from an image sequence
The -page option is used to locate the images within the mosaic.

The sequence of images is terminated by the appearance of any option. If the
-mosaic option appears after all of the input images, all images are included in
the mosaic.

-name name an image

-negate replace every pixel with its complementary color

The red, green, and blue intensities of an image are negated. White becomes
black, yellow becomes blug, etc. Use +negate to only negate the grayscale pixels
of the image.

-noise <radius|type> add or reduce noise in an image

The principal function of noise peak elimination filter is to smooth the objects
within an image without losing edge information and without creating undesired
structures. The central idea of the algorithm is to replace a pixel with its next
neighbor in value within a pixel window, if this pixel has been found to be noise.
A pixel is defined as noise if and only if this pixel is a maximum or minimum
within the pixel window.

Use radius to specify the width of the neighborhood.

Use +noise followed by a noise type to add noise to an image. Choose from
these noise types:

Uni form
Gaussi an

Mul tiplicative
| npul se

Lapl aci an

Poi sson

-noop NOOP (no option)

The -noop option can be used to terminate a group of images and reset all options
to their default values, when no other option is desired.

-normalize transform image to span the full range of color values

This is a contrast enhancement technique.

60

-opaque <color> change this color to the pen color within the image

ImageMagick

The color is specified using the format described in the “Color Names” section

of X(1).
See -fill for more details.

-page <width>x<height>{+-} <x>{+-}<y>{%}{!}{<}{>} size and loca-

tion of an image canvas

Use this option to specify the dimensions of the PostScript page in dots per inch

or a TEXT page in pixels. The choices for a PostScript page are:

11x17
Ledger
Legal
Letter
Letter Snal |
ArchE
ArchD
ArchC
ArchB
Ar chA
A0

Al

A2

A3

Ad
A4Snal |
A5

A6

A7

A8

A9
Al10
BO

B1

RRBCABARBI

792
1224
612
612
612
2592
1728
1296
864
648
2380
1684
1190
842
595
595
421
297
210
148
105
74
2836
2004
1418
1002
709
501
2600
1837
1298
918
649
459

1224
792
1008
792
792
3456
2592
1728
1296
864
3368
2380
1684
1190
842
842
595
421
297
210
148
105
4008
2836
2004
1418
1002
709
3677
2600
1837
1298
918
649

19 Commandline Options

C6 323
Fl sa 612
Fl se 612

Hal f Lett er 396

459
936
936
612

61

For convenience you can specify the page size by media (e.g. A4, Ledger, etc.).
Otherwise, -page behaves much like -geometry (e.g.- page | ett er +43+43>).

To position a GIF image, use -page{+-}<x>{+-}<y> (e.g. -page +100+200).

For a PostScript page, the image is sized as in -geometry and positioned relative
to the lower left hand corner of the page by {+-}<xoffset>{+-}<y offset>.
Use - page 612x792>, for example, to center the image within the page. If
the image size exceeds the PostScript page, it is reduced to fit the page. The
default gravity for the -page option is NorthWest, i.e., positive x and y offset are
measured rightward and downward from the top left corner of the page, unless

the -gravity option is present with a value other than NorthWest.
The default page dimensions for a TEXT image is 612x792.
This option is used in concert with -density.

-paint <radius> simulate an oil painting

Each pixel is replaced by the most frequent color in a circular neighborhood

whose width is specified with radius.

-pause <seconds> pause between animation loops [animate]
Pause for the specified number of seconds before repeating the animation.

-pause <seconds> pause between snapshots [import]
Pause for the specified number of seconds before taking the next snapshot.

-pen <color> specify the pen color for drawing operations

The color is specified using the format described in the “Color Names” section

of X(1).

This option is deprecated; use -fill instead.

-ping efficiently determine image characteristics

-pointsize <value> pointsize of the PostScript, OPTION1, or TrueType font

62 ImageMagick

-preview <type> image preview type

Use this option to affect the preview operation of an image (e.g. convert
-previ ew Ganma Previ ew. gama. png). Choose from these previews:

Rot at e
Shear

Rol |

Hue

Sat urati on
Bri ght ness
Gamma

Spi ff

Dul |
Grayscal e
Quanti ze
Despeckl e
ReduceNoi se
Add Noi se
Shar pen

Bl ur
Threshol d
EdgeDet ect
Spr ead
Shade

Rai se
Segnent

Sol ari ze
Swi r |

| mpl ode
Wave

Q | Pai nt
Char coal Dr awi ng
JPEG

The default preview is JPEG.

-process <command>> process a sequence of images

The sequence of images is terminated by the appearance of any option. If the
-process option appears after all of the input images, all images are processed.

-profile <filename> add ICM, IPTC, or generic profile to image

-profile filenaneaddsanICM (ICC color management), IPTC (newswire
information), or a generic profile to the image.

19 Commandline Options 63

Use +profile icm +profile iptc, or +profile profile.nane
to remove the respective profile. Use i denti fy -ver bose to find out what
profiles are in the image file. Use +profil e "*" to remove all profiles.

To extract a profile, the -profile option is not used. Instead, simply write the file
to an image format such as APP1, 8BIM, ICM, or IPTC.

For example, to extract the Exif data (which is stored in JPEG files in the APP1
profile), use

convert cockatoo.jpg exifdata.appl

-quality <value> JPEG/MIFF/PNG compression level

For the JPEG and MPEG image formats, quality is O (lowest image quality and
highest compression) to 100 (best quality but least effective compression). The
default quality is 75. Use the -sampling_factor option to specify the factors for
chroma downsampling.

For the MIFF image format, quality/10 is the zlib compression level, which is
0 (worst but fastest compression) to 9 (best but slowest). It has no effect on the
image appearance, since the compression is always lossless.

For the MNG and PNG image formats, the quality value sets the zlib compres-
sion level (quality / 10) and filter-type (quality % 10). Compression levels range
from O (fastest compression) to 100 (best but slowest). For compression level 0,
the Huffman-only strategy is used, which is fastest but not necessarily the worst
compression.

If filter-type is 4 or less, the specified filter-type is used for all scanlines:

none
sub

up

aver age
Paet h

RoNROQ

If filter-type is 5, adaptive filtering is used when quality is greater than 50 and
the image does not have a color map, otherwise no filtering is used.

If filter-type is 6, adaptive filtering with minimum-sum-of-absolute-values is
used.

Only if the output is MNG, if filter-type is 7, the LOCO color transformation
and adaptive filtering with minimum-sum-of-absolute-values are used.

The default is quality is 75, which means nearly the best compression with adap-
tive filtering. The quality setting has no effect on the appearance of PNG and
MNG images, since the compression is always lossless.

For further information, see the PNG specification.

64 ImageMagick

-raise <width>x<height> lighten or darken image edges

This will create a 3-D effect. See -geometry for details details about the geom-
etry specification. Offsets are not used.

Use -raise to create a raised effect, otherwise use +raise.

-region <width>x<height>{+-}<x>{+-}<y> apply options to a portion of
the image

The x and y offsets are treated in the same manner as in -crop.

-remote perform a remote operation
The only command recognized at this time is the name of an image file to load.

-resize <width>x<height>{%}{@}{!}{<}{>} resize animage
This is an alias for the -geometry option and it behaves in the same manner. If
the -filter option precedes the -resize option, the specified filter is used.
There are some exceptions:

When used as a composite option, -resize conveys the preferred size of the output
image, while -geometry conveys the size and placement of the composite image
within the main image.

When used as a montage option, -resize conveys the preferred size of the mon-
tage, while -geometry conveys information about the tiles.

-roll {+-}<x>{+-}<y> roll an image vertically or horizontally

See -geometry for details the geometry specification. The x and y offsets are not
affected by the -gravity option.

A negative x offset rolls the image left-to-right. A negative y offset rolls the
image top-to-bottom.

-rotate <degrees>{<}{>} apply Paeth image rotation to the image

Use > to rotate the image only if its width exceeds the height. < rotates the im-
age only if its width is less than the height. For example, if you specify - r ot at e
"-90>" and the image size is 480x640, the image is not rotated. However, if
the image is 640x480, it is rotated by -90 degrees. If you use > or <, enclose it
in quotation marks to prevent it from being misinterpreted as a file redirection.

Empty triangles left over from rotating the image are filled with the color defined
as background (class backgroundColor). See X(1) for details.

19 Commandline Options 65

-sample <geometry> scale image with pixel sampling

See -geometry for details about the geometry specification. -sample ignores the
-filter selection if the -filter option is present. Offsets, if present in the geometry
string, are ignored, and the -gravity option has no effect.

-sampling_factor <horizontal_factor>x<vertical_factor> sampling factors
used by JPEG or MPEG-2 encoder and YUYV decoder/encoder.

This option specifies the sampling factors to be used by the JPEG encoder for
chroma downsampling. If this option is omitted, the JPEG library will use its
own default values. When reading or writing the YUV format and when writ-
ing the M2V (MPEG-2) format, use -sampling_factor 2x1 to specify the 4:2:2
downsampling method.

-scale <geometry> scale the image.

See -geometry for details about the geometry specification. -scale uses a sim-
pler, faster algorithm, and it ignores the -filter selection if the -filter option is
present. Offsets, if present in the geometry string, are ignored, and the -gravity
option has no effect.

-scene <value> set scene number

This option sets the scene number of an image or the first image in an image
sequence.

-scenes <value-value> range of image scene numbers to read
Each image in the range is read with the filename followed by a period (.) and
the decimal scene number. You can change this behavior by embedding a %od,
%0Nd, %00, %00No, %X, or %0NX printf format specification in the file name.
For example,
nont age -scenes 5-7 inmage. mff
makes a montage of files image.miff.5, image.miff.6, and image.miff.7, and

ani mate -scenes 0-12 i mage%®2d. m ff

animates files image00.miff, image01.miff, through image12.miff.

-screen specify the screen to capture

This option indicates that the Getlmage request used to obtain the image should
be done on the root window, rather than directly on the specified window. In this

66 ImageMagick

way, you can obtain pieces of other windows that overlap the specified window,
and more importantly, you can capture menus or other popups that are indepen-
dent windows but appear over the specified window.

-seed <value> pseudo-random number generator seed value

-segment <cluster threshold>x<smoothing threshold> segment an im-
age

Segment an image by analyzing the histograms of the color components and
identifying units that are homogeneous with the fuzzy c-means technique.

Specify cluster threshold as the number of pixels in each cluster must exceed
the the cluster threshold to be considered valid. Smoothing threshold eliminates
noise in the second derivative of the histogram. As the value is increased, you
can expect a smoother second derivative. The default is 1.5. See “Image Seg-
mentation” in the manual page for display for details.

-shade <azimuth>x<elevation>> shade the image using a distant light source

Specify azimuth and elevation as the position of the light source. Use +shade to
return the shading results as a grayscale image.

-shadow <radius>x<sigma> shadow the montage

-shared_memory use shared memory

This option specifies whether the utility should attempt use shared memory for
pixmaps. ImageMagick must be compiled with shared memory support, and the
display must support the MIT-SHM extension. Otherwise, this option is ignored.
The default is True.

-sharpen <radius>x<sigma> sharpen the image
Use a Gaussian operator of the given radius and standard deviation (sigma).

-shave <width>x<height> shave pixels from the image edges

Specify the width of the region to be removed from both sides of the image and
the height of the regions to be removed from top and bottom.

-shear <x degrees>x<y degrees> shear the image along the X or Y axis

19 Commandline Options 67

Use the specified positive or negative shear angle.

Shearing slides one edge of an image along the X or Y axis, creating a parallelo-
gram. An X direction shear slides an edge along the X axis, while a Y direction
shear slides an edge along the Y axis. The amount of the shear is controlled by a
shear angle. For X direction shears, x degrees is measured relative to the Y axis,
and similarly, for Y direction shears y degrees is measured relative to the X axis.

Empty triangles left over from shearing the image are filled with the color de-
fined as background (class backgroundColor). See X(1) for details.

-silent operate silently

-size <width>x<height>{+offset} width and height of the image

Use this option to specify the width and height of raw images whose dimensions
are unknown such as GRAY, RGB, or CMYK. In addition to width and height,
use -size with an offset to skip any header information in the image or tell the
number of colors in a MAP image file, (e.g. -size 640x512+256).

For Photo CD images, choose from these sizes:

192x128
384x256
768x512
1536x1024
3072x2048

Finally, use this option to choose a particular resolution layer of a JBIG or JPEG
image (e.g. -size 1024x768).

-snaps <value> number of screen snapshots

Use this option to grab more than one image from the X server screen, to create
an animation sequence.

-solarize <factor> negate all pixels above the threshold level
Specify factor as the percent threshold of the intensity (0 - 99.9%).

This option produces a solarization effect seen when exposing a photographic
film to light during the development process.

-spread <amount> displace image pixels by a random amount

Amount defines the size of the neighborhood around each pixel to choose a can-
didate pixel to swap.

68 ImageMagick

-stegano <offset> hide watermark within an image

Use an offset to start the image hiding some number of pixels from the be-
ginning of the image. Note this offset and the image size. You will need this
information to recover the steganographic image (e.g. display -size 320x256+35
stegano:image.png).

-stereo composite two images to create a stereo anaglyph

The left side of the stereo pair is saved as the red channel of the output im-
age. The right side is saved as the green channel. Red-green stereo glasses are
required to properly view the stereo image.

-stroke <color> color to use when stroking a graphic primitive

The color is specified using the format described in the “Color Names” section
of X(1).

See -draw for further details.

-strokewidth <value> set the stroke width
See -draw for further details.

-swirl <degrees> swirl image pixels about the center
Degrees defines the tightness of the swirl.

-text_font <name> font for writing fixed-width text

Specifies the name of the preferred font to use in fixed (typewriter style) format-
ted text. The default is 14 point Courier.

You can tag a font to specify whether it is a PostScript, TrueType, or OPTION1
font. For example, Couri er.ttf is a TrueType font and x: fi xed is OP-
TIONL1.

-texture <filename> name of texture to tile onto the image background

-threshold <value> threshold the image

Create a bi-level image such that any pixel intensity that is equal or exceeds the
threshold is reassigned the maximum intensity otherwise the minimum intensity.

-tile <filename> tile image when filling a graphic primitive

19 Commandline Options 69

-tile <geometry> layout of images [montage]

-title <string> assign title to displayed image [animate, display, montage]

Use this option to assign a specific title to the image. This is assigned to the
image window and is typically displayed in the window title bar. Optionally you
can include the image filename, type, width, height, or other image attribute by
embedding special format characters:

% file size

% conment

%l directory

% fil enane extension
% filenane

%h hei ght

% i nput filenane

%K nunber of uni que colors
% | abel

%m nmagi ck

% nunmber of scenes
% output filenane
% page nunber

% guant um dept h

% scene nunber

% top of filenane
% uni que tenporary fil enane
%v width

U X resolution

%y y resolution

%t signature

\n new i ne

\r carriage return

For example,
-title "%n% %wY%"

produces an image title of M FF: bi rd. mi ff 512x480 for an image titled
bi rd. m f f and whose width is 512 and height is 480.

-transform transform the image

This option applies the transformation matrix from a previous -affine option.

convert -affine 2,2,-2,2,0,0 -transformbird. ppm bird.jpg

70 ImageMagick

-transparent <color> make this color transparent within the image

The color is specified using the format described in the “Color Names” section
of X(1).

-treedepth <value> tree depth for the color reduction algorithm

Normally, this integer value is zero or one. A zero or one tells display to choose
an optimal tree depth for the color reduction algorithm

An optimal depth generally allows the best representation of the source image
with the fastest computational speed and the least amount of memory. However,
the default depth is inappropriate for some images. To assure the best represen-
tation, try values between 2 and 8 for this parameter. Refer to quantize for more
details.

The -colors or -monochrome option is required for this option to take effect.

-trim trim an image

This option removes any edges that are exactly the same color as the corner
pixels. Use -fuzz to make -trim remove edges that are nearly the same color as
the corner pixels.

-type <type> the image type

Choose from: Bilevel, Grayscale, Palette, PaletteMatte, TrueColor, TrueCol-
orMatte, ColorSeparation, ColorSeparationMatte, or Optimize.

Normally, when a format supports different subformats such as grayscale and
truecolor, the encoder will try to choose an efficient subformat. The -type option
can be used to overrride this behavior. For example, to prevent a JPEG from
being written in grayscale format even though only gray pixels are present, use

convert bird. pgm-type TrueCol or bird.jpg

Similarly, using - t ype TrueCol or Mat t e will force the encoder to write an
alpha channel even though the image is opaque, if the output format supports
transparency.

-update <seconds> detect when image file is modified and redisplay.

Suppose that while you are displaying an image the file that is currently dis-
played is over-written. display will automatically detect that the input file has
been changed and update the displayed image accordingly.

-units <type> the type of image resolution
Choose from: Undefined, PixelsPerlInch, or PixelsPerCentimeter.

19 Commandline Options 71

-unsharp <radius>x<sigma> sharpen the image with an unsharp mask opera-
tor

Use the given radius and standard deviation (sigma).

-use_pixmap use the pixmap

-verbose print detailed information about the image

This information is printed: image scene number; image name; image size; the
image class (DirectClass or PseudoClass); the total number of unique colors;
and the number of seconds to read and transform the image. Refer to miff for a
description of the image class.

If -colors is also specified, the total unique colors in the image and color reduc-
tion error values are printed. Refer to quantize for a description of these values.

-view <string> FlashPix viewing parameters

-visual <type> animate images using this X visual type
Choose from these visual classes:

StaticG ay
GrayScal e
St ati cCol or
PseudoCol or
Tr ueCol or
Di r ect Col or
def aul t
visual id

The X server must support the visual you choose, otherwise an error occurs. If
a visual is not specified, the visual class that can display the most simultaneous
colors on the default screen is chosen.

-watermark <brightness>x<saturation>> percent brightness and saturation of
a watermark

-wave <amplitude>x<wavelength> alter an image along a sine wave
Specify amplitude and wavelength of the wave.

72 ImageMagick

-window <id> make image the background of a window

id can be a window id or name. Specify root to select X’s root window as the
target window.

By default the image is tiled onto the background of the target window. If back-
drop or -geometry are specified, the image is surrounded by the background
color. Refer to X RESOURCES for details.

The image will not display on the root window if the image has more unique col-
ors than the target window colormap allows. Use -colors to reduce the number
of colors.

-window_group specify the window group

-write <filename> write an image sequence [convert, composite]

The image sequence following the -write filenameoption is written out, and then
processing continues with the same image in its current state if there are addi-
tional options. To restore the image to its original state after writing it, use the
+write filename option.

-write <filename> write the image to a file [display]

If filename already exists, you will be prompted as to whether it should be over-
written.

By default, the image is written in the format that it was read in as. To specify
a particular image format, prefix filename with the image type and a colon (e.g.,
ps:image) or specify the image type as the filename suffix (e.g., image.ps). See
convert(1) for a list of valid image formats. Specify file as - for standard output.
If file has the extension .Z or .gz, the file size is compressed using compress
or gzip respectively. Precede the image file name with | to pipe to a system
command.

Use -compress to specify the type of image compression.

The equivalent X resource for this option is writeFilename (class WriteFile-
name). See “X Resources” in the manual page for display for details.

API Structures and
Enumerations

20.1 API Structures

AffineMatrix The members of the AffineMatrix structure are shown in the following

table:

Table20.1: Matrix Structure

Matrix Structure

Member Type Description

sX
sy
rx
ry
tx

ty

double x scale.
double y scale.
double x rotate.
double y rotate.
double x translate.
double y translate.

DrawlInfo The DrawlInfo structure is used to support annotating an image using draw-
ing commands.

The members of the DrawlInfo structure are shown in the following table. The
structure is initialized to reasonable defaults by first initializing the equivalent
members of Imagelnfo, and then initializing the entire structure using GetDraw-

Info().

73

Member
affine

border_color
box
decorate
density

fill
font
gravity

linewidth

pointsize
primitive

stroke

ImageMagick

Table20.2: Drawlnfo Structure

DrawInfo Structure

Type
AffineMatrix

PixelPacket
PixelPacket

Description

Coordinate transformation (rotation, scal-
ing, and translation).

Border color.

Text solid background color.

DecorationType Text decoration type.

char *

PixelPacket
char *
GravityType

double

double
char *

PixelPacket

stroke_antialias unsigned int

text_antialias

tile

lowing table:

unsigned int

Image *

Text rendering density in DPI (effects
scaling font according to pointsize). E.g.
“T2x72”.

Obiject internal fill (within outline) color.
Font to use when rendering text.

Text placement preference (e.g. North-
WestGravity).

Stroke (outline) drawing width in pixels.
Font size (also see density).

Space or new-line delimited list of text
drawing primitives (e.g “text 100, 100
Cockatoo”). See the table Drawing Prim-
itives for the available drawing primitives.
Obiject stroke (outline) color.

Set to True (non-zero) to obtain anti-
aliased stroke rendering.

Set to True (non-zero) to obtain anti-
aliased text rendering.

Image texture to draw with. Use an image
containing a single color (e.g. a 1x1 image)
to draw in a solid color.

Exceptioninfo The members of the ExceptionlInfo structure are shown in the fol-

20 API Structures and Enumerations 75

Table20.3: ExceptionlInfo Structure

Exceptioninfo Structure

Member Type Description

severity ExceptionType warning or error severity.
reason char * warning or error message.
description char * warning or error description.

signature unsigned long internal signature.

Framelnfo The Framelnfo structure is used to represent dimensioning information
for image frames in ImageMagick.

The members of the Framelnfo structure are shown in the following table:

Table20.4: Framelnfo Structure

Framelnfo Structure

Member Type Description
width unsigned long width.
height unsigned long height.
X long X.
long :
inner_bevel long Inner bevel thickness.
outer_bevel long Outer bevel thickness.

Image The Image structure represents an ImageMagick image. It is initially allocated
by Allocatelmage() and deallocated by Destroylmage(). The functions Read-
Image(), ReadImages(), BlobTolmage() and Createlmage() return a new image.
Use Clonelmage() to copy an image. An image consists of a structure containing
image attributes as well as the image pixels.

The image pixels are represented by the structure PixelPacket and are cached
in-memory, or on disk, depending on the cache threshold setting. This cache
is known as the “pixel cache”. Pixels in the cache may not be edited directly.
They must first be made visible from the cache via a pixel view. A pixel view
is a rectangular view of the pixels as defined by a starting coordinate, and a

76

ImageMagick

number of rows and columns. When considering the varying abilities of multiple
platforms, the most reliably efficient pixel view is comprized of part, or all, of
one image row.

There are three means of accessing pixel views. When using the default view,
the pixels are made visible and accessable by using the AcquirelmagePixels()
method which provides access to a specified region of the image. If you intend
to change any of the pixel values, use GetlmagePixels(). After the view has been
updated, the pixels may be saved back to the cache in their original positions via
SyncimagePixels(). In order to create an image with new contents, or to blindly
overwrite existing contents, the method SetlmagePixels() is used to reserve a
pixel view corresponding to a region in the pixel cache. Once the pixel view
has been updated, it may be written to the cache via SynclmagePixels(). The
function GetIndexes() provides access to the image colormap, represented as an
array of type IndexPacket.

A more flexible interface to the image pixels is via the CacheView interface.
This interface supports multiple pixel cache views (limited by the number of
image rows), each of which are identified by a handle (of type ViewlInfo*). Use
OpenCacheView() to obtain a new cache view, CloseCacheView() to discard a
cache view, GetCacheView() to access an existing pixel region, SetCacheView()
to define a new pixel region, and SyncCacheView() to save the updated pixel
region. The function GetCacheViewlIndexes() provides access to the colormap
indexes associated with the pixel view.

When writing encoders and decoders for new image formats, it is convenient
to have a high-level interface available which supports converting between ex-
ternal pixel representations and ImageMagick’s own representation. Pixel com-
ponents (red, green, blue, opacity, RGB, or RGBA) may be transferred from
a user-supplied buffer into the default view by using PushimagePixels(). Pixel
components may be transferred from the default view into a user-supplied buffer
by using PoplmagePixels(). Use of this high-level interface helps protect image
coders from changes to ImageMagick’s pixel representation and simplifies the
implementation.

The members of the Image structure are shown in the following table:

20 API Structures and Enumerations

Member
attributes

77

Table20.5: Image Structure

Image Structure

Type
ImageAttribute *

background_color PixelPacket

blob

blur
border_color
cache
chromaticity
client_data

clip_mask
color_profile

colormap
colors

colorspace

columns

Bloblnfo *
double
PixelPacket

void *
Chromaticitylnfo
void *

Image *
Profilelnfo

PixelPacket
unsigned long

ColorspaceType

unsigned long

Description

Image attribute list. Consists of a
doubly-linked-list of ImageAttribute
structures, each of which has an asso-
ciated key and value. Access/update
list via SetlmageAttribute() and Getlm-
ageAttribute(). Key-strings used by
ImageMagick include “Comment”
(image comment), “Label” (image
label), and “Signature” (image signa-
ture). Key-strings used internally by
ImageMagick are enclosed in square
brackets.

Image background color.

The blob from which image data is read
or written.

Blur factor to apply to the image when
zooming.

Image border color.

Image cache.

Red, green, blue, and white-point chro-
maticity values.

Data used by the encoder or decoder.
Image used as a clipping mask.

ICC color profile. Specifications are
available from the International Color
Consortium for the format of ICC color
profiles.

PseudoColor palette array.

The desired number of colors. Used by
Quantizelmage().

Image pixel interpretation.If the col-
orspace is RGB the pixels are red, green,
blue. If matte is true, then red, green,
blue, and index. If it is CMYK, the pix-
els are cyan, yellow, magenta, black.
Otherwise the colorspace is ignored.
Image width.

78

Member
comments
compose
compression

delay

depth
directory

dispose

exception
exempt
endian
filename

filesize
filter

ImageMagick

Image Structure (continued)

Type
char *

CompositeOperator
CompressionType

unsigned long

unsigned long
char *

unsigned long

Exceptioninfo
unsigned int

EndianType

Description

Image comments.

Composite operator.

Image compression type. The default is
the compression type of the specified
image file.

Time in 1/100ths of a second (0 to
65535) which must expire before dis-
playing the next image in an animated
sequence. This option is useful for reg-
ulating the animation of a sequence of
GIF images within Netscape.

Image depth (8 or 16).

Tile names from within an image mon-
tage. Only valid after calling Mon-
tagelmages() or reading a MIFF file
which contains a directory.

GIF disposal method. This option is
used to control how successive frames
are rendered (how the preceding frame
is disposed of) when creating a GIF an-
imation.

Record of any error which occurred
when updating image.

Specifies whether image’s file is exempt
from being closed by CloseBlob().
Specifies the endianness of the output
image.

char[MaxTextExtent] Image file name to read or write.

long int
FilterTypes

Number of bytes of the encoded file.
Filter to use when resizing image. The
reduction filter employed has a signif-
icant effect on the time required to re-
size an image and the resulting quality.
The default filter is Lanczos which has
been shown to produce high quality re-
sults when reducing most images.

20 API Structures and Enumerations

Member
fuzz

gamma

generic_profiles
generic_profile
geometry

gravity
interlace

iptc_profile

iterations

79

Image Structure (continued)

Type
double

double

unsigned long
ProfileInfo *
char *

GravityType
InterlaceType

Profilelnfo

unsigned long

Description

Colors within this distance are consid-
ered equal. A number of algorithms
search for a target color. By default the
color must be exact. Use this option to
match colors that are close to the target
color in RGB space.

Gamma level of the image. The same
color image displayed on two differ-
ent workstations may look different due
to differences in the display monitor.
Use gamma correction to adjust for this
color difference.

Number of generic profiles.

List of generic profiles.

Preferred size and location of the im-
age when encoding. Positive offsets are
measured downward and to the right of
the upper left corner. Negative offsets
are measured leftward or upward from
the right edge or bottom edge.

Image gravity.

The type of interlacing scheme (de-
fault Nolnterlace). This option is used
to specify the type of interlacing
scheme for raw image formats such as
RGB or YUV. Nolnterlace means do
not interlace, Linelnterlace uses scan-
line interlacing, and Planelnterlace uses
plane interlacing. Partitioninterlace is
like Planelnterlace except the different
planes are saved to individual files (e.g.
image.R, image.G, and image.B). Use
Linelnterlace or Planelnterlace to create
an interlaced GIF or progressive JPEG
image.

IPTC profile. Specifications are avail-
able from the International Press
Telecommunications Council for IPTC
profiles.

Number of iterations to loop an anima-
tion (e.g. Netscape loop extension) for.

80

Member

list

magick
magick_columns
magick_filename
magick_rows
matte

matte_color

mean_error_
_per_pixel

montage

next
normalized._
_maximum_error

normalized._
_mean_error

offset

orphan
page

ImageMagick

Image Structure (continued)

Type
Image *

Description
Undo image list (used only by ‘display’)

char[MaxTextExtent] Image encoding format (e.g. “GIF”).

unsigned long

Base image width (before transforma-
tions)

char[MaxTextExtent] Base image filename (before transfor-

unsigned long
unsigned int
PixelPacket

double

char *

Image *
double

double

long

Rectanglelnfo

mations)

Base image height (before transforma-
tions)

If non-zero, then the index member of
pixels represents the alpha channel.
Image matte (transparent) color

The mean error per pixel computed
when an image is color reduced. This
parameter is only valid if verbose is set
to True and the image has just been
quantized.

Tile size and offset within an image
montage. Only valid for montage im-
ages.

Next image frame in sequence

The normalized max error per pixel
computed when an image is color re-
duced. This parameter is only valid if
verbose is set to true and the image has
just been quantized.

The normalized mean error per pixel
computed when an image is color re-
duced. This parameter is only valid if
verbose is set to True and the image has
just been quantized.

Number of initial bytes to skip over
when reading raw image.

[Deprecated].

size of Postscript page and offsets. Off-
sets are measured from the upper left
corner of the page, regardless of their
sign.

Member
pipet

pixels

previous
reference_count
rendering_intent
rows

scene
semaphore
signature

start_loop

status
storage_class

taint

temporary
tile_info

timer

20 API Structures and Enumerations

81

Image Structure (continued)

Type
unsigned int

PixelPacket

Image *

long
Renderinglntent
unsigned long
unsigned long
Semaphorelnfo
unsigned long

ClassType

unsigned int
ClassType

int

unsigned int
Rectanglelnfo

TimerInfo

Description

Set to True if image is read/written
from/to a POSIX pipe. To read from (or
write to) an open pipe, set this mem-
ber to True, set the file member to a
stdio stream representing the pipe (ob-
tained from popen()), and invoke Read-
Image(), Writelmage(). The pipe is au-
tomatically closed via pclose() when the
operation completes.

Image pixels retrieved via GetPixel-
Cache() or initialized via SetPixel-
Cache().

Previous image frame in sequence.
Reference count.

The type of rendering intent.

Image height.

Image frame scene number.
Semaphore.

Internal signature used for checking in-
tegrity. Note: this is different from the
SHA signature reported by “identify”.
Marks first image to be displayed in a
loop.

Return code.

Image storage class. If DirectClass then
the image packets contain valid RGB
or CMYK colors. If PseudoClass then
the image has a colormap referenced by
pixel’s index member.

Set to non-zero (True) if the image pix-
els have been modified.

True if image is temporary?.

Describes a tile within an image. For ex-
ample, if your images is 640x480 you
may only want 320x256 with an offset
of +128+64. It is used for raw formats
such as RGB and CMYK as well as for
TIFF.

Support for measuring actual (user +
system) and elapsed execution time.

82

ImageMagick

Image Structure (continued)

Member Type Description

total_colors unsigned long The number of colors in the image after
Quantizelmage(), or Quantizelmages()
if the verbose flag was set before the
call. Calculated by GetNumberColors().

units ResolutionType Units of image resolution
x_resolution double Horizontal resolution of the image.
y_resolution double Vertical resolution of the image

ImageAttribute The ImageAttribute structure is used to add arbitary textual at-

tributes to an image. Each attribute has an associated key and value. Add new
attributes, or update an existing attribute, via SetimageAttribute() and obtain the
value of an existing attribute via GetlmageAttribute(). Key-strings used by Im-
ageMagick include “Comment” (image comment), “Label” (image label), and
“Signature” (image signature).

The members of the ImageAttribute structure are shown in the following table:

Table20.6: ImageAttribute Structure

ImageAttribute Structure

Member Type Description

key char * key.

value char * value.

compression unsigned int compression.

next ImageAttribute * next attribute in list.

previous ImageAttribute * previous attribute in list.

Imagelnfo The Imagelnfo structure is used to supply option information to the meth-

ods Allocatelmage(), Animatelmages(), BlobTolmage(), CloneAnnotatelnfo(),
Displaylmages(), GetAnnotatelnfo(), ImageToBlob(), Pinglmage(), Readlmage(),
Readlmages(), and, Writelmage(). These methods update information in Image-
Info to reflect attributes of the current image.

Use Clonelmagelnfo() to duplicate an existing Imagelnfo structure or allocate a
new one. Use Destroylmagelnfo() to deallocate memory associated with an Im-
agelnfo structure. Use Getlmagelnfo() to initialize an existing Imagelnfo struc-

20 API Structures and Enumerations

83

ture. Use Setimagelnfo() to set image type information in the Imagelnfo struc-
ture based on an existing image.

The members of the Imagelnfo structure are shown in the following table:

Member
adjoin
antialias

Table20.7: Imagelnfo Structure

Imagelnfo Structure

Type
unsigned int
unsigned int

background_color PixelPacket

border_color
box

colorspace

compression

delay

density

depth
dispose

PixelPacket
char *

ColorspaceType

CompressionType

char *

char *

unsigned long
char *

Description

Join images into a single multi-image file.
Control antialiasing of rendered graphic
primitives and text fonts.

Image background color.

Image border color.

Base color that annotation text is ren-
dered on.

Image pixel interpretation. If the col-
orspace is RGB the pixels are red, green,
blue. If matte is true, then red, green,
blue, and index. If it is CMYK, the pixels
are cyan, yellow, magenta, black. Other-
wise the colorspace is ignored.

Image compression type. The default is
the compression type of the specified im-
age file.

Time in 1/100ths of a second (0 to 65535)
which must expire before displaying the
next image in an animated sequence. This
option is useful for regulating the anima-
tion of a sequence of GIF images within
Netscape.

Vertical and horizontal resolution in pix-
els of the image. This option speci-
fies an image density when decoding a
Postscript or Portable Document page.
Often used with page.

Image depth (8 or 16).

GIF disposal method. This option is used
to control how successive frames are ren-
dered (how the preceding frame is dis-
posed of) when creating a GIF animation.

84

Member
dither

endian

fifo

file

filename
fill
font

fuzz

ImageMagick

Imagelnfo Structure (continued)

Type
unsigned int

EndianType
int*

FILE*

Description

Apply Floyd/Steinberg error diffusion to
the image. The basic strategy of dithering
is to trade intensity resolution for spatial
resolution by averaging the intensities of
several neighboring pixels. Images which
suffer from severe contouring when re-
ducing colors can be improved with this
option. The colors or monochrome option
must be set for this option to take effect.
Specify the endianness of the output im-
age.

(const Image *, const void *, const size_t)
fifo used for the image 1/0.

Stdio stream to read image from or write
image to. If set, ImageMagick will read
from or write to the stream rather than
opening a file. Used by Readlmage() and
Writelmage(). The stream is closed when
the operation completes.

char[MaxTextExtent] Image file name to read or write.

PixelPacket
char *

int

Drawing object fill color.

Text rendering font. If the font is a fully
qualified X server font name, the font
is obtained from an X server. To use a
TrueType font, precede the TrueType file-
name with an @. Otherwise, specify a
Postscript font name (e.g. “helvetica”).
Colors within this distance are considered
equal. A number of algorithms search for
a target color. By default the color must
be exact. Use this option to match colors
that are close to the target color in RGB
space.

Member
interlace

iterations
linewidth

magick
matte_color
monochrome
page

ping

pointsize
preview_type

quality

sampling_factor

server_name

20 API Structures and Enumerations

85

Imagelnfo Structure (continued)

Type
InterlaceType

char *

unsigned long

Description

The type of interlacing scheme (default
Nolnterlace). This option is used to spec-
ify the type of interlacing scheme for
raw image formats such as RGB or
YUV. Nolnterlace means do not inter-
lace, Linelnterlace uses scanline interlac-
ing, and Planelnterlace uses plane inter-
lacing. Partitionlnterlace is like Planeln-
terlace except the different planes are
saved to individual files (e.g. image.R,
image.G, and image.B). Use Linelnter-
lace or Planelinterlace to create an inter-
laced GIF or progressive JPEG image.
Number of iterations to loop an animation
(e.g. Netscape loop extension) for.

Line width for drawing lines, circles, el-
lipses, etc.

char[MaxTextExtent] Image encoding format (e.g. “GIF”).

PixelPacket
unsigned int
char *

unsigned int

double
PreviewType

unsigned long
char *

char *

Image matte (transparent) color.
Transform the image to black and white.
Equivalent size of Postscript page.

Set to True to read enough of the image to
determine the image columns, rows, and
filesize. The columns, rows, and size at-
tributes are valid after invoking Readlm-
age() while ping is set. The image data
is not valid after calling Readlmage() if
ping is set.

Text rendering font point size.

Image manipulation preview option.
Used by “display’.
JPEG/MIFF/MNG/PNG
level (default 75).
Sampling factor for the chroma channels
in JPEG, MPEG-2, or YUV datastreams.
X11 display to display to obtain fonts
from, or to capture image from.

compression

86

ImageMagick

Imagelnfo Structure (continued)

Member Type Description

size char * Width and height of a raw image (an im-
age which does not support width and
height information). Size may also be
used to affect the image size read from
a multi-resolution format (e.g. Photo CD,
JBIG, or JPEG.

stroke PixelPacket Drawing object outline color.

subimage unsigned long Subimage of an image sequence.

subrange unsigned long Number of images relative to the base im-
age.

texture char * Image filename to use as background tex-
ture.

tile char * Tile name.

units ResolutionType Units of image resolution.

verbose unsigned int Print detailed information about the im-
age if True.

view char * FlashPix viewing parameters.

Magickinfo The Magicklnfo structure is used by ImageMagick to register support

for an Image format. The MagickInfo structure is allocated with default param-
eters by calling SetMagickInfo(). Image formats are registered by calling Regis-
terMagickInfo() which adds the initial structure to a linked list (at which point it
is owned by the list). A pointer to the structure describing a format may be ob-
tained by calling GetMagicklInfo(). Pass the argument NULL to obtain the first
member of this list. A human-readable list of registered image formats may be
printed to a file descriptor by calling ListMagickInfo().

Support for formats may be provided as a module which is part of the Im-
ageMagick library, provided by a module which is loaded dynamically at run-
time, or directly by the linked program. Users of ImageMagick will normally
want to create a loadable-module, or support encode/decode of an image format
directly from within their program.

Member
adjoin

blob_support

client_data

decoder

description

encoder

magick

module
name
next
previous
raw

signature

stealth

20 API Structures and Enumerations

87

Table20.8: MagickInfo Structure

Type
unsigned int

unsigned int

void *

Image *

const char *

unsigned int

const char *

const char *
const char *
Magickinfo
MagicklInfo

unsigned int

MagickInfo Structure

Description

Set to non-zero (True) if this file format supports
multi-frame images.

Set to non-zero (True) if the encoder and de-
coder for this format supports operating arbitrary
BLOBs (rather than only disk files).

User specified data. A way to pass any sort of
data structure to the endoder/decoder. To set this,
GetMagicklInfo() must be called to first obtain a
pointer to the registered structure since it can not
be set via a RegisterMagickInfo() parameter.
(*decoder)(const Imagelnfo *)

Pointer to a function to decode image data and re-
turn ImageMagick Image.

Long form image format description (e.g. “Com-
puServe graphics interchange format™).
(*encoder)(const Imagelnfo, Image *)

Pointer to a function to encode image data with
options passed via Imagelnfo and image repre-
sented by Image.

(const unsigned char *,const size_t)

Pointer to a function that returns True if it recog-
nizes this format in the supplied string, otherwise
False.

Name of module (e.g. “GIF”) which registered
this format. Set to NULL if format is not regis-
tered by a module.

Name (e.g. “GIF”) of this format.

Next Magickinfo struct in linked-list. NULL if
none.

Previous Magicklnfo struct in linked-list. NULL
if none.

Image format does not contain size (must be spec-
ified in Imagelnfo)

unsigned long Signature (Oxabacadab) used internally by Im-

unsigned int

ageMagick to determine integrity of the image
structure.
Image format does not get listed.

88

ImageMagick

Magicklnfo Structure (continued)

Member Type Description

thread_support unsigned int Set to non-zero (True) if the encoder and decoder
are thread safe.

version const char * Version of the module used to process this image
format.

Montagelnfo Montage info.

Table20.9: Montagelnfo Structure

Montagelnfo Structure

Member Type Description
background_color PixelPacket background color.
border_color PixelPacket border color.
border_width unsigned long border width.
filename[MaxTextExtent] char filename.

fill PixelPacket fill color.

frame char * geometry of frame.
font char * font.

geometry char * geometry of each tile.
gravity GravityType gravity of tiles.
matte_color PixelPacket matte color.

pointsize double point size for text.
shadow unsigned int shadow (True or False)
signature unsigned long internal signature.
stroke PixelPacket stroke color for text.
texture char * texture.

tile char * geometry of tile layout.
title char * title.

PixelPacket The PixelPacket structure is used to represent DirectClass color pixels

in ImageMagick. If the image is indicated as a PseudoClass image, its Direct-
Class representation is only valid immediately after calling Syncimage(). If an
image is set as PseudoClass and the DirectClass representation is modified, the
image should then be set as DirectClass. Use Quantizelmage() to restore the
PseudoClass colormap if the DirectClass representation is modified.

20 API Structures and Enumerations 89

The members of the PixelPacket structure are shown in the following table:

Table20.10: PixelPacket Structure

PixelPacket Structure

Member Type Description

red Quantum red.

green Quantum green.

blue Quantum blue.

opacity Quantum opacity (0 is fully opaque).

ProfileiInfo The Profilelnfo structure is used to represent ICC, IPCT, and generic
profiles in ImageMagick (stored as an opaque BLOB).

The members of the Profilelnfo structure are shown in the following table:

Table20.11: Profilelnfo Structure

Profilelnfo Structure

Member Type Description
length unsigned int length.

info unsigned char * data.

name char * profile name.

Rectangleinfo The Rectanglelnfo structure is used to represent positioning infor-
mation in ImageMagick.

The members of the Rectanglelnfo structure are shown in the following table:

90

Table20.12: Rectanglelnfo Structure

Rectanglelnfo Structure

Member Type Description
width unsigned long width.
height unsigned long height.

X long X.

y long V.

Segmentinfo Segment info.

Table20.13: Segmentinfo Structure

Segmentinfo Structure

Member Type Description

x1 double x1.
yl double y1.
X2 double x2.
y2 double y2.

Timer Timer data.

Table20.14: Timer Structure

Timer Structure

Member Type Description
start double start time.
stop double stop time.
total double total time.

ImageMagick

20 API Structures and Enumerations

TimerIinfo Timer info.

Table20.15: TimerInfo Structure

TimerlInfo Structure

Member Type Description
user Timer user time.
elapsed Timer elapsed time.

state TimerState timer state.
signature unsigned long internal signature.

20.2 API Enumerations

AlignType The type of text alignment.
Table20.16: AlignType Enumeration

AlignType Enumeration

Enumeration Description
UndefinedAlign Undefined alignment.
LeftAlign Left alignment.
RightAlign Right alignment.
CenterAlign Center alignment.

CacheType The cache type.

91

92 ImageMagick

Table20.17: CacheType Enumeration

CacheType Enumeration

Enumeration Description
UndefinedCache Undefined cache type.
MemoryCache Memory cache type.
DiskCache Disk cache type.

MemoryMappedCache Memory mapped cache type.

ChannelType ChannelType is used as an argument when doing color separations.
Use ChannelType when extracting a channel from an image. MatteChannel is
useful for extracting the opacity values from an image.

Table20.18: ChannelType Enumeration

ChannelType Enumeration

Enumeration Description
UndefinedChannel Unset value.

RedChannel Select red channel.

GreenChannel Select green channel.

BlueChannel Select blue channel.

MatteChannel Select matte (opacity values) channel.

ClassType ClassType specifies the image storage class.

Table20.19: ClassType Enumeration

ClassType Enumeration

Enumeration Description
UndefinedClass Unset value.

20 API Structures and Enumerations 93

ClassType Enumeration (continued)

Enumeration Description

DirectClass Image is composed of pixels which represent literal color values.
PseudoClass Image is composed of pixels which specify an index in a color
palette.

ClipPathUnits ClassType specifies the units used in clipping paths.

Table20.20: ClipPathUnits Enumeration

ClipPathUnits Enumeration

Enumeration Description
UserSpace User space.
UserSpaceOnUse User space on use.
ObjectBoundingBox Object bounding box.

ColorspaceType The ColorspaceType enumeration is used to specify the colorspace
that quantization (color reduction and mapping) is done under or to specify the
colorspace when encoding an output image. Colorspaces are ways of describing
colors to fit the requirements of a particular application (e.g. Television, offset
printing, color monitors). Color reduction, by default, takes place in the RGB-
Colorspace. Empirical evidence suggests that distances in color spaces such as
YUVColorspace or YIQColorspace correspond to perceptual color differences
more closely han do distances in RGB space. These color spaces may give better
results when color reducing an image. Refer to quantize for more details.

When encoding an output image, the colorspaces RGBColorspace, CMYKCol-
orspace, and GRAY Colorspace may be specified. The CMYKColorspace op-
tion is only applicable when writing TIFF, JPEG, and Adobe Photoshop bitmap
(PSD) files.

94 ImageMagick

Table20.21: ColorspaceType Enumeration

ColorspaceType Enumeration

Enumeration Description
UndefinedColorspace Unset value.
RGBColorspace Red-Green-Blue colorspace.
GRAY Colorspace

TransparentColorspace The Transparent color space behaves uniquely in that
it preserves the matte channel of the image if it exists.

OHTAColorspace

XYZColorspace

YCbCrColorspace

YCCColorspace

YIQColorspace

YPbPrColorspace

YUVColorspace Y-signal, U-signal, and V-signal colorspace. YUV is
most widely used to encode color for use in television
transmission.

CMYKColorspace Cyan-Magenta-Yellow-Black colorspace. CYMK is
a subtractive color system used by printers and pho-
tographers for the rendering of colors with ink or
emulsion, normally on a white surface.

sRGBColorspace

ComplianceType ComplianceType specifies the system used for relating color
names to values.

Table20.22: ComplianceType Enumeration

ComplianceType Enumeration

Enumeration Description
UndefinedCompliance Undefine compliance.
SVGCompliance SVG compliance.
X11Compliance X11 compliance.
XPMCompliance XPM compliance.

20 API Structures and Enumerations

95

CompositeOperator CompositeOperator is used to select the image composition
algorithm used to compose a composite image with an image. By default, each
of the composite mage pixels are replaced by the corresponding image tile pixel.
Specify CompositeOperator to select a different algorithm.

Table20.23: CompositeOperator Enumeration

CompositeOperator Enumeration

Enumeration
UndefinedCompositeOp
OverCompositeOp

InCompositeOp

OutCompositeOp

AtopCompositeOp

XorCompositeOp

PlusCompositeOp

MinusCompositeOp

AddCompositeOp

SubtractCompositeOp

Description

Unset value.

The result is the union of the the two image
shapes with the composite image obscuring im-
age in the region of overlap.

The result is a simply composite image cut by
the shape of image. None of the image data of
image is included in the result.

The resulting image is composite image with
the shape of image cut out.

The result is the same shape as image image,
with composite image obscuring image there
the image shapes overlap. Note that this differs
from OverCompositeOp because the portion of
composite image outside of image’s shape does
not appear in the result.

The result is the image data from both compos-
ite image and image that is outside the overlap
region. The overlap region will be blank.

The result is just the sum of the image data.
Output values are cropped to 255 (no over-
flow). This operation is independent of the
matte channels.

The result of composite image - image, with
overflow cropped to zero. The matte chanel is
ignored (set to 255, full coverage).

The result of composite image + image, with
overflow wrapping around (mod 256).

The result of composite image - image, with
underflow wrapping around (mod 256). The
add and subtract operators can be used to per-
form reverible transformations.

96 ImageMagick

CompositeOperator Enumeration (continued)

Enumeration Description
DifferenceCompositeOp The result of abs (composite image - image).
This is useful for comparing two very similar

images.

MultiplyCompositeOp The result of image multiplied by composite
image.

BumpmapCompositeOp The result of image shaded by composite im-
age.

CopyCompositeOp The resulting image is image replaced with
composite image. Here the matte information
is ignored.

CopyRedCompositeOp The resulting image is the red channel in image
replaced with the red channel in composite im-
age. The other channels are copied untouched.

CopyGreenCompositeOp The resulting image is the green channel in im-
age replaced with the green channel in compos-
ite image. The other channels are copied un-
touched.

CopyBlueCompositeOp The resulting image is the blue channel in im-
age replaced with the blue channel in compos-
ite image. The other channels are copied un-
touched.

CopyOpacityCompositeOp The resulting image is the opacity channel
in image replaced with the opacity channel
in composite image. The other channels are
copied untouched. The image compositor re-
quires a matte, or opacity channel in the image
for some operations. This extra channel usu-
ally defines a mask which represents a sort of
a cookie-cutter for the image. This is the case
when matte is 255 (full coverage) for pixels in-
side the shape, zero outside, and between zero
and 255 on the boundary. For certain opera-
tions, if image does not have a matte channel,
it is initialized with 0 for any pixel matching in
color to pixel location (0, 0), otherwise 255 (to
work properly borderWidth must be 0).

CompressionType CompressionType is used to express the desired compression
type when encoding an image. Be aware that most image types only support a
sub-set of the available compression types. If the compression type specified is

20 API Structures and Enumerations 97

incompatable with the image, ImageMagick selects a compression type compat-
able with the image type.

Table20.24: CompressionType Enumeration

CompressionType Enumeration

Enumeration Description

UndefinedCompression Unset value.

NoCompression No compression.

BZipCompression BZip (Burrows-Wheeler block-sorting text

compression algorithm and Huffman cod-
ing) as used by bzip2 utilities.

FaxCompression CCITT Group 3 FAX compression.
Group4Compression CCITT Group 4 FAX compression (used
only for TIFF).
JPEGCompression JPEG compression.
LosslessIPEGCompression Lossless JPEG compression.
LZWCompression Lempel-Ziv-Welch (LZW) compression.
RunlengthEncodedCompression Run-Length encoded (RLE) compression.
ZipCompression Lempel-Ziv compression (LZ77) as used

in PKZIP and GNU gzip.

DecorationType Types of text decoration.

Table20.25: DecorationType Enumeration

DecorationType Enumeration

Enumeration Description
NoDecoration No decoration.
UnderlineDecoration Underline decoration.
OverlineDecoration Overline decoration.
LineThroughDecoration LineThrough decoration.

EndianType EndianType specifies the “endianness” of the output file, when the
format supports different endian types.

98 ImageMagick

Table20.26: EndianType Enumeration

EndianType Enumeration

Enumeration Description
UndefinedEndian Unset value.

LSBEndian LSB First (Little Endian)
MSBEnNdian MSB First (Big endian)

ExceptionType Exception types.

Table20.27: ExceptionType Enumeration

ExceptionType Enumeration

Enumeration
UndefinedException
ResourceLimitWarning
TypeWarning
OptionWarning
DelegateWarning

Description

Undefined exception.
Resource limit warning.
Type warning.

Option warning.
Delegate warning.

MissingDelegateWarning Missing delegate warning.

CorruptimageWarning
FileOpenWarning
BlobWarning
StreamWarning
CacheWarning
XServerWarning
RegistryWarning
ConfigurationWarning
FatalException
ResourceLimitError
TypeError
OptionError
DelegateError
MissingDelegateError
CorruptimageError
FileOpenError

Corrupt image warning.
File open warning.
Blob warning.

Stream warning.
Cache warning.

X server warning.
Registry warning.
Configuration warning.
Fatal exception.
Resource limit error.
Type error.

Option error.

Delegate error.
Missing delegate error.
Corrupt image error.
File open error.

20 API Structures and Enumerations 99

ExceptionType Enumeration (continued)

Enumeration Description
BlobError Blob error.
StreamError Stream error.
CacheError Cache error.
XServerError X server error.
RegistryError Registry error.
ConfigurationError Configuration error.

FillRule Types of fill rules.

Table20.28: FillRule Enumeration

FillRule Enumeration

Enumeration Description
UndefinedRule Undefined fill rule.
EvenOddRule Even-odd fill rule.
NonZeroRule Nonzero fill rule.

FilterTypes FilterTypes is used to adjust the filter algorithm used when resizing im-
ages. Different filters experience varying degrees of success with various images
and can take signicantly different amounts of processing time. ImageMagick
uses the Lanczos filter by default since this filter has been shown to provide the
best results for most images in a reasonable amount of time. Other filter types
(e.g. TriangleFilter) may execute much faster but may show artifacts when the
image is re-sized or around diagonal lines. The only way to be sure is to test the
filter with sample images.

100

Enumeration

Table20.29: FilterTypes Enumeration

FilterTypes Enumeration

Description

UndefinedFilter Unset value.

PointFilter
BoxFilter
TriangleFilter
HermiteFilter
HanningFilter
HammingFilter
BlackmanFilter
GaussianFilter
QuadraticFilter

Point Filter

Box Filter
Triangle Filter
Hermite Filter
Hanning Filter
Hamming Filter
Blackman Filter
Gaussian Filter
Quadratic Filter

ImageMagick

CubicFilter Cubic Filter
CatromFilter Catrom Filter
MitchellFilter Mitchell Filter
LanczosFilter Lanczos Filter
BesselFilter Bessel Filter
SincFilter Sinc Filter

GeometryFlags Flags that are set depending on what is found while parsing a ge-
ometry string.

Table20.30: GeometryFlags Enumeration

GeometryFlags Enumeration

Enumeration Description

NoValue No value was found.

XValue An “x” value was found.

Y Value A “y” value was found.
WidthValue A “width” value was found.
HeightValue A “height” value was found.
AllValues All four values were found.
XNegative A negative “x” value was found.

YNegative A negative “y” value was found.

20 API Structures and Enumerations 101

GeometryFlags Enumeration (continued)

Enumeration Description

PercentValue A percent sign was found.
AspectValue An exclamation point was not found.
LessValue A “<” symbol was found.
GreaterValue A “>” symbol was found.
AreaValue An“@” symbol was found.

GravityType GravityType specifies positioning of an object (e.g. text, image) within
a bounding region (e.g. an image). Gravity provides a convenient way to locate
objects irrespective of the size of the bounding region, in other words, you don’t
need to provide absolute coordinates in order to position an object. A common
default for gravity is NorthWestGravity.

Table20.31: Gravity Type Enumeration

GravityType Enumeration

Enumeration Description
ForgetGravity Don’t use gravity.
NorthWestGravity Position object at top-left of region.

NorthGravity Postiion object at top-center of region.
NorthEastGravity Position object at top-right of region.
WestGravity Position object at left-center of region.
CenterGravity Position object at center of region.
EastGravity Position object at right-center of region.
SouthWestGravity Position object at left-bottom of region.
SouthGravity Position object at bottom-center of region.

SouthEastGravity Position object at bottom-right of region.

ImageType ImageType indicates the type classification of the image.

102 ImageMagick

Table20.32: ImageType Enumeration

ImageType Enumeration

Enumeration Description

UndefinedType Unset value.

Bilevel Type Monochrome image.

GrayscaleType Grayscale image.

Palette Type Indexed color (palette) image.
PaletteMatte Type Indexed color (palette) image with opacity.
TrueColorType Truecolor image.

TrueColorMatteType Truecolor image with opacity.
ColorSeparationType Cyan/Yellow/Magenta/Black (CYMK) image.

InterlaceType InterlaceType specifies the ordering of the red, green, and blue pixel
information in the image. Interlacing is usually used to make image information
available to the user faster by taking advantage of the space vs time tradeoff.
For example, interlacing allows images on the Web to be recognizable sooner
and satellite images to accumulate/render with image resolution increasing over

time.
Use Linelnterlace or Planelnterlace to create an interlaced GIF or progressive
JPEG image.
Table20.33: Interlace Type Enumeration
Interlace Type Enumeration

Enumeration Description

UndefinedInterlace Unset value.

Nolnterlace RGBRGBRGBRGBRGBRGB... (Don’t interlace im-

age).

Linelnterlace RRR...GGG...BBB...RRR...GGG...BBB... (Use scan-
line interlacing).

Planelnterlace RRRRRR...GGGGGG...BBBBBB... (Use plane inter-
lacing).

PartitionInterlace Similar to plane interlacing except that the different
planes are saved to individual files (e.g. image.R, im-
age.G, and image.B).

20 API Structures and Enumerations

LineCap Types of line caps.

Table20.34: LineCap Enumeration

LineCap Enumeration

Enumeration Description
UndefinedCap Undefined cap.
ButtCap Butt cap.
RoundCap Round cap.
SquareCap Square cap.

LineJoin Types of line joining.

Table20.35: LineJoin Enumeration

LineJoin Enumeration

Enumeration Description
UndefinedJoin Undefined line join method.
MiterJoin Miter line join method.
RoundJoin Round line join method.
BevelJoin Bevel line join method.

MagicMethod Magic methods.

Table20.36: MagicMethod Enumeration

MagicMethod Enumeration

Enumeration Description
UndefinedMagicMethod Undefined magic method.
StringMagicMethod String magic method.

103

104 ImageMagick

MapMode Map modes.

Table20.37: MapMode Enumeration

MapMode Enumeration

Enumeration Description
ReadMode Read map mode.
WriteMode Write map mode.
I0OMod 1/0 map mode.

MontageMode Montage modes.

Table20.38: MontageMode Enumeration

MontageMode Enumeration

Enumeration Description
UndefinedMode Undefined montage mode.
FrameMode Frame montage mode.
UnframeMode Unframe montage mode.
ConcatenateMode Concatenate montage mode.

NoiseType NoiseType is used as an argument to select the type of noise to be added

to the image.
Table20.39: NoiseType Enumeration
NoiseType Enumeration
Enumeration Description
UniformNoise Uniform noise.

GaussianNoise Gaussian noise.

20 API Structures and Enumerations 105

NoiseType Enumeration (continued)

Enumeration Description
MultiplicativeGaussianNoise Multiplicative Gaussian noise.
ImpulseNoise Impulse noise.
LaplacianNoise Laplacian noise.
PoissonNoise Poisson noise.

PaintMethod PaintMethod specifies how pixel colors are to be replaced in the im-
age. It is used to select the pixel-filling algorithm employed.

Table20.40: PaintMethod Enumeration

PaintMethod Enumeration

Enumeration Description

PointMethod Replace pixel color at point.

ReplaceMethod Replace color for all image pixels matching color at
point.

FloodfillMethod Replace color for pixels surrounding point until en-
countering pixel that fails to match color at point.

FillToBorderMethod Replace color for pixels surrounding point until en-
countering pixels matching border color.

ResetMethod Replace colors for all pixels in image with pen
color.

PreviewType Preview types.

Table20.41: PreviewType Enumeration

PreviewType Enumeration

Enumeration Description
UndefinedPreview Undefined Preview.
RotatePreview Preview of Rotate effect

106

Enumeration
ShearPreview
RollPreview
HuePreview
SaturationPreview
BrightnessPreview
GammaPreview
SpiffPreview
DullPreview
GrayscalePreview
QuantizePreview
DespecklePreview
ReduceNoisePreview
AddNoisePreview
SharpenPreview
BlurPreview
ThresholdPreview
EdgeDetectPreview
SpreadPreview
SolarizePreview
ShadePreview
RaisePreview
SegmentPreview
SwirlPreview
ImplodePreview
WavePreview
OilPaintPreview

PreviewType Enumeration (continued)

Description

Preview of Shear effect.
Preview of Roll effect.
Preview of Hue effect.
Preview of Saturation effect.
Preview of Brightness effect.
Preview of Gamma effect.
Preview of Spiff effect.
Preview of Dull effect.
Preview of Grayscale effect.
Preview of Quantize effect.
Preview of Despeckle effect.
Preview of ReduceNoise effect.
Preview of AddNoise effect.
Preview of Sharpen effect.
Preview of Blur effect.
Preview of Threshold effect.
Preview of EdgeDetect effect.
Preview of Spread effect.
Preview of Solarize effect.
Preview of Shade effect.
Preview of Raise effect.
Preview of Segment effect.
Preview of Swirl effect.
Preview of Implode effect.
Preview of Wave effect.
Preview of QilPaint effect.

CharcoalDrawingPreview Preview of CharcoalDrawing effect.

JPEGPreview

Preview of JPEG compression.

PrimitiveType Primitives used in drawing operations.

Enumeration
UndefinedPrimitive

Table20.42: PrimitiveType Enumeration

PrimitiveType Enumeration

Description
Undefined Primitive.

ImageMagick

20 API Structures and Enumerations 107

PrimitiveType Enumeration (continued)

Enumeration Description
PointPrimitive Point Primitive.
LinePrimitive Line Primitive.
RectanglePrimitive Rectangle Primitive.
RoundRectanglePrimitive Round Rectangle Primitive.
ArcPrimitive Arc Primitive.
EllipsePrimitive Ellipse Primitive.
CirclePrimitive Circle Primitive.
PolylinePrimitive Polyline Primitive.
PolygonPrimitive Polygon Primitive.
BezierPrimitive Bezier Primitive.
ColorPrimitive Color Primitive.
MattePrimitive Matte Primitive.
TextPrimitive Text Primitive.
ImagePrimitive Image Primitive.
PathPrimitive Path Primitive.

ProfileType Profiles can be embedded in an image file by digital cameras and by
image processing software. ImageMagick recognizes the profiles listed here, and
also stores other profiles found in images as “generic” profiles.

Table20.43: ProfileType Enumeration

ProfileType Enumeration

Enumeration Description
UndefinedProfile Unset value.
ICMProfile ICC Color Profile.
IPTCProfile IPTC Newswire Profile.

Renderingintent Rendering intent is a concept defined by ICC Spec ICC.1:1998-
09, “File Format for Color Profiles”. ImageMagick uses RenderingIntent in or-
der to support ICC Color Profiles.

From the specification: “Rendering intent specifies the style of reproduction to
be used during the evaluation of this profile in a sequence of profiles. It applies
specifically to that profile in the sequence and not to the entire sequence. Typi-

108 ImageMagick

cally, the user or application will set the rendering intent dynamically at runtime
or embedding time.”

Table20.44: RenderinglIntent Enumeration

RenderinglIntent Enumeration

Enumeration Description

UndefinedlIntent Unset value.

SaturationIntent A rendering intent that specifies that the saturation of the
pixels in the image is preserved perhaps at the expense of
accuracy in hue and lightness.

Perceptuallntent A rendering intent that specifies that the full gamut of the
image is compressed or expanded to fill the gamut of the
destination device. Gray balance is preserved but colori-
metric accuracy might not be preserved.

Absolutelntent Absolute colorimetric.

Relativelntent Relative colorimetric.

ResolutionType By default, ImageMagick defines resolutions in pixels per inch.
ResolutionType provides a means to adjust this.

Table20.45: ResolutionType Enumeration

ResolutionType Enumeration

Enumeration Description
UndefinedResolution Unset value.
PixelsPerInchResolution Density specifications are specified in units

of pixels per inch (english units).
PixelsPerCentimeterResolution Density specifications are specified in units
of pixels per centimeter (metric units).

StretchType Stretch types used in rendering text.

20 API Structures and Enumerations

Table20.46: StretchType Enumeration

StretchType Enumeration

Enumeration Description

NormalStretch Normal stretch style.
UltraCondensedStretch Ultra condensed stretch style.
ExtraCondensedStretch Extra condensed stretch style.
CondensedStretch Condensed stretch style.
SemiCondensedStretch Semicondensed stretch style.
SemiExpandedStretch Semi expanded stretch style.
ExpandedStretch Expanded stretch style.
ExtraExpandedStretch Extra expanded stretch style.
UltraExpandedStretch Ultra expanded stretch style.
AnyStretch Any stretch style.

StyleType Style types used in rendering text.

Table20.47: StyleType Enumeration

StyleType Enumeration

Enumeration Description
NormalStyle Normal style.
ItalicStyle Italic style.
ObliqueStyle Oblique style.
AnyStyle Any style.

TimerState Timer states.

109

110

Table20.48: TimerState Enumeration

TimerState Enumeration

Enumeration Description
UndefinedTimerState Undefined timer state.
StoppedTimerState Stopped timer state.
RunningTimerState Running timer state.

ImageMagick

C API Methods

21.1 Methods to Constitute an Image

Constitutelmage() create an image from pixel data.

Image *Constitutelmage (const unsigned long width, const unsigned long
height, const char *map, const StorageType type, const void *pixels,
ExceptionInfo *exception)

Constitutelmage() returns an image from the pixel data you supply. The pixel
data must be in scanline order top-to-bottom. The data can be of type char,
short int, int, long, float, or double. Float and double require the pixels to be
normalized [0..1] otherwise [0..MaxRGB]. For example, to create a 640 x 480
image from unsigned red-green-blue character data, use

i mmge = Constitutel nage(640, 480, "RGB", CharPixel, pixels,
exception);

A description of each parameter follows:

width Width in pixels of the image.

height Height in pixels of the image.

map This string reflects the expected ordering of the pixel array. It can be any
combination or order of R = red, G = green, B = blue, A = alpha, C = cyan,
Y =yellow, M = magenta, K = black, or | = intensity (for grayscale).

type Define the data type of the pixels. Float and double types are expected to
be normalized [0..1] otherwise [0..MaxRGB]. Choose from these types:

CharPixel ShortPixel IntegerPixel
LongPixel FloatPixel DoublePixel

pixels This array of values contain the pixel components as defined by nap and
t ype. The expected length of the array varies depending on the values of
wi dt h, hei ght, map, andt ype.

exception Return any errors or warnings in this structure.

111

112 ImageMagick
Dispatchimage() extract pixel data from an image.

unsigned int Dispatchimage(Image *image, const long x, const long y, const
unsigned long columns, const unsigned long rows, const char *map,
const StorageType type, void *pixels, Exceptioninfo *exception)

Dispatchimage() extracts pixel data from an image and returns it to you. The
method returns False on success otherwise True if an error is encountered. The
data is returned as char, short int, int, long, float, or double in the order specified
by map.

Suppose we want want to extract the first scanline of a 640x480 image as char-
acter data in red-green-blue order:

status = Di spatchl mage(i rage, 0, 0, 640, 1, "RGB", 0, pixels,
exception);

A description of each parameter follows:

image The image.

X, ¥, columns, rows These values define the perimeter of a region of pixels you
want to extract.

map This string reflects the expected ordering of the pixel array. It can be any
combination or order of R = red, G = green, B = blue, A = alpha, C = cyan,
Y =yellow, M = magenta, K = black, or | = intensity (for grayscale).

type Define the data type of the pixels. Float and double types are normalized
to [0..1] otherwise [0..MaxRGB]. Choose from these types:

CharPixel ShortPixel IntegerPixel
LongPixel FloatPixel DoublePixel

pixels This array of values contain the pixel components as defined by nmap
and t ype. You must preallocate this array where the expected length varies
depending on the values of wi dt h, hei ght , map, andt ype.

exception Return any errors or warnings in this structure.

Pinglmage() get information about an image.

Image *Pinglmage(const Imagelnfo *image_info, Exceptioninfo *excep-
tion)

Pinglmage() returns all the attributes of an image or image sequence except for
the pixels. It is much faster and consumes far less memory than Readlmage().
On failure, a NULL image is returned and except i on describes the reason for
the failure.

A description of each parameter follows:

21 C API Methods 113

image_info Ping the image defined by the fi |l e or fi | enane members of
this structure.
exception Return any errors or warnings in this structure.

Readlmage() read one or more image files.

Image *Readlmage(const Imagelnfo *image_info, Exceptioninfo *excep-
tion)

Readlmage() reads an image or image sequence from a file or file handle. On
failure, a NULL image is returned and except i on describes the reason for the
failure.

A description of each parameter follows:
image_info Read the image defined by the fi | e or fi | enane members of

this structure.
exception Return any errors or warnings in this structure.

Writelmage() write one or more image files.

unsigned int WriteImage(const Imagelnfo *image_info, Image *image)

Use Write() to write an image or an image sequence to a file or filehandle. If
writing to a file on disk, the name is defined by the filename member of the
image structure. Write() returns 0 is there is a memory shortage or if the image
cannot be written. Check the except i on member of i mage to determine the
cause for any failure.

A description of each parameter follows:
image_info The image info.
image The image.

21.2 ImageMagick Image Methods

Allocatelmage() allocate an image.
Image *Allocatelmage(const Imagelnfo *image_info)

Allocatelmage() returns a pointer to an image structure initialized to default val-
ues.
A description of each parameter follows:

image_info Many of the image default values are set from this structure. For
example, filename, compression, depth, background color, and others.

114 ImageMagick

AllocatelmageColormap() allocate an image colormap.

unsigned int AllocatelmageColormap(Image *image, const unsigned long
colors)

AllocatelmageColormap() allocates an image colormap and initializes it to a
linear gray colorspace. If the image already has a colormap, it is replaced. Allo-
catelmageColormap() returns True if successful, otherwise False if there is not
enough memory.

A description of each parameter follows:

image The image.
colors The number of colors in the image colormap.

AllocateNextimage() allocate the next image in a sequence.

void AllocateNextImage(const Imagelnfo *image_info, Image *image)

Use AllocateNextimage() to initialize the next image in a sequence to default
values. The next member of i nage points to the newly allocated image. If
there is a memory shortage, next is assigned NULL.

A description of each parameter follows:

image_info Many of the image default values are set from this structure. For
example, filename, compression, depth, background color, and others.
image The image.

Animatelmages() animate an image sequence.

unsigned int Animatelmages(const Imagelnfo *image_info, Image *image)

Animatelmages() repeatedly displays an image sequence to any X window screen.
It returns a value other than 0 if successful. Check the except i on member of
i mage to determine the cause for any failure.

A description of each parameter follows:

image_info The image info.
image The image.

21 C API Methods 115
Appendimages() append a set of images.

Image *Appendimages (Image *image, const unsigned int stack, Excep-
tionInfo *exception)

The Append() method takes a set of images and appends them to each other.
Each image in the set must have the same width or height (or both). Append()
returns a single image where each image in the original set is side-by-side if all
the heights the same or stacked on top of each other if all widths are the same.
On failure, a NULL image is returned and except i on describes the reason for
the failure.

A description of each parameter follows:

image The image sequence.

stack An unsigned value other than stacks rectangular image top-to-bottom oth-
erwise left-to-right.

exception Return any errors or warnings in this structure.

Averagelmages() average a set of images.
Image *Averagelmages (const Image *image, Exceptioninfo *exception)

The Average() method takes a set of images and averages them together. Each
image in the set must have the same width and height. Average() returns a single
image with each corresponding pixel component of each image averaged. On
failure, a NULL image is returned and except i on describes the reason for the
failure.

A description of each parameter follows:

image The image sequence.
exception Return any errors or warnings in this structure.

Channellmage() extract a channel from the image.
unsigned int Channellmage (Image *image, const ChannelType channel)

Extract a channel from the image. A channel is a particular color component of
each pixel in the image. Choose from these components:

A description of each parameter follows:

image The image.

116

ImageMagick
channel Identify which channel to extract:

Red
Cyan
Green
Magenta
Blue
Yellow
Opacity
Black

Clonelmage() create a new copy of an image.

Image *Clonelmage(Image *image, const unsigned long columns, const un-
signed long rows, const unsigned int orphan, ExceptionInfo *exception)

Clonelmage() copies an image and returns the copy as a new image object. If
the specified columns and rows is 0, an exact copy of the image is returned, oth-
erwise the pixel data is undefined and must be initialized with the SetimagePix-
els() and SyncImagePixels() methods. On failure, a NULL image is returned and
except i on describes the reason for the failure.

A description of each parameter follows:

image The image.

columns The number of columns in the cloned image.

rows The number of rows in the cloned image.

orphan With a value other than 0, the cloned image is an orphan. An orphan is
a stand-alone image that is not assocated with an image list. In effect, the
next and pr evi ous members of the cloned image is set to NULL.

exception Return any errors or warnings in this structure.

Clonelmagelnfo() clone an image info structure.

Imagelnfo *Clonelmagelnfo(const Imagelnfo *image_info)
Clonelmagelnfo() makes a copy of the given image info structure. If NULL is
specified, a new image info structure is created initialized to default values.

A description of each parameter follows:

image_info The image info.

21 C API Methods 117

Compositelmage() composite one image to another.

unsigned int Compositelmage(Image *image, const CompositeOperator com-
pose, const Image *composite_image, const long x_offset, const long
y_offset)

Compositelmage() returns the second image composited onto the first at the
specified offsets.

A description of each parameter follows:

image The image.
compose This operator affects how the composite is applied to the image. The
default is Over. Choose from these operators:

OverCompositeOP DifferenceCompositeOP XorCompositeOP
AtopCompositeOP DisplaceCompositeOP PlusCompositeOP
MinusCompositeOP SubtractCompositeOP AddCompositeOP
InCompositeOP BumpmapCompositeOP CopyCompositeOP
OutCompositeOP

composite_image The composite image.

x_offset The column offset of the composited image. If the offset is negative, it
is measured between the right edges of the images.

y_offset The row offset of the composited image. If it is negative, it is measured
between the bottom edges of the images.

CycleColormaplimage() displace a colormap.
CycleColormaplmage(Image *image, const int amount)

CycleColormap() displaces an image’s colormap by a given number of positions.
If you cycle the colormap a number of times you can produce a psychodelic
effect.

A description of each parameter follows:

image The image.
amount Offset the colormap this much.

Describelmage() describe an image.

void Describelmage (Image *image, FILE *file, const unsigned int verbose)

118

ImageMagick

Describelmage() describes an image by printing its attributes to the file. At-
tributes include the image width, height, size, and others.

A description of each parameter follows:

image The image.
file The file, typically stdout.
verbose A value other than zero prints additional detailed information about the

image.

Destroylmage() destroy an image.

void Destroylmage(Image *image)

Destroylmage() dereferences an image, deallocating memory associated with
the image if the reference count becomes zero.

A description of each parameter follows:

image The image.

Destroylmagelnfo() destroy image info.

void Destroylmagelnfo(Imagelnfo *image_info)

Destroylmagelnfo() deallocates memory associated with i mage | nf o.

A description of each parameter follows:

image_info The image info.

Destroylmages() destroy an image sequence.

void Destroylmages(Image *image)

Destroylmages() is a convenience method. It calls Destroylmage() for each im-
age in the sequence.

A description of each parameter follows:

image The image sequence.

21 C API Methods 119
Displaylmages() display an image sequence.
unsigned int Displaylmages(const Imagelnfo *image_info, Image *image)

Displaylmages() displays an image sequence to any X window screen. It returns
a value other than 0 if successful. Check the except i on member of i mage to
determine the reason for any failure.

A description of each parameter follows:

image_info The image info.
image The image.

GetlmageDepth() get image depth.
unsigned int GetlmageDepth(Image *image)

GetlmageDepth() returns the depth of the image, either 8 or 16 bits. By default,
pixel components are stored as 16-bit two byte unsigned short integers that range
in value from 0 to 65535. However, if all the pixels have lower-order bytes that
are identical to their higher-order bytes, the image depth is 8-bit.

A description of each parameter follows:

image The image.

Getlmagelnfo() get image info.
void Getlmagelnfo(Imagelnfo *image_info)

Getlmagelnfo() initializes i mage_i nf o to default values.
A description of each parameter follows:

image_info The image info.

GetlmageType() getimage type.
ImageType GetlmageType(const Image *image,ExceptionInfo *exception)

GetlmageType() returns the type of image:

120

ImageMagick

Bilevel Grayscale GrayscaleMatte
Palette PaletteMatte TrueColor
TrueColorMatte ColorSeparation ColorSeparationMatte
Optimize

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

IsimagesEqual() measure the pixel differences between two images.

unsigned int IsimagesEqual(Image *image, Image *reference)

IsimagesEqual() measures the difference between colors at each pixel location of
two images. A value other than 0 means the colors match exactly. Otherwise an
error measure is computed by summing over all pixels in an image the distance
squared in RGB space between each image pixel and its corresponding pixel in
the reference image. The error measure is assigned to these image members:

mean_error_per_pixel The mean error for any single pixel in the image.

normalized_mean_error The normalized mean quantization error for any sin-
gle pixel in the image. This distance measure is normalized to a range be-
tween 0 and 1. It is independent of the range of red, green, and blue values
in the image.

normalized_maximum_error The normalized maximum quantization error for
any single pixel in the image. This distance measure is normalized to a range
between 0 and 1. It is independent of the range of red, green, and blue values
in your image.

Accessed as i mage- >nor mal i zed_nmean_er r or , a small normalized mean
square error, suggests the images are very similiar in spatial layout and color.
A description of each parameter follows:

image The image.
reference The reference image.

IsTaintimage() tell if an image has been altered.

unsigned int IsTaintimage(const Image *image)

IsTaintImage() returns a value other than O if any pixel in the image has been
altered since it was first constituted.

A description of each parameter follows:

image The image.

21 C API Methods 121

Profilelmage() add or remove a profile.

unsigned int Profilelmage(Image *image, const char *profile_name, const
char *filename)

Profilelmage() adds or removes a ICM, IPTC, or generic profile from an image.
If the profile name is defined it is deleted from the image. If a filename is given,
one or more profiles are read and added to the image. Profilelmage() returns a
value other than 0 if the profile is successfully added or removed from the image.

A description of each parameter follows:

image The image.
profile_.name The type of profile to add or remove.
filename The filename of the ICM, IPTC, or generic profile.

Setlmage() set image pixels to the background color.

void Setlmage(Image *image, const Quantum opacity)

Setlmage() sets the red, green, and blue components of each pixel to the im-
age background color and the opacity component to the specified level of trans-
parency. The background color is defined by the backgr ound_col or member
of the image.

A description of each parameter follows:

image The image.

opacity Set each pixel to this level of transparency.
SetlmageClipMask()

unsigned int SetimageClipMask(Image *image,Image *clip_mask)

SetlmageClipMask() associates a clip mask with the image. The clip mask must
be the same dimensions as the image.

A description of each parameter follows:

image The image.
clip_-mask The clip mask.

122 ImageMagick
SetlmageDepth()
unsigned int SetimageDepth(Image *image,const unsigned long depth)
SetlmageDepth() sets the depth of the image, either 8 or 16. Some image for-
mats support both 8 and 16-bits per color component (e.g. PNG). Use Setim-
ageDepth() to specify your preference. A value other than 0 is returned if the

depth is set. Check the except i on member of i mage to determine the cause
for any failure.

A description of each parameter follows:

image The image.
depth The image depth.

SetimageOpacity() set image pixels transparency level.
void SetlmageOpacity(Image *image, const unsigned long opacity)

SetlmageOpacity() attenuates the opacity channel of an image. If the image pix-
els are opaque, they are set to the specified opacity level. Otherwise, the pixel
opacity values are blended with the supplied transparency value.

A description of each parameter follows:

image The image.
opacity The level of transparency: 0 is fully opaque and MaxRGB is fully trans-
parent.

SetimageType() set image type.
void SetimageType(Image *image, const ImageType image_type)
SetlmageType() sets the type of image. Choose from these types:

Bilevel Grayscale GrayscaleMatte
Palette PaletteMatte TrueColor
TrueColorMatte ColorSeparation ColorSeparationMatte

A description of each parameter follows:

image The image.
image_type Image type.

21 C API Methods 123
Texturelmage() tile a texture on image background.
void Texturelmage(Image *image, Image *texture)

Texturelmage() repeatedly tiles the texture image across and down the image
canvas.

A description of each parameter follows:

image The image.
texture This image is the texture to layer on the background.

21.3 Working With Image Lists

In the ImageMagick API, image lists and sequences are managed by using the
“next” and “previous” pointers in the Image structure.

Every image is a member of a doubly-linked image list, as illustrated below:

NULL<pr ev- | i mage| <prev- | i nage| <prev-| i nage| <prev-| i mage
| O |-next> 1 |-next> 2 |-next> 3 |-next>NULL

NULL<pr evi ous- | or phan
| i mage |- next >NULL

If the “previous” and “next” pointers are both are NULL, the image is called
an “orphan”. Each “orphan” is in effect a single-image list. Applications can
maintain any number of image lists. Each image belongs to only one image list.

An image sequence is that part of an image list beginning with a specific image,
plus the remainder of the image list pointed to by its next pointer. The image
pointed to by the specific image’s “previous” pointer and other images in the
list prior to the specific image in the image list do not form a part of the image
sequence.

Each image, image sequence, and image list is referenced by pointing to an
image structure of type | mage *. In the illustration above, a reference to the
structure for Image 2 refers to image 2 itself, to the image sequence consisting
of images 2 and 3, and to the image list consisting of all images 0 through 3. In
the C API, functions that operate on an image list contain the words “ImageL.ist”
as a part of the function name, and are described in this section. In general, func-
tions that operate on an image sequence contain the word “Images”, although for
legacy reasons some, such as Readlmage(), Writelmage(), and Pinglmage(), do
not. In general, functions that contain the word “Image” work on a single image.

124 ImageMagick

ClonelmagelList() duplicate an image list.
Image *ClonelmageL.ist(const Image *images, Exceptioninfo *exception)

ClonelmageL.ist() returns a duplicate of the specified image list.

A description of each parameter follows:

images The image list.
exception Return any errors or warnings in this structure.

DeletelmagelList() delete an image from the list.
unsigned int DeletelmageL.ist(Image *images, const long offset)

DeletelmageL.ist() deletes an image at the specified position in the list..

A description of each parameter follows:

images The image list.
offset The position within the list.

DestroylmageList() destroy an image list.
DestroylmageL.ist(Image *images)

DestroylmageL.ist() destroys an image list.
A description of each parameter follows:

images The image list.

GetlmagelList() get an image from an image list.

Image *GetlmageL.ist(const Image *images, const long offset, Exception-
Info *exception)

GetlmageList() returns a clone of the image at the specified position in the image
list. The clone is an “orphan”, not linked to the list.

A description of each parameter follows:

images The image list.

offset The position in the image list.
exception Return any errors or warnings in this structure.

21 C API Methods 125

GetlmageListindex() the position in the list of the specified image.
unsigned long *GetlmageL.istIndex(const Image *images)

GetlmageListindex() returns the position of the specified image in the image list.

A description of each parameter follows:

images The image list.

GetlmageListSize() the number of images in the image list.
unsigned long GetlmageL.istSize(const Image *images)

GetlmagelL.istSize() returns the number of images in the image list.

A description of each parameter follows:

images The image list.

GetNextimage() get the next image in an image list.
Image *GetNextImage(Image *images)

GetNextImage() returns a pointer to the next image in an image list after the
image pointed to by *images.
A description of each parameter follows:

images The image list.

ImageListToArray() convertan image list to an array.

Image **ImageListToArray(const Image *images, Exceptioninfo *excep-
tion)

ImageL.istToArray() is a convenience method that converts a linked list of im-
ages to a sequential array. For example,

| mage **group;

group = | magelLi st ToArray(i mages, exception);
n = Getl mageli st Si ze(i mages) ;
for (i=0; i < n; i++)

puts(group[i]->fil enane);
Li ber at eMenory((void **) &group);

A description of each parameter follows:

image The image list.
exception Return any errors or warnings in this structure.

126 ImageMagick
NewlmagelList() create an empty image list.

Image *NewlImageL.ist(void)

NewlmageL.ist() creates an empty image list.

PoplimagelList() remove the last image from an image list.
Image *PoplmageL.ist(Image **images)

PoplmageL.ist() removes the last image in the list and returns it.

A description of each parameter follows:

images The image list.

PushimagelList() adds an image list to the end of an image list.

unsigned int *PushimageList(Image **images, const Image *image, Ex-
ceptioninfo *exception)

PushlmageL.ist() adds the image list to the end of the image list.

A description of each parameter follows:

images The image list.
image The image list to be added.
exception Return any errors or warnings in this structure.

ReverselmagelList() reverse an image list.
Image *ReverselmageL.ist(Image *images, Exceptioninfo *exception)

ReverselmageL.ist() returns a new list with the order of images reversed from
those in the specified image list.

A description of each parameter follows:

images The image list.
exception Return any errors or warnings in this structure.

21 C API Methods

SetlmagelL.ist() adds an image to the end of an image list.

unsigned int SetlmageL.ist(Image **images,const Image *image, const long
offset,Exceptioninfo *exception)

SetlmageL.ist() inserts an image into the list at the specified position.
A description of each parameter follows:

images The image list.

image The image.

offset The position within the list.

exception Return any errors or warnings in this structure.

ShiftimageList() remove and return the first image in the list.

Image *ShiftimageL.ist(Image **images)

127

ShiftimageList() removes an image from the beginning of the specified image

list.
A description of each parameter follows:

images The image list.

SplicelmageList() splice an image list.

Image *SplicelmageL.ist(Image *images, const long offset, const unsigned
long length, const Image *splices, ExceptionInfo *exception)

SplicelmageL.ist() removes the images designated by offset and length from the
list and replaces them with the specified list. The ”splices” list is not necessarily

of the same length.
A description of each parameter follows:

images The image list.

offset The position in the image list.

length The length of the image list to remove.

splices Replace the removed image list with this list.
exception Return any errors or warnings in this structure.

128 ImageMagick

UnshiftimageList() add an image list to the beginning of the specified list.

unsigned int *UnshiftimageList(Image **images, const Image *image, Ex-
ceptioninfo *exception)

UnshiftimageList() adds an image list to the beginning of the specified image

list.
A description of each parameter follows:

images The image list.
image The image list to be added.
exception Return any errors or warnings in this structure.

21.4 Methods to Count the Colors in an Image

CompressColormap() remove duplicate or unused colormap entries.

void CompressColormap(Image *image)
CompressColormap() compresses an image colormap by removing any dupli-
cate or unused color entries.

A description of each parameter follows:

image The image.

GetNumberColors() count the number of unique colors.

unsigned long GetNumberColors(const Image *image, FILE *file, Excep-
tionInfo *exception)

GetNumberColors() returns the number of unique colors in an image.

A description of each parameter follows:

image The image.
file Write a histogram of the color distribution to this file handle.
exception Return any errors or warnings in this structure.

21 C API Methods 129

IsGraylmage() is the image grayscale?
unsigned int IsGraylmage(Image *image, ExceptionInfo *exception)

IsGraylmage() returns True if all the pixels in the image have the same red,
green, and blue intensities.

A description of each parameter follows:

image The image.

exception Return any errors or warnings in this structure.
IsMonochromelmage() is the image monochrome?

unsigned int IsMonochromelmage(Image *image, Exceptioninfo *excep-
tion)

IsMonochromelmage() returns True if all the pixels in the image have the same
red, green, and blue intensities and the intensity is either 0 or MaxRGB.

A description of each parameter follows:

image The image.

exception Return any errors or warnings in this structure.
IsOpaquelmage() does the image have transparent pixels?

unsigned int IsOpaquelmage(Image *image, ExceptionInfo *exception)

IsOpaquelmage() returns True if none of the pixels in the image have an opacity
value other than opaque (0).

A description of each parameter follows:

image The image.

exception Return any errors or warnings in this structure.
IsPalettelmage() does the image have less than 256 unique colors?

unsigned int IsPalettelmage(Image *image, Exceptioninfo *exception)

IsPalettelmage() returns True if the image is colormapped and has 256 unique
colors or less.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

130 ImageMagick
ListColorsinfo list color names.
unsigned int ListColorInfo(FILE *file, Exceptioninfo *exception)

ListColorinfo() lists color names to the specified file. Color names are a conve-
nience. Rather than defining a color by its red, green, and blue intensities just
use a color name such as whi t e, bl ue, oryel | ow.

A description of each parameter follows:

file List color names to this file handle.
exception Return any errors or warnings in this structure.

QueryColorDatabase() return numerical values corresponding to a color name.

unsigned int QueryColorDatabase(const char *name, PixelPacket *color,
ExceptionInfo *exception)

QueryColorDatabase() returns the red, green, blue, and opacity intensities for a
given color name.

A description of each parameter follows:

name The color name (e.g. white, blue, yellow).

color The red, green, blue, and opacity intensities values of the named color in
this structure.

exception Return any errors or warnings in this structure.

QueryColorname() return a color name for the corresponding numerical values.

unsigned int QueryColorname(const Image *image, const PixelPacket *color,
ComplianceType compliance, char *name, Exceptioninfo *exception)

QueryColorname() returns a named color for the given color intensity. If an exact
match is not found, a hex value is return instead. For example an intensity of
rgb:(0,0,0) returns bl ack whereas rgh:(223,223,223) returns #dfdfdf.

A description of each parameter follows:

image The image.

color The color intensities.

compliance Adhere to this color standard: SVG or X11.
name Return the color name or hex value.

exception Return any errors or warnings in this structure.

21 C API Methods 131

21.5 Methods to Reduce the Number of Unique
Colors in an Image

CloneQuantizelnfo()

Quantizelnfo *CloneQuantizelnfo(const Quantizelnfo *quantize_info)

Method CloneQuantizelnfo makes a duplicate of the given quantize info struc-
ture, or if quantize info is NULL, a new one. A description of each parameter
follows:

quantize_info a structure of type info.

DestroyQuantizelnfo()
DestroyQuantizelnfo(Quantizelnfo *quantize_info)

Method DestroyQuantizelnfo deallocates memory associated with an Quantize-
Info structure.

A description of each parameter follows:

quantize_info Specifies a pointer to an Quantizelnfo structure.

GetQuantizelnfo()
GetQuantizelnfo(Quantizelnfo *quantize_info)

Method GetQuantizelnfo initializes the Quantizelnfo structure.

A description of each parameter follows:

quantize_info Specifies a pointer to a Quantizelnfo structure.

Maplmage()

unsigned int Maplmage(Image *image, Image *map_image, const unsigned
int dither)

Maplmage replaces the colors of an image with the closest color from a reference
image.
A description of each parameter follows:

image The image.
map_image Specifies a pointer to a Image structure. Reduce image to a set of

colors represented by this image.
dither Setthis integer value to something other than zero to dither the quantized

image.

132 ImageMagick
Maplmages()

unsigned int Maplmages(Image *images, Image *map_image, const un-
signed int dither)

Maplmages replaces the colors of a sequence of images with the closest color
from a reference image.

A description of each parameter follows:

image The image.

map_image Specifies a pointer to a Image structure. Reduce image to a set of
colors represented by this image.

dither Set this integer value to something other than zero to dither the quantized
image.

QuantizationError()
unsigned int QuantizationError(Image *image)

Method QuantizationError measures the difference between the original and
quantized images. This difference is the total quantization error. The error is
computed by summing over all pixels in an image the distance squared in RGB
space between each reference pixel value and its quantized value. These values
are computed:

A description of each parameter follows:

mean_error_per_pixel This value is the mean error for any single pixel in the
image.

normalized_mean_square_error This value is the normalized mean quantiza-
tion error for any single pixel in the image. This distance measure is nor-
malized to a range between 0 and 1. It is independent of the range of red,
green, and blue values in the image.

normalized_maximum_square_error This value is the normalized maximum
quantization error for any single pixel in the image. This distance measure
is normalized to a range between 0 and 1. It is independent of the range of
red, green, and blue values in your image.

A description of each parameter follows:

image The image.

21 C API Methods 133

Quantizelmage()

unsigned int Quantizelmage(const Quantizelnfo *quantize_info, Image *im-
age)

Method Quantizelmage analyzes the colors within a reference image and chooses
a fixed number of colors to represent the image. The goal of the algorithm is to
minimize the difference between the input and output image while minimizing
the processing time.

A description of each parameter follows:

quantize_info Specifies a pointer to an Quantizelnfo structure.
image Specifies a pointer to a Image structure.

Quantizelmages()

unsigned int Quantizelmages(const Quantizelnfo *quantize_info, Image *im-
ages)

Quantizelmages analyzes the colors within a set of reference images and chooses
a fixed number of colors to represent the set. The goal of the algorithm is to
minimize the difference between the input and output images while minimizing
the processing time.

A description of each parameter follows:

quantize_info Specifies a pointer to an Quantizelnfo structure.
images Specifies a pointer to a list of Image structures.

21.6 Methods to Segment an Image with
Thresholding Fuzzy c-Means

Segmentimage()

unsigned int Segmentimage(Image *image, const ColorspaceType colorspace,
const unsigned int verbose, const double cluster_threshold, const double
smoothing_threshold)

Method Segmentimage segments an image by analyzing the histograms of the
color components and identifying units that are homogeneous with the fuzzy
c-means technique.

Specify cluster threshold as the number of pixels in each cluster must exceed
the the cluster threshold to be considered valid. Smoothing threshold eliminates

134 ImageMagick

noise in the second derivative of the histogram. As the value is increased, you
can expect a smoother second derivative. The default is 1.5.

A description of each parameter follows:

image Specifies a pointer to an Image structure returned from Readlmage.

colorspace An unsigned integer value that indicates the colorspace. Empirical
evidence suggests that distances in YUV or YIQ correspond to perceptual
color differences more closely than do distances in RGB space. The image
is then returned to RGB colorspace after color reduction.

verbose A value greater than zero prints detailed information about the identi-
fied classes.

21.7 Methods to Resize an Image

Magnifylmage() scale the image to twice its size.
Image *Magnifylmage(image, Exceptioninfo *exception)

Magnifylmage() is a convenience method that scales an image proportionally to
twice its size.

image The image.
exception Return any errors or warnings in this structure.

Minifylmage() scale the image to half its size.
Image *Minifylmage(Image *image, ExceptionInfo *exception)

Minifylmage() is a convenience method that scales an image proportionally to
half its size.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

Resizelmage() scale an image with a filter.

Image *Resizelmage(Image *image, const unsigned long columns, const
unsigned long rows, const FilterType filter, const double blur, Excep-
tionInfo *exception)

21 C API Methods

135

Resizelmage() scales an image to the desired dimensions with one of these fil-

ters:
Bessel Blackman Box
Catrom Cubic Gaussian
Hanning Hermite Lanczos
Mitchell Point Quadratic
Sinc Triangle

A description of each parameter follows:

image The image.

columns The number of columns in the scaled image.
rows The number of rows in the scaled image.

filter Image filter to use.

blur The blur factor where ¢ 1 is blurry, j 1 is sharp.
exception Return any errors or warnings in this structure.

Samplelmage()

Image *Samplelmage(Image *image, const unsigned long columns, const
unsigned long rows, Exceptioninfo *exception)

Samplelmage() scales an image to the desired dimensions with pixel sampling.
Unlike other scaling methods, this method does not introduce any additional

color into the scaled image.

A description of each parameter follows:

image The image.

columns The number of columns in the sampled image.

rows The number of rows in the sampled image.
exception Return any errors or warnings in this structure.

Scalelmage() scale an image to given dimensions.

Image *Scalelmage(Image *image, const unsigned long columns, const un-
signed long rows, Exceptioninfo *exception)

Scalelmage() changes the size of an image to the given dimensions.
A description of each parameter follows:

image The image.

columns The number of columns in the scaled image.
rows The number of rows in the scaled image.

exception Return any errors or warnings in this structure.

136 ImageMagick

21.8 Methods to Transform an Image
Choplmage() chop an image.

Image *Choplmage(Image *image, const Rectangleinfo *chop_info, Ex-
ceptioninfo *exception)

Chop() removes a region of an image and collapses the image to occupy the
removed portion.

A description of each parameter follows:

image The image.

chop_info Define the region of the image to chop with members x, y, wi dt h,
and hei ght . If the image gravity is Nor t heast , East , or Sout hEast ,
the offset x specifies the distance from the right edge of the region to the
right edge of the chopping region. Similarly, if the image gravity is Sout hEast ,
Sout h, or Sout hWest , y is the distance between the bottom edges.

exception Return any errors or warnings in this structure.

Coalescelmages() coalesce a set of images.
Image *Coalescelmages(Image *image, ExceptionInfo *exception)

Coalescelmages() composites a set of images while respecting any page offsets
and disposal methods. GIF, MIFF, and MNG animation sequences typically start
with an image background and each subsequent image varies in size and offset.
Coalesce() returns a new sequence where each image in the sequence is the same
size as the first and composited over the previous images in the sequence.

Offsets are measured from the top left corner of the composition to the top left
corner of each image. Positive offsets represent a location of the image to the
right and downward from the corner of the composition.

A description of each parameter follows:

image The image sequence.
exception Return any errors or warnings in this structure.

Croplmage() crop an image.

Image *Croplmage(Image *image, const Rectanglelnfo *crop__info, Excep-
tionInfo *exception)

21 C API Methods 137

Use Croplmage() to extract a region of the image starting at the offset defined
by cr op.i nf o.

A description of each parameter follows:

image The image.

crop-info Define the region of the image to crop with members x, y, wi dt h,
and hei ght . If the image gravity is Nor t heast , East, or Sout hEast ,
the offset x specifies the distance from the right edge of the region to the
right edge of the cropping region. Similarly, if the image gravity is Sout hEast ,
Sout h, or Sout hWest , y is the distance between the bottom edges. If the
offset x is negative, it specifies the distance from the right edge of the region
to the right edge of the chopping region.

exception Return any errors or warnings in this structure.

Deconstructimages() return the constituent parts of an image sequence
Image *Deconstructimages(Image *image, Exceptioninfo *exception)
Deconstructimages() compares each image with the next in a sequence and re-

turns the maximum bounding region of any pixel differences it discovers.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

Flipimage() reflect an image vertically.
Image *FlipImage(Image *image, Exceptioninfo *exception)
Fliplmage() creates a vertical mirror image by reflecting the pixels around the
central x-axis.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

Floplmage() reflect an image horizontally.

Image *Floplmage(Image *image, Exceptioninfo *exception)

138

ImageMagick

Floplmage() creates a horizontal mirror image by reflecting the pixels around
the central y-axis.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

Mosaiclmages() inlay an image sequence to form a single coherent picture.

Image *Mosaiclmages(const Image *image, ExceptionInfo *exception)

Mosaiclmages() inlays an image sequence to form a single coherent picture.
It returns a single image with each image in the sequence composited at the
location defined by the page member of i mage.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

Rolllmage() offset and roll over an image.

Image *Rollimage(Image *image, const int x_offset, const int y_offset, Ex-
ceptioninfo *exception)

Rollimage() offsets an image as defined by x _of f set andy _of f set .

A description of each parameter follows:

image The image.

x_offset The number of columns to roll in the horizontal direction, right-to-left
(left-to-right if x_offset is negative).

y_offset The number of rows to roll in the vertical direction, bottom-to-top (top-
to-bottom if y_offset is negative).

exception Return any errors or warnings in this structure.

Shavelmage()

Image *Shavelmage(const Image *image, const Rectanglelnfo *shave_info,
ExceptionInfo *exception)

Method Shavelmage shaves pixels from the image edges. It allocates the mem-
ory necessary for the new Image structure and returns a pointer to the new image.

A description of each parameter follows:

21 C API Methods 139

image The image.

shave_info Specifies a pointer to a structure of type Rectangle which defines the
shave region.

exception Return any errors or warnings in this structure.

Transformimage() resize or crop an image.

void Transformimage(Image **image, const char *crop_geometry, const
char *image_geometry)

TransformImage() is a convenience method that behaves like Resizelmage() or
Croplmage() but accepts scaling and/or cropping information as a region geom-
etry specification. If the operation fails, the original image handle is returned.

A description of each parameter follows:

image The image. The transformed image is returned as this parameter.

crop_geometry A crop geometry string. This geometry defines a subregion of
the image to crop.

image_geometry An image geometry string. This geometry defines the final
size of the image.

21.9 Methods to Shear or Rotate an Image by an
Arbitrary Angle

Rotatelmage

Image *Rotatelmage(Image *image, const double degrees, Exceptioninfo
*exception)

Method Rotatelmage creates a new image that is a rotated copy of an existing
one. Positive angles rotate counter-clockwise(right-hand rule), while negative
angles rotate clockwise. Rotated images are usually larger than the originals and
have ’empty’ triangular corners. X axis. Empty triangles left over from shear-
ing the image are filled with the color defined by the pixel at location(0, 0).
Rotatelmage allocates the memory necessary for the new Image structure and
returns a pointer to the new image.

Method Rotatelmage is based on the paper ”A Fast Algorithm for General Raster
Rotatation” by Alan W. Paeth. Rotatelmage is adapted from a similar method
based on the Paeth paper written by Michael Halle of the Spatial Imaging Group,
MIT Media Lab.

A description of each parameter follows:
image The image.

degrees Specifies the number of degrees to rotate the image.
exception Return any errors or warnings in this structure.

140 ImageMagick

Shearlmage()

Image *Shearlmage(Image *image, const double x_shear, const double y shear,
ExceptionInfo *exception)

Method Shearlmage creates a new image that is a shear_image copy of an exist-
ing one. Shearing slides one edge of an image along the X or Y axis, creating
a parallelogram. An X direction shear slides an edge along the X axis, while a
Y direction shear slides an edge along the Y axis. The amount of the shear is
controlled by a shear angle. For X direction shears, x_shear is measured relative
to the Y axis, and similarly, for Y direction shears y_shear is measured relative
to the X axis. Empty triangles left over from shearing the image are filled with
the color defined by the pixel at location(0, 0). Shearlmage allocates the memory
necessary for the new Image structure and returns a pointer to the new image.

Method Shearlmage is based on the paper ”A Fast Algorithm for General Raster
Rotatation” by Alan W. Paeth.

A description of each parameter follows:
image The image.

x_shear, y_shear Specifies the number of degrees to shear the image.
exception Return any errors or warnings in this structure.

21.10 Methods to Enhance an Image

Contrastimage() enhance or reduce the image contrast.
unsigned int Contrastimage(Image *image, const unsigned int sharpen)

Contrast() enhances the intensity differences between the lighter and darker ele-
ments of the image. Set shar pen to a value other than 0 to increase the image
contrast otherwise the contrast is reduced.

A description of each parameter follows:

image The image.

sharpen Increase or decrease image contrast.
Equalizelmage() equalize an image.

unsigned int Equalizelmage(Image *image)

Equalizelmage() applies a histogram equalization to the image.

A description of each parameter follows:

image The image.

21 C API Methods 141

Gammalmage() gamma-correct the image.
unsigned int Gammalmage(Image *image, const char *gamma)

Use Gammalmage() to gamma-correct an image. The same image viewed on
different devices will have perceptual differences in the way the image’s intensi-
ties are represented on the screen. Specify individual gamma levels for the red,
green, and blue channels, or adjust all three with the ganma parameter. Values
typically range from 0.8 to 2.3.

You can also reduce the influence of a particular channel with a gamma value of
0.

A description of each parameter follows:

image The image.
gamma Define the level of gamma correction.

Levellmage() adjust the level of image contrast.
unsigned int Levellmage(Image *image, const char *levels)

Give three point values delineated with commas: black, mid, and white (e.g.
10/1.0/65000). The white and black points range from 0 to MaxRGB and mid
ranges from 0 to 10.

A description of each parameter follows:

image The image.
gamma Define the image contrast levels.

Modulatelmage() adjust the brightness, saturation, and hue.
unsigned int Modulatelmage(Image *image, const char *modulate)

Modulatelmage() lets you control the brightness, saturation, and hue of an im-
age. Modul at e represents the brightness, saturation, and hue as one parameter
(e.g. 90,150,100).

A description of each parameter follows:

image The image.
modulate Define the percent change in brightness, saturation, and hue.

142 ImageMagick
Normalizelmage() enhance image contrast.
unsigned int Normalizelmage(Image *image)

The Normalizelmage() method enhances the contrast of a color image by adjust-
ing the pixels color to span the entire range of colors available.

A description of each parameter follows:

image The image.

21.11 ImageMagick Image Effects Methods

AddNoiselmage() add noise to an image.

Image *AddNoiselmage(const Image *image, const NoiseType noise_type,
ExceptionInfo *exception)

AddNoiselmage() adds random noise to the image.

A description of each parameter follows:

image The image.

noise_type The type of noise: Uniform, Gaussian, Multiplicative, Impulse, Lapla-
cian, or Poisson.

exception Return any errors or warnings in this structure.

Blurlmage() blur the image.

Image *Blurlmage(const Image *image, const double radius, const double
sigma, ExceptionInfo *exception)

Blurlmage() blurs an image. We convolve the image with a Gaussian operator
of the given radius and standard deviation (sigma). For reasonable results, the
radius should be larger than sigma. Use a radius of 0 and Blurlmage() selects a
suitable radius for you.

A description of each parameter follows:

radius The radius of the Gaussian, in pixels, not counting the center pixel.
sigma The standard deviation of the Gaussian, in pixels.
exception Return any errors or warnings in this structure.

21 C API Methods 143

Colorizelmage() colorize an image.

Image *Colorizelmage(const Image *image, const char *opacity, const Pix-
elPacket target, Exceptioninfo *exception)

Colorizelmage() blends the fill color with each pixel in the image. A percentage
blend is specified with opaci t y. Control the application of different color com-
ponents by specifying a different percentage for each component (e.g. 90/100/10
is 90% red, 100% green, and 10% blue).

A description of each parameter follows:

image The image.

opacity A character string indicating the level of opacity as a percentage.
target A color value.

exception Return any errors or warnings in this structure.

Convolvelmage() apply a convolution kernel to the image.

Image *Convolvelmage(const Image *image, const unsigned int order, const
double *kernel, Exceptioninfo *exception)

Convolvelmage() applies a custom convolution kernel to the image.
A description of each parameter follows:

image The image.

order The number of columns and rows in the filter kernel.
kernel An array of double representing the convolution kernel.
exception Return any errors or warnings in this structure.

Despecklelmage() filter speckles.
Image *Despecklelmage(const Image *image, Exceptioninfo *exception)
Despecklelmage() reduces the speckle noise in an image while perserving the
edges of the original image.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

144 ImageMagick
Edgelmage() detect edges within an image.

Image *Edgelmage(const Image *image, const double radius, Exception-
Info *exception)

Edgelmage() finds edges in an image. Radi us defines the radius of the convo-
lution filter. Use a radius of 0 and Edge() selects a suitable radius for you.

A description of each parameter follows:

image The image.
radius the radius of the pixel neighborhood.
exception Return any errors or warnings in this structure.

Embossimage emboss the image.

Image *Embossimage(const Image *image, const double radius, const dou-
ble sigma, Exceptioninfo *exception)

Embossimage() returns a grayscale image with a three-dimensional effect. We
convolve the image with a Gaussian operator of the given radius and standard
deviation (sigma). For reasonable results, radius should be larger than sigma.
Use a radius of 0 and Emboss() selects a suitable radius for you.

A description of each parameter follows:

image The image.

radius the radius of the pixel neighborhood.

sigma The standard deviation of the Gaussian, in pixels.
exception Return any errors or warnings in this structure.

Enhancelmage() filter a noisy image.
Image *Enhancelmage(const Image *image, Exceptioninfo *exception)
Enhancelmage() applies a digital filter that improves the quality of a noisy im-
age.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

21 C API Methods 145
GaussianBlurimage() blur an image.

Image *GaussianBlurlmage(const Image *image, const double radius, const
double sigma, Exceptioninfo *exception)

GaussianBlurlmage() blurs an image. We convolve the image with a Gaussian
operator of the given radius and standard deviation (sigma). For reasonable re-
sults, the radius should be larger than sigma. Use a radius of 0 and Gaussian-
Blurlmage() selects a suitable radius for you.

A description of each parameter follows:
image The image.
radius the radius of the Gaussian, in pixels, not counting the center pixel.

sigma the standard deviation of the Gaussian, in pixels.
exception Return any errors or warnings in this structure.

Implodelmage() apply an implosion/explosion filter.

Image *Implodelmage(const Image *image, const double amount, Excep-
tionInfo *exception)

Implodelmage() applies a special effects filter to the image where anount de-
termines the amount of implosion. Use a negative amount for an explosive effect.

A description of each parameter follows:

image The image.
amount Define the extent of the implosion.
exception Return any errors or warnings in this structure.

MedianFilterimage() filter a noisy image.

Image *MedianFilterimage(const Image *image, const double radius, Ex-
ceptioninfo *exception)

MedianFilterimage() applies a digital filter that improves the quality of a noisy
image. Each pixel is replaced by the median in a set of neighboring pixels as
defined by r adi us.

A description of each parameter follows:

image The image.
radius The radius of the pixel neighborhood.
exception Return any errors or warnings in this structure.

146 ImageMagick
Morphimages() morph a set of images.

Image *MorphImages(const Image *image, const unsigned long number frames,
ExceptionInfo *exception)

The Morphimages() method requires a minimum of two images. The first image
is transformed into the second by a number of intervening images as specified
by f r ames.

A description of each parameter follows:

image The image.

number_frames Define the number of in-between image to generate. The more
in-between frames, the smoother the morph.

exception Return any errors or warnings in this structure.

MotionBlurimage() simulate motion blur.

Image *MotionBlurimage(const Image *image, const double radius, const
double sigma, ExceptionInfo *exception)

MotionBlurlmage() simulates motion blur. We convolve the image with a Gaus-
sian operator of the given radius and standard deviation (sigma). For reasonable
results, radius should be larger than sigma. Use a radius of 0 and MotionBlurim-
age()selects a suitable radius for you. Angl e gives the angle of the blurring
motion.

A description of each parameter follows:

image The image.

radius The radius of the Gaussian, in pixels, not counting the center pixel.
sigma The standard deviation of the Motion, in pixels.

angle Apply the effect along this angle.

exception Return any errors or warnings in this structure.

Negatelmage()
unsigned int Negatelmage(Image *image, const unsigned int grayscale)

Method Negatelmage negates the colors in the reference image. The Grayscale
option means that only grayscale values within the image are negated.

A description of each parameter follows:

image The image.

21 C API Methods 147

OilPaintimage() simulate an oil painting.

Image *OilPaintimage(const Image *image, const double radius, Excep-
tionInfo *exception)

OilPaintimage() applies a special effect filter that simulates an oil painting. Each
pixel is replaced by the most frequent color occurring in a circular region defined
by r adi us.

A description of each parameter follows:

image The image.
radius The radius of the circular neighborhood.
exception Return any errors or warnings in this structure.

Plasmalmage() initialize an image with plasma fractal values.

unsigned int Plasmalmage(const Image *image, const Segmentinfo *seg-
ment, int attenuate, int depth)

Plasmalmage() initializes an image with plasma fractal values. The image must
be initialized with a base color and the random number generator seeded before
this method is called.

A description of each parameter follows:

image The image.

segment Define the region to apply plasma fractals values.
attenuate Define the plasma attenuation factor.

depth Limit the plasma recursion depth.

ReduceNoiselmage() smooth an image.

Image *ReduceNoiselmage(Image *image, const double radius, Exception-
Info *exception)

ReduceNoiselmage() smooths the contours of an image while still preserving
edge information. The algorithm works by replacing each pixel with its neigh-
bor closest in value. A neighbor is defined by r adi us. Use a radius of 0 and
ReduceNoise() selects a suitable radius for you.

A description of each parameter follows:
image The image.

radius The radius of the pixel neighborhood.
exception Return any errors or warnings in this structure.

148 ImageMagick

Shadelmage shade the image with light source.

Image *Shadelmage(const Image *image, const unsigned int color_shading,
double azimuth, double elevation, Exceptioninfo *exception)

Shadelmage() shines a distant light on an image to create a three-dimensional
effect. You control the positioning of the light with azimuth and elevation; az-
imuth is measured in degrees off the x axis and elevation is measured in pixels
above the Z axis.

A description of each parameter follows:

image The image.

color_shading A value other than zero shades the red, green, and blue compo-
nents of the image.

azimuth, elevation Define the light source direction.

exception Return any errors or warnings in this structure.

Sharpenimage() sharpen an image.

Image *Sharpenlimage(Image *image, const double radius, const double
sigma, ExceptionInfo *exception)

Sharpenimage() sharpens an image. We convolve the image with a Gaussian op-
erator of the given radius and standard deviation (sigma). For reasonable results,
radius should be larger than sigma. Use a radius of 0 and Sharpenimage() selects
a suitable radius for you.

A description of each parameter follows:
radius The radius of the Gaussian, in pixels, not counting the center pixel.

sigma The standard deviation of the Laplacian, in pixels.
exception Return any errors or warnings in this structure.

Solarizelmage() apply solorization special effect.
void Solarizelmage(Image *image, const double threshold)

Solarizelmage() applies a special effect to the image, similar to the effect achieved
in a photo darkroom by selectively exposing areas of photo sensitive paper to
light. Thr eshol d ranges from 0 to MaxRGB and is a measure of the extent of
the solarization.

A description of each parameter follows:

image The image.
threshold Define the extent of the solarization.

21 C API Methods 149
Spreadimage() randomly displace pixels.

Image *Spreadlmage(const Image *image, const unsigned int amount, Ex-
ceptioninfo *exception)

Spreadlmage() is a special effects method that randomly displaces each pixel in
a block defined by the amount parameter.

A description of each parameter follows:

image The image.

radius An unsigned value constraining the “vicinity” for choosing a random
pixel to swap.

exception Return any errors or warnings in this structure.

Steganolmage() hide a digital watermark.

Image *Steganolmage(const Image *image, Image *watermark, Exception-
Info *exception)

Use Steganolmage() to hide a digital watermark within the image. Recover the
hidden watermark later to prove that the authenticity of an image. textttOffset
defines the start position within the image to hide the watermark.

A description of each parameter follows:

image The image.
watermark The watermark image.
exception Return any errors or warnings in this structure.

Stereolmage() create a stereo special effect.

Image *Stereolmage(cosnt Image *image, Image *offset_image, Exception-
Info *exception)

Stereolmage() combines two images and produces a single image that is the
composite of a left and right image of a stereo pair. Special red-green stereo
glasses are required to view this effect.

A description of each parameter follows:

image The left-hand image.
offset_image The right-hand image.
exception Return any errors or warnings in this structure.

150 ImageMagick

Swirllmage() swirl pixels about image center.

Image *Swirllmage(const Image *image, double degrees, Exceptioninfo
*exception)

Swirllmage() swirls the pixels about the center of the image, where degr ees
indicates the sweep of the arc through which each pixel is moved. You get a
more dramatic effect as the degrees move from 1 to 360.

A description of each parameter follows:

image The image.
degrees Define the tightness of the swirling effect.
exception Return any errors or warnings in this structure.

Thresholdimage() divide pixels based on intensity values.
unsigned int ThresholdImage(Image *image, const double threshold)

ThresholdImage() changes the value of individual pixels based on the intensity
of each pixel compared to t hr eshol d. The result is a high-contrast, two color
image.

A description of each parameter follows:

image The image.
threshold Define the threshold value.

UnsharpMasklimage() sharpen an image.

Image *UnsharpMasklmage(const Image *image, const double radius, const
double sigma, const double amount, const double threshold, Exception-
Info *exception)

UnsharpMaskimage() sharpens an image. We convolve the image with a Gaus-
sian operatorof the given radius and standard deviation (sigma). For reasonable
results, radius should be larger than sigma. Use a radius of 0 and Unsharp-
MasklImage() selects a suitable radius for you.

A description of each parameter follows:

image The image.

radius The radius of the Gaussian, in pixels, not counting the center pixel.

sigma The standard deviation of the Gaussian, in pixels.

amount The percentage of the difference between the original and the blur im-
age that is added back into the original.

threshold The threshold in pixels needed to apply the diffence amount.

exception Return any errors or warnings in this structure.

21 C API Methods 151
Wavelmage() special effects filter.

Image *Wavelmage(const Image *image, const double amplitude, const
double wave_length, Exceptioninfo *exception)

The Wavelmage() filter creates a "ripple” effect in the image by shifting the
pixels vertically along a sine wave whose amplitude and wavelength is specified
by the given parameters.

A description of each parameter follows:

image The image.
amplitude, frequency Define the amplitude and wavelength of the sine wave.
exception Return any errors or warnings in this structure.

21.12 ImageMagick Image Decoration Methods

Borderimage() frame the image with a border.

Image *Borderimage(const Image *image, const Rectanglelnfo *border _info,
ExceptionInfo *exception)

Borderimage() surrounds the image with a border of the color defined by the
bor der _col or member of the i mage structure. The width and height of the
border are defined by the corresponding members of the bor der _i nf o struc-
ture.

A description of each parameter follows:

image The image.
border_info Define the width and height of the border.
exception Return any errors or warnings in this structure.

Framelmage() surround the image with a decorative border.

Image *Framelmage(const Image *image, const Framelnfo *frame_info,
ExceptionInfo *exception)

Framelmage() adds a simulated three-dimensional border around the image. The
color of the border is defined by the mat t e_col or member of i mage. Mem-
bers wi dt h and hei ght of f r ane_i nf o specify the border width of the ver-
tical and horizontal sides of the frame. Members i nner and out er indicate
the width of the inner and outer shadows of the frame.

A description of each parameter follows:

152 ImageMagick

image The image.
frame_info Define the width and height of the frame and its bevels.
exception Return any errors or warnings in this structure.

Raiselmage() lighten or darken edges to create a 3-D effect.

unsigned int Raiselmage(Image *image, const Rectanglelnfo *raise_info,
const int raised)

Raiselmage() creates a simulated three-dimensional button-like effect by light-
ening and darkening the edges of the image. Members wi dt h and hei ght of
r ai se_i nf o define the width of the vertical and horizontal edge of the effect.

A description of each parameter follows:

image The image.

raise_info Define the width and height of the raised area. region.

raised A value other than zero creates a 3-D raised effect, otherwise it has a
lowered effect.

21.13 Methods to Annotate an Image

Annotatelmage() annotate an image with text.
unsigned int Annotatelmage(Image *image, DrawInfo *draw_info)

Annotate() allows you to scribble text across an image. The text may be repre-
sented as a string or filename. Precede the filename with an “at” sign (@ and the
contents of the file are drawn on the image. Your text can optionally embed any
of these special characters:

%b file size in bytes.

%c comment.

%d directory in which the image resides.
%e extension of the image file.

%f original filename of the image.

%h height of image.

%i filename of the image.

%k number of unique colors.

%I image label.

%m image file format.

%n number of images in a image sequence.
%0 output image filename.

21 C API Methods 153

%p
%q
%s
%t
%u

page number of the image.

image depth (8 or 16).

image scene number.

image filename without any extension.
a unique temporary filename.

%w image width.
%x X resolution of the image.
%y v resolution of the image.

A description of each parameter follows:

image The image.
draw_info The draw info.

GetTypeMetrics() get font attributes.

unsigned int GetTypeMetrics(Image *image, const DrawlInfo *draw_info,
TypeMetric *metrics)

GetTypeMetrics() returns the following information for the supplied font and

text:

= character width

+ character height

« ascender

« descender

- text width

- text height

« maximum horizontal advance

A description of each parameter follows:

image The image.
draw_info The draw info.
metrics Return the font metrics in this structure.

21.14 Methods to Draw on an Image

CloneDrawInfo clone a draw info structure.

DrawlInfo *CloneDrawInfo(const Imagelnfo *image_info, const DrawlInfo
*draw_info)

154

ImageMagick

CloneDrawlInfo() makes a copy of the given draw info structure. If NULL is
specified, a new image info structure is created initialized to default values.

A description of each parameter follows:

image_info The image info.
draw_info The draw info.

ColorFloodfilllmage() floodfill the designed area with color.

unsigned int ColorFloodfillimage(Image *image, const DrawInfo *draw_info,
const PixelPacket target, const long X, const long y, const PaintMethod
method)

ColorFloodfill() changes the color value of any pixel that matches t ar get and
is an immediate neighbor. If the method Fi | | ToBor der Met hod is speci-
fied, the color value is changed for any neighbor pixel that does not match the
bor der col or member of i nage.

By default t ar get must match a particular pixel color exactly. However, in
many cases two colors may differ by a small amount. The f uzz member of
i mage defines how much tolerance is acceptable to consider two colors as the
same. For example, set fuzz to 10 and the color red at intensities of 100 and
102 respectively are now interpreted as the same color for the purposes of the
floodfill.

A description of each parameter follows:

image The image.

draw_info The draw info.

target The RGB value of the target color.

X,y The starting location of the operation.

method Choose either FI oodfi | | Met hod or Fi | | ToBor der Met hod.

DestroyDrawlInfo() destroy draw info.

void DestroyDrawlInfo(DrawlInfo *draw_info)

DestroyDrawlInfo() deallocates memory associated with dr aw. nf o.
A description of each parameter follows:

draw_info The draw info.

21 C API Methods 155
Drawlmage annotate an image with a graphic primitive.
unsigned int Drawlmage(Image *image, const DrawlInfo *draw_info)

Use Drawlmage() to draw a graphic primitive on your image. The primitive may
be represented as a string or filename. Precede the filename with an “at” sign (@
and the contents of the file are drawn on the image. You can affect how text is
drawn by setting one or more members of the draw info structure:

primitive The primitive describes the type of graphic to draw. Choose from
these primitives:

PointPrimitive LinePrimitive RectanglePrimitive
roundRectanglePrimitive ArcPrimitive EllipsePrimitive
CirclePrimitive PolylinePrimitive ~ PolygonPrimitive
BezierPrimitive PathPrimitive ColorPrimitive
MattePrimitive TextPrimitive ImagePrimitive

antialias The visible effect of antialias is to smooth out the rounded corners of
the drawn shape. Set to 0 to keep crisp edges.

bordercolor The Color primitive with a method of FloodFill changes the color
value of any pixel that matches fi || and is an immediate neighbor. If
bor der col or is specified, the color value is changed for any neighbor
pixel thatisnotfill.

density This parameter sets the vertical and horizontal resolution of the font.
The default is 72 pixels/inch.

fill The fill color paints any areas inside the outline of drawn shape.

font A font can be a Truetype (arial.ttf), Postscript (Helvetica), or a fully-qualified

geometry Geometry defines the baseline position where the graphic primitive
is rendered (e.g. +100+50).
method Primitives Matte and Image behavior depends on the painting method

you choose:
Point Replace Floodfull
FillToBorder Reset

points List one or more sets of coordinates as required by the graphic primitive
you selected.

pointsize The font pointsize. The default is 12.

rotate Specifies a rotation of rotate-angle degrees about a given point.

scale Specifies a scale operation by sx and sy.

skewX Specifies a skew transformation along the x-axis.

skewY Specifies a skew transformation along the y-axis.

stroke A stroke color paints along the outline of the shape.

stroke_width The width of the stroke of the shape. A zero value means no
stroke is painted.

156

ImageMagick
translate Specifies a translation by tx and ty.
A description of each parameter follows:

image The image.
draw_info The draw info.

MatteFloodfilllmage() floodfill an area with transparency.

unsigned int MatteFloodfilllmage(Image *image, const PixelPacket target,
const unsigned int opacity, const long X, const long y, const PaintMethod
method)

MatteFloodfill() changes the transparency value of any pixel that matchest ar get
and is an immediate neighbor. If the method Fi | | ToBor der Met hod is spec-
ified, the transparency value is changed for any neighbor pixel that does not
match the bor der col or member of i nage.

By default t ar get must match a particular pixel transparency exactly. How-
ever, in many cases two transparency values may differ by a small amount. The
f uzz member of i nage defines how much tolerance is acceptable to consider
two transparency values as the same. For example, set fuzz to 10 and the opacity
values of 100 and 102 respectively are now interpreted as the same value for the
purposes of the floodfill.

A description of each parameter follows:

image The image.

target The RGB value of the target color.

opacity The level of transparency: 0 is fully opaque and MaxRGB is fully trans-
parent.

X, ¥ The starting location of the operation.

method Choose either FI oodfi | | Met hod or Fi | | ToBor der Met hod.

Opaguelmage globally change a color.

unsigned int Opaquelmage(Image *image, const PixelPacket target, const
PixelPacket fill)

Opaquelmage() changes any pixel that matches col or with the color defined
byfill.

By default col or must match a particular pixel color exactly. However, in many
cases two colors may differ by a small amount. Fuzz defines how much toler-
ance is acceptable to consider two colors as the same. For example, set fuzz to 10

21 C API Methods 157

and the color red at intensities of 100 and 102 respectively are now interpreted
as the same color.

A description of each parameter follows:

image The image.
target The RGB value of the target color.
fill The replacement color.

Transparentimage() make color transparent.

unsigned int Transparentimage(Image *image, const PixelPacket target,
const unsigned int opacity)

Transparentlmage() changes the opacity value associated with any pixel that
matches col or to the value defined by opaci ty.

By default col or must match a particular pixel color exactly. However, in many
cases two colors may differ by a small amount. Fuzz defines how much toler-
ance is acceptable to consider two colors as the same. For example, set fuzz to 10
and the color red at intensities of 100 and 102 respectively are now interpreted
as the same color.

A description of each parameter follows:

image The image.
target The RGB value of the target color.
fill The replacement opacity value.

21.15 Methods to Create a Montage

CloneMontagelnfo() clone a montage info structure.

Montagelnfo *CloneMontagelnfo(const Imagelnfo *image_info, const Mon-
tagelnfo *montage_info)

CloneMontagelnfo() makes a copy of the given montage info structure. If NULL
is specified, a new image info structure is created initialized to default values.

A description of each parameter follows:

image_info The image info.
montage_info The montage info.

158 ImageMagick

DestroyMontagelnfo() destroy montage info.
void DestroyMontagelnfo(Montagelnfo *montage_info)

DestroyMontagelnfo() deallocates memory associated with mont age_i nf o.

A description of each parameter follows:

montage_info The montage info.

GetMontagelnfo() get montage info.

void GetMontagelnfo(const Imagelnfo *image_info, Montagelnfo *mon-
tage_info)

GetMontagelnfo() initializes nont age_i nf o to default values.

A description of each parameter follows:

image_info The image info.
montage_info The montage info.

Montagelmages() uniformly tile thumbnails across an image canvas.

Image *Montagelmages(const Image *image, const Montagelnfo *mon-
tage_info, ExceptionInfo *exception)

Montageimages() is a layout manager that lets you tile one or more thumbnails
across an image canvas.

A description of each parameter follows:
image The image.

montage_info The montage info.
exception Return any errors or warnings in this structure.

21.16 Image Text Attributes Methods

DestroylmageAttributes() destroy an image attribute.
DestroylmageAttributes(Image *image)

DestroylmageAttributes() deallocates memory associated with the image attribute
list.
A description of each parameter follows:

image The image.

21 C API Methods 159
GetlmageAttribute() get an image attribute.
ImageAttribute *GetlmageAttribute(const Image *image, const char *key)

GetlmageAttribute() searches the list of image attributes and returns a pointer to
attribute if it exists otherwise NULL.

A description of each parameter follows:

image The image.
key These character strings are the name of an image attribute to return.

SetimageAttribute() set an image attribute.

unsigned int SetimageAttribute(Image *image, const char *key, const char
*value)

SetlmageAttribute searches the list of image attributes and replaces the attribute
value. If it is not found in the list, the attribute name and value is added to the
list. If the attribute exists in the list, the value is concatenated to the attribute.
SetlmageAttribute returns True if the attribute is successfully concatenated or
added to the list, otherwise False. If the value is NULL, the matching key is
deleted from the list.

A description of each parameter follows:
image The image.

key, value These character strings are the name and value of an image attribute
to replace or add to the list.

21.17 Methods to Compute a Digital Signature
for an Image

Signaturelmage()
unsigned int Signaturelmage(Image *image)

Signaturelmage() computes a message digest from an image pixel stream with an
implementation of the NIST SHA-256 Message Digest algorithm. This signature
uniquely identifies the image and is convenient for determining whether two
images are identical.

A description of each parameter follows:

image The image.

160 ImageMagick

21.18 Methods to Interactively Animate an Image
Sequence

XAnimateBackgroundimage

void XAnimateBackgroundimage(Display *display, XResourcelnfo *resource_info,
Image *image)

XAnimateBackgroundimage() animates an image sequence in the background
of a window.

A description of each parameter follows:

display Specifies a connection to an X server returned from XOpenDisplay.

resource_info Specifies a pointer to a X11 XResourcelnfo structure.
image Specifies a pointer to a Image structure returned from Readlmage.

XAnimatelmage animate an image in an X window.

Image *XAnimatelmages(Display *display, XResourcelnfo *resource __info,
char **argv, const int argc, Image *image)

XAnimatelmages() displays an image via X11.

A description of each parameter follows:

display Specifies a connection to an X server returned from XOpenDisplay.

resource_info Specifies a pointer to a X11 XResourcelnfo structure.

argv Specifies the application’s argument list.

argc Specifies the number of arguments.
image Specifies a pointer to a Image structure returned from Readlmage.

21.19 Methods to Interactively Display and Edit
an Image

XDisplayBackgroundimage display an image to the background of an X window.

unsigned int XDisplayBackgroundimage(Display *display, XResourcelnfo
*resource_info, Image *image)

XDisplayBackgroundImage() displays an image in the background of a window.
A description of each parameter follows:
display Specifies a connection to an X server returned from XOpenDisplay.

resource_info Specifies a pointer to a X11 XResourcelnfo structure.
image Specifies a pointer to a Image structure returned from Readlmage.

21 C API Methods 161
XDisplaylmage display an image on an X window.

Image *XDisplaylmage(Display *display, XResourcelnfo *resource_info,
char **argyv, int argc, Image **image, unsigned long *state)

XDisplaylmage() displays an image via X11. A new image is created and re-
turned if the user interactively transforms the displayed image.

A description of each parameter follows:

display Specifies a connection to an X server returned from XOpenDisplay.
resource_info Specifies a pointer to a X11 XResourcelnfo structure.

argv Specifies the application’s argument list.
argc Specifies the number of arguments.
image The image.

21.20 Methods to Get or Set Image Pixels

AcquirePixelCache() acquire image pixels.

PixelPacket *AcquirePixelCache(Image *image, const int x, const int y,
const unsigned long columns, const unsigned long rows, Exceptioninfo
*exception)

AcquirePixelCache() acquires pixels from the in-memory or disk pixel cache as
defined by the geometry parameters. A pointer to the pixels is returned if the
pixels are transferred, otherwise a NULL is returned.

A description of each parameter follows:
image The image.

X, Y, columns, rows These values define the perimeter of a region of
exception Return any errors or warnings in this structure. pixels.

Getindexes() get indexes.
IndexPacket *GetIndexes(const Image *image)

GetIndexes() returns the colormap indexes associated with the last call to the
SetPixelCache() or GetPixelCache() methods.

A description of each parameter follows:

image The image.

162 ImageMagick

GetOnePixel() get one pixel from cache.
PixelPacket *GetOnePixel(const Image image, const int X, const int y)

GetOnePixelFromCache() returns a single pixel at the specified(x, y) location.
The image background color is returned if an error occurs.

A description of each parameter follows:

image The image.
X, ¥ These values define the location of the pixel to return.

GetPixelCache() get pixels from cache.

PixelPacket *GetPixelCache(Image *image, const int x, const int y, const
unsigned long columns, const unsigned long rows)

GetPixelCache() gets pixels from the in-memory or disk pixel cache as defined
by the geometry parameters. A pointer to the pixels is returned if the pixels are
transferred, otherwise a NULL is returned.

A description of each parameter follows:

image The image.
X, ¥, columns, rows These values define the perimeter of a region of pixels.

SetPixelCache() set pixel cache.

PixelPacket *SetPixelCache(Image *image, const int X, const int y, const
unsigned long columns, const unsigned long rows)

SetPixelCache() allocates an area to store image pixels as defined by the region
rectangle and returns a pointer to the area. This area is subsequently transferred
from the pixel cache with method SyncPixelCache. A pointer to the pixels is
returned if the pixels are transferred, otherwise a NULL is returned.

A description of each parameter follows:

image The image.
X, ¥, columns, rows These values define the perimeter of a region of pixels.

21 C API Methods 163

SyncPixelCache() synchronize pixel cache.
unsigned int SyncPixelCache(Image *image)

SyncPixelCache() saves the image pixels to the in-memory or disk cache. The
method returns True if the pixel region is synced, otherwise False.

A description of each parameter follows:

image The image.

21.21 ImageMagick Cache Views Methods

CloseCacheView close cache view.
void CloseCacheView(ViewInfo *view)

CloseCacheView() closes the specified view returned by a previous call to Open-
CacheView().
A description of each parameter follows:

view The address of a structure of type ViewlInfo.

GetCacheView get cache view.

PixelPacket *GetCacheView(ViewlInfo *view, const int X, const int y, const
unsigned long columns, const unsigned long rows)

GetCacheView() gets pixels from the in-memory or disk pixel cache as defined
by the geometry parameters. A pointer to the pixels is returned if the pixels are
transferred, otherwise a NULL is returned.

A description of each parameter follows:

view The address of a structure of type ViewlInfo.

X, ¥, columns, rows These values define the perimeter of a region of pixels.
GetCacheViewlndexes get cache view indexes.

IndexPacket *GetCacheViewIndexes(const ViewInfo *view)

GetCacheViewlndexes() returns the colormap indexes associated with the spec-
ified view.
A description of each parameter follows:

view The address of a structure of type ViewlInfo.

164 ImageMagick

GetCacheViewPixels get cache view.
PixelPacket *GetCacheViewPixels(const ViewInfo *view)

GetCacheViewPixels() returns the pixels associated with the specified specified
view.
A description of each parameter follows:

view The address of a structure of type ViewlInfo.

OpenCacheView open a cache view.
ViewlInfo *OpenCacheView(Image *image)

OpenCacheView() opens a view into the pixel cache.
A description of each parameter follows:

image The image.

SetCacheView set a cache view.

PixelPacket *SetCacheView(ViewlInfo *view, const long X, const long v,
const unsigned long columns, const unsigned long rows)

SetCacheView() gets pixels from the in-memory or disk pixel cache as defined
by the geometry parameters. A pointer to the pixels is returned if the pixels are
transferred, otherwise a NULL is returned.

A description of each parameter follows:
view The address of a structure of type ViewlInfo.
X, ¥, columns, rows These values define the perimeter of a region of pixels.
SyncCacheView synchronize a cache view.
unsigned int SyncCacheView(ViewInfo *view)

SyncCacheView() saves the view pixels to the in-memory or disk cache. The
method returns True if the pixel region is synced, otherwise False.

A description of each parameter follows:

view The address of a structure of type ViewlInfo.

21 C API Methods 165

21.22 Image Pixel FIFO

ReadStream() read a stream.

unsigned int ReadStream(const Imagelnfo *image_info, void (*Stream)(const
Image *, const void *, const size_t), ExceptionInfo *exception)

ReadStream() makes the image pixels available to a user supplied callback method
immediately upon reading a scanline with the Readlmage() method.

A description of each parameter follows:

image_info The image info.

stream A callback method.
exception Return any errors or warnings in this structure.

WriteStream() write a stream.

unsigned int WriteStream(const Imagelnfo *image_info, Image *, int(*Stream)
(const Image *, const void *, const size_t))

WriteStream() makes the image pixels available to a user supplied callback
method immediately upon writing pixel data with the Writelmage() method.

A description of each parameter follows:

image_info The image info.
stream A callback method.

21.23 Methods to Read or Write Binary Large
Objects

BlobTolmage() converta blob to an image.

Image *BlobTolmage(const Imagelnfo *image_info, const void *blob, const
size_t length, ExceptionInfo *exception)

BlobTolmage() implements direct to memory image formats. It returns the blob
as an image.

A description of each parameter follows:

image_info The image info.

blob The address of a character stream in one of the image formats understood
by ImageMagick.

length This size_t integer reflects the length in bytes of the blob.

exception Return any errors or warnings in this structure.

166 ImageMagick
DestroyBlobInfo() destroy a blob.
void DestroyBloblInfo(BloblInfo *blob)

DestroyBlobInfo() deallocates memory associated with an Bloblinfo structure.

A description of each parameter follows:

blob Specifies a pointer to a BlobInfo structure.

GetBlobInfo() initialize a blob.
void GetBlobInfo(BloblInfo *blob)

GetBlobInfo() initializes the Bloblnfo structure.
A description of each parameter follows:

blob Specifies a pointer to a BlobInfo structure.

ImageToBlob() convertimage to a blob.

void *ImageToBlob(const Imagelnfo *image_info, Image *image, size.t
*[ength, ExceptionInfo *exception)

ImageToBlob() implements direct to memory image formats. It returns the im-
age as a blob and its length. The magick member of the Image structure deter-
mines the format of the returned blob(GIG, JPEG, PNG, etc.).

A description of each parameter follows:

image_info Specifies a pointer to an Imagelnfo structure.

image The image.

length This pointer to a size_t integer sets the initial length of the blob. On
return, it reflects the actual length of the blob.

exception Return any errors or warnings in this structure.

21.24 ImageMagick Registry Methods

DeleteMagickRegistry delete a blob from the registry.

unsigned int DeleteMagickRegistry(const long id)

21 C API Methods 167

DeleteMagickRegistry() deletes an entry in the registry as defined by the id. It
returns True if the entry is deleted otherwise False if no entry is found in the
registry that matches the id.

A description of each parameter follows:

id The registry id.

GetlmageFromMagickRegistry get an image from the registry by name.

Image *GetlmageFromMagickRegistry(const char *name, Exceptioninfo
*exception)

GetlmageFromMagickRegistry() gets an image from the registry as defined by
its name. If the blob that matches the name is not found, NULL is returned.
A description of each parameter follows:

name The image name.
exception Return any errors or warnings in this structure.

GetMagickRegistry get a blob from the registry.

const void *GetMagickRegistry(const long id,RegistryType *type, size_t
*[ength, ExceptionInfo *exception)

GetMagickRegistry() gets a blob from the registry as defined by the id. If the
blob that matches the id is not found, NULL is returned.

A description of each parameter follows:
id The registry id.
type The registry type.

length The blob length in number of bytes.
exception Return any errors or warnings in this structure.

SetMagickRegistry save a blob to the registry.

long SetMagickRegistry(const void *blob,const size_t length, Exception-
Info *exception)

SetMagickRegistry() sets a blob into the registry and returns a unique ID. If an
error occurs, -1 is returned.

A description of each parameter follows:

168

ImageMagick

type The registry type.

blob The address of a Binary Large OBject.

length The blob length in number of bytes.

exception Return any errors or warnings in this structure.

21.25 Methods to Read or List ImageMagick

Image formats

DestroyMagickinfo() destroy magick info.

void DestroyMagickInfo()

DestroyMagicklnfo() deallocates memory associated MagickInfo list.

GetlmageMagick() return an image format that matches the magic number.

char *GetlmageMagick(const unsigned char *magick, const size_t length)

Method GetlmageMagick searches for an image format that matches the speci-
fied magick string. If one is found the tag is returned otherwise NULL.
A description of each parameter follows:

magick The image format we are searching for.
length The length of the binary string.

GetMagickConfigurePath() get the path of a configuration file.

char *GetMagickConfigurePath(const char *filename)

GetMagickConfigurePath() searches a number of pre-defined locations for the
specified ImageMagick configuration file and returns the path. The search order
follows:

<current directory>/
<client path>/

$MAG CK_HOVE/

$HOVE/ . magi ck/

Magi ckLi bPat h

Magi ckModul esPat h
Magi ckShar ePat h

A description of each parameter follows:

filename The desired configuration file.

21 C API Methods 169

GetMagickinfo() get image format attributes.
MagicklInfo *GetMagicklInfo(const char *tag)

GetMagickInfo() returns a pointer MagickInfo structure that matches the speci-
fied tag. If tag is NULL, the head of the image format list is returned.

A description of each parameter follows:

tag The image format we are looking for.
exception Return any errors or warnings in this structure.

GetMagickVersion() get the ImageMagick version.
char *GetMagick\ersion(unsigned int *version)

GetMagickVersion() returns the ImageMagick API version as a string and as a
number.
A description of each parameter follows:

version The ImageMagick version is returned as a number.

InitializeMagick() initialize the ImageMagick API.
InitializeMagick(const char *path)

InitializeMagick() initializes the ImageMagick environment.

A description of each parameter follows:

path The execution path of the current ImageMagick client.

ListMagickinfo() list the recognized image formats.
void ListMagickInfo(FILE *file)

ListMagicklInfo() lists the image formats to a file.

A description of each parameter follows:

file A file handle.
exception Return any errors or warnings in this structure.

170 ImageMagick

RegisterMagickinfo() register a new image format.
MagicklInfo *RegisterMagickinfo(Magickinfo *entry)

RegisterMagickInfo() adds attributes for a particular image format to the list of
supported formats. The attributes include the image format tag, a method to read
and/or write the format, whether the format supports the saving of more than one
frame to the same file or blob, whether the format supports native in-memory
1/0, and a brief description of the format.

A description of each parameter follows:

entry The magick info.

SetMagickinfo()
MagicklInfo *SetMagickInfo(const char *tag)

Method SetMagicklInfo allocates a MagicklInfo structure and initializes the mem-
bers to default values.

A description of each parameter follows:
tag a character string that represents the image format associated with the Mag-

ickInfo structure.

UnregisterMagicklinfo()
unsigned int UnregisterMagickInfo(const char *tag)

Method UnregisterMagicklInfo removes a tag from the magick info list. It returns
False if the tag does not exist in the list otherwise True.

A description of each parameter follows:

tag a character string that represents the image format we are looking for.

21.26 ImageMagick Error Methods

CatchlmageException()

CatchlmageException(Image *image)

21 C API Methods 171

CatchlmageException() returns if no exceptions are found in the image sequence,
otherwise it determines the most severe exception and reports it as a warning or
error depending on the severity.

A description of each parameter follows:

image An image sequence.

DestroyExceptioninfo() destroy exception info.
void DestroyExceptioninfo(ExceptionInfo *exception)

DestroyExceptioninfo() deallocates memory associated with except i on.

A description of each parameter follows:

exception The exception info.

GetExceptioninfo get exception info.
GetExceptioninfo(ExceptionInfo *exception)

GetExceptioninfo() initializes except i on to default values.

A description of each parameter follows:

exception The exception info.

GetlmageException() get the severest error.
GetlmageException(Image *image, ExceptionInfo *exception)
GetlmageException() traverses an image sequence and returns any error more

severe than noted by the exception parameter.
A description of each parameter follows:

image An image sequence.
exception Return the highest severity exception in the segeunce.

172 ImageMagick

MagickError() declare an error.

void MagickError(const ExceptionType error, const char *reason, const
char *description)

MagickError() calls the error handler method with an error reason.

A description of each parameter follows:

exception The error severity.
reason Define the reason for the error.
description Describe the error.

MagickWarning() declare a warning.

void MagickWarning(const ExceptionType warning, const char *reason,
const char *description)

MagickWarning() calls the warning handler method with a warning reason.

A description of each parameter follows:

warning The warning severity.

reason Define the reason for the warning.

description Describe the warning.
SetErrorHandler() set the warning handler.

ErrorHandler SetErrorHandler(ErrorHandler handler)

SetErrorHandler() sets the error handler to the specified method and returns the
previous error handler.

A description of each parameter follows:

handler The method to handle errors.

SetWarningHandler() set the warning handler.
ErrorHandler SetWarningHandler(ErrorHandler handler)

SetWarningHandler() sets the warning handler to the specified method and re-
turns the previous warning handler.

A description of each parameter follows:

handler The method to handle warnings.

21 C API Methods 173

ThrowException() throw an exception.

void ThrowException(Exceptioninfo *exception, const ExceptionType sever-
ity, const char *reason, const char *description)

ThrowException() throws an exception with the specified severity code, reason,
and optional description.

A description of each parameter follows:

exception The exception.

severity Define the severity of the exception.
reason Define the reason for the exception.
description Describe the exception.

21.27 ImageMagick Memory Allocation Methods

AcquireMemory allocate memory.
void *AcquireMemory(const size_t size)
AcquireMemory() returns a pointer to a block of memory at least size bytes

suitably aligned for any use.
A description of each parameter follows:

size The size of the memory in bytes to allocate.

LiberateMemory free allocated memory.
void LiberateMemory(void **memory)

LiberateMemory() frees memory that has already been allocated.

A description of each parameter follows:

span A pointer to a block memory to free for reuse.

ReacquireMemory change the size of allocated memory.

void ReacquireMemory(void **memory, const size_t size)

174

ImageMagick

ReacquireMemory() changes the size of allocated memory and returns a pointer
to the (possibly moved) block. The contents will be unchanged up to the lesser
of the new and old sizes.

A description of each parameter follows:

memory A pointer to a memory allocation. On return the pointer may change
but the contents of the original allocation will not.
size The new size of the allocated memory.

21.28 ImageMagick Progress Monitor Methods

MagickMonitor measure progress toward completion of a task.

void MagickMonitor(const char *text, const off_t quantum, const off_t span)

MagickMonitor() calls the monitor handler method with a text string that de-
scribes the task and a measure of completion.

A description of each parameter follows:

guantum The position relative to the span parameter which represents how
much progress has been made toward completing a task.
span The span relative to completing a task.

SetMonitorHandler define a custom progress monitor.

MonitorHandler SetMonitorHandler(MonitorHandler handler)

SetMonitorHandler() sets the monitor handler to the specified method and re-
turns the previous monitor handler.

A description of each parameter follows:

handler The progress monitor handler method.

C++ API Methods

This section was converted from HTML files in the “www/Magick++" directory
of the ImageMagick distribution. Some of the files contain figures which are not
yet visible here. Refer to the HTML to see them.

175

Magick++ provides a simple C++ APl to the ImageMagick image processing
library which supports reading and writing a huge number of image formats as
well as supporting a broad spectrum of traditional image processing
operations. The ImageMagick C API is complex and the data structures are
currently not documented. Magick++ provides access to most of the features
available from the C APl but in a simple object-oriented and well-documented
framework.

Magick++ is intended to support commercial-grade application development. In
order to avoid possible conflicts with the user’s application, all symbols
contained in Magick++ (included by the header <Magick++._.h>) are scoped to
the namespace Magick. Symbols from the ImageMagick C library are imported
under the MagickLib namespace to avoid possible conflicts and ImageMagick
macros are only included within the Magick++ implementation so they won’t
impact the user’s application.

The core class in Magick++ is the Image class. The Image class provides
methods to manipulate a single image frame (e.g. a JPEG image). Standard
Template Library (STL) compatable algorithms and function objects are
provided in order to manipulate multiple image frames or to read and write
file formats which support multiple image frames (e.g. GIF animations, MPEG
animations, and Postscript files).

The Image class supports reference-counted memory management which supports
the semantics of an intrinsic variable type (e.g. ”int’) with an extremely
efficient operator = and copy constructor (only a pointer is assigned) while
ensuring that the image data is replicated as required so that it the image
may be modified without impacting earlier generations. Since the Image class
manages heap memory internally, images are best allocated via C++ automatic
(stack-based) memory allocation. This support allows most programs using
Magick++ to be written without using any pointers, simplifying the
implementation and avoiding the risks of using pointers.

The image class uses a number of supportive classes in order to specify
arguments. Colors are specified via the Color class. Colors specified in
X11-style string form are implicitly converted to the Color class. Geometry
arguments (those specifying width, height, and/or x and y offset) are
specified via the Geometry class. Similar to the Color class, geometries
specified as an Xll-style string are implicitly converted to the Geometry
class. Two dimensional drawable objects are specified via the Drawable
class. Drawable objects may be provided as a single object or as a list of
objects to be rendered using the current image options. Montage options (a
montage is a rendered grid of thumbnails in one image) are specified via the
Montage class.

Errors are reported using C++ exceptions derived from the Exception class,
which is itself derived from the standard C++ exception class. Exceptions
are reported synchronous with the operation and are caught by the first
matching try block as the stack is unraveled. This allows a clean coding
style in which multiple related Magick++ commands may be executed with
errors handled as a unit rather than line-by-line. Since the Image object
provides reference-counted memory management, unreferenced images on the
stack are automatically cleaned up, avoiding the potential for memory leaks.

For ease of access, the documentation for the available user-level classes
is available via the following table.

Magick++ User-Level Classes
Blob Binary Large OBject container.
CoderlInfo Report information about supported image formats (use with
coderiInfoList())
Color Color specification.

Drawable Drawable shape (for input to “draw”).

22 C++ API Methods 177

Exception C++ exception objects.

Geometry Geometry specification.

Image Image frame. This is the primary object in Magick++.
Montage Montage options for montagelmages() -

Pixels Low-level access to image pixels.

STL STL algorithms and function objects for operating on containers
of image frames.

TypeMetricContainer for font type metrics (use with
Image: : fontTypeMetrics).

22.1 Magick::Blob

Blob provides the means to contain any opaque data. It is named after the
term "Binary Large OBject" commonly used to describe unstructured data (such
as encoded images) which is stored in a database. While the function of Blob
is very simple (store a pointer and and size associated with allocated
data), the Blob class provides some very useful capabilities. In particular,
it is fully reference counted just like the Image class.

The Blob class supports value assignment while preserving any outstanding
earlier versions of the object. Since assignment is via a pointer
internally, Blob is efficient enough to be stored directly in an STL
container or any other data structure which requires assignment. In
particular, by storing a Blob in an associative container (such as STL’s
map”) it is possible to create simple indexed in-memory "database’ of
Blobs.

Magick++ currently uses Blob to contain encoded images (e.g. JPEG) as well
as ICC and IPTC profiles. Since Blob is a general-purpose class, it may be
used for other purposes as well.
The methods Blob provides are shown in the following table:
Blob Methods
Method Return Type Signature(s) Description

Blob void Default constructor

const void*
Construct object with

data_, data, making a copy of
size_t
length_ the supplied data

const Blob& Copy constructor
blob_ (reference counted)

operator= Blob const Blob& blob_ Assignment operator
(reference counted)

Update object contents,
making a copy of the
update void const void* data_, supplied data. Any
size_t length_
existing data in the
object is deallocated.

data const void* void Obtain pointer to data
length size_t void Obtain data length

Update object contents,
using supplied pointer
directly (no copy) Any
existing data in the
object is deallocated.
The user must ensure that
the pointer supplied is
not deleted or otherwise

void* data_, size_t modified after it has
been supplied to this
updateNoCopyvoid length_, Blob::Allocator method. The optional
allocator_ =

Blob: :NewAl locator allocator_ parameter

22 C++ API Methods

179

allows the user to
specify if the C
(MallocAllocator) or C++
(NewAllocator) memory
allocation system was
used to allocate the
memory. The default is to
use the C++ memory
allocator.

22.2 Magick::Coderinfo

The CoderlInfo class provides the means to provide information regarding
ImageMagick support for an image format (designated by a magick string). It
may be used to provide support for a specific named format (provided as an
argument to the constructor), or as an element of a container when format
support is queried using the coderiInfoList() templated function.

The following code fragment illustrates how CoderiInfo may be used.

CoderiInfo info(""GIF™);
cout << info->name() <<
cout << "Readable = "
if (info->isReadable())
cout << ““true";
else
cout << "false";
cout << :
cout << "Writable = *';
if (info->isWritable(Q))
cout << ““true";
else
cout << "false";
cout << ", "
cout << "Multiframe = *';
if (info->isMultiframe())
cout << ""true';
else
cout << "false";
cout << endl;

"1 (" << info->description() << ") : "';

The methods available in the CoderInfo class are shown in the following
table:

CoderInfo Methods
Method Returns Signature Description
Construct object corresponding to
Coderinfo void named format (e.g. "GIF™). An
exception is thrown if the format is
not supported.
name std::string void Format name (e.g. "GIF™).
description std::string void Format description (e.g. '""CompuServe
graphics interchange format™).
isReadable bool void Format is readable.

isWritable bool void Format is writeable.

isMultiFrame bool void Format supports multiple frames.

22.3 Magick::Color

Color is the base color class in Magick++. It is a simple container class
for the pixel red, green, blue, and alpha values scaled to fit ImageMagick’s
Quantum size. Normally users will instantiate a class derived from Color
which supports the color model that fits the needs of the application. The
Color class may be constructed directly from an X1l-style color string.

Available derived color specification classes are shown in the following
table:

Color Derived Classes

ColorRGB Representation of RGB color with red, green, and blue specified
as ratios (0 to 1)

ColorGrayRepresentation of grayscale RGB color (equal parts red, green,
and blue) specified as a ratio (0 to 1)

ColorMonoRepresentation of a black/white color (true/false)

ColorYUV Representation of a color in the YUV colorspace

ImageMagick may be compiled to support 32 or 64 bit pixels of type
PixelPacket. This is controlled by the value of the QuantumDepth define. The
default is 64 bit pixels, which provide the best accuracy. If memory
consumption must be minimized, or processing time must be minimized, then
ImageMagick may be compiled with QuantumDepth=8. The following table shows
the relationship between QuantumDepth, the type of Quantum, and the overall
PixelPacket size.

Effect Of QuantumDepth Values
QuantumDepth Quantum Typedef PixelPacket Size
8 unsigned char 32 bits

16 unsigned short 64 bits

Color Class

The Color base class is not intended to be used directly. Normally a user
will construct a derived class or inherit from this class. Color arguments
are must be scaled to fit the Quantum size. The Color class contains a
pointer to a PixelPacket, which may be allocated by the Color class, or may
refer to an existing pixel in an image.

An alternate way to contruct the class is via an Xll-compatable color
specification string.

class Color
{
public:
Color (Quantum red_,
Quantum green_,
Quantum blue_);
Color (Quantum red_,
Quantum green_,
Quantum blue_,
Quantum alpha_);
Color (const std::string &xllcolor_);
Color (const char * xllcolor_);
Color (void);
virtual “Color (void);

182 ImageMagick

Color (const Color & color_);

// Red color (range O to MaxRGB)
void redQuantum (Quantum red_);
Quantum redQuantum (void) const;

// Green color (range 0 to MaxRGB)
void greenQuantum (Quantum green_);
Quantum greenQuantum (void) const;

// Blue color (range 0 to MaxRGB)
void blueQuantum (Quantum blue_);
Quantum blueQuantum (void) const;

// Alpha level (range OpaqueOpacity=0 to TransparentOpacity=MaxRGB)
void alphaQuantum (Quantum alpha_);
Quantum alphaQuantum (void) const;

// Scaled (to 1.0) version of alpha for use in sub-classes
// (range opaque=0 to transparent=1.0)

void alpha (double alpha_);
double alpha (void) const;

// Does object contain valid color?
void isvalid (bool valid_);
bool isvalid (void) const;

// Set color via X11 color specification string
const Coloré& operator= (const std::string &xllcolor_);
const Coloré& operator= (const char * xllcolor_);

// Assignment operator
Color& operator= (const Color& color_);

// Return X11 color specification string
/* virtual */ operator std::string() const;

// Return ImageMagick PixelPacket
operator PixelPacket() const;

// Construct color via ImageMagick PixelPacket
Color (const PixelPacket &color_);

// Set color via ImageMagick PixelPacket
const Coloré& operator= (PixelPacket &color_);

ColorRGB

Representation of an RGB color. All color arguments have a valid range of
0.0 - 1.0.

class ColorRGB : public Color

public:
ColorRGB (double red_, double green_, double blue_);
ColorRGB (void);
ColorRGB (const Color & color_);
/* virtual */ ~ColorRGB (void);

void red (double red_);
double red (void) const;

void green (double green_);
double green (void) const;
void blue (double blue_);

double blue (void) const;

22 C++ API Methods 183

// Assignment operator from base class
ColorRGB& operator= (const Coloré& color_);

}s

ColorGray

Representation of a grayscale color (in RGB colorspace). Grayscale is simply
RGB with equal parts of red, green, and blue. All double arguments have a
valid range of 0.0 - 1.0.

class ColorGray : public Color

public:
ColorGray (double shade_);
ColorGray (void);
ColorGray (const Color & color_);
/* virtual */ “ColorGray Q;

void shade (double shade_);
double shade (void) const;

// Assignment operator from base class
ColorGray& operator= (const Color& color_);

ColorMono

Representation of a black/white pixel (in RGB colorspace). Color arguments
are constrained to “false” (black pixel) and “true” (white pixel).

class ColorMono : public Color

public:
ColorMono (bool mono_);
ColorMono (void);
ColorMono (const Color & color_);
/* virtual */ ~ColorMono);

void mono (bool mono_);
bool mono (void) const;

// Assignment operator from base class
ColorMono& operator= (const Color& color_);

};
ColorHsL
Representation of a color in Hue/Saturation/Luminosity (HSL) colorspace.
class ColorHSL : public Color
public:
ColorHSL (double hue_, double saturation_, double luminosity_);
ColorHsL (void);

ColorHSL (const Color & color_);
/* virtual */ ~ColorHSL ();

void hue (double hue_);

double hue (void) const;

void saturation (double saturation_);
double saturation (void) const;

void luminosity (double luminosity_);

double luminosity (void) const;

184 ImageMagick

// Assignment operator from base class
ColorHSL& operator= (const Coloré& color_);

};

ColorYuv

Representation of a color in YUV colorspace (used to encode color for
television transmission).

Argument ranges:
Y: 0.0 through 1.0
U: -0.5 through 0.5
V: -0.5 through 0.5

class ColorYUV : public Color

public:
ColorYUV (double y_, double u_, double v_);
ColorYUV (void);
ColorYUV (const Color & color_);
/* virtual */ “ColorYUV (void);

void u (double u_);
double u (void) const;
void v (double v_);
double v (void) const;
void y (double y_);
double y (void) const;

// Assignment operator from base class
ColorYUV& operator= (const Coloré& color_);

22.4 Magick::Drawable

Drawable provides a convenient interface for preparing vector, image, or
text arguments for the Image::draw() method. Each instance of a Drawable
sub-class represents a single drawable object. Drawable objects may be drawn
"one-by-one" via multiple invocations of the Image draw() method, or may be
drawn "all-at-once" by passing a list of Drawable objects to the Image
draw() method. The one-by-one approach is convenient for simple drawings,
while the list-based approach is appropriate for drawings which require more
sophistication.

The following is an example of using the Drawable subclasses with the
one-by-one approach to draw the following figure:

[Drawable_example_1.png]
#include <string>
#include <iostream>
#include <Magick++_h>

using namespace std;
using namespace Magick;

int main(int /*argc*/,char **/*argv*/)

{

try {
// Create base image (white image of 300 by 200 pixels)
Image image(Geometry(300,200), Color(white'™));
// Set draw options
image.strokeColor(*'red™); // Outline color
image.fillColor(**'green™); // Fill color
image.strokeWidth(5);
// Draw a circle
image.draw(DrawableCircle(100,100, 50,100));
// Draw a rectangle
image.draw(DrawableRectangle(200,200, 270,170));
// Display the result
image.display();

catch(exception &error_)

cout << "Caught exception: " << error_.what() << endl;
return 1;

}

return 0;

3

Since Drawable is an object it may be saved in an array or a list for later
(perhaps repeated) use. The following example shows how to draw the same
figure using the list-based approach

#include <string>
#include <iostream>
#include <list>
#include <Magick++.h>

using namespace std;
using namespace Magick;

int main(int /*argc*/,char **/*argv*/)
{
try {

186

ImageMagick

// Create base image (white image of 300 by 200 pixels)
Image image(Geometry(300,200), Color(white™));

// Construct drawing list
std::list<Magick: :Drawable> drawList;

// Add some drawing options to drawing list
drawList.push_back(DrawableStrokeColor(*'red")); // Outline color
drawList.push_back(DrawableStrokeWidth(5)); // Stroke width
drawList.push_back(DrawableFillColor(‘'green')); // Fill color

// Add a

Circle to drawing list

drawList.push_back(DrawableCircle(100,100, 50,100));

// Add a

Rectangle to drawing list

drawList.push_back(DrawableRectangle(200,100, 270,170));

// Draw everything using completed drawing list
image.draw(drawList);

// Display the result
image.display();

catch(exception &error_)

cout << "Caught exception: "

return 1;

}

return 0;

}

<< error_.what() << endl;

Drawable depends on the simple Coordinate structure which represents a pair

of x,y coodinates.

shown in the following table:

Method/Member

Coordinate

Coordinate Structure Methods

Signature

void

double x_, double y_

double x_

double y_

Description

Default Constructor

X coordinate member

y coordinate member

The Drawable classes are shown in the following table:

Sub-Class

DrawableAffine

DrawableAngle

DrawableArc

Drawable Classes
Constructor Signature
double sx_, double sy , double
rx_, double ry_, double tx_,
double ty_

double angle_

double startX_, double

startY_, double endX_, double
endY_, double startDegrees,
double endDegrees_

The methods provided by the Coordinate structure are

Constructor, setting first & second

Description

Set scaling, rotation, and
translation (coordinate
transformation).

Set drawing angle

Draw an arc using the stroke
color and based on the circle
starting at coordinates
startX_,startY_, and ending

with coordinates endX_,endY_,
and bounded by the rotational
arc startDegrees_,endDegrees_

22 C++ API Methods

DrawableBezier

DrawableCircle

DrawableColor

DrawableCompositelmage

const
std::list<Magick: :Coordinate>
&coordinates_

double originX_, double
originY_, double perimX_,
double perimYy_

double x_, double y_,
PaintMethod paintMethod_

double x_, double y_, const
std::string &filename_

double x_, double y_, const
Image &image_

double x_, double y_, double
width_, double height_, const
std::string &filename_

double x_, double y_, double
width_, double height_, const
Image &image_

187

Draw a Bezier curve using the
stroke color and based on the
coordinates specified by the
coordinates_ list.

Draw a circle using the
stroke color and thickness
using specified origin and
perimeter coordinates. If a
fill color is specified, then
the object is filled.

Color image according to
paintMethod. The point method
recolors the target pixel.
The replace method recolors
any pixel that matches the
color of the target pixel.
Floodfill recolors any pixel
that matches the color of the
target pixel and is a
neighbor, whereas
filltoborder recolors any
neighbor pixel that is not
the border color. Finally,
reset recolors all pixels.

Composite current image with
contents of specified image,
at specified coordinates. If
the matte attribute is set to
true, then the image
composition will consider an
alpha channel, or
transparency, present in the
image file so that non-opaque
portions allow part (or all)
of the composite image to
show through.

Composite current image with
contents of specified image,
rendered with specified width
and height, at specified
coordinates. If the matte
attribute is set to true,
then the image composition
will consider an alpha
channel, or transparency,
present in the image file so
that non-opaque portions
allow part (or all) of the
composite image to show
through. 1f the specified
width or height is zero, then
the image is composited at
its natural size, without
enlargement or reduction.

188

DrawableTextDecoration

DrawableDashArray

DrawableDashOffset

DrawableEllipse

DrawableFillColor

double x_, double y_, double
width_, double height_, const
std::string &filename_,
CompositeOperator composition_

double x_, double y_, double
width_, double height_, const
Image &image_,
CompositeOperator composition_

DecorationType decoration_

const unsigned int* dasharray_

unsigned int offset_

double originX_, double
originY_, double radiusX_,
double radiusY_, double
arcStart_, double arckEnd_

const Color &color_

ImageMagick

Composite current image with
contents of specified image,
rendered with specified width
and height, using specified
composition algorithm, at
specified coordinates. If the
matte attribute is set to
true, then the image
composition will consider an
alpha channel, or
transparency, present in the
image file so that non-opaque
portions allow part (or all)
of the composite image to
show through. If the
specified width or height is
zero, then the image is
composited at its natural
size, without enlargement or
reduction.

Specify decoration to apply
to text.

Specify the pattern of dashes
and gaps used to stroke
paths. The strokeDashArray
represents a zero-terminated
array of numbers that specify
the lengths of alternating
dashes and gaps in pixels. If
an odd number of values is
provided, then the list of
values is repeated to yield
an even number of values. A
typical strokeDashArray_
array might contain the
members 5 3 2 0, where the
zero value indicates the end
of the pattern array.

Specify the distance into the
dash pattern to start the
dash. See documentation on
SVG”s stroke-dashoffset
property for usage details.

Draw an ellipse using the
stroke color and thickness,
specified origin, x & y
radius, as well as specified
start and end of arc in
degrees. If a fill color is
specified, then the object is
filled.

Specify drawing object fill
color.

Specify the algorithm which
is to be used to determine
what parts of the canvas are

22 C++ API Methods

DrawableFillRule

DrawableFillOpacity

DrawableFont

DrawableGravity

DrawableLine

DrawableMatte

DrawableMiterLimit

FillRule fillRule_

double opacity_

const std::string &font_

const std::string &family_,
StyleType style_,

unsigned long weight_,
StretchType stretch_

GravityType gravity_

double startX_, double
startY_, double endX_, double
endY_

double x_, double y_,
PaintMethod paintMethod_

unsigned int miterLimit_

189

included inside the shape.
See documentation on SVG’s
fill-rule property for usage
details.

Specify opacity to use when
drawing using fill color.

Specify font name to use when
drawing text.

Specify font family, style,
weight (one of the set { 100
| 200 | 300 | 400 | 500 | 600
| 700 | 800 | 900 } with 400
being the normal size), and
stretch to be used to select
the font used when drawing

text. Wildcard matches may be
applied to style via the
AnyStyle enumeration, applied
to weight if weight is zero,
and applied to stretch via
the AnyStretch enumeration.

Specify text positioning
gravity.

Draw a line using stroke
color and thickness using
starting and ending
coordinates

Change the pixel matte value
to transparent. The point
method changes the matte
value of the target pixel.
The replace method changes
the matte value of any pixel
that matches the color of the
target pixel. Floodfill
changes the matte value of
any pixel that matches the
color of the target pixel and
is a neighbor, whereas
filltoborder changes the
matte value of any neighbor
pixel that is not the border
color, Finally reset changes
the matte value of all
pixels.

Specify miter limit. When two
line segments meet at a sharp
angle and miter joins have
been specified for
lineJoin’, it is possible
for the miter to extend far
beyond the thickness of the
line stroking the path. The
miterLimit” imposes a limit
on the ratio of the miter
length to the “lineWidth”.
The default value of this

190

DrawablePath

DrawablePoint

DrawablePointSize

DrawablePolygon

DrawablePolyline

const std::list<Magick: :VPath>
&path_

double x_, double y_

double pointSize_

const
std:: list<Magick: :Coordinate>
&coordinates_

const
std::list<Magick: :Coordinate>
&coordinates_

DrawablePopGraphicContext void

DrawablePushGraphicContextvoid

DrawablePushPattern

std::string &id_, long x_,
long y_, long width_, long
height_

ImageMagick

parameter is 4.

Draw on image using vector
path.

Draw a point using stroke
color and thickness at
coordinate

Set font point size.

Draw an arbitrary polygon
using stroke color and
thickness consisting of three
or more coordinates contained
in an STL list. If a fill
color is specified, then the
object is filled.

Draw an arbitrary polyline
using stroke color and
thickness consisting of three
or more coordinates contained
in an STL list. If a fill
color is specified, then the
object is filled.

Pop Graphic Context. Removing
the current graphic context
from the graphic context
stack restores the options to
the values they had prior to
the preceding
DrawablePushGraphicContext
operation.

Push Graphic Context. When a
graphic context is pushed,
options set after the context
is pushed (such as coordinate
transformations, color
settings, etc.) are saved to
a new graphic context. This
allows related options to be
saved on a graphic context
"stack"™ in order to support
heirarchical nesting of
options. When
DrawablePopGraphicContext is
used to pop the current
graphic context, the options
in effect during the last
DrawablePushGraphicContext
operation are restored.

Start a pattern definition
with arbitrary pattern name
specified by id_, pattern
offset specified by x_ and
y_, and pattern size
specified by width_ and
height_. The pattern is
defined within the coordinate
system defined by the
specified offset and size.
Arbitrary drawing objects
(including
DrawableCompositelmage) may

22 C++ API Methods

DrawablePopPattern

DrawableRectangle

DrawableRotation

DrawableRoundRectangle

DrawableScaling

DrawableSkewX

DrawableSkewY

DrawableStrokeAntialias

DrawableStrokeColor

DrawableStrokeLineCap

DrawableStrokeLineJoin

void

double upperLeftX_, double
upperLeftY_, double
lowerRightX_, double
lowerRighty

double angle_

double centerX_, double
centerY_, double width_,
double hight_, double
cornerWidth_, double
cornerHeight_

double x_, double y_

double angle_

double angle_

bool flag_

const Color &color_

LineCap linecap_

LineJdoin linejoin_

191

be specified between
DrawablePushPattern and
DrawablePopPattern in order
to draw the pattern. Normally
the pair
DrawablePushGraphicContext &
DrawablePopGraphicContext are
used to enclose a pattern
definition. Pattern
definitions are terminated by
a DrawablePopPattern object.

Terminate a pattern
definition started via
DrawablePushPattern.

Draw a rectangle using stroke
color and thickness from
upper-left coordinates to
lower-right coordinates. If
a Fill color is specified,
then the object is filled.

Set rotation to use when
drawing (coordinate
transformation).

Draw a rounded rectangle
using stroke color and
thickness, with specified
center coordinate, specified
width and height, and
specified corner width and
height. 1If a fill color is
specified, then the object is
filled.

Apply scaling in x and y
direction while drawing
objects (coordinate
transformation).

Apply Skew in X direction
(coordinate transformation)

Apply Skew in Y direction

Antialias while drawing lines
or object outlines.

Set color to use when drawing
lines or object outlines.

Specify the shape to be used
at the end of open subpaths
when they are stroked. Values
of LineCap are UndefinedCap,
ButtCap, RoundCap, and
SquareCap.

Specify the shape to be used
at the corners of paths (or
other vector shapes) when
they are stroked. Values of
LineJoin are UndefinedJoin,
MiterJoin, RoundJoin, and

192

ImageMagick

BevelJoin.

DrawableStrokeOpacity double opacity_ Opacity to use when drawing
lines or object outlines.

DrawableStrokeWidth double width_ Set width to use when drawing
lines or object outlines.

Annotate image with text
using stroke color, font,
font pointsize, and box color
(text background color), at
specified coordinates. If

DrawableText double x_, double y_, text contains special format

std::string text_ characters the image

filename, type, width,
height, or other image
attributes may be
incorporated in the text (see
label()).

DrawableTranslation double x_, double y_ Apply coordinate translation
(set new coordinate origin).

DrawableTextAntialias bool flag_ Antialias while drawing text.

Dimensions of the output
viewbox. If the image is to
be written to a vector format
(e-g- MVG or SVG), then a
DrawablePushGraphicContext()

unsigned long x1_, unsigned object should be pushed to
DrawableViewbox long y1_, unsigned long x2_, the head of the list,
unsigned long y2_ followed by a

DrawableViewbox() statement
to establish the output
canvas size. A matching
DrawablePopGraphicContext()
object should be pushed to
the tail of the list.

Vector Path Classes

The vector paths supported by Magick++ are based on those supported by the
SVG XML specification. Vector paths are not directly drawable, they must
first be supplied as a constructor argument to the DrawablePath class in
order to create a drawable object. The DrawablePath class effectively
creates a drawable compound component which may be replayed as desired. If
the drawable compound component consists only of vector path objects using
relative coordinates then the object may be positioned on the image by
preceding it with a DrawablePath which sets the current drawing coordinate.
Alternatively coordinate transforms may be used to translate the origin in
order to position the object, rotate it, skew it, or scale it.

The "moveto™ commands

The "moveto" commands establish a new current point. The effect is as if the
“pen” were lifted and moved to a new location. A path data segment must
begin with either one of the ""moveto™ commands or one of the "arc" commands.
Subsequent “"moveto' commands (i.e., when the "moveto" is not the first
command) represent the start of a new subpath:

Moveto Classes

22 C++ API Methods 193

Sub-Class Constructor Signature Description

Start a new sub-path at
the given coordinate.
PathMovetoAbs indicates
that absolute
coordinates will
follow; PathMovetoRel
indicates that relative
coordinates will
follow. If a relative

PathMovetoAbs const Magick: :Coordinate moveto appears as the

&coordinate_ first element of the

path, then it is
treated as a pair of
absolute coordinates.
If a moveto is followed
by multiple pairs of
coordinates, the
subsequent pairs are
treated as implicit
lineto commands.

const std::list<Magick::Coordinate>
&coordinates_

PathMovetoRel const Magick: :Coordinate
&coordinate_

const std::list<Magick::Coordinate>
&coordinates_
The "closepath™ command

The "closepath™ command causes an automatic straight line to be drawn from
the current point to the initial point of the current subpath:

Closepath Classes

Sub-Class Constructor Description
Signature

Close the current subpath by drawing a
straight line from the current point to

PathClosePath void current subpath’s most recent starting
point (usually, the most recent moveto
point).

The "lineto" commands

The various "lineto" commands draw straight lines from the current point to
a new point:

Lineto Classes
Sub-Class Constructor Signature Description

Draw a line from the
current point to the
given coordinate which
becomes the new current
point. PathLinetoAbs
indicates that absolute

194

PathLinetoAbs const Magick: :Coordinate&
coordinate_

const
std::list<Magick: :Coordinate>
&coordinates_

PathLinetoRel const Magick::Coordinate&
coordinate_

const
std::list<Magick: :Coordinate>
&coordinates_

PathLinetoHorizontalAbsdouble x_

PathLinetoHorizontalRel

PathLinetoVerticalAbs double y_

PathLinetoVerticalRel

The curve commands

These three groups of commands draw curves:

ImageMagick

coordinates are used;
PathLinetoRel indicates
that relative
coordinates are used. A
number of coordinates
pairs may be specified
in a list to draw a
polyline. At the end of
the command, the new
current point is set to
the final set of
coordinates provided.

Draws a horizontal line
from the current point
(cpx, cpy) to (X, cpy).-
PathLinetoHorizontalAbs
indicates that absolute
coordinates are
supplied;
PathLinetoHorizontalRel
indicates that relative
coordinates are
supplied. At the end of
the command, the new
current point becomes
(x, cpy) for the final
value of x.

double x_

Draws a vertical line
from the current point
(cpx, cpy) to (cpx, y)-
PathLinetoVerticalAbs
indicates that absolute
coordinates are
supplied;
PathLinetoVerticalRel
indicates that relative
coordinates are
supplied. At the end
of the command, the new
current point becomes
(cpx, y) for the final
value of y.

double y_

* Cubic Bezier commands. A cubic Bezier segment is defined by a start

point, an end point, and two control points.

* Quadratic Bezier commands. A quadratic Bezier segment is defined by a

22 C++ API Methods

start point, an end point, and one control point.

195

* Elliptical arc commands. An elliptical arc segment draws a segment of

an ellipse.

The cubic Bezier curve commands

The cubic Bezier commands depend on the PathCurvetoArgs argument class,
which has the constructor signature

PathCurvetoArgs(double x1_, double y1_,

double x2_, double y2_,
double x_, double y_);

The commands are as follows:

Sub-Class

PathCurvetoAbs

PathCurvetoRel

Cubic Bezier Curve Classes

Constructor Signature

const Magick: :PathCurvetoArgs

&args_

const

std::list<Magick: :PathCurvetoArgs>

&args_

const Magick: :PathCurvetoArgs

&args_

const

std:: list<Magick: :PathCurvetoArgs>

&args_

Description

Draws a cubic Bezier
curve from the current
point to (X,y) using
(x1,yl) as the control
point at the beginning
of the curve and
(x2,y2) as the control
point at the end of
the curve.
PathCurvetoAbs
indicates that
absolutecoordinates
will follow;
PathCurvetoRel
indicates that
relative coordinates
will follow. Multiple
sets of coordinates
may be specified to
draw a polyBezier. At
the end of the
command, the new
current point becomes
the final (x,y)
coordinate pair used
in the polyBezier.

Draws a cubic Bezier
curve from the current
point to (x,y). The
first control point is
assumed to be the
reflection of the
second control point
on the previous
command relative to
the current point. (If
there is no previous

196 ImageMagick

command or if the
previous command was
not an PathCurvetoAbs,
PathCurvetoRel,
PathSmoothCurvetoAbs
or
PathSmoothCurvetoRel,
assume the first
control point is
coincident with the

PathSmoothCurvetoAbsconst Magick: :Coordinate current point.)

&coordinates_ (x2,y2) is the second

control point (i.e.,
the control point at
the end of the
curve).
PathSmoothCurvetoAbs
indicates that
absolute coordinates
will follow;
PathSmoothCurvetoRel
indicates that
relative coordinates
will follow. Multiple
sets of coordinates
may be specified to
draw a polyBezier. At
the end of the
command, the new
current point becomes
the final (x,y)
coordinate pair used
in the polyBezier.

const std::list<Magick::Coordinate>
&coordinates_

PathSmoothCurvetoRelconst Magick: :Coordinate
&coordinates_

const std::list<Magick::Coordinate>
&coordinates_

The quadratic Bezier curve commands

The quadratic Bezier commands depend on the PathQuadraticCurvetoArgs
argument class, which has the constructor signature:

PathQuadraticCurvetoArgs(double x1_, double yl1_,
double x_, double y_);

The quadratic Bezier commands are as follows:

Quadratic Bezier Curve Classes
Sub-Class Constructor Signature Description

Draws a quadratic Bezier curve
from the current point to
(x,y) using (x1,yl) as the
control point.
PathQuadraticCurvetoAbs
indicates that absolute
coordinates will follow;

22 C++ API Methods

PathQuadraticCurvetoAbs

PathQuadraticCurvetoRel

197

const Magick: :PathQuadraticCurvetoArgs
&args_

const
std::list<Magick: :PathQuadraticCurvetoArgs>
&args_

const Magick: :PathQuadraticCurvetoArgs
&args_

const
std:: list<Magick: :PathQuadraticCurvetoArgs>
&args_

PathSmoothQuadraticCurvetoAbsconst Magick: :Coordinate &coordinate_

const std::list<Magick::Coordinate>
&coordinates_

PathSmoothQuadraticCurvetoRelconst Magick: :Coordinate &coordinate_

const std::list<Magick::Coordinate>
&coordinates_

The elliptical arc curve commands

The elliptical arc curve commands depend on the PathArcArgs argument class,

which has the constructor signature:

PathQuadraticCurvetoRel
indicates that relative

coordinates will follow.
Multiple sets of coordinates
may be specified to draw a
polyBezier. At the end of the
command, the new current point
becomes the final (X,y)
coordinate pair used in the
polyBezier.

Draws a quadratic Bezier curve
from the current point to
(X,y)- The control point is
assumed to be the reflection
of the control point on the
previous

command relative to the
current point. (If there is no
previous command or if the
previous command was not a
PathQuadraticCurvetoAbs,
PathQuadraticCurvetoRel,
PathSmoothQuadraticCurvetoAbs
or
PathSmoothQuadraticCurvetoRel,
assume the control point is
coincident with the current
point.)
PathSmoothQuadraticCurvetoAbs
indicates that absolute
coordinates will follow;
PathSmoothQuadraticCurvetoRel
indicates that relative
coordinates will follow. At
the end of the command, the
new current point becomes the
final (x,y) coordinate pair
used in the polyBezier.

198 ImageMagick

PathArcArgs(double radiusX_, double radiusY_,
double xAxisRotation_, bool largeArcFlag_,
bool sweepFlag_, double x_, double y_);

The elliptical arc commands are as follows:
Elliptical Arc Curve Classes
Sub-Class Constructor Signature Description

Draws an elliptical arc
from the current point
to (X, y)- The size and
orientation of the
ellipse are defined by
two radii (radiusX,
radiusY) and an
XAxisRotation, which
indicates how the
ellipse as a whole is
rotated relative to the
current coordinate
system. The center (cx,
cy) of the ellipse is

PathArcAbs const Magick: :PathArcArgs calculated automatically

&coordinates_ to satisfy the

constraints imposed by
the other parameters.
largeArcFlag and
sweepFlag contribute to
the automatic
calculations and help
determine how the arc is
drawn. 1f largeArcFlag
is true then draw the
larger of the available
arcs. If sweepFlag is
true, then draw the arc
matching a clock-wise
rotation.

const std::list<Magick: :PathArcArgs>
&coordinates_

PathArcRel const Magick: :PathArcArgs
&coordinates_

const std::list<Magick: :PathArcArgs>
&coordinates_

22.5 Magick::Exception Classes

Exception represents the base class of objects thrown when ImageMagick
reports an error. Magick++ throws C++ exceptions synchronous with the
operation when an error is detected. This allows errors to be trapped within
the enclosing code (perhaps the code to process a single image) while
allowing the code to be written simply.

A try/catch block should be placed around any sequence of operations which
can be considered a unit of work. For example, if your program processes
lists of images and some of these images may be defective, by placing the
try/catch block around the entire sequence of code that processes one image
(including instantiating the image object), you can minimize the overhead of
error checking while ensuring that all objects created to deal with that
object are safely destroyed (C++ exceptions unroll the stack until the
enclosing try block, destroying any created objects).

The pseudocode for the main loop of your program may look like:

for each image in list
try {
create image object
read image
process image
save result

catch(ErrorFileOpen &error)

{

process Magick++ file open error
catch(Exception &error)
process any Magick++ error

catch(exception &error)

{

process any other exceptions derived from standard C++ exception
3
catch(...)

process *any* exception (last-ditch effort)

}

This catches errors opening a file first, followed by any Magick++ exception
if the exception was not caught previously.

The Exception class is derived from the C++ standard exception class. This
means that it contains a C++ string containing additional information about
the error (e.g to display to the user). Obtain access to this string via the
what() method. For example:

catch(Exception &error_)

cout << ""Caught exception: " << error_.what() << endl;

}

The classes Warning and Error derive from the Exception class. Exceptions
derived from Warning are thrown to represent non-fatal errors which may
effect the completeness or quality of the result (e.g. one image provided as
an argument to montage is defective). In most cases, a Warning exception may
be ignored by catching it immediately, processing it (e.g. printing a
diagnostic) and continuing on. Exceptions derived from Error are thrown to
represent fatal errors that can not produce a valid result (e.g. attempting
to read a file which does not exist).

The specific derived exception classes are shown in the following tables:

200 ImageMagick

Warning Sub-Classes
Warning Warning Description

WarningUndefined Unspecified warning type.

WarningResourceLimit A program resource is exhausted (e.g. not enough

memory) .
WarningXServer An X resource is unavailable.
WarningOption An option was malformed or out of range.
WarningDelegate An ImageMagick delegate returned an error.

WarningMissingDelegate The image type can not be read or written because
the appropriate Delegate is missing.

WarningCorruptimage The image file is corrupt (or otherwise can’t be
read) .
WarningFileOpen The image file could not be opened (permission

problem, wrong file type, or does not exist).
WarningBlob A binary large object could not be allocated.

WarningCache Pixels could not be saved to the pixel cache.

Error Sub-Classes
Error Error Description

ErrorUndefined Unspecified error type.

ErrorResourceLimit A program resource is exhausted (e.g. not enough

memory) .
ErrorXServer An X resource is unavailable.
ErrorOption An option was malformed or out of range.
ErrorDelegate An ImageMagick delegate returned an error.

ErrorMissingDelegate The image type can not be read or written because the
appropriate Delegate is missing.

ErrorCorruptimage The image file is corrupt (or otherwise can’t be
read) .
ErrorFileOpen The image file could not be opened (permission

problem, wrong file type, or does not exist).
ErrorBlob A binary large object could not be allocated.

ErrorCache Pixels could not be saved to the pixel cache.

22.6 Magick::Geometry

Geometry provides a convenient means to specify a geometry argument. The
object may be initialized from a C string or C++ string containing a
geometry specification. It may also be initialized by more efficient
parameterized constructors.

X11 Geometry Specifications

X11 geometry specifications are in the form
"<width>x<height>{+-}<xoffset>{+-}<yoffset>" (where width, height, xoffset,
and yoffset are numbers) for specifying the size and placement location for
an object.

The width and height parts of the geometry specification are measured in
pixels. The xoffset and yoffset parts are also measured in pixels and are
used to specify the distance of the placement coordinate from the left and
top edges of the image, respectively.

+xoffset The left edge of the object is to be placed xoffset pixels in
from the left edge of the image.

-xoffset The left edge of the object is to be placed outside the image,
xoffset pixels from the left edge of the image.

The Y offset has similar meanings:

+yoffset The top edge of the object is to be yoffset pixels below the top
edge of the image.

-yoffset The top edge of the object is to be outside the image, yoffset
pixels above the top edge of the image.

Offsets must be given as pairs; in other words, in order to specify either
xoffset or yoffset both must be present.

ImageMagick Extensions To X11 Geometry Specifications
ImageMagick has added a number of qualifiers to the standard geometry string
for use when resizing images. The form of an extended geometry string is
“<width>x<height>{+-}<xoffset>{+-}<yoffset>{%}{ ! }{<}{>}". Extended geometry
strings should only be used when resizing an image. Using an extended
geometry string for other applications may cause the APl call to fail. The
available qualifiers are shown in the following table:

ImageMagick Geometry Qualifiers

Qualifier Description

% Interpret width and height as a percentage of the current size.

! Resize to width and height exactly, loosing original aspect

ratio.

< Resize only if the image is smaller than the geometry
specification.

> Resize only if the image is greater than the geometry
specification.

Postscript Page Size Extension To Geometry Specifications

202

ImageMagick

Any geometry string specification supplied to the Geometry contructor is
considered to be a Postscript page size nickname if the first character is
not numeric. The Geometry constructor converts these page size
specifications into the equivalent numeric geometry string specification
(preserving any offset component) prior to conversion to the internal object
format. Postscript page size specifications are short-hand for the pixel
geometry required to fill a page of that size. Since the 11x17 inch page
size used in the US starts with a digit, it is not supported as a Postscript
page size nickname. Instead, substitute the geometry specification
""792x1224>" when 11x17 output is desired.

An example of a Postscript page size specification is "letter+43+43>".
Postscript Page Size Nicknames

Postscript Page Size Nickname Equivalent Extended Geometry Specification

Ledger 1224x792>
Legal 612x1008>
Letter 612x792>
LetterSmall 612x792>
ArchE 2592x3456>
ArchD 1728x2592>
ArchC 1296x1728>
ArchB 864x1296>
ArchA 648x864>
AO 2380x3368>
Al 1684x2380>
A2 1190x1684>
A3 842x1190>
A4 595x842>
AdSmall 595x842>
A5 421x595>
A6 297x421>
A7 210x297>
A8 148x210>
A9 105x148>
A10 74x105>
BO 2836x4008>
Bl 2004x2836>
B2 1418x2004>
B3 1002x1418>

B4 709x1002>

22 C++ API Methods

B5
co
Cl
c2
C3
c4
Cc5
C6
Flsa
Flse

HalfLetter

Geometry Methods

501x709>

2600x3677>

1837x2600>

1298x1837>

918x1298>

649x918>

459x649>

323x459>

612x936>

612x936>

396x612>

203

Geometry provides methods to initialize its value from strings, from a set
of parameters, or via attributes. The methods available for use in Geometry
are shown in the following table:

Method

Geometry

width

height

XOFF

yoff

xNegative

Return Type

const string
geometry_

const char *
geometry_
void
unsigned int
void
unsigned int
void

int

void

int

void

Geometry Methods
Signature(s)

unsigned int width_,
unsigned int height_,
unsigned int xOff_
unsigned int yOoff_
bool xNegative_ =
false, bool yNegative_
= false

0
0

Construct geometry from
C++ string

Construct geometry from
C string

unsigned int width_
void

unsigned int height_
void

unsigned int xOff_
void

unsigned int yOff_

void

bool xNegative_

Description

Construct X11 geometry
via explicit
parameters.

Width

Height

X offset from origin

Y offset from origin

Sign of X offset
negative? (X origin at
right)

204

yNegative

percent

aspect

greater

less

isvalid

operator =

operator =

operator
string

operator<<

bool

void

bool

bool

void

bool

void

bool

void

bool

void

bool

const
Geometry&

const

Geometry&

string

ostream&

void

bool yNegative_

void

bool percent_

bool aspect_

void

bool greater_

bool less_

void

bool isvalid_

void

const string geometry_

const char * geometry_

Geometry&

ImageMagick

Sign of Y offset
negative? (Y origin at
bottom)

Width and height are
expressed as
percentages

Resize without
preserving aspect ratio

O

Resize if image is
greater than size (>)

Resize if image is less
than size (<)

Does object contain
valid geometry?

Set geometry via C++
string

Set geometry via C
string

Obtain C++ string
representation of
geometry

ostream& stream_, const Stream onto ostream

Geometry& geometry_

22.7 Magick::Image Class

Quick Contents

* BLOBs

* Constructors

* Image Manipulation Methods
* Image Attributes

* Raw Image Pixel Access

Image is the primary object in Magick++ and represents a single image frame
(see design). The STL interface must be used to operate on image sequences
or images (e.g. of format GIF, TIFF, MIFF, Postscript, & MNG) which are
comprized of multiple image frames. Individual frames of a multi-frame image
may be requested by adding array-style notation to the end of the file name
(e.g- "animation.gif[3]" retrieves the fourth frame of a GIF animation.
Various image manipulation operations may be applied to the image.
Attributes may be set on the image to influence the operation of the
manipulation operations. The Pixels class provides low-level access to image
pixels. As a convenience, including <Magick++.h> is sufficient in order to
use the complete Magick++ APl. The Magick++ API is enclosed within the
Magick namespace so you must either add the prefix ""Magick::" to each
class/enumeration name or add the statement 'using namespace Magick;" after
including the Magick++._h header.

The preferred way to allocate Image objects is via automatic allocation (on
the stack). There is no concern that allocating Image objects on the stack
will excessively enlarge the stack since Magick++ allocates all large data
objects (such as the actual image data) from the heap. Use of automatic
allocation is preferred over explicit allocation (via new) since it is much
less error prone and allows use of C++ scoping rules to avoid memory leaks.
Use of automatic allocation allows Magick++ objects to be assigned and
copied just like the C++ intrinsic data types (e.g. ”int”’), leading to clear
and easy to read code. Use of automatic allocation leads to naturally
exception-safe code since if an exception is thrown, the object is
automatically deallocated once the stack unwinds past the scope of the
allocation (not the case for objects allocated via new).

Image is very easy to use. For example, here is a the source to a program
which reads an image, crops it, and writes it to a new file (the exception
handling is optional but strongly recommended):

#include <Magick++_h>
#include <iostream>

using namespace std;

using namespace Magick;

int main(int argc,char **argv)

try {
// Create an image object and read an image
Image image("girl.gif");

// Crop the image to specified size
// (Geometry implicitly initialized by char *)
image.crop(*'100x100+100+100");

// Write the image to a file
image.write("x.gif");

catch(Exception &error_)

cout << "Caught exception:
return 1;

<< error_.what() << endl;

}

return O;

}

206

ImageMagick

The following is the source to a program which illustrates the use of
Magick++”s efficient reference-counted assignment and copy-constructor
operations which minimize use of memory and eliminate unncessary copy
operations (allowing Image objects to be efficiently assigned, and copied
into containers). The program accomplishes the following:

1. Read master image.

2. Assign master image to second image.
3. Zoom second image to the size 640x480.
4. Assign master image to a third image.
5. Zoom third image to the size 800x600.
6. Write the second image to a file.

7. Write the third image to a file.

#include <Magick++.h>
#include <iostream>

using namespace std;

using namespace Magick;

int main(int argc,char **argv)

{
Image master(‘'horse.jpg™);
Image second = master;
second.zoom(*'640x480") ;
Image third = master;
third.zoom(*'800x600"") ;
second.write(**horse640x480.jpg™);
third.write(""horse800x600.jpg'™);
return 0;

3

During the entire operation, a maximum of three images exist in memory and
the image data is never copied.

The following is the source for another simple program which creates a 100
by 100 pixel white image with a red pixel in the center and writes it to a
file:

#include <Magick++_h>

using namespace std;

using namespace Magick;

int main(int argc,char **argv)

{
Image image(""100x100", "‘white");
image.pixelColor(49, 49, “red");
image.write("red_pixel.png");
return 0;

3

1T you wanted to change the color image to grayscale, you could add the
lines:

image.quantizeColorSpace(GRAYColorspace);

image.colors(256);

image.quantize();
or, more simply:

image.type(GrayscaleType);
prior to writing the image.
BLOBs
While encoded images (e.g. JPEG) are most often written-to and read-from a
disk file, encoded images may also reside in memory. Encoded images in
memory are known as BLOBs (Binary Large OBjects) and may be represented

using the Blob class. The encoded image may be initially placed in memory by
reading it directly from a file, reading the image from a database,

22 C++ API Methods 207

memory-mapped from a disk file, or could be written to memory by Magick++.
Once the encoded image has been placed within a Blob, it may be read into a
Magick++ Image via a constructor or read(). Likewise, a Magick++ image may
be written to a Blob via write().

An example of using Image to write to a Blob follows:

#include <Magick++_h>

using namespace std;

using namespace Magick;

int main(int argc,char **argv)

{
// Read GIF file from disk
Image image("'giraffe.gif");
// Write to BLOB in JPEG format
Blob blob;
image.magick("JPEG") // Set JPEG output format
image.write(&blob);
[Use BLOB data (in JPEG format) here]
return 0;
3
likewise, to read an image from a Blob, you could use one of the following
examples:

[Entry condition for the following examples is that data is pointer to
encoded image data and length represents the size of the data]

Blob blob(data, length);
Image image(blob);

or

Blob blob(data, length);
Image image;
image.read(blob);

some images do not contain their size or format so the size and format must
be specified in advance:

Blob blob(data, length);
Image image;

image.size("640x480™)
image.magick("RGBA™);
image.read(blob);

Constructors
Image may be constructed in a number of ways. It may be constructed from a
file, a URL, or an encoded image (e.g- JPEG) contained in an in-memory BLOB.
The available Image constructors are shown in the following table:
Image Constructors

Signature Description

Construct Image by reading from file or URL
const std::string specified by imageSpec_. Use array notation
&imageSpec_ (e.g. filename[9]) to select a specific scene

from a multi-frame image.

const Geometry é&size_, Construct a blank image canvas of specified size
const Color &color_ and color

208

const Blob &blob_

const unsigned int
width_,

const unsigned int
height_,

std::string map_,

const StorageType type_,
const void *pixels_

Image Manipulation Methods

ImageMagick

Construct Image by reading from encoded image
data contained in an in-memory BLOB. Depending
on the constructor arguments, the Blob size,
depth, magick (format) may also be specified.
Some image formats require that size be
specified. The default ImageMagick uses for
depth depends on the compiled-in Quantum size (8
or 16). If ImageMagick’s Quantum size does not
match that of the image, the depth may need to
be specified. ImageMagick can usually
automatically detect the image’s format. When a
format can’t be automatically detected, the
format (magick) must be specified.

const Blob &blob_, const Geometry &size_

const Blob &blob_, const Geometry &size,
unsigned int depth

const Blob &blob_, const Geometry &size,
unsigned int depth_, const string &magick_

const Blob &blob_, const Geometry &size, const
string &magick_

Construct a new Image based on an array of image
pixels. The pixel data must be in scanline order
top-to-bottom. The data can be character, short
int, integer, float, or double. Float and double
require the pixels to be normalized [0..1]. The
other types are [0..MaxRGB]. For example, to
create a 640x480 image from unsigned
red-green-blue character data, use

Image image(640, 480, "RGB", 0, pixels);
The parameters are as follows:
width_ Width in pixels of the image.

height_ Height in pixels of the image.

This character string can be any
combination or order of R = red, G =
map_ green, B = blue, A = alpha, C = cyan, Y
= yellow M = magenta, and K = black. The
ordering reflects the order of the
pixels in the supplied pixel array.

Pixel storage type (CharPixel,
type_ ShortPixel, IntegerPixel, FloatPixel, or
DoublePixel)

This array of values contain the pixel
components as defined by the map_ and

pixels_ type_ parameters. The length of the
arrays must equal the area specified by
the width_ and height_ values and type_
parameters.

22 C++ API Methods

209

Image supports access to all the single-image (versus image-list)
manipulation operations provided by the ImageMagick library. If you must
process a multi-image file (such as an animation), the STL interface, which
provides a multi-image abstraction on top of Image, must be used.

The operations supported by Image are shown in the following table:

Method

addNoise

annotate

blur

border

channel

charcoal

chop

colorize

Image Image Manipulation Methods

Signature(s)

NoiseType noiseType_

const std::string
&text_, const
Geometry &location_

string text_, const
Geometry
&boundingArea_,
GravityType gravity_

const std::string
&text_, const
Geometry
&boundingArea_,
GravityType
gravity_, double
degrees_,

const std::string
&text_, GravityType
gravity_

const double radius_
= 1, const double
sigma_ = 0.5

const Geometry
&geometry_ =
"'6x6+0+0"

ChannelType layer_

const double radius_
= 1, const double
sigma_ = 0.5

const Geometry
&geometry_

const unsigned int
opacityRed_, const
unsigned int
opacityGreen_, const

Description

Add noise to image with specified noise
type.

Annotate using specified text, and
placement location

Annotate using specified text, bounding
area, and placement gravity. If
boundingArea_ is invalid, then bounding
area is entire image.

Annotate with text using specified
text, bounding area, placement gravity,
and rotation. If boundingArea_ is
invalid, then bounding area is entire
image.

Annotate with text (bounding area is
entire image) and placement gravity.

Blur image. The radius_ parameter
specifies the radius of the Gaussian,
in pixels, not counting the center
pixel. The sigma_ parameter specifies
the standard deviation of the
Laplacian, in pixels.

Border image (add border to image).
The color of the border is specified by
the borderColor attribute.

Extract channel from image. Use this
option to extract a particular channel
from the image. MatteChannel for
example, is useful for extracting the
opacity values from an image.

Charcoal effect image (looks like
charcoal sketch). The radius_ parameter
specifies the radius of the Gaussian,
in pixels, not counting the center
pixel. The sigma_ parameter specifies
the standard deviation of the
Laplacian, in pixels.

Chop image (remove vertical or
horizontal subregion of image)

Colorize image with pen color, using
specified percent opacity for red,

210

comment

composite

contrast

convolve

crop

cycleColormap

despeckle

display

unsigned int

opacityBlue_, const

Color é&penColor_

const unsigned int
opacity_, const
Color é&penColor_

const string
&comment_

const Image
&compositelmage_,
int xOffset_, int
yOffset_,
CompositeOperator
compose_ =
InCompositeOp

const Image
&compositelmage_,
const Geometry
&offset_,
CompositeOperator
compose_ =
InCompositeOp

const Image
&compositelmage._,
GravityType
gravity_,
CompositeOperator
compose_ =
InCompositeOp

unsigned int
sharpen_

unsigned int order_,

const double
*kernel_

const Geometry
&geometry_

int amount_

void

ImageMagick

green, and blue quantums.

Colorize image with pen color, using
specified percent opacity.

Comment image (add comment string to
image). By default, each image is
commented with its file name. Use
this method to assign a specific
comment to the image. Optionally you

can include the image filename, type,
width, height, or other image
attributes by embedding special format
characters.

Compose an image onto the current image
at offset specified by xOffset_,
yOffset_ using the composition
algorithm specified by compose_.

Compose an image onto the current image
at offset specified by offset_ using
the composition algorithm specified by
compose._ .

Compose an image onto the current image
with placement specified by gravity
using the composition algorithm
specified by compose_.

Contrast image (enhance intensity
differences in image)

Convolve image. Applies a
user-specfied convolution to the image.
The order_ parameter represents the
number of columns and rows in the
filter kernel, and kernel_ is a
two-dimensional array of doubles
representing the convolution kernel to

apply.

Crop image (subregion of original
image)

Cycle image colormap
Despeckle image (reduce speckle noise)

Display image on screen.

Caution: if an image format is is not
compatable with the display visual
(e-g- JPEG on a colormapped display)
then the original image will be

22 C++ API Methods

draw

edge

emboss

enhance

equalize

erase

flip

floodFill-
Color

const Drawable
&drawable_

const
std::list<Drawable>
&drawable_

unsigned int radius_
= 0.0

const double radius_
= 1, const double
sigma_ = 0.5

void

void

void

void

unsigned int x_,
unsigned int y_,
const Color
&FillColor_

const Geometry
&point_, const Color
&FillColor_

unsigned int x_,
unsigned int y_,
const Color
&FillColor_, const
Color &borderColor_

const Geometry
&point_, const Color
&FillColor_, const
Color &borderColor_

const long x_, const
long y_, const

floodFillOpacityunsigned int

opacity_, const
PaintMethod method_

unsigned int x_,

211

altered. Use a copy of the original if
this is a problem.

Draw shape or text on image.

Draw shapes or text on image using a
set of Drawable objects contained in an
STL list. Use of this method improves
drawing performance and allows batching
draw objects together in a list for
repeated use.

Edge image (hilight edges in image).
The radius is the radius of the pixel
neighborhood.. Specify a radius of zero
for automatic radius selection.

Emboss image (hilight edges with 3D
effect). The radius_ parameter
specifies the radius of the Gaussian,
in pixels, not counting the center
pixel. The sigma_ parameter specifies
the standard deviation of the
Laplacian, in pixels.

Enhance image (minimize noise)

Equalize image (histogram equalization)

Set all image pixels to the current
background color.

Flip image (reflect each scanline in
the vertical direction)

Flood-fill color across pixels that
match the color of the target pixel and
are neighbors of the target pixel. Uses
current fuzz setting when determining
color match.

Flood-fill color across pixels starting
at target-pixel and stopping at pixels
matching specified border color. Uses
current fuzz setting when determining
color match.

Floodfill pixels matching color (within
fuzz factor) of target pixel(x,y) with
replacement opacity value using method.

Flood-fill texture across pixels that

212

floodFill-
Texture

flop

frame

gamma

gaussianBlur

implode

label

magnify

unsigned int y_,
const Image
&texture_

const Geometry
&point_, const Image
&texture_

unsigned int x_,
unsigned int y_,
const Image
&texture_, const
Color &borderColor_

const Geometry
&point_, const Image
&texture_, const
Color &borderColor_

void

const Geometry
&geometry_ =
"'25x25+6+6"

unsigned int width_,
unsigned int
height_, int x_, int
y_, int innerBevel_
= 0, int outerBevel_
0

double gamma_

double gammaRed_,
double gammaGreen_,
double gammaBlue_

double width_,
double sigma_

double factor_

const string &label_

ImageMagick

match the color of the target pixel and
are neighbors of the target pixel. Uses
current fuzz setting when determining
color match.

Flood-fill texture across pixels
starting at target-pixel and stopping
at pixels matching specified border
color. Uses current fuzz setting when
determining color match.

Flop image (reflect each scanline in
the horizontal direction)

Add decorative frame around image

Gamma correct image (uniform red,
green, and blue correction).

Gamma correct red, green, and blue
channels of image.

Gaussian blur image. The number of
neighbor pixels to be included in the
convolution mask is specified by
width_”. For example, a width of one
gives a (standard) 3x3 convolution
mask. The standard deviation of the
Gaussian bell curve is specified by

“sigma_”.
Implode image (special effect)

Assign a label to an image. Use this
option to assign a specific label to
the image. Optionally you can include
the image filename, type, width,
height, or scene number in the label by
embedding special format characters.
If the first character of string is @,
the image label is read from a file
titled by the remaining characters in
the string. When converting to
Postscript, use this option to specify
a header string to print above the
image.

Magnify image by integral size

22 C++ API Methods

map

matteFloodfill

medianFilter

minify

modifylmage

modulate

negate

normalize

oilPaint

opacity

opaque

const Image
&maplmage_ , bool
dither_ = false

const Color
&target_, unsigned
int opacity_, long
x_, long y_,
PaintMethod method_

const double radius_
= 0.0

void

double brightness_,
double saturation_,
double hue_

bool grayscale_ =
false

void

unsigned int radius_
=3

unsigned int
opacity_

const Color
&opaqueColor_, const
Color &penColor_

213

Remap image colors with closest color
from reference image. Set dither_ to
true in to apply Floyd/Steinberg error
diffusion to the image. By default,
color reduction chooses an optimal

set of colors that best represent the
original image. Alternatively, you can
choose a particular set of colors
from an image file with this option.

Floodfill designated area with a
replacement opacity value.

Filter image by replacing each pixel
component with the median color in a

circular neighborhood
Reduce image by integral size

Prepare to update image. Ensures that
there is only one reference to the
underlying image so that the underlying
image may be safely modified without
effecting previous generations of the
image. Copies the underlying image to a
new image if necessary.

Modulate percent hue, saturation, and
brightness of an image

Negate colors in image. Replace every
pixel with its complementary color
(white becomes black, yellow becomes

blue, etc.). Set grayscale to only
negate grayscale values in image.

Normalize image (increase contrast by
normalizing the pixel values to span
the full range of color values).

Oilpaint image (image looks like oil
painting)

Set or attenuate the opacity channel in
the image. If the image pixels are
opaque then they are set to the
specified opacity value, otherwise they
are blended with the supplied opacity
value. The value of opacity_ ranges

from O (completely opaque) to MaxRGB.
The defines OpaqueOpacity and
TransparentOpacity are available to
specify completely opaque or completely
transparent, respectively.

Change color of pixels matching
opaqueColor_ to specified penColor._.

Ping is similar to read except only

214

ping

quantize

raise

read

const std::string
&imageSpec_

bool measureError_ =
false

const Geometry

&geometry_ =
"'6x6+0+0", bool
raisedFlag_ = false

const string
&imageSpec_

const Geometry

&size_, const
std::string
&imageSpec_

const Blob &blob_

const Blob &blob_,
const Geometry
&size_

const Blob &blob_,
const Geometry
&size_, unsigned int
depth_

const Blob &blob_,
const Geometry
&size_, unsigned
short depth_, const
string &magick_

const Blob &blob_,
const Geometry

ImageMagick

enough of the image is read to
determine the image columns, rows, and
filesize. The columns, rows, and

fileSize attributes are valid after
invoking ping. The image data is not
valid after calling ping.

Quantize image (reduce number of
colors). Set measureError_ to true in

order to calculate error attributes.

Raise image (lighten or darken the
edges of an image to give a 3-D raised

or lowered effect)

Read image into current object

Read image of specified size into
current object. This form is useful for
images that do not specifiy their size
or to specify a size hint for decoding
an image. For example, when reading a
Photo CD, JBIG, or JPEG image, a size

request causes the library to return an
image which is the next resolution
greater or equal to the specified size.
This may result in memory and time
savings.

Read encoded image of specified size
from an in-memory BLOB into current
object. Depending on the method
arguments, the Blob size, depth, and
format may also be specified. Some
image formats require that size be
specified. The default ImageMagick uses
for depth depends on its Quantum size
(8 or 16). If ImageMagick”s Quantum
size does not match that of the image,
the depth may need to be specified.
ImageMagick can usually automatically
detect the image’s format. When a
format can’t be automatically detected,
the format must be specified.

22 C++ API Methods

reduceNoise

roll

rotate

sample

scale

&size_, const string
&magick_

const unsigned int
width_, const
unsigned int
height_, std::string
map_, const
StorageType type_,
const void *pixels_

void

unsigned int order_

int columns_, int
rows_

double degrees_

const Geometry
&geometry_

const Geometry
&geometry_

215

Read image based on an array of image
pixels. The pixel data must be in
scanline order top-to-bottom. The data
can be character, short int, integer,
float, or double. Float and double
require the pixels to be normalized
[0..1]. The other types are
[0..MaxRGB]. For example, to create a
640x480 image from unsigned
red-green-blue character data, use

image.read(640, 480, "RGB", O,
pixels);

The parameters are as follows:
width_ Width in pixels of the image.
height_Height in pixels of the image.

This character string can be
any combination or order of R
red, G = green, B = blue, A
alpha, C = cyan, Y = yellow
map_ M = magenta, and K = black.
The ordering reflects the
order of the pixels in the
supplied pixel array.

Pixel storage type (CharPixel,
type_ ShortPixel, IntegerPixel,
FloatPixel, or DoublePixel)

This array of values contain
the pixel components as
defined by the map_ and type_

pixels_parameters. The length of the
arrays must equal the area
specified by the width_ and
height_ values and type_
parameters.

Reduce noise in image using a noise
peak elimination filter.

Roll image (rolls image vertically and
horizontally) by specified number of

columnms and rows)

Rotate image counter-clockwise by
specified number of degrees.

Resize image by using pixel sampling
algorithm

Resize image by using simple ratio
algorithm

216

segment

shade

sharpen

shave

shear

solarize

spread

stegano

stereo

double
clusterThreshold_ =

1.0,

double
smoothingThreshold_
= 1.5

double azimuth_ =
30, double
elevation_ = 30,
bool colorShading_ =
false

const double radius_
= 1, const double
sigma_ = 0.5

const Geometry
&geometry_

double xShearAngle_,
double yShearAngle_

double factor_ =
50.0

unsigned int amount_
=3

const Image
&watermark_

const Image

ImageMagick

Segment (coalesce similar image
components) by analyzing the histograms
of the color components and identifying
units that are homogeneous with the
fuzzy c-means technique. Also uses
quantizeColorSpace and verbose image
attributes. Specify clusterThreshold_,
as the number of pixels each

cluster must exceed the cluster
threshold to be considered valid.
SmoothingThreshold_ eliminates noise in
the second derivative of the
histogram. As the value is 1increased,
you can expect a smoother second
derivative. The default is 1.5.

Shade image using distant light source.
Specify azimuth_ and elevation_ as the
position of the light source. By
default, the shading results as a
grayscale image.. Set colorShading_ to
true to shade the red, green, and blue
components of the image.

Sharpen pixels in image. The radius_
parameter specifies the radius of the
Gaussian, in pixels, not counting the
center pixel. The sigma_ parameter
specifies the standard deviation of the
Laplacian, in pixels.

Shave pixels from image edges.

Shear image (create parallelogram by
sliding image by X or Y axis).
Shearing slides one edge of an image
along the X or Y axis, creating a
parallelogram. An X direction shear
slides an edge along the X axis, while
a Y direction shear slides an edge
along the Y axis. The amount of the
shear is controlled by a shear angle.
For X direction shears, x degrees is
measured relative to the Y axis, and
similarly, for Y direction shears vy
degrees is measured relative to the X
axis. Empty triangles left over from
shearing the 1image are filled with
the color defined as borderColor.

Solarize image (similar to effect seen
when exposing a photographic film to

light during the development process)

Spread pixels randomly within image by
specified amount

Add a digital watermark to the image
(based on second image)

Create an image which appears in stereo
when viewed with red-blue glasses (Red

22 C++ API Methods

swirl

texture

threshold

transform

transparent

unsharpmask

wave

write

&rightlmage_

double degrees_

const Image
&texture_

double threshold_

const Geometry
&imageGeometry_

const Geometry
&imageGeometry_,
const Geometry
&cropGeometry_

const Color &color_

void

double radius_,
double sigma_,
double amount_,
double threshold_

double amplitude_ =
25.0, double
wavelength_ = 150.0

const string
&imageSpec_

Blob *blob_

217

image on left, blue on right)

Swirl image (image pixels are rotated
by degrees)

Layer a texture on pixels matching
image background color.

Threshold image

Transform image based on image and crop
geometries. Crop geometry is optional.

Add matte image to image, setting
pixels matching color to transparent.

Trim edges that are the background
color from the image.

Replace image with a sharpened version
of the original image using the unsharp
mask algorithm. The radius_ parameter
specifies the radius of the Gaussian,
in pixels, not counting the center
pixel. The sigma_ parameter specifies
the standard deviation of the Gaussian,
in pixels. The amount_ parameter
specifies the percentage of the
difference between the original and the
blur image that is added back into the
original. The threshold_ parameter
specifies the threshold in pixels
needed to apply the diffence amount.

Alter an image along a sine wave.

Write image to a file using filename
imageSpec_ .

Caution: if an image format is selected
which is capable of supporting fewer
colors than the original image or

quantization has been requested, the
original image will be quantized to
fewer colors. Use a copy of the
original if this is a problem.

Write image to a in-memory BLOBstored
in blob_. The magick_ parameter
specifies the image format to write
(defaults to magick). The depth_
parameter species the image depth
(defaults to depth).

Caution: if an image format is selected
which is capable of supporting fewer
colors than the original image or

218 ImageMagick

quantization has been requested, the
original image will be quantized to
fewer colors. Use a copy of the
original if this is a problem.

Blob *blob_,
std::string &magick_
Blob *blob_,
std::string
&magick_, unsigned
int depth_
Write pixel data into a buffer you
supply. The data is saved either as
char, short int, integer, float or
double format in the order specified by
the type_ parameter. For example, we
want to extract scanline 1 of a 640x480
image as character data in
red-green-blue order:
image.write(0,0,640,1,"RGB",0,pixels);
The parameters are as follows:
Horizontal ordinate of
X_ left-most coordinate of
region to extract.
Vertical ordinate of top-most
y_ coordinate of region to
extract.
const int x_, const Width in pixels of the region
int y_, const columns_to extract.
unsigned int
columns_, const
unsigned int rows_, rows_ Height in pixels of the
const std::string region to extract.
&map_, const
StorageType type_, This character string can be
void *pixels_ any combination or order of R
= red, G = green, B = blue, A
map_ = alpha, C = cyan, Y =

yellow, M = magenta, and K =
black. The ordering reflects
the order of the pixels in
the supplied pixel array.

Pixel storage type

type_ (CharPixel, ShortPixel,
IntegerPixel, FloatPixel, or
DoublePixel)

This array of values contain
the pixel components as
defined by the map_ and type_

pixels_ parameters. The length of the
arrays must equal the area
specified by the width_ and
height_ values and type_
parameters.

22 C++ API Methods

zoom

Image Attributes

const Geometry

&geometry_

219

Zoom image to specified size.

Image attributes are set and obtained via methods in Image. Except for
methods which accept pointer arguments (e.g. chromaBluePrimary) all methods
return attributes by value.

The supported image attributes and the

them are shown in the following table:

Attribute

adjoin

antiAlias

animation-
Delay

animation-
Iterations

background-
Color

background-

Texture

baseColumns

baseFilename

baseRows

borderColor

Type

bool

bool

unsigned int (O

to 65535)

unsigned int

Color

string

unsigned int

string

unsigned int

Color

Image Image Attributes

Get
Signature

void

void

void

void

void

void

void

void

Set Signature

bool flag_

bool flag_

unsigned int
delay_

unsigned int
iterations_

const Color
&color_

const string
&texture_

const Color

method arguments required to obtain

Description

Join images into a
single multi-image
file.

Control antialiasing
of rendered
Postscript and
Postscript or
TrueType fonts.
Enabled by default.

Time in 1/100ths of a
second (0 to 65535)
which must expire
before displaying the
next image in an
animated sequence.
This option is useful
for regulating the
animation of a
sequence of GIF
images within
Netscape.

Number of iterations
to loop an animation
(e.g- Netscape loop

extension) for.

Image background
color

Image file name to
use as the background
texture. Does not
modify image pixels.

Base image width
(before
transformations)

Base image filename
(before
transformations)

Base image height

(before
transformations)

Image border color

220

boundingBox

boxColor

cacheThreshold

chroma-
BluePrimary

chroma-
GreenPrimary

chroma-
RedPrimary

chroma-
WhitePoint

classType

clipMask

Geometry

Color

unsigned int

float x & y

float x & y

float x & y

float x & y

ClassType

Image

void

void

float
float

float
float

float
float

float
float

void

&color_

const Color
&boxColor_

unsigned int

ImageMagick

Return smallest
bounding box
enclosing non-border
pixels. The current
fuzz value is used
when discriminating
between pixels. This
is the crop bounding
box used by
crop(Geometry(0,0)).

Base color that
annotation text is

rendered on.

Pixel cache threshold
in megabytes. Once
this threshold is
exceeded, all
subsequent pixels
cache operations are
to/from disk. This is
a static method and
the attribute it sets
is shared by all
Image objects.

Chromaticity blue

float x_, float y_ primary point (e.g-

x=0.15, y=0.06)

Chromaticity green

float x_, float y_ primary point (e.g-

x=0.3, y=0.6)

Chromaticity red

float x_, float y_ primary point (e.g-

x=0.64, y=0.33)

Chromaticity white

float x_, float y_ point (e.g- x=0.3127,

ClassType class_

const Image

y=0.329)

Image storage class.
Note that conversion
from a DirectClass
image to a
PseudoClass image may
result in a loss of
color due to the
limited size of the
palette (256 or 65535
colors).

Associate a clip mask
image with the
current image. The
clip mask image must
have the same
dimensions as the
current image or an
exception is thrown.

22 C++ API Methods

colorFuzz

colorMap

colorSpace

columns

comment

compress-
Type

density

depth

double void
Color unsigned int
index_

ColorspaceType void
colorSpace_

unsigned int void

string void

CompressionType void

Geometry void
(default 72x72)

unsigned int (8 void
or 16)

&clipMask_

double fuzz_

unsigned int
index_, const

Color &color_

ColorspaceType
colorSpace_

CompressionType
compressType_

const Geometry
&density_

unsigned int
depth_

221

Clipping occurs
wherever pixels are
transparent in the
clip mask image.
Clipping Pass an
invalid image to
unset an existing
clip mask.

Colors within this
distance are
considered equal. A
number of algorithms
search for a target
color. By default the
color must be exact.
Use this option to
match colors that are
close to the target
color in RGB space.

Color at color-pallet
index.

The colorspace (e.g-
CMYK) used to
represent the image
pixel colors. Image
pixels are always
stored as RGB(A)
except for the case
of CMY(K).

Image width
Image comment

Image compresion
type. The default is
the compression type
of the specified
image file.

Vertical and
horizontal resolution
in pixels of the
image. This option
specifies an image
density when decoding
a Postscript or
Portable Document
page. Often used with
psPageSize.

Image depth. Used to
specify the bit depth
when reading or
writing raw images
or when the output
format supports

multiple depths.
Defaults to the
quantum depth that
ImageMagick is
compiled with.

222

endian

directory

fileName

fileSize

fillColor

fillPattern

fillRule

filterType

font

fontPointsize

EndianType

string

string

off_t

Color

Image

FillRule

FilterTypes

string

unsigned int

fontTypeMetrics TypeMetric

void

void

void

void

void

void

void

const
std::string
&text_,
TypeMetric

EndianType endian_

const string
&FileName_

const Color
&FillColor_

const Image
&FillPattern_

const

Magick::FillRule

&FillRule

FilterTypes
filterType_

const string
&font_

unsigned int
pointSize_

ImageMagick

Specify (or obtain)
endian option for
formats which support
it.

Tile names from
within an image
montage

Image file name.

Number of bytes of
the image on disk

Color to use when
filling drawn objects

Pattern image to use
when filling drawn

objects.

Rule to use when
filling drawn
objects.

Filter to use when
resizing image. The
reduction filter
employed has a
sigificant effect on
the time required to
resize an image and
the resulting
quality. The default
filter is Lanczos
which has been shown
to produce high
quality results when
reducing most images.

Text rendering font.
If the font is a
fully qualified X
server font name, the
font is obtained from
an X server. To use
a TrueType font,

precede the TrueType
filename with an @.
Otherwise, specify
a Postscript font
name (e.g-
“helvetica').

Text rendering font
point size

Update metrics with
font type metrics
using specified text,
and current font and

22 C++ API Methods

format

gamma

geometry

gifDispose-
Method

iccColorProfile Blob void

interlace-
Type

*metrics

string void

double (typical
range 0.8 to void
2.3)

Geometry void

unsigned int
{ 0 = Disposal
not specified,
1 = Do not
dispose of
graphic,

3 = Overwrite
graphic with void
background
color,

4 = Overwrite
graphic with
previous
graphic. }

unsigned int
disposeMethod_

const Blob
&colorProfile_

InterlaceType

InterlaceType void interlace_

223

fontPointSize
settings.

Long form image
format description.

Gamma level of the
image. The same color
image displayed on
two different
workstations may
look different due
to differences in the
display monitor. Use
gamma correction to
adjust for this
color difference.

Preferred size of the
image when encoding.

GIF disposal method.
This option is used
to control how
successive frames are
rendered (how the
preceding frame is
disposed of) when
creating a GIF
animation.

ICC color profile.

Supplied via a Blob
since Magick++/ and
ImageMagick do not
currently support

formating this data
structure directly.

Specifications are
available from the
International Color
Consortium for the
format of ICC color
profiles.

The type of
interlacing scheme
(default
Nolnterlace). This
option is used to
specify the type of
interlacing scheme
for raw image
formats such as RGB
or YUV. Nolnterlace
means do not
interlace,
Linelnterlace uses
scanline interlacing,
and Planelnterlace
uses plane

224

iptcProfile

label

magick

matte

matteColor

meanError-

PerPixel

monochrome

montage-
Geometry

Blob

string

string

bool

Color

double

bool

Geometry

void

void

void

void

void

void

const Blob&
iptcProfile_

const string
&label _

const string
&magick_

bool matteFlag_

const Color
&matteColor_

bool flag_

ImageMagick

interlacing.
Partitioninterlace is
like Planelnterlace
except the different
planes are saved to
individual files
(e.g. image.R,
image.G, and
image.B). Use
Linelnterlace or
Planelnterlace to
create an interlaced
GIF or progressive
JPEG image.

IPTC profile.
Supplied via a Blob
since Magick++ and
ImageMagick do not
currently support
formating this data
structure directly.

Specifications are
available from the
International Press
Telecommunications
Council for IPTC
profiles.

Image label

Get image format
(e.g. "GIF™)

True if the image has
transparency. If set
True, store matte
channel if the image
has one otherwise
create an opaque one.

Image matte
(transparent) color

The mean error per
pixel computed when
an image is color
reduced. This
parameter is only
valid if verbose is
set to true and the
image has just been
quantized.

Transform the image
to black and white

Tile size and offset
within an image
montage. Only valid
for montage images.

The normalized max

22 C++ API Methods

normalized-
MaxError

normalized-
MeanError

packets

packetSize

page

pixelColor

quality

quantize-
Colors

double

double

unsigned int

unsigned int

Geometry

Color

unsigned int (O
to 100)

unsigned int

void

void

void

unsigned int unsigned int x_,
X_, unsigned unsigned int y_,

inty

void

const Geometry

&pageSize_

const Color
&color_

unsigned int
quality_

unsigned int
colors_

225

error per pixel
computed when an
image is color
reduced. This
parameter is only
valid if verbose is
set to true and the
image has just been
quantized.

The normalized mean
error per pixel
computed when an
image is color
reduced. This
parameter is only
valid if verbose is
set to true and the
image has just been
quantized.

The number of
runlength-encoded
packets in

the image

The number of bytes
in each pixel packet

Preferred size and
location of an image
canvas.

Use this option to
specify the
dimensions and
position of the
Postscript page in
dots per inch or a
TEXT page in pixels.
This option is
typically used in
concert with density.

Page may also be used
to position a GIF
image (such as for a
scene in an
animation)

Get/set pixel color
at location x & y.

JPEG/MIFF/PNG
compression level

(default 75).

Preferred number of
colors in the image.
The actual number of
colors in the image
may be less than your
request, but never
more. Images with

226

quantize-
ColorSpace

quantize-
Dither

quantize-
TreeDepth

rendering-
Intent

resolution-
Units

rows

ColorspaceType

bool

unsigned int

Renderinglntent

ResolutionType

unsigned int

void

void

void

void

void

void

ColorspaceType
colorSpace_

bool flag_

unsigned int
treeDepth_

Renderinglntent
render_

ResolutionType
units_

ImageMagick

less unique colors
than specified with
this option will have
any duplicate or
unused colors
removed.

Colorspace to
quantize colors in
(default RGB).
Empirical evidence
suggests that
distances in color
spaces such as YUV or
YIQ correspond to
perceptual color
differences more
closely than do
distances in RGB
space. These color
spaces may give
better results when
color reducing an
image.

Apply Floyd/Steinberg
error diffusion to
the image. The basic
strategy of dithering
is to trade
intensity resolution
for spatial
resolution by
averaging the
intensities of
several neighboring
pixels. Images which
suffer from severe
contouring when
reducing colors can
be improved with this
option. The
quantizeColors or
monochrome option
must be set for this
option to take
effect.

Depth of the
quantization color
classification tree.
Values of 0 or 1
allow selection of
the optimal tree
depth for the color
reduction algorithm.
Values between 2 and
8 may be used to
manually adjust the
tree depth.

The type of rendering
intent

Units of image
resolution

The number of pixel

22 C++ API Methods

scene unsigned int
signature string
size Geometry

strokeAntiAlias bool

strokeColor Color

strokeDashOffsetunsigned int

strokeDashArray const double*

void

bool force_
= false

void

void

void

void

void

unsigned int
scene_

const Geometry
&geometry_

bool flag_

const Color
&strokeColor_

double
strokeDashOffset_

const double*
strokeDashArray_

227

rows in the image

Image scene number

Image MD5 signature.
Set force_ to “true”’
to force

re-computation of
signature.

Width and height of a
raw image (an image
which does not
support width and
height information).
Size may also be used

to affect the image
size read from a
multi-resolution
format (e.g. Photo
CD, JBIG, or JPEG.

Enable or disable
anti-aliasing when
drawing object
outlines.

Color to use when
drawing object

outlines

While drawing using a
dash pattern, specify
distance into the

dash pattern to start
the dash (default 0).

Specify the pattern
of dashes and gaps
used to stroke paths.
The strokeDashArray
represents a
zero-terminated array
of numbers that
specify the lengths
(in pixels) of
alternating dashes
and gaps in user
units. If an odd
number of values is
provided, then the
list of values is
repeated to yield an
even number of
values. A typical
strokeDashArray_
array might contain
the members 5 3 2 0,
where the zero value
indicates the end of
the pattern array.

Specify the shape to

228

strokeLineCap

strokeLineJoin

LineCap

LineJoin

strokeMiterLimitunsigned int

strokeWidth

strokePattern

sublmage

subRange

tileName

totalColors

type

double

Image

unsigned int

unsigned int

string

unsigned long

ImageType

void

void

void

void

void

void

void

ImageMagick

LineCap lineCap_

LineJoin lineJoin_

unsigned int
miterLimit_

double
strokeWidth_

const Image
&strokePattern_

unsigned int
sublmage_

unsigned int
subRange_

const string
&tileName_

ImageType

be used at the
corners of paths (or
other vector shapes)
when they are
stroked. Values of
LineJoin are
UndefinedJoin,
MiterJoin, RoundJoin,
and BevelJoin.

Specify the shape to
be used at the
corners of paths (or
other vector shapes)
when they are
stroked. Values of
LineJdoin are
UndefinedJoin,
MiterJoin, RoundJoin,
and BevelJdoin.

Specify miter limit.
When two line
segments meet at a
sharp angle and miter
joins have been
specified for
lineJdoin”, it is
possible for the
miter to extend far
beyond the thickness
of the line stroking
the path. The
miterLimit’ imposes a
limit on the ratio of
the miter length to
the “lineWidth’. The
default value of this
parameter is 4.

Stroke width for use
when drawing vector

objects (default one)

Pattern image to use
while drawing object

stroke (outlines).
Subimage of an image
sequence

Number of images
relative to the base

image

Tile name

Number of colors in
the image

Image type.

22 C++ API Methods 229

Print detailed

verbose bool void bool verboseFlag_ information about the
image
view string void const string FlashPix viewing
&view_ parameters.

X11 display to
x11Display string (e.g- void const string display to, obtain
""hostname:0.0"") &display_ fonts from, or to
capture image from

XResolution double void x resolution of the
image

yResolution double void y resolution of the
image

Raw Image Pixel Access

Image pixels (of type PixelPacket) may be accessed directly via the Image
Pixel Cache. The image pixel cache is a rectangular window into the actual
image pixels (which may be in memory, memory-mapped from a disk file, or
entirely on disk). Two interfaces exist to access the Image Pixel Cache. The
interface described here (part of the Image class) supports only one view at
a time. See the Pixels class for a more abstract interface which supports
simultaneous pixel views (up to the number of rows). As an analogy, the
interface described here relates to the Pixels class as stdio’s gets()
relates to fgets(). The Pixels class provides the more general form of the
interface.

Obtain existing image pixels via getPixels(). Create a new pixel region
using setPixels().

Depending on the capabilities of the operating system, and the relationship
of the window to the image, the pixel cache may be a copy of the pixels in
the selected window, or it may be the actual image pixels. In any case
calling syncPixels() insures that the base image is updated with the
contents of the modified pixel cache. The method readPixels() supports
copying foreign pixel data formats into the pixel cache according to the
QuantumTypes. The method writePixels() supports copying the pixels in the
cache to a foreign pixel representation according to the format specified by
QuantumTypes.

The pixel region is effectively a small image in which the pixels may be
accessed, addressed, and updated, as shown in the following example:
Image image(*'cow.png');

// Obtain pixel region with size 60x40, and top origin at 20x30

int columns = 60;
PixelPacket *pixel_cache = image.GetPixels(20,30,columns,b40);
// Set pixel at column 5, and row 10 in the pixel cache to red.

int column = 5; [Cache.png]
int row = 10;

PixelPacket *pixel =

pixel_cache+row*columns*sizeof(PixelPacket)+column;

pixel = Color("'red™);

// Save updated pixel cache back to underlying image

image.syncPixels(Q);

image.write(horse.png™);

The image cache supports the following methods:

230

Image Cache Methods

Method Returns Signature

int x_, inty_,

getConstPixels const unsigned int
PixelPacket* columns_, unsigned
int rows_
getConstlindexes const void
IndexPacket*
getlndexes IndexPacket* void

int x_, inty_,

getPixels PixelPacket* unsigned int
columns_, unsigned
int rows_

ImageMagick

Description

Transfers pixels from
the image to the pixel
cache as defined by

the specified
rectangular region.

Returns a pointer to
the Image pixel
indexes. Only valid
for PseudoClass images
or CMYKA images. The
pixel indexes
represent an array of
type IndexPacket, with
each entry
corresponding to an
X,y pixel position.
For PseudoClass
images, the entry’s
value is the offset
into the colormap (see
colorMap) for that
pixel. For CMYKA
images, the indexes
are used to contain
the alpha channel.

Returns a pointer to
the Image pixel
indexes corresponding
to the pixel region
requested by the last
getConstPixels,
getPixels, or
setPixels call. Only
valid for PseudoClass
images or CMYKA
images. The pixel
indexes represent an
array of type
IndexPacket, with each
entry corresponding to
a pixel x,y position.
For PseudoClass
images, the entry’s
value is the offset
into the colormap (see
colorMap) for that
pixel. For CMYKA
images, the indexes
are used to contain
the alpha channel.

Transfers pixels from
the image to the pixel
cache as defined by
the specified
rectangular region.
Modified pixels may be
subsequently
transferred back to
the image via
syncPixels.

22 C++ API Methods

setPixels

syncPixels

readPixels

writePixels

PixelPacket*

void

void

void

int x_, inty_,
unsigned int
columns_, unsigned
int rows_

void

QuantumTypes
quantum_, unsigned
char *source_,

QuantumTypes
quantum_, unsigned
char *destination_

231

Allocates a pixel
cache region to store
image pixels as
defined by the region
rectangle. This area

is subsequently
transferred from the
pixel cache to the
image via syncPixels.

Transfers the image
cache pixels to the
image.

Transfers one or more
pixel components from
a buffer or file into
the image pixel cache
of an image.
ReadPixels is
typically used to
support image
decoders.

Transfers one or more
pixel components from
the image pixel cache
to a buffer or file.
WritePixels is
typically used to
support image
encoders.

22.8

Magick: :Montage Class

A montage is a single image which is composed of thumbnail images composed
in a uniform grid. The size of the montage image is determined by the size
of the individual thumbnails and the number of rows and columns in the grid.

The following illustration shows a montage consisting of three columns and
two rows of thumbnails rendered on a gray background:

[montage-sample-framed. jpg]

Montages may be either “plain™ (undecorated thumbnails) or "framed"
(decorated thumbnails). In order to more easily understand the options
supplied to Montagelmages(), montage options are supplied by two different
classes: Magick::Montage and Magick: :MontageFramed.

Plain Montages

Magick: :Montage is the base class to provide montage options and provides
methods to set all options required to render simple (un-framed) montages.
See Magick: :MontageFramedif you would like to create a framed montage.

Un-framed thumbnails consist of four components: the thumbnail image, the
thumbnail border, an optional thumbnail shadow, and an optional thumbnail
label area.

[thumbnai l-anatomy-plain.jpgl
Montage Methods
Method Return Type Signature(s) Description
Montage void Default constructor

Specifies the
backgroundColor void const Color background color
&backgroundColor_ that thumbnails are
imaged upon.

Color void

Specifies the image
composition
algorithm for
thumbnails. This
controls the
algorithm by which
the thumbnail image
is placed on the
compose void CompositeOperator background. Use of
compose_ OverCompositeOp is
recommended for use
with images that
have transparency.
This option may
have negative
side-effects for
images without
transparency.

CompositeOperator void

22 C++ API Methods

fileName

fill

font

geometry

gravity

label

std::string

void

Color

void

std::string

void

Geometry

void

GravityType

void

std::string

std::string
fileName_

void

const Color &pen_

void

std::string font_

void

const Geometry
&geometry_

void

233

Specifies the image
filename to be used
for the generated
montage images. To
handle the case
were multiple
montage images are
generated, a
printf-style format
may be embedded

within the
filename. For
example, a filename
specification of
image%02d.miff
names the montage
images as
image00.miff,
imageO1.miff, etc.

Specifies the fill
color to use for
the label text.

Specifies the
thumbnail label
font.

Specifies the size
of the generated

thumbnail.

Specifies the
thumbnail
positioning within
the specified
geometry area. If

GravityType gravity_the thumbnail is

void

std::string label_

smaller in any
dimension than the
geometry, then it
is placed according
to this
specification.

Specifies the
format used for the
image label.
Special format
characters may be
embedded in the
format string to
include information
about the image.

234

penColor

pointSize

shadow

stroke

texture

tile

void

unsigned int

void

bool

void

Color

void

std::string

void

Geometry

transparentColor void

const Color &pen_

void

unsigned int
pointSize_

void

bool shadow_

void

const Color &pen_

void

ImageMagick

Specifies the pen
color to use for
the label text
(same as Fill).

Specifies the
thumbnail label

font size.

Enable/disable
drop-shadow on
thumbnails.

Specifies the
stroke color to use
for the label text

Specifies a texture
image to use as
montage background.
The built-in

std::string texture_textures ‘‘granite:"

const Geometry
&tile_

void

const Color
&transparentColor_

and "plasma:" are
available. A
texture is the same
as a background
image.

Specifies the
maximum number of
montage columns and
rows in the
montage. The
montage is built by
filling out all
cells in a row
before advancing to
the next row. Once
the montage has
reached the maximum
number of columns
and rows, a new
montage image is
started.

Specifies a montage
color to set
transparent. This
option can be set
the same as the
background color in
order for the
thumbnails to
appear without a
background when

22 C++ API Methods

Color

Framed Montages

235

rendered on an HTML
page. For best
effect, ensure that
the transparent
color selected does
not occur in the
rendered thumbnail
colors.

Magick: :MontageFramed provides the means to specify montage options when it
is desired to have decorative frames around the image thumbnails.
MontageFramed inherits from Montage and therefore provides all the methods
of Montage as well as those shown in the table ""MontageFramed Methods'.

Framed thumbnails consist of four components: the thumbnail image, the
thumbnail frame, the thumbnail border, an optional thumbnail shadow, and an
optional thumbnail label area.

[thumbnai I-anatomy-framed. jpg]

Method Return

Type

MontageFramed

borderColor void

Color

borderWidth void

unsigned
int

frameGeometry void

Geometry

MontageFramed Methods

Signature(s)

void

const Color

&borderColor_

void

unsigned int
borderWidth_

void

const Geometry
&Frame_

Description

Default constructor (enable
frame via frameGeometry).

Specifies the background
color within the thumbnail

frame.

Specifies the border (in
pixels) to place between a
thumbnail and its surrounding
frame. This option only takes
effect if thumbnail frames
are enabled (via

frameGeometry) and the
thumbnail geometry
specification doesn’t also
specify the thumbnail border
width.

Specifies the geometry
specification for frame to
place around thumbnail. If
this parameter is not
specified, then the montage
is un-framed.

236 ImageMagick

matteColor void const Color Specifies the thumbnail frame
&matteColor_ color.

Color void

22.9 Magick::Pixels

The Pixels class provides efficient access to raw image pixels. Image pixels
(of type PixelPacket) may be accessed directly via the Image Pixel Cache.
The image pixel cache is a rectangular window (a view) into the actual image
pixels (which may be in memory, memory-mapped from a disk file, or entirely
on disk). Obtain existing image pixels via get(). Create a new pixel region
using set().

Depending on the capabilities of the operating system, and the relationship
of the window to the image, the pixel cache may be a copy of the pixels in
the selected window, or it may be the actual image pixels. In any case
calling sync() insures that the base image is updated with the contents of
the modified pixel cache. The method decode() supports copying foreign pixel
data formats into the pixel cache according to the QuantumTypes. The method
encode() supports copying the pixels in the cache to a foreign pixel
representation according to the format specified by QuantumTypes.

Setting a view using the Pixels class does not cause the number of
references to the underlying image to be reduced to one. Therefore, in order
to ensure that only the current generation of the image is modified, the
Image”s modifylmage() method should be invoked to reduce the reference count
on the underlying image to one. If this is not done, then it is possible for
a previous generation of the image to be modified due to the use of
reference counting when copying or constructing an Image.

The PixelPacket* returned by the set and get methods, and the IndexPacket*
returned by the indexes method point to pixel data managed by the Pixels
class. The Pixels class is responsible for releasing resources associated
with the pixel view. This means that the pointer should never be passed to
delete() or free().-

The pixel view is a small image in which the pixels may be accessed,
addressed, and updated, as shown in the following example, which produces an
image similar to the one on the right (minus lines and text):

// Create base image
Image image(Geometry(254,218), “"white™);

// Set image pixels to DirectClass representation
image.classType(DirectClass);

// Ensure that there is only one reference to underlying
image
image.modifylmage();

// Allocate pixel view
Pixels view(image);

// Set all pixels in region anchored at 38x36, with size
160x230 to green.
unsigned int columns = 196; unsigned int rows = 162;
Color green(‘'green™);
PixelPacket *pixels = view.get(38,36,columns,rows);
for (unsigned int row = 0; row < rows ; ++row)
for (unsigned int column = 0; column < columns ; ++column [Cache.png]

*pixels++=green;
view.sync(Q);

// Set all pixels in region anchored at 86x72, with size
108x67 to yellow.
columns = 108; rows = 67;
Color yellow("yellow™);
pixels = view.get(86,72,columns, rows);
for (unsigned int row = O; row < rows ; ++row)
for (unsigned int column = 0; column < columns ;

238 ImageMagick

++column)
*pixels++=yellow;
view.sync(Q);

// Set pixel at position 108,94 to red
*(view.get(108,94,1,1)) = Color("'red™);
view.sync(Q);
Pixels supports the following methods:
Pixel Cache Methods
Method Returns Signature Description
Transfers pixels from the

image to the pixel cache as
defined by the specified

int x_, inty_, rectangular region. Modified
get PixelPacket* unsigned int columns_, pixels may be subsequently
unsigned int rows_ transferred back to the image

via sync. The value returned
is intended for pixel access
only. It should never be
deallocated.

Allocates a pixel cache region
to store image pixels as
defined by the region

int x_, inty_, rectangle. This area is
set PixelPacket* unsigned int columns_, subsequently transferred from
unsigned int rows_ the pixel cache to the image

via sync. The value returned
is intended for pixel access
only. It should never be
deallocated.

sync void void Transfers the image cache
pixels to the image.

Returns the PsuedoColor pixel
indexes corresponding to the
pixel region defined by the
last get or set call. Only
valid for PseudoColor and
CMYKA images. The pixel
indexes (an array of type
IndexPacket, which is typedef
Quantum, which is itself

indexes IndexPacket* void typedef unsigned char, or
unsigned short, depending on
the value of the QuantumDepth
define) provide the colormap
index (see colorMap) for each
pixel in the image. For CMYKA
images, the indexes represent
the matte channel. The value
returned is intended for pixel
access only. 1t should never
be deallocated.

X unsigned int void Left ordinate of view
y unsigned int void Top ordinate of view
columns unsigned int void Width of view

rows unsigned int void Height of view

22 C++ API Methods 239

22.10 Magick++ STL Support

Magick++ provides a set of Standard Template Libary (STL) algorithms for
operating across ranges of image frames in a container. It also provides a
set of STL unary function objects to apply an operation on image frames in a
container via an algorithm which uses unary function objects. A good example
of a standard algorithm which is useful for processing containers of image
frames is the STL for_each algorithm which invokes a unary function object
on a range of container elements.

Magick++ uses a limited set of template argument types. The current template
argument types are:

Container

A container having the properties of a Back Insertion
Sequence. Sequences support forward iterators and Back
Insertion Sequences support the additional abilty to
append an element via push_back(). Common compatable
container types are the STL <vector> and <list> template
containers. This template argument is usually used to
represent an output container in which one or more image
frames may be appended. Containers like STL <vector>
which have a given default capacity may need to have
their capacity adjusted via reserve() to a larger
capacity in order to support the expected final size .
Since Magick++ images are very small, it is likely that
the default capacity of STL <vector> is sufficient for
most situations.

Inputlterator

An input iterator used to express a position in a
container. These template arguments are typically used
to represent a range of elements with Ffirst_
representing the first element to be processed and last_
representing the element to stop at. When processing the
entire contents of a container, it is handy to know that
STL containers usually provide the begin() and end(Q)
methods to return input interators which correspond with
the first and last elements, respectively.

The following is an example of how frames from a GIF animation
"test_image_anim.gif" may be appended horizontally with the resulting image
written to the file "appended_image.miff":

#include <list>
#include <Magick++_h>
using namespace std;
using namespace Magick;

int main(int /*argc*/,char **/*argv*/)

{
list<lmage> imagelList;
readlmages(&imageList, "test_image_anim.gif");
Image appended;
appendImages(&appended, imageList.begin(), imageList.end());
appended.write("appended_image.miff");
return O;
}

The available Magick++ specific STL algorithms for operating on sequences of
image frames are shown in the following table:

Magick++ STL Algorithms For Image Sequences

22 C++ API Methods

Algorithm Signature

animatelmages Inputlterator first_,
Inputlterator last_

Image *appendedlmage_,

appendImages Inputlterator first_,
Inputlterator last_,
bool stack_ = false

Image *averagedlmage_,
averagelmages Inputlterator first_,
Inputlterator last_

coalescelmages Inputlterator first_,
Inputlterator last_

Container

deconstructlmages *deconstructedlmages_,
Inputlterator first_,
Inputlterator last_

displaylmages Inputlterator first_,
Inputlterator last_

241

Description

Animate a sequence of image
frames. Image frames are
displayed in succession,
creating an animated effect.
The animation options are taken
from the first image frame.
This feature is only supported
under X11 at the moment.

Append a sequence of image
frames, writing the result to
appendedImage_. All the input
image frames must have the same
width or height. Image frames
of the same width are stacked
top-to-bottom. Image frames of

the same height are stacked
left-to-right. 1f the stack_
parameter is false, rectangular
image frames are stacked
left-to-right otherwise
top-to-bottom.

Average a sequence of image
frames, writing the result to
averagedlmage_. All the input
image frames must be the same
size in pixels.

Merge a sequence of images.
This is useful for GIF
animation sequences that have
page offsets and disposal
methods. The input images are
modified in-place.

Break down an image sequence
into constituent parts. This
is useful for creating GIF or
MNG animation sequences. The
input sequence is specified by

first_ and last_, and the
deconstruted images are
returned via
deconstructedImages_.

Display a sequence of image
frames. Through use of a pop-up
menu, image frames may be
selected in succession. This
feature is fully supported
under X11 but may have only
limited support in other
environments.

Caution: if an image format is
is not compatable with the
display visual (e.g- JPEG on a
colormapped display) then the
original image will be altered.
Use a copy of the original if
this is a problem.

Merge a sequence of image
frames which represent image

242

flattenlmages

map Images

montage Images

morphlImages

mosaiclmages

readlmages

Image *flattendlmage_,
Inputlterator first_,
Inputlterator last_

Inputlterator first_,
Inputlterator last_,
const Image& maplmage_,
bool dither_, bool
measureError_ = false

Container
*montagelmages_,

Inputlterator first_,
Inputlterator last_,
const Montage
&montageOpts_

Container
*morphedImages_,
Inputlterator first_,
Inputlterator last_,
unsigned int frames_

Image *mosaiclmage_,
Inputlterator first_,
Inputlterator last_

Container *sequence_,
const std::string
&imageSpec_

Container *sequence_,
const Blob &blob_

ImageMagick

layers into a single composited
representation. The
flattendlmage_ parameter points
to an existing Image to update
with the flattened image. This
function is useful for
combining Photoshop layers into
a single image.

Replace the colors of a
sequence of images with the
closest color from a reference
image. Set dither_ to true to
enable dithering. Set
measureError_ to true in order
to evaluate quantization error.

Create a composite image by
combining several separate
image frames. Multiple frames
may be generated in the output
container montagelmages_
depending on the tile setting
and the number of image frames
montaged. Montage options are

provided via the parameter
montageOpts_. Options set in
the first image frame
(backgroundColor,borderColor,
matteColor, penColor,font, and
fontPointsize) are also used as
options by montagelmages() -

Morph a segence of image
frames. This algorithm expands
the number of image frames
(output to the container
morphedlmages_) by adding the
number of intervening frames
specified by frames_ such that
the original frames morph
(blend) into each other when
played as an animation.

Inlay a number of images to
form a single coherent picture.
The mosiclmage_ argument is
updated with a mosaic
constructed from the image
sequence represented by first_
through last_.

Read a sequence of image frames
into existing container
(appending to container
sequence_) with image names
specified in the string
imageSpec_ .

Read a sequence of image frames
into existing container
(appending to container
sequence_) from Blob blob_.

Write images in container to
file specified by string
imageSpec_. Set adjoin_ to
false to write a set of image

22 C++ API Methods 243

frames via a wildcard
imageSpec_ (e.g-

Inputlterator first_, image%02d.miff).

Inputlterator last_, The wildcard must be one of
writelmages const std::string %0ONd, %ONo, or %ONX.

&imageSpec_, bool Caution: if an image format is

adjoin_ = true selected which is capable of

supporting fewer colors than
the original image or
quantization has been
requested, the original image
will be quantized to fewer
colors. Use a copy of the
original if this is a problem.

Write images in container to
in-memory BLOB specified by
Blob blob_. Set adjoin_ to
false to write a set of image
frames via a wildcard
imageSpec_ (e.g-

Inputlterator first_, image%02d.miff).

Inputlterator last_, Caution: if an image format is
Blob *blob_, bool selected which is capable of
adjoin_ = true supporting fewer colors than

the original image or
quantization has been
requested, the original image
will be quantized to fewer
colors. Use a copy of the
original if this is a problem.

Inputlterator first_, Quantize colors in images using
current quantization settings.
quantizelmages Inputlterator last_, Set measureError_ to true in
bool measureError_ =
false order to measure quantization
error.

Magick++ Unary Function Objects

Magick++ unary function objects inherit from the STL unary_function template
class . The STL unary_function template class is of the form

unary_function<Arg, Result>
and expects that derived classes implement a method of the form:
Result operator()(Arg argument_);

which is invoked by algorithms using the function object. In the case of
unary function objects defined by Magick++, the invoked function looks like:

void operator()(Image &image_);
with a typical implementation looking similar to:
void operator()(Image &image_)
image_.contrast(_sharpen);
where contrast is an Image method and _sharpen is an argument stored within

the function object by its contructor. Since constructors may be
polymorphic, a given function object may have several constructors and

244

ImageMagick

selects the appropriate Image method based on the arguments supplied.

In essence, unary function objects (as provided by Magick++) simply provide
the means to construct an object which caches arguments for later use by an
algorithm designed for use with unary function objects. There is a unary
function object corresponding each algorithm provided by the Image class and
there is a contructor available compatable with each synonymous method in

the Image class.

The unary function objects that Magick++ provides to support manipulating
images are shown in the following table:

Magick++ Unary Function Objects For

Function Object

addNoiselmage

annotate lmage

blurlmage

borderlimage

charcoal Image

Constructor Signatures(s)

NoiseType noiseType_

const std::string &text_,
const Geometry &location_

std::string text_, const
Geometry &boundingArea_,
GravityType gravity_

const std::string &text_,
const Geometry

&boundingArea_, GravityType
gravity_, double degrees_,

const std::string &text_,
GravityType gravity_

const double radius_ = 1,
const double sigma_ = 0.5

const Geometry &geometry_ =
"'6x6+0+0"

const double radius_ = 1,

Image Manipulation

Description

Add noise to image with
specified noise type.

Annotate with text using
specified text, bounding
area, placement gravity,
and rotation. If

boundingArea_ is invalid,
then bounding area is
entire image.

Annotate using specified
text, bounding area, and
placement gravity. If
boundingArea_ is invalid,
then bounding area is
entire image.

Annotate with text using
specified text, bounding
area, placement gravity,
and rotation. If

boundingArea_ is invalid,
then bounding area is
entire image.

Annotate with text
(bounding area is entire
image) and placement
gravity.

Blur image. The radius_
parameter specifies the
radius of the Gaussian, in
pixels, not counting the
center pixel. The sigma_
parameter specifies the
standard deviation of the
Laplacian, in pixels.

Border image (add border to
image). The color of the
border is specified by the
borderColor attribute.

Charcoal effect image
(looks like charcoal
sketch). The radius_
parameter specifies the
radius of the Gaussian, in

22 C++ API Methods

choplmage

colorizelmage

commentlimage

compositelmage

condenselmage

contrastlmage

croplmage

cycleColormap-

Image

despecklelmage

drawlmage

const double sigma_ = 0.5

const Geometry &geometry_

const unsigned int
opacityRed_, const unsigned
int opacityGreen_, const
unsigned int opacityBlue_,
const Color é&penColor_

const unsigned int opacity_,
const Color é&penColor_

const std::string &comment_

const Image
&compositelmage_, int
xOffset_, int yOffset_,
CompositeOperator compose_ =
InCompositeOp

const Image
&compositelmage_, const
Geometry &offset_,
CompositeOperator compose_ =
InCompositeOp

void

unsigned int sharpen_

const Geometry &geometry_

int amount_

void

const Drawable &drawable_

245

pixels, not counting the
center pixel. The sigma_
parameter specifies the
standard deviation of the
Laplacian, in pixels.

Chop image (remove vertical
or horizontal subregion of
image)

Colorize image with pen
color, using specified
percent opacity for red,
green, and blue quantums.

Colorize image with pen
color, using specified

percent opacity.

Comment image (add comment
string to image). By
default, each image is
commented with its file
name. Use this method to
assign a specific comment
to the image. Optionally
you can include the image
filename, type, width,
height, or other image
attributes by embedding
special format characters.

Compose an image onto
another at specified offset
and using specified
algorithm

Condense image
(Re-run-length encode image
in memory).

Contrast image (enhance

intensity differences in
image)

Crop image (subregion of
original image)

Cycle image colormap

Despeckle image (reduce
speckle noise)

Draw shape or text on
image.

246

edgelmage

embossImage

enhancelmage

equalizelmage

fliplmage

floodFill-
Colorimage

floodFill-

const std::list<Drawable>
&drawable_

unsigned int radius_ = 0.0

const double radius_ = 1,
const double sigma_ = 0.5

void

unsigned int x_, unsigned
int y_, const Color
&FillColor_

const Geometry &point_,
const Color &fillColor_

unsigned int x_, unsigned
int y_, const Color
&FillColor_, const Color
&borderColor_

const Geometry &point_,
const Color &fillColor_,
const Color &borderColor_

unsigned int x_, unsigned

ImageMagick

Draw shapes or text on
image using a set of
Drawable objects contained
in an STL list. Use of this
method improves drawing

performance and allows
batching draw objects
together in a list for
repeated use.

Edge image (hilight edges
in image). The radius is
the radius of the pixel
neighborhood.. Specify a
radius of zero for
automatic radius selection.

Emboss image (hilight edges
with 3D effect). The

radius_ parameter specifies
the radius of the Gaussian,
in pixels, not counting the

center pixel. The sigma_
parameter specifies the
standard deviation of the
Laplacian, in pixels.

Enhance image (minimize
noise)

Equalize image (histogram
equalization)

Flip image (reflect each
scanline in the vertical
direction)

Flood-fill color across
pixels that match the color
of the target pixel and are
neighbors of the target
pixel. Uses current fuzz
setting when determining
color match.

Flood-fill color across
pixels starting at
target-pixel and stopping
at pixels matching
specified border color.
Uses current fuzz setting
when determining color
match.

Flood-fill texture across
pixels that match the color
of the target pixel and are

22 C++ API Methods

Texturelmage

floplmage

framelmage

gammalmage

gaussianBlurlmage

implodelmage

label Image

int y , const Image
&texture_

const Geometry &point_,
const Image &texture_

unsigned int x_, unsigned
int y_, const Image
&texture_, const Color
&borderColor_

const Geometry &point_,
const Image &texture_, const
Color &borderColor_

void

const Geometry &geometry_ =
""25x25+6+6""

unsigned int width_,
unsigned int height_, int
X_, int y_, int innerBevel_
= 0, int outerBevel_ =0

double gamma_

double gammaRed_, double
gammaGreen_, double
gammaBlue_

double width_, double sigma_

double factor_

const string &label_

247

neighbors of the target
pixel. Uses current fuzz
setting when determining
color match.

Flood-fill texture across
pixels starting at
target-pixel and stopping
at pixels matching
specified border color.
Uses current fuzz setting
when determining color
match.

Flop image (reflect each
scanline in the horizontal
direction)

Add decorative frame around
image

Gamma correct image
(uniform red, green, and
blue correction).

Gamma correct red, green,
and blue channels of image.

Gaussian blur image. The
number of neighbor pixels
to be included in the
convolution mask is
specified by “width_~.
example, a width of one
gives a (standard) 3x3
convolution mask. The
standard deviation of the
Gaussian bell curve is
specified by “sigma_’.

For

Implode image (special
effect)

Assign a label to an image.
Use this option to assign
a specific label to the
image. Optionally you can
include the image filename,
type, width, height, or
scene number in the label
by embedding special
format characters. If the
first character of string

248

layerimage

magnifylmage

map Image

matteFloodfill-
Image

medianFilteriImage

minifylmage

modulatelmage

negatelmage

normalizelmage

LayerType layer_

void

const Image &maplmage_ ,
bool dither_ = false

const Color &target_,
unsigned int matte_, int x_,
int y_, PaintMethod method_

const double radius_ = 0.0

void

double brightness_, double
saturation_, double hue_

bool grayscale_ = false

ImageMagick

is @, the image label is
read from a file titled by
the remaining characters in
the string. When converting
to Postscript, use this
option to specify a header
string to print above the
image.

Extract layer from image.
Use this option to extract
a particular layer from

the image. MattelLayer,

for example, is useful for
extracting the opacity
values from an image.

Magnify image by integral
size

Remap image colors with
closest color from
reference image. Set
dither_ to true in to apply
Floyd/Steinberg error
diffusion to the image. By
default, color reduction
chooses an optimal set of
colors that best represent
the original image.
Alternatively, you can
choose a particular set
of colors from an image
file with this option.

Floodfill designated area
with a matte value

Filter image by replacing
each pixel component with
the median color in a
circular neighborhood

Reduce image by integral
size

Modulate percent hue,
saturation, and brightness

of an image

Negate colors in image.
Replace every pixel with
its complementary color
(white becomes black,
yellow becomes blue,
etc.). Set grayscale to
only negate grayscale
values in image.

Normalize image (increase
contrast by normalizing the
pixel values to span the
full range of color
values).

22 C++ API Methods

oilPaintImage

opacitylmage

opaque Image

quantizelmage

raiselmage

reduceNoise-
Image

rolllImage

rotatelmage

samplelmage

scalelmage

unsigned int radius_ = 3

unsigned int opacity_

const Color &opaqueColor_,
const Color é&penColor_

bool measureError_ = false

const Geometry &geometry_ =
"'6x6+0+0", bool raisedFlag_
= fTalse

void

unsigned int order_

int columns_, int rows_

double degrees_

const Geometry &geometry

const Geometry &geometry_

249

Oilpaint image (image looks
like oil painting)

Set or attenuate the
opacity channel in the
image. If the image pixels
are opaque then they are
set to the specified
opacity value, otherwise
they are blended with the
supplied opacity value.
The value of opacity_
ranges from O (completely
opaque) to MaxRGB. The
defines OpaqueOpacity and
TransparentOpacity are
available to specify
completely opaque or
completely transparent,
respectively.

Change color of pixels
matching opaqueColor_ to

specified penColor_.

Quantize image (reduce
number of colors). Set
measureError_ to true in
order to calculate error
attributes.

Raise image (lighten or
darken the edges of an
image to give a 3-D raised
or lowered effect)

Reduce noise in image using
a noise peak elimination
filter.

Roll image (rolls image
vertically and
horizontally) by specified
number of columnms and
rows)

Rotate image
counter-clockwise by
specified number of degrees

Resize image by using pixel
sampling algorithm

Resize image by using
simple ratio algorithm

Segment (coalesce similar
image components) by
analyzing the histograms of
the color components and

250

segmentlimage

shadelmage

sharpenlmage

shavelmage

shearImage

double clusterThreshold_ =
1.0,

double smoothingThreshold_ =
1.5

double azimuth_ = 30, double

elevation_ = 30,

bool colorShading_ = false
const double radius_ = 1,

const double sigma_ = 0.5

const Geometry &geometry_

double xShearAngle_, double
yShearAngle_

ImageMagick

identifying units that are
homogeneous with the fuzzy
c-means technique. Also
uses quantizeColorSpace and
verbose image attributes.
Specify clusterThreshold_,
as the number of pixels
each cluster must exceed
the cluster threshold to be
considered valid.
SmoothingThreshold_
eliminates noise in the
second derivative of the
histogram. As the value is
increased, you can expect
a smoother second
derivative. The default is
1.5.

Shade image using distant
light source. Specify
azimuth_ and elevation_ as
the position of the
light source. By default,
the shading results as a
grayscale image.. Set
colorShading_ to true to
shade the red, green, and
blue components of the
image.

Sharpen pixels in image.
The radius_ parameter
specifies the radius of the
Gaussian, in pixels, not
counting the center pixel.

The sigma_ parameter
specifies the standard
deviation of the Laplacian,
in pixels.

Shave pixels from image
edges.

Shear image (create
parallelogram by sliding
image by X or Y axis).
Shearing slides one edge of
an image along the X or Y
axis, creating a
parallelogram. An X
direction shear slides an
edge along the X axis,
while a Y direction
shear slides an edge
along the Y axis. The
amount of the shear is
controlled by a shear
angle. For X direction
shears, x degrees is
measured relative to the Y
axis, and similarly, for Y
direction shears y
degrees is measured
relative to the X axis.
Empty triangles left over
from shearing the image

22 C++ API Methods

solarizelmage

spreadlmage

steganolmage

stereolmage

swirllmage

texturelmage

thresholdImage

transformlmage

transparentimage

trimlmage

wave Image

zoomlImage

double factor_

unsigned int amount_ = 3

const Image &watermark_

const Image &rightlmage_

double degrees_

const Image &texture_

double threshold_

const Geometry
&imageGeometry_

const Geometry
&imageGeometry_, const
Geometry &cropGeometry_

const Color &color_

void

double amplitude_ = 25.0,

double wavelength_ = 150.0

const Geometry &geometry_

251

are filled with the
color defined as
borderColor.

Solarize image (similar to
effect seen when exposing a
photographic film to light
during the development
process)

Spread pixels randomly
within image by specified
amount

Add a digital watermark to
the image (based on second
image)

Create an image which
appears in stereo when
viewed with red-blue
glasses (Red image on left,
blue on right)

Swirl image (image pixels
are rotated by degrees)

Layer a texture on image
background
Threshold image

Transform image based on
image and crop geometries.

Crop geometry is optional.

Add matte image to image,
setting pixels matching
color to transparent.

Trim edges that are the
background color from the
image.

Alter an image along a sine
wave .

Zoom image to specified
size.

Function objects are available to set attributes on image frames which are
equivalent to methods in the Image object. These function objects allow
setting an option across a range of image frames using for_each().

The following code is an example of how the color “red” may be set to
transparent in a GIF animation:

list<image> images;

readlmages(&images, "animation.gif");

252

for_each (images.beginQ),

Attribute

adjoinlmage

antiAliaslImage

animation-
Delaylmage

animation-
Iterationslmage

background-
Colorimage

background-
Texturelmage

borderColor-

Image

boxColorImage

chroma-
BluePrimarylmage

chroma-
GreenPrimarylmage

chroma-
RedPrimarylmage

Image Image Attributes

Type

bool

bool

unsigned int (O
to 65535)

unsigned int

Color

std::string

Color

Color

float x & y

float x & y

float x & y

Constructor
Signature(s)

bool flag_

bool flag_

unsigned int
delay_

unsigned int
iterations_

const Color
&color_

const string
&texture_

const Color
&color_

const Color
&boxColor_

float x_, float
y_

float x_, float
y_

float x_, float
y_

ImageMagick

images.end(), transparentlmage("red"));
writelmages(images.begin(), images.end(), "animation.gif");

The available function objects for setting image attributes are

Description

Join images into a
single multi-image
file.

Control antialiasing
of rendered
Postscript and
Postscript or
TrueType fonts.
Enabled by default.

Time in 1/100ths of
a second (0 to
65535) which must
expire before
displaying the next
image in an animated
sequence. This
option is useful for
regulating the
animation of a
sequence of GIF
images within
Netscape.

Number of iterations
to loop an animation
(e.g- Netscape loop
extension) for.

Image background
color

Image to use as
background texture.

Image border color

Base color that
annotation text is

rendered on.

Chromaticity blue
primary point (e.g-
x=0.15, y=0.06)

Chromaticity green
primary point (e.g-
x=0.3, y=0.6)

Chromaticity red
primary point (e.g-
x=0.64, y=0.33)

22 C++ API Methods

chroma-
WhitePointImage

colorFuzzilmage

colorMaplImage

colorSpacelmage

compressType-
Image

densitylmage

depthlmage

endianlmage

float x & y

double

Color

ColorspaceType

CompressionType

Geometry
(default 72x72)

unsigned int (8
or 16)

EndianType

float x_, float
y_

double fuzz_

unsigned int
index_, const
Color &color_

ColorspaceType
colorSpace_

CompressionType
compressType_

const Geometry
&density_

unsigned int
depth_

EndianType
endian_

const

253

Chromaticity white
point (e.g-
x=0.3127, y=0.329)

Colors within this
distance are
considered equal. A
number of algorithms
search for a target
color. By default
the color must be
exact. Use this
option to match
colors that are
close to the target
color in RGB space.

Color at
color-pallet index.

The colorspace (e.g-
CMYK) used to
represent the image
pixel colors. Image
pixels are always
stored as RGB(A)
except for the case
of CMY(K).

Image compresion
type. The default is
the compression type
of the specified
image file.

Vertical and
horizontal
resolution in pixels
of the image. This
option specifies an
image density when

decoding a
Postscript or
Portable Document
page. Often used
with psPageSize.

Image depth. Used to
specify the bit
depth when reading
or writing raw
images or thwn the
output format

supports multiple
depths. Defaults to
the quantum depth
that ImageMagick is
compiled with.

Specify (or obtain)
endian option for
formats which
support it.

254

fileNamelmage

fillColorlImage

filterTypelmage

fontlImage

fontPointsize-
Image

gifDispose-
MethodlImage

std::string

Color

FilterTypes

std::string

unsigned int

unsigned int
{ 0 = Disposal
not specified,
1 = Do not
dispose of
graphic,

3 = Overwrite
graphic with

background color,

4 = Overwrite
graphic with

previous graphic.

}

std::string
&FileName_

const Color
&FillColor_

FilterTypes
filterType_

const
std::string
&font_

unsigned int
pointSize_

unsigned int
disposeMethod_

ImageMagick

Image file name.

Color to use when
filling drawn

objects

Filter to use when
resizing image. The
reduction filter
employed has a
sigificant effect on
the time required to
resize an image and
the resulting
quality. The default
filter is Lanczos
which has been shown
to produce good
results when
reducing images.

Text rendering font.
IT the font is a
fully qualified X
server font name,
the font is obtained
from an X server.
To use a TrueType
font, precede the
TrueType filename
with an @.
Otherwise, specify
a Postscript font
name (e.g-
“helvetica™).

Text rendering font
point size

GIF disposal method.
This option is used
to control how
successive frames
are rendered (how
the preceding frame
is disposed of) when
creating a GIF
animation.

The type of
interlacing scheme
(default
Nolnterlace). This
option is used to
specify the type of
interlacing scheme
for raw image
formats such as RGB
or YUV. Nolnterlace
means do not
interlace,
Linelnterlace uses

22 C++ API Methods

interlace-
Typelmage

isValidlmage

label Image

lineWidthiImage

magicklmage

mattelmage

matteColorimage

monochrome-
Image

page Image

InterlaceType

bool

std::string

double

std::string

bool

Color

bool

Geometry

InterlaceType
interlace_

bool isvalid_

const
std::string
&label _

double
lineWidth_

const
std::string
&magick_

bool matteFlag_

const Color
&matteColor_

bool flag_

const Geometry
&pageSize_

255

scanline
interlacing, and
Planelnterlace uses
plane interlacing.
Partitioninterlace
is like
Planelnterlace
except the
different planes
are saved to
individual files
(e.g. 1image.R,
image.G, and
image.B). Use
Linelnterlace or
Planelnterlace to
create an interlaced
GIF or progressive
JPEG image.

Set image validity.
Valid images become
empty (invalid) if
argument is false.

Image label

Line width for
drawing lines,
circles, ellipses,
etc. See Drawable.

Get image format
(e.g. "GIF™)

True if the image
has transparency. If
set True, store
matte channel if

the image has one
otherwise create an
opaque one.

Image matte
(transparent) color

Transform the image
to black and white

Preferred size and
location of an image
canvas.

Use this option to
specify the
dimensions and
position of the
Postscript page in
dots per inch or a
TEXT page in pixels.

This option is
typically used in
concert with
density.

256

penColorlimage

penTexturelmage

pixelColorlimage

psPageSizelmage

qualitylmage

quantize-
Colorslmage

quantize-
ColorSpacelmage

Color

Image

Color

Geometry

unsigned int (O
to 100)

unsigned int

ColorspaceType

const Color
&penColor_

const Image &
penTexture_

unsigned int x_,
unsigned inty ,
const Color
&color_

const Geometry
&pageSize_

unsigned int
quality_

unsigned int

colors_

ColorspaceType
colorSpace_

ImageMagick

Page may also be
used to position a
GIF image (such as
for a scene in an
animation)

Pen color to use
when annotating on

or drawing on image.

Texture image to
paint with (similar

to penColor).

Get/set pixel color
at location x & y.

Postscript page
size. Use this
option to specify
the dimensions of
the Postscript page
in dots per inch or

a TEXT page in
pixels. This option
is typically used in
concert with
density.

JPEG/MIFF/PNG
compression level

(default 75).

Preferred number of
colors in the image.
The actual number of
colors in the image
may be less than
your request, but
never more. Images
with less unique
colors than
specified with this
option will have any
duplicate or unused
colors removed.

Colorspace to
quantize colors in
(default RGB).
Empirical evidence
suggests that
distances in color
spaces such as YUV
or YIQ correspond to
perceptual color
differences more
closely than do
distances in RGB
space. These color
spaces may give
better results when

22 C++ API Methods

quantize-
Ditherlmage

quantize-
TreeDepthlmage

rendering-
Intentlimage

resolution-
Unitslmage

scenelmage

sizelmage

strokeColoriImage

bool

unsigned int (O
to 8)

Renderinglntent

ResolutionType

unsigned int

Geometry

Color

bool flag_

unsigned int
treeDepth_

Renderinglntent
render_

ResolutionType

units_

unsigned int
scene_

const Geometry
&geometry_

const Color
&strokeColor_

257

color reducing an
image.

Apply
Floyd/Steinberg
error diffusion to
the image. The basic
strategy of
dithering is to
trade intensity
resolution for
spatial resolution
by averaging the
intensities of
several

neighboring pixels.
Images which

suffer from

severe contouring
when reducing
colors can be
improved with this
option. The
quantizeColors or
monochrome option
must be set for this
option to take
effect.

Depth of the
quantization color
classification tree.
Values of 0 or 1
allow selection of
the optimal tree
depth for the color
reduction algorithm.
Values between 2 and
8 may be used to
manually adjust the
tree depth.

The type of
rendering intent

Units of image
resolution

Image scene number

Width and height of
a raw image (an
image which does not
support width and
height
information). Size
may also be used to
affect the image
size read from a
multi-resolution
format (e.g. Photo
CD, JBIG, or JPEG.

Color to use when
drawing object

outlines

258

sublmagelmage

subRangelmage

unsigned int

unsigned int

unsigned int
sublmage_

unsigned int

ImageMagick

Subimage of an image
sequence

Number of images
relative to the base

subRange_
image
const
tileNamelmage std::string std::string Tile name
&tileName_
typelmage ImageType ImageType type_ Image storage type.
Print detailed
verboselmage bool bool information about
verboseFlag_
the image
const
viewlmage std::string std::string FlashPix viewing
&view_ parameters.
const X11 display to
x11Displaylmage std::string (e.-g. std::string display to, obtain
""hostname:0.0"") fonts from, or to
&display_

capture image from

Query Image Format Support

Magick++ provides the coderlInfoList() function to support obtaining
information about the image formats supported by ImageMagick. Support for
image formats in ImageMagick is provided by modules known as *‘coders™. A
user-provided container is updated based on a boolean truth-table match. The
truth-table supports matching based on whether ImageMagick can read the
format, write the format, or supports multiple frames for the format. A
wildcard specifier is supported for any "don’t care" field. The data
obtained via coderlInfoList() may be useful for preparing GUlI dialog boxes or
for deciding which output format to write based on support within the
ImageMagick build.

The definition of coderlInfolList is:
class Coderlinfo
{
public:

enum MatchType {

AnyMatch, // match any coder
TrueMatch, // match coder if true
FalseMatch // match coder if false

};

[remaining CoderInfo methods]

}

template <class Container >
void coderlInfoList(Container *container_,
CoderiInfo::MatchType isReadable_ =
CoderInfo: :AnyMatch,
CoderiInfo: :MatchType isWritable_ =

22 C++ API Methods 259

CoderInfo: :AnyMatch,

CoderiInfo: :MatchType isMultiFrame_ =
CoderInfo: :AnyMatch

):

The following example shows how to retrieve a list of all of the coders
which support reading images and print the coder attributes (all listed
formats will be readable):

list<CoderInfo> coderList;

coderiInfoList(&coderlList, // Reference to output list
CoderlInfo::TrueMatch, // Match readable formats
CoderiInfo: :AnyMatch, // Don’t care about writable formats
CoderiInfo::AnyMatch); // Don’t care about multi-frame

support
list<CoderlInfo>::iterator entry = coderList.begin();
while(entry != coderList.end())

{

cout << entry->name() << ": (' << entry->description() << ') : ";

cout << "Readable = '';

if (entry->isReadable())
cout << ““true";

else
cout << "false";

cout << "', '';

cout << "Writable = *';

if (entry->isWritable())
cout << ""true';

else
cout << "false";

cout << ", "

cout << "Multiframe = *';

if (entry->isMultiframe())
cout << ""true';

else
cout << "false";

cout << endl;

}

22.11 Magick::TypeMetric

The TypeMetric class provides the means to pass data from the Image class’s
TypeMetric method to the user. It provides information regarding font
metrics such as ascent, descent, text width, text height, and maximum
horizontal advance. The units of these font metrics are in pixels, and that
the metrics are dependent on the current Image font (default Ghostscript’s
“"Helvetica™), pointsize (default 12 points), and x/y resolution (default 72
DPI1) settings.

The pixel units may be converted to points (the standard
resolution-independent measure used by the typesetting industry) via the
following equation:

size_points = (size_pixels * 72)/resolution

where resolution is in dots-per-inch (DPl). This means that at the default
image resolution, there is one pixel per point.

Note that a font’s pointsize is only a first-order approximation of the font
height (ascender + descender) in points. The relationship between the
specified pointsize and the rendered font height is determined by the font
designer.

See FreeType Glyph Conventions for a detailed description of font metrics
related issues.

The methods available in the TypeMetric class are shown in the following
table:

TypeMetric Methods
Method Returns Units Signature Description

Returns the distance in
pixels from the text
baseline to the

ascent double Pixels void highest/upper grid
coordinate used to place
an outline point. Always a
positive value.

Returns the the distance
in pixels from the
descent double Pixels void baseline to the lowest
grid coordinate used to
place an outline point.
Always a negative value.

textWidth double Pixels void Returns text width in
pixels.

textHeight double Pixels void Returns text height in
pixels.

Returns the maximum
horizontal advance
maxHorizontalAdvance double Pixels void (advance from the
beginning of a character
to the beginning of the
next character) in pixels.

22.12 Special Format Characters

The Magick::Image methods annotate, draw, label, and the template function
montagelmages support special format characters contained in the argument
text. These format characters work similar to C’s printf. Whenever a format
character appears in the text, it is replaced with the equivalent attribute
text. The available format characters are shown in the following table.

Format Characters

Format Character Description
%b file size
%d directory
%e filename extension
%F filename
%h height
%m magick (e.g GIF)
%p page number
%s scene number
%t top of filename
Y%w width
%X x resolution
%y y resolution
\n newline

\r carriage return

Perl APl Methods

23.1 Image::Magick Attributes

An image has certain attributes associated with it such as width, height, number of colors in the colormap, page
geometry, and others. Many of the image methods allow you to set relevant attributes directly in the method call,
or you can use Set(), as in:

$i mage- >Set (1 oop=>100) ;
$i mage- >[$x] - >Set (di t her =>1) ;

To get an imageattribute, use Get():

($wi dth, $height, $depth) = $inage->Get('w dth’, ’'height’, 'depth’);
$col ors = $image->[2]->Cet (' colors’);

The methods GetAttribute() and SetAttribute() are aliases for Get() and Set() and may be used interchangeably.

Following is a list of image attributes acceptable to either Set() or Get() as noted.

adjoin join images into a single multi-image file.

$image->>Set(adjoin=>>boolean)
$image->Get("adjoin’)

Certain file formats accept multiple images within a single file (e.g. a GIF animation). If adjoin is value other
than 0 and the image is a multi-image format, multiple reads to the same image object will join the images into a
single file when you call the Write() method. Set adjoin to 0 if you do not want the images output to a single
file.

antialias remove pixel aliasing.

$image->Set(antialias=>>boolean)
$image->Get(’antialias’)

The visible effect of antialias is to blend the edges of any text or graphics with the image background. This attribute
affects how text and graphics are rendered when certain image formats are read (e.g. Postscript or SVG) or when
certain Image::Magick methods are called (e.g. Annotate() or Draw()).

262

23 Perl API Methods 263

backg round image background color.

$image->Set(background=>>color-name)
$image->Get("background”)

This attribute sets (or gets) the background color of an image. Image formats such as GIF, PICT, PNG, and WMF
retain the background color information.

base-filename base image filename (before transformations).
$image->Get(’base-filename™)

The original filename is returned as a string.

base—heig ht base image height (before transformations).
$image->Get("base-height’)

This attribute returns the original height of image before any resizing operation.

base-width base image width (before transformations).
$image-> Get(’base-width’)

This attribute returns the original width of image before any resizing operation.

que-primary chromaticity blue primary point.

$image->>Set(blue-primary=>>x-value,y-value)
$image->Get(’blue-primary’)

This attribute sets or returns the chromaticity blue primary point. This is a color management option.

cache-threshold cache threshold.

$image->>Set(cache-threshold=>>integer)
$image->Get(’cache-threshold”)

Image pixels are stored in your computer’s memory until it has been consumed or the cache threshold is exceeded.
Subsequent pixel operations are cached to disk. Operations to memory are significantly faster, but if your computer
does not have a sufficient amount of free memory to read or transform an image, you may need to set this threshold
to a small megabyte value (e.g. 32). Use 0 to cache all images to disk.

class image class.
$image->Get(’class’)

A Direct class image is a continuous tone image and is stored as a sequence of red-green-blue and optional
opacity intensity values. A Pseudo class image is an image with a colormap, where the image is stored as a map
of colors and a sequence of indexes into the map.

264 ImageMagick

clip-mask associate a clip mask with the image.

$image->Set(’clip-mask’=>image)
$image->Get("clip-mask’)

Clip-mask associates a clip mask with the image.

colormap color of a particular colormap entry.

$image->> Set(’colormap[$i]’=>color-name)
$image->Get(’colormap[$i]’)

This attribute returns the red, green, blue, and opacity values at colormap position $i. You can set the color with a
colorname (e.g. red) or color hex value (e.g. #cchdbd).

colors number of distinct colors in the image.
$image->Get(’colors’)

This attribute returns the number of distinct colors in the image.

comment image comment.
$image->Set(’comment’)

Return the image comment.

compression type of compression.

$image->Set(compression=>>string)
$image->Get(’compression’)

Compression defaults to the compression type of the image when it was first read. The value of compression
can be one of the following:

None BZip Fax
Group4 JPEG LosslessIPEG
Lzw RLE Zip

If you set a compression type that is incompatible with the output file type, a compatible compression value is used
instead (e.g. a PNG image ignores a compression value of JPEG and saves with Zip compression).

delay interframe delay.

$image->Set(delay=>>integer)
$image->Get(’delay’)

Delay regulates the playback speed of a sequence of images. The value is the number of hundredths of a second
that must pass before displaying the next image. The default is 0 which means there is no delay and the animation

will play as fast as possible.

23 Perl API Methods 265

density image resolution.

$image->>Set(density=>>geometry)
$image-> Get(’density’)

This attribute to set the horizontal and vertical resolution of an image. Use attribute units to define the units of
resolution. The default is 72 dots-per-inch.

depth color component depth.
$image->Get("depth’)

Return the color component depth of the image, either 8 or 16. A depth of 8 represents color component values
from 0 to 255 while a depth of 16 represents values from 0 to 65535.

directory thumbnail names of an image montage.
$image->Get('directory’)

A montage is one or more image thumbnails regularly spaced across a color or textured background created by the
Montage() method or montage program. Di rectory returns the filenames associated with each thumbnail.

dispose GIF disposal method.

$image-> Set(dispose=>0, 1, 2, 3)
$image->Get('dispose’)

The dispose attribute sets the GIF disposal method that defines how an image is refreshed when flipping between
scenes in a sequence. The disposal methods are defined as:

replace one full-size, non-transparent frame with another

any pixels not covered up by the next frame continue to display
background color or background tile shows through transparent pixels
restore to the state of a previous, undisposed frame

WN R~ O

dither apply dithering to the image.

$image->Set(dither=>>boolean)
$image-> Get('dither”)

Color reduction is performed implicitly when an image is converted from a file format that allows many colors to
one that allows fewer (e.g. JPEG to GIF). Dithering helps smooth out the apparent contours produced when sharply
reducing colors. The default is to dither an image during color reduction.

€rror mean error per pixel.
$image->Get(’error’)

This value reflects the mean error per pixel introduced when reducing the number of colors in an image either
implicitedly or explicitly:

1. Explicitly, when you use the Quantize() method.
2. Implicitly, when an image is converted from a file format that allows many colors to one that allows fewer

(e.g. JPEG to GIF).

The mean error gives one measure of how well the color reduction algorithm performed and how similiar the color
reduced image is to the original.

266

ImageMagick

file perl filehandle.

$image-> Set(file=>>filehandle)
$image->Get(’file’)

The Read() and Write() methods accept an already opened Perl filehandle and the image is read or written directly
from or to the specified filehandle.

filename filename of image.

$image->Set(filename=>>string)
$image->Get(’filename’)

The default filename is the name of the file from which the image was read. Write() accepts a filename as a
parameter, however, if you do not specify one, it uses the name defined by the Fi lename attribute. For example:

$i mage- >Read(’ |1 ogo. gif');

$i mage->Wite(); # wite imuge as logo.gif
$i mage- >Set (fi |l enane=>'10go. png’);
$i mage->Wite(); # wite i mage as | ogo. png

filesize size offilein bytes.

font

$image-> Get("filesize’)

Returns the number of bytes the image consumes in memory or on disk.

text font.

$image->Set(font=>>string)
$image->Get(*font’)

Both Annotate() and Draw() require a font to render text to an image. A font can be Truetype (Arial.ttf), Postscript

format descriptive image format.

fuzz

$image->Get(’format’)

Attribute magii ck returns the abbreviated image format (e.g. JPEG) while Format returns more descriptive text
about the format (e.g. Joint Photographic Experts Group JFIF format).

close colors are treated as equal.

$image-> Set(fuzz=>>integer)
$image-> Get('fuzz’)

A number of image methods (e.g. ColorFloodfill()) compare a target color to a color within the image. By default
these colors must match exactly. However, in many cases two colors may differ by a small amount. Fuzz defines
how much tolerance is acceptable to consider two different colors as the same. For example, set fuzz to 10 and
the color red at intensities of 100 and 102 respectively are now interpreted as the same color.

23 Perl API Methods 267

gamma image gamma.

$image->Set(gamma=>>float)
$image->Get(’gamma’)

Set or return the image gamma value. Unlike Gamma() that actually applies the gamma value to the image pixels,
here we just set the value. This is useful if the correct gamma is already known about a particular image.

geometry shorteut for specifying width and height.

$image->Set(geometry=>>geometry)
$image->Get(’geometry’)

The geometry attribute is a convenient way to specify the width, height, and any offset of an image region as a
single string. For example,

geonet ry=>' 640x80’
is equivalent to:
wi dt h=>640, hei ght =>480
To refer to a 20 x 20 region of pixels starting at coordinate (100, 150), use:

geonet ry=>" 20x20+100+150’

gravity type of gravity.

$image-> Set(gravity=>>string)
$image->Get("gravity’)

Gravi ty defaults to NorthWest. The value of gravity can be one of the following:

NorthWest North NorthEast
West Center East
SouthWest South SouthEast

green-pri mary chromaticity green primary point.

$image->Set(green-primary=>>x-value,y-value)
$image->Get(’green-primary’)

This attribute sets or returns the chromaticity green primary point. This is a color management option.

height image height.
$image->Get(’height’)

This attribute returns the height (in pixel rows) of the image.

268 ImageMagick

index colormap index at a particular pixel location.

$image->Set(’index[$X, $y]’=>color-name)
$image->Get(’index[$x, 1)

This attribute sets or returns the colormap index at position ($x, $y). The result is undefined if the image does not
have a colormap or the specified location lies outside the the image area.

ICM color information profile.
$image->Get(’'ICM’)

This attribute returns the color information profile.

id ImageMagick registry ID.
$image->Get(’id”)

This attribute returns the ImageMagick registry 1D. The registry allows for persistent images that can later be
referenced as a filename (e.g. registry:0xbd).

interlace type of interlacing scheme.

$image-> Set(interlace=>>string)
$image->Get(interlace’)

The interlace attribute allows you to specify the interlacing scheme used by certain image formats such as
GIF, JPEG, RGB, and CMYK. The default is None but can be any of the following:

None no interlacing
Line scanline interlacing
Plane plane interlacing

Partition partition interlacing

IPTC newswire information profile.
$image->Get('IPTC’)

This attribute returns the newswire information profile.

label image label.

$image-> Set(label=>>string)
$image->Get(’label’)

Use labels to optionally annotate a Postscript or PDF image or the thumbnail images of a montage created by the
Montage() method or montage program. A label can include any of the special formatting characters described in
the Comment() method description.

23 Perl API Methods 269

Ioop add loop extension to your image sequence.

$image-> Set(loop=>>integer)
$image->Get(’loop”)

The loop attribute adds the Netscape looping extension to an image sequence. A value of 0 causes the animation
sequence to loop continuously. Any other value results in the animation being repeated for the specified number of
times. The default value is 1.

magick image file format.

$image->Set(magick=>>string)
$image->Get(’'magick’)

The default image format is whatever format the image was in when it was read. Write() accepts an image format as
a parameter, however, if you do not specify one, it uses the format defined by the magi ck attribute. For example:

$i mage- >Read(’ | ogo. gi f');

$i mage->Wite(); # wite image as G F
$i mage- >Set (magi ck=>' PNG) ;
$i mage->Wite(); # wite i mage as PNG

matte transparency boolean.

$image->Set(matte=>boolean)
$image->Get('matte’)

Some images have a transparency mask associated with each pixel ranging from opaque (pixel obscures back-
ground) to fully transparent (background shows thru). The transparency mask, if it exists, is ignored if the matte
attribute is 0 and all pixels are treated as opaque.

maximum-error normalized maximum mean error per pixel.
$image->Get(’maximum-error’)

This value reflects the normalized maximum per pixel introduced when reducing the number of colors in an image
either implicitedly or explicitly:

1. Explicitly, when you use the Quantize() method.
2. Implicitly, when an image is converted from a file format that allows many colors to one that allows fewer

(e.g. JPEG to GIF).
The normalized maximum error gives one measure of how well the color reduction algorithm performed and how
similiar the color reduced image is to the original.
mean-error normalized mean mean error per pixel.
$image->Get(’mean-error’)

This value reflects the normalized mean per pixel introduced when reducing the number of colors in an image
either implicitedly or explicitly:

1. Explicitly, when you use the Quantize() method.
2. Implicitly, when an image is converted from a file format that allows many colors to one that allows fewer

(e.g. JPEG to GIF).

The normalized mean error gives one measure of how well the color reduction algorithm performed and how
similiar the color reduced image is to the original.

270 ImageMagick

montage tile size and offset within an image montage.
$image->Get(’'montage’)

A montage is one or more image thumbnails regularly spaced across a color or textured background returned by
the Montage() method or montage program. The montage attribute returns the geometry of the region associated
with each image thumbnail (e.g. 160x120+10+10). This information is useful for creating image maps for dynamic
web pages.

Page perferred size and location of the image canvas.

$image->Set(page=>>string)
$image->Get(’page’)

Page declares the image canvas size and location. Typically this is only useful for the Postscript, text, and GIF
formats. The value of string can be:

Letter Tabloid Ledger
Legal Statement Executive
A3 A4 A5

B4 B5 Folio
Quarto 10x14

or a geometry (612x792). The default value is Letter.

pointsize pointsize of a font.

$image-> Set(pointsize=>integer)
$image->Get(’pointsize’)

The pointsize attribute determines how large to draw a Postscript or TrueType font with the Annotate() or
Draw() methods. The default is 12.
preview type of image preview.

$image-> Set(preview=>>string)
$image->Get(’preview’)

Set or get the type of preview for the Preview image format.

Rotate Shear Roll

Hue Saturation Brightness
Gamma Spiff Dull
Grayscale Quantize

Despeckle ReduceNoise

AddNoise Sharpen Blur
Threshold EdgeDetect

Spread Solarize Shade
Raise Segment Swirl
Implode Wave OilPaint

CharcoalDrawing JPEG

Suppose we want to determine an ideal gamma setting for our image:

$i mage->Wite(fil ename=>" nodel . png’, previ ew=> Ganma’) ;
$i mage- >Di spl ay();

23 Perl API Methods 271

quality compression level.

$image->>Set(quality=>>integer)
$image->Get(*quality’)

The quality attribute sets the JPEG, MIFF, MNG, or PNG compression level. The range is 0 (worst) to 100 (best).
The default is 75.

Quality is a trade-off between image size and compression speed for the MIFF, MNG, and PNG formats. The higher
the quality, the smaller the resulting image size but with a requisite increase in compute time. The quality value is
used as two decimal digits. The “tens” digit conveys the zlib compression level and the “ones” digit conveys the
PNG filter method. When the compression level is 0, the Huffman compression strategy is used, which is fast but
does not necessarily obtain the worst compression. The MIFF encoder ignores the PNG filter method conveyed by
the “ones” digit.

The JPEG trade-off is between image size and image appearance. A high quality returns an image nearly free of
compression artifacts but with a larger image size. If you can accept a lower quality image appearance, the resulting
image size would be considerably less.

red-primary chromaticity red primary point.

$image->> Set(red-primary=>>x-value,y-value)
$image->Get('red-primary’)

This attribute sets or returns the chomaticity red primary point. This is a color management option.

rendering-intent intended rendering model.

$image->Set(rendering-intent=>>string)
$image->Get(’rendering-intent’)

This is a color management option. Choose from these models:

Undefined Saturation Perceptual
Absolute Relative

Sampling-factor image sampling factor.

$image->>Set(*sampling-factor’=>>geometry)
$image->Get(’sampling-factor’)

Use this attribute to set the horizontal and vertical sampling factor for use by the JPEG encoder.

SCeNne image scene number.

$image-> Set(scene=>>integer)
$image->Get(’scene’)

By default each image in a sequence has a scene number that starts at 0 and each subsequent image in the sequence
increments by 1. Use scene to reset this value to whatever is appropriate for your needs.

272

ImageMagick

signature sHA-256 message digest.

size

$image->Get(’signature’)

Retrieves the SHA-256 message digest associated with the image. A signature is generated across all the image
pixels. If a single pixel changes, the signature will change as well. The signature is mostly useful for quickly
determining if two images are identical or if an image has been modified.

width and height of a raw image.

$image->Set(size=>>geometry)
$image->Get(’size’)

Set the size attribute before reading an image from a raw data file format such as RGB, GRAY, TEXT, or CMYK
(e.g. 640x480) or identify a desired resolution for Photo CD images (e.g. 768x512).

$i mage- >Set (si ze=>' 640x480") ;
$i mage- >Read(’ gray: protein’);

Server Xserver to contact.

$image-> Set(server=>>string)
$image->Get(’server’)

Display(), Animate(), or any X11 font use with Annotate() require contact with an X server. Use server to
specify which X server to contact (e.g. mysever:0).

taint pixel change boolean.

$image-> Get(’taint’)

Taint returns a value other than 0 if any image pixel has modified since it was first read.

texture name of texture to tile.

$image->Set(texture=>>string)
$image->Get("texture’)

The texture attribute assigns a filename of a texture to be tiled onto the image background when any TXT or
WMF image formats are read.

type image type.

$image->Set(type=>>string)
$image->Get('type’)

The image type can be any of the following

23 Perl API Methods 273

Bilevel Grayscale GrayscaleMatte
Palette PaletteMatte TrueColor
TrueColorMatte ColorSeparation ~ ColorSeparationMatte
Optimize

When getting this attribute, the value reflects the type of image pixels. For example a colormapped GIF image
would most likely return Palette as the image type. You can also force a particular type with Set(). For example if

you want to force your color image to black and white, use:

$i mage- >Set (type=>'Bil evel ');

UnNits units of resolution.

$image->Set(units=>>string)
$image->Get("units’)

Return or set the units in which the image’s resolution are defined. Values may be:

Undefined
pixels/inch
pixels/centimeter

verbose print details.

$image-> Set(verbose=>>hoolean)

When set, verbose causes some image operations to print details about the operation as it progresses.

white-point chromaticity white point.

$image->>Set(white-point=>>x-value,y-value)
$image->Get(’white-point”)

This attribute sets or returns the chomaticity white point. This is a color management option.

width image width.
$image->Get('width”)

Returns the width (integer number of pixel columns) of the image.

X-resolution horizontal resolution.
$image->Get(’x-resolution’)

Returns the x resolution of the image in the units defined by the units attribute (e.g. 72 pixels/inch). Use the
densi ty attribute to change this value.

274 ImageMagick

y-resolution vertical resolution.
$image->Get(’y-resolution’)

Returns the y resolution of the image in the units defined by the units attribute (e.g. 72 pixels/inch). Use the
densi ty attribute to change this value.

23.2 Image::Magick Methods

Add NOiSE() add noise to an image.
$image->AddNoise(noise=>string)
This method adds random noise to the image, where string specifies one of the following types:

Uniform Gaussian Multiplicative
Impulse Laplacian Poisson

AffineTransform affine transform the image.

$image-> AffineTransform(affine=>>array of float values, rotate=>>rotate-angle, scale=>>sx, sy, skewX=>>skew-
angle, skewY=>skew-angle, translate=>>1x, ty)

AffineTransform()

rotate Specifies a rotation of rotate-angle degrees about a given point.
scale Specifies a scale operation by sx and sy.

skewX Specifies a skew transformation along the x-axis.

skewY Specifies a skew transformation along the y-axis.

translate Specifies a translation by tx and ty.

Animate() animate an image sequence.
$image->Animate()

Animate() repeatedly displays an image sequence to any X window screen. This method accepts the same param-
eters as Set() as described in section 23.1.

Annotate() annotate an image with text.

$image->Annotate(text=>>string, affine=>>array of float values, align=>>string, antialias=>>boolean, density=>>geometry,
encoding>string, fill=>color-name, family=>>string, font=>>string, geometry=>>geometry, gravity=>>string,
pointsize=>>integer, rotate=>>rotate-angle, scale=>>sx, sy, skewX=>>skew-angle, skewY=>>skew-angle,
stroke=>>color-name, strokewidth=>>integer, stretch=>>string, style=>>string, translate=>>tx, ty, undercolor=>>color-
name, unicode=>>boolean, weight=>>string, x=> integer, y=>>integer)

Annotate() allows you to scribble text across an image. The text may be represented as a string or filename. Precede
the filename with an “at” sign (@) and the contents of the file are drawn on the image. You can affect how text is
drawn by specifying one or more of the following parameters:

23 Perl API Methods 275

align font alignment. Choose from these alignments:
Left Center Right

antialias The visible effect of antialias is to smooth out the rounded corners of text characters. Set to 0 to keep
crisp edges.

density Set the vertical and horizontal resolution of the font. The default is 72 pixels/inch.

encoding Font encoding.

family font family.

fill The fill color paints any areas inside the outline of the text.

font A font can be a Truetype (arial.ttf), Postscript (Helvetica), or a fully-qualified X11 font (-*-helvetica-medium-

geometry Geometry defines the baseline position where text is rendered (e.g. +100+50).
gravity Gravity affects how the text is rendered relative to the (x, y) baseline position. By default gravity is
NorthWest which renders text above the baseline position. Choose from these gravities:

NorthWest North NorthEast
West Center East
SouthWest South SouthEast

pointsize The font pointsize. The default is 12.

rotate Specifies a rotation by the specified number of degrees about a given point.
scale Specifies a scale operation by sx and sy.

skewX Specifies a skew transformation along the x-axis.

skewY Specifies a skew transformation along the y-axis.

stretch font stretch. Choose from these stretches:

Normal UltraCondensed ~ ExtraCondensed
Condensed SemiCondensed ~ SemiExpanded
Expanded ExtraExpanded UltraExpanded

stroke A stroke color paints along the outline of the text.
strokewidth The width of the stroke on the text. A zero value causes no stroke to be painted.
style font style. Choose from these styles:

Normal Italic Oblique
Any

translate Specifies a translation by tx and ty.

undercolor By default text is blended with the image background. Set the undercolor color to give a uniform
background to your text of the color you choose.

unicode Set to true if text is Unicode.

weight Font weight.

x Specifies the x baseline position of the text.

y Specifies the y baseline position of the text.

Append() append a set of images.
$image->Append(stack=>>boolean)

The Append() method takes a set of images and appends them to each other. Append() returns a single image where
each image in the original set is side-by-side. If the stack parameter is True, the images are stacked top-to-bottom.

$append = $i mage- >Append();

Averag e() average a set of images.
$image->Average()

The Average() method takes a set of images and averages them together. Each image in the set must have the same
width and the same height. Average() returns a single image with each corresponding pixel component of each
image averaged.

276 ImageMagick

BIobToImag e() return an image from a Binary Large OBject.
$image->BlobTolmage(blob)

Read() returns an image from a file on disk, whereas, BlobTolmage() performs the same function if the image
format is stored in memory:

@l ob = $db->Cet | mage(); # get bl ob from database
$i mage = | nage: : Magi ck- >New(magi ck=>"j pg’);
the blob is a JPEG i mage
$i mage- >Bl obTol mage(@l ob) ; # convert blob to | nmage:: Magi ck obj ect

Blur() blur the image.
$image->Blur(geometry=>>geometry, radius=>>float, sigma=>>float)

Blur() blurs an image. We convolve the image with a Gaussian operator of the given radius and standard deviation
(sigma). For reasonable results, the radius should be larger than sigma. Use a radius of 0 and Blur() selects a
suitable radius for you. Geometry represents radius x sigma as one parameter (e.g. 0x1).

Border() frame the image with a border.
$image->>Border(geometry=>>geometry, width=>>integer, height=>integer, fill=>>color-name)

This method surrounds the image with a border of the specified color. Geometry represents width x height as one
parameter (e.g. 10x5).

Chan nel() extract a channel from the image.
$image->Channel(channel=>>string);

Extract a channel from the image. A channel is a particular color component of each pixel in the image. Choose
from these components:

Red
Cyan
Green
Magenta
Blue
Yellow
Opacity
Black

Charcoal() special effect filter.

$image->>Charcoal(geometry=>>geometry, radius=>>float, sigma=>>float)

Charcoal() is a special effect filter that simulates a charcoal drawing. We convolve the image with a Gaussian
operator of the given radius and standard deviation (sigma). For reasonable results, radius should be larger than
sigma. Use a radius of 0 and Charcoal() selects a suitable radius for you. Geometry represents radius x sigma as
one parameter (e.g. Ox1).

23 Perl API Methods 277

Chop() chop an image.
$image->Chop(geometry=>>geometry, width=>>integer, height=>>integer, x=>>integer, y=>>integer)

Chop() removes a region of an image and collapses the image to occupy the removed portion. Columns X through
x+width and the rows y through y+heiight are chopped. Use Geometry as a shortcut for width x height + x
+y (e.g. 100x50+10+20).

CIone() create a new copy of an image.
$image->Clone()

The Clone() method copies a set of images and returns the copy as a new image object. For example

$cl one = $i mage=>Cl one();

copies all of the images from $image to $clone.

Coalesce() coalesce a set of images.
$image->>Coalesce()

This method composites a set of images while respecting any page offsets and disposal methods. GIF, MIFF, and
MNG animation sequences typically start with an image background and each subsequent image varies in size
and offset. Coalesce() returns a new sequence where each image in the sequence is the same size as the first and
composited over the previous images in the sequence.

ColorFloodfi ||() floodfill the designed area with color.

$image-> ColorFloodfill(geometry=>>geometry, x=>>integer, y=>integer, fill=>>color-name, bordercolor=>>color-
name, fuzz=>>float)

ColorFloodfill() changes the color value of any pixel that matches ¥i I I and is an immediate neighbor. If bordercolor
is specified, the color value is changed for any neighbor pixel that is not bordercolor. Use Geometry as a
shortcut for x +y (e.g. +10+20).

By default £i 11 must match a particular pixel color exactly. However, in many cases two colors may differ by a
small amount. Fuzz defines how much tolerance is acceptable to consider two colors as the same. For example,
set fuzz to 10 and the color red at intensities of 100 and 102 respectively are now interpreted as the same color for
the purposes of the floodfill.

Colorize() colorize an image.
$image->Colorize(fill=>>color-name, opacity=>>string)

Colorize() blends the fill color with each pixel in the image. A percentage blend is specified with opacity.
Control the application of different color components by specifying a different percentage for each component
(e.g. 90/100/10 is 90% red, 100% green, and 10% blue).

278

ImageMagick

Comment() add a comment to an image.

$image->Comment(comment=>>string)

Add a comment to an image. Optionally you can include any of the following bits of information about the image
by embedding the appropriate special characters:

%b
%c
%d
Y%e
%f
%h
%i
%k
%I
%m
%n
%0
%p
%q
%s
%t
%u
%w
%X
%y
%ot

file size in bytes.

comment.

directory in which the image resides.
extension of the image file.

original filename of the image.
height of image.

filename of the image.

number of unique colors.

image label.

image file format.

number of images in the image sequence.
output image filename.

page number of the image.

image depth (8 or 16).

image scene number.

image filename without any extension.
a unique temporary filename.

image width.

x resolution of the image.

y resolution of the image.

SHA-256 message digest.

Given an image whose filename is logo.gif and dimensions of 640 pixels in width and 480 pixels in height,
this statement:

$i mage- >Comment (* % %m %W %’)

generates a comment that reads: logo.gif GIF 640x480.

Composite composite one image to another.

$image->Composite(image=>>image-handle, color=>>color-name, compose=>>string, geometry=>>geometry,
mask=>>image-handle, gravity=>>string, opacity=>>integer, rotate=>>float, tile=">boolean x=>>integer,
y=>integer,)

Composite() allows you to overlay one image to another. You can affect how and where the composite is overlaid
by specifying one or more of the following options:

compose This operator affects how the composite is applied to the image. The default is Over. Choose from these

operators:
Over In Out
Atop Xor Plus
Minus Add Subtract
Difference Bumpmap Copy
Displace

geometry Geometry defines the baseline position where the composite is placed (e.g. +100+50).
gravity Gravity affects how the image is placed relative to the (x, y) baseline position. By default gravity is
NorthWest which renders the image just below the baseline position. Choose from these gravities:

23 Perl API Methods 279

NorthWest North NorthEast
West Center East
SouthWest South SouthEast

image The image.
mask The mask image.
opacity Blend composite with the image background. Opacity is expressed as percent transparency.

rotate Rotate image before it is composited, expressed in degrees.
tile A value other than 0 tiles the composite repeatedly across
x Specifies the x baseline position of the composite.
y Specifies the y baseline position of the composite. and down the image.
Contrast() enhance or reduce the image contrast.
$image->Contrast(sharpen=>>boolean)
Contrast() enhances the intensity differences between the lighter and darker elements of the image. Set sharpen
to a value other than 0 to increase the image contrast otherwise the contrast is reduced.
Convolve() apply a convolution kernel to the image.

$image->Convolve(coefficients=>array of float values)

Apply a custom convolution kernel to the image. Given a particular kernel order, you must supply order x order
float values. For example, a kernel of order 3 implies 9 values (3x3):

$i mage->Convol ve([1, 2, 1, 2, 4, 2, 1, 2, 1]);

Crop crop an image.
$image->Crop(geometry=>>geometry, width=>>integer, height=>>integer, x=>>integer, y=>> integer)

Crop() extracts a region of the image starting at the offset defined by x and y and extending for width and
height. Geometry is a shorthard method to define a region. To crop 100 x 50 region that begins at position (10,

20), use

$i mage- >Cr op(’ 100x50+10+20") ;

CycleCoIormap displace a colormap.
$image->CycleColormap(display=>>integer)
CycleColormap() displaces an image’s colormap by a given number of positions. If you cycle the colormap a
number of times you can produce a psychodelic effect.
Deconstruct return the constituent parts of an image sequence.
$image->Deconstruct()

Deconstruct() returns a new sequence that consists of the first image in the sequence followed by the maximum
bounding region of any differences in subsequent images. This method can undo a coalesced sequence returned by

Coalesce().

280 ImageMagick

Despeckle filter speckles.
$image->Despeckle()

Despeckle() reduces the speckle noise in an image while perserving the edges of the original image.

Display() display image.
$image->>Display(server=>>server-name)

Display() displays the image to any X window screen.

Draw annotate an image with a graphic primitive.

$image->Draw(primitive=>>string, affine=>array of float values, antialias=">boolean, bordercolor=>>color-
name, density=>>geometry, fill=>color-name, font=>>string, geometry=>>geometry, method=>>string,
points=>>string, pointsize=>>integer, rotate=>>rotate-angle, scale=>>sx, sy, skewX=>>skew-angle, skewY=>>skew-
angle, stroke=>>color-name, strokewidth=>>integer, translate=>>tx, ty

Draw() allows you to draw a graphic primitive on your image. The primitive may be represented as a string or
filename. Precede the filename with an "at” sign (@) and the contents of the file are drawn on the image. You can
affect how text is drawn by specifying one or more of the following parameters:

primitive The primitive describes the type of graphic to draw. Choose from these primitives:

Point Line Rectangle
roundRectangle Arc Ellipse
Circle Polyline Polygon
Bezier Path Color
Matte Text Image

antialias The visible effect of antialias is to smooth out the rounded corners of the drawn shape. Set to 0 to keep
crisp edges.

bordercolor The Color primitive with a method of FloodFill changes the color value of any pixel that matches
fill and is an immediate neighbor. If bordercolor is specified, the color value is changed for any
neighbor pixel that is not il l.

density This parameter sets the vertical and horizontal resolution of the font. The default is 72 pixels/inch.

fill The fill color paints any areas inside the outline of drawn shape.

font A font can be a Truetype (arial.ttf), Postscript (Helvetica), or a fully-qualified X11 font (-*-helvetica-medium-

geometry Geometry defines the baseline position where the graphic primitive is rendered (e.g. +100+50).
method Primitives Matte and Image behavior depends on the painting method you choose:

Point Replace Floodfull
FillToBorder Reset

points List one or more sets of coordinates as required by the graphic primitive you selected.
pointsize The font pointsize. The default is 12.

rotate Specifies a rotation of rotate-angle degrees about a given point.

scale Specifies a scale operation by sx and sy.

skewX Specifies a skew transformation along the x-axis.

skewY Specifies a skew transformation along the y-axis.

stroke A stroke color paints along the outline of the shape.

strokewidth The width of the stroke of the shape. A zero value means no stroke is painted.
translate Specifies a translation by tx and ty.

23 Perl API Methods 281

Edg € detect edges within an image.
$image->Edge(radius=>>float)

Edge() finds edges in an image. Rad i us defines the radius of the convolution filter. Use a radius of 0 and Edge()
selects a suitable radius for you.

Emboss emboss the image.
$image->Emboss(geometry=>geometry, radius=>float, sigma=>float)

Emboss() returns a grayscale image with a three-dimensional effect. We convolve the image with a Gaussian
operator of the given radius and standard deviation (sigma). For reasonable results, radius should be larger than
sigma. Use a radius of 0 and Emboss() selects a suitable radius for you. Geometry represents radius x sigma as
one parameter (e.g. 0x1).

Enhance filtera noisy image.
$image->Enhance()

Enhance() applies a digital filter that improves the quality of a noisy image.

Eq ualize equalize an image.
$image->Equalize()

Perform a histogram equalization on the image.

Flatten() fatten a sequence of images.
$image->Coalesce()

This method composites a sequence of images while respecting any page offsets. A Photoshop image typically
starts with an image background and each subsequent layer varies in size and offset. Flatten() returns a single
image with all the layers composited onto the first image in the sequence.

Flip reflect an image vertically.
$image->Flip()

Flip() creates a vertical mirror image by reflecting the pixels around the central x-axis.

Flop reflect an image horizontally.
$image->Flop()

Flop() creates a horizontal mirror image by reflecting the pixels around the central y-axis.

282 ImageMagick

Frame surround the image with a decorative border.

$image->Frame(geometry=>>geometry, width=> integer, height=>>integer, inner=>>integer, outer=>>integer,
fill=>color-name)

Frame() adds a simulated three-dimensional border around the image. The color of the border is defined by Fill.
Width and height specify the border width of the vertical and horizontal sides of the frame. The inner and
outer parameters indicate the width of the inner and outer shadows of the frame. Use Geometry as a shortcut
for width, height, inner, and outer (e.g. 10x10+3+3).

Gamma gamma-correct the image.
$image->Gamma(gamma=>>string, red=>>float, green=>>float, blue=>>float)

Use Gamma() to gamma-correct an image. The same image viewed on different devices will have perceptual
differences in the way the image’s intensities are represented on the screen. Specify individual gamma levels for
the red, green, and blue channels, or adjust all three with the gamma parameter. Values typically range from 0.8 to
2.3.

You can also reduce the influence of a particular channel with a gamma value of 0.
Get() get an image attribute.
$image->Get(attribute, ...)

Get() accepts one or more image attributes listed in section 23.1 and return their value.

Imag eToBIob() return image as a Perl variable.
$image->ImageToBlob()

ImageToBlob() behaves just like Write() except the image is returned as a Perl variable rather than written to disk.
This method accepts the same parameters as Set() as described in section 23.1.

Implode() apply an implosion/explosion filter.
$image->Implode(amount=>>double)

Implode() applies a special effects filter to the image where amount determines the amount of implosion. Use a
negative amount for an explosive effect.

Label() add a label to an image.
$image->>Label(label=>string)

Use labels to optionally annotate a Postscript or PDF image or the thumbnail images of a montage created by the
Montage() method or montage program. A label can include any of the special formatting characters described in
the Comment() method description.

23 Perl API Methods 283

Level adjust the level of image contrast.
$image->Level(levels=>string, "black-point’=>float, 'mid-point’=>>float, white-point’=>>float)

The white and black points range from 0 to MaxRGB and mid ranges from 0 to 10.

Magnify() scale the image to twice its size.
$image->Magnify()

Magnify() is a convenience method that scales an image proportionally to twice its size.

Map() choose a set of colors from another image.
$image->Map(image=>>image-handle, dither=>>boolean)

Map() changes the colormap of the image to that of the image given by image. Use this method to change the
colormap in an image or image sequence to a set of predetermined colors. Set dither to a value other than zero
to helps smooth out the apparent contours produced when sharply reducing colors.

One useful example of mapping is to convert an image to the Netscape 216-color web safe palette:

$saf e = new | mage: : Magi ck;
$saf e- >Read(’ Net scape: ') ;
$i mage- >Map(i mage=>$safe, dither=>" True');

MatteFloodfill() fioodfill an area with transparency.

$image->MatteFloodfill(geometry=>>geometry, x=>>integer, y=>>integer, opacity=>>integer, bordercolor=>>color-
name, fuzz=>float)

MatteFloodfill() changes the transparency value of any pixel that matches opacity and is an immediate neighbor.
If bordercolor is specified, the transparency value is changed for any neighbor pixel that is not bordercolor.
Use Geometry as a shortcut for x +y (e.g. +10+20).

By default opac ity must match a particular pixel transparency exactly. However, in many cases two transparency
values may differ by a small amount. Fuzz defines how much tolerance is acceptable to consider two transparency
values as the same. For example, set fuzz to 10 and the opacity values of 100 and 102 respectively are now
interpreted as the same value for the purposes of the floodfill.

MedianFilter() filter a noisy image.
$image->MedianFilter(radius=>float)

MedianFilter() applies a digital filter that improves the quality of a noisy image. Each pixel is replaced by the
median in a set of neighboring pixels as defined by radius.

Minify() scale the image to half its size.
$image->Magnify()

Minify() is a convenience method that scales an image proportionally to half its size.

284 ImageMagick

Modulate adjust the brightness, saturation, and hue.
$image->Modulate(factor=>>string, brightness=>>float, saturation=>>float, hue=>float)

Modulate() lets you control the brightness, saturation, and hue of an image. Each parameter is in the form of a
percentage relative to 100. For example, to decrease the brightness by 10

$i mage- >Modul at e(bri ght ness=$>$90, sat urati on=$>$150) ;

Factor represents the brightness, saturation, and hue as one parameter (e.g. 90/150/100).

Mog rify() alternative calling scheme.
$image->Mogrify(method, ...)

The Mogrify() method is convenience function that allows you to call any image manipulation method by giving a
method name followed by one or parameters to pass to the method. The following calls have the same result:

$i mage- >Cr op(’ 340x256+0+0")
$i mage- >Mogri fy(’ Crop’, ' 340x256+0+0")

MogrifyRegion() apply method to a region.
$image->MogrifyRegion(geometry, method, ...)

MogrifyRegion() applies an image manipulation method to a region of the image as defined by geometry. For
example if you want to sharpen a 100 x 100 region starting at position (20, 20), use: result:

$i mage- >Mogri f yRegi on(’ 100x100+20+20’, Sharpen, ’'0x1')

Montag e() uniformly tile thumbnails across an image canvas.

$image->Montage(background=>>color-name, bordercolor=>>color-name, borderwidth=>>integer, compose=>>string,

fill=>color-name, font=>>string, frame=>>geometry, geometry=>>geometry, gravity=>>string, label=>>string,
mattecolor=>>color-name, mode=>>string, pointsize=>integer, shadow=>>boolean, stroke=>color-
name, texture=>>string, tile=>>geometry, title=>>string, transparent=>>color-name)

The Montage() method is a layout manager that lets you tile one or more thumbnails across an image canvas. Use
these parameters to control how the layout manager places the thumbnails:

background The color name for the montage background.

bordercolor The color name for the thumbnail border.

borderwidth The width of the thumbnail border.

compose This operator affects how the thumbnail is composited on the image canvas. The default is Over. Choose
from these operators:

Over, In Out
Atop Xor Plus
Minus Add Subtract
Difference Bumpmap Copy

Displace

23 Perl API Methods 285

fill The fill color paints any areas inside the outline of the thumbnail label.
font A font can be a Truetype (arial.ttf), Postscript (Helvetica), or a fully-qualified X11 font (-*-helvetica-medium-

frame Adds a simulated three-dimensional border around each thumbnail. The color of the border is defined by
mattecolor. Specify the border width of the vertical and horizontal sides of the frame and the inner and
outer shadows of the frame as a geometry (e.g. 10x10+3+3).

geometry Geometry defines the baseline position where a thumbnail is composited (e.g. +100+50).

gravity Gravity affects how the thumbnail is placed relative to the (x, y) baseline position. By default gravity is
South which positions the thumbnail centered south of the baseline position. Choose from these gravities:

NorthWest North NorthEast
West Center East
SouthWest South SouthEast

label A label optionally appears just below each thumbnail. Use this parameter to customize the label. See Com-
ment() for a list of embedded formatting options for the thumbnail label.
mode Define one of three thumbnail framing options:

Frame Unframe Concatentate

The default is Frame which adds a simulated three-dimensional border around each thumbnail. Unframe
tiles thumbnails without any border or frame, and Concatentate causes each image to be tightly packed
without any border, frame, or space between them.

pointsize The font pointsize. The default is 12.

shadow Any value other than 0 will add a simulated shadow beneath and to the right side of each thumbnail.

stroke The stroke color paints along the outline of any text labels.

texture Tile this image across and down the image canvas before compositing the image thumbnails.

tile Give the number of thumbnails across and down the canvas as a geometry string. The default is 5 x 4. If the
number of thumbnails exceed this maximum, more then one image canvas is created.

title Give a title to the montage. The title is centered near the top of the montage image.

transparent Make this color transparent.

MOS&iC() form a single coherent picture.
$image->Mosiac()

The Mosaic() method takes a set of images and inlays them to form a single coherent pictiure. Mosaic() returns a
single image with each image in the sequence inlayed in the image canvas at an offset as defined in the image.

$nosai ¢ = $i nage- >Mbsai c();

MotionBIlur() simulate motion blur.
$image->MotionBlur(geometry=>>geometry, radius=>>float, sigma=>>float, angle=>>float)

MotionBlur() simulates motion blur. We convolve the image with a Gaussian operator of the given radius and
standard deviation (sigma). For reasonable results, radius should be larger than sigma. Use a radius of 0 and
MotionBlur() selects a suitable radius for you. Geometry represents radius x sigma as one parameter (e.g. 0x1).
Angl e gives the angle of the blurring motion.

Morph() morph a set of images.
$image->Morph(frames=>>integer)

The Morph() method requires a minimum of two images. The first image is transformed into the second by a
number of intervening images as specified by frames. The result is returned as a new image sequence, for
example:

$nor ph = $i mage- >Mor ph(30) ;

286 ImageMagick

Negate apply color inversion.
$image->Negate(gray=>>boolean)

Negate() negates the intensities of each pixel in the image. If gray is a value other than 0, only the grayscale
pixels are inverted.

NEW() create an image object.

$image = new Image::Magick;
$image = Image::Magick-¢New()

New() instantiates an image object. As a convenience, you can set any image attribute that Set() knows about. See
section ?? for a list of known image attributes. Here is an example:

$i mage = | mage: : Magi ck- >New(si ze=>" 160x120’) ;
$i mage- >Read(’ gray: protein’);
Normalize() enhance image contrast.
$image->Normalize()

The Normalize() method enhances the contrast of a color image by adjusting the pixels color to span the entire
range of colors available.

OiIPaint() simulate an oil painting.
$image-> OilPaint(radius=>integer)

OilPaint() applies a special effect filter that simulates an oil painting. Each pixel is replaced by the most frequent
color occurring in a circular region defined by radius.

Opaque() globally change a color.
$image->Opaque(color=>>color-name, fill=>color-name, fuzz=>float)

Opaque() changes any pixel that matches color with the color defined by fill.

By default color must match a particular pixel color exactly. However, in many cases two colors may differ by
a small amount. Fuzz defines how much tolerance is acceptable to consider two colors as the same. For example,
set fuzz to 10 and the color red at intensities of 100 and 102 respectively are now interpreted as the same color.

Ordered Dither() reduce the image to black and white.
$image->OrderedDither()

The OrderedDither() method reduces the image to black and white.

23 Perl API Methods 287

Ping() get information about an image.
$image->Ping(filename=>>string, file=>>file-handle, blob=>>blob)

Ping() is a convenience method that returns information about an image without having to read the image into
memory. It returns the width, height, file size in bytes, and the file format of the image. You can specify more than
one filename but only one filehandle:

($wWi dth, $height, $size, $format) = $image->Ping(’'logo.gif’);
($wi dth, $height, $size, $format) $i mage- >Pi ng(fil e=>*| MAGE) ;
($wWi dth, $height, $size, $format) = $i mage- >Pi ng(bl ob=>\ $bl ob);

Profi Ie() add, remove, or apply an image profile.
$image->Profile(name=>>variable, profile=>>blob)

The Profile() method adds, removes, or applies an image profile. The two most common profiles are ICC, a color
management option, IPTC, a newswire profile, and APP1, which is a JPEG marker that can contain EXIF data.
Profi leis a Perl variable representing the binary profile information. To remove all profiles from the image, use
an asterick as the profile name:

$i mage->Profile(’'*");

Quantize() set the maximum number of colors in an image.

$image->Quantize(colors=>>integer, colorspace=>>string, dither=>>boolean, global_colormap=>>boolean
measure_error=>>boolean, tree_depth=>>integer)

The Quantize() method sets the maximum number of colors in an image. If the number of colors in the image
exceeds colors, a color reduction algorithm repeatly merges pixels of similar color until the total number of
unique colors is less or equal to the maximum. Here is a description of the color reduction parameters:

colors Set the maximum number of colors in the image.
colorspace By default, color merging is performed in the RGB colorspace. However, RGB is not perceptually
uniform like YCbCr for example. You may get better results by trying one of the following colorspaces:

CMYK Gray OHTA
RGB sRGB Transparent
XYz YCbCr YCC

YIQ YPbPr YuVv

dither Images which suffer from severe contouring when reducing colors can be improved with this option.

global_colormap A value other than 0 creates one global colormap for a sequence of images.

measure_error A value other than 0 returns a measure of how closely the color reduced image matches the orig-
inal. The mean error, normalized mean error, and normalized maximum mean error per pixel are computed.
Obtain these values with the Get() method.

tree_depth By default, the color reduction uses a Oct-tree algorithm whose depth ranges from 1-8 which is op-
timally determined to allow the best representation of the image with the fastest computational speed and
least amount of memory consumption. You can override the default with this parameter.

QueryCoIor() return numerical values corresponding to a color name.

$image->QueryColor(...)

Call QueryColor() with no parameters to return a list of known colors names or specify one or more color names
to get these attributes: red, green, blue, and opacity value.

@ol ors = $i mage->QueryCol or ();
($red, $green, $blue, $opacity) $i mage- >QueryCol or (' red’);
($red, $green, $blue, $opacity) = $i mage->QueryCol or (' #716bae’);

288 ImageMagick

QueryCoIorN ame() return a color name corresponding to the numerical values.
$image->QueryColorName(...)

QueryColorName() accepts one or more numerical values and returns their respective color name:

$col or = $i mage- >Quer yCol or Nane(’ r gba(65535,0,0,0)");

QueryFont() get font attributes.
$image->QueryFont(...)

Call QueryFont() with no parameters to return a list of known fonts or specify one or more font names to get these
attributes: font name, description, family, style, stretch, weight, encoding, foundry, format, metrics, and glyphs
values.

@onts = $i nage- >QueryFont () ;
$wei ght = ($i mage- >QueryFont (" Hel vetica'))[5];

QueryFontMetric() query font metrics.
$image->QueryFontMetrics(font=¢string, ...)

QueryFontMetrics() accepts a font name and any parameter acceptable to Annotate(). The method returns these
attributes associated with the given font:

character width

character height

ascender

descender

text width

text height

maximum horizontal advance

For example,

@retrics = $image->QueryFont Metrics(font=>"arial.ttf’, pointsize=>24);

QueryFormat() get image format attributes.
$image->QueryFormat(...

Call QueryFormat() with no parameters to return a list of known image formats or specify one or more format
names to get these attributes: adjoin, blob support, raw, format, decoder, encoder, description, and module.

@ormats = $i mage- >QueryFormat ();

(%adj oi n, $bl ob_support, $raw, $decoder, $encoder, $description, $nodul e) = $i mage- >Quer yFor mat (

23 Perl API Methods 289

Raise() lighten or darken edges to create a 3-D effect.
$image->Raise(geometry=>>geometry, width=>>integer, height=>>integer, raise=>>boolean)

Raise() creates a simulated three-dimensional button-like effect by lightening and darkening the edges of the image.
Width and height define the width of the vertical and horizontal edge of the effect. Use Geometry as a shortcut
for width and height (e.g. 10x10).

A value other than 0 for rai se simulates a raised button-like effect otherwise a sunken button-like effect is applied
to the image.

Read() read one or more image files.
$image->Read(filename=>>float, file=>file-handle)

filename the name of an image file.
file-handle read the image from an open filehandle.

The Read() method reads an image or image sequence from one or more filenames or the filehandle you specify.
You can specify more than one filename but only one filehandle:

read a single GF into

$i mage obj ect.

read two inmges.

read all the PNGfiles in the
current directory.

read fromopen Perl filehandle.

$i mage- >Read(fil ename=>"1o0go.gif’);

$i mage- >Read(’ 1 0go.jpg’, 'button.gif’);
$i mage- >Read(’ *. png’) ;

H R HHHR

$i mage- >Read(fil e=>*I MAGE) ;

Read() returns the number of images that were successfully read.

ReduceNoise() smooth an image.
$image->>ReduceNoise(radius=>>float)

The ReduceNoise() method smooths the contours of an image while still preserving edge information. The algo-
rithm works by replacing each pixel with its neighbor closest in value. A neighbor is defined by radius. Use a
radius of 0 and ReduceNoise() selects a suitable radius for you.

Resize() scale an image with a filter.
$image->Resize(geometry=>>geometry, width=>>integer, height=">integer, filter=>>string, blur=>>float)

Resize() scales an image to the desired dimensions with one of these filters:

Bessel Blackman Box
Catrom Cubic Gaussian
Hanning Hermite Lanczos
Mitchell Point Quadratic
Sinc Triangle

The default is Lanczos.
Use width and height to specify the image size, or use geometry as a shortcut (e.g. 640x480).

Set Blur to a value greater than 1 to blur the image as it is scaled. A value less than 1 sharpens as the image is
scaled.

290 ImageMagick

RO"() offset and roll over an image.
$image->>Roll(geometry=>>geometry, x=>>integer, y=>>integer)

Roll() offsets an image as defined by x and y. Geometry represents + x +y as one parameter (e.g. +10+20).

Rotate() rotate an image.
$image->Rotate(degrees=>>float, color=>>color-name)

Rotate() rotates an image around the x axis by the number of degrees by degrees. Any empty spaces are filled
with color.

Sample() sample an image.
$image->Sample(geometry=>>geometry, width=>>integer, height=>>integer)
Sample() scales an image to the desired dimensions with pixel sampling. Unlike other scaling methods, this method

does not introduce any additional color into the scaled image.

Use width and height to specify the image size, or use geometry as a shortcut (e.g. 640x480).

Scale() scale an image to given dimensions.
$image->Scale(geometry=>>geometry, width=>>integer, height=>>integer)
Scale() changes the size of an image to the given dimensions. Use width and height to specify the image size,
or use geometry as a shortcut (e.g. 640x480).

Segment() segment an image.

$image->Segment(geometry=>>geometry, cluster_threshold=>>float, smoothing_threshold=>>float, colorspace=>>string,
verbose=>>boolean)

Segment() segments an image by by analyzing the histograms of the color components and identifying units that
are homogeneous. The default value for cluster_threshold is 1.0 and smoothing_threshold is 1.5.
This can be represented with a shortcut geometry of 1.0x1.5.

Set() setan image attribute.

$image->Set(attribute, ...)

Set() accepts one or more image attributes listed in section 23.1 and sets their value.

Shade() shade the image with light source.
$image->Shade(geometry=>>geometry, azimuth=>>float, elevation=>>float, color=">boolean)

Shade() shines a distant light on an image to create a three-dimensional effect. You control the positioning of the
light with azimuth and elevation; azimuth is measured in degrees off the x axis and elevation is measured in pixels
above the Z axis. The geometry parameter is a shortcut for azimuth x elevation (e.g. 30x30).

23 Perl API Methods 291

Sharpen() sharpen an image.
$image->>Sharpen(geometry=>>geometry, radius=>>float, sigma=>>float)

Sharpen() sharpens an image. We convolve the image with a Gaussian operator of the given radius and standard
deviation (sigma). For reasonable results, radius should be larger than sigma. Use a radius of 0 and Sharpen()
selects a suitable radius for you. Geometry represents radius x sigma as one parameter (e.g. 0x1).

Shave() shave pixels from the image edges.

$image->Border(geometry=>>geometry, width=>>integer, height=>>integer)

This method shaves pixels from the image edges. Geometry represents width x height as one parameter (e.g.
10x5).

Shear() shear an image.
$image->>Shear(geometry=>>geometry, x=>>float, y=>>float, color=>>color-name)

Shear() transforms an image by shearing it along the x or y axis. The x and y parameters specify the degree of
shear and ranges from -179.9 to 179.9. Geometry represents X X y as one parameter (e.g. 30x60). Any empty
spaces created when shearing are filled with color.

Signatu re() generate an SHA-256 message digest.
$image->>Signature()

Signature() generates an SHA-256 message digest across all the image pixels. The signature can later be used to
verify the color integrity of the image. Two images with the same signature are identical.

Solarize() apply solorization special effect.
$image->Solarize(threshold=>float)

Solarize() applies a special effect to the image, similar to the effect achieved in a photo darkroom by selectively
exposing areas of photo sensitive paper to light. Threshold ranges from 0 to MaxRGB and is a measure of the
extent of the solarization.

Spread () randomly displace pixels.
$image->Spread(amount=>>integer)

Spead() is a special effects method that randomly displaces each pixel in a block defined by the amount parameter.

Ste reo() create a stereo special effect.
$image->>Stereo(image=>>image-handle)

Stereo() combines two images and produces a single image that is the composite of a left and right image of a
stereo pair. Special red-green stereo glasses are required to view this effect.

292 ImageMagick

Stegano() hide a digital watermark.
$image-> Stegano(image=>>image-handle, offset=>>integer)

Use Stegano() to hide a digital watermark within the image. Recover the hidden watermark later to prove that the
authenticity of an image. textttOffset defines the start position within the image to hide the watermark.

Swi rl() swirl pixels about image center.
$image->Swirl(degrees=>float)

The Swirl() method swirls the pixels about the center of the image, where degrees indicates the sweep of the arc
through which each pixel is moved. You get a more dramatic effect as the degrees move from 1 to 360.

Textu re() tile a texture on image background.
$image-> Texture(texture=>>image-handle)

Texture() repeatedly tiles the texture image across and down the image canvas.

Th reshold() divide pixels based on intensity values.
$image->Threshold(threshold=>>integer)

Threshold() changes the value of individual pixels based on the intensity of each pixel compared to threshold.
The result is a high-contrast, two color image.

Transform() resize or crop an image.
$image-> Transform(geometry=>>string, crop=>>string)
Transform() behaves like Resize() or Crop() but rather than acting on the image, it returns a new image handle:

$slices = $image->Transform crop=>"100x100")

Transpare nt() make color transparent.
$image->Transparent(color=>>color-name, opacity=>>integer fuzz=>>float)

Transparent() changes the opacity value associated with any pixel that matches color to the value defined by
opacity.

By default color must match a particular pixel color exactly. However, in many cases two colors may differ by
a small amount. Fuzz defines how much tolerance is acceptable to consider two colors as the same. For example,
set fuzz to 10 and the color red at intensities of 100 and 102 respectively are now interpreted as the same color.

23 Perl API Methods 293

Trim() remove background color from edges of image.
$image->Trim(fuzz=>>float)

Trim() crops a rectangular box around the image to remove edges that are the background color.

By default the edge pixels must match in color exactly to be trimmed. However, in many cases two colors may
differ by a small amount. Fuzz defines how much tolerance is acceptable to consider two colors as the same. For
example, set fuzz to 10 and the color red at intensities of 100 and 102 respectively are now interpreted as the same
color.

UnsharpMask() sharpen an image.
$image->UnsharpMask(geometry=>>geometry, radius=>>float, sigma=>>float, amount=>>float, threshold=>>float)

UnsharpMask() sharpens an image. We convolve the image with a Gaussian operator of the given radius and
standard deviation (sigma). For reasonable results, radius should be larger than sigma. Use a radius of 0 and
UnsharpMask() selects a suitable radius for you. Geometry represents radius x sigma as one parameter (e.g.
0x1).

Wave () special effects filter.
$image->Wave(geometry=>>string, amplitude=>>float, wavelength=>>float)

The Wave() filter creates a "ripple” effect in the image by shifting the pixels vertically along a sine wave whose
amplitude and wavelength is specified by the given parameters. Geometry represents amplitude x wavelength as
one parameter (e.g. 30x30).

Write() write one or more image files.
$image->Write(filename=>>float, file=>>file-handle)

Write() allows you to write a single or image or a sequence to a file or filehandle. You can specify more than one
filename but only one filehandle:

wite a single G F i mage.

wite two images.

wite to STDOUT.

wite only first inage

in a sequence.

wite to a open Perl filehandle.

$i mage->Wite(fil ename=>"1o0go.gif’);

$i mage->Wite('logo.jpg , 'button.gif’);
$i mage->Wite(' gif:-");

$i mage->[0] ->Wite('logo.png’);

H R HHHR

$i mage->Wite(file=>*I MAGE);

Write() returns the number of images that were written.

23.3 Image::Magick Errors

Most Image::Magick methods return an undefined value if the operation was successful. When an error occurs, a
message is returned with an embedded numeric status code. Look up the status code in table ?? to determine the
reason the operation failed. The mnemonics are aliases for the the corresponding numeric codes.

294

ImageMagick

Table23.1: Error and Warning Codes

Error and Warning Codes

Code Mnemonic Description

0 Success Method completed without an error or warning.

300 ResourceLimitWarning A program resource is exhausted (e.g. not enough memory).
305 TypeWarning A font is unavailable; a substitution may have occured.

310 OptionWarning An option parameter was malformed.

315 DelegateWarning An ImageMagick delegate returned a warning.

320 MissingDelegateWarning The image type can not be read or written because the required delegate is missing.
325 CorruptimageWarning The image file may be corrupt.

330 FileOpenWarning The image file could not be opened.

335 BlobWarning A Binary Large OBject could not be allocated.

340 StreamWarning There was a problem reading or writing from a stream.

345 CacheWarning Pixels could not be saved to the pixel cache.

385 XServerWarning An X resource is unavailable.

390 RegistryWarning There was a problem getting or setting the registry.

395 ConfigurationWarning There was a problem getting a configuration file.

400 ResourceLimitError A program resource is exhausted (e.g. not enough memory).
405 TypeError A font is unavailable; a substitution may have occured.

410 OptionError An option parameter was malformed.

415 DelegateError An ImageMagick delegate returned a warning.

420 MissingDelegateError The image type can not be read or written because the required delegate is missing.
425 CorruptimageError The image file may be corrupt.

430 FileOpenError The image file could not be opened.

435 BlobError A Binary Large OBject could not be allocated.

440 StreamError There was a problem reading or writing from a stream.

445 CacheError Pixels could not be saved to the pixel cache.

485 XServerError An X resource is unavailable.

490 RegistryError There was a problem getting or setting the registry.

495 ConfigurationError There was a problem getting a configuration file.

Recognized Color
Keyword Names

The following is the list of recognized color keywords that can be used whenever a color is needed for the Im-
ageMagick command-line utilities or API methods. The color keyword names follow the W3C SVG 1.0 Specifi-
cation with the addition of gray color names gray1 thru gray100.

Table24.1: Color Names

ImageMagick Colors

Color Name Color Name

aliceblue rgha(240, 248, 255, 0) gray71 rgha(181, 181, 181, 0)
antiquewhite rgba(250, 235, 215, 0) gray72 rgba(184, 184, 184, 0)
aqua rgba(0, 255, 255, 0) gray73 rgba(186, 186, 186, 0)
aquamarine rgba(127, 255, 212, 0) gray74 rgba(189, 189, 189, 0)
azure rgha(240, 255, 255, 0) gray75 rgha(191, 191, 191, 0)
beige rgha(245, 245, 220, 0) gray76 rgha(194, 194, 194, 0)
bisque rgba(255, 228, 196, 0) gray77 rgba(196, 196, 196, 0)
black rgba(0, 0, 0, 0) gray78 rgba(199, 199, 199, 0)
blanchedalmond rgha(255, 235, 205, 0) gray79 rgha(201, 201, 201, 0)
blue rgha(0, 0, 255, 0) gray8 rgha(20, 20, 20, 0)
blueviolet rgha(138, 43, 226, 0) gray80 rgha(204, 204, 204, 0)
brown rgba(165, 42, 42, 0) gray81 rgba(207, 207, 207, 0)
burlywood rgba(222, 184, 135, 0) gray82 rgba(209, 209, 209, 0)
cadetblue rgha(95, 158, 160, 0) gray83 rgha(212, 212, 212, 0)
chartreuse rgha(127, 255, 0, 0) gray84 rgha(214, 214, 214, 0)
chocolate rgha(210, 105, 30, 0) gray85 rgha(217, 217, 217, 0)
coral rgba(255, 127, 80, 0) gray86 rgha(219, 219, 219, 0)
cornflowerblue rgba(100, 149, 237, 0) gray87 rgha(222, 222, 222, 0)
cornsilk rgha(255, 248, 220, 0) gray88 rgha(224, 224, 224, 0)
crimson rgha(220, 20, 60, 0) gray89 rgha(227, 227, 227, 0)
cyan rgba(0, 255, 255, 0) gray9 rgha(23, 23, 23, 0)
darkblue rgba(0, 0, 139, 0) gray90 rgba(229, 229, 229, 0)
darkcyan rgba(0, 139, 139, 0) gray9l rgha(232, 232, 232, 0)
darkgoldenrod rgba(184, 134, 11, 0) gray92 rgha(235, 235, 235, 0)
darkgray rgha(169, 169, 169, 0) gray93 rgha(237, 237, 237, 0)
darkgreen rgba(0, 100, 0, 0) gray94 rgba(240, 240, 240, 0)
darkgrey rgba(169, 169, 169, 0) gray95 rgha(242, 242, 242, 0)
darkkhaki rgba(189, 183, 107, 0) gray96 rgba(245, 245, 245, 0)
darkmagenta rgba(139, 0, 139, 0) gray97 rgha(247, 247, 247, 0)
darkolivegreen rgba(85, 107, 47, 0) gray98 rgha(250, 250, 250, 0)
darkorange rgba(255, 140, 0, 0) gray99 rgha(252, 252, 252, 0)
darkorchid rgba(153, 50, 204, 0) green rgba(0, 128, 0, 0)
darkred rgha(139, 0, 0, 0) greenyellow rgha(173, 255, 47, 0)

295

296

Color
darksalmon
darkseagreen
darkslateblue
darkslategray
darkslategrey
darkturquoise
darkviolet
deeppink
deepskyblue
dimgray
dimgrey
dodgerblue
firebrick
floralwhite
forestgreen
fractal
fuchsia
gainshoro
ghostwhite
gold
goldenrod
gray

gray0
grayl
gray10
gray100
grayll
gray12
gray13
grayl4
gray15
gray16
grayl7
gray18
gray19
gray2
gray20
gray21
gray22
gray23
gray24
gray25
gray26
gray27
gray28
gray29
gray3
gray30
gray31
gray32
gray33
gray34
gray35
gray36
gray37
gray38
gray39
gray4
gray40
gray4l
gray42
gray43
gray44

ImageMagick Colors (continued)

Name

rgha(233, 150, 122, 0)
rgha(143, 188, 143, 0)
rgha(72, 61, 139, 0)
rgba(47, 79, 79, 0)
rgba(47, 79, 79, 0)
rgba(0, 206, 209, 0)
rgha(148, 0, 211, 0)
rgba(255, 20, 147, 0)
rgba(0, 191, 255, 0)
rgba(105, 105, 105, 0)
rgha(105, 105, 105, 0)
rgha(30, 144, 255, 0)
rgba(178, 34, 34, 0)
rgba(255, 250, 240, 0)
rgba(34, 139, 34, 0)
rgha(128, 128, 128, 0)
rgha(255, 0, 255, 0)
rgba(220, 220, 220, 0)
rgba(248, 248, 255, 0)
rgha(255, 215, 0, 0)
rgha(218, 165, 32, 0)
rgha(126, 126, 126, 0)
rgba(0, 0, 0, 0)
rgba(3, 3, 3,0)
rgha(26, 26, 26, 0)
rgha(255, 255, 255, 0)
rgha(28, 28, 28, 0)
rgba(31, 31, 31, 0)
rgba(33, 33, 33, 0)
rgha(36, 36, 36, 0)
rgha(38, 38, 38, 0)
rgba(41, 41, 41, 0)
rgba(43, 43, 43, 0)
rgba(46, 46, 46, 0)
rgha(48, 48, 48, 0)
rgha(5, 5, 5, 0)
rgba(51, 51, 51, 0)
rgba(54, 54, 54, 0)
rgba(56, 56, 56, 0)
rgha(59, 59, 59, 0)
rgha(61, 61, 61, 0)
rgba(64, 64, 64, 0)
rgba(66, 66, 66, 0)
rgha(69, 69, 69, 0)
rgha(71, 71, 71, 0)
rgha(74, 74, 74, 0)
rgba(8, 8, 8, 0)
rgba(77, 77,77, 0)
rgha(79, 79, 79, 0)
rgha(82, 82, 82, 0)
rgba(84, 84, 84, 0)
rgba(87, 87, 87, 0)
rgba(89, 89, 89, 0)
rgha(92, 92, 92, 0)
rgha(94, 94, 94, 0)
rgba(97, 97, 97, 0)
rgba(99, 99, 99, 0)
rgba(10, 10, 10, 0)
rgha(102, 102, 102, 0)
rgha(105, 105, 105, 0)
rgba(107, 107, 107, 0)
rgba(110, 110, 110, 0)
rgha(112, 112, 112, 0)

Color

grey

honeydew
hotpink
indianred

indigo

ivory

khaki

lavender
lavenderblush
lawngreen
lemonchiffon
lightblue
lightcoral
lightcyan
lightgoldenrodyellow
lightgray
lightgreen
lightgrey
lightpink
lightsalmon
lightseagreen
lightskyblue
lightslategray
lightslategrey
lightsteelblue
lightyellow

lime

limegreen

linen

magenta

maroon
mediumaquamarine
mediumblue
mediumorchid
mediumpurple
mediumseagreen
mediumslateblue
mediumspringgreen
mediumturquoise
mediumvioletred
midnightblue
mintcream
mistyrose
moccasin
navajowhite
navy

none

oldlace

olive

olivedrab

orange
orangered

orchid
palegoldenrod
palegreen
paleturquoise
palevioletred
papayawhip
peachpuff

peru

pink

plum
powderblue

ImageMagick

Name

rgha(128, 128, 128, 0)
rgha(240, 255, 240, 0)
rgha(255, 105, 180, 0)
rgba(205, 92, 92, 0)
rgba(75, 0, 130, 0)
rgha(255, 255, 240, 0)
rgha(240, 230, 140, 0)
rgba(230, 230, 250, 0)
rgba(255, 240, 245, 0)
rgba(124, 252, 0, 0)
rgha(255, 250, 205, 0)
rgha(173, 216, 230, 0)
rgba(240, 128, 128, 0)
rgba(224, 255, 255, 0)
rgba(250, 250, 210, 0)
rgha(211, 211, 211, 0)
rgha(144, 238, 144, 0)
rgba(211, 211, 211, 0)
rgba(255, 182, 193, 0)
rgha(255, 160, 122, 0)
rgha(32, 178, 170, 0)
rgha(135, 206, 250, 0)
rgba(119, 136, 153, 0)
rgba(119, 136, 153, 0)
rgha(176, 196, 222, 0)
rgha(255, 255, 224, 0)
rgha(0, 255, 0, 0)
rgba(50, 205, 50, 0)
rgba(250, 240, 230, 0)
rgha(255, 0, 255, 0)
rgha(128, 0, 0, 0)
rgba(102, 205, 170, 0)
rgba(0, 0, 205, 0)
rgba(186, 85, 211, 0)
rgha(147, 112, 219, 0)
rgha(60, 179, 113, 0)
rgba(123, 104, 238, 0)
rgba(0, 250, 154, 0)
rgba(72, 209, 204, 0)
rgha(199, 21, 133, 0)
rgha(25, 25, 112, 0)
rgba(245, 255, 250, 0)
rgba(255, 228, 225, 0)
rgha(255, 228, 181, 0)
rgha(255, 222, 173, 0)
rgha(0, 0, 128, 0)
rgba(0, 0, 0, 255)
rgba(253, 245, 230, 0)
rgha(128, 128, 0, 0)
rgha(107, 142, 35, 0)
rgba(255, 165, 0, 0)
rgba(255, 69, 0, 0)
rgba(218, 112, 214, 0)
rgba(238, 232, 170, 0)
rgha(152, 251, 152, 0)
rgba(175, 238, 238, 0)
rgba(219, 112, 147, 0)
rgba(255, 239, 213, 0)
rgha(255, 218, 185, 0)
rgha(205, 133, 63, 0)
rgba(255, 192, 203, 0)
rgba(221, 160, 221, 0)
rgha(176, 224, 230, 0)

24 Recognized Color Keyword Names

Color

gray45
gray46
gray47
gray48
gray49
gray5

gray50
gray51
gray52
gray53
gray54
gray55
gray56
gray57
gray58
gray59
gray6

gray60
gray61
gray62
gray63
gray64
gray65
gray66
gray67
gray68
gray69
gray7

gray70
gray71

ImageMagick Colors (continued)

Name

rgba(115, 115, 115, 0)
rgba(117, 117, 117, 0)
rgha(120, 120, 120, 0)
rgba(122, 122, 122, 0)
rgba(125, 125, 125, 0)
rgha(13, 13, 13, 0)
rgha(127, 127, 127, 0)
rgba(130, 130, 130, 0)
rgba(133, 133, 133, 0)
rgba(135, 135, 135, 0)
rgha(138, 138, 138, 0)
rgha(140, 140, 140, 0)
rgba(143, 143, 143, 0)
rgba(145, 145, 145, 0)
rgba(148, 148, 148, 0)
rgha(150, 150, 150, 0)
rgha(15, 15, 15, 0)
rgba(153, 153, 153, 0)
rgba(156, 156, 156, 0)
rgha(158, 158, 158, 0)
rgha(161, 161, 161, 0)
rgha(163, 163, 163, 0)
rgba(166, 166, 166, 0)
rgba(168, 168, 168, 0)
rgba(171, 171, 171, 0)
rgha(173, 173, 173, 0)
rgha(176, 176, 176, 0)
rgba(18, 18, 18, 0)
rgba(179, 179, 179, 0)
rgha(181, 181, 181, 0)

Color
purple

red
rosybrown
royalblue
saddlebrown
salmon
sandybrown
seagreen
seashell
sienna
silver
skyblue
slateblue
slategray
slategrey
snow
springgreen
steelblue
tan

teal

thistle
tomato
turquoise
violet
wheat
white
whitesmoke
yellow
yellowgreen

Name

rgha(128, 0, 128, 0)
rgha(255, 0, 0, 0)
rgha(188, 143, 143, 0)
rgba(65, 105, 225, 0)
rgba(139, 69, 19, 0)
rgha(250, 128, 114, 0)
rgha(244, 164, 96, 0)
rgba(46, 139, 87, 0)
rgba(255, 245, 238, 0)
rgba(160, 82, 45, 0)
rgha(192, 192, 192, 0)
rgha(135, 206, 235, 0)
rgba(106, 90, 205, 0)
rgba(112, 128, 144, 0)
rgba(112, 128, 144, 0)
rgha(255, 250, 250, 0)
rgha(0, 255, 127, 0)
rgba(70, 130, 180, 0)
rgba(210, 180, 140, 0)
rgha(0, 128, 128, 0)
rgha(216, 191, 216, 0)
rgha(255, 99, 71, 0)
rgba(64, 224, 208, 0)
rgba(238, 130, 238, 0)
rgha(245, 222, 179, 0)
rgha(255, 255, 255, 0)
rgha(245, 245, 245, 0)
rgba(255, 255, 0, 0)
rgba(154, 205, 50, 0)

297

References

[1] Dalrymple, F., Pringle, S. (1999) Cognitive Disfunction. 49, 581-623

298

/ \ Appendix A

299

Index

Exceptioninfo, 74 Imagelnfo, 82

301

