
FFmpeg Basics

Multimedia handling with a
fast audio and video encoder

Frantisek Korbel

FFmpeg Basics

Copyright © 2012 Frantisek Korbel

All rights reserved.

Please if trademarked names are used in this book without a trademark symbol,
it is for easier reading with no intention of infringement of the trademark.

Book index, user forum and other resources
are available on the website ffmpeg.tv.

ISBN: 1479327832
ISBN-13: 978-1479327836

Acknowledgements

The greatest thanks belongs to the developers of excellent FFmpeg tools and libraries and to the whole
FFmpeg community that drives this project forward. The project documentation was the main source for
the book.
Another great source was the Wikipedia, especially articles about color spaces, quantization, sampling, etc.

Thank you very much and best wishes.

Brief Contents

Introduction 12
1. FFmpeg Fundamentals 15
2. Displaying Help and Features 29
3. Bit Rate, Frame Rate and File Size 60
4. Resizing and Scaling Video 64
5. Cropping Video 69
6. Padding Video 73
7. Flipping and Rotating Video 77
8. Blur, Sharpen and Other Denoising 81
9. Overlay - Picture in Picture 87
10. Adding Text on Video 93
11. Conversion Between Formats 99
12. Time Operations 108
13. Mathematical Functions 113
14. Metadata and Subtitles 117
15. Image Processing 122
16. Digital Audio 128
17. Presets for Codecs 138
18. Interlaced Video 142
19. FFmpeg Components and Projects 147
20. Microphone and Webcam 154
21. Batch Files 159
22. Color Corrections 164
23. Advanced Techniques 179
24. Video on Web 193
25. Debugging and Tests 200
Glossary 207
About the author 216

Table of Contents
Introduction ..12

Welcome..12
First steps..12
Dedicated website...12
Conventions ..13
Your feedback is important ..14

1. FFmpeg Fundamentals ..15
FFmpeg introduction...15
Developers of FFmpeg...16
Participation in FFmpeg development ..16
FFmpeg download ...17
Command line syntax ..17
Windows Command Prompt and its alternatives...18
Path setting ...19
Renaming to shortened form ..20
Displaying output preview ..21

Preview with FFplay media player ...21
Preview with SDL output device ..21

SI prefixes available in FFmpeg ...21
Transcoding with ffmpeg ..22
Filters, filterchains and filtergraphs ..23
Selection of media streams..25
Lavfi virtual device ..27
Color names..27

2. Displaying Help and Features ...29
Text help in FFmpeg tools...29
Available bitstream filters...29
Available codecs ...30
Available decoders ...36
Available encoders ...43
Available filters ..46
Available formats...48
Available layouts of audio channels ...52
FFmpeg license...54
Available pixel formats..54
Available protocols ..57
Available audio sample formats ...58
FFmpeg version..58
Using MORE command for output formatting ..59
Redirecting output to file ..59

3. Bit Rate, Frame Rate and File Size ...60
Frame (frequency) rate introduction...60
Frame rate setting..61

Using -r option ..61
Using fps filter...61

Predefined values for frame rate..61
Bit (data) rate introduction...62

Table of Contents

6

Setting bit rate ..62
Constant bit rate (CBR) setting ..62
Setting maximum size of output file ...63
File size calculation ..63

4. Resizing and Scaling Video..64
Resizing video ...64
Predefined video frame sizes...64
Considerations when resizing - Nyquist sampling theorem...66
Special enlarging filter...67
Advanced scaling..67
Scaling video proportionately to input...68
Scaling to predefined width or height ..68

5. Cropping Video ..69
Cropping basics..69
Cropping frame center ..70
Automatic detection of cropping area..71
Cropping of timer ..71

6. Padding Video...73
Padding basics ..73
Padding videos from 4:3 to 16:9 ...75
Padding videos from 16:9 to 4:3 ...75
Padding from and to various aspect ratios ..76

Pillarboxing - adding boxes horizontally ..76
Letterboxing - adding boxes vertically..76

7. Flipping and Rotating Video ...77
Horizontal flip ..77
Vertical flip ...77
Introduction to rotating...78
Rotation by 90 degrees counterclockwise and flip vertically ...79
Rotation by 90 degrees clockwise ...79
Rotation by 90 degrees counterclockwise ..80
Rotation by 90 degrees clockwise and flip vertically ..80

8. Blur, Sharpen and Other Denoising ...81
Blur video effect ...81
Sharpen video ...83
Noise reduction with denoise3d ..84
Noise reduction with hqdn3d ..85
Noise reduction with nr option ...86

9. Overlay - Picture in Picture...87
Introduction to overlay..87
Command structure for overlay ...87
Logo in one of corners ...88

Logo in top-left corner ..89
Logo in top-right corner ..89
Logo in bottom-right corner ..89

Table of Contents

7

Logo in bottom-left corner ..90
Logo shows in specified moment ..90
Video with timer ..91
Other overlay examples...92

10. Adding Text on Video ..93
Introduction to adding text on video..93
Text positioning..95

Horizontal location setting ..95
Vertical location setting ..95

Font size and color setting...96
Dynamic text...97

Horizontal text movement...97
Vertical text movement ...98

11. Conversion Between Formats..99
Introduction to media formats ...99

File formats ...99
Media containers ...99

Transcoding and conversion...99
Introduction to codecs ...100
Overwriting same named output files..101
Generic options for conversion...102
Private options for conversion..105

MPEG-1 video encoder...105
MPEG-2 video encoder...106
MPEG-4 video encoder...106
libvpx video encoder ...106
AC-3 audio encoder ..107

Simplified encoding of VCD, SVCD, DVD, DV and DV50..107
12. Time Operations ...108

Duration of audio and video ..108
Setting with -t option...108
Setting with number of frames ..108

Setting delay from start...108
Extracting specific part from media file..108
Delay between input streams ..109

One input file...109
Two or more input files...109

Limit for processing time ..109
Shortest stream determines encoding time..109
Timestamp and time bases..110
Encoder timebase setting ..110
Audio and video speed modifications...111

Video speed change...111
Audio speed change ..112

Synchronizing audio data with timestamps ..112
13. Mathematical Functions ..113

Table of Contents

8

Expressions that can use mathematical functions...113
Built-in arithmetic operators ..114
Built-in constants ...114
Table of built-in mathematical functions...114
Examples of using functions..116

14. Metadata and Subtitles ..117
Introduction to metadata ..117
Creating metadata ...117
Saving and loading metadata to/from the file ...119
Deletion of metadata ..119
Introduction to subtitles ..119
Subtitles encoded directly to video ...121

15. Image Processing ..122
Supported image formats ..122
Creating images..123

Screenshots from videos..123
Animated GIFs from videos ..123
Images from FFmpeg video sources..123
Video conversion to images ..124

Resizing, cropping and padding images...125
Flipping, rotating and overlaying images ..126
Conversion between image types..127
Creating video from images ..127

Video from one image...127
Video from many images ..127

16. Digital Audio...128
Introduction to digital audio ...128

Audio quantization and sampling..128
Audio file formats ..130
Sound synthesis ..130
Stereo and more complex sounds ...132

Binaural tones for stress reduction ..132
Sound volume settings ...133
Multiple sounds mixed to one output ...133
Downmixing stereo to mono, surround to stereo ..134
Simple audio analyzer..135
Adjusting audio for listening with headphones...136
Audio modifications with -map_channel option ...136

Switching audio channels in stereo input ..137
Splitting stereo sound to 2 separate streams..137
Muting one channel from stereo input ..137

Merging 2 audio streams to 1 multichannel stream ...137
Audio stream forwarding with buffer order control ..137

17. Presets for Codecs ..138
Introduction to preset files ..138
Examples of preset files ...139

Table of Contents

9

Preset file libvpx-1080p.ffpreset...139
Preset file libvpx-1080p50_60.ffpreset...139
Preset file libvpx-360p.ffpreset...140
Preset file libvpx-720p.ffpreset...140
Preset file libvpx-720p50_60.ffpreset...141

18. Interlaced Video..142
NTSC, PAL and SECAM TV standards ...142
Interlaced frame type setting..143
Field order change of interlaced video ..143
Deinterlacing ..144

yadif filter..144
Option -deinterlace..144
Deinterlacing filters from MPlayer project ...144
Pullup filter..145

Interlaced video and digital television ...145
19. FFmpeg Components and Projects ...147

FFplay introduction...147
Key and mouse controls during playback ...148
FFplay show modes...148

FFprobe introduction ..149
FFserver introduction ...150
FFmpeg software libraries ..150

libavcodec ...150
libavdevice ..150
libavfilter ...151
libavformat ..151
libavutil ...151
libpostproc...151
libswresample..151
libswscale ..151

Projects using FFmpeg components...152
HTML5 support in Google Chrome..152
Videoprocessing on YouTube and Facebook ...152
Multimedia frameworks utilizing FFmpeg ...152
Video editors ...152
Audio editors...152
Media players using FFmpeg ..153

20. Microphone and Webcam..154
Introduction to input devices..154

List of available cameras and microphones ..154
Available options for webcam ..155

Displaying and recording webcam input...156
Using two webcams..156
Recording sound and sending it to loudspeakers..158

21. Batch Files ...159
Advantages of batch files...159

Table of Contents

10

Batch file commands..159
Typical usage of batch files ...161
Tone generator ...161
Creating Jingle Bells ..162
Simplified conversion ..163

22. Color Corrections ...164
Video modifications with lookup table...164

Conversion to monochrome (black-and-white) image..164
Introduction to color spaces..165
YUV color space and its derivatives...166

Luma (luminance) and chroma (chrominance) ...166
Pixel formats...166
RGB pixel format modifications...167

Color balance...168
Modifications of YUV pixel format ..169

Brightness correction...170
Hue and saturation setting ..171
Comparison in 2 windows ...172

2 windows compared horizontally ..172
2 windows compared vertically...173
Space between windows..173
Modified version first..174
2 modified versions without input...174

Comparison in 3 windows ...175
3 windows compared horizontally ..175
3 windows compared vertically...175
Input in the middle window...176

Brightness correction in 2 and 3 windows ...176
Comparison in 4 windows ...178

23. Advanced Techniques ..179
Joining audio and video files...179

Concatenation with shell command ..179
Concatenation with concat protocol ..180
Concatenation with concat filter ...180
Other types of joining..180

Removing logo ..181
delogo filter ...181

Fixing of shaking video parts ..182
Adding color box to video..183
Number of frames detection..183
Detection of ads, section transitions or corrupted encoding..184

Detection with blackframe filter ...185
Selecting only specified frames to output ..186
Scaling input by changing aspect ratios...187
Screen grabbing ...188
Detailed video frame information ..188

Table of Contents

11

Audio frequency spectrum..189
Audio waves visualization ...190
Voice synthesis ...190
Saving output to multiple formats at once ..191
Additional media input to filtergraph..192

24. Video on Web..193
HTML5 support on main browsers ...193
Adding audio with HTML5 ..194
Adding video with HTML5...195
Adding video for Flash Player ..196
Video sharing websites ..196
Videoprocessing on webserver..198
Monetizing video uploads..199

25. Debugging and Tests ..200
debug, debug_ts and fdebug options..200
Flags for error detection ...202
Logging level setting ..202
Timebase configuration test..203
Testing encoding features..203
Test patterns...205

RGB test pattern..205
Color pattern with scrolling gradient and timestamp..205
SMPTE bars pattern ..205

Simple packet dumping or with payload (hexadecimally) ...205
CPU time used and memory consumption ..206

Glossary ...207
About the author...216

Introduction
Welcome
Dear reader,
welcome to the book that will try to make you familiar with many interesting features of the FFmpeg
project. Its quality indicates several FFmpeg users:

Facebook, the largest social network, handles videos from users with ffmpeg tool
Google Chrome, popular web browser, uses FFmpeg libraries for HTML5 audio and video support
YouTube, the biggest video sharing website, converts uploaded videos with ffmpeg.

The book’s focus is to explain the basic video editing like resizing, cropping, padding, denoising, overlay,
etc., but included are instructions for more complex processing and experiments.
The chapter Digital Audio describes how to convert and create audio, advanced sound processing is in the
chapters Batch Files and Advanced Techniques.

First steps
The first step is to download FFmpeg binaries, if not already done, the details are in the first chapter or on
the dedicated website. Many Linux distributions already have FFmpeg tools installed or advanced users can
compile their own binaries.
The first chapter contains basic information about FFmpeg project and how to simplify the work with its
tools. If already familiar with these data or if it looks too technical for the start, you can move to the second
chapter and start to enter various ffmpeg commands.
Please note, that many commands in this book are simplified to illustrate the currently explained feature
and some parameters are omitted, especially in conversions, the details are in the chapter Conversion
Between Formats.

Dedicated website
For the book was created a special website on ffmpeg.tv that contains:

book index, table of contents and description of the book
examples from the book in the video format, videos are located in the particular chapters
user forum to discuss the book topics and various ideas
list of found errors (errata)
contact form
40 last articles from 6 FFmpeg mailing lists (constantly updated)

Introduction

13

Conventions
Text that should be entered on the command line is printed in a serif proportional typeface, for example:

ffmpeg -i input.mpg -q 1 output.avi

The part of the command that should be replaced with a particular text is printed in italics, for example:

ffmpeg -i input -vf mp=denoise3d -s vga output

The console output is printed in a sans serif proportional typeface:

Muxer avi [AVI (Audio Video Interleaved)]:
Common extensions: avi.
Mime type: video/x-msvideo.
Default video codec: mpeg4.
Default audio codec: mp3.

The blue caret ^ indicates that the command is too long to be printed on one line in the book and continues
on another, but on computer it remains a 1-line command, for example:

ffplay -f lavfi -i color=c=white ^
-vf drawtext=fontfile=/Windows/Fonts/arial.ttf:text=Welcome

Please note a space between the word white and ^ in the previous example, the space indicates that there
will be space also on the command line. This form of notation is required in the batch files that will be
explained in the chapter Batch Files.

Introduction

14

For a better orientation the book contains a colored differentiation of FFmpeg elements like the filters,
devices, sources and other items.

Colored differentiation of devices, filters, etc. related to audio and video

audio only

video only

both audio and video

Your feedback is important
Many options and parameters of FFmpeg tools cannot be described in the book with about 200 pages and
your opinion what can be improved and included in the next edition is welcome.
Please before sending a query by e-mail, visit www.ffmpeg.tv and search on the forum or FAQ, it will
prevent repeated questions and in some cases it will provide instant help.
Thank you very much and best wishes.

1. FFmpeg Fundamentals
To use optimally the great variety of FFmpeg components it is useful to properly understand the basic facts
and features. If it is too technical for the start, you can continue with the next chapter and return later.

FFmpeg introduction
FFmpeg is a name of a free software project for the multimedia handling licensed under GNU General
Public License. The most popular part of the project is ffmpeg command line tool for video and audio
encoding/decoding and its main features are the high speed, quality of output and small file sizes. "FF"
from FFmpeg means Fast Forward - a control button on media players, and "mpeg" is an abbreviation of
the Moving Pictures Experts Group. The FFmpeg logo contains a zig-zag pattern, that is characteristic for
the entropy coding scheme illustrated with 8x8 block in the picture.

FFmpeg command-line tools

ffmpeg fast audio and video encoder/decoder

ffplay media player

ffprobe shows media files characteristics

ffserver broadcast server for multimedia streaming using HTTP and RTSP protocols

FFmpeg software libraries

libavcodec software library for various multimedia codecs

libavdevice software library for devices

libavfilter software library containing filters

libavformat software library for media formats

libavutil software library containing various utilities

libpostproc software library for post processing

libswresample software library for audio resampling

libswscale software library for media scaling

The programming language for all components is C and the source code can be compiled on Linux/Unix,
Windows, Mac OS X, etc.
The book was created on the Microsoft Windows using official binary builds, but almost all instructions
and examples should work without any change on other operating systems. Please see the FFmpeg
configuration entry in the Glossary for the details about enabled options.

1. FFmpeg Fundamentals

16

Developers of FFmpeg
The project was started in 2000 by Fabrice Bellard, excellent programmer known also as a creator of
QEMU and Tiny C Compiler. Now the project is maintained by the FFmpeg team and developers are from
many countries, main developers available for contracting work are in the table:

Name Location Specialization

Baptiste Coudurier Los Angeles,
USA

He has special expertise in broadcast codecs (ProRes, DNxHD,
IMX/D-10, AVC-Intra), formats (MXF, GXF, MOV) and
usages (Avid, FCP, Interlacing, Time Code, Metadata).

Benjamin Larsson Stockholm,
Sweden

Main area of his expertise is audio codecs.

Diego Biurrun Aachen,
Germany

He has special expertise in license compliance engineering and
build systems.

Jason Garrett-Glaser Los Angeles,
USA

He is the lead x264 developer and has special expertise in
H.264 and other modern lossy video formats, as well as x86
SIMD assembly optimization.

Luca Barbato Torino, Italy He has special expertise in streaming protocols.

Michael Niedermayer Vienna, Austria He is an expert in all areas of video coding as well as x86
assembly.

Stefano Sabatini Cagliari, Italy He has special expertise in libavfilter, ff* tools usage and
usability issues.

Participation in FFmpeg development
Anyone can participate by joining particular mailing list on the webpage

http://www.ffmpeg.org/contact.html

Available mailing lists are in the table:

FFmpeg mailing lists

ffmpeg-user for regular user questions like compilation troubles, command-line issues and similar

ffserver-user for ffserver user questions like configuration and streaming issues

libav-user for application developer questions about development using the FFmpeg libraries

ffmpeg-devel for development of FFmpeg itself, it is not for development of software that use the
FFmpeg libraries and not for bug reports

ffmpeg-cvslog for all changes to the FFmpeg sources / main git repository

ffmpeg-trac for all changes to the FFmpeg Trac issuetracker

http://www.ffmpeg.org/contact.html

1. FFmpeg Fundamentals

17

FFmpeg download
The primary download source is located on the webpage:
http://ffmpeg.org/download.html
The users of Windows can download the binaries (static builds are recommended) from the webpage
http://ffmpeg.zeranoe.com/builds
Many Linux distributions have FFmpeg tools already installed, otherwise they can be compiled, this is
possible also on the OS X, or the OS X binaries can be downloaded from the webpages
http://www.evermeet.cx/ffmpeg or http://ffmpegmac.net

Command line syntax
The syntax of ffmpeg command line tool is relatively simple, important is to type required parameters in
the correct position and not to mix options between various inputs and outputs. The general structure of
ffmpeg command follows, global options affect all inputs and outputs:

ffmpeg [global options] [input file options] -i input_file [output file
options] output_file

http://ffmpeg.zeranoe.com/builds
http://www.evermeet.cx/ffmpeg
http://ffmpeg.zeranoe.com/builds
http://ffmpeg.org/download.html

1. FFmpeg Fundamentals

18

Windows Command Prompt and its alternatives
The ffmpeg command line tool on Windows is managed via Command Prompt, that is available via
Windows -> All Programs -> Accessories -> Command Prompt. It can be also started with a shortcut
Win+R , then typing cmd followed by Enter.

Windows Command Prompt does not save the history of used commands when it is closed and because
there are free applications with additional features like the file management, editing, macros, FTP client,
etc., it is recommended to select advanced program for FFmpeg tools. The next table describes several free
alternatives.

Windows Command Prompt alternatives

Name Download Description

FAR Manager farmanager.com - file manager with shell, editor, ftp client
- command line completion, shortcuts, macros, plugins
- 2 windows, customizable interface

PyCmd sourceforge.net/projects/pycmd - tab completion, persistent history...

Console sourceforge.net/projects/console - multiple tabs, configurable

Gregs DOS
Shell

gammadyne.com/cmdline.htm#gs - improved editing, command history, support for Aero
Glass, etc.

TCC/LE jpsoft.com/all-
downloads/downloads.html

- includes 111 internal commands, 103 internal
variables, 140 variable functions

The next lines describes the best alternative FAR Manager, on Linux it can be substituted with a similar
application Midnight Commander, if installed, it is started with an mc command from the console.

1. FFmpeg Fundamentals

19

FAR Manager is a popular file manager, editor and FTP client that supports macros, plugins and other
advanced features. User interface is highly customizable and was translated to many languages. The next
picture illustrates its command history window, that is displayed during typing a new command, so the user
can easily select the command used previously and edit it eventually.

For its advanced file editor, FAR Manager will be useful when creating ffmpeg batches, what is described
in the chapter Batch Files. File editor is needed also for including media files on the web page, what is the
topic of the Video on Web chapter. Customization of the interface is started with F9 key and selecting the
Options tab.

Path setting
It is practical to copy downloaded FFmpeg command line utilities (ffmpeg.exe, ffplay.exe, ffprobe.exe) to
the directory, which is included in an Environment Variables, section Path, so they can be invoked from
any directory without writing the complete path to them.
Alternatively you can copy FFmpeg programs to other directory, for example C:\media and then add this
folder to the system path via Control Panel -> System and Security -> System -> Advanced System
Settings. Please click here on the button Environment Variables, scroll down the scroll bar of System
Variables, click on the line Path and then on the button Edit. In a pop-up window Edit System Variable
click on the field Variable Value, move the cursor at the end of line, add the text

;C:\media

and click on OK button. The semicolon separates particular directories, it should not be duplicated.

1. FFmpeg Fundamentals

20

For the current session of the Command Prompt, the path can be set with the command:

set path=%path%;C:\path_to_ffmpeg.exe

For example, if the file ffmpeg.exe was copied to the directory C:\media, the command is:

set path=%path%;C:\media

Renaming to shortened form
The command name ffmpeg has 6 characters and to type it frequently is not very comfortable, so it is
recommended to rename the file ffmpeg.exe to f.exe (ffplay.exe to fp.exe, etc.) or similar short form to save
time and prevent mistyping. In the Command Prompt you can use the command:

ren ffmpeg.exe f.exe

For the clarity in this book is always used the complete command form ffmpeg.

1. FFmpeg Fundamentals

21

Displaying output preview
During various video tests, we can save plenty of time by displaying the command output directly on the
screen and not to save it to the file and than preview it in a media player.
Preview with FFplay media player
Instead of generating a new file with ffmpeg tool using the simplified command

ffmpeg -i input_file ... test_options ... output_file

we can use the ffplay that will show exactly the same as ffmpeg saves to the file using the command

ffplay -i input_file ... test_options

Preview with SDL output device
This preview is generated by an SDL (Simple DirectMedia Layer) output device described in the table:

Output device: sdl

Description Shows a video stream in an SDL window, requires libsdl library installed.

Syntax [-icon_title i_title] [-window_size w_size] [-window_title w_title] -f sdl output

Description of device’s options

icon_title name of the iconified SDL window, defaults to the value of window_title

window_size SDL window size, widthxheight or abbreviation, default is the size of the input video

window_title window title, defaults to the filename specified for the output device

Please note, that SDL device can display only output with a yuv420p pixel format and with other input type
the option -pix_fmt with a value yuv420p must be prepended, otherwise an error is displayed, for example:

ffmpeg -f lavfi -i rgbtestsrc -pix_fmt yuv420p -f sdl Example

SI prefixes available in FFmpeg
When specifying numeric values to various ffmpeg options like bitrate or maximal file size you can use
common SI postfixes: K for kilo (103), M for mega (106), G for giga (109), etc. The next example specifies
a new bitrate 1.5 megabits per second for the output file, all commands give the same result:

1. FFmpeg Fundamentals

22

ffmpeg -i input.avi -b:v 1500000 output.mp4
ffmpeg -i input.avi -b:v 1500K output.mp4
ffmpeg -i input.avi -b:v 1.5M output.mp4
ffmpeg -i input.avi -b:v 0.0015G output.mp4

Please note that in FFmpeg documentation SI prefixes are called postfixes, because they must be entered
immediately after the numeric value.
Postfix B (byte) can be used in ffmpeg options with numeric values and multiplies the value by number 8.
It can be combined with other prefixes to denote kilobytes (KB), megabytes (MB), etc. For example to set
the maximal file size of 10 megabytes for the output file, the next command can be used:

ffmpeg -i input.mpg -fs 10MB output.mp4

SI prefixes available in FFmpeg

for parts (negative) for multiples (positive)
Symbol Prefix decimal base 10 binary base 2 Symbol Prefix decimal base 10 binary base 2

y yocto- -24 -80 h hecto- 2

z zepto- -21 -70 k, K kilo- 3 10

a atto- -18 -60 M mega- 6 20

f femto- -15 -50 G giga- 9 30

p piko- -12 -40 T tera- 12 40

n nano- -9 -30 P peta- 15 50

μ mikro- -6 -20 E exa- 18 60

m milli- -3 -10 Z zetta- 21 70

c centi- -2 Y yotta- 24 80

d deci- -1

Transcoding with ffmpeg
The ffmpeg program reads into memory the content of any number of inputs specified with -i option,
processes it according to the entered parameters or program defaults and writes the result to any number of
outputs. Inputs and outputs can be computer files, pipes, network streams, grabbing devices, etc.
In transcoding process, ffmpeg calls demuxers in libavformat library to read inputs and get from them
packets with encoded data. If there are more inputs, ffmpeg keeps them synchronized by tracking lowest
timestamp on any active input stream. Then decoder produces uncompressed frames from encoded packets
and after optional filtering, the frames are sent to the encoder. Encoder produces new encoded packet, that
are sent to the muxer and written to the output.
The important part of FFmpeg tools are filters, that can be organized to filterchains and filtergraphs.
Filtergraphs can be simple or complex. Filtering process is realized between decoding the source and
encoding the output. The transcoding process is illustrated in the next diagram.

1. FFmpeg Fundamentals

23

Filters, filterchains and filtergraphs
In multimedia processing, the term filter means a software tool that modifies input before it is encoded to
the output. Filters are divided to audio and video filters (please see also filter in Glossary). FFmpeg has
built-in many multimedia filters and enables to combine them in many ways. Commands with a complex
syntax direct decoded frames from one filter to another according to specified parameters. This simplifies
the media processing, because multiple decoding and encoding of media streams with lossy codecs
decreases overall quality. Filtering API (Application Programming Interface) of FFmpeg is the libavfilter
software library that enables filters to have multiple inputs and outputs. Filters are included between inputs
and outputs using -vf option for video filters and -af option for audio filters. For example, the next
command produces a test pattern rotated by 90° clockwise using a transpose filter (described in 7. chapter):

ffplay -f lavfi -i testsrc -vf transpose=1

The next example slows down the tempo of input audio to 80% using an atempo audio filter:

ffmpeg -i input.mp3 -af atempo=0.8 output.mp3

1. FFmpeg Fundamentals

24

Filters are often used in filterchains (sequences of comma-separated filters) and filtergraphs (semicolon-
separated sequences of filterchains). If any spaces are used, the filterchain must be enclosed in quotes. In
the filtergraphs can be used link labels that represent the output of a selected filterchain and can be used
anywhere in the following filtergraphs. For instance we want to compare the input video with an output
denoised by a hqdn3d filter. Without the filtergraphs we must use at least 2 commands, for example:

ffmpeg -i input.mpg -vf hqdn3d,pad=2*iw output.mp4
ffmpeg -i output.mp4 -i input.mpg -filter_complex overlay=w compare.mp4

Using a filtergraph with the link labels, sufficient is only 1 command:

ffplay -i i.mpg -vf split[a][b];[a]pad=2*iw[A];[b]hqdn3d[B];[A][B]overlay=w

The split filter divided the input to 2 outputs labeled [a] and [b], then [a] link is used as an input in the
second filterchain that creates a pad for the comparison labeled [A]. [b] link is used as an input in the 3rd
filterchain that creates a denoised output labeled [B]. The last filterchain uses [A] and [B] labels as inputs
to the overlay filter that produces the final comparison. Another example is in the next diagram.

1. FFmpeg Fundamentals

25

Selection of media streams
Some media containers like AVI, Matroska, MP4, etc. can contain multiple streams of various type,
FFmpeg recognizes 5 stream types: audio (a), attachment (t), data (d), subtitle (s) and video (v).
Stream are selected with -map option followed by a stream specifier with the syntax:

file_number:stream_type[:stream_number]

File_number and stream_number are denoted also file_index and stream_index and are counted from 0, it
means that the first one is 0, the second one is 1, etc. There are some special stream specifiers:

-map 0 selects all streams from all types
-map i:v selects all video streams from the file with a number i (index), -map i:a selects all audio
streams, -map i:s selects all subtitle streams, etc.
special options -an, -vn, -sn exclude all audio, video or subtitle streams respectively

If the input file(s) contains more streams of the same type and -map option is not used, then selected is only
1 stream of each type. For example, if the file contains 2 video streams, selected is the one with a higher
resolution, for audio is selected the stream with more channels, etc., details are in the following diagram:

1. FFmpeg Fundamentals

26

Beside the specific -map option, stream specifiers are used with many other options in several forms:

Forms of stream specifiers

Specifier form Description

stream_index selects the stream with this index (number)

stream_type[:stream_index] stream_type is 1 of letters a (audio), d (data),s (subtitle), t (attachments)
or v (video); if stream_index is added, it selects the stream of this type
with given index, otherwise it selects all streams of this type

p:program_id[:stream_index] if stream_index is added, then selects the stream with stream_index in
program with given program_id, else selects all streams in this program

stream_id selects the stream by format-specific ID

For example, to set the bit rate using -b option for the audio and video, we can use the command:

ffmpeg -i input.mpg -b:a 128k -b:v 1500k output.mp4

1. FFmpeg Fundamentals

27

Lavfi virtual device
In the previous sections we used a -f option with a lavfi value, where lavfi is a name of the libavfilter
virtual input device described in the table:

Input device: lavfi

Description Processes data from opened output pads of the filtergraph, for each output pad creates a
corresponding stream that is mapped to the encoding. The filtergraph is specified with a
-graph option, currently only video output pads are supported.

Syntax -f lavfi [-graph[-graph_file]]
Description of lavfi options

-graph filtergraph to use as input, each video open output must be labeled by a unique string of the
form "outN", where N is a number starting from 0 corresponding to the mapped input stream
generated by the device. The first unlabeled output is automatically assigned to the "out0"
label, but all the others need to be specified explicitly. If not specified, it defaults to the
filename specified for the input device.

-graph_file filename of the filtergraph to be read and sent to the other filters, syntax of the filtergraph is
the same as the one specified by the option -graph

Lavfi is often used to display the test patterns, for example SMPTE bars with the command:

ffplay -f lavfi -i smptebars

Other often used source is a color source that can be displayed with the command:

ffplay -f lavfi -i color=c=blue

Color names
Some video filters and sources have a color parameter that require to specify wanted color and there are 4
methods of the color specification (the default value is black):
1. Color is specified as a W3C (World Wide Web Consortium) standard name, alphabetical list of standard
names with their hexadecimal values is in the following picture. Please note that there are several
synonyms: aqua = cyan, fuchsia = magenta and gray = grey.
2. Color is specified as a hexadecimal number in a form 0xRRGGBB[@AA], where RR is a red channel,
GG is a green channel and BB is a blue channel, for example 0x0000ff is blue, 0xffff00 is yellow, etc.
[@AA] is an optional alpha channel that specifies how much opaque the color is and is divided from color
channels with an at sign character @. Alpha channel value is written either as a hexadecimal number from
0x00 to 0xff or as a decimal number between 0.0 and 1.0, where 0.0 (0x00) is completely transparent and
1.0 (0xff) is completely opaque. For example a green color with a half transparency is 0x00ff00@0.5
3. Same as in previous method, but to denote hexadecimal numeral system is used a # sign instead of 0x
prefix, the same as in HTML code, for example #ff0000 is red, #ffffff is white, etc. Please note that # prefix
cannot be used with the alpha channel, it means that #0000ff@0x34 is good, but #0000ff@#34 no.
4. Color is specified with a special value random, that results in a random color produced by computer.

1. FFmpeg Fundamentals

28

2. Displaying Help and Features
Help and other information about FFmpeg programs are displayed with various options entered after a
space and hyphen, examples show the usage for ffmpeg tool, but the same options are valid for ffplay,
ffprobe and ffserver. The parameters are case-sensitive. The development of FFmpeg components is fast
and some lists of available items here will be soon incomplete, the results are from November 2012.

Text help in FFmpeg tools
FFmpeg tools has a large console help, that can be displayed complete or about a particular element -
decoder, encoder, etc. The next table describes available options, the text in italics will be replaced with the
item to display. Similar options are available also for ffplay and ffprobe.

Basic help Help for selected item

ffmpeg -? or ffmpeg -h ffmpeg -h decoder=decoder_name

Extended help ffmpeg -h encoder=encoder_name
ffmpeg -h long or ffmpeg -h full ffmpeg -h demuxer=demuxer_name

ffmpeg –? topic or ffmpeg -h topic ffmpeg -h muxer=muxer_name

For example, to display information about a FLV decoder, we can use the command:

ffmpeg -h decoder=flv

The console output is:

Decoder flv [FLV / Sorenson Spark / Sorenson H.263 (Flash Video)]:
Threading capabilities: no
Supported pixel formats: yuv420p

The complete help is very long, please see the end of this chapter for the formatting solutions.

Available bitstream filters
The command for displaying the built-in bitstream filters is:

ffmpeg -bsfs

Bitstream filters:
text2movsub
remove_extra
noise
mov2textsub
mp3decomp
mp3comp
mjpegadump

2. Displaying Help and Features

30

mjpeg2jpeg
imxdump
h264_mp4toannexb
dump_extra
chomp
aac_adtstoasc

Available codecs
Available codecs are displayed with -codecs option, we can use the command:

ffmpeg -codecs

Codecs:
D..... = Decoding supported
.E.... = Encoding supported
..V... = Video codec
..A... = Audio codec
..S... = Subtitle codec
...I.. = Intra frame-only codec
....L. = Lossy compression
.....S = Lossless compression

D.V.L. 4xm 4X Movie
D.VI.S 8bps QuickTime 8BPS video
.EVIL. a64_multi Multicolor charset for Commodore 64 (encoders: a64multi)
.EVIL. a64_multi5 Multicolor charset for Commodore 64, extended with 5th color

(colram) (encoders: a64multi5)
D.V..S aasc Autodesk RLE
DEVIL. amv AMV Video
D.V.L. anm Deluxe Paint Animation
D.V.L. ansi ASCII/ANSI art
DEVIL. asv1 ASUS V1
DEVIL. asv2 ASUS V2
D.VIL. aura Auravision AURA
D.VIL. aura2 Auravision Aura 2
D.V... avrn Avid AVI Codec
DEVI.. avrp Avid 1:1 10-bit RGB Packer
D.V.L. avs AVS (Audio Video Standard) video
DEVI.. avui Avid Meridien Uncompressed
DEVI.. ayuv Uncompressed packed MS 4:4:4:4
D.V.L. bethsoftvid Bethesda VID video
D.V.L. bfi Brute Force & Ignorance
D.V.L. binkvideo Bink video
D.VI.. bintext Binary text
DEVI.S bmp BMP (Windows and OS/2 bitmap)
D.V..S bmv_video Discworld II BMV video
D.V.L. c93 Interplay C93
DEV.L. cavs Chinese AVS (Audio Video Standard) (AVS1-P2, JiZhun profile)

(encoders: libxavs)
D.V.L. cdgraphics CD Graphics video
D.VIL. cdxl Commodore CDXL video
D.V.L. cinepak Cinepak

2. Displaying Help and Features

31

DEVIL. cljr Cirrus Logic AccuPak
D.VI.S cllc Canopus Lossless Codec
D.V.L. cmv Electronic Arts CMV video (decoders: eacmv)
D.V... cpia CPiA video format
D.V..S cscd CamStudio (decoders: camstudio)
D.VIL. cyuv Creative YUV (CYUV)
D.V.L. dfa Chronomaster DFA
DEV.LS dirac Dirac (decoders: dirac libschroedinger) (encoders: libschroedinger)
DEVIL. dnxhd VC3/DNxHD
DEVIL. dpx DPX image
D.V.L. dsicinvideo Delphine Software International CIN video
DEVIL. dvvideo DV (Digital Video)
D.V..S dxa Feeble Files/ScummVM DXA
D.VI.S dxtory Dxtory
D.V.L. escape124 Escape 124
D.V.L. escape130 Escape 130
D.VILS exr OpenEXR image
DEV..S ffv1 FFmpeg video codec #1
DEVI.S ffvhuff Huffyuv FFmpeg variant
DEV..S flashsv Flash Screen Video v1
DEV.L. flashsv2 Flash Screen Video v2
D.V..S flic Autodesk Animator Flic video
DEV.L. flv1 FLV / Sorenson Spark / Sorenson H.263 (Flash Video) (decoders: flv)

(encoders: flv)
D.V..S fraps Fraps
D.VI.S frwu Forward Uncompressed
..V... g2m GoToMeeting
DEV..S gif GIF (Graphics Interchange Format)
DEV.L. h261 H.261
DEV.L. h263 H.263 / H.263-1996, H.263+ / H.263-1998 / H.263 version 2
D.V.L. h263i Intel H.263
DEV.L. h263p H.263+ / H.263-1998 / H.263 version 2
DEV.LS h264 H.264/AVC/MPEG-4 AVC/MPEG-4 part 10 (encoders: libx264 libx264rgb)
DEVI.S huffyuv HuffYUV
D.V.L. idcin id Quake II CIN video (decoders: idcinvideo)
D.VI.. idf iCEDraw text
D.V.L. iff_byterun1 IFF ByteRun1
D.V.L. iff_ilbm IFF ILBM
D.V.L. indeo2 Intel Indeo 2
D.V.L. indeo3 Intel Indeo 3
D.V.L. indeo4 Intel Indeo Video Interactive 4
D.V.L. indeo5 Intel Indeo Video Interactive 5
D.V.L. interplayvideo Interplay MVE video
DEVILS jpeg2000 JPEG 2000 (decoders: j2k libopenjpeg) (encoders: j2k libopenjpeg)
DEVILS jpegls JPEG-LS
D.VIL. jv Bitmap Brothers JV video
D.V.L. kgv1 Kega Game Video
D.V.L. kmvc Karl Morton's video codec
D.VI.S lagarith Lagarith lossless
.EVI.S ljpeg Lossless JPEG
D.VI.S loco LOCO
D.V.L. mad Electronic Arts Madcow Video (decoders: eamad)
D.VIL. mdec Sony PlayStation MDEC (Motion DECoder)
D.V.L. mimic Mimic
DEVIL. mjpeg Motion JPEG

2. Displaying Help and Features

32

D.VIL. mjpegb Apple MJPEG-B
D.V.L. mmvideo American Laser Games MM Video
D.V.L. motionpixels Motion Pixels video
DEV.L. mpeg1video MPEG-1 video
DEV.L. mpeg2video MPEG-1 video (decoders: mpeg2video mpegvideo)
DEV.L. mpeg4 MPEG-4 part 2 (encoders: mpeg4 libxvid)
..V.L. mpegvideo_xvmc MPEG-1/2 video XvMC (X-Video Motion Compensation)
D.V.L. msa1 MS ATC Screen
D.V.L. msmpeg4v1 MPEG-4 part 2 Microsoft variant version 1
DEV.L. msmpeg4v2 MPEG-4 part 2 Microsoft variant version 2
DEV.L. msmpeg4v3 MPEG-4 part 2 Microsoft variant version 3 (decoders: msmpeg4)

(encoders: msmpeg4)
D.V..S msrle Microsoft RLE
D.V.L. mss1 MS Screen 1
D.VIL. mss2 MS Windows Media Video V9 Screen
DEV.L. msvideo1 Microsoft Video 1
D.VI.S mszh LCL (LossLess Codec Library) MSZH
D.V.L. mts2 MS Expression Encoder Screen
D.V.L. mxpeg Mobotix MxPEG video
D.V.L. nuv NuppelVideo/RTJPEG
D.V.L. paf_video Amazing Studio Packed Animation File Video
DEVI.S pam PAM (Portable AnyMap) image
DEVI.S pbm PBM (Portable BitMap) image
DEVI.S pcx PC Paintbrush PCX image
DEVI.S pgm PGM (Portable GrayMap) image
DEVI.S pgmyuv PGMYUV (Portable GrayMap YUV) image
D.VIL. pictor Pictor/PC Paint
DEV..S png PNG (Portable Network Graphics) image
DEVI.S ppm PPM (Portable PixelMap) image
DEVIL. prores Apple ProRes (iCodec Pro) (decoders: prores prores_lgpl)

(encoders: prores prores_anatoliy prores_kostya)
D.VIL. ptx V.Flash PTX image
D.VI.S qdraw Apple QuickDraw
D.V.L. qpeg Q-team QPEG
DEV..S qtrle QuickTime Animation (RLE) video
DEVI.S r10k AJA Kona 10-bit RGB Codec
DEVI.S r210 Uncompressed RGB 10-bit
DEVI.S rawvideo raw video
D.VIL. rl2 RL2 video
DEV.L. roq id RoQ video (decoders: roqvideo) (encoders: roqvideo)
D.V.L. rpza QuickTime video (RPZA)
DEV.L. rv10 RealVideo 1.0
DEV.L. rv20 RealVideo 1.0
D.V.L. rv30 RealVideo 3.0
D.V.L. rv40 RealVideo 4.0
D.V.L. sanm LucasArts SMUSH video
DEVIL. sgi SGI image
D.V.L. smackvideo Smacker video (decoders: smackvid)
D.V.L. smc QuickTime Graphics (SMC)
DEV.LS snow Snow
D.VIL. sp5x Sunplus JPEG (SP5X)
DEVI.S sunrast Sun Rasterfile image
DEV.L. svq1 Sorenson Vector Quantizer 1 / Sorenson Video 1 / SVQ1
D.V.L. svq3 Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3
DEVI.S targa Truevision Targa image

2. Displaying Help and Features

33

D.VI.. targa_y216 Pinnacle TARGA CineWave YUV16
D.V.L. tgq Electronic Arts TGQ video (decoders: eatgq)
D.V.L. tgv Electronic Arts TGV video (decoders: eatgv)
DEV.L. theora Theora (encoders: libtheora)
D.VIL. thp Nintendo Gamecube THP video
D.V.L. tiertexseqvideo Tiertex Limited SEQ video
DEVI.S tiff TIFF image
D.VIL. tmv 8088flex TMV
D.V.L. tqi Electronic Arts TQI video (decoders: eatqi)
D.V.L. truemotion1 Duck TrueMotion 1.0
D.V.L. truemotion2 Duck TrueMotion 2.0
D.V..S tscc TechSmith Screen Capture Codec (decoders: camtasia)
D.V.L. tscc2 TechSmith Screen Codec 2
D.VIL. txd Renderware TXD (TeXture Dictionary) image
D.V.L. ulti IBM UltiMotion (decoders: ultimotion)
DEVI.S utvideo Ut Video (decoders: utvideo libutvideo) (encoders: utvideo libutvideo)
DEVI.S v210 Uncompressed 4:2:2 10-bit
D.VI.S v210x
DEVI.. v308 Uncompressed packed 4:4:4
DEVI.. v408 Uncompressed packed QT 4:4:4:4
DEVI.S v410 Uncompressed 4:4:4 10-bit
D.V.L. vb Beam Software VB
D.VI.S vble VBLE Lossless Codec
D.V.L. vc1 SMPTE VC-1
D.V.L. vc1image Windows Media Video 9 Image v2
D.VIL. vcr1 ATI VCR1
D.VIL. vixl Miro VideoXL (decoders: xl)
D.V.L. vmdvideo Sierra VMD video
D.V..S vmnc VMware Screen Codec / VMware Video
D.V.L. vp3 On2 VP3
D.V.L. vp5 On2 VP5
D.V.L. vp6 On2 VP6
D.V.L. vp6a On2 VP6 (Flash version, with alpha channel)
D.V.L. vp6f On2 VP6 (Flash version)
DEV.L. vp8 On2 VP8 (decoders: vp8 libvpx) (encoders: libvpx)
DEV.L. wmv1 Windows Media Video 7
DEV.L. wmv2 Windows Media Video 8
D.V.L. wmv3 Windows Media Video 9
D.V.L. wmv3image Windows Media Video 9 Image
D.VIL. wnv1 Winnov WNV1
D.V.L. ws_vqa Westwood Studios VQA (Vector Quantiz. Animation) video (decoders:vqavideo)
D.V.L. xan_wc3 Wing Commander III / Xan
D.V.L. xan_wc4 Wing Commander IV / Xxan
D.VI.. xbin eXtended BINary text
DEVI.S xbm XBM (X BitMap) image
DEV... xface X-face image
DEVI.S xwd XWD (X Window Dump) image
DEVI.. y41p Uncompressed YUV 4:1:1 12-bit
D.V.L. yop Psygnosis YOP Video
DEVI.. yuv4 Uncompressed packed 4:2:0
D.V..S zerocodec ZeroCodec Lossless Video
DEVI.S zlib LCL (LossLess Codec Library) ZLIB
DEV..S zmbv Zip Motion Blocks Video
D.A.L. 8svx_exp 8SVX exponential
D.A.L. 8svx_fib 8SVX fibonacci

2. Displaying Help and Features

34

..A... 8svx_raw 8SVX raw
DEA.L. aac AAC (Advanced Audio Coding) (encoders: aac libvo_aacenc)
D.A.L. aac_latm AAC LATM (Advanced Audio Coding LATM syntax)
DEA.L. ac3 ATSC A/52A (AC-3) (encoders: ac3 ac3_fixed)
D.A.L. adpcm_4xm ADPCM 4X Movie
DEA.L. adpcm_adx SEGA CRI ADX ADPCM
D.A.L. adpcm_ct ADPCM Creative Technology
D.A.L. adpcm_ea ADPCM Electronic Arts
D.A.L. adpcm_ea_maxis_xa ADPCM Electronic Arts Maxis CDROM XA
D.A.L. adpcm_ea_r1 ADPCM Electronic Arts R1
D.A.L. adpcm_ea_r2 ADPCM Electronic Arts R2
D.A.L. adpcm_ea_r3 ADPCM Electronic Arts R3
D.A.L. adpcm_ea_xas ADPCM Electronic Arts XAS
DEA.L. adpcm_g722 G.722 ADPCM (decoders: g722) (encoders: g722)
DEA.L. adpcm_g726 G.726 ADPCM (decoders: g726) (encoders: g726)
D.A.L. adpcm_ima_amv ADPCM IMA AMV
D.A.L. adpcm_ima_apc ADPCM IMA CRYO APC
D.A.L. adpcm_ima_dk3 ADPCM IMA Duck DK3
D.A.L. adpcm_ima_dk4 ADPCM IMA Duck DK4
D.A.L. adpcm_ima_ea_eacs ADPCM IMA Electronic Arts EACS
D.A.L. adpcm_ima_ea_sead ADPCM IMA Electronic Arts SEAD
D.A.L. adpcm_ima_iss ADPCM IMA Funcom ISS
DEA.L. adpcm_ima_qt ADPCM IMA QuickTime
D.A.L. adpcm_ima_smjpeg ADPCM IMA Loki SDL MJPEG
DEA.L. adpcm_ima_wav ADPCM IMA WAV
D.A.L. adpcm_ima_ws ADPCM IMA Westwood
DEA.L. adpcm_ms ADPCM Microsoft
D.A.L. adpcm_sbpro_2 ADPCM Sound Blaster Pro 2-bit
D.A.L. adpcm_sbpro_3 ADPCM Sound Blaster Pro 2.6-bit
D.A.L. adpcm_sbpro_4 ADPCM Sound Blaster Pro 4-bit
DEA.L. adpcm_swf ADPCM Shockwave Flash
D.A.L. adpcm_thp ADPCM Nintendo Gamecube THP
D.A.L. adpcm_xa ADPCM CDROM XA
DEA.L. adpcm_yamaha ADPCM Yamaha
DEA..S alac ALAC (Apple Lossless Audio Codec)
DEA.L. amr_nb AMR-NB (Adaptive Multi-Rate NarrowBand) (decoders: amrnb

libopencore_amrnb) (encoders: libopencore_amrnb)
DEA.L. amr_wb AMR-WB (Adaptive Multi-Rate WideBand) (decoders: amrwb

libopencore_amrwb) (encoders: libvo_amrwbenc)
D.A..S ape Monkey's Audio
D.A.L. atrac1 Atrac 1 (Adaptive TRansform Acoustic Coding)
D.A.L. atrac3 Atrac 3 (Adaptive TRansform Acoustic Coding 3)
..A.L. atrac3p Sony ATRAC3+
D.A.L. binkaudio_dct Bink Audio (DCT)
D.A.L. binkaudio_rdft Bink Audio (RDFT)
D.A.L. bmv_audio Discworld II BMV audio
..A.L. celt Constrained Energy Lapped Transform (CELT)
DEA.L. comfortnoise RFC 3389 Comfort Noise
D.A.L. cook Cook / Cooker / Gecko (RealAudio G2)
D.A.L. dsicinaudio Delphine Software International CIN audio
DEA.LS dts DCA (DTS Coherent Acoustics) (decoders: dca) (encoders: dca)

..A.L. dvaudio
DEA.L. eac3 ATSC A/52B (AC-3, E-AC-3)
DEA..S flac FLAC (Free Lossless Audio Codec)
DEA.L. g723_1 G.723.1

2. Displaying Help and Features

35

D.A.L. g729 G.729
DEA.L. gsm GSM (decoders: gsm libgsm) (encoders: libgsm)
DEA.L. gsm_ms GSM Microsoft variant (decoders:gsm_ms libgsm_ms) (encoders: libgsm_ms)
D.A.L. iac IAC (Indeo Audio Coder)
..A.L. ilbc iLBC (Internet Low Bitrate Codec)
D.A.L. imc IMC (Intel Music Coder)
D.A.L. interplay_dpcm DPCM Interplay
D.A.L. mace3 MACE (Macintosh Audio Compression/Expansion) 3:1
D.A.L. mace6 MACE (Macintosh Audio Compression/Expansion) 6:1
D.A..S mlp MLP (Meridian Lossless Packing)
D.A.L. mp1 MP1 (MPEG audio layer 1) (decoders: mp1 mp1float)
DEA.L. mp2 MP2 (MPEG audio layer 2) (decoders: mp2 mp2float)
DEA.L. mp3 MP3 (MPEG audio layer 3) (decoders:mp3 mp3float) (encoders: libmp3lame)
D.A.L. mp3adu ADU (Application Data Unit) MP3 (MPEG audio layer 3) (decoders:

mp3adu mp3adufloat)
D.A.L. mp3on4 MP3onMP4 (decoders: mp3on4 mp3on4float)
D.A..S mp4als MPEG-4 Audio Lossless Coding (ALS) (decoders: als)
D.A.L. musepack7 Musepack SV7 (decoders: mpc7)
D.A.L. musepack8 Musepack SV8 (decoders: mpc8)
DEA.L. nellymoser Nellymoser Asao
DEA.L. opus Opus (Opus Interactive Audio Codec) (decoders:libopus) (encoders: libopus)
D.A.L. paf_audio Amazing Studio Packed Animation File Audio
DEA... pcm_alaw PCM A-law
D.A..S pcm_bluray PCM signed 16|20|24-bit big-endian for Blu-ray media
D.A..S pcm_dvd PCM signed 20|24-bit big-endian
DEA..S pcm_f32be PCM 32-bit floating point big-endian
DEA..S pcm_f32le PCM 32-bit floating point little-endian
DEA..S pcm_f64be PCM 64-bit floating point big-endian
DEA..S pcm_f64le PCM 64-bit floating point little-endian
D.A..S pcm_lxf PCM signed 20-bit little-endian planar
DEA... pcm_mulaw PCM mu-law
DEA..S pcm_s16be PCM signed 16-bit big-endian
DEA..S pcm_s16le PCM signed 16-bit little-endian
D.A..S pcm_s16le_planar PCM 16-bit little-endian planar
DEA..S pcm_s24be PCM signed 24-bit big-endian
DEA..S pcm_s24daud PCM D-Cinema audio signed 24-bit
DEA..S pcm_s24le PCM signed 24-bit little-endian
DEA..S pcm_s32be PCM signed 32-bit big-endian
DEA..S pcm_s32le PCM signed 32-bit little-endian
DEA..S pcm_s8 PCM signed 8-bit
D.A..S pcm_s8_planar PCM signed 8-bit planar
DEA..S pcm_u16be PCM unsigned 16-bit big-endian
DEA..S pcm_u16le PCM unsigned 16-bit little-endian
DEA..S pcm_u24be PCM unsigned 24-bit big-endian
DEA..S pcm_u24le PCM unsigned 24-bit little-endian
DEA..S pcm_u32be PCM unsigned 32-bit big-endian
DEA..S pcm_u32le PCM unsigned 32-bit little-endian
DEA..S pcm_u8 PCM unsigned 8-bit
D.A.L. pcm_zork PCM Zork
D.A.L. qcelp QCELP / PureVoice
D.A.L. qdm2 QDesign Music Codec 2
..A.L. qdmc QDesign Music
DEA.L. ra_144 RealAudio 1.0 (14.4K) (decoders: real_144) (encoders: real_144)
D.A.L. ra_288 RealAudio 2.0 (28.8K) (decoders: real_288)
D.A..S ralf RealAudio Lossless

2. Displaying Help and Features

36

DEA.L. roq_dpcm DPCM id RoQ
D.A.L. s302m SMPTE 302M
D.A..S shorten Shorten
D.A.L. sipr RealAudio SIPR / ACELP.NET
D.A.L. smackaudio Smacker audio (decoders: smackaud)
D.A.L. sol_dpcm DPCM Sol
DEA... sonic Sonic
.EA... sonicls Sonic lossless
DEA.L. speex Speex (decoders: libspeex) (encoders: libspeex)
D.A..S tak TAK (Tom's lossless Audio Kompressor)
D.A..S truehd TrueHD
D.A.L. truespeech DSP Group TrueSpeech
D.A..S tta TTA (True Audio)
D.A.L. twinvq VQF TwinVQ
D.A.L. vima LucasArts VIMA audio
D.A.L. vmdaudio Sierra VMD audio
DEA.L. vorbis Vorbis (decoders: vorbis libvorbis) (encoders: vorbis libvorbis)
..A.L. voxware Voxware RT29 Metasound
D.A... wavesynth Wave synthesis pseudo-codec
D.A.LS wavpack WavPack
D.A.L. westwood_snd1 Westwood Audio (SND1) (decoders: ws_snd1)
D.A..S wmalossless Windows Media Audio Lossless
D.A.L. wmapro Windows Media Audio 9 Professional
DEA.L. wmav1 Windows Media Audio 1
DEA.L. wmav2 Windows Media Audio 2
D.A.L. wmavoice Windows Media Audio Voice
D.A.L. xan_dpcm DPCM Xan
DES... dvb_subtitle DVB subtitles (decoders: dvbsub) (encoders: dvbsub)
..S... dvb_teletext DVB teletext
DES... dvd_subtitle DVD subtitles (decoders: dvdsub) (encoders: dvdsub)
..S... eia_608 EIA-608 closed captions
D.S... hdmv_pgs_subtitle HDMV Presentation Graphic Stream subtitles (decoders: pgssub)
D.S... jacosub JACOsub subtitle
D.S... microdvd MicroDVD subtitle
DES... mov_text MOV text
D.S... realtext RealText subtitle
D.S... sami SAMI subtitle
DES... srt SubRip subtitle with embedded timing
DES... ssa SSA (SubStation Alpha)/ ASS (Advanced SSA) subtitle (decoders: ass)

(encoders: ass)
DES... subrip SubRip subtitle
D.S... subviewer SubViewer subtitle
D.S... text raw UTF-8 text
D.S... webvtt WebVTT subtitle
DES... xsub XSUB

Available decoders
The list of built-in decoders is displayed with the command:

ffmpeg -decoders

2. Displaying Help and Features

37

Decoders:
V..... = Video
A..... = Audio
S..... = Subtitle
.F.... = Frame-level multithreading
..S... = Slice-level multithreading
...X.. = Codec is experimental
....B. = Supports draw_horiz_band
.....D = Supports direct rendering method 1

V....D 4xm 4X Movie
V....D 8bps QuickTime 8BPS video
V....D aasc Autodesk RLE
V..... amv AMV Video
V....D anm Deluxe Paint Animation
V....D ansi ASCII/ANSI art
V....D asv1 ASUS V1
V....D asv2 ASUS V2
V....D aura Auravision AURA
V....D aura2 Auravision Aura 2
V....D avrn Avid AVI Codec
V....D avrp Avid 1:1 10-bit RGB Packer
V....D avs AVS (Audio Video Standard) video
V....D avui Avid Meridien Uncompressed
V....D ayuv Uncompressed packed MS 4:4:4:4
V....D bethsoftvid Bethesda VID video
V....D bfi Brute Force & Ignorance
V....D binkvideo Bink video
V....D bintext Binary text
V....D bmp BMP (Windows and OS/2 bitmap)
V....D bmv_video Discworld II BMV video
V....D c93 Interplay C93
V....D cavs Chinese AVS (Audio Video Standard) (AVS1-P2, JiZhun profile)
V....D cdgraphics CD Graphics video
V....D cdxl Commodore CDXL video
V....D cinepak Cinepak
V....D cljr Cirrus Logic AccuPak
V....D cllc Canopus Lossless Codec
V....D eacmv Electronic Arts CMV video (codec cmv)
V....D cpia CPiA video format
V....D camstudio CamStudio (codec cscd)
V....D cyuv Creative YUV (CYUV)
V....D dfa Chronomaster DFA
V..... dirac BBC Dirac VC-2
V..... libschroedinger libschroedinger Dirac 2.2 (codec dirac)
VF...D dnxhd VC3/DNxHD
V....D dpx DPX image
V....D dsicinvideo Delphine Software International CIN video
V.S..D dvvideo DV (Digital Video)
V....D dxa Feeble Files/ScummVM DXA
V....D dxtory Dxtory
V....D escape124 Escape 124
V....D escape130 Escape 130
VF...D exr OpenEXR image
V.S..D ffv1 FFmpeg video codec #1

2. Displaying Help and Features

38

VF..BD ffvhuff Huffyuv FFmpeg variant
V....D flashsv Flash Screen Video v1
V....D flashsv2 Flash Screen Video v2
V....D flic Autodesk Animator Flic video
V...BD flv FLV / Sorenson Spark / Sorenson H.263 (Flash Video) (codec flv1)
VF...D fraps Fraps
V....D frwu Forward Uncompressed
V....D gif GIF (Graphics Interchange Format)
V....D h261 H.261
V...BD h263 H.263 / H.263-1996, H.263+ / H.263-1998 / H.263 version 2
V...BD h263i Intel H.263
V...BD h263p H.263 / H.263-1996, H.263+ / H.263-1998 / H.263 version 2
VFS..D h264 H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10
VF..BD huffyuv Huffyuv / HuffYUV
V....D idcinvideo id Quake II CIN video (codec idcin)
V....D idf iCEDraw text
V....D iff_byterun1 IFF ByteRun1
V....D iff_ilbm IFF ILBM
V....D indeo2 Intel Indeo 2
V....D indeo3 Intel Indeo 3
V....D indeo4 Intel Indeo Video Interactive 4
V....D indeo5 Intel Indeo Video Interactive 5
V....D interplayvideo Interplay MVE video
V..X.. j2k JPEG 2000 (codec jpeg2000)
VF...D libopenjpeg OpenJPEG JPEG 2000 (codec jpeg2000)
V....D jpegls JPEG-LS
V....D jv Bitmap Brothers JV video
V....D kgv1 Kega Game Video
V....D kmvc Karl Morton's video codec
VF...D lagarith Lagarith lossless
V....D loco LOCO
V....D eamad Electronic Arts Madcow Video (codec mad)
VF...D mdec Sony PlayStation MDEC (Motion DECoder)
VF...D mimic Mimic
V....D mjpeg MJPEG (Motion JPEG)
V....D mjpegb Apple MJPEG-B
V....D mmvideo American Laser Games MM Video
V....D motionpixels Motion Pixels video
V.S.BD mpeg1video MPEG-1 video
V.S.BD mpeg2video MPEG-2 video
V.S.BD mpegvideo MPEG-1 video (codec mpeg2video)
VF..BD mpeg4 MPEG-4 part 2
V....D msa1 MS ATC Screen
V...BD msmpeg4v1 MPEG-4 part 2 Microsoft variant version 1
V...BD msmpeg4v2 MPEG-4 part 2 Microsoft variant version 2
V...BD msmpeg4 MPEG-4 part 2 Microsoft variant version 3 (codec msmpeg4v3)
V....D msrle Microsoft RLE
V....D mss1 MS Screen 1
V....D mss2 MS Windows Media Video V9 Screen
V....D msvideo1 Microsoft Video 1
V....D mszh LCL (LossLess Codec Library) MSZH
V....D mts2 MS Expression Encoder Screen
V....D mxpeg Mobotix MxPEG video
V....D nuv NuppelVideo/RTJPEG
V....D paf_video Amazing Studio Packed Animation File Video

2. Displaying Help and Features

39

V....D pam PAM (Portable AnyMap) image
V....D pbm PBM (Portable BitMap) image
V....D pcx PC Paintbrush PCX image
V....D pgm PGM (Portable GrayMap) image
V....D pgmyuv PGMYUV (Portable GrayMap YUV) image
V....D pictor Pictor/PC Paint
V....D png PNG (Portable Network Graphics) image
V....D ppm PPM (Portable PixelMap) image
V.S..D prores ProRes
V.S..D prores_lgpl Apple ProRes (iCodec Pro) (codec prores)
V....D ptx V.Flash PTX image
V....D qdraw Apple QuickDraw
V....D qpeg Q-team QPEG
V....D qtrle QuickTime Animation (RLE) video
V....D r10k AJA Kona 10-bit RGB Codec
V....D r210 Uncompressed RGB 10-bit
V..... rawvideo raw video
V....D rl2 RL2 video
V....D roqvideo id RoQ video (codec roq)
V....D rpza QuickTime video (RPZA)
V....D rv10 RealVideo 1.0
V....D rv20 RealVideo 2.0
VF...D rv30 RealVideo 3.0
VF...D rv40 RealVideo 4.0
V....D sanm LucasArts SMUSH video
V....D sgi SGI image
V....D smackvid Smacker video (codec smackvideo)
V....D smc QuickTime Graphics (SMC)
V....D snow Snow
V....D sp5x Sunplus JPEG (SP5X)
V....D sunrast Sun Rasterfile image
V....D svq1 Sorenson Vector Quantizer 1 / Sorenson Video 1 / SVQ1
V...BD svq3 Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3
V....D targa Truevision Targa image
V....D targa_y216 Pinnacle TARGA CineWave YUV16
V....D eatgq Electronic Arts TGQ video (codec tgq)
V..... eatgv Electronic Arts TGV video (codec tgv)
VF..BD theora Theora
V....D thp Nintendo Gamecube THP video
V....D tiertexseqvideo Tiertex Limited SEQ video
V....D tiff TIFF image
V....D tmv 8088flex TMV
V....D eatqi Electronic Arts TQI Video (codec tqi)
V....D truemotion1 Duck TrueMotion 1.0
V....D truemotion2 Duck TrueMotion 2.0
V....D camtasia TechSmith Screen Capture Codec (codec tscc)
V....D tscc2 TechSmith Screen Codec 2
V....D txd Renderware TXD (TeXture Dictionary) image
V....D ultimotion IBM UltiMotion (codec ulti)
VF...D utvideo Ut Video
V..... libutvideo Ut Video (codec utvideo)
V....D v210 Uncompressed 4:2:2 10-bit
V....D v210x Uncompressed 4:2:2 10-bit
V....D v308 Uncompressed packed 4:4:4
V....D v408 Uncompressed packed QT 4:4:4:4

2. Displaying Help and Features

40

V....D v410 Uncompressed 4:4:4 10-bit
V....D vb Beam Software VB
V....D vble VBLE Lossless Codec
V....D vc1 SMPTE VC-1
V....D vc1image Windows Media Video 9 Image v2
V....D vcr1 ATI VCR1
V....D xl Miro VideoXL (codec vixl)
V....D vmdvideo Sierra VMD video
V....D vmnc VMware Screen Codec / VMware Video
VF..BD vp3 On2 VP3
V....D vp5 On2 VP5
V....D vp6 On2 VP6
V.S..D vp6a On2 VP6 (Flash version, with alpha channel)
V....D vp6f On2 VP6 (Flash version)
VFS..D vp8 On2 VP8
V..... libvpx libvpx VP8 (codec vp8)
V...BD wmv1 Windows Media Video 7
V...BD wmv2 Windows Media Video 8
V....D wmv3 Windows Media Video 9
V....D wmv3image Windows Media Video 9 Image
V....D wnv1 Winnov WNV1
V....D vqavideo Westwood Studios VQA (Vector Quantiz. Animation) video (codec ws_vqa)
V....D xan_wc3 Wing Commander III / Xan
V....D xan_wc4 Wing Commander IV / Xxan
V....D xbin eXtended BINary text
V....D xbm XBM (X BitMap) image
V..... xface X-face image
V....D xwd XWD (X Window Dump) image
V....D y41p Uncompressed YUV 4:1:1 12-bit
V..... yop Psygnosis YOP Video
V....D yuv4 Uncompressed packed 4:2:0
V....D zerocodec ZeroCodec Lossless Video
V....D zlib LCL (LossLess Codec Library) ZLIB
V....D zmbv Zip Motion Blocks Video
A....D 8svx_exp 8SVX exponential
A....D 8svx_fib 8SVX fibonacci
A....D aac AAC (Advanced Audio Coding)
A....D aac_latm AAC LATM (Advanced Audio Coding LATM syntax)
A....D ac3 ATSC A/52A (AC-3)
A....D adpcm_4xm ADPCM 4X Movie
A....D adpcm_adx SEGA CRI ADX ADPCM
A....D adpcm_ct ADPCM Creative Technology
A....D adpcm_ea ADPCM Electronic Arts
A....D adpcm_ea_maxis_xa ADPCM Electronic Arts Maxis CDROM XA
A....D adpcm_ea_r1 ADPCM Electronic Arts R1
A....D adpcm_ea_r2 ADPCM Electronic Arts R2
A....D adpcm_ea_r3 ADPCM Electronic Arts R3
A....D adpcm_ea_xas ADPCM Electronic Arts XAS
A....D g722 G.722 ADPCM (codec adpcm_g722)
A....D g726 G.726 ADPCM (codec adpcm_g726)
A....D adpcm_ima_amv ADPCM IMA AMV
A....D adpcm_ima_apc ADPCM IMA CRYO APC
A....D adpcm_ima_dk3 ADPCM IMA Duck DK3
A....D adpcm_ima_dk4 ADPCM IMA Duck DK4
A....D adpcm_ima_ea_eacs ADPCM IMA Electronic Arts EACS

2. Displaying Help and Features

41

A....D adpcm_ima_ea_sead ADPCM IMA Electronic Arts SEAD
A....D adpcm_ima_iss ADPCM IMA Funcom ISS
A....D adpcm_ima_qt ADPCM IMA QuickTime
A....D adpcm_ima_smjpeg ADPCM IMA Loki SDL MJPEG
A....D adpcm_ima_wav ADPCM IMA WAV
A....D adpcm_ima_ws ADPCM IMA Westwood
A....D adpcm_ms ADPCM Microsoft
A....D adpcm_sbpro_2 ADPCM Sound Blaster Pro 2-bit
A....D adpcm_sbpro_3 ADPCM Sound Blaster Pro 2.6-bit
A....D adpcm_sbpro_4 ADPCM Sound Blaster Pro 4-bit
A....D adpcm_swf ADPCM Shockwave Flash
A....D adpcm_thp ADPCM Nintendo Gamecube THP
A....D adpcm_xa ADPCM CDROM XA
A....D adpcm_yamaha ADPCM Yamaha
A....D alac ALAC (Apple Lossless Audio Codec)
A....D amrnb AMR-NB (Adaptive Multi-Rate NarrowBand) (codec amr_nb)
A....D libopencore_amrnb OpenCORE AMR-NB (Adaptive Multi-Rate Narrow-Band) (codec amr_nb)
A....D amrwb AMR-WB (Adaptive Multi-Rate WideBand) (codec amr_wb)
A....D libopencore_amrwb OpenCORE AMR-WB (Adaptive Multi-Rate Wide-Band) (codec amr_wb)
A....D ape Monkey's Audio
A....D atrac1 Atrac 1 (Adaptive TRansform Acoustic Coding)
A....D atrac3 Atrac 3 (Adaptive TRansform Acoustic Coding 3)
A....D binkaudio_dct Bink Audio (DCT)
A....D binkaudio_rdft Bink Audio (RDFT)
A....D bmv_audio Discworld II BMV audio
A....D comfortnoise RFC 3389 comfort noise generator
A....D cook Cook / Cooker / Gecko (RealAudio G2)
A....D dsicinaudio Delphine Software International CIN audio
A....D dca DCA (DTS Coherent Acoustics) (codec dts)
A....D eac3 ATSC A/52B (AC-3, E-AC-3)
A....D flac FLAC (Free Lossless Audio Codec)
A....D g723_1 G.723.1
A....D g729 G.729
A....D gsm GSM
A....D libgsm libgsm GSM (codec gsm)
A....D gsm_ms GSM Microsoft variant
A....D libgsm_ms libgsm GSM Microsoft variant (codec gsm_ms)
A....D iac IAC (Indeo Audio Coder)
A....D imc IMC (Intel Music Coder)
A....D interplay_dpcm DPCM Interplay
A....D mace3 MACE (Macintosh Audio Compression/Expansion) 3:1
A....D mace6 MACE (Macintosh Audio Compression/Expansion) 6:1
A....D mlp MLP (Meridian Lossless Packing)
A....D mp1 MP1 (MPEG audio layer 1)
A....D mp1float MP1 (MPEG audio layer 1) (codec mp1)
A....D mp2 MP2 (MPEG audio layer 2)
A....D mp2float MP2 (MPEG audio layer 2) (codec mp2)
A....D mp3 MP3 (MPEG audio layer 3)
A....D mp3float MP3 (MPEG audio layer 3) (codec mp3)
A....D mp3adu ADU (Application Data Unit) MP3 (MPEG audio layer 3)
A....D mp3adufloat ADU (Application Data Unit) MP3 (MPEG audio layer 3) (codec mp3adu)
A....D mp3on4 MP3onMP4
A....D mp3on4float MP3onMP4 (codec mp3on4)
A....D als MPEG-4 Audio Lossless Coding (ALS) (codec mp4als)
A....D mpc7 Musepack SV7 (codec musepack7)

2. Displaying Help and Features

42

A....D mpc8 Musepack SV8 (codec musepack8)
A....D nellymoser Nellymoser Asao
A....D libopus libopus Opus (codec opus)
A....D paf_audio Amazing Studio Packed Animation File Audio
A....D pcm_alaw PCM A-law / G.711 A-law
A....D pcm_bluray PCM signed 16|20|24-bit big-endian for Blu-ray media
A....D pcm_dvd PCM signed 20|24-bit big-endian
A....D pcm_f32be PCM 32-bit floating point big-endian
A....D pcm_f32le PCM 32-bit floating point little-endian
A....D pcm_f64be PCM 64-bit floating point big-endian
A....D pcm_f64le PCM 64-bit floating point little-endian
A....D pcm_lxf PCM signed 20-bit little-endian planar
A....D pcm_mulaw PCM mu-law / G.711 mu-law
A....D pcm_s16be PCM signed 16-bit big-endian
A....D pcm_s16le PCM signed 16-bit little-endian
A....D pcm_s16le_planar PCM 16-bit little-endian planar
A....D pcm_s24be PCM signed 24-bit big-endian
A....D pcm_s24daud PCM D-Cinema audio signed 24-bit
A....D pcm_s24le PCM signed 24-bit little-endian
A....D pcm_s32be PCM signed 32-bit big-endian
A....D pcm_s32le PCM signed 32-bit little-endian
A....D pcm_s8 PCM signed 8-bit
A....D pcm_s8_planar PCM signed 8-bit planar
A....D pcm_u16be PCM unsigned 16-bit big-endian
A....D pcm_u16le PCM unsigned 16-bit little-endian
A....D pcm_u24be PCM unsigned 24-bit big-endian
A....D pcm_u24le PCM unsigned 24-bit little-endian
A....D pcm_u32be PCM unsigned 32-bit big-endian
A....D pcm_u32le PCM unsigned 32-bit little-endian
A....D pcm_u8 PCM unsigned 8-bit
A....D pcm_zork PCM Zork
A....D qcelp QCELP / PureVoice
A....D qdm2 QDesign Music Codec 2
A....D real_144 RealAudio 1.0 (14.4K) (codec ra_144)
A....D real_288 RealAudio 2.0 (28.8K) (codec ra_288)
A....D ralf RealAudio Lossless
A....D roq_dpcm DPCM id RoQ
A....D s302m SMPTE 302M
A....D shorten Shorten
A....D sipr RealAudio SIPR / ACELP.NET
A....D smackaud Smacker audio (codec smackaudio)
A....D sol_dpcm DPCM Sol
A..X.D sonic Sonic
A....D libspeex libspeex Speex (codec speex)
A....D tak TAK (Tom's lossless Audio Kompressor)
A....D truehd TrueHD
A....D truespeech DSP Group TrueSpeech
A....D tta TTA (True Audio)
A....D twinvq VQF TwinVQ
A....D vima LucasArts VIMA audio
A....D vmdaudio Sierra VMD audio
A....D vorbis Vorbis
A..... libvorbis libvorbis (codec vorbis)
A....D wavesynth Wave synthesis pseudo-codec
A....D wavpack WavPack

2. Displaying Help and Features

43

A....D ws_snd1 Westwood Audio (SND1) (codec westwood_snd1)
A....D wmalossless Windows Media Audio Lossless
A....D wmapro Windows Media Audio 9 Professional
A....D wmav1 Windows Media Audio 1
A....D wmav2 Windows Media Audio 2
A....D wmavoice Windows Media Audio Voice
A....D xan_dpcm DPCM Xan
S..... dvbsub DVB subtitles (codec dvb_subtitle)
S..... dvdsub DVD subtitles (codec dvd_subtitle)
S..... pgssub HDMV Presentation Graphic Stream subtitles (codec hdmv_pgs_subtitle)
S..... jacosub JACOsub subtitle
S..... microdvd MicroDVD subtitle
S..... mov_text 3GPP Timed Text subtitle
S..... realtext RealText subtitle
S..... sami SAMI subtitle
S..... srt SubRip subtitle with embedded timing
S..... ass SSA (SubStation Alpha) subtitle (codec ssa)
S..... subrip SubRip subtitle
S..... subviewer SubViewer subtitle
S..... text Raw text subtitle
S..... webvtt WebVTT subtitle
S..... xsub XSUB

Available encoders
To display a list of the built-in ffmpeg encoders we can use the command:

ffmpeg -encoders

Encoders:
V..... = Video
A..... = Audio
S..... = Subtitle
.F.... = Frame-level multithreading
..S... = Slice-level multithreading
...X.. = Codec is experimental
....B. = Supports draw_horiz_band
.....D = Supports direct rendering method 1

V..... a64multi Multicolor charset for Commodore 64 (codec a64_multi)
V..... a64multi5 Multicolor charset for Commodore 64, extended with 5th color

(colram) (codec a64_multi5)
V..... amv AMV Video
V..... asv1 ASUS V1
V..... asv2 ASUS V2
V..... avrp Avid 1:1 10-bit RGB Packer
V..X.. avui Avid Meridien Uncompressed
V..... ayuv Uncompressed packed MS 4:4:4:4
V..... bmp BMP (Windows and OS/2 bitmap)
V..... libxavs libxavs Chinese AVS (Audio Video Standard) (codec cavs)
V..... cljr Cirrus Logic AccuPak
V..... libschroedinger libschroedinger Dirac 2.2 (codec dirac)
V.S... dnxhd VC3/DNxHD

2. Displaying Help and Features

44

V..... dpx DPX image
V.S... dvvideo DV (Digital Video)
V.S... ffv1 FFmpeg video codec #1
V..... ffvhuff Huffyuv FFmpeg variant
V..... flashsv Flash Screen Video
V..... flashsv2 Flash Screen Video Version 2
V..... flv FLV / Sorenson Spark / Sorenson H.263 (Flash Video) (codec flv1)
V..... gif GIF (Graphics Interchange Format)
V..... h261 H.261
V..... h263 H.263 / H.263-1996
V.S... h263p H.263+ / H.263-1998 / H.263 version 2
V..... libx264 libx264 H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (codec h264)
V..... libx264rgb libx264 H.264 /AVC / MPEG-4 AVC / MPEG-4 part 10 RGB (codec h264)
V..... huffyuv Huffyuv / HuffYUV
V..X.. j2k JPEG 2000 (codec jpeg2000)
V..... libopenjpeg OpenJPEG JPEG 2000 (codec jpeg2000)
V..... jpegls JPEG-LS
V..... ljpeg Lossless JPEG
VFS... mjpeg MJPEG (Motion JPEG)
V..... mpeg1video MPEG-1 video
V.S... mpeg2video MPEG-2 video
V.S... mpeg4 MPEG-4 part 2
V..... libxvid libxvidcore MPEG-4 part 2 (codec mpeg4)
V..... msmpeg4v2 MPEG-4 part 2 Microsoft variant version 2
V..... msmpeg4 MPEG-4 part 2 Microsoft variant version 3 (codec msmpeg4v3)
V..... msvideo1 Microsoft Video-1
V..... pam PAM (Portable AnyMap) image
V..... pbm PBM (Portable BitMap) image
V..... pcx PC Paintbrush PCX image
V..... pgm PGM (Portable GrayMap) image
V..... pgmyuv PGMYUV (Portable GrayMap YUV) image
VF.... png PNG (Portable Network Graphics) image
V..... ppm PPM (Portable PixelMap) image
VF.... prores Apple ProRes
VF.... prores_anatoliy Apple ProRes (codec prores)
V.S... prores_kostya Apple ProRes (iCodec Pro) (codec prores)
V..... qtrle QuickTime Animation (RLE) video
V..... r10k AJA Kona 10-bit RGB Codec
V..... r210 Uncompressed RGB 10-bit
V..... rawvideo raw video
V..... roqvideo id RoQ video (codec roq)
V..... rv10 RealVideo 1.0
V..... rv20 RealVideo 2.0
V..... sgi SGI image
V..... snow Snow
V..... sunrast Sun Rasterfile image
V..... svq1 Sorenson Vector Quantizer 1 / Sorenson Video 1 / SVQ1
V..... targa Truevision Targa image
V..... libtheora libtheora Theora (codec theora)
V..... tiff TIFF image
V..... utvideo Ut Video
V..... libutvideo Ut Video (codec utvideo)
V..... v210 Uncompressed 4:2:2 10-bit
V..... v308 Uncompressed packed 4:4:4
V..... v408 Uncompressed packed QT 4:4:4:4

2. Displaying Help and Features

45

V..... v410 Uncompressed 4:4:4 10-bit
V..... libvpx libvpx VP8 (codec vp8)
V..... wmv1 Windows Media Video 7
V..... wmv2 Windows Media Video 8
V..... xbm XBM (X BitMap) image
V..... xface X-face image
V..... xwd XWD (X Window Dump) image
V..... y41p Uncompressed YUV 4:1:1 12-bit
V..... yuv4 Uncompressed packed 4:2:0
V..... zlib LCL (LossLess Codec Library) ZLIB
V..... zmbv Zip Motion Blocks Video
A..X.. aac AAC (Advanced Audio Coding)
A..... libvo_aacenc Android VisualOn AAC (Advanced Audio Coding) (codec aac)
A..... ac3 ATSC A/52A (AC-3)
A..... ac3_fixed ATSC A/52A (AC-3) (codec ac3)
A..... adpcm_adx SEGA CRI ADX ADPCM
A..... g722 G.722 ADPCM (codec adpcm_g722)
A..... g726 G.726 ADPCM (codec adpcm_g726)
A..... adpcm_ima_qt ADPCM IMA QuickTime
A..... adpcm_ima_wav ADPCM IMA WAV
A..... adpcm_ms ADPCM Microsoft
A..... adpcm_swf ADPCM Shockwave Flash
A..... adpcm_yamaha ADPCM Yamaha
A..... alac ALAC (Apple Lossless Audio Codec)
A..... libopencore_amrnb OpenCORE AMR-NB (Adaptive Multi-Rate Narrow-Band) (codec amr_nb)
A..... libvo_amrwbenc Android VisualOn AMR-WB (Adaptive Multi-Rate WideBand) (codec amr_wb)
A..... comfortnoise RFC 3389 comfort noise generator
A..X.. dca DCA (DTS Coherent Acoustics) (codec dts)
A..... eac3 ATSC A/52 E-AC-3
A..... flac FLAC (Free Lossless Audio Codec)
A..... g723_1 G.723.1
A..... libgsm libgsm GSM (codec gsm)
A..... libgsm_ms libgsm GSM Microsoft variant (codec gsm_ms)
A..... mp2 MP2 (MPEG audio layer 2)
A..... libmp3lame libmp3lame MP3 (MPEG audio layer 3) (codec mp3)
A..... nellymoser Nellymoser Asao
A..... libopus libopus Opus (codec opus)
A..... pcm_alaw PCM A-law / G.711 A-law
A..... pcm_f32be PCM 32-bit floating point big-endian
A..... pcm_f32le PCM 32-bit floating point little-endian
A..... pcm_f64be PCM 64-bit floating point big-endian
A..... pcm_f64le PCM 64-bit floating point little-endian
A..... pcm_mulaw PCM mu-law / G.711 mu-law
A..... pcm_s16be PCM signed 16-bit big-endian
A..... pcm_s16le PCM signed 16-bit little-endian
A..... pcm_s24be PCM signed 24-bit big-endian
A..... pcm_s24daud PCM D-Cinema audio signed 24-bit
A..... pcm_s24le PCM signed 24-bit little-endian
A..... pcm_s32be PCM signed 32-bit big-endian
A..... pcm_s32le PCM signed 32-bit little-endian
A..... pcm_s8 PCM signed 8-bit
A..... pcm_u16be PCM unsigned 16-bit big-endian
A..... pcm_u16le PCM unsigned 16-bit little-endian
A..... pcm_u24be PCM unsigned 24-bit big-endian
A..... pcm_u24le PCM unsigned 24-bit little-endian

2. Displaying Help and Features

46

A..... pcm_u32be PCM unsigned 32-bit big-endian
A..... pcm_u32le PCM unsigned 32-bit little-endian
A..... pcm_u8 PCM unsigned 8-bit
A..... real_144 RealAudio 1.0 (14.4K) (codec ra_144)
A..... roq_dpcm id RoQ DPCM
A..X.. sonic Sonic
A..X.. sonicls Sonic lossless
A..... libspeex libspeex Speex (codec speex)
A..X.. vorbis Vorbis
A..... libvorbis libvorbis (codec vorbis)
A..... wmav1 Windows Media Audio 1
A..... wmav2 Windows Media Audio 2
S..... dvbsub DVB subtitles (codec dvb_subtitle)
S..... dvdsub DVD subtitles (codec dvd_subtitle)
S..... mov_text 3GPP Timed Text subtitle
S..... srt SubRip subtitle with embedded timing
S..... ass SSA (SubStation Alpha) subtitle (codec ssa)
S..... subrip SubRip subtitle
S..... xsub DivX subtitles (XSUB)

Available filters
To display the list of built-in filters we can use the next command:

ffmpeg -filters

Filters:
aconvert A->A Convert the input audio to sample_fmt:channel_layout.
afifo A->A Buffer input frames and send them when they are requested.
aformat A->A Convert the input audio to one of the specified formats.
amerge |->A Merge two audio streams into a single multi-channel stream.
amix |->A Audio mixing.
anull A->A Pass the source unchanged to the output.
aresample A->A Resample audio data.
asendcmd A->A Send commands to filters.
asetnsamples A->A Set the number of samples for each output audio frames.
asetpts A->A Set PTS for the output audio frame.
asettb A->A Set timebase for the audio output link.
ashowinfo A->A Show textual information for each audio frame.
asplit A->| Pass on the audio input to N audio outputs.
astreamsync AA->AA Copy two streams of audio data in a configurable order.
atempo A->A Adjust audio tempo.
channelmap A->A Remap audio channels.
channelsplit A->| Split audio into per-channel streams
earwax A->A Widen the stereo image.
ebur128 A->| EBU R128 scanner.
join |->A Join multiple audio streams into multi-channel output
pan A->A Remix channels with coefficients (panning).
silencedetect A->A Detect silence.
volume A->A Change input volume.
volumedetect A->A Detect audio volume.
aevalsrc |->A Generate an audio signal generated by an expression.
anullsrc |->A Null audio source, return empty audio frames.

2. Displaying Help and Features

47

anullsink A->| Do absolutely nothing with the input audio.
alphaextract V->V Extract an alpha channel as a grayscale image component.
alphamerge VV->V Copy the luma value of the 2nd input to the alpha channel of the 1st input.
ass V->V Render subtitles onto input video using the libass library.
bbox V->V Compute bounding box for each frame.
blackdetect V->V Detect video intervals that are (almost) black.
blackframe V->V Detect frames that are (almost) black.
boxblur V->V Blur the input.
colormatrix V->V Color matrix conversion
copy V->V Copy the input video unchanged to the output.
crop V->V Crop the input video to width:height:x:y.
cropdetect V->V Auto-detect crop size.
decimate V->V Remove near-duplicate frames.
delogo V->V Remove logo from input video.
deshake V->V Stabilize shaky video.
drawbox V->V Draw a colored box on the input video.
drawtext V->V Draw text on top of video frames using libfreetype library.
edgedetect V->V Detect and draw edge.
fade V->V Fade in/out input video.
field V->V Extract a field from the input video.
fieldorder V->V Set the field order.
fifo V->V Buffer input images and send them when they are requested.
format V->V Convert the input video to one of the specified pixel formats.
fps V->V Force constant framerate
framestep V->V Select one frame every N frames.
gradfun V->V Debands video quickly using gradients.
hflip V->V Horizontally flip the input video.
hqdn3d V->V Apply a High Quality 3D Denoiser.
hue V->V Adjust the hue and saturation of the input video.
idet V->V Interlace detect Filter.
lut V->V Compute and apply a lookup table to the RGB/YUV input video.
lutrgb V->V Compute and apply a lookup table to the RGB input video.
lutyuv V->V Compute and apply a lookup table to the YUV input video.
mp V->V Apply a libmpcodecs filter to the input video.
negate V->V Negate input video.
noformat V->V Force libavfilter not to use any of the specified pixel formats for

the input to the next filter.
null V->V Pass the source unchanged to the output.
overlay VV->V Overlay a video source on top of the input.
pad V->V Pad input image to width:height[:x:y[:color]] (default x and y: 0,

default color: black).
pixdesctest V->V Test pixel format definitions.
removelogo V->V Remove a TV logo based on a mask image.
scale V->V Scale the input video to width:height size and/or convert the image format.
select V->V Select frames to pass in output.
sendcmd V->V Send commands to filters.
setdar V->V Set the frame display aspect ratio.
setfield V->V Force field for the output video frame.
setpts V->V Set PTS for the output video frame.
setsar V->V Set the pixel sample aspect ratio.
settb V->V Set timebase for the video output link.
showinfo V->V Show textual information for each video frame.
slicify V->V Pass the images of input video on to next video filter as multiple slices.
smartblur V->V Blur the input video without impacting the outlines.
split V->| Pass on the input video to N outputs.

2. Displaying Help and Features

48

super2xsai V->V Scale the input by 2x using the Super2xSaI pixel art algorithm.
swapuv V->V Swap U and V components.
thumbnail V->V Select the most representative frame in a sequence of consecutive frames
tile V->V Tile several successive frames together.
tinterlace V->V Perform temporal field interlacing.
transpose V->V Transpose input video.
unsharp V->V Sharpen or blur the input video.
vflip V->V Flip the input video vertically.
yadif V->V Deinterlace the input image.
cellauto |->V Create pattern generated by an elementary cellular automaton.
color |->V Provide an uniformly colored input.
life |->V Create life.
mandelbrot |->V Render a Mandelbrot fractal.
mptestsrc |->V Generate various test pattern.
nullsrc |->V Null video source, return unprocessed video frames.
rgbtestsrc |->V Generate RGB test pattern.
smptebars |->V Generate SMPTE color bars.
testsrc |->V Generate test pattern.
nullsink V->| Do absolutely nothing with the input video.
concat |->| Concatenate audio and video streams.
showspectrum A->V Convert input audio to a spectrum video output.
showwaves A->V Convert input audio to a video output.
amovie |->| Read audio from a movie source.
movie |->| Read from a movie source.
ffbuffersink V->| Buffer video frames and make them available to the end of the filter graph.
ffabuffersink A->| Buffer audio frames and make them available to the end of the filter graph.
buffersink V->| Buffer video frames and make them available to the end of the filter graph.
abuffersink A->| Buffer audio frames and make them available to the end of the filter graph.
buffer |->V Buffer video frames and make them accessible to the filterchain.
abuffer |->A Buffer audio frames and make them accessible to the filterchain.
buffersink_old V->| Buffer video frames and make them available to the end of the filter graph.
abuffersink_old A->| Buffer audio frames and make them available to the end of the filter graph.

Available formats
To display built-in audio and video formats, the next command is used:

ffmpeg -formats

File formats:
D. = Demuxing supported
.E = Muxing supported
--
E 3g2 3GP2 (3GPP2 file format)
E 3gp 3GP (3GPP file format)
D 4xm 4X Technologies
E a64 a64 - video for Commodore 64
D aac raw ADTS AAC (Advanced Audio Coding)
DE ac3 raw AC-3
D act ACT Voice file format
D adf Artworx Data Format
E adts ADTS AAC (Advanced Audio Coding)
DE adx CRI ADX

2. Displaying Help and Features

49

D aea MD STUDIO audio
DE aiff Audio IFF
DE alaw PCM A-law
DE amr 3GPP AMR
D anm Deluxe Paint Animation
D apc CRYO APC
D ape Monkey's Audio
DE asf ASF (Advanced / Active Streaming Format)
E asf_stream ASF (Advanced / Active Streaming Format)
DE ass SSA (SubStation Alpha) subtitle
DE au Sun AU
DE avi AVI (Audio Video Interleaved)
E avm2 SWF (ShockWave Flash) (AVM2)
D avr AVR (Audio Visual Resarch)
D avs AVISynth
D bethsoftvid Bethesda Softworks VID
D bfi Brute Force & Ignorance
D bin Binary text
D bink Bink
DE bit G.729 BIT file format
D bmv Discworld II BMV
D c93 Interplay C93
DE caf Apple CAF (Core Audio Format)
DE cavsvideo raw Chinese AVS (Audio Video Standard) video
D cdg CD Graphics
D cdxl Commodore CDXL video
E crc CRC testing
DE daud D-Cinema audio
D dfa Chronomaster DFA
DE dirac raw Dirac
DE dnxhd raw DNxHD (SMPTE VC-3)
D dshow DirectShow capture
D dsicin Delphine Software International CIN
DE dts raw DTS
D dtshd raw DTS-HD
DE dv DV (Digital Video)
E dvd MPEG-2 PS (DVD VOB)
D dxa DXA
D ea Electronic Arts Multimedia
D ea_cdata Electronic Arts cdata
DE eac3 raw E-AC-3
DE f32be PCM 32-bit floating-point big-endian
DE f32le PCM 32-bit floating-point little-endian
E f4v F4V Adobe Flash Video
DE f64be PCM 64-bit floating-point big-endian
DE f64le PCM 64-bit floating-point little-endian
DE ffm FFM (FFserver live feed)
DE ffmetadata FFmpeg metadata in text
D film_cpk Sega FILM / CPK
DE filmstrip Adobe Filmstrip
DE flac raw FLAC
D flic FLI/FLC/FLX animation
DE flv FLV (Flash Video)
E framecrc framecrc testing
E framemd5 Per-frame MD5 testing

2. Displaying Help and Features

50

DE g722 raw G.722
DE g723_1 raw G.723.1
D g729 G.729 raw format demuxer
E gif GIF Animation
D gsm raw GSM
DE gxf GXF (General eXchange Format)
DE h261 raw H.261
DE h263 raw H.263
DE h264 raw H.264 video
D hls,applehttp Apple HTTP Live Streaming
DE ico Microsoft Windows ICO
D idcin id Cinematic
D idf iCE Draw File
D iff IFF (Interchange File Format)
DE ilbc iLBC storage
DE image2 image2 sequence
DE image2pipe piped image2 sequence
D ingenient raw Ingenient MJPEG
D ipmovie Interplay MVE
E ipod iPod H.264 MP4 (MPEG-4 Part 14)
E ismv ISMV/ISMA (Smooth Streaming)
D iss Funcom ISS
D iv8 IndigoVision 8000 video
DE ivf On2 IVF
DE jacosub JACOsub subtitle format
D jv Bitmap Brothers JV
DE latm LOAS/LATM
D lavfi Libavfilter virtual input device
DE libnut nut format
D lmlm4 raw lmlm4
D loas LOAS AudioSyncStream
D lvf LVF
D lxf VR native stream (LXF)
DE m4v raw MPEG-4 video
E matroska Matroska
D matroska,webm Matroska / WebM
E md5 MD5 testing
D mgsts Metal Gear Solid: The Twin Snakes
DE microdvd MicroDVD subtitle format
DE mjpeg raw MJPEG video
E mkvtimestamp_v2 extract pts as timecode v2 format, as defined by mkvtoolnix
DE mlp raw MLP
D mm American Laser Games MM
DE mmf Yamaha SMAF
E mov QuickTime / MOV
D mov,mp4,m4a,3gp,3g2,mj2 QuickTime / MOV
E mp2 MP2 (MPEG audio layer 2)
DE mp3 MP3 (MPEG audio layer 3)
E mp4 MP4 (MPEG-4 Part 14)
D mpc Musepack
D mpc8 Musepack SV8
DE mpeg MPEG-1 Systems / MPEG program stream
E mpeg1video raw MPEG-1 video
E mpeg2video raw MPEG-2 video
DE mpegts MPEG-TS (MPEG-2 Transport Stream)

2. Displaying Help and Features

51

D mpegtsraw raw MPEG-TS (MPEG-2 Transport Stream)
D mpegvideo raw MPEG video
E mpjpeg MIME multipart JPEG
D msnwctcp MSN TCP Webcam stream
D mtv MTV
DE mulaw PCM mu-law
D mvi Motion Pixels MVI
DE mxf MXF (Material eXchange Format)
E mxf_d10 MXF (Material eXchange Format) D-10 Mapping
D mxg MxPEG clip
D nc NC camera feed
D nsv Nullsoft Streaming Video
E null raw null video
DE nut NUT
D nuv NuppelVideo
DE ogg Ogg
DE oma Sony OpenMG audio
D paf Amazing Studio Packed Animation File
D pmp Playstation Portable PMP
E psp PSP MP4 (MPEG-4 Part 14)
D psxstr Sony Playstation STR
D pva TechnoTrend PVA
D qcp QCP
D r3d REDCODE R3D
DE rawvideo raw video
E rcv VC-1 test bitstream
D realtext RealText subtitle format
D rl2 RL2
DE rm RealMedia
DE roq raw id RoQ
D rpl RPL / ARMovie
DE rso Lego Mindstorms RSO
DE rtp RTP output
DE rtsp RTSP output
DE s16be PCM signed 16-bit big-endian
DE s16le PCM signed 16-bit little-endian
DE s24be PCM signed 24-bit big-endian
DE s24le PCM signed 24-bit little-endian
DE s32be PCM signed 32-bit big-endian
DE s32le PCM signed 32-bit little-endian
DE s8 PCM signed 8-bit
D sami SAMI subtitle format
DE sap SAP output
D sbg SBaGen binaural beats script
E sdl SDL output device
D sdp SDP
E segment segment
D shn raw Shorten
D siff Beam Software SIFF
DE smjpeg Loki SDL MJPEG
D smk Smacker
E smoothstreaming Smooth Streaming Muxer
D smush LucasArts Smush
D sol Sierra SOL
DE sox SoX native

2. Displaying Help and Features

52

DE spdif IEC 61937 (used on S/PDIF - IEC958)
DE srt SubRip subtitle
E stream_segment,ssegment streaming segment muxer
D subviewer SubViewer subtitle format
E svcd MPEG-2 PS (SVCD)
DE swf SWF (ShockWave Flash)
D tak raw TAK
D thp THP
D tiertexseq Tiertex Limited SEQ
D tmv 8088flex TMV
DE truehd raw TrueHD
D tta TTA (True Audio)
D tty Tele-typewriter
D txd Renderware TeXture Dictionary
DE u16be PCM unsigned 16-bit big-endian
DE u16le PCM unsigned 16-bit little-endian
DE u24be PCM unsigned 24-bit big-endian
DE u24le PCM unsigned 24-bit little-endian
DE u32be PCM unsigned 32-bit big-endian
DE u32le PCM unsigned 32-bit little-endian
DE u8 PCM unsigned 8-bit
D vc1 raw VC-1
D vc1test VC-1 test bitstream
E vcd MPEG-1 Systems / MPEG program stream (VCD)
D vfwcap VfW video capture
D vmd Sierra VMD
E vob MPEG-2 PS (VOB)
DE voc Creative Voice
D vqf Nippon Telegraph and Telephone Corporation (NTT) TwinVQ
D w64 Sony Wave64
DE wav WAV / WAVE (Waveform Audio)
D wc3movie Wing Commander III movie
E webm WebM
D webvtt WebVTT subtitle
D wsaud Westwood Studios audio
D wsvqa Westwood Studios VQA
DE wtv Windows Television (WTV)
DE wv WavPack
D xa Maxis XA
D xbin eXtended BINary text (XBIN)
D xmv Microsoft XMV
D xwma Microsoft xWMA
D yop Psygnosis YOP
DE yuv4mpegpipe YUV4MPEG pipe

Available layouts of audio channels
To display a list of available audio channel layouts we can use the command:

ffmpeg -layouts

Individual channels:

2. Displaying Help and Features

53

NAME DESCRIPTION
FL front left
FR front right
FC front center
LFE low frequency
BL back left
BR back right
FLC front left-of-center
FRC front right-of-center
BC back center
SL side left
SR side right
TC top center
TFL top front left
TFC top front center
TFR top front right
TBL top back left
TBC top back center
TBR top back right
DL downmix left
DR downmix right
WL wide left
WR wide right
SDL surround direct left
SDR surround direct right
LFE2 low frequency 2

Standard channel layouts:
NAME DECOMPOSITION
mono FC
stereo FL+FR
2.1 FL+FR+LFE
3.0 FL+FR+FC
3.0(back) FL+FR+BC
4.0 FL+FR+FC+BC
quad FL+FR+BL+BR
quad(side) FL+FR+SL+SR
3.1 FL+FR+FC+LFE
5.0 FL+FR+FC+BL+BR
5.0(side) FL+FR+FC+SL+SR
4.1 FL+FR+FC+LFE+BC
5.1 FL+FR+FC+LFE+BL+BR
5.1(side) FL+FR+FC+LFE+SL+SR
6.0 FL+FR+FC+BC+SL+SR
6.0(front) FL+FR+FLC+FRC+SL+SR
hexagonal FL+FR+FC+BL+BR+BC
6.1 FL+FR+FC+LFE+BC+SL+SR
6.1 FL+FR+FC+LFE+BL+BR+BC
6.1(front) FL+FR+LFE+FLC+FRC+SL+SR
7.0 FL+FR+FC+BL+BR+SL+SR
7.0(front) FL+FR+FC+FLC+FRC+SL+SR
7.1 FL+FR+FC+LFE+BL+BR+SL+SR
7.1(wide) FL+FR+FC+LFE+FLC+FRC+SL+SR
octagonal FL+FR+FC+BL+BR+BC+SL+SR
downmix DL+DR

2. Displaying Help and Features

54

FFmpeg license
The information about FFmpeg license can be displayed with uppercase L as the parameter:

ffmpeg -L

ffmpeg is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

ffmpeg is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ffmpeg. If not, see http://www.gnu.org/licenses

Available pixel formats
The list of built-in formats of pixels can be displayed by the command:

ffmpeg -pix_fmts

Pixel formats:
I.... = Supported Input format for conversion
.O... = Supported Output format for conversion
..H.. = Hardware accelerated format
...P. = Paletted format
....B = Bitstream format
FLAGS NAME NB_COMPONENTS BITS_PER_PIXEL

IO... yuv420p 3 12
IO... yuyv422 3 16
IO... rgb24 3 24
IO... bgr24 3 24
IO... yuv422p 3 16
IO... yuv444p 3 24
IO... yuv410p 3 9
IO... yuv411p 3 12
IO... gray 1 8
IO..B monow 1 1
IO..B monob 1 1
I..P. pal8 1 8
IO... yuvj420p 3 12
IO... yuvj422p 3 16
IO... yuvj444p 3 24
..H.. xvmcmc 0 0
..H.. xvmcidct 0 0
IO... uyvy422 3 16
..... uyyvyy411 3 12

2. Displaying Help and Features

55

IO... bgr8 3 8
.O..B bgr4 3 4
IO... bgr4_byte 3 4
IO... rgb8 3 8
.O..B rgb4 3 4
IO... rgb4_byte 3 4
IO... nv12 3 12
IO... nv21 3 12
IO... argb 4 32
IO... rgba 4 32
IO... abgr 4 32
IO... bgra 4 32
IO... gray16be 1 16
IO... gray16le 1 16
IO... yuv440p 3 16
IO... yuvj440p 3 16
IO... yuva420p 4 20
..H.. vdpau_h264 0 0
..H.. vdpau_mpeg1 0 0
..H.. vdpau_mpeg2 0 0
..H.. vdpau_wmv3 0 0
..H.. vdpau_vc1 0 0
IO... rgb48be 3 48
IO... rgb48le 3 48
IO... rgb565be 3 16
IO... rgb565le 3 16
IO... rgb555be 3 15
IO... rgb555le 3 15
IO... bgr565be 3 16
IO... bgr565le 3 16
IO... bgr555be 3 15
IO... bgr555le 3 15
..H.. vaapi_moco 0 0
..H.. vaapi_idct 0 0
..H.. vaapi_vld 0 0
IO... yuv420p16le 3 24
IO... yuv420p16be 3 24
IO... yuv422p16le 3 32
IO... yuv422p16be 3 32
IO... yuv444p16le 3 48
IO... yuv444p16be 3 48
..H.. vdpau_mpeg4 0 0
..H.. dxva2_vld 0 0
IO... rgb444le 3 12
IO... rgb444be 3 12
IO... bgr444le 3 12
IO... bgr444be 3 12
I.... gray8a 2 16
IO... bgr48be 3 48
IO... bgr48le 3 48
IO... yuv420p9be 3 13
IO... yuv420p9le 3 13
IO... yuv420p10be 3 15
IO... yuv420p10le 3 15
IO... yuv422p10be 3 20

2. Displaying Help and Features

56

IO... yuv422p10le 3 20
IO... yuv444p9be 3 27
IO... yuv444p9le 3 27
IO... yuv444p10be 3 30
IO... yuv444p10le 3 30
IO... yuv422p9be 3 18
IO... yuv422p9le 3 18
..H.. vda_vld 0 0
I.... gbrp 3 24
I.... gbrp9be 3 27
I.... gbrp9le 3 27
I.... gbrp10be 3 30
I.... gbrp10le 3 30
I.... gbrp16be 3 48
I.... gbrp16le 3 48
IO... yuva420p9be 4 22
IO... yuva420p9le 4 22
IO... yuva422p9be 4 27
IO... yuva422p9le 4 27
IO... yuva444p9be 4 36
IO... yuva444p9le 4 36
IO... yuva420p10be 4 25
IO... yuva420p10le 4 40
IO... yuva422p10be 4 48
IO... yuva422p10le 4 48
IO... yuva444p10be 4 64
IO... yuva444p10le 4 64
IO... yuva420p16be 4 40
IO... yuva420p16le 4 40
IO... yuva422p16be 4 48
IO... yuva422p16le 4 48
IO... yuva444p16be 4 64
IO... yuva444p16le 4 64
I.... rgba64be 4 64
I.... rgba64le 4 64
..... bgra64be 4 64
..... bgra64le 4 64
IO... 0rgb 3 24
IO... rgb0 3 24
IO... 0bgr 3 24
IO... bgr0 3 24
IO... yuva444p 4 32
IO... yuva422p 4 24
IO... yuv420p12be 3 18
IO... yuv420p12le 3 18
IO... yuv420p14be 3 21
IO... yuv420p14le 3 21
IO... yuv422p12be 3 24
IO... yuv422p12le 3 24
IO... yuv422p14be 3 28
IO... yuv422p14le 3 28
IO... yuv444p12be 3 36
IO... yuv444p12le 3 36
IO... yuv444p14be 3 42
IO... yuv444p14le 3 42

2. Displaying Help and Features

57

I.... gbrp12be 3 36
I.... gbrp12le 3 36
I.... gbrp14be 3 42
I.... gbrp14le 3 42

Available protocols
For displaying available file protocols is the next command:

ffmpeg -protocols

Supported file protocols:
Input:
applehttp
cache
concat
crypto
file
gopher
hls
http
httpproxy
mmsh
mmst
pipe
rtp
tcp
udp
rtmp
rtmpe
rtmps
rtmpt
rtmpte
Output:
file
gopher
http
httpproxy
md5
pipe
rtp
tcp
udp
rtmp
rtmpe
rtmps
rtmpt
rtmpte

2. Displaying Help and Features

58

Available audio sample formats
Audio sample formats included in FFmpeg can be displayed with the command:

ffmpeg -sample_fmts

name depth
u8 8
s16 16
s32 32
flt 32
dbl 64
u8p 8
s16p 16
s32p 32
fltp 32
dblp 64

FFmpeg version
Version of ffmpeg can be displayed with -version option, the next result is from the official Windows build
created on 25th November 2012.

ffmpeg -version

ffmpeg version N-47062-g26c531c
built on Nov 25 2012 12:21:26 with gcc 4.7.2 (GCC)
configuration: --enable-gpl --enable-version3 --disable-pthreads --enable-
runtime-cpudetect --enable-avisynth --enable-bzlib --enable-frei0r --enable-
libass --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-
libfreetype --enable-libgsm --enable-libmp3lame --enable-libnut --enable-
libopenjpeg --enable-libopus --enable-librtmp --enable-libschroedinger
--enable-libspeex --enable-libtheora --enable-libutvideo --enable-libvo-aacenc
--enable-libvo-amrwbenc --enable-libvorbis --enable-libvpx --enable-libx264
--enable-libxavs --enable-libxvid --enable-zlib
libavutil 52. 9.100 / 52. 9.100
libavcodec 54. 77.100 / 54. 77.100
libavformat 54. 37.100 / 54. 37.100
libavdevice 54. 3.100 / 54. 3.100
libavfilter 3. 23.102 / 3. 23.102
libswscale 2. 1.102 / 2. 1.102
libswresample 0. 17.101 / 0. 17.101
libpostproc 52. 2.100 / 52. 2.100

Please see Glossary for details about ffmpeg configuration.

2. Displaying Help and Features

59

Using MORE command for output formatting
Because the output of the help, available filters, formats, etc. is long and usually does not fit to one screen,
the more command can be used to display the output text formatted sequentially one screen from the start,
the next screen is displayed by pressing the Spacebar, the next line will show after pressing the Enter key
and pressing the Q or q will quit the preview. The syntax is

ffmpeg -help | more

or a shorter form

ffmpeg -h|more

The more command can be used also for displaying text files, the content is again divided to fit one screen,
the syntax is:

more filename.txt

Additional parameters of the more command can be displayed by typing:

help more

Redirecting output to file
Sometimes it is needed to study help, available filters, formats, etc. precisely, so to save this information to
the text file, the next command can be used:

ffmpeg -help > help.txt

This command will create a new file named help.txt in the current directory and will save to it the content
of ffmpeg help. If the file with the same name already exists, it will be overwritten. To append output text
to existing file without overwriting its content, the greater than signs > should be doubled:

ffmpeg -help > data.txt
ffmpeg -filters >> data.txt

Now the file data.txt contains ffmpeg help followed by the list of available filters.

3. Bit Rate, Frame Rate and File Size
The bit rate and frame rate are the fundamental characteristics of the video and their proper setting is very
important for the overall video quality. If we know the bit rate and duration of all included media streams,
we can calculate the final size of the output file. Because a good understanding of the frame rate and bit
rate is important in the work with FFmpeg tools, included is a short description for each term.

Frame (frequency) rate introduction
The frame rate is a number of frames per second (FPS or fps) encoded into a video file, the human eye
needs at least about 15 fps to see a continuous motion. Frame rate is also called a frame frequency and its
unit is the Hertz (Hz), LCD displays have usually 60 Hz frequency.
There are 2 types of frame rates - interlaced (denoted as i after FPS number) and progressive (denoted as p
after FPS number).
Interlaced frame rate is used in the television:
- NTSC standard uses 60i fps, what means 60 interlaced fields (30 frames) per second
- PAL and SECAM standards use 50i fps, what means 50 interlaced fields, equals to 25 frames per second
Progressive frame rates of 24p, 25p and 30p are used in the film industry. Newer frame frequency 50p/60p
is used in the high-end HDTV products.

Common video frame rates

FPS
i=interlaced

p=progressive
Description

24p
or 23.976

Standard frame rate for the cinema industry from 1920s, all motion pictures were
filmed in this frequency. When the films were adopted to NTSC television broadcast,
the frame rate was decreased to 24*1000/1001=23.976 value, but for PAL/SECAM
television the frame rate of films was increased to 25 fps.

25p Standard frame rate for the film and television in countries with 50 Hz electric
frequency (PAL and SECAM standard), because 25 progressive video can be easily
converted to 50 interlaced television fields.

30p Common video frame rate, often used on digital cameras and camcorders. It can be
adopted to 60 Hz (NTSC) interlaced fields for TV broadcast.

50i Standard field rate (interlaced frame rate) for the PAL and SECAM television.

60i
or 59.94

Standard field rate for NTSC television, after color TV invention, the frame rate was
decreased to 60*1000/1001=59.94 value to prevent interference between the chroma
subcarrier and the sound carrier.

50p/60p Common frame rate for HDTV (High Definition TV).

48p proposed frame rate, currently tested

72p proposed frame rate, currently tested

120p progressive format standardized for UHDTV (Ultra High Definition TV), planned to be
the single global "double-precision" frame rate for UHDTV (instead of using 100 Hz
for PAL standard and 119.88 Hz for NTSC standard)

3. Bit Rate, Frame Rate and File Size

61

Frame rate setting
Using -r option
To set the video frame rate we use the -r option before the output file, the syntax is:

ffmpeg -i input -r fps output

For example to change the frame rate of the film.avi file from 25 to 30 fps value, we use the command:

ffmpeg -i input.avi -r 30 output.mp4

When using a raw input format, the -r option can be used also before the input.
Using fps filter
Another way to set a frame rate is to use an fps filter, what is useful especially in the filterchains.

Video filter: fps

Description Changes video frame rate to the specified value.

Syntax fps=fps=number_of_frames
Description of parameters

fps a number or a predefined abbreviation specifying the output frame rate

For example, to change the input frame rate of the clip.mpg file to the value 25, we use the command

ffmpeg -i clip.mpg -vf fps=fps=25 clip.webm

Predefined values for frame rate
Beside numeric values, both methods for setting the frame rate accept also the next predefined text values:

Predefined abbreviations for the frame rate

Abbreviation Exact value Corresponding FPS

ntsc-film 24000/1001 23.97

film 24/1 24

pal, qpal, spal 25/1 25

ntsc, qntsc, sntsc 30000/1001 29.97

For example to set the frame rate 29.97 fps, the next 3 commands give the same result:

ffmpeg -i input.avi -r 29.97 output.mpg
ffmpeg -i input.avi -r 30000/1001 output.mpg
ffmpeg -i input.avi -r ntsc output.mpg

3. Bit Rate, Frame Rate and File Size

62

Bit (data) rate introduction
Bit rate (also bitrate or data rate) is a parameter that determines overall audio or video quality. It specifies
the number of bits processed per time unit, in FFmpeg the bit rate is expressed in bits per second.

Types of bit rate

Type Abbreviation Description

Average bit rate ABR average number of bits processed per second, this value is used also in
encoding with VBR, when needed is certain file size of the output

Constant bit rate CBR number of bits processed per second is constant, this is not practical
for the storage because parts with a fast motion require more bits than
static ones, CBR is used mainly for the multimedia streaming

Variable bit rate VBR number of bits processed per second is variable, complex scenes or
sounds are encoded with more data and compared to CBR, the files of
the same size have a better quality with VBR than CBR
(Encoding with VBR needs more time and CPU power than with CBR,
but recent media players can decode VBR adequately.)

Setting bit rate
Bit rate determines how many bits are used to store 1 second of encoded streams, it is set with -b option, to
differentiate audio and video stream it is recommended to use -b:a or -b:v forms. For example to set an
overall 1.5 Mbit per second bit rate, we can use the command:

ffmpeg -i film.avi -b 1.5M film.mp4

If possible, ffmpeg uses a variable bit rate (VBR) and encode static parts with less bits than the parts with a
fast motion. ffmpeg is often used to decrease the bit rate and corresponding file size of the output file
utilizing an advanced codec that keeps very good quality, for example:

ffmpeg -i input.avi -b:v 1500k output.mp4

This command changes the input bitrate to 1500 kilobits per second.

Constant bit rate (CBR) setting
The constant bit rate is used for instance for live video streams like videoconferences, where the transferred
data cannot be buffered. To set the constant bit rate for the output, three parameters must have the same
value: bitrate (-b option), minimal rate (-minrate) and maximal rate (-maxrate). To minrate and maxrate
options can be added a stream specifier, the maxrate option requires a setting of a -bufsize option (rate
control buffer size in bits). For example to set the CBR of 0.5 Mbit/s,we can use the command:

ffmpeg -i in.avi -b 0.5M -minrate 0.5M -maxrate 0.5M -bufsize 1M out.mkv

3. Bit Rate, Frame Rate and File Size

63

Setting maximum size of output file
To keep the size of the output file under certain value, we use -fs option (abbreviation of file size),
expected value is in bytes. For example, to specify the maximum output file size of 10 megabytes we can
use the command:

ffmpeg -i input.avi -fs 10MB output.mp4

File size calculation
The final file size of encoded output is the sum of audio and video stream sizes. The equation for video
stream size in bytes is (the division by 8 is for the conversion from bits to bytes):

video_size = video_bitrate * time_in_seconds / 8

If audio is uncompressed, its size is calculated by the equation:

audio_size = sampling_rate * bit_depth * channels * time_in_seconds / 8

To calculate the file size of a compressed audio stream, we need to know its bitrate and the equation is

audio_size = bitrate * time_in_seconds / 8

For example to calculate the final size of 10-minutes video clip with the 1500 kbits/s video bit rate and 128
kbits/s audio bitrate, we can use the equations:

file_size = video_size + audio_size
file_size = (video_bitrate + audio_bitrate) * time_in_seconds / 8
file_size = (1500 kbit/s + 128 kbits/s) * 600 s
file_size = 1628 kbit/s * 600 s
file_size = 976800 kb = 976800000 b / 8 = 122100000 B / 1024 = 119238.28125 KB
file_size = 119238.28125 KB / 1024 = 116.443634033203125 MB ≈ 116.44 MB

1 byte (B) = 8 bits (b)
1 kilobyte (kB or KB) = 1024 B
1 megabyte (MB) = 1024 KB, etc.

The final file size is a little bigger than computed, because included is a muxing overhead and the file
metadata.

4. Resizing and Scaling Video
Resizing video in FFmpeg means to change its width and height with an option, while scaling means to
change the frame size with a scale filter, which provides advanced features.

Resizing video
The width and height of the output video can be set with -s option preceding the output filename. The video
resolution is entered in the form wxh, where w is the width in pixels and h is the height in pixels. For
example, to resize the input from initial resolution to 320x240 value, we can use the command:

ffmpeg -i input_file -s 320x240 output_file

Predefined video frame sizes
Instead of entering exact numbers for a video width and height, FFmpeg tools provide predefined video
sizes that are listed in the table on the next page. The next 2 commands have the same result:

ffmpeg -i input.avi -s 640x480 output.avi
ffmpeg -i input.avi -s vga output.avi

4. Resizing and Scaling Video

65

Abbreviations for video sizes in FFmpeg
Frame size Abbreviation Typical usage

128x96 sqcif mobile phones

160x120 qqvga mobile phones

176x144 qcif mobile phones

320x200 cga old CRT displays

320x240 qvga mobile phones, webcams

352x288 cif mobile phones

640x350 ega old CRT displays

640x480 vga displays, webcams

704x576 4cif official digital video size for TV

800x600 svga displays

852x480 hd480, wvga camcorders

1024x768 xga displays, cameras

1280x720 hd720 HDTV, camcorders

1280x1024 sxga displays

1366x768 wxga displays

1408x1152 16cif devices using CIF

1600x1024 wsxga displays

1600x1200 uxga displays, cameras

1920x1080 hd1080 HDTV, camcorders

1920x1200 wuxga widescreen displays

2048x1536 qxga displays

2560x1600 woxga displays

2560x2048 qsxga displays

3200x2048 wqsxga displays

3840x2400 wquxga displays

5120x4096 hsxga displays, microscope cameras

6400x4096 whsxga displays

7680x4800 whuxga displays

4. Resizing and Scaling Video

66

Considerations when resizing - Nyquist sampling theorem
Video is usually resized to a smaller resolution than the source, which is called downsampling, mainly for
portable devices, streaming via internet, etc. It is important to consider, that in a smaller size some details
will be lost, this fact explains the Nyquist-Shannon sampling theorem. Its general form is related to any
signals and informs that for the complete reconstruction of a sampled signal, we must use at least 2 times
higher frequency than is the frequency of the source. It means that to keep the small details in a down-
scaled video, their original size must be higher than the scaling ratio divided by 2.
For example, video in 800x600 (SVGA) resolution contains a 2 pixels wide detail. When scaled to 640x480
(VGA) resolution, the scaling ratio is 0.8 and 2 pixels are scaled again to 2 pixels:

640 pixels / 800 pixels = 0.8
2 pixels * 0.8 = 1.6 ≈ 2 pixels

But when this video is scaled to 160x120 (QQVGA) resolution, the detail is lost:
160 pixels / 800 pixels = 0.2

2 pixels * 0.2 = 0.4 ≈ 0 pixels
This means that after downsampling, visible are only details with an input size at least 3 pixels.

4. Resizing and Scaling Video

67

Special enlarging filter
Resizing the video to a bigger frame size is relatively rare, because this function provide almost all media
players, but the resulting image is sometimes not clear, especially when the source resolution is very small.
The special filter for smoothing the upscaled source is a super2xsai filter:

Video filter: super2xsai

Description Enlarges the source frame size 2 times using a pixel art scaling algorithm without reducing
sharpness. "2xSaI" means "2 times scale and interpolate".

Syntax -vf super2xsai

For example to enlarge 128x96 video from a mobile phone to the resolution 256x192 pixels, the next
command can be used:

ffmpeg -i phone_video.3gp -vf super2xsai output.mp4

Advanced scaling
When -s option is used to change the video frame size, a scale video filter is inserted at the end of related
filtergraph. To manage position, where the scaling process begins, the scale filter can be used directly.

Video filter: scale

Description The source is scaled by changing the output sample aspect ratio, the display aspect
ratio remains the same.

Syntax scale=width:height[:interl={1|-1}]
Variables in expressions of the width and height parameters

iw or in_w input width

ih or in_h input height

ow or out_w output width

oh or out_h output height

a aspect ratio, same as iw/ih

sar input sample aspect ratio, same as dar/a

dar input display aspect ratio, it is the same as a*sar

hsub horizontal chroma subsample value, for yuv422p pixel format is 2

vsub vertical chroma subsample value, for yuv422p pixel format is 1

Available values for an optional interl parameter

1 interlaced aware scaling is applied

-1 if the source is flagged as interlaced, applied is interlaced aware scaling

4. Resizing and Scaling Video

68

For example, the following 2 commands have the same result:

ffmpeg -i input.mpg -s 320x240 output.mp4
ffmpeg -i input.mpg -vf scale=320:240 output.mp4

The advantage of the scale filter is that for the frame setting can be used additional parameters described in
the table above.

Scaling video proportionately to input
Without knowing the size of the input frame, its resolution can be changed proportionately using the ih and
iw parameters of the scale filter, for example to create a half sized video, we can use the next command:

ffmpeg -i input.mpg -vf scale=iw/2:ih/2 output.mp4

Command for 90% sized video:

ffmpeg -i input.mpg -vf scale=iw*0.9:ih*0.9 output.mp4

Scaling the input with a golden ratio PHI = 1.61803398874989484820...:

ffmpeg -i input.mpg -vf scale=iw/PHI:ih/PHI output.mp4

Scaling to predefined width or height
When the output video should have a certain width or certain height and the input video size and aspect
ratio is unknown, the second dimension can be specified by an aspect parameter, like in following
examples. To set the output width to 400 pixels and the height proportionately, we can use the command:

ffmpeg -i input.avi -vf scale=400:400/a

To change the output height to 300 pixels and the width proportionately, the command can be:

ffmpeg -i input.avi -vf scale=300*a:300

5. Cropping Video
To crop the video means to select wanted rectangular area from the input to the output without a remainder.
Cropping is often used with resizing, padding and other editing.

Cropping basics
Older FFmpeg versions had cropbottom, cropleft, cropright and croptop options, but these are now
deprecated and for cropping operations is used the crop filter described in the following table.

Video filter: crop

Description Crops the frames of input video to the specified width and height from the position
indicated by x and y values; x and y that are the top-left corner coordinates of the
output, where the center of coordination system is a top-left corner of the input video
frame. If optional keep_aspect parameter is used, the output SAR (sample aspect ratio)
will be changed to compensate the new DAR (display aspect ratio).

Syntax crop=ow[:oh[:x[:y[:keep_aspect]]]]
Available variables in expressions for ow and oh parameters

x, y computed values for x (number of pixels from top left corner horizontally) and y
(number of pixels vertically), they are evaluated for every frame, default value of x is
(iw - ow)/2, default value of y is (ih - oh)/2

in_w, iw input width

in_h, ih input height

out_w, ow output (cropped) width, default value = iw

out_h, oh output (cropped) height, default value = ih

a aspect ratio, same as iw/ih

sar input sample aspect ratio

dar input display aspect ratio, equal to the expression a*sar

hsub, vsub horizontal and vertical chroma subsample values, for the pixel format yuv422p the
value of hsub is 2 and vsub is 1

n number of input frame, starting from 0

pos position in the file of the input frame, NAN if unknown

t timestamp expressed in seconds, NAN if the input timestamp is unknown

The value of ow can be derived from oh and vice versa, but cannot be derived from x and y, because these
values are evaluated after ow and oh. The value of x can be derived from the value of y and vice versa. For
example to crop the left third, middle third and right third of the input frame we can use the commands:

ffmpeg -i input -vf crop=iw/3:ih:0:0 output
ffmpeg -i input -vf crop=iw/3:ih:iw/3:0 output
ffmpeg -i input -vf crop=iw/3:ih:iw/3*2:0 output

5. Cropping Video

70

Cropping frame center
The design of the crop filter enables to skip the entering of x and y parameters when we want to crop the
area in the frame center. The default value of x and y is

xdefault = (input width - output width)/2
ydefault = (input height - output height)/2

It means that default values are set to automatically crop the area in the center of the input. The command
syntax to crop the rectangular central area of w width and h height is

ffmpeg -i input_file -vf crop=w:h output_file

To crop the central half frame, we can use the command:

ffmpeg -i input.avi -vf crop=iw/2:ih/2 output.avi

5. Cropping Video

71

Automatic detection of cropping area
To detect a non-black area for the cropping automatically, we can use a cropdetect filter, that is described
in the following table. This automatic cropping is useful when the input video contains some black bars,
usually after the conversion from resolution 4:3 to 16:9 and vice versa.

Video filter: cropdetect

Description Detects the crop size for the crop filter, the result is a non-black area of input frame
determined by parameters.

Syntax cropdetect[=limit[:round[:reset]]]
all parameters are optional

Description of parameters

limit threshold, range from 0 (nothing) to 255 (all), default value = 24

round - even integer, by which the width and height must be divisible
- 4:2:2 video needs a value of 2, that gives only even dimensions
- offset is changed automatically to center the frames
- default value is 16, it is the best for many codecs

reset Counter that determines after how many frames cropdetect will reset the previously
detected largest video area and start over to detect the current optimal crop area. Defaults
to 0. This can be useful when channel logos distort the video area. 0 indicates never reset
and return the largest area encountered during playback.

The limit parameter specifies how much dark color is selected to the output, the zero value means that only
complete black is cropped. For example to crop the non-black output, we can use the command:

ffmpeg -i input.mpg -vf cropdetect=limit=0 output.mp4

Cropping of timer
Media players usually have a progress bar, that shows the number of elapsed seconds, but most of them
displays it only when the mouse pointer is over and hide after a specific duration. FFmpeg contains a
testsrc video source that contains a timer, we can display it with the command:

ffplay -f lavfi -i testsrc

The default size of the testsrc is 320x240 pixels and the digit 0 of the initial timer has a 29x52 pixels size
and its position from the top-left corner is 256 pixels horizontally and 94 pixels vertically. To crop the area
of one digit, we can use the command:

ffmpeg -f lavfi -i testsrc -vf crop=29:52:256:94 -t 10 timer1.mpg

We want to create timers with 1, 2, 3 and 4 digits with this command, the specifications for the crop filter
and time durations for each number of digits are in the table:

5. Cropping Video

72

Number of digits Crop filter specification Duration Picture

1 crop=29:52:256:94
9 seconds

0 min : 9 sec
00:00:09

2 crop=61:52:224:94
99 seconds

1 min : 39 sec
00:01:39

3 crop=93:52:192:94
999 seconds

16 min : 39 sec
00:16:39

4 crop=125:52:160:94
9999 seconds

2 hours : 46 min : 39 sec
02:46:39

If we want bigger digits than 52 pixels tall, we can specify a bigger size of the testsrc output with a size
parameter (for example: -i testsrc=size=vga) and then adjust the crop area accordingly.

To change the color of the digits and the background we can use a lut filter that is described in the chapter
Color Corrections. Created timers will be used in examples for the video overlay.

6. Padding Video
To pad the video means to add an extra area to the video frame to include additional content. Padding video
is often needed, when the input should be played on a display with a different aspect ratio.

Padding basics
For a video padding we use a pad filter that is described in the table.

Video filter: pad

Description Adds colored padding to the input video frame, which is located to the point [x, y] in the
coordination system, where the beginning [0,0] is the top-left corner of the output
frame. The size of the output is set by the width and height parameters.

Syntax pad=width[:height[:x[:y[:color]]]]
parameters in [] are optional

Description of parameters

color RGB color value in hexadecimal form: 0xRRGGBB[@AA], where AA is decimal value
from the range (0, 1) or any valid color name like white, blue, yellow etc., the default
value is black, please see the Color names section in the FFmpeg Fundamentals chapter
for details

width, height width and height of output frame with padding, value of the width can be derived from
the height and vice versa, default value of both parameters is 0

x, y coordinates (offset) of the input top-left corner regarding to the top-left corner of the
output frame, default value of both parameters is 0

Available variables in expressions for the parameters height, width, x, y

a aspect ratio, same as iw/ih

dar input display aspect ratio, same as a*sar

hsub, vsub horizontal and vertical chroma subsample values, for the pixel format yuv422p the
value of hsub is 2 and vsub is 1

in_h, ih input height

in_w, iw input width

n number of input frame, starting from 0

out_h, oh output height, default value = height

out_w, ow output width, default value = width

pos position in the file of the input frame, NAN if unknown

sar input sample aspect ratio

t timestamp expressed in seconds, NAN if the input timestamp is unknown

x, y x and y offsets as specified by x and y expressions, or NAN if not specified yet

6. Padding Video

74

For example, to create a 30-pixel wide pink frame around an SVGA-sized photo, we can use the command:

ffmpeg -i photo.jpg -vf pad=860:660:30:30:pink framed_photo.jpg

6. Padding Video

75

Padding videos from 4:3 to 16:9
Some devices can play videos only in 16:9 aspect ratio and the videos with 4:3 aspect ratio must be padded
on both sizes horizontally. In this case the height remains the same and the width equals to the height value
multiplied by 16/9. The x value (input video frame horizontal offset) is counted from an expression
(output_width - input_width)/2, so the syntax for the padding is:

ffmpeg -i input -vf pad=ih*16/9:ih:(ow-iw)/2:0:color output

For example, without knowing the exact resolution of the film.mpg file with 4:3 aspect ratio, we can add
so-called pillarboxes in a default black color with the command:

ffmpeg -i film.mpg -vf pad=ih*16/9:ih:(ow-iw)/2:0 film_wide.avi

Padding videos from 16:9 to 4:3
To display videos created in 16:9 aspect ratio on the displays with 4:3 aspect ratio, we should pad the input
on both sizes vertically. Thus the width remains the same and the height is width * 3/4. The y value (input
video frame vertical offset) is counted from an expression (output_height - input_height)/2 and the syntax
for the padding is:

ffmpeg -i input -vf pad=iw:iw*3/4:0:(oh-ih)/2:color output

For instance, without knowing the exact resolution of the input file, we can add so-called letterboxes with a
default black color to the hd_video.avi file in 16/9 aspect ratio with the command:

ffmpeg -i hd_video.avi -vf pad=iw:iw*3/4:0:(oh-ih)/2 video.avi

6. Padding Video

76

Padding from and to various aspect ratios
Described padding with 4:3 and 16:9 aspect ratio are the most common, but for instance TV ads are created
in 14:9 aspect ratio and some films were recorded in a wider ratio than 16/9.
Pillarboxing - adding boxes horizontally
To adjust a smaller width-to-height aspect ratio to the bigger, we need to increase the output width, which
value will be the height value multiplied by a new aspect ratio (ar). The generic formula is:

ffmpeg -i input -vf pad=ih*ar:ih:(ow-iw)/2:0:color output

Letterboxing - adding boxes vertically
To adjust a bigger width-to-height aspect ratio to the smaller, we need to increase the output height, which
value will be the width value divided by a new aspect ratio (ar). The generic formula is:

ffmpeg -i input -vf pad=iw:iw*ar:0:(oh-ih)/2:color output

7. Flipping and Rotating Video
Flipping and rotating of the video frame are common visual operations, that can be used to create various
interesting effects like mirrored versions of the input.

Horizontal flip
A horizontally mirrored video version - horizontal flip is created with a hflip filter described in the table.

Video filter: hflip

Description Horizontally flips the input video, so the output looks like mirrored from the side. The filter
has no parameters.

Syntax -vf hflip

To test the horizontal flip on a testsrc video source, we can use the command:

ffplay -f lavfi -i testsrc -vf hflip

Vertical flip
For flipping the input frames in a vertical direction, we can use a vflip filter, described in the table.

Video filter: vflip

Description Vertically flips the input video, so the output looks like mirrored from the top or bottom.

Syntax -vf vflip

The image below on the left is an rgbrestsrc pattern described in the 25th chapter. To get its vertical flipped
version, we can use the next command:

ffplay -f lavfi -i rgbtestsrc -vf vflip

7. Flipping and Rotating Video

78

Introduction to rotating
Previous FFmpeg versions contained the special filter rotate, that enabled video rotating by entering the
angle value. This filter is now deprecated and was replaced by a transpose filter that enables to rotate and
optionally to flip the input at once. The transpose filter is described in the table.

Video filter: transpose

Description Transposes the rows with columns of the input and if selected, also flips the result.

Syntax transpose={0, 1, 2, 3}
one from the values 0 - 3 is used

Description of available values

0 input is rotated by 90° counterclockwise and flipped vertically

1 input is rotated by 90° clockwise

2 input is rotated by 90° counterclockwise

3 input is rotated by 90° clockwise and flipped vertically

Please note that the value 0 and 3 of the transpose filter provide two operations on the video frames
simultaneously - rotating and flipping vertically. This means that usage of the value 0 includes the effect of
two filters and the next two commands have the same result:

ffplay -f lavfi -i smptebars -vf transpose=0
ffplay -f lavfi -i smptebars -vf transpose=2,vflip

Similarly, the value 3 usage can be substituted with two filters like in the next two commands:

ffplay -f lavfi -i smptebars -vf transpose=3
ffplay -f lavfi -i smptebars -vf transpose=1,vflip

Each value usage of the transpose filter with illustrations is described in the following sections.

7. Flipping and Rotating Video

79

Rotation by 90 degrees counterclockwise and flip vertically
The next command rotates the input by 90 degrees clockwise with a vertical flip:

ffmpeg -i CMYK.avi -vf transpose=0 CMYK_transposed.avi

Rotation by 90 degrees clockwise
The next command rotates the input by 90° clockwise:

ffmpeg -i CMYK.avi -vf transpose=1 CMYK_transposed.avi

7. Flipping and Rotating Video

80

Rotation by 90 degrees counterclockwise
The next command rotates the input by 90° counterclockwise:

ffmpeg -i CMYK.avi -vf transpose=2 CMYK_transposed.avi

Rotation by 90 degrees clockwise and flip vertically
The next command rotates the input by 90° clockwise and flips it vertically:

ffmpeg -i CMYK.avi -vf transpose=3 CMYK_transposed.avi

8. Blur, Sharpen and Other Denoising
Video input containing various noise can be enhanced with the denoising filters and options. Denoising is a
part of the video preprocessing, before the video is encoded.

Blur video effect
A blur effect is used to increase the quality of certain type of noise in images (video frames), where each
output pixel value is calculated from the neighboring pixel values. For instance, the blur effect can improve
images scanned from a printed half-tone pictures. To blur an input video we can use a boxblur filter
described in the table:

Video filter: boxblur

Description Creates a blur effect on the input using a boxblur algorithm.

Syntax boxblur=luma_r:luma_p[:chroma_r:chroma_p[:alpha_r:alpha_p]]
filter expects 2 or 4 or 6 parameters, r = radius, p = power

Parameters

alpha_r - alpha radius of the box used for blurring the related input plane, in pixels
- value is an expression with variables described below
- default value is derived from luma_radius and luma_power

alpha_p - alpha power, determines how many times the filter is applied to the related plane
- default value is derived from luma_radius and luma_power

chroma_r - chroma radius of the box used for blurring the related input plane, in pixels
- value is an expression with variables described below
- default value is derived from luma_radius and luma_power

chroma_p - chroma power, determines how many times the filter is applied to the related plane
- default value is derived from luma_radius and luma_power

luma_r - luma radius of the box used for blurring the related input plane, in pixels
- value is an expression with variables described below

luma_p - luma power, determines how many times the filter is applied to the related plane

Variables in expressions for alpha, chroma and luma radius

w,h input width and height in pixels

cw, ch width and height in pixels of the input chroma image

hsub horizontal chroma subsample value, for yuv422p pixel format is 2

vsub vertical chroma subsample value, for yuv422p pixel format is 1

The radius is a non-negative number, and must not be greater than the value of the expression min(w,h)/2
for luma and alpha planes, and of min(cw,ch)/2 for chroma planes.

For example to create a blur effect on the input video where luma radius value is 1.5 and luma power value
is 1, we can use the next command:

ffmpeg -i input.mpg -vf boxblur=1.5:1 output.mp4

8. Blur, Sharpen and Other Denoising

82

Another FFmpeg filter with the blur effect is a smartblur filter described in the table:

Video filter: smartblur

Description Blurs the input without an impact on the outlines.

Syntax smartblur=luma_r:luma_s:luma_t[:chroma_r:chroma_s:chroma_t]
parameters in [] are optional, r = radius, p = power, t = threshold

Description of parameters

chroma_r chrominance (color) radius, a float number in the range from 0.1 to 5.0 that specifies the
variance of the Gaussian filter used to blur the image (slower if larger)

chroma_s chrominance strength, a float number in the range -1.0 to 1.0 that configures the blurring; a
value from 0.0 to 1.0 will blur the image, a value from -1.0 to 0.0 will sharpen the image

chroma_t chrominance treshold, an integer in the range from -30 to 30 that is used as a coefficient to
determine whether a pixel should be blurred or not; a value of 0 will filter all the image, a
value from 0 to 30 will filter flat areas and a value from -30 to 0 will filter edges

luma_r luminance (brightness) radius, a float number in the range from 0.1 to 5.0 that specifies the
variance of the Gaussian filter used to blur the image (slower if larger)

luma_s luminance strength, a float number in the range from -1.0 to 1.0 that configures the blurring;
a value from 0.0 to 1.0 will blur the image, a value from -1.0 to 0.0 will sharpen the image

luma_t luminance treshold, an integer in the range from -30 to 30 that is used as a coefficient to
determine whether a pixel should be blurred or not; a value of 0 will filter all the image, a
value from 0 to 30 will filter flat areas and a value from -30 to 0 will filter edges

If chroma parameters are not set, luma parameters are used also for the chrominance of the pixels.

For example, to improve a halftone picture we set the luma radius to maximum value 5, luminance strength
to 0.8 and luminance threshold to 0, so the whole image is blurred:

ffmpeg -i halftone.jpg -vf smartblur=5:0.8:0 blurred_halftone.png

8. Blur, Sharpen and Other Denoising

83

Sharpen video
To sharpen or blur the video frames we can use an unsharp filter described in the table.

Video filter: unsharp

Description Sharpens or blurs the input video according to the specified parameters.

Syntax l_msize_x:l_msize_y:l_amount:c_msize_x:c_msize_y:c_amount
all parameters are optional, if not set, the default is 5:5:1.0:5:5:0.0

Description of parameters

l_msize_x,
luma_msize_x

luma matrix horizontal size, integer between 3 and 13, default value is 5

l_msize_y,
luma_msize_y

luma matrix vertical size, integer between 3 and 13, default value is 5

l_amount,
luma_amount

luma effect strength, float number between -2.0 and 5.0, negative values create a
blur effect, the default value is 1.0

c_msize_x,
chroma_msize_x

chroma matrix horizontal size, integer between 3 and 13, default value is 5

c_msize_y,
chroma_msize_y

chroma matrix vertical size, integer between 3 and 13, default value is 5

c_amount,
chroma_amount

chroma effect strength, float number between -2.0 and 5.0, negative values create a
blur effect, the default value is 0.0

The sharpen filter can be used as a common unsharp mask and a Gaussian blur. For example to sharpen the
input with default values we can use the command

ffmpeg -i input -vf unsharp output.mp4

The output will be sharpen with a luma matrix of the size 5x5 and the luma effect strength of 1.0. To create
a Gaussian blur effect, we can use a negative number for the luma and/or chroma value, for example

ffmpeg -i input -vf unsharp=6:6:-2 output.mp4

The next complex image illustrates the usage of the unsharp filter with the values:
image 1: input, the transit of the planet Venus over the Sun on 5th June 2012 recorded by NASA, the

video can be downloaded from the NASA website
image 2: -vf unsharp (no parameters, the default values are used)

Black dots are more evident, no visible artifacts.
image 3: -vf unsharp=6:6:3 (relatively strong sharpen effect)

Black dots evident even more, but visible is a slight distortion.
image 4: -vf unsharp=6:6:-2 (relatively strong blur effect)

Negative value -2 of the luma amount parameter blurs the result and around Venus was created a
fictive ring.

8. Blur, Sharpen and Other Denoising

84

Noise reduction with denoise3d
Video filter denoise3d reduces the noise, it is a part of the mp filter (from MPlayer project).

Video filter: denoise3d (part of mp filter)

Description Produces better quality smooth video frames and also tries to enhance compressibility.

Syntax mp=denoise3d[=luma_spatial[:chroma_spatial[:luma_tmp[:chroma_tmp]]]]
(all parameters are optional)

Description of parameters

luma_spatial spatial luma strength, a non-negative float number, default value is 4.0

chroma_spatial spatial chroma strength, a non-negative float number, the default value is 3.0

luma_tmp temporal luma strength, a non-negative float number, the default value is 6.0

chroma_tmp temporal chroma strength, a non-negative float number, the default value is
luma_tmp*chroma_spatial/luma_spatial

For example to enhance the input with the default values of the denoise3d filter we can use the command

ffmpeg -i input.mpg -vf mp=denoise3d output.webm

8. Blur, Sharpen and Other Denoising

85

The image illustrates an enhanced archived video from the NASA Apollo project using denoise3d filter
default values.

Noise reduction with hqdn3d
Advanced version of the denoise3d filter is a hqdn3d filter, which is already in the libavfilter library and is
a native FFmpeg filter. The name of the filter is an abbreviation of high quality denoise 3-dimensional
filter and it is described in the table:

Video filter: hqdn3d

Description Produces high quality smooth video frames and also tries to enhance compressibility, it is an
enhanced version of the denoise3d filter.

Syntax hqdn3d=[luma_spatial[:chroma_spatial[:luma_tmp[:chroma_tmp]]]]
Description of parameters

luma_spatial spatial luma strength, a non-negative float number, default value is 4.0

chroma_spatial spatial chroma strength, a non-negative float number, the default value is
3.0*luma_spatial/4.0

luma_tmp temporal luma strength, a non-negative float number, the default value is
6.0*luma_spatial/4.0

chroma_tmp temporal chroma strength, a non-negative float number, the default value is
luma_tmp*chroma_spatial/luma_spatial

For example, to reduce a noise in the video input with the default hqdn3d values, we can use the command:

ffmpeg -i input.avi -vf hqdn3d output.mp4

The next image illustrates the usage of hqdn3d filter with various values.

8. Blur, Sharpen and Other Denoising

86

Noise reduction with nr option
Additional way how to reduce the noise in the video input is a -nr (noise reduction) option. Its value is an
integer from 0 to 100000, where 0 is the default value and the range 1 - 600 is useful for the common
content. If the video contains intensive noise, try to use higher values. Because this option uses much less
computer resources than the denoise3d and hqdn3d filters, it is a preferred way of denoising when the
speed is important. For example on an older computer we can improve the watching of a slightly noised
video with the command:

ffplay -i input.avi -nr 500

9. Overlay - Picture in Picture
The overlay video technique is used very often, common example are logos of TV channels placed on TV
screen, usually in the top-right corner, to identify particular channel. Another example is a Picture-in-
picture feature, that enables to display a small window usually in one of the corners of the main screen.
Small window contains selected TV channel or other content, while watching the program on the main
screen - this is useful when waiting for a certain content, to skip an advertisement, etc.
This chapter contains only simple overlay instances, more complex examples are in the chapters Color
Corrections, Advanced Techniques, etc.

Introduction to overlay
Video overlay is a technique that displays a foreground video or image on the (usually bigger) background
video or image. We can use an overlay video filter that is described in the table:

Video filter: overlay

Description Overlays the second input on the first one in a specified location.

Syntax overlay[=x:y[[:rgb={0, 1}]]
parameters x and y are optional, their default value is 0

rgb parameter is optional, its value is 0 or 1

Description of parameters

x horizontal coordinate from a top-left corner, default value is 0

y vertical coordinate from a top-left corner, default value is 0

rgb rgb=0 ... color spaces of inputs do not change, the default value
rgb=1 ... color spaces of inputs are set to RGB

Variables, that can be used in expressions for x and y

main_w or W main input width

main_h or H main input height

overlay_w or w overlay input width

overlay_h or h overlay input height

Command structure for overlay
The structure of the command for video overlay is below, input1 is the video background and input2 is the
foreground:

ffmpeg -i input1 -i input2 -filter_complex overlay=x:y output

Please note that instead of -vf options is used -filter_complex option, because now there are 2 input
sources (usually video files or images). But using a filtergraph with the link labels, we can utilize a movie
video source, that will include the second input and used is again only -vf option:
ffmpeg -i input1 -vf movie=input2[logo];[in][logo]overlay=x:y output

9. Overlay - Picture in Picture

88

Another options is to split one input to the several outputs and using the pad filter to create a background
with bigger size. This background is used in the filterchain as the first input for overlay filter, this method
was described already in the first chapter, section Filters, filterchains and filtergraphs.

Logo in one of corners
To keep the content visible, logo is often placed in one of four corners on the screen. The next 4 examples
use the pair.mp4 video as the first input that contains a wedding pair and the second input is a red heart
containing the text M+P (for example, Mary and Peter). The video resolution is 1280x720 pixels and the
logo size is 150x140 pixels, but we do not need this sizes to calculate the logo position. The proper location
of the logo's top-left corner (x and y coordinate) is derived from the width and height values of the
background and foreground:
W, H - width and height of background (video)
w, h - width and height of foreground (logo)

9. Overlay - Picture in Picture

89

Logo in top-left corner
ffmpeg -i pair.mp4 -i logo.png -filter_complex overlay pair1.mp4

Logo in top-right corner
ffmpeg -i pair.mp4 -i logo.png -filter_complex overlay=W-w pair2.mp4

Logo in bottom-right corner
ffmpeg -i pair.mp4 -i logo.png -filter_complex overlay=W-w:H-h pair3.mp4

9. Overlay - Picture in Picture

90

Logo in bottom-left corner

ffmpeg -i pair.mp4 -i logo.png -filter_complex overlay=0:H-h pair4.mp4

Logo shows in specified moment
In some cases, for example when video includes a special introduction, the logo (or other source to overlay)
can be added after a time interval with an -itsoffset option. For example, to include a red logo on the blue
background after 5 seconds from the start, we can use the command:

ffmpeg -i video_with_timer.mp4 -itsoffset 5 -i logo.png ^
-filter_complex overlay timer_with_logo.mp4

It is important to enter -itsoffset option directly before the second input, else the overlay effect will start
from the beginning of the output. More examples for -itsoffset option are in the chapter Time Operations.
Other method to delay the logo is to use the movie filter described in the chapter Advanced Techniques.

9. Overlay - Picture in Picture

91

Video with timer
This example uses a public domain NASA video from 1973, where Apollo 17 starts from the Moon surface
to its orbit. Video duration is 29.93 seconds and has 512x384 pixels resolution. We utilize the 2-digit timer
like in the chapter Cropping Video using the next command to crop the digits from the testsrc source:

ffmpeg -f lavfi -i testsrc -vf crop=61:52:224:94 -t 30 timer.ogg

Now we have a small video of 61x52 pixels size showing the timer from 0 to 30 seconds. This video will
be overlaid on the Apollo 17 Moon Start video in the top-right corner with the command:

ffmpeg -i start.mp4 -i timer.ogg -filter_complex overlay=451 startl.mp4

The x-coordinate of the timer is 512 - 61 = 451 and the y-coordinate is 0.

The next command scales the timer to one half and places it bottom-center:

ffmpeg -i start.mp4 -vf movie=timer.ogg,scale=15:14[tm];^
[in][tm]overlay=248:371 overlay.mp4

9. Overlay - Picture in Picture

92

Now the timer is almost invisible. We used a named label [tm] for the scale filter output pad in order to put
the resized timer as the second input to the overlay filter, the first input was the file start.mp4 denoted by
the default [in] named label.

Other overlay examples
Overlay technique is used in additional examples:

chapter FFmpeg Fundamentals, section Filters, filterchains and filtergraphs
chapter Image Processing, section Flipping, rotating and overlaying images
chapter Microphone and Webcam, section Using two webcams
chapter Color Corrections:

section Comparison in 2 windows
section Comparison in 3 windows
section Brightness correction in 2 and 3 windows
section Comparison in 4 windows

chapter Advanced Techniques, section Additional media input to filtergraph

10. Adding Text on Video
The textual data included on the video can significantly improve its information quality.

Introduction to adding text on video
Two common methods how to include some text to the video output is to use subtitles or the overlay
technique from the previous chapter. The most advanced option with many possibilities is to use a
drawtext filter described in the table:

Video filter: drawtext

Description Adds text on the video from a textfile or string, modified with various parameters. Text
is loaded from a file specified by the textfile parameter or entered directly with the text
parameter. Other mandatory parameter is a fontfile that specifies selected font. Text
position is set by x and y parameters.

Syntax drawtext=fontfile=font_f:text=text1[:p3=v3[:p4=v4[...]]]
p3, p4 ... means parameter #3, parameter #4, etc.

Description of parameters

box if box=1, draws a box around the text, color is set by boxcolor parameter, default is 0

boxcolor color for the box parameter, color name or 0xRRGGBB[AA] format (see the section
Color names in the Chapter 1 for details), default value is white

draw expression which specifies if the text should be drawn
If the expression evaluates to 0, the text is not drawn, default is "1". It is used to specify
that the text will be drawn only in specific conditions. Accepted variables and functions
are described on the next page and in the chapter Built-in Mathematical Functions.

fix_bounds if true, text coordinates are fixed to avoid clipping

fontcolor color for drawing fonts, color name or 0xRRGGBB[AA] format, default is black

fontfile font file to be used for drawing text with proper path, mandatory parameter

fontsize font size of the text to draw, the default value is 16

ft_load_flags flags to be used for loading the fonts, default value is "render"; more information is in
the documentation for the FT_LOAD_* libfreetype flags

shadowcolor color for drawing a shadow behind the drawn text, color name or 0xRRGGBB[AA]
format possibly followed by an alpha specifier, the default value is black

shadowx,
shadowy

x and y offsets for the text shadow position with respect to the position of the text, they
can be either positive or negative values, the default value for both is "0"

tabsize size in number of spaces to use for rendering the tab, the default value is 4

timecode initial timecode representation in hh:mm:ss[:;.]ff format, it can be used with or without
text parameter, but the timecode_rate parameter must be specified

timecode_rate,
rate, r

timecode frame rate (timecode only)

text text string to be drawn, it must be a sequence of UTF-8 encoded characters, this
parameter is mandatory if the textfile parameter is not specified

10. Adding Text on Video

94

Description of parameters (cont. from previous page)

textfile text file with the text to be drawn, the text must be a sequence of UTF-8 encoded
characters; this parameter is mandatory if the text parameter is not used; if both text and
textfile parameters are specified, an error message is displayed

x, y x and y values are expressions which specify the offsets where the text will be drawn
within the video frame; they are relative to the top-left corner and the default value of x
and y is "0"; accepted variables and functions are described below

Accepted variables and functions in expressions for x and y parameters

dar input display aspect ratio, it is the same as (w / h) * sar

hsub, vsub horizontal and vertical chroma subsample values. For example for the pixel format
"yuv422p" hsub is 2 and vsub is 1

line_h, lh height of each text line

main_h, h, H input height

main_w, w, W input width

max_glyph_a,
ascent

maximum distance from the baseline to the highest/upper grid coordinate used to place
a glyph outline point, for all the rendered glyphs; a positive value, due to the grid

max_glyph_d,
descent

maximum distance from the baseline to the lowest grid coordinate used to place a glyph
outline point, for all the rendered glyphs; a negative value, due to the grid

max_glyph_h maximum glyph height, that is the maximum height for all the glyphs contained in the
rendered text, it is equivalent to ascent - descent.

max_glyph_w maximum glyph width, that is the maximum width for all the glyphs contained in the
rendered text

n number of input frame, starting from 0

rand(min, max) returns a random number included between min and max values

sar input sample aspect ratio

t timestamp expressed in seconds, NAN if the input timestamp is unknown

text_h or th height of the rendered text

text_w or tw width of the rendered text

x, y x and y coordinates, where the text is drawn, these parameters allow the x and y
expressions to refer each other, so you can for example specify y=x/dar

For example, to draw a Welcome message (located in the top-left corner by default) with an Arial font in a
black color on a white background, we can use the command (characters are typed on 1 line):

ffplay -f lavfi -i color=c=white ^
-vf drawtext=fontfile=/Windows/Fonts/arial.ttf:text=Welcome

On Linux the TTF fonts are located in the folder "/usr/share/fonts/TTF". The result is on the picture.

10. Adding Text on Video

95

If the path to the font file is difficult to specify, the font file (for example arial.ttf) can be copied to the
current directory, so the previous command can be simplified to the form:

ffplay -f lavfi -i color=c=white -vf drawtext=fontfile=arial.ttf:text=Welcome

To use this example with ffmpeg, omit "-f lavfi -i color=c=white" and include an input and output file:

ffmpeg -i input -vf drawtext=fontfile=arial.ttf:text=Welcome output

To focus on other parameters, the following examples will specify the font file as located in the current
directory, you can include the path according to the actual font file location.

Text positioning
The text location is set with x and y parameters specified to wanted values, which are mathematical
expressions that can contain variables and the special rand() function described on the previous page.
Horizontal location setting
The horizontal text placement is managed by setting the x coordinate to wanted value, for example to place
text 40 pixels from the left we use x=40. The expression x=(w-tw)/2 locates the text to the center, where tw
is a text width and w is a frame width. To align the text to the right, we use the expression x=w-tw.
Vertical location setting
The setting of the y coordinate determines the horizontal text location, for example to locate the text 50
pixels from the top we use y=50. The expression y=(h-th)/2 positions the text to the center, where th is a
text height and h is a frame height. For alignment to the bottom, we use the expression x=h-th.

The next example positions the text in a center of the video frame, please note, that text containing spaces
or tabs must be enclosed in quotes and sometimes the ffmpeg engine requires to quote also all drawtext
parameters, so the next command uses double quotes for all parameters and single quotes for the text
parameter (single and double quotes can be exchanged, but cannot be mixed):

ffplay -f lavfi -i color=c=white -vf ^
drawtext="fontfile=arial.ttf:text='Good day':x=(w-tw)/2:y=(h-th)/2"

10. Adding Text on Video

96

Font size and color setting
To make the text more visible and interesting, a colored text with a bigger font than the default 16 pixels is
used. With additional parameters fontcolor and fontsize we can modify the previous example to the
centered green text "Happy Holidays" with a 30-pixel font size:

ffplay -f lavfi -i color=c=white -vf drawtext=^
"fontfile=arial.ttf:text='Happy Holidays':x=(w-tw)/2:y=(h-th)/2:^
fontcolor=green:fontsize=30"

To change a foreground-background colors from green-white to yellow-blue, we replace the white with a
blue value and the green with a yellow value, the fontsize value is increased to 40:

ffplay -f lavfi -i color=c=blue -vf drawtext=^
"fontfile=arial.ttf:text='Happy Holidays':x=(w-tw)/2:y=(h-th)/2:^
fontcolor=yellow:fontsize=40"

The color can be specified also in HTML format, for example red=#ff0000, green=#00ff00, etc.

10. Adding Text on Video

97

Dynamic text
The t (time) variable representing the time in seconds enables to change x and y values according to the
current time.
Horizontal text movement
To move the text horizontally across the video frame, we include the t variable to the expression for the x
parameter, for instance to move provided text every second by n pixels in a right-to-left direction, we use
an expression x=w-t*n. To change the movement to the left-to-right direction, x=w+t*n expression is used.
For example, to show "Dynamic RTL text" string moving at the top, we use the command

ffmpeg -f lavfi -i color=c=#abcdef -vf drawtext=^
"fontfile=arial.ttf:text='Dynamic RTL text':x=w-t*50:^
fontcolor=darkorange:fontsize=30" output

More common use is to scroll a line of text near the bottom, where the text is located in a text file that
contains only one very long line. The next example uses the textfile parameter with a value info.txt:

ffmpeg -f lavfi -i color=c=orange -vf drawtext="fontfile=arial.ttf:^
textfile=info.txt:x=w-t*50:y=h-th:fontcolor=blue:fontsize=30" output

10. Adding Text on Video

98

The content of the info.txt file follows and below it is a picture of scrolling taken at t=5 s.

This is a text added to the orange background with a drawtext filter using an
Arial font with a 30 pixels font size.

Vertical text movement
Text scrolling vertically from the bottom to the top is often used at the end of the video to show the name
of the producer, actors, date, etc. To move the text vertically, the t variable is included to the expression for
the y parameter, for instance to move provided text every second by n pixels from top to bottom, we use an
expression y=t*n. To scroll from bottom to top, y=h-t*n expression is used. The next command shows the
content of the Credits file moving from bottom up with the speed 100 pixels per second. The content of the
Credits file including the spaces at the line beginning is:

Production: FFmpeg User
Date: December 2012
Filter: drawtext

ffmpeg -i palms.avi -vf drawtext="fontfile=arial.ttf:textfile=Credits:^
x=(w-tw)/2:y=h-t*100:fontcolor=white:fontsize=30" clip.mp4

11. Conversion Between Formats
The most common usage of ffmpeg tool is related to the conversion from one audio or video format to
another. The format parameter is set by -f option before the output file or with a raw input also before the
input file, available formats are listed in the chapter Displaying Help and Features.

Introduction to media formats
File formats
Media formats are special file types able to store audio or video data. Some of them are able to store more
types of data with multiple streams and these are called containers. Available media formats are listed in
the second chapter and can be displayed with the command ffmpeg -formats.
Video file formats can usually contain both video and audio streams, but there are special formats, that can
contain audio only and are described in the chapter Digital Audio.

Media containers
Media containers are a particular type of wrapper files, special file formats for storing multimedia streams
and related metadata. Because audio and video can be encoded and decoded by various methods
(algorithms), containers provide easy way to store various media streams in one file. Some containers are
able to store only audio (AIFF, WAV, XMF...), some only pictures (TIFF...), but most containers store
audio, video, subtitles, metadata, etc. All listed video containers support also some subtitle formats,
especially SubRip and Advanced SubStation Alpha.

Characteristics of common media containers

Container

Support for particular file format

Audio Video

AAC AC-3 MP3 PCM WMA MPEG1
MPEG2

MPEG4 H.264/
MPEG4 AVC

VC1
WMV

Theora

AVI Y Y Y Y Y Y Y partially Y Y

Matroska Y Y Y Y Y Y Y Y Y Y

MP4 Y Y Y N Y Y Y Y Y N

MXF Y Y Y Y N Y Y Y Y N

Ogg/OGM N N Y Y N Y Y Y Y Y

QuickTime Y Y Y Y Y Y Y Y Y Y

If only container changes and the codec remains, we can use -c copy or -c:a copy or -c:v copy options:

ffmpeg -i input.avi -q 1 -c copy output.mov

Transcoding and conversion
The processing of input files with ffmpeg to the output is called a transcoding and it can include conversion
between formats or transcoding only modifies certain data and the output media format remains the same.
Data packets can be encoded compressed or uncompressed, the compression includes the use of a specific
codec. The transcoding process can be divided to several parts:

11. Conversion Between Formats

100

demuxing (demultiplexing) - based on the file extension (.avi, mpg, etc.) is selected the best demux
(demultiplexer) from libavformat library that from input file(s) produces encoded data packets
decoding - data packets are decoded by an appropriate decoder that produces uncompressed frames; if
-c copy (or -codec copy) option is used, no decoding (also no filtering) occurs
optional filtering - decoded frames can be modified by specified filter(s)
encoding - uncompressed frames are encoded to the data packets by the selected encoder
muxing (multiplexing) - data packets are muxed (multiplexed) to the selected media format.

Available options for the conversion in ffmpeg are divided to generic and private. Generic options can be
set for any container, codec or device, private options are specific for selected codec, container or device.

Introduction to codecs
The name codec is derived from words coder-decoder (or encoder-decoder) and denotes a device or
software tool for encoding and decoding a video or audio stream that is compressed with some algorithm.
FFmpeg codec definition is a media bitstream format. The next commands display available codecs:

ffmpeg -codecs ... displayed are all decoders and encoders
ffmpeg -decoders ... displayed are decoders only
ffmpeg -encoders ... displayed are encoders only

11. Conversion Between Formats

101

The codec on the command line is specified by -c or -codec option, the syntax is

-codec[:stream_specifier] codec_name

Codec can be specified for the input and output files, if the output contains multiple streams, each stream
can use a different codec. If we specify the output format without a codec, ffmpeg selects the default one,
list of default codecs for the common media formats is in the table:

Default codecs (encoders) for common video file extensions (file formats)

extension codec Additional data

.avi mpeg4 mpeg4 (Simple profile), yuv420p; audio: mp3

.flv flv1 yuv420p; audio: mp3

.mkv h264 h264 (High), yuvj420p; audio: vorbis codec, fltp sample format

.mov h264 h264 (High), yuvj420p; audio: aac (mp4a)

.mp4 h264 h264 (High), yuvj420p; audio: aac (mp4a)

.mpg mpeg1video yuv420p; audio: mp2

.ogg theora yuv422p, bitrate very low; audio excluded during conversion

.ts mpeg2video yuv422p; audio: mp2

.webm vp8 yuv420p; audio: vorbis codec, fltp sample format

Default codecs (encoders) for common audio file extensions (file formats)

extension codec Additional data

.aac aac libvo_aacenc, bitrate 128 kb/s

.flac flac FLAC (Free Lossless Audio Codec), bitrate 128 kb/s

.m4a aac mp4a, bitrate 128 kb/s

.mp2 mp2 MPEG Audio Layer 2, bitrate 128 kb/s

.mp3 mp3 libmp3lame, bitrate 128 kb/s

.wav pcm_s16le PCM (Pulse Code Modulation), uncompressed

.wma wmav2 Windows Media Audio

Overwriting same named output files
If the file with the specified name in ffmpeg command already exists, the console asks for "y" (yes) or "n"
(no) to overwrite the old file. To avoid this question, -n option can be used to cancel processing and -y
option is used to set the overwriting without asking. For example to overwrite the old output file by default
we can use the command:

ffmpeg -y -i input.avi output.mp4

11. Conversion Between Formats

102

Generic options for conversion
Generic options can be set for any codec, container or device. The most common generic options included
in the conversion related to the encoder (codec) specification are described in the table, the target column
contains 5-letter code that limits the use of particular options. The presence of certain letter means that this
option is applicable to encoding (E), decoding (D), video (V), audio (A) or subtitles (S).

Common generic options for trancoding

option type target Description
-flags flags EDVAS values (details in ffmpeg help): mv4, qpel, loop, gmc, mv0, gray, psnr, naq, ildct,

low_delay, global_header, bitexact, aic, cbp, qprd, ilme, cgop

-me_method int E..V.. values (please see ffmpeg help for details): zero, full, epzs, esa, tesa, dia, log,
phods, x1, hex, umh, iter

-g int E..V.. set the group of picture size

-qcomp float E..V.. video quantizer scale compression (VBR). Constant of ratecontrol equation.
Recommended range for default rc_eq: 0.0-1.0

-qblur float E..V.. video quantizer scale blur (VBR)

-qmin int E..V.. min video quantizer scale (VBR)

-qmax int E..V.. max video quantizer scale (VBR)

-qdiff int E..V.. max difference between the quantizer scale (VBR)

-bf int E..V.. use 'frames' B frames

-b_qfactor float E..V.. qp factor between p and b frames

-rc_strategy int E..V.. ratecontrol method

-b_strategy int E..V.. strategy to choose between I/P/B-frames

-ps int E..V.. rtp payload size in bytes

-lelim int E..V.. single coefficient elimination threshold for luminance (negative values also
consider dc coefficient)

-celim int E..V.. single coefficient elimination threshold for chrominance (negative values also
consider dc coefficient)

-strict int ED.VA. how strictly to follow the standards, values (please see ffmpeg help for details):
very, strict, normal, unofficial, experimental

-b_qoffset float E..V.. qp offset between P and B frames

-err_detect flags .D.VA. set error detection flags, values are (please see ffmpeg help for details): crccheck,
bitstream, buffer, explode, careful, compliant, aggressive

-mpeg_quant int E..V.. use MPEG quantizers instead of H.263

-qsquish float E..V.. how to keep quantizer between qmin - qmax (0=clip, 1=use differentiable function)

-rc_qmod_amp float E..V.. experimental quantizer modulation

-rc_qmod_freq int E..V.. experimental quantizer modulation

11. Conversion Between Formats

103

-rc_eq string E..V.. Set rate control equation. When computing the expression, besides the standard
functions defined in the chapter Mathematical Functions, the following functions
are available: bits2qp(bits), qp2bits(qp). Also the following constants are
available: iTex pTex tex mv fCode iCount mcVar var isI isP isB avgQP qComp
avgIITex avgPITex avgPPTex avgBPTex avgTex.

-i_qfactor float E..V.. qp factor between P and I frames

-i_qoffset float E..V.. qp offset between P and I frames

-rc_init_cplx float E..V.. initial complexity for 1-pass encoding

-dct int E..V.. DCT algorithm, values are (please see ffmpeg help for details): auto, fastint, int,
mmx, altivec, faan

-lumi_mask float E..V.. compresses bright areas stronger than medium ones

-tcplx_mask float E..V.. temporal complexity masking

-scplx_mask float E..V.. spatial complexity masking

-p_mask float E..V.. inter masking

-dark_mask float E..V.. compresses dark areas stronger than medium ones

-idct int ED.V.. select IDCT implementation, values are (please see ffmpeg help for details):
auto, int, simple, simplemmx, libmpeg2mmx, mmi, arm, altivec, sh4, simplearm,
simplearmv5te, simplearmv6, simpleneon, simplealpha, h264, vp3, ipp,
xvidmmx, faani

-ec flags .D.V.. set error concealment strategy, values: guess_mvs (iterative motion vector (MV)
search (slow)), deblock (.D.V.. use strong deblock filter for damaged MBs)

-pred int E..V.. prediction method, values are (more in ffmpeg help): left, plane, median

-vismv int .D.V.. visualize motion vectors (MVs), values are (more in ffmpeg help): pf, bf, bb

-cmp int E..V.. full pel me compare function, values (more in ffmpeg help): sad, sse, satd, dct,
psnr, bit, rd, zero, vsad, vsse, nsse, w53, w97, dctmax, chroma

-subcmp int E..V.. sub pel me compare function, values as in -cmp option (more in ffmpeg help)

-mbcmp int E..V.. macroblock compare function, values as in -cmp option (more in ffmpeg help)

-ildctcmp int E..V.. interlaced dct compare function, values as in -cmp option (more in ffmpeg help)

-dia_size int E..V.. diamond type & size for motion estimation

-last_pred int E..V.. amount of motion predictors from the previous frame

-preme int E..V.. pre motion estimation

-precmp int E..V.. pre motion estimation compare function, values as in -cmp option (more in help)

-pre_dia_size int E..V.. diamond type & size for motion estimation pre-pass

-subq int E..V.. sub pel motion estimation quality

-me_range int E..V.. limit motion vectors range (1023 for DivX player)

-ibias int E..V.. intra quant bias

-pbias int E..V.. inter quant bias

11. Conversion Between Formats

104

-coder int E..V.. values: vlc (variable length/huffman coder), ac (arithmetic), raw (no encoding),
rle (run-length), deflate (deflate-based)

-context int E..V.. context model

-mbd int E..V.. macroblock decision algorithm (high quality mode), values are (please see
ffmpeg help for details): simple, bits, rd

-sc_threshold int E..V.. scene change threshold

-lmin int E..V.. min lagrange factor (VBR)

-lmax int E..V.. max lagrange factor (VBR)

-flags2 flags ED.VA values (more in ffmpeg help): fast, sgop, noout, local_header, chunks, showall,
skiprd

-threads int ED.V.. value auto (detect a good number of threads)

-dc int E..V.. intra_dc_precision

-nssew int E..V.. nsse weight

-skip_top int .D.V.. number of macroblock rows at the top which are skipped

-skip_bottom int .D.V.. number of macroblock rows at the bottom which are skipped

-profile int E..VA. values (more in ffmpeg help): unknown, aac_main, aac_low, aac_ssr, aac_ltp,
aac_he, aac_he_v2, aac_ld, aac_eld, dts, dts_es, dts_96_24, dts_hd_hra,
dts_hd_ma

-level int E..VA. value: unknown

-lowres int .D.VA. decode at 1= 1/2, 2=1/4, 3=1/8 resolutions

-skip_factor int E..V.. frame skip factor

-skip_exp int E..V.. frame skip exponent

-skipcmp int E..V.. frame skip compare function, same values as in -cmp option (more in help)

-border_mask float E..V.. increases the quantizer for macroblocks close to borders

-mblmin int E..V.. min macroblock lagrange factor (VBR)

-mblmax int E..V.. max macroblock lagrange factor (VBR)

-mepc int E..V.. motion estimation bitrate penalty compensation (1.0 = 256)

-skip_loop_filter int .D.V.. values (more in ffmpeg help): none, default, noref, bidir, nokey, all

-skip_idct int .D.V.. the same values as in -skip_loop option (more in ffmpeg help)

-skip_frame int .D.V.. the same values as in -skip_loop option (more in ffmpeg help)

-bidir_refine int E..V.. refine the two motion vectors used in bidirectional macroblocks

-brd_scale int E..V.. downscales frames for dynamic B-frame decision

-keyint_min int E..V.. minimum interval between IDR-frames

-refs int E..V.. reference frames to consider for motion compensation

-chromaoffset int E..V.. chroma qp offset from luma

-trellis int E..VA. rate-distortion optimal quantization

11. Conversion Between Formats

105

-sc_factor int E..V.. multiplied by qscale for each frame and added to scene_change_score

-b_sensitivity int E..V.. adjusts sensitivity of b_frame_strategy 1

-colorspace int ED.V.. name of color space

-slices int E..V.. number of slices, used in parallelized encoding

-thread_type flags ED.V.. select multithreading type, values: slice, frame

-rc_init_occupancy int E..V.. number of bits to be loaded into the rc buffer before decoding starts

-me_threshold int E..V.. motion estimation threshold

-mb_threshold int E..V.. macroblock threshold

-skip_threshold int E..V.. frame skip threshold

-timecode_frame_start int64 E..V.. GOP timecode frame start number, in non drop frame format

-request_channels int .D..A. set desired number of audio channels

-channel_layout int64 ED..A. available values: ffmpeg -layouts

-audio_service_type int E...A. audio service type, values (more in help): ma, ef, vi, hi, di, co, em, vo, ka

-request_sample_fmt s_fmt .D..A. sample format audio decoders should use (list: ffmpeg -sample_fmts)

Examples how to use some options are in the chapter Presets for Codecs. To keep the same quality of the
output we use a -q or -qscale[:stream_specifier] option that sets the fixed quality scale usually from 1 to
31, where the value 1 means the highest quality (some codecs use other scale).

Private options for conversion
While generic options can be set for any codec, container or device, private options are additional options
that can be specified only for the selected codec, container or device.
MPEG-1 video encoder
Beside the generic options mpeg1video encoder can use the private options described in the table:

option type description
-gop_timecode string MPEG GOP Timecode in hh:mm:ss[:;.]ff format

-intra_vlc int Use MPEG-2 intra VLC table.

-drop_frame_timecode int Timecode is in drop frame format.

-scan_offset int Reserve space for SVCD scan offset user data.

-mpv_flags flags Flags common for all mpegvideo-based encoders, values are (more in ffmpeg
help): skip_rd, strict_gop, qp_rd, cbp_rd

-luma_elim_threshold int single coefficient elimination threshold for luminance (negative values also
consider dc coefficient)

-chroma_elim_threshold int single coefficient elimination threshold for chrominance (negative values also
consider dc coefficient)

-quantizer_noise_shaping int

11. Conversion Between Formats

106

MPEG-2 video encoder
The mpeg2video encoder can use all options of mpeg1video encoder and 2 additional options:

option type Description

-non_linear_quant int Use nonlinear quantizer.

-alternate_scan int Enable alternate scan table.

MPEG-4 video encoder
The mpeg4 encoder includes the next options described in the previous 2 tables:

data_partioning
alternate_scan
mpv_flags
luma_elim_threshold
chroma_elim_threshold
quantizer_noise_shaping

libvpx video encoder
The libvpx encoder is used for example by the WEBM format and includes the next options:

option type description
-cpu-used int Quality/Speed ratio modifier
-auto-alt-ref int Enable use of alternate reference frames (2-pass only)
-lag-in-frames int Number of frames to look ahead for alternate reference frame selection
-arnr-maxframes int altref noise reduction max frame count
-arnr-strength int altref noise reduction filter strength
-arnr-type int altref noise reduction filter type, values are: backward, forward, centered
-deadline int Time to spend encoding, in microseconds, values are: best, good, realtime
-error-resilient flags Error resilience configuration: values (more in ffmpeg help): default, partitions
-max-intra-rate int Maximum I-frame bitrate (pct) 0=unlimited
-speed int
-quality int values are: best, good, realtime
-vp8flags flags values are (more in ffmpeg help): error_resilient, altref
-arnr_max_frames int altref noise reduction max frame count
-arnr_strength int altref noise reduction filter strength
-arnr_type int altref noise reduction filter type
-rc_lookahead int Number of frames to look ahead for alternate reference frame selection
-crf int Select the quality for constant quality mode

11. Conversion Between Formats

107

AC-3 audio encoder
The ac3 audio encoder can use additional options described in the table:

Audio codec: AC-3
Option Value type Description

per_frame_metadata integer allow changing metadata per-frame
center_mixlev float center mix level
surround_mixlev float surround mix level
mixing_level integer mixing level
room_type integer room type, values are: notindicated, large, small
copyright integer copyright bit
dialnorm integer dialogue level (dB)
dsur_mode integer Dolby Surround mode, values: notindicated, on, off
original integer original bit stream
dmix_mode integer preferred stereo downmix mode, values: notindicated
ltrt_cmixlev float lt/rt center mix level
ltrt_surmixlev float lt/rt surround mix level
loro_cmixlev float lo/ro center mix level
loro_surmixlev float lo/ro surround mix level
dsurex_mode integer Dolby Surround EX mode, values: notindicated, on, off
dheadphone_mode integer Dolby Headphone Mode, values: notindicated, on, off
ad_conv_type integer A/D Converter type, values: standard (default), hdcd
stereo_rematrixing integer stereo rematrixing
channel_coupling integer channel coupling, value: auto
cpl_start_band integer coupling start band, value: auto

Simplified encoding of VCD, SVCD, DVD, DV and DV50
A special -target option enables to use only one option instead of a large set of options needed for certain
media types (VCD=Video CD, SVCD=Super Video CD, DV=Digital Video, etc.), available values are:

vcd, pal-vcd, ntsc-vcd, film-vcd
svcd, pal-svcd, ntsc-svcd, film-svcd
dvd, pal-dvd, ntsc-dvd, film-dvd
dv, pal-dv, ntsc-dv, film-dv
dv50, pal-dv50, ntsc-dv50, film-dv50

All needed parameters like frame rate, aspect ratio, bitrate etc. are set according to specification of
particular media format. For example to encode the video for DVD we can use the command :

ffmpeg -i input.avi -target dvd output.mpg

12. Time Operations
Multimedia processing includes changing the input duration, setting a delay, selecting only certain parts
from the input, etc. These time operations accept the time specification in 2 formats:

[-]HH:MM:SS[.m...]
[-]S+[.m...]

where HH is number of hours, MM is number of minutes, SS or S is number of seconds and m is number
of milliseconds.

Duration of audio and video
Setting with -t option
To set the duration of a media file, we can use the -t option which value is a time in seconds or in a format
HH:MM:SS.milliseconds. For example to set a 3 minutes duration for the music.mp3 file, we can use the
command

ffmpeg -i music.mp3 -t 180 music_3_minutes.mp3

Setting with number of frames
In certain cases it may be useful to set the duration of recording by specifying the number of frames with
available options:

audio: -aframes number or -frames:a number
data: -dframes number or -frames:d number
video: -vframes number or -frames:v number

The number of frames is equal to the duration in seconds multiplied by the frame rate. For instance, to set
the duration of a video.avi file with a 25 fps frame rate to 10 minutes (600 seconds), we can use the
command:

ffmpeg -i video.avi -vframes 15000 video_10_minutes.avi

Setting delay from start
To start recording of the input from specified time, we can use the -ss (seek from start) option, its value is
the time in seconds or in HH:MM:SS.milliseconds format. This option can be used both before input file
and output file, when used before output file, the encoding is more precise. For example to begin the
conversion from the 10th second, we can use the command:

ffmpeg -i input.avi -ss 10 output.mp4

Extracting specific part from media file
To clip specific part from an audio or video file, we use both -ss and -t options, ffplay displays current time
in the left bottom corner and the playback can be paused on/off with the Spacebar or a P key. For example
to save the 5th minute (4x60=240 seconds from the start) from the file video.mpg, we can use the command:

ffmpeg -i video.mpg -ss 240 -t 60 clip_5th_minute.mpg

12. Time Operations

109

Delay between input streams
There are commonly 2 cases, when one of the input streams should be delayed to the output, in both we use
the -itsoffset (input timestamp offset) option to create a delay and -map options to select particular
streams. Please note that containers like AVI, FLV, MOV, MP4, etc. have different headers and in certain
cases the itsoffset option does not work, then the slower stream can be saved to the file using -ss option and
both files can be merged to one like in the following example, where audio has 1 second delay:

ffmpeg -i input.avi -ss 1 audio.mp3
ffmpeg -i input.avi -i audio.mp3 -map 0:v -map 1:a video.mp4

One input file
The input file contains audio and video streams that are not synchronized, for example if the audio is 1.5
seconds in advance, we can delay the audio stream with the command:

ffmpeg -i input.mov -map 0:v -map 0:a -itsoffset 1.5 -c:a copy ^
-c:v copy output.mov

If the video is in advance, for example 5 seconds, we can delay it with the command:

ffmpeg -i input.mov -map 0:v -itsoffset 5 -map 0:a -c:a copy -c:v copy ^
output.mov

Two or more input files
The output is created from 2 files, and usually audio should start later than the video stream, then we
change the mapping parameters, for example to delay audio 3 seconds, we can use the command:

ffmpeg -i v.mpg -itsoffset 3 -i a.mp3 -map 0:v:0 -map 1:a:0 output.mp4

Limit for processing time
Sometimes it is useful to limit the period during which the ffmpeg command runs and -timelimit option
can be used to set this limit in seconds. For example to quit encoding after 10 minutes (600 seconds), we
can use the next command:

ffmpeg -i input.mpg -timelimit 600 output.mkv

Shortest stream determines encoding time
To set the overall output duration to the shortest input stream value, an -shortest option can be used to
finish encoding when processing of the shortest stream is ready. For example to join (to multiplex) files
video.avi and audio.mp3, where the audio file duration is less than video, we can use the next command
(without -shortest option the remaining audio stream will be substituted with the silence):

ffmpeg -i video.avi -i audio.mp3 -shortest output.mp4

12. Time Operations

110

Timestamp and time bases
To set a recording timestamp in the media container, we can use a -timestamp option, which value is a
time entered in a form:

now (current time)
date is specified as YYYY-MM-DD or YYYYMMDD, if not specified, the current date is used
time is specified as HH:MM:SS[.m...] or HHMMSS[.m...], decimal part of seconds is optional
before the time value can be an optional letter T or t
if Z or z is appended, the time is UTC, otherwise it is local

Examples of the timestamp: 2010-12-24T12:00:00, 20101224t120000z, 20101224120000
The console output from FFmpeg processing of a video stream contains information about stream
timebases that can look like the next example:

Stream #0:0, 1, 1/25: Video: mpeg4 (Simple Profile) (FMP4 / 0x34504D46),
yuv420p, 320x240 [SAR 1:1 DAR 4:3], 25 tbr, 25 tbn, 25 tbc

The abbreviations tbr, tbn and tbc denotes 3 different time bases for FFmpeg timestamps:

Time bases for timestamps in FFmpeg

Specification Console output contains for each video stream 3 time base values, where printed values are
reciprocals of real values, it means that printed are values of 1/tbc, 1/tbn and 1/tbr.

Description of time bases

tbc time base in AVCodecContext for the codec used for a given stream, it is used for all
AVCodecContext and related timestamps

tbn time base in AVStream coming from the container, it is used for all AVStream timestamps

tbr time base guessed (computed) from the video stream and equals to the frame rate value,
unless the input is interlaced, then it is doubled

Encoder timebase setting
To specify an encoder timebase for the stream copy, we can use the -copytb option which value mode has
3 possible integer values:

1 - demuxer timebase is used
timebase i copied from the corresponding input demuxer to the output encoder, it is sometimes needed
when copying video streams with variable frame rate (VBR) to avoid non monotonically increasing
timestamps
0 - decoder timebase is used
timestamp is copied from the corresponding input decoder to the output encoder
-1 - automatic choice for the best output, the default value

For example to select a demuxer timebase for the output, we can use the command:

ffmpeg -i input.mp4 -copytb 1 output.webm

12. Time Operations

111

Audio and video speed modifications
Video speed change
To change the speed of the video file, we can use the setpts (set presentation timestamp) filter described in
the table:

Video filter: setpts

Description Changes presentation timestamp (PTS) of input frames.

Syntax setpts=expression
Available variables in expression

FRAME_RATE frame rate, only defined for a video with a constant frame

INTERLACED tell if the current frame is interlaced

N count of the input frame, starting from 0

NB_CONSUMED_SAMPLES number of consumed samples, without the current frame (only audio)

NB_SAMPLES number of samples in the current frame (only audio)

POS original frame position in the file, or undefined if undefined for the
current frame

PREV_INT previous input time in seconds

PREV_INPTS previous input PTS

PREV_OUTPTS previous output PTS

PREV_OUTT previous output time in seconds

PTS presentation timestamp in input

SAMPLE_RATE audio sample rate

STARTPTS PTS of the first frame

STARTT time in seconds of the first frame

T time in seconds of the current frame

TB time base

Each video frame contains a header with a timestamp value, the difference between 2 frames in sequence is
1/fps, for instance if fps is 25, the difference is 0.04 second. To speed up the video this time difference
must be smaller and for a lower speed it must be bigger. For example, to watch the video 3-times faster, the
input timestamp is divided by 3 and the command is:

ffplay -i input.mpg -vf setpts=PTS/3

To watch the video in a 3/4 speed, the input timestamp is divided by 3/4 and we can use the command:

ffplay -i input.mpg -vf setpts=PTS/(3/4)

12. Time Operations

112

Audio speed change
To adjust the tempo of the audio, we can use the special atempo filter described in the table.

Audio filter: atempo

Description Changes audio tempo - the speed of the audio stream.

Syntax atempo[=tempo]
Description of parameter

tempo float number from the range 0.5 - 2.0, values less than 1.0 slows down and values over 1.0
speed up the tempo, the default value is 1.0

For example to hear the input audio with a 2-times faster speed, we can use the command:

ffplay -i speech.mp3 -af atempo=2

To hear this audio in a half tempo, we can use the atempo=0.5 setting and if the speed change is not
sufficient, the filter can be applied more times.

Synchronizing audio data with timestamps
To synchronize audio data with the timestamps we can use an asyncts audio filter described in the table:

Audio filter: asyncts

Description Synchronizes audio data with the timestamps by squeezing and dropping samples or by
stretching and adding silence when needed.

Syntax asyncts=parameters
Description of available parameters

compensate Enable stretching/squeezing the data to make it match the timestamps. Disabled by default.
When disabled, time gaps are covered with silence.

min_delta Minimum difference between timestamps and audio data (in seconds) to trigger
adding/dropping samples. Default value is 0.1. If you get non-perfect sync with this filter,
try setting this parameter to 0.

max_comp max. compensation in samples per second, relevant only if compensate=1, default value 500

first_cts Assume the first pts should be this value. This allows for padding/trimming at the start of
stream. By default, no assumption is made about the first frame’s expected pts, so no
padding or trimming is done. For example, this could be set to 0 to pad the beginning with
silence if an audio stream starts after the video stream.

For example to synchronize with timestamps the data in the file music.mpg we can use the command:

ffmpeg -i music.mpg -af asyncts=compensate=1 -f mpegts music.ts

13. Mathematical Functions
A big advantage provided by FFmpeg tools are the built-in mathematical functions, that enable various
modifications of certain audio and video filters, options and sources.

Expressions that can use mathematical functions
Many FFmpeg options require numeric values as parameters and some of them can be in a form of
expression, that can contain arithmetic operators, constants and various mathematical functions. Functions
are typically used with audio and video filters and sources, the next table contains their list including where
to find their description.
The evaluation of arithmetic expressions in FFmpeg provides an internal formula evaluator implemented
via interface located in the file libavutil/eval.h. This evaluator accepts also the International System number
prefixes (in FFmpeg documentation are called postfixes, because they are entered immediately after the
number). If i is appended after the prefix, used are powers of 2 instead of powers of 10. The B (byte) prefix
multiplies the value by 8, and can be appended after another prefix or used alone. It means that for example
B, KB, MiB can be used like the prefix. The list of available SI number prefixes is in the chapter FFmpeg
Fundamentals. Developers in their C code can extend the list of unary and binary functions, and define
additional constants, which will be available in described expressions.

List of expressions which can contain functions

Filter, option or source
Described inName Type

aevalsrc audio source chapter Digital Audio

asettb audio filter chapter Advanced Techniques

aspect option glossary

astreamsync audio filter chapter Digital Audio

boxblur video filter chapter Blur, Sharpen and Other Denoising

crop video filter chapter Cropping Video

drawtext video filter chapter Adding Text on Video

hue video filter chapter Color Corrections

lut, lutrgb, lutyuv video filters chapter Color Corrections

overlay video filter chapter Overlay Video

rc_eq option this chapter and chapter Conversion Between Formats

pad video filter chapter Padding Video

scale video filter chapter Resizing and Scaling Video

select video filter chapter Advanced Techniques

setdar, setsar video filters chapter Advanced Techniques

setpts video filter chapter Time Operations

settb video filter chapter Advanced Techniques

volume audio filter chapter Digital Audio

13. Mathematical Functions

114

Built-in arithmetic operators
Users of FFmpeg tools can utilize common unary and binary arithmetic operators, that are described in the
following table.

Operator Type Description Example

+ unary converts a negative value to the positive +(-3)=3

- unary converts a positive value to the negative -(2+3)=-5

+ binary provides an operation of addition 4+5=9

- binary provides an operation of subtraction 10-6=4

* binary provides an operation of multiplication 4*5=20

/ binary provides an operation of division 9/3=3

^ binary provides an exponential function 10^2=10*10=100

Built-in constants
Recently FFmpeg contains only 3 constants described in the table below, but developers can define
additional constants by modifying the source code.

Symbol Value Description

PI 3.14159265358979323846 Ratio of circumference to diameter of a circle

E 2.7182818284590452354 The base of natural logarithm, Euler's number

PHI 1.61803398874989484820 Golden ratio, (1+sqrt(5))/2

PI constant is often used as an argument of trigonometric functions sine, cosine, tangent, etc. For example,
to generate a tone of C5 pitch (tenor high C) with the frequency of 523.251 Hz, we can use the command

ffplay -f lavfi -i aevalsrc=sin(523.251*2*PI*t)

Due to the similar periodicity of the cosine function, the next command gives the same result:

ffplay -f lavfi -i aevalsrc=cos(523.251*2*PI*t)

Table of built-in mathematical functions
If we work with 2 different expression and want to combine them to form another expression, we can use a
notation "expr1;expr2", in which expr1 and expr2 are evaluated in turn, and the new expression evaluates
to the value of expr2.
When working with functions that evaluate expressions as "true" if they have a non-zero value, we can
utilize the fact that the * sign (asterisk) works like logical AND, and the + sign (plus) works like OR.
The next two pages contains the table of available functions in FFmpeg tools.

13. Mathmatical Functions

115

Functions available in expressions

Function Description

abs(x) computes absolute value of x

acos(x) computes arccosine of x

asin(x) computes arcsine of x

atan(x) computes arctangent of x

ceil(expr) rounds expr up to the nearest integer, for example ceil(4.5)=5.0

cos(x) computes cosine of x

cosh(x) computes hyperbolic cosine of x

eq(x, y) test of equality, returns 1 if x=y, otherwise returns 0

exp(x) computes exponential of x with the base e=2.71828182 (Euler’s number)

floor(expr) rounds expr down to the nearest integer, for example floor(4.5)=4, and floor(-4.5)=-5

gauss(x) computes Gauss function of x, corresponding to exp(-x*x/2) / sqrt(2*PI)

gcd(x, y) computes greatest common divisor of x and y, if x=y=0 or if x<0 and y<0, the result is
undefined

gt(x, y) greater than comparison, returns 1 if x > y, otherwise returns 0

gte(x, y) greater than or equal to comparison, returns 1 if x ≥ y, otherwise returns 0

hypot(x, y) computes hypotenuse (the longest side of a right-angled triangle), sqrt(x*x + y*y)

if(expr1, expr2) evaluates expr1, if the result is non-zero returns the evaluation of expr1, else returns 0

ifnot(exp1, exp2) evaluates exp1, if the result is zero returns the evaluation of exp1, otherwise returns 0

isinf(x) returns 1.0 if x is +/-infinity, else returns 0.0

isnan(x) returns 1.0 if x is NaN (not a number), else returns 0.0

ld(var) returns a value of internal variable set by st(var, expr) function with a var identifier

log(x) computes natural logarithm of x with the base e=2.71828182 (Euler’s number)

lt(x, y) less than comparison, returns 1 if x < y, otherwise returns 0

lte(x, y) less than or equal to comparison, returns 1 if x ≤ y, otherwise returns 0

max(x, y) computes maximum of x and y

min(x, y) computes minimum of x and y

mod(x, y) computes modulo, remainder of division x/y

not(expr) negation, returns 1 if expr is 0, otherwise returns 1

pow(x, y) computes value of x raised to the power of y, the result is equivalent to (x)^(y)

random(x) returns a pseudo random number from 0.0 - 1.0, x is the index of the internal variable
used to save the seed/state

13. Mathematical Functions

116

Function Description

root(expr, max) finds x where f(x)=0 in the interval 0..max, function f() must be continuous or the
result is undefined

sin(x) computes sine of x

sinh(x) computes hyperbolic sine of x

sqrt(expr) computes square root of expr, the result is equivalent to (expr)^0.5

squish(x) computes expression 1/(1 + exp(4*x))

st(var, expr) stores the value of expression expr to internal variable with a number var (value 0 to
9), variables are currently not shared between expressions

tan(x) computes tangent of x

tanh(x) computes hyperbolic tangent of x

taylor(expr, x)

taylor(expr, x, id)

-evaluates a taylor series at x, expr represents the LD(id)-th derivates of f(x) at 0
-if id is not specified then 0 is assumed
-if you have the derivatives at y instead of 0, taylor(expr, x-y) can be used
-if the series does not converge, the results are undefined

trunc(expr) rounds expr towards zero to the nearest integer, for example floor(-4.5)=-4

while(cond, expr) evaluates expression expr while the expression cond is non-zero, and returns the value
of the last expr evaluation, or NAN if cond was always false.

Special functions for -rc_eq option

bits2qp(bits)
qp2bits(qp)

additional functions, that can be used with other functions to define a rate control
equation specified by the -rc_eq option for the selected codec

Examples of using functions
A large area of application for functions provides the drawtext filter. For instance lt(x, y) and gt(x, y)
functions can be used to set the time when the text appears or disappears from the video frame, the next
command delays the text 5 seconds from the start:

ffplay -f lavfi -i color=c=orange -vf ^
drawtext=fontfile=/Windows/Fonts/arial.ttf:fontcolor=white:fontsize=20:^
text="5 seconds delayed text":x=(w-tw)/2:y=(h-th)/2:draw=gt(t\,5)

Additional examples of using functions in the book:
chapter Adding Text on Video
chapter Digital Audio, section Sound synthesis
chapter Batch Jobs

14. Metadata and Subtitles
Metadata in a media file contains additional information like the artist, author, date, genre, publisher, title,
etc. and are not displayed in the video frame. Subtitles are textual data usually contained in a separate file
and displayed near the bottom of the video frame, though some container file formats like VOB support
inclusion of the subtitle file.

Introduction to metadata
Metadata are often used in MP3 files and media players commonly display from them items like the song
title, artist, album, etc. For example, to display the metadata from the file Kalimba.mp3, located in a
Sample Music folder on Windows 7 (users with other OS can select other media file with metadata that are
always present in officially distributed music and video) we can use the command

ffplay -i "/Users/Public/Music/Sample Music/Kalimba.mp3"

The console output includes metadata in a form:

Input #0, mp3, from 'Kalimba.mp3':
Metadata:
publisher : Ninja Tune
track : 1
album : Ninja Tuna
artist : Mr. Scruff
album_artist : Mr. Scruff
title : Kalimba
genre : Electronic
composer : A. Carthy and A. Kingslow
date : 2008

Duration: 00:05:50.60, start: 0.000000, bitrate: 191 kb/s
Stream #0:0, 194, 1/14112000: Audio: mp3, 44100 Hz, stereo, s16, 192 kb/s
Stream #0:1, 1, 1/90000: Video: mjpeg, yuvj420p, 512x512, 90k tbr, 90k

tbn, 90k tbc
Metadata:
title : thumbnail
comment : Cover (front)

Creating metadata
Metadata are included to the media files with -metadata option followed by a key=value pair, where the
key or value must be double quoted, if contains spaces. When more keys should be entered, several
-metadata options can be used, for example:

ffmpeg -i input -metadata artist=FFmpeg -metadata title="Test 1" output

ASF, FLV, Matroska, WMA and WMV file formats support any metadata keys, while other formats
support only certain keys, the details are in the following table (source: FFmpeg Metadata article on
MultimediaWiki, wiki.multimedia.cx).

14. Metadata and Subtitles

118

Metadata key support in various media formats (Y = yes, in yellow - any keys)

Key AVI ASF/WMV/
WMA

FLV Matroska MP3 MPEG TS
transport stream

Quicktime/
MOV/MP4

album Y Y Y Y Y Y

album_artist Y Y Y Y

artist Y Y Y Y Y N

author Y Y Y Y Y

comment Y Y Y Y Y Y

composer Y Y Y Y

copyright Y Y Y Y Y

date Y Y Y Y

description Y Y Y Y

encoded_by Y Y Y Y

episode_id Y Y Y Y

genre Y Y Y Y Y Y

grouping Y Y Y Y

language Y Y Y Y Y

lyrics Y Y Y Y

network Y Y Y Y

rating Y Y Y

show Y Y Y Y

title Y Y Y Y Y Y Y

track Y Y Y Y Y Y

year Y Y Y Y

user-defined Y Y Y

User-defined metadata enable to include keys not listed in the table, for example to add information
location : London, United Kingdom
camera type : SONY DSC
camera mode : movie
weather : sunny
we can use the command

ffmpeg -i video.avi -metadata location="London, United Kingdom" ^
-metadata "camera type"="SONY DSC" -metadata "camera mode"=movie ^
-metadata weather="sunny" video.wmv

14. Metadata and Subtitles

119

Saving and loading metadata to/from the file
To save metadata included in the media file, we can use the ffmetadata format specified with -f option
before the name of the textfile in which the metadata will be stored. For example, to save metadata from the
video.wmv file created in the previous example, we can use the command

ffmpeg -i video.wmv -f ffmetadata data.txt

The output file data.txt contains the following lines (the last line will contain the current encoder version):

;FFMETADATA1
weather=sunny
location=London, United Kingdom
camera type=SONY DSC
camera mode=movie
encoder=Lavf54.33.100

To load metadata from the file data.txt into other related media file, we can simply include it as a first input
file before the media file, for example

ffmpeg -i data.txt -i video1.avi video1.wmw

Now the file video1.wmv contains the same metadata as the file video.wmv transferred from the data.txt
file. Loaded can be not only metadata files saved by ffmpeg, but we can create completely new files with a
special formatting. In these files the first line is a header containing the text ;FFMETADATA1, the next
lines are key=value pairs containing required content like in the previous example.

Deletion of metadata
To delete not actual metadata, we can use the -map_metadata option set to a negative value, for example
to delete all metadata from the file input.avi we can use the command:

ffmpeg -i input.avi -map_metadata -1 output.mp4

Introduction to subtitles
Subtitles are textual data included near the bottom of the video frame to provide additional information like
a translation of the spoken foreign language to the local one, same language subtitles to improve literacy,
etc. Subtitles can be divided to 2 main types:

external that are in a separate file and are included to the video frame during the playback by a media
player, advantage is that can be edited and distributed without the video
internal, that are included in a media file container with the video and audio stream

Other division include the prepared subtitles and live subtitles that are created simultaneously during the
live video broadcasting. Other sorting divides subtitles to open and closed - open subtitles cannot be turned
off while closed subtitles like teletext and DVD subtitles can be turned on or off.

14. Metadata and Subtitles

120

The list of supported subtitle codecs and file formats is in the table, in the Support column D means that
this format can be decoded and E denotes availability of encoding (dvb_teletext and eia_608 are not
specified yet). For example to convert the SRT format subtitles to ASS format, we can use the command:

ffmpeg -i subtitles.srt subtitles.ass

Available codecs for subtitles
Codec Support Description

dvb_subtitle DE DVB subtitles (decoders: dvbsub) (encoders: dvbsub)
dvb_teletext DVB teletext
dvd_subtitle DE DVD subtitles (decoders: dvdsub) (encoders: dvdsub)

eia_608 EIA-608 closed captions
hdmv_pgs_subtitle D HDMV Presentation Graphic Stream subtitles (decoders: pgssub)

jacosub D JACOsub subtitle
microdvd D MicroDVD subtitle
mov_text DE MOV text
realtext D RealText subtitle

sami D SAMI subtitle
srt DE SubRip subtitle with embedded timing
ssa DE SSA (SubStation Alpha) / ASS (Advanced SSA) subtitle (decoders: ass)

(encoders: ass)

subrip DE SubRip subtitle
subviewer D SubViewer subtitle

text D raw UTF-8 text
webvtt D WebVTT subtitle
xsub DE XSUB

Available file formats for subtitles (Support column: D=demuxing yes, E=muxing yes)
File format Support Description

ass DE SSA (SubStation Alpha) subtitle
jacosub DE JACOsub subtitle format

microdvd DE MicroDVD subtitle format
realtext D RealText subtitle format

sami D SAMI subtitle format
srt DE SubRip subtitle

subviewer D SubViewer subtitle format
vobsub D VobSub subtitle format
webvtt D WebVTT subtitle

14. Metadata and Subtitles

121

Subtitles encoded directly to video
For example, if we want to include a subtitled video to webpage, we need to encode subtitles to the video
stream and 2 filters can do it: ass (encodes only ASS format) and subtitles filter described in the table:

Video filter: subtitles

Description Includes subtitles on the input video using the libass library.

Syntax subtitles=filename[:original_size]
Description of options

f, filename the name of the file containing subtitles

original_size size of the original video, needed when the input is resized

To prevent error messages on Windows, it is needed to specify a location of the fontconfig configuration
file that can be downloaded from http://ffmpeg.tv/fonts.conf
Please save the fonts.conf file to the same directory where is the file ffmpeg.exe (or f.exe) and add 3 new
environment variables by clicking the button New under the System Variables section in the Environment
Variables modal dialog (how to display it is described in the first chapter, section Path setting):

New System Variable modal dialog

Variable Name Variable Value (ffmpeg_dir is location of ffmpeg.exe)

FC_CONFIG_DIR C:\ffmpeg_dir

FONTCONFIG_FILE fonts.conf

FONTCONFIG_PATH C:\ffmpeg_dir

Please note that not all subtitle formats are supported by all containers, most containers (AVI, Matroska,
MP4, MPG, etc.) support ASS and SRT. For example, to encode subtitles to the video stream from the file
titles.srt to the file video.mp4, we can use the command (other example is illustrated on the image):

ffmpeg -i video.avi -vf subtitles=titles.srt video.mp4

http://ffmpeg.tv/fonts.conf

15. Image Processing
Though the primary use of FFmpeg tools is related to the audio and video, ffmpeg can decode and encode
various image formats and many image related tasks can be done quickly. Using ffmpeg on a webserver
enables to create a web image editor, webhosts with FFmpeg support are in the chapter Video on Web.

Supported image formats
Image formats that FFmpeg supports are listed in the table with their characteristic postfix. All these file
types except LJPEG (Lossless JPEG) can be decoded, and except EXR, PIC and PTX all can be encoded.

Supported image formats by FFmpeg

Extension Encoding / Decoding Description

.Y.U.V X X one raw file per component

BMP X X Microsoft BMP image

DPX X X Digital Picture Exchange

EXR X OpenEXR

GIF X X animated GIFs are uncompressed

JPG X X Progressive JPEG is not supported.

JP2 X X JPEG 2000

JLS X X JPEG-LS

LJPG X Lossless JPEG

PAM X X PAM is a PNM extension with alpha support.

PBM X X Portable BitMap image

PCX X X PC Paintbrush

PGM X X Portable GrayMap image

PGMYUV X X PGM with U and V components in YUV 4:2:0

PIC X Pictor/PC Paint

PNG X X Portable Network Graphics

PPM X X Portable PixelMap image

PTX X V.Flash PTX format

SGI X X SGI RGB image format

RAS X X Sun Rasterfile image format

TIFF X X YUV, JPEG and some extension is not supported yet.

TGA X X Truevision Targa image format

XBM X X X BitMap image format

XFace X X XFace image format

XWD X X X Window Dump image format

15. Image Processing

123

Creating images
Screenshots from videos
To save a video frame from a specified moment to the image, an -ss (seek from start) option is used to
specify the delay from the start. The syntax for taking a screenshot in the time t is

ffmpeg -i input -ss t image.type

The -ss option can be used also before the input file, but the result is less accurate. For example to take a
screenshot in the time 1 hour 23 minutes 45 seconds from the file videoclip.avi, we can use the command:

ffmpeg -i videoclip.avi -ss 01:23:45 image.jpg

Animated GIFs from videos
The video files are created from the frames that can be saved to the frames of an animated GIF, the image
type that is frequently used on the web in a form of banners and short animations. Because the frames are
saved uncompressed, it is useful only with shorter videos, otherwise the file size of animated GIF can be
very large. For example, to convert a short SWF file to the animated GIF to create an alternative for the
users without a Flash plugin, we can use the command (the pixel format must be set to rgb24):

ffmpeg -i promotion.swf -pix_fmt rgb24 promotion.gif

Images from FFmpeg video sources
Another option to create images is to use built-in video sources, that are described in the table:

Video sources for creating images

Name Description Picture

color Provides any color specified by its name or in
hexadecimal format, for example
color=c=#87cefa

mptestsrc Various tests patterns, detailed description with
samples is in the chapter Debugging and Tests.

rgbtestsrc Red-Green-Blue color pattern

smptebars Color bars pattern from the Society of Motion
Picture and Television Engineers, Engineering
Guideline EG 1-1990

testsrc Video test pattern with a scrolling gradient and a
timestamp.

15. Image Processing

124

The default resolution of the mptestsrc video source is 512x512 pixels, other listed sources have 320x240
pixels resolution. The most versatile is the color image source that is able to generate the image of any
color and any size, for example to create a teal background for a leaderboard banner sized 728x90 pixels,
we can use the command

ffmpeg -f lavfi -i color=c=#008080:s=728x90 leaderboard.jpg

Video source: color

Description Provides a colored output in a form of 320x240 sized rectangle with a specified color.

Syntax color[=c=clr[:d=time[:r=fps[:sar=value[:s=resolution]]]]]
all parameters are optional

items in italics will be replaced with actual value

Description of parameters

color, c color of the source, a name of a color (case insensitive match) or a 0xRRGGBB[AA]
sequence, possibly followed by an alpha specifier, the default value is black

duration, d duration of the source video, accepted syntax is: [-]HH[:MM[:SS[.m...]]] or [-]S+[.m...], if
not specified, or if the expressed duration is negative, the video is will be generated forever

rate, r frame rate of the source video, the number of frames generated per second, it can be a string
in the format frame_rate_numerator/frame_rate_denumerator, an integer or a float number or
a valid video frame rate abbreviation, the default value is 25

sar sample aspect ratio of the source video

size, s size of the source video, a string of the form widthxheight, or the corresponding
abbreviation, the default value is 320x240

Video conversion to images
The video file is composed of the frames that can be saved into the image files with one command, the
number of resulting images is a product of the video frame rate and its duration in seconds. For example, if
the clip.avi file have a 1-minute duration and its frame rate is 25 fps, then the following command will
produce 60x25=1500 images, 25 for each second:

ffmpeg -i clip.avi frame%d.jpg

The output directory will contain 1500 files named like frame1.jpg, frame2.jpg, etc. To keep the same
length for all file names, we specify the number of appended digits with a number after the % sign:

ffmpeg -i clip.avi frame%4d.jpg

Now the directory contains the files named frame0001.jpg, frame0002.jpg, ..., frame1500.jpg.

15. Image Processing

125

Resizing, cropping and padding images
Images can be resized in a similar way as videos, for example the output of the color video source has
320x240 pixels resolution and can be enlarged to VGA resolution in 2 ways:

using the s or size parameter of the color video source
using the -s option for the output

For example the next two commands have the same result, orange rectangle of a CIF (352x288) size:

ffmpeg -f lavfi -i color=c=orange:s=cif orange_rect1.png
ffmpeg -f lavfi -i color=c=orange -s cif orange_rect2.png

The size specification with the parameter is useful for the filterchains, when the input should have a certain
resolution for the processing inside the filterchain, so the size cannot be specified as an option. A common
example is using the color source as one of the inputs for the overlay.
Cropping images is the same as with videos using the crop filter, the result of the next example is a
150x150 pixels square from the center of the rgbtestsrc video source:

ffmpeg -f lavfi -i rgbtestsrc -vf crop=150:150 crop_rgb.png

Images can be padded the same way as videos using the pad filter, for example the next command creates
an orange frame for the smptebars video source:

ffmpeg -f lavfi -i smptebars -vf pad=360:280:20:20:orange pad_smpte.jpg

15. Image Processing

126

Flipping, rotating and overlaying images
Flipping - creation of mirrored versions of images is analogical to flipping videos provided by the hflip and
vflip filters, for example the next two commands flip the input image, the first one horizontally and the
second one vertically:

ffmpeg -i orange.jpg -vf hflip orange_hflip.jpg
ffmpeg -i orange.jpg -vf vflip orange_vflip.jpg

Also rotating images is similar to rotating videos using the transpose filter that has four possible values:
value 0 rotates video by 90 degrees counterclockwise and flips it vertically
value 1 rotates video by 90 degrees clockwise
value 2 rotates video by 90 degrees counterclockwise
value 3 rotates video by 90 degrees clockwise and flips it vertically

For example, to rotate the image clockwise by 90° we can use the command:

ffmpeg -i image.png -vf transpose=1 image_rotated.png

Similar to video overlay, images can be placed one on the other with the overlay filter. For example, to
include a smptebars to the rgbtestsrc video source, we can use the commands:

ffmpeg -f lavfi -i rgbtestsrc -s 400x300 rgb.png
ffmpeg -f lavfi -i smptebars smpte.png
ffmpeg -i rgb.png -i smpte.png -filter_complex overlay=(W-w)/2:(H-h)/2 ^
rgb_smpte.png

15. Image Processing

127

Conversion between image types
Almost all supported image types can be converted one to another, exceptions are EXR, LJPEG, PIC and
PTX file types that can be decoded only. The syntax for the conversion is:

ffmpeg -i image.type1 image.type2

For example, to convert a PNG image to the JPG image format, we can use the command:

ffmpeg -i illustration.png illustration.jpg

Creating video from images
Video from one image
To convert a still image to a video is easy and can be used to create slideshows, where short videos from
images (with added text) are joined together, joining videos is described in the chapter 23. For example to
create a 10-second video from the photo.jpg file, we include a -loop boolean option with a value true or 1
like in the command:

ffmpeg -loop 1 -i photo.jpg -t 10 photo.mp4

Video from many images
To create a video from multiple images, their filenames must end with a number, where these numbers
correspond with the sequence in which the images will be encoded to the video file. In this case the media
format is specified before the input and it is an image2 format. For example, from 100 images named
img1.jpg, img2.jpg, ..., img100.jpg can be created a 4-second video with 25 fps frame rate using the
command:

ffmpeg -f image2 -i img%d.jpg -r 25 video.mp4

If the image numbers start with zeros, for example img001.jpg, img002.jpg, etc. to provide the same
filename length, then the command is:

ffmpeg -f image2 -i img%3d.jpg -r 25 video.mp4

The number after the % sign must be the same as the number of digits in the image filenames.

16. Digital Audio
The term digital audio compares to the term digital video, a technology for processing and displaying
moving images, while audio works with sounds. Digital audio is a technology for the capturing, recording,
editing, encoding and reproducing sounds electronically using bitstreams usually encoded by the pulse-
code modulation (PCM). FFmpeg supports many audio formats including AAC, MP3, Vorbis, WAV,
WMA, etc. All audio formats available in FFmpeg are listed in the second chapter.

Introduction to digital audio
Sounds perceived by ears can be divided to the tones and noises, tones are created by a regular matter
vibrations and noises by irregular vibrations. Mechanical vibrations are transferred to the auditory system
in a form of pressure waves that are perceived by an eardrum and converted to the nerve signals.

Audio quantization and sampling
Due to physiological limits of the human auditory system, the continuous values of pressure waves can be
substituted with a finite series of values that can be stored as numbers in the computer files. Computers use
the binary numbers, so the common audio bit depths (audio resolutions) are the powers of two:

Common audio bit depths (quantization levels)

Bit depth Values count Description

8 bit 28=256 used in telephones, older devices

12 bit 212=4,096 standard for DV (digital video), used in digital cameras, etc.

14 bit 214=16,384 used in NICAM compression, stereo sound from TV, etc.

16 bit 216=65,536 standard for Audio CD and DAT (digital audio tape), most common today

20 bit 220=1,048,576 additional standard for Super Audio CD and DVD Audio

24 bit 224=16,777,216 standard for Super Audio CD and DVD Audio

32 bit 232=4,294,967,296 professional equipment, Blu-ray technologies

16. Digital Audio

129

Analog audio signal (big set of values) is digitized by creating a smaller set of samples per time unit, the
common sample frequencies (sample rates) are described in the table:

Common audio sample rates (frequencies)
8000 Hz used in telephones, wireless intercoms and microphones, etc.
11025 Hz used in lower quality PCM and MPEG audio, etc.
16000 Hz telephone wideband (2 times 8000 Hz), used in VOIP devices, etc.
22050 Hz used in lower quality PCM and MPEG audio, etc.
32000 Hz used in DAT, NICAM, mini DV cameras, wireless microphones, etc.
44100 Hz Audio CD standard, used in MPEG-1, PAL television, etc.
48000 Hz standard rate for professional use, for consumers in DV, DVD, digital TV, etc.
96000 Hz standard for DVD-Audio, Blu-ray discs, HD DVD, etc.
192000 Hz used for DVD-Audio, Blu-ray discs, HD DVD, professional devices
352800 Hz Digital eXtreme Definition, used for Super Audio CD

16. Digital Audio

130

Audio file formats
Quantized and sampled audio is saved in various media file formats, the next table describes specific file
formats that are only for audio (MP3 format supports also included image):

Common audio formats

Uncompressed Lossless compression Lossy compression

AIFF (PCM) ALAC AAC

AU ALS AC-3

BWF ATRAC AMR

PCM (raw, without header) FLAC MP2, MP3

WAV (PCM) WavPack Musepack

WMA Speex

Vorbis (OGG)

More details about audio formats and codecs are in the chapter Conversion Between Formats.

Sound synthesis
Sounds are created from vibrations of objects that oscillate around a fixed position, regular oscillations are
called tones and can be represented by the sine and cosine waves of different amplitude and frequency.

16. Digital Audio

131

Continuous tone of certain height can be created with an expression sin(tone_height*2*PI*t)
where tone_height is the given frequency of the tone in Hz, PI is a math constant and t is the variable
specifying the time in seconds. To create the sound with a mathematical expression, we can use an audio
source aevalsrc, output of which can be saved as an audio file. The output sound can contain multiple
channels, each of them is specified by an expression with 3 possible variables, details are in the table:

Audio source: aevalsrc
Description Creates an audio signal specified by one (mono), two (stereo) or more expressions.

Syntax aevalsrc=exprs[::options]
exprs is a colon-separated list of expressions, every new expression specifies new channel

options is a colon-separated list of key=value pairs

Description of available variables in expression exprs
n number of evaluated sample, starting from 0
t time of evaluated sample in seconds, starting from 0
s sample rate

Description of available options
c or channel_layout channel layout, number of channels must be equal to number of expressions

d or duration max. duration, if not specified or if negative, audio is generated until program stops

n or nb_samples number of samples per channel per each output frame, default is 1024 samples
s or sample_rate sample rate, default value is 44100 Hz

The next table contains frequencies of the tones from C1 to B8 according to the pitch standard for the note
A4 that is 440 Hz. The range of the human voice is from E2 (male bass) to C6 (female soprano).

Frequencies of notes based on A4 = 440 Hz
Note/Octave 1 2 3 4 5 6 7 8

C 32.703 65.406 130.81 261.63 523.25 1046.5 2093.0 4186.0
C♯/Db 34.648 69.296 138.59 277.18 554.37 1108.7 2217.5 4434.9

D 36.708 73.416 146.83 293.66 587.33 1174.7 2349.3 4698.6
Eb/D♯ 38.891 77.782 155.56 311.13 622.25 1244.5 2489.0 4978.0

E 41.203 82.407 164.81 329.63 659.26 1318.5 2637.0 5274.0
F 43.654 87.307 174.61 349.23 698.46 1396.9 2793.8 5587.7

F♯/Gb 46.249 92.499 185.00 369.99 739.99 1480.0 2960.0 5919.9
G 48.999 97.999 196.00 392.00 783.99 1568.0 3136.0 6271.9

Ab/G♯ 51.913 103.83 207.65 415.30 830.61 1661.2 3322.4 6644.9
A 55.000 110.00 220.00 440.00 880.00 1760.0 3520.0 7040.0

Bb/A♯ 58.271 116.54 233.08 466.16 932.33 1864.7 3729.3 7458.6
B 61.735 123.47 246.94 493.88 987.77 1975.5 3951.1 7902.1

16. Digital Audio

132

To generate the note A4, the tuning standard for musical pitch, we can set the tone_height to 440 Hz:

ffmpeg -f lavfi -i aevalsrc=sin(440*2*PI*t) -t 10 noteA4.mp3

Stereo and more complex sounds
To create multichannel sounds with the aevalsrc audio source we specify a defining expression for each
channel, channels are separated by a colon and their localization is then specified after a double colon.
Available channel layouts that can be displayed with the -layout option are described in the table:

Abbreviations of available channel layouts

FL front left FLC front-left-of-center TFL top front left DL downmix left

FR front right FRC front-right-of-center TFC top front center DR downmix right

FC front center BC back-center TFR top front right WL wide left

LFE low frequency SL side-left TBL top back left WR wide right

BL back left SR side-right TBC top back center SDL surround direct left

BR back right TC top center TBR top back right SDR surround direct right

Complex channel layouts (FC is mono and FL+FR is stereo)
2.1 FL+FR+LFE 5.0 side FL+FR+FC+SL+SR 6.1 FL+FR+FC+LFE+BL+BR+BC

3.0 FL+FR+FC 4.1 FL+FR+FC+LFE+BC 6.1 front FL+FR+LFE+FLC+FRC+SL+SR

3.0 back FL+FR+BC 5.1 FL+FR+FC+LFE+BL+BR 7.0 FL+FR+FC+BL+BR+SL+SR

4.0 FL+FR+FC+BC 5.1 side FL+FR+FC+LFE+SL+SR 7.0 front FL+FR+FC+FLC+FRC+SL+SR

quad FL+FR+BL+BR 6.0 FL+FR+FC+BC+SL+SR 7.1 FL+FR+FC+LFE+BL+BR+SL+SR

quad side FL+FR+SL+SR 6.0 front FL+FR+FLC+FRC+SL+SR 7.1 front FL+FR+FC+LFE+FLC+FRC+SL+SR

3.1 FL+FR+FC+LFE hexagonal FL+FR+FC+BL+BR+BC octagonal FL+FR+FC+BL+BR+BC+SL+SR

5.0 FL+FR+FC+BL+BR 6.1 FL+FR+FC+LFE+BC+SL+SR downmix DL+DR

For example to create a C4 tone in the left channel and C5 tone in the right one we can use the command:

ffplay -f lavfi -i aevalsrc=sin(261.63*2*PI*t):cos(523.25*2*PI*t)::c=FL+FR

Binaural tones for stress reduction
Special type of the stereo sounds are binaural tones (beats) - 2 tones with a small frequency difference
about 30 Hz or less, the frequency of both tones must be below 1000 Hz. The listening of binaural tones
with stereo headphones provide a positive affect on the listeners like a stress reduction, improved ability to
learn and other positive effects on the brain functions, but the results vary with the used frequency base and
frequency difference. To create the binaural beat with a 10 Hz difference where the base frequency is 500
Hz we specify a stereo sound with slightly different channels:

ffplay -f lavfi -i aevalsrc=sin(495*2*PI*t):sin(505*2*PI*t)::c=FL+FR

16. Digital Audio

133

Sound volume settings
The sound volume should be carefully adjusted to protect our ears and ffmpeg offers 2 methods. The first
one uses a -vol option that accepts an integer value from 0 to 256, where 256 is maximum, for example:

ffmpeg -i sound.wav -vol 180 sound_middle_loud.wav

Another method is to use a volume filter described in the table:

Audio filter: volume
Description Changes an input audio volume to the specified value.

Syntax volume=vol
Description of vol parameter

vol Parameter vol is an expression and its value can be specified in 2 ways:
1. as a decimal number, then output_volume = vol * input_volume
2. as a decimal number with dB postfix, then

output_volume = 10^(vol/20) * input_volume

For example to decrease the sound volume to two thirds, we can use the command:

ffmpeg -i music.wav -af volume=2/3 quiet_music.wav

To increase the volume by 10 decibels, we can use the command:

ffmpeg -i sound.aac -af volume=10dB louder_sound.aac

Multiple sounds mixed to one output
To mix several sounds of a different length and to specify a transition interval, we can use an amix filter.

Audio filter: amix
Description Audio mixer, creates one output of specified duration from several audio inputs with entered

dropout duration - a transition time between inputs can be specified.

Syntax amix=inputs=ins[:duration=dur[:dropout_transition=dt]]
Description of parameters

inputs number of inputs, default value is 2
duration specifies how to determine the end of stream, available options are:

1. longest - duration of longest input, default value
2. shortest - duration of shortest input
3. first - duration of first input

dropout_transition time in seconds for the transition when an input stream ends, intended for a volume
renormalization, the default value is 2

16. Digital Audio

134

For example the next command mixes 4 input audio files to one, which duration is the same as the duration
of the longest input and the transition between particular sound inputs is 5 seconds:

ffmpeg -i sound1.wav -i sound2.wav -i sound3.wav -i sound4.wav ^
-filter_complex amix=inputs=4:dropout_transition=5 sounds.wav

Downmixing stereo to mono, surround to stereo
To downmix a stereo sound to the mono sound, we can use a pan filter described in the table:

Audio filter: pan

Description Mixes channels with specific gain levels according to entered channel layout followed by a
set of channels definitions. Typical use is to change stereo to mono, change 5+1 channels to
stereo, etc. Pan filter can also remap the channels of an audio stream.

Syntax pan=layout:channel_def[:channel_def[:channel_def...]]
Main parameters

layout output channel layout or number of channels

channel_def channel definition in a form: ch_name=[gain*]in_name[+[gain*]in_name...]

Channel definition parameters

ch_name channel to define, either a channel name (FL, FR, etc.) or a channel number (c0, c1, etc.)

gain multiplicative coefficient for the channel, value 1 keeps the volume unchanged

in_name input channel to use, specified the same way as ch_name, do not mix named and numbered
input channels

Several examples of down-mixing stereo to mono sound:
Both left and right channel are mixed together with the same volume

ffmpeg -i stereo.wav -af pan=1:c0=0.5*c0+0.5*c1 mono.wav

or simply

ffmpeg -i stereo.wav -af pan=mono mono.wav
ffmpeg -i stereo.wav -af pan=1 mono.wav

Left channel is mixed with a bigger volume than the right channel

ffmpeg -i stereo.wav -af pan=1:c0=0.6*c0+0.4*c1 mono.wav

Right channel is mixed with a bigger volume than the left channel

ffmpeg -i stereo.wav -af pan=1:c0=0.7*c0+0.3*c1 mono.wav

16. Digital Audio

135

A simple method without a filter how to down-mix multichannel audio with more than 2 channels is to use
-ac[:stream_specifier] option with an integer parameter that specifies the number of output channels:

ffmpeg -i 5_1_surround_sound.wav -ac 2 stereo.wav

To specify additional parameters for the down-mix like a gain of a particular channel, we use the pan filter.
The next example automatically reduces to stereo the multichannel audio of 3, 4, 5 or 7 channels:

ffmpeg -i surround.wav -af pan=stereo:^
FL<FL+0.5*FC+0.6*BL+0.6*SL:FR<FR+0.5*FC+0.6*BR+0.6*SR stereo.wav

Simple audio analyzer
Detailed information about each input audio frame is provided by an ashowinfo filter, that outputs 10
various parameters on one line for each audio frame and is described in the table.

Audio filter: ashowinfo

Description Shows 1 line for each input audio frame, that contains information in parameters organized
to key=value pairs.

Syntax -af ashowinfo
Description of generated parameters

n sequential number of frame, starts from 0

pts presentation TimeStamp of input frame, expressed as a number of time base units

pts_time presentation TimeStamp of input frame, expressed as a number of seconds

pos frame position in the input stream, value -1 means that this parameter is not available
or meaningless (for example with synthetic audio)

fmt sample format name

chlayout channel layout (mono, stereo, etc.)

nb_samples number of samples per each channel in the current frame

rate audio frame sample rate

checksum hex value of Adler-32 checksum for all planes in input frame

plane_checksum hex value of Adler-32 checksum for each input frame plane, expressed in the form
[c0 c1 c2 c3 c4 c5 c6 c7]

Because the ashowinfo output can be very long, it should be saved to the file with -report option, for
example

ffmpeg -report -i audio.wav -af ashowinfo -f null /dev/null

The result for a 10 seconds long stereo audio encoded in 44100 Hz, s16 is illustrated in the picture:

16. Digital Audio

136

Adjusting audio for listening with headphones
To increase the stereo effect of the input audio file we can use an earwax filter described in the table:

Audio filter: earwax
Description Changes the position of the stereo image from inside (a standard for headphones) to the

outside and in the front of a listener (like for speakers). It works with CD audio (44,1 kHz
frequency), to which it inserts the special cues.

Syntax -af earwax

For example to widen the stereo effect of audio in the file music.mp3, we can use the command:

ffmpeg -i music.mp3 -af earwax -q 1 music_headphones.mp3

Audio modifications with -map_channel option
The -map_channel option enables to change various audio parameters and its syntax is:

-map_channel [in_file_id.stream_spec.channel_id|-1][:out_file_id.stream_spec]

if out_file_id.stream_spec parameter is not set, the audio channel is mapped on all audio streams
if "-1" is used instead of in_file_id.stream_spec.channel_id, mapped is a muted channel
order of the -map_channel option determines the order of the channels in the output stream, the output
channel layout is computed from the number of channels mapped (mono if one -map_channel option is
used, stereo if two -map_channel options are used, etc.).
an -ac option usage in combination with -map_channel makes the channel gain levels to be updated if
input and output channel layouts do not match (for instance two "-map_channel" options and "-ac 6").

16. Digital Audio

137

Switching audio channels in stereo input
To exchange the left channel with the right channel in the stereo audio file we can use the command:

ffmpeg -i stereo.mp3 -map_channel 0.0.1 -map_channel 0.0.0 ch_switch.mp3

Splitting stereo sound to 2 separate streams
To split 2 channels of the stereo input to 2 different streams encoded to 1 output file we use the command
(MP3 can contain only 1 audio stream, so the output format must be AAC, OGG, WAV, etc.):

ffmpeg -i stereo.mp3 -map 0:0 -map 0:0 -map_channel 0.0.0:0.0 ^
-map_channel 0.0.1:0.1 output.aac

Muting one channel from stereo input
To mute a specific channel from the input we can use the -1 value for the -map_channel option. For
example to mute the first channel from a stereo sound, we can use the command:

ffmpeg -i stereo12.mp3 -map_channel -1 -map_channel 0.0.1 mono2.mp3

Merging 2 audio streams to 1 multichannel stream
To join 2 audio streams to 1 multichannel stream we can use an amerge filter that has 1 optional parameter
inputs, which value sets the number of input files, the default value is 2. All input files must be encoded
using the same sample rate and file format. For example to merge 2 mono sounds from 2 files to 1 file with
a single stereo stream, we can use the command (total duration equals to the duration of the shorter input):

ffmpeg -i mono1.mp3 -af amovie=mono2.mp3[2];[in][2]amerge stereo.mp3

Audio stream forwarding with buffer order control
Stream synchronization of 2 audio inputs can be controlled by an astreamsync filter, that has 1 parameter,
which value can be set by an optional expression with several variables. Default value of an expression is
t2-t1 (described below) that means that always is forwarded the stream with a smaller timestamp.

Audio filter: astreamsync

Description Forwards 2 audio streams and controls the order in which the buffers are forwarded.

Syntax astreamsync[=expr]
if expr < 0, the first stream is forwarded, otherwise is forwarded the second one

Variables available in expression

b1, b2 number of buffers forwarded till now on stream 1 and 2

s1, s2 number of samples forwarded till now on stream 1 and 2

t1, t2 current timestamps of stream 1 and 2

17. Presets for Codecs
To simplify entering a big number of options used with certain codecs, we can use the preset files, where
are the options better formatted and saved for future use.

Introduction to preset files
Preset files are text files used as containers for various options included with specific codecs. They contain
key=value pair for every option and comments are included on lines that start with a # sign.

Options to specify a preset file

option codec type description

-apre audio for audio only, on Windows is better to use -fpre option

-spre subtitle for subtitle only, on Windows is better to use -fpre option

-vpre video for video only, on Windows is better to use -fpre option

-fpre any codec for any codec type, the value is a filename containing options

A simple preset file named mpeg2.ffpreset can contain only 1 option, for example:

vcodec=mpeg2video

To encode some input with mpeg2video codec, we can use the command:

ffmpeg -i input -fpre mpeg2.ffpreset -q 1 MPEG2_video.mpg

The next command encodes the input with flv (Flash video) codec for the use on the web:

ffmpeg -i input.avi -vcodec flv -f flv -r 29.97 -vf scale=320:240 ^
-aspect 4:3 -b:v 300k -g 160 -cmp dct -subcmp dct -mbd 2 -flags ^
+aic+mv0+mv4 -trellis 1 -ac 1 -ar 22050 -b:a 56k output.flv

The command is long and to edit it for various changes on the command line is not easy, so we modify it to
the preset file named flv.ffpreset that will contain options related to the flv codec (comments in parentheses
are not part of the file):

vcodec=flv (video codec)
b:v=300k (video bitrate)
g=160 (group of picture size)
mbd=2 (macroblock decision algorithm)
flags=+aic+mv0+mv4 (aic - h263 advanced intra coding; always try a mb with

mv=<0,0>; mv4 - use 4 motion vector by macroblock)
trellis=1 (rate-distortion optimal quantization)
ac=1 (number of audio channels)
ar=22050 (audio sampling rate)
b:a=56k (audio bitrate)

Now the command with the same result will be:

17. Presets for Codecs

139

ffmpeg -i input.avi -f flv -r 29.97 -vf scale=320:240 -aspect 4:3 ^
-cmp dct -subcmp dct -fpre flv.ffpreset output.flv

Examples of preset files
Several common presets are provided by FFmpeg documentation and are described below:

Examples of preset files

libx264-ipod320.ffpreset libx264-ipod640.ffpreset

vcodec=libx264
vprofile=baseline
level=13
maxrate=768000
bufsize=3000000

vcodec=libx264
vprofile=baseline
level=30
maxrate=10000000
bufsize=10000000

Preset file libvpx-1080p.ffpreset
vcodec=libvpx
g=120
lag-in-frames=16
deadline=good
cpu-used=0
vprofile=1
qmax=51
qmin=11
slices=4
b=2M
#ignored unless using -pass 2
maxrate=24M
minrate=100k
auto-alt-ref=1
arnr-maxframes=7
arnr-strength=5
arnr-type=centered

Preset file libvpx-1080p50_60.ffpreset
vcodec=libvpx
g=120
lag-in-frames=25
deadline=good
cpu-used=0
vprofile=1

17. Presets for Codecs

140

qmax=51
qmin=11
slices=4
b=2M
#ignored unless using -pass 2
maxrate=24M
minrate=100k
auto-alt-ref=1
arnr-maxframes=7
arnr-strength=5
arnr-type=centered

Preset file libvpx-360p.ffpreset
vcodec=libvpx
g=120
lag-in-frames=16
deadline=good
cpu-used=0
vprofile=0
qmax=63
qmin=0
b=768k
#ignored unless using -pass 2
maxrate=1.5M
minrate=40k
auto-alt-ref=1
arnr-maxframes=7
arnr-strength=5
arnr-type=centered

Preset file libvpx-720p.ffpreset
vcodec=libvpx
g=120
lag-in-frames=16
deadline=good
cpu-used=0
vprofile=0
qmax=51
qmin=11
slices=4
b=2M
#ignored unless using -pass 2
maxrate=24M
minrate=100k

17. Presets for Codecs

141

auto-alt-ref=1
arnr-maxframes=7
arnr-strength=5
arnr-type=centered

Preset file libvpx-720p50_60.ffpreset
vcodec=libvpx
g=120
lag-in-frames=25
deadline=good
cpu-used=0
vprofile=0
qmax=51
qmin=11
slices=4
b=2M
#ignored unless using -pass 2
maxrate=24M
minrate=100k
auto-alt-ref=1
arnr-maxframes=7
arnr-strength=5
arnr-type=centered

18. Interlaced Video
An interlacing is a technology invented during development of monochrome analog TV to eliminate flicker
of old CRT monitors. The video frame is divided horizontally to regular lines and then to 2 fields, where
the first field contains odd lines and the second field contains even lines.

NTSC, PAL and SECAM TV standards
In NTSC standard the frame has 525 lines of which 483 are visible, others are used for synchronization,
vertical retrace, etc. The frame rate 30 fps means 60 fields per second, which corresponds with 60 Hz
frequency of alternating current nominal in U.S.A. and prevents intermodulation, possible source of the
rolling bars on the screen. Due to electric power frequency of 50 Hz over 120 countries use PAL or
SECAM standard (Africa, Argentina, Asia, Australia, Brazil, Europe, etc.). This standards use 25 fps frame
rate with 50 fields and a higher resolution with 625 scan lines. A comparison of NTSC and PAL/SECAM
standards is described in the table:

Interlacing of video frames in TV standards

Feature NTSC PAL, SECAM

Number of scan lines 525 625

Visible scan lines 483 576

frames per second 30 25

fields per second 60 50

FFmpeg contains several filters and options enabling to change the frame type and field order, to convert
video from interlaced to progressive, etc.
The next diagram illustrates the worldwide usage of NTSC, PAL and SECAM standards, but in recent
years they are replaced with the digital TV standards, please see the last section of this chapter for details.

18. Interlaced Video

143

Interlaced frame type setting
When working with fieldorder and yadif filters described in this chapter, in complex transcoding using
several filters it can be useful to set the field type for output frames with a setfield filter:

Video filter: setfield

Description Marks the type of interlaced field in output frames, the content of frame is not
changed, only its property is updated. It is useful in a filterchain for the next pro-
cessing with filters like fieldorder and yadif.

Syntax setfield=type

Values for the type

auto do not mark anything, default value

bff frame has bottom field first

tff frame has top field first

prog frame is progressive

For example to set the field type to the top field first, we can use the command:

ffmpeg -i input.vob -vf setfield=tff output.mov

Field order change of interlaced video
Videos encoded in PAL DV format are interlaced with bottom field first and the fieldorder filter can
change it when transcoding from or to other interlaced formats.

Video filter: fieldorder

Description Changes the field order of interlaced video input from bottom field first to top field first
and vice versa. Transformation shifts the frame content up or down by 1 line, and fills the
remaining line with appropriate frame content. The method complies with most broadcast
field order converters. If the input is not interlaced, or if its field order is the same as set in
the command, then the input is not altered..

Syntax fieldorder[=order_type]
Values for order_type parameter

0 or bff bottom field first

1 or tff top field first, default value

For example to convert an interlaced video from DVD (VOB format) to DV (Digital Video) format, we can
use the command:

ffmpeg -i dvd.vob -vf fieldorder=0 output.dv

18. Interlaced Video

144

Deinterlacing
Interlaced video was developed for analog CRT displays and cannot be reproduced on progressive digital
displays like LCDs, plasma displays, etc. Some hardware or software utility must be used to deinterlace it,
it means to join corresponding fields into complete video frames, that are encoded to the output video
stream.
yadif filter
FFmpeg contains a special filter named yadif (yet another deinterlacing filter) providing deinterlacing of
the input, but resulting video has a lower quality than the original, because the interlaced source cannot be
completely restored.

Video filter: yadif

Description yadif = Yet Another DeInterlacing Filter

Syntax yadif[=mode[:parity[:auto]]]
Parameters

mode interlacing mode, 4 integer values are available:
0 - output 1 frame for each frame, default value
1 - output 1 frame for each field
2 - like 0, but spatial interlacing check is skipped
3 - like 1, but spatial interlacing check is skipped

parity picture field parity of input interlaced video, 3 integer values are available:
0 - top field first, default value if interlacing is unknown
1 - bottom field first
-1 - enable automatic detection, default value

auto sets which frames are deinterlaced, a boolean value:
0 - all frames, default value
1 - only frames marked as interlaced

For example to deinterlace the movie.avi file, we can use the command:

ffmpeg -i movie.avi -vf yadif movie-progressive.mov

Option -deinterlace
This option has no parameters and provides deinterlacing of video frames, but due to lower quality it is
recommended to use the yadif or other deinterlacing filter.

Deinterlacing filters from MPlayer project
MPlayer project contains several filters designed for deinterlacing including detc, divtc, ivtc, mcdeint,
pullup, softpulldown, softskip, etc. This filters use an experimental wrapper of mp filter and the quality is
not always optimal. For example, to deinterlace an input using the ivtc filter, we can use the command:

ffmpeg -i input.mpg -vf mp=ivtc output.mp4

18. Interlaced Video

145

Pullup filter
The pullup filter from MPlayer project is designed to be much more robust than detc or ivtc filters, by
taking advantage of future context in making its decisions. Like ivtc, pullup is stateless in the sense that it
does not lock onto a pattern to follow, but instead it looks forward to the following fields in order to
identify matches and rebuild progressive frames.

Video filter: pullup

Description Third-generation pulldown reversal (inverse telecine) filter, capable of handling mixed hard-
telecine, 24000/1001 fps progressive, and 30000/1001 fps progressive content. Required is
to follow pullup with the softskip filter when encoding to ensure that pullup is able to see
each frame. Failure to do so will lead to incorrect output and will usually crash, due to
design limitations in the codec/filter layer.

Syntax mp=pullup[=jl:jr:jt:jb:sb:mp]
Description of parameters

jt
jl jr

jb

These options set the amount of "junk" to ignore at the left, right, top, and bottom of the
image, respectively. Left/right are in units of 8 pixels, while top/bottom are in units of 2
lines. The default is 8 pixels on each side.

sb Strick breaks option, setting it to 1 will reduce the chances of pullup generating an
occasional mismatched frame, but it may also cause an excessive number of frames to be
dropped during high motion sequences. Conversely, setting it to −1 will make pullup match
fields more easily. This may help processing of video where there is slight blurring between
the fields, but may also cause there to be interlaced frames in the output.

mp Metric plane option, it may be set to 1 or 2 to use a chroma plane instead of the luma plane
for doing pullup’s computations. This may improve accuracy on very clean source material,
but more likely will decrease accuracy, especially if there is chroma noise (rainbow effect)
or any grayscale video. The main purpose of setting mp to a chroma plane is to reduce CPU
load and make pullup usable in realtime on slow machines.

The height of the input must be divisible by 4 and recommended is to use also the setpts filter to change the
presentation timestamp. For example to deinterlace a telecine video in the film.vob file, we can use the
command:

ffmpeg -i film.vob -qscale 2 -vf ^
mp=pullup=4:4:20:20:-1:0,mp=softskip,setpts=N/(24000/1001*TB) ^
-r 24001/1001 film.avi

Interlaced video and digital television
In recent years the analog TV broadcast using the interlaced video format is replaced with the digital TV
standards that use a progressive format. Digital TV offers higher quality and more channels transmitted at
the same bandwidth. Though the main transmission format is an MPEG Transport Stream (container
specified in MPEG-2 Part 1), interlaced video is still supported in ATSC and DVB standards. The next
picture illustrates the worldwide usage of digital TV terrestrial broadcast in 2012:

18. Interlaced Video

146

Comparison of digital TV standards for terrestrial broadcast (colored support interlaced video)

ATSC DTMB DVB-T ISDB-T

Complete name Advanced Television
Systems Committee

Digital Terrestrial
Multimedia
Broadcast

Digital Video
Broadcasting -

Terrestrial

Integrated Services
Digital Broadcasting

-Terrestrial

Frequency
range

various various 470–862 MHz
174–230 MHz

470 MHz-770 MHz

Video coding MPEG-2, MPEG-4 MPEG-2, AVS MPEG-2, MPEG-4 MPEG-2, MPEG-4

Modulation 8VSB TDS-OFDM CP-OFDM COFDM

Bandwidth per
channel

6 MHz 8 MHz 6, 7, 8 MHz 6, 7, 8 MHz

Bitrate max. 19.39 Mbit/s from 4.813 Mbit/s
to 32.486 Mbit/s

5 - 32 Mbit/s 3.65 - 30.98 Mbit/s

Countries Canada, South Korea,
USA, etc.

Cambodia, China,
Hong Kong, Laos,

Macau, etc.

Africa (north and
south), Asia,

Australia, Europe

Japan, Philippines,
Thailand, South

America

MPEG Transport Stream (MPEG-TS) has a .ts file extension and its format (muxer) is mpegts, so to
multiplex output to this format we can use the command:

ffmpeg -i input.avi -f mpegts output.ts

19. FFmpeg Components and Projects
FFmpeg project consists of 4 command line tools and 9 software libraries, that are utilized by many
companies and software projects. The syntax and usage of ffmpeg tool is described in the first chapter.

FFplay introduction
FFplay is a simple media player able to playback all media formats that ffmpeg tool can decode, please see
the second chapter for displaying available formats and other lists.

FFmpeg component: ffplay

Description Simple media player that uses FFmpeg and SDL libraries, it was designed mainly for the
testing and development.

Syntax ffplay [options] [input_file]
Description of parameters

options almost all options available for the ffmpeg tool can be used also with ffplay

input_file input can be a regular file, pipe, network stream, grabbing device, etc.

FFplay is very useful in showing the same output before it will be encoded to the file, please see the
Displaying output preview section in the first chapter for details. For example to use ffplay to show
various testsrc video source on a lightorange background, we can use the command:

ffplay -f lavfi -i testsrc -vf pad=400:300:(ow-iw)/2:(oh-ih)/2:orange

If we want to watch the video from the file document.avi and to listen audio from the file comments.mp3,
we can use the command:

ffplay -i lavfi "movie=document.avi[out0];amovie=comments.mp3[out1]

If FFmpeg was compiled with --enable-libiec61883 option, an input from a FireWire DV/HDV device
connected to the computer can be displayed with the command:

ffplay -f iec61883 -i auto

19. FFmpeg Components and Projects

148

Key and mouse controls during playback
While playing, ffplay can be controlled with the keys and mouse, details are in the table:

ffplay controls during playback

key description

q, ESC quit

f toggle fullscreen

p, Spacebar toggle pause

a cycle audio channel

v cycle video channel

t cycle among available subtitles

w cycle among available show mode options: video, rdft, audio waves

arrow left / arrow right seek 10 seconds backward / forward

pageDn / pageUp seek 10 minutes backward / forward

mouse click seek the percentage in file corresponding to the part of the width

Like the MPlayer, also ffplay quits on ESC key and toggles pause with a spacebar. The f key toggles the
fullscreen mode, but sometimes it halts the Windows computer, at least older versions. If the media file
contains multiple video streams, they can be cycled with the v key, audio streams can be cycled with the a
key and subtitle streams with the t key. Pressing the arrow right key forwards the video by 10 seconds and
the PageUp key by 10 minutes; arrow left key returns video by 10 seconds and the pageDown key by 10
minutes. More flexible time seeking offer the mouse clicks, we can move to any part by clicking on the
corresponding player window part, for example a click on center will move to the middle of the media file.

FFplay show modes
When playing a video file, ffplay displays the video, it is the default value for its -showmode option, other
values are rdft (inverse Real Discrete Fourier Transform) and waves (audio waves like from the filter
showwaves). We can change between these modes during the playback by pressing the w key:

19. FFmpeg Components and Projects

149

FFprobe introduction
The ffprobe is a utility that gathers information from multimedia streams and prints it in human and
machine readable fashion. It can be used to check the format of the container used by a multimedia stream
and the format and type of each media stream in it. Options are used to list some of the formats supported
by ffprobe or to set which information to show, and to set how ffprobe shows it. Its output is easily parsable
by a textual filter, and consists of one or more sections of a form defined by the selected writer specified by
the -of (or -print_format) option. Examples of ffprobe usage are in the Debugging and Tests chapter.

FFmpeg component: ffprobe

Description Command line tool that detects various data from multimedia streams for analysis. It can be
used standalone or with a textual filter to get sophisticated processing.

Syntax ffprobe [options] [input_file]
Description of parameters

options almost all options available for the ffmpeg tool can be used also with ffprobe

input_file input can be a regular file, pipe, network stream, grabbing device, etc.

Additional ffprobe options

-bitexact force bitexact output, useful to produce output not dependent on specific build

-count_frames count number of frames per stream and report it in corresponding stream section

-count_packets count number of packets per stream and report it in correspond. stream section

-of w_name[=w_options] set printing format, w_name is writer name, w_options are writer options

-select_streams str_spec select only streams specified by str_spec, what can be a letter from the next:
a=audio, d=data, s=subtitles, t=attachment, v=video

-show_data show payload data, as hex and ASCII dump, coupled with -show_packets, it
dumps packets’ data, coupled with -show_streams it dumps the codec extradata

-show_error show information about the found errors while probing the input

-show_format show information about the container format of the input media stream

-show_format_entry name like -show_format, but only prints the entry specified by name of the container
format information, not all

-show_frames show information about each frame contained in the input media stream

-show_library_version show information related to library versions

-show_packets how information about each packet contained in the input media stream

-show_private_data
-private

show data depending on format of particular shown element, option is enabled
by default, but can be set to 0, e.g. when creating XSD-compliant XML output

-show_streams show information about each media stream contained in the input media stream

-show_versions show information related to program and library versions, it is the equivalent of
setting both -show_program_version and -show_library_versions options

19. FFmpeg Components and Projects

150

FFserver introduction
The ffserver is a multimedia streaming server running on Linux, official Windows binaries are not yet
available.

FFmpeg component: ffserver

Description Utility providing a streaming server for both audio and video. It supports several live feeds,
streaming from files and time shifting on live feeds. If a sufficient feed storage is specified
in the ffserver.conf configuration file, it is possible to seek to positions in the past on each
live feed. ffserver runs on Linux in daemon mode by default, it means that it puts itself to
the background and detaches from its console, unless it is started in debug mode or a
NoDaemon option is specified in the configuration file.

Syntax ffserver [options]
Description of parameters

options almost all options available for the ffmpeg tool can be used also with ffserver

Additional ffserver options

-d enable debug mode, this increases log verbosity, directs log messages to stdout and causes
ffserver to run in the foreground and not as a daemon

-f configfile use configfile instead of /etc/ffserver.conf

-n enable no-launch mode, this disables all the Launch directives in the various <Stream>
sections, since ffserver will not launch any ffmpeg instances, you will have to launch them
manually

FFmpeg software libraries
libavcodec
The libavcodec is a library of codecs for decoding and encoding multimedia, it is very popular and
multiplatform media players like MPlayer and VLC use it for the playback of many audio and video
formats. It is able to decode and in certain cases also to encode some proprietary formats, including ones
without official specification. These codecs in the standard libavcodec framework offer advantages over
using the original codecs, mainly increased portability, and sometimes also better performance, because
libavcodec contains a standard library of precisely optimized implementations of common building blocks
like DCT and color space conversion.
The list of implemented codecs in libavcodec is in the Displaying Help and Features chapter.
libavdevice
The libavdevice is a special devices muxing/demuxing library and is a complement to libavformat library.
It provides various platform-specific muxers and demuxers, for instance for grabbing devices, audio
capture and playback. Therefore the (de)muxers in libavdevice are of the AVFMT_NOFILE type (they use
their own I/O functions). The filename passed to avformat_open_input() often does not refer to an actually
existing file, but has some special device-specific meaning, for example for the x11grab device it is the
display name.
Available devices are listed in the second chapter, section Available media formats.

19. FFmpeg Components and Projects

151

libavfilter
The libavfilter is a library of filters that provides the media filtering layer to FFmpeg and client libraries or
applications. It simplifies the design of FFmpeg tools and enhances their flexibility.

libavfilter contains advanced mechanism of a format negotiation and minimizes pixel/format conversions.
A filter processes buffers, where buffer can contain a video frame or audio sources. The properties of each
buffer - frame type, timestamp, file position, etc., can be accessed and handled during the processing. The
list of available filters is in the second chapter.
libavformat
The libavformat is a library containing demuxers and muxers for audio/video container formats. Among
implemented muxers are crc, framecrc, ico, md5, MOV/MP4/ISMV, mpegts, matroska, etc.
Available media formats are listed in the second chapter.
libavutil
The libavutil is a helper library containing routines for different parts of FFmpeg, for example:

av_get_token function in libavutil/avstring.h file can be used to parse a token quoted or escaped
libavutil/eval.h file contains an interface for evaluating arithmetic expressions
libavutil/samplefmt.h file contains definitions of available audio sample formats
libavutil/audioconvert.h file contains specification for audio channel layouts

libpostproc
The libpostproc is a library containing video postprocessing routines.
libswresample
The libswresample library is capable of handling different sample formats, sample rates and different
number of channels and different channel layout. It supports directly converting sample formats and
packed/planar in a single pass.
libswscale
The libswscale is a library containing video image scaling routines and provides a fast and modular scaling
interface.

19. FFmpeg Components and Projects

152

Projects using FFmpeg components
The number of projects using various FFmpeg tools and libraries is big and many of them are listed on
http://ffmpeg.org/projects.html
HTML5 support in Google Chrome
Probably the most used application utilizing FFmpeg libraries is the Google Chrome web browser, one of
the most popular web browsers. FFmpeg libraries were included to the Chrome in 2009 to support HTML5
audio and video elements. Other browsers using FFmpeg include Chromium and Orygin web browser.
Videoprocessing on YouTube and Facebook
The biggest video sharing website YouTube and the largest social network Facebook are the world’s
largest users of ffmpeg in terms of processed videos, what represents several million videos per week.
Multimedia frameworks utilizing FFmpeg
Multimedia frameworks using FFmpeg libraries are described in the table.

Multimedia frameworks using FFmpeg

Name Website Description

ffdshow ffdshow-tryout.sourceforge.net Media encoder and decoder, implemented as DirectShow
and VFW filter, Windows only

GStreamer gstreamer.freedesktop.org Library for constructing graphs of media-handling
components. The applications it supports range from
simple Ogg/Vorbis playback, audio/video streaming to
complex audio (mixing) and video (non-linear editing)
processing.

MLT www.mltframework.org MLT is an open source multimedia framework, designed
and developed for television broadcasting. It provides a
toolkit for broadcasters, video editors, media players,
transcoders, web streamers and other types of applications.

OpenMAX www.khronos.org/openmax OpenMAX is a royalty-free, cross-platform API that
provides comprehensive streaming media codec and
application portability by enabling accelerated multimedia
components to be developed, integrated and programmed
across multiple operating systems and silicon platforms.

Video editors
Avidemux
Blender (3D)
Cinelerra
Kdenlive
Kino

Audio editors
Audacity
Sox

http://ffmpeg.org/projects.html

19. FFmpeg Components and Projects

153

Media players using FFmpeg
Media frameworks utilizing FFmpeg libraries are described in the table:

Media players using FFmpeg

Name Website Description

Audacious audacious-media-player.org Audacious is an open source audio player. Drag and drop
folders and individual song files, search for artists and albums
in your entire music library, or create and edit your own
custom playlists. Listen to CD’s or stream music from the
Internet. Tweak the sound with the graphical equalizer or
experiment with LADSPA effects. Enjoy the modern GTK-
themed interface or change things up with Winamp classic
skins. Use the plugins included with Audacious to fetch lyrics
for your music, to set an alarm in the morning, and more.

Gnash www.gnashdev.org Gnash is the GNU SWF movie player, which can be run
standalone on the desktop or an embedded device, as well as as
a plugin for several browsers.

KMPlayer http://kmplayer.kde.org Video player plugin for Konqueror and basic MPlayer / Xine /
ffmpeg / ffserver / VDR frontend for KDE. The KMPlayer
KPart plugin for Konqueror mimics QuickTime, MS Media
Player and RealPlayer plugin browser plugins.

MPlayer www.mplayerhq.hu Movie player which runs on many systems. It plays most
MPEG/VOB, AVI, Ogg/OGM, VIVO, ASF/WMA/WMV,
QT/MOV/MP4, RealMedia, Matroska, NUT, NuppelVideo,
FLI, YUV4MPEG, FILM, RoQ, PVA files, supported by many
native, XAnim, and Win32 DLL codecs. You can watch
VideoCD, SVCD, DVD, 3ivx, DivX 3/4/5, WMV and even
H.264 movies.

Rockbox www.rockbox.org Rockbox is a free replacement firmware for digital music
players. It runs on a wide range of players.

VLC www.videolan.org/vlc VLC is a free and open source cross-platform multimedia
player and framework that plays most multimedia files as well
as DVD, Audio CD, VCD, and various streaming protocols.

V-Player vchannel.sourceforge.net/
player.html

Cross-platform media player based on ffmpeg library. Now V-
Player supports Windows, Linux and OS X platforms. User
interface is written on C++ with Qt 4 on all platforms.

Xine www.xine-project.org Free multimedia player. It plays back CDs, DVDs, and VCDs.
It also decodes multimedia files like AVI, MOV, WMV, and
MP3 from local disk drives, and displays multimedia streamed
over the Internet.

20. Microphone and Webcam
Microphone and a webcam (web camera) are the common parts of the computer equipment and FFmpeg
contains elements for their usage.

Introduction to input devices
FFmpeg recognizes microphone and webcam like input devices that are defined as elements that enable to
access the data from attached multimedia devices. On Windows microphone and webcam are accessed with
a dshow input device, that is described in the table:

Input device: dshow

Description Input device on Windows OS, supported are audio and video devices.

Syntax options type=media_type[:type=media_type]
parameter in [] is optional

Description of type parameter

type value can be video or audio

Available values for options parameter

audio_buffer_size audio device buffer size in milliseconds (which can directly impact latency,
depends on the device), defaults to using the device’s default buffer size (usually
some multiple of 500ms); setting this value too low can degrade performance

audio_device_number audio device number for devices with same name (starts at 0, defaults to 0)

channels number of channels in the captured audio

framerate framerate in the captured video

list_devices if set to 1, prints a list of devices and exits

list_options if set to 1, prints a list of selected device's options and exits

pixel_format pixel format to use, can be set only when video codec is not set or set to rawvideo

sample_rate sample rate (in Hz) of the captured audio

sample_size sample size (in bits) of the captured audio

video_device_number video device number for devices with same name (starts at 0, defaults to 0)

video_size video size in the captured video

List of available cameras and microphones
Portable computers have a webcam already built-in or we can connect one to the computer, usually via the
USB port. Microphone is also often built in the computer, or we can attach one to the computer’s
microphone jack, commonly pink, the jack for the earphones is green. To display all available input devices
on Windows with DirectShow, we use the list_devices option of the dshow device like in the command:

ffmpeg -list_devices 1 -f dshow -i dummy

The output depends on the used computer, an example output illustrates the next image:

20. Microphone and Webcam

155

Output shows that available is one webcam named "HP Webcam" and one microphone named
"Microphone (Realtek High Defini". The complete name of the microphone is 'Microphone (Realtek High
Definition)', but displayed are only 31 characters.

Available options for webcam
Webcam has usually several working modes that are displayed with -list_options parameter. To display
options for the webcam named "HP Webcam" from the previous output we can use the command:

ffmpeg -list_options true -f dshow -i video="HP Webcam"

The output depends on the camera type and usually shows available resolutions (frame sizes) and frame
rates:

[dshow @ 021bd040] DirectShow video device options
[dshow @ 021bd040] Pin "Capture"
[dshow @ 021bd040] min s=640x480 fps=15 max s=640x480 fps=30
[dshow @ 021bd040] min s=640x480 fps=15 max s=640x480 fps=30
[dshow @ 021bd040] min s=160x120 fps=15 max s=160x120 fps=30
[dshow @ 021bd040] min s=160x120 fps=15 max s=160x120 fps=30
[dshow @ 021bd040] min s=176x144 fps=15 max s=176x144 fps=30
[dshow @ 021bd040] min s=176x144 fps=15 max s=176x144 fps=30
[dshow @ 021bd040] min s=320x240 fps=15 max s=320x240 fps=30
[dshow @ 021bd040] min s=320x240 fps=15 max s=320x240 fps=30
[dshow @ 021bd040] min s=352x288 fps=15 max s=352x288 fps=30
[dshow @ 021bd040] min s=352x288 fps=15 max s=352x288 fps=30
video=HP Webcam: Immediate exit requested

20. Microphone and Webcam

156

Displaying and recording webcam input
When we know the webcam name, we can display its input on the screen or record it to the file. The next
commands displays the webcam input with default settings (usually it is the maximal size and maximal
frame rate), the first one with ffplay media player and the second one with SDL output device:

ffplay -f dshow -i video="HP Webcam"
ffmpeg -f dshow -i video="HP Webcam" -f sdl "webcam via ffmpeg"

To record the webcam input to the file we can use the command:

ffmpeg -f dshow -i video="HP Webcam" webcam.avi

Webcams usually have a default media format like AVI, MOV, etc. to which they save their input with an
associated application for working with webcam. Using these default file format sometimes results in a
better video quality than using other file format.

Using two webcams
If two webcams are available, we can connect them to the computer via USB port and display their output
at once with ffmpeg tool. The next command shows the webcam names including the microphone name(s),
the console output follows:

ffmpeg -list_devices 1 -f dshow -i dummy

[dshow @ 01f7d000] DirectShow video devices
[dshow @ 01f7d000] "Sirius USB2.0 Camera"
[dshow @ 01f7d000] "HP Webcam"
[dshow @ 01f7d000] DirectShow audio devices
[dshow @ 01f7d000] "Microphone (Realtek High Defini"
dummy: Immediate exit requested

20. Microphone and Webcam

157

The options for HP Webcam and the command how to display them are in the section Available options
for webcam, below are options for the second webcam named Sirius USB2.0 Camera:

[dshow @ 003fd080] DirectShow video device options
[dshow @ 003fd080] Pin "Capture"
[dshow @ 003fd080] pixel_format=yuyv422 min s=640x480 fps=15 max s=640x480 fps=30
[dshow @ 003fd080] pixel_format=yuyv422 min s=640x480 fps=15 max s=640x480 fps=30
[dshow @ 003fd080] pixel_format=yuyv422 min s=352x288 fps=15 max s=352x288 fps=30
[dshow @ 003fd080] pixel_format=yuyv422 min s=352x288 fps=15 max s=352x288 fps=30
[dshow @ 003fd080] pixel_format=yuyv422 min s=320x240 fps=15 max s=320x240 fps=30
[dshow @ 003fd080] pixel_format=yuyv422 min s=320x240 fps=15 max s=320x240 fps=30
[dshow @ 003fd080] pixel_format=yuyv422 min s=176x144 fps=15 max s=176x144 fps=30
[dshow @ 003fd080] pixel_format=yuyv422 min s=176x144 fps=15 max s=176x144 fps=30
[dshow @ 003fd080] pixel_format=yuyv422 min s=160x120 fps=15 max s=160x120 fps=30
[dshow @ 003fd080] pixel_format=yuyv422 min s=160x120 fps=15 max s=160x120 fps=30
[dshow @ 003fd080] pixel_format=yuyv422 min s=800x600 fps=10 max s=800x600 fps=20
[dshow @ 003fd080] pixel_format=yuyv422 min s=800x600 fps=10 max s=800x600 fps=20
[dshow @ 003fd080] pixel_format=yuyv422 min s=1280x960 fps=5 max s=1280x960 fps=7.5
[dshow @ 003fd080] pixel_format=yuyv422 min s=1280x960 fps=5 max s=1280x960 fps=7.5
[dshow @ 003fd080] pixel_format=yuyv422 min s=1280x1024 fps=5 max s=1280x1024 fps=7.5
[dshow @ 003fd080] pixel_format=yuyv422 min s=1280x1024 fps=5 max s=1280x1024 fps=7.5
[dshow @ 003fd080] pixel_format=yuyv422 min s=1600x1200 fps=2.5 max s=1600x1200 fps=5
[dshow @ 003fd080] pixel_format=yuyv422 min s=1600x1200 fps=2.5 max s=1600x1200 fps=5
[dshow @ 003fd080] vcodec=mjpeg min s=640x480 fps=7.5 max s=640x480 fps=15
[dshow @ 003fd080] vcodec=mjpeg min s=640x480 fps=7.5 max s=640x480 fps=15
[dshow @ 003fd080] vcodec=mjpeg min s=352x288 fps=7.5 max s=352x288 fps=15
[dshow @ 003fd080] vcodec=mjpeg min s=352x288 fps=7.5 max s=352x288 fps=15
[dshow @ 003fd080] vcodec=mjpeg min s=320x240 fps=7.5 max s=320x240 fps=15
[dshow @ 003fd080] vcodec=mjpeg min s=320x240 fps=7.5 max s=320x240 fps=15
[dshow @ 003fd080] vcodec=mjpeg min s=176x144 fps=7.5 max s=176x144 fps=15
[dshow @ 003fd080] vcodec=mjpeg min s=176x144 fps=7.5 max s=176x144 fps=15
[dshow @ 003fd080] vcodec=mjpeg min s=160x120 fps=7.5 max s=160x120 fps=15
[dshow @ 003fd080] vcodec=mjpeg min s=160x120 fps=7.5 max s=160x120 fps=15
[dshow @ 003fd080] vcodec=mjpeg min s=800x600 fps=7.5 max s=800x600 fps=15
[dshow @ 003fd080] vcodec=mjpeg min s=800x600 fps=7.5 max s=800x600 fps=15
[dshow @ 003fd080] vcodec=mjpeg min s=1280x960 fps=7.5 max s=1280x960 fps=15
[dshow @ 003fd080] vcodec=mjpeg min s=1280x960 fps=7.5 max s=1280x960 fps=15
[dshow @ 003fd080] vcodec=mjpeg min s=1280x1024 fps=7.5 max s=1280x1024 fps=15
[dshow @ 003fd080] vcodec=mjpeg min s=1280x1024 fps=7.5 max s=1280x1024 fps=15
[dshow @ 003fd080] vcodec=mjpeg min s=1600x1200 fps=7.5 max s=1600x1200 fps=15
[dshow @ 003fd080] vcodec=mjpeg min s=1600x1200 fps=7.5 max s=1600x1200 fps=15
video=Sirius USB2.0 Camera: Immediate exit requested

To display the input from both webcams we can use the overlay filter and because the default video size of
both webcams is 640x480 pixels, we set the size of the second input to 320x240 (qvga) with -video_size
option, the command is (single quotes return error, only double quotes can be used):

ffmpeg -f dshow -i "video=Sirius USB2.0 Camera" -f dshow -video_size qvga ^
-i "video=HP Webcam" -filter_complex overlay -f sdl "2 webcams"

The previous command locate the second webcam input to the top left corner, to place it for example to the
bottom right corner, we add the width and height parameters to the overlay filter: overlay=W/2:H/2

20. Microphone and Webcam

158

Recording sound and sending it to loudspeakers
Similar to the webcam, also microphone has several working modes that are displayed with -list_options
parameter set to true or 1. For the input parameter is used an audio type instead of video, the command for
the microphone that was listed with the -list_devices option in the previous sections is:

ffmpeg -list_options 1 -f dshow -i "audio=Microphone (Realtek High Defini"

[dshow @ 0030d0c0] DirectShow audio device options
[dshow @ 0030d0c0] Pin "Capture"
[dshow @ 0030d0c0] min ch=1 bits=8 rate= 11025 max ch=2 bits=16 rate= 44100
audio=Microphone (Realtek High Defini: Immediate exit requested

To send the sound from the microphone to the loudspeakers we can use the command:

ffplay -f dshow -i audio="Microphone (Realtek High Defini"

The command for recording the sound to the audio file is:

ffmpeg -f dshow -i audio="Microphone (Realtek High Defini" -t 60 mic.mp3

To record both audio and video from the microphone and webcam we can use the command:

ffmpeg -f dshow -i audio="Microphone (Realtek High Defini":^
video="HP Webcam" webcam_with_sound.avi

21. Batch Files
Advantages of batch files
FFmpeg tools are often used for various tasks and it is not easy to remember all parameters of different
codecs, filters, etc. Saving various command combinations to the batch files optimizes the work and brings
the development to the next level. Batch files are text files with a .bat extension and on Windows OS are
used mainly for administrative tasks. They contain commands, which are processed sequentially and can
print various messages, ask for input, etc. Example of a simple batch file is a text:
@echo off
ffmpeg -i %1
This text is saved to a file test.bat and called by the next command, where filename is the media file the
properties of which we want to see (.bat extension in the command is optional):

test.bat filename (or) test filename

Batch file commands
Available Windows console commands can be displayed with the command help or help|more. Some of
them are specific to the batch files. These and additional commands are described in the table:

Basic batch file commands

@ Used at the beginning of the line, then the command is not echoed. Example: @echo off

%n
(n is

natural
number)

Placeholder for space-separated parameters entered on the command line after the name of
the batch file, for example greeting.bat with 2 lines: @echo off

Good %1, %2
If called with the command: greeting day friends
displayed result is: Good day, friends

:label Starting point for GOTO command, changes the processing sequence, example of batch file:
line 1 ... line 10 (lines 1 - 10 contains various commands)
:NewItem
line 12 ... line 16 (lines 12 - 16 contains various commands)
GOTO NewItem
When the processing flow comes to the line 17, GOTO command sends it back to the
NewItem label and the run continues on the line 12.

CALL Syntax: call [drive][path] filename [batch parameters]
Calls another batch file and after all of its commands are ready, processing continues on the
next line of the calling file. If the called file does not exist, an error message is displayed.

CHOICE Stops the processing and let the user to select one of choices, usually yes or no.
Syntax: CHOICE [/C[:]choices] [/N] [/S] [/T[:]c,nn] [text]
/C[:]choices Specifies allowable keys. Default is YN.
/N Does not display choices and ? at end of prompt string.
/S Treats choice keys as case sensitive.
/T[:]c,nn Defaults choice to c after <nn> seconds. text Prompts string to display.

CLS Clears the screen and the console output continues from the top.

21. Batch Files

160

ECHO Syntax: ECHO [ON | OFF] or ECHO [message]
Command "echo off" stops printing of commands during processing, "echo on", that is
default, turns it on again. Command "echo some_text" will print some_text during
processing.

FOR Runs a specified command for each file in a set of files.
FOR %%variable IN (set) DO command [CommandLineOptions]
%variable Specifies a replaceable parameter, which value is used by the command.
(set) Specifies a set of one or more files, wildcards may be used, e.g. (*.doc)
command Specifies the command to carry out for each file.
command-parameters Specifies parameters or switches for the specified command.
Example command to display all TXT files (in batch is used %%f, on cmd line %f form):
FOR %%F IN (*.txt) DO type %%F

GOTO
label

Redirects processing to the specified label, please see :label command above for the
example.

IF IF [NOT] ERRORLEVEL number command
IF [NOT] string1==string2 command
IF [NOT] EXIST filename command
NOT Specifies that DOS should carry out the command only if the condition is false.
ERRORLEVEL number Specifies a true condition if the last program run returned an exit
code equal to or greater than the number specified.
command Specifies the command to carry out if the condition is met.
string1==string2 Specifies a true condition if the specified text strings match.
EXIST filename Specifies a true condition if the specified filename exists.
IF command specifies conditional processing.

PAUSE Stops processing and displays the message: "Press any key to continue...".

REM Syntax: REM [comment]
Used to add descriptions and other information, that is not used during processing.

SHIFT Syntax: SHIFT [n] (n is natural number)
Used to shift the position of numbered parameters entered via command line and used in the
batch file with %1, %2, etc. Example of the batch file name shift.bat:
@ECHO OFF
ECHO %1
SHIFT
ECHO %1
Now when we start this file with shift First Second, the result is:
First
First

START START ["title"] [/Dpath] [/I] [/MIN] [/MAX] [/SEPARATE | /SHARED]
[/LOW | /NORMAL | /HIGH | /REALTIME | /ABOVENORMAL | /BELOWNORMAL]
[/WAIT] [/B] [command/program]
[parameters]
Starts a new window for the specified command. For the description of all options, please
type help start

21. Batch Files

161

Typical usage of batch files
video conversion for portable devices
audio conversion from various formats to MP3 files for MP3 players
decreasing the frame size and bitrate for the usage on the web.

Batch files are used for audio and video processing tasks that are often repeated. For example, we can place
a shortcut on the desktop to the file yt2mp3.bat located in the directory C:\media, where are saved videos
downloaded from YouTube for conversion to MP3 format. The yt2mp3.bat file contains the next lines:
@echo off
set /p i=Please enter the name of input file:
set /p o=Please enter the name of output file without MP3 extension:
ffmpeg -i %i% -b:a 128k -ar 44100 %o%.mp3
ffplay %o%.mp3
After the successful conversion the ffplay starts to play the created MP3 file.

Tone generator
ToneGenerator.bat is a batch file that generates tones of specified pitch and duration. In order to distinguish
2 tones of the same pitch in a sequence, to each tone is added the file silence.mp3, which duration is 0.2
second, if we plan to speed up the tempo highly, it can be 0.3 or more seconds, the command is:

ffmpeg -f lavfi -i aevalsrc=0 -t 0.2 silence.mp3

The file ToneGenerator.bat has the following content (the line numbers was added for easier explanation
and are not present in the ToneGenerator.bat computer file):
1 @echo off
2 set /p n=Please enter the note name:
3 set /p f=Please enter the frequency:
4 set /p d=Please enter the duration in seconds:
5 ffmpeg -f lavfi -i aevalsrc=sin(%f%*2*PI*t) -t %d% tone%n%_%d%.mp3
6 copy /b tone%n%%d%.mp3+silence.mp3 tone%n%_%d%.mp3

Explanation of particular lines (if the tone will be used alone, adding the silence can be skipped):
1: Command echo off stops displaying the content of the commands during batch file processing, @ sign
excludes also this command from displaying.
2: Command set /p variable_name=text creates a variable and during the job processing displays a line with
text and waits for the input ended by the Enter key. Here the string "Please enter the note name: " is
displayed and after pressing Enter, a new variable n is created and contains the entered value.
3: Similar to Line 2, created is the variable f with entered frequency.
4: Similar to Line 2, created variable d contains duration of the tone in seconds.
5: ffmpeg uses lavfi (libavfilter virtual input device) and aevalsrc audio input device to generate sound of
frequency specified by variable f with a duration set by variable d. The output file in MP3 format has its
name combined from the note name and duration.
6: A short MP3 file with 0.2 second length is added to the generated file for a differentiation between tones
by the copy command with /b option, that specifies a binary mode. The name of the final file has the form
"tone+note-name+_duration+.mp3", for example for A4 tone with 1 second duration it is noteA4_1.mp3.

21. Batch Files

162

Creating Jingle Bells
Jingle Bells is a popular winter song and its refrain has only 5 notes, though some are in more durations,
the image shows the sequence with the text:

Now we generate 9 different tones with the ToneGenerator.bat from the previous section:
E4, frequency 329.63 Hz, duration 1 second - file E_1.mp3
E4, frequency 329.63 Hz, duration 2 seconds - file E_2.mp3
E4, frequency 329.63 Hz, duration 4 seconds - file E_4.mp3
G4, frequency 392.00 Hz, duration 1 second - file G_1.mp3
G4, frequency 392.00 Hz, duration 2 seconds - file G_2.mp3
C4, frequency 261.63 Hz, duration 1 second - file C_1.mp3
D4, frequency 293.66 Hz, duration 1 second - file D_1.mp3
D4, frequency 293.66 Hz, duration 2 seconds - file D_2.mp3
F4, frequency 349.23 Hz, duration 1 second - file F_1.mp3

The octave number 4 was skipped from the filenames. The tones from the first line and second lines can be
joined with the next 2 commands, the third command joins the both lines:

copy /b E_1.mp3+E_1.mp3+E_2.mp3+E_1.mp3+E_1.mp3+E_2.mp3+E_1.mp3+^
G_1.mp3D+C_1.mp3+D_1.mp3+E_4.mp3 line1.mp3
copy /b F_1.mp3+F_1.mp3+F_1.mp3+F_1.mp3+F_1.mp3+E_1.mp3+E_2.mp3+^
E_1.mp3D+D_1.mp3+D_1.mp3+E_1.mp3+D_2.mp3+G_2.mp3 line2.mp3
copy /b line1.mp3+line2.mp3 refrain.mp3

Another method is to modify the ToneGenerator.bat file to produce numbered filenames and then to join
them with a batch file at once. The modified version of ToneGenerator.bat file is below, we can use it to
produce 24 MP3 files with the filenames tone01.mp3, tone02.mp3, ..., tone24.mp3:

@echo off
echo If the number of notes is over 9, start numbering with 0.
set /p n=Please enter the note number:
set /p f=Please enter the frequency:
set /p d=Please enter the duration in seconds:
ffmpeg -f lavfi -i aevalsrc=sin(%f%*2*PI*t) -t %d% %n%.mp3
copy /b %n%.mp3+silence.mp3 tone%n%.mp3

21. Batch Files

163

Now we can join all 24 MP3 files by the FileJoiner.bat batch file with the content:

@echo off
copy /y nul output >nul
set /p t=Please enter the file type:
for %%f in (*.%t%) do copy /b output+%%f output
ren output output.%t%

Line 2 creates an empty file that is used as an initial file to which is copied the first file from the
directory.
Line 3 asks for the file extension and stores it in the t variable, files with this extension will be joined.
Line 4 uses the for loop to copy files sequentially to the file output.
Line 5 adds the extension to the file output.

Both methods produces refrains that are very slow compared to the original song and the atempo filter can
be used to adjust the speed:

ffmpeg -i output.mp3 -af atempo=2 refrain.mp3

The atempo filter can be applied more times, details are in the chapter Time Operations.

Simplified conversion
Chapter Preset for Codecs explained how to simplify conversion with the preset files. If you often convert
media with various presets, the batch file asking for particular preset can be useful, example of a simple
batch file called Conversion.bat is below:

1 @echo off
2 echo Please enter 0 as the filename if no preset should be used.
3 set /p i=Please enter the name of input file:
4 set /p e=Please enter the output file extension:
5 set /p o=Please enter the name of output file:
6 set /p p=Please enter the name of the preset file:
7 set /p a=Please enter additional parameters:
8 if %p% == 0 goto NOPRESET
9 ffmpeg -i %i% -fpre %p%.ffpreset %a% %o%.%e%
10 exit
11 :NOPRESET
12 ffmpeg -i %i% %a% %o%.%e%

Please see previous sections for the description of the lines 1 - 7.
Line 8 uses the IF construct to select the conversion with or without the preset file, if variable p is 0,
then the processing continues after the label NOPRESET due to the GOTO command directive
Line 9 converts the input if the preset file was specified
Line 10 terminates the processing so the conversion on line 12 is skipped
Line 12 converts the input without the preset file using an optional additional parameters.

The file Conversion.bat can be modified in many ways, for example to include filtering, more inputs, etc.

22. Color Corrections
Color corrections usually denote image editions like adjusting brightness, color balance (red, green and
blue channels), gamma, hue, saturation, etc. These modifications in FFmpeg are provided by specifying
adequate parameters to various filters, therefore included is a theoretical introduction.

Video modifications with lookup table
FFmpeg contains 3 video filters, that can produce a lookup table (LUT), which binds each pixel component
input value to an output value. New values are applied to the input video frames and encoded to the output.

Video filters: lut, lutrgb, lutyuv

Description The lut filter creates a look up table for binding each pixel component input value to an
output value and applies it to the input video. This filter requires either YUV or RGB pixel
format in input. Exact component related to each option depends on the format in input.
The lutrgb filter is the same as lut filter, but requires an RGB pixel format in the input.
The lutyuv filter is the same as lut filter, but requires a YUV pixel format in the input.

Syntax lut=[c0=expr[:c1=expr[:c2=expr[:c3=expr]]]]
lutrgb=[r=expr[:g=expr[:b=expr[:a=expr]]]]
lutyuv=[y=expr[:u=expr[:v=expr[:a=expr]]]]

Description of parameters

lut filter lutrgb filter lutyuv filter

c0 first pixel component r red component y Y or luminance component

c1 second pixel component g green component u U or Cb component

c2 third pixel component b blue component v V or Cr component

c3 fourth, same as alpha a alpha component a alpha component

Variables and functions available in expression expr

w, h input width and height

val input value for the pixel element

clipval input value clipped in the minval-maxval range

maxval maximum value for the pixel component

minval minimum value for the pixel component

negval negated value for the pixel component value clipped in the minval - maxval range;
negval = maxval - clipval + minval

clip(val) computed value in val clipped in the minval - maxval range

gammaval(gamma) computed gamma correction value clipped in the minval - maxval range

Note: default value of all expressions is val (pixel input value), so by default the output is unchanged.

Conversion to monochrome (black-and-white) image
Changing color input to the monochrome output that contains only a black and white colors is useful for the
playback on monochrome monitors. To show SMPTE bars in B&W, we can use one of the commands:

22. Color Corrections

165

ffplay -f lavfi -i smptebars -vf lut=c1=128:c2=128
ffplay -f lavfi -i smptebars -vf lutyuv=u=128:v=128

Introduction to color spaces
To use lutrgb and lutyuv filters properly, the RGB and YUV color spaces are compared in the table:

Comparison of RGB and YUV color spaces

RGB YUV (Y'CbCr)

Description additive color space in which any color is
created by adding red, green and blue light

image is divided to 1 luma and 2 chroma
components

Components
R = red channel Y' = luma (brightness)

G = green channel U = Y' - B = Cb (luma - blue)

B = blue channel V = Y' - R = Cr (luma - red)

Usage computers, digital cameras, etc. television, video, etc.

Illustration

All colors can be created by the combination of 3 fundamental colors: red, green and blue. To adapt this
fact into the digital video, developed were color models and color spaces that specify standards how to
present colors as numbers. The basic color space is RGB (red-green-blue), where any color is expressed as
a result of mixing these 3 colors with a various intensity, usually expressed on a scale from 0 to 255
(256=162 values) or hexadecimally from x00 to xff.

22. Color Corrections

166

YUV color space and its derivatives
When color TV was invented, TV broadcast in color had to be displayed on the black-and-white TV sets.
Based on the fact that human eyes are mostly sensitive to the green, less to red and even less to blue color,
developed was a new color space YUV and later Y'CbCr, where

Y' is gamma corrected brightness of a green color
Cr is a chroma component of red color minus luma
Cb is a chroma component of blue color minus luma

Luma (luminance) and chroma (chrominance)
Luma and luminance denote a brightness of the image (achromatic part), luma is used in the video
engineering and luminance in the color theory (CIE, ICC, etc.), the details are in the next table:

Luma and luminance comparison

luma luminance

definition weighted sum of gamma-corrected R'G'B'
video components

weighted sum of linear RGB video components

symbol Y' (prime symbol means gamma-correction) Y

formula for
CCIR 601

Y' = 0.299 R' + 0.587 G' + 0.114 B' Y = 0.299 R + 0.587 G + 0.114 B

formula for
Rec. BT 709

Y' = 0.2126 R' + 0.7152 G' + 0.0722 B' Y = 0.2126 R + 0.7152 G + 0.0722 B

Coefficients for R, G and B was derived as average values from a color sensitivity test with many persons.

Chroma and chrominance denote the color part of the image, the term chrominance is used mainly in a
color theory and the term chroma is used in video engineering, especially in chroma subsampling. Chroma
is usually divided to two components (prime symbol ' denotes a gamma correction):

U = B' - Y' or U = CB (blue color - luma)
V = R' - Y' or V = CR (red color - luma)

Pixel formats
The theory of color spaces is implemented on the computers in the pixel formats (listed in the 2nd chapter).
Common pixel formats include: rgb8, rgb24, rgba (with alpha value for opacity), yuv420p, yuv422p, etc.
For example to display rgbtestsrc with only blue color, we set the red and green components to zero:

ffplay -f lavfi -i rgbtestsrc -vf lutrgb=r=0:g=0

22. Color Corrections

167

RGB pixel format modifications
To change the particular channels of RGB input format we use the lutrgb filter. It adjusts the color balance
by setting the value of r, g and b parameters from 0 to 255 (any value above 255 is considered 255) and the
usage of common combinations illustrate the next two images.

22. Color Corrections

168

Color balance
To adjust an intensity of red, green or blue color channel we set a number from 0 to 255 and enter it for the
r, g or b parameter of lutrgb filter. We can also divide (decrease) or multiply (increase) the input value, for
example to double the blue color intensity we can use an expression lutrgb=b=val*2.

22. Color Corrections

169

Modifications of YUV pixel format
To modify components of YUV format we use the lutyuv filter. The y parameter adjusts the brightness
(luma), the u parameter adjusts the blue color balance and the v parameter adjusts the red color balance.
The common combinations of these parameters illustrate the next two images.

22. Color Corrections

170

Brightness correction
While in RGB color model the brightness is set by the combination of 3 colors, in YUV (Y'CbCr) model is
set directly with y (luma) parameter. For example to adjust brightness to 90% of the input, we can use an
expression lutyuv=y=val*0.9.

22. Color Corrections

171

Hue and saturation setting
Another approach to represent an RGB color space is an HSB (HSV), hue-saturation-brightness (hue-
saturation-value) color space. Instead of the linear cube it uses a cylindrical coordinate system, where hue
is an angle around the central vertical axis and saturation is a distance from this axis. For the hue and
saturation adjustment FFmpeg provides a hue filter that is described in the table:

Video filter: hue

Description Adjusts the hue and saturation of the input frames.

Syntax hue[=h=expr[:s=expr]]
Description of parameters

h, H hue angle in degrees, default value is 0.0

s float number from the range -10 to 10, the default value is 1.0

Variables available in expressions expr

n frame number of the input frame, numbers start from 0

pts presentation timestamp of the input frame, expressed is in time base units

r frame rate of the input video, NaN if unknown

t timestamp expressed in seconds, NaN if unknown

tb time base of the input video

Alternative syntax is hue=hue:saturation, where hue and saturation are numbers, not expressions.

Hue is an angle in the range from 0 to 360 degrees and is defined by CIE as "the degree to which a
stimulus can be described as similar to or different from stimuli that are described as red, green, blue, and
yellow". For example to adjust hue of the input to 60 degrees, we can use the command:

ffplay -i coconut.jpg -vf hue=60

22. Color Corrections

172

To adjust the image saturation we set the s parameter to adequate value, for example to increase saturation
to the value 5, we can use the command:

ffplay -i strawberry.jpg -vf hue=s=5

The next picture illustrates the usage of values -10, -5, 0, 5 and 10. Please note that the value 0 results in a
monochrome (black-and-white) image.

Comparison in 2 windows
Many image and video editors in various settings offer a second window to compare how the input will
change. To provide similar comparison with FFmpeg we can use the pad and overlay filters in the
filtergraph with 4 filterchains.
2 windows compared horizontally
This type of comparison was explained already the 1st chapter, section Filters, filterchains and filtergraphs.
The first filterchain splits the input to two outputs labeled [1] and [2], second filterchain creates a pad for
two windows labeled [A] and the third one applies the filter(s) to the output [2] with the result labeled [B].
The fourth filterchain overlays modified input ([B]) on a new pad ([A]). The next example uses a lutrgb
filter to illustrate this method:

ffplay -f lavfi -i testsrc -vf ^
split[1][2];[1]pad=iw*2[A];[2]lutrgb=g=256[B];[A][B]overlay=w

22. Color Corrections

173

2 windows compared vertically
To provide a comparison in the windows located vertically, only the second and fourth filtergraph is
changed, other parameters remain the same like in the horizontal comparison. In the second filtergraph we
add ih (input height) multiplied by 2 for y parameter and in the fourth filtergraph we specify a zero for x
parameter and h (input height) for y parameter. To demonstrate this method, the next example compares
the same images as the previous, only the position of windows is modified (the change is underlined):

ffplay -f lavfi -i testsrc -vf ^
split[1][2];[1]pad=iw:ih*2[A];[2]lutrgb=g=256[B];[A][B]overlay=0:h

Space between windows
If we need a space between 2 windows, for instance 10 pixels, we specify it:

in the second filterchain like pad=iw:ih*2+10
in the fourth filterchain like overlay=0:h+10

For the 50 pixel space in the horizontal comparison we specify
in the second filterchain: pad=iw*2+10
in the fourth filterchain: overlay=w+10

22. Color Corrections

174

Modified version first
To put the modified version first and the input beside horizontally, we can use the command:

ffplay -f lavfi -i testsrc -vf ^
split[1][2];[1]pad=iw*2:ih:iw[A];[2]lutrgb=g=256[B];[A][B]overlay

A vertical comparison with the modified input at the top is created with the command:

ffplay -f lavfi -i testsrc -vf
split[1][2];[1]pad=iw:ih*2:0:ih[A];[2]lutrgb=g=256[B];[A][B]overlay

2 modified versions without input
The next command displays 2 modified versions of the input without the input itself, the second filterchain
includes a second filter that modifies the content of the first window:

ffplay -f lavfi -i testsrc -vf split[1][2]; ^
[1]pad=iw*2,lutrgb=b=256[A];[2]lutrgb=g=256[B];[A][B]overlay=w

22. Color Corrections

175

Comparison in 3 windows
In a complex video editing it can be useful to compare the input with 2 modifications at once. To display a
comparison in 3 windows we use the filtergraph with 6 filterchains.
3 windows compared horizontally
To create a horizontal 3 windows comparison, 6 filterchains can be specified:

1. filterchain splits the input with the split filter to 3 identical outputs labeled [1], [2], [3]
2. filterchain creates from [1] input a pad with 3 times bigger width, output is labeled [A]
3. filterchain modifies [2] input with some filter(s), output is labeled [B]
4. filterchain modifies [3] input with some filter(s), output is labeled [C]
5. filterchain overlays [B] input on [A] input where x coordinate is w, output is labeled [D]
6. filterchain overlays [C] input on [D] input where x coordinate is w*2 (2 times input width)

For example the next command compares the testsrc pattern with modified u component (2. window) and
with modified v component (3. window):

ffplay -f lavfi -i testsrc -vf ^
split=3[1][2][3];[1]pad=iw*3[A];[2]lutyuv=u=val*1.5[B];^
[3]lutyuv=v=val*1.5[C];[A][B]overlay=w[D];[D][C]overlay=w*2

3 windows compared vertically
For a vertical comparison we change the next filterchains:

2. filterchain - in the pad filter width parameter is input width,
height parameter is input height multiplied by 3: pad=iw:ih*3
5. filterchain - in the overlay filter x parameter is zero and
y parameter is input height: overlay=0:h
6. filterchain - in the overlay filter x parameter is zero and
y parameter is input height times 2: overlay=0

The next example compares the same images as the previous, but
vertically (changes are underlined):

ffplay -f lavfi -i testsrc -vf ^
split=3[1][2][3];[1]pad=iw:ih*3[A];^
[2]lutyuv=u=val*1.5[B];[3]lutyuv=v=val*1.5[C];^
[A][B]overlay=0:h[D];[D][C]overlay=0:h*2

22. Color Corrections

176

Input in the middle window
The next command places the input to the middle, the modification of filterchains is analogical to the
previous examples (x coordinate of unchanged input is set to the input width, iw):

ffplay -f lavfi -i testsrc -vf ^
split=3[1][2][3];[1]pad=iw*3:ih:iw[A];[2]lutyuv=u=val*1.5[B];^
[3]lutyuv=v=val*1.5[C];[A][B]overlay[D];[D][C]overlay=w*2

To place the input to the middle vertically, we can use the command:

ffplay -f lavfi -i testsrc -vf ^
split=3[1][2][3];[1]pad=iw:ih*3:0:ih[A];[2]lutyuv=u=val*1.5[B];^
[3]lutyuv=v=val*1.5[C];[A][B]overlay[D];[D][C]overlay=0:h*2

Brightness correction in 2 and 3 windows
The next examples illustrate the adjustment of brightness in 2 and 3 windows preview. To display an image
beside the version where brightness is a 1.5 multiple of the input value, we can use the command:

ffplay -i apple.avi -vf ^
split[1][2];[1]pad=iw*2[A];[2]lutyuv=y=val*1.5[B];[A][B]overlay=w

22. Color Corrections

177

The next example is a 3-windows version of the previous, to the middle was added a modified version,
where the multiple of the input brightness is 1.2:

ffplay -i apple.avi -vf ^
split=3[1][2][3];[1]pad=iw*3[A];[2]lutyuv=y=val*1.2[B];^
[3]lutyuv=y=val*1.5[C];[A][B]overlay=w[D];[D][C]overlay=w*2

To locate the input into the central window, we can use the command:

ffplay -i apple.avi -vf ^
split=3[1][2][3];[1]pad=iw*3:ih:iw[A];[2]lutyuv=y=val*1.2[B];^
[3]lutyuv=y=val*1.5[C];[A][B]overlay[D];[D][C]overlay=w*2

If we want the input in the 3. window, only 2 filterchains are modified from the previous example:
2. filterchain: x parameter value of the pad filter is set to iw*2
6. filterchain: x parameter of the overlay filter is set to w (input width)

The next command displays the input in the third window:

ffplay -i apple.avi -vf ^
split=3[1][2][3];[1]pad=iw*3:ih:iw*2[A];[2]lutyuv=y=val*1.2[B];^
[3]lutyuv=y=val*1.5[C];[A][B]overlay[D];[D][C]overlay=w

22. Color Corrections

178

Comparison in 4 windows
For the better results and various experiments we can compare the input with 3 modifications at once. To
display a comparison in 4 windows, the filtergraph contains 8 filterchains:

1. filterchain splits the input with the split filter to 4 identical outputs labeled [1], [2], [3], [4]
2. filterchain creates from [1] input a pad with a double width and double height, output is labeled [A]
3. filterchain modifies [2] input with some filter(s), output is labeled [B]
4. filterchain modifies [3] input with some filter(s), output is labeled [C]
5. filterchain modifies [4] input with some filter(s), output is labeled [D]
6. filterchain overlays [B] input on [A] input where x coordinate is input width, output label is [E]
7. filterchain overlays [C] input on [E] input where x is zero and y is input height, output label is [F]
8. filterchain overlays [D] input on [F] input where x coordinate is input width and y is input height.

For example the next command compares a tomato with versions where the particular color channels values
are doubled. In the top-right window is intensified the red channel, in the bottom-left the green channel and
in the bottom-right the blue channel:

ffplay -i tomato.mpg -vf split=4[1][2][3][4];[1]pad=iw*2:ih*2[A];^
[2]lutrgb=r=val*2[B];[3]lutrgb=g=val*2[C];[4]lutrgb=b=val*2[D];^
[A][B]overlay=w[E];[E][C]overlay=0:h[F];[F][D]overlay=w:h

23. Advanced Techniques
Joining audio and video files
There are several kinds of joining media files and they are described in the table:

Joining audio and video files

type description for audio for video

concatenation encoding files one after another; where the 1st ends, the 2nd begins Yes Yes

merge encoding all audio streams to one, for example 2 mono to 1 stereo Yes No

mix encoding 2 or more audio channels to 1, volume can be adjusted Yes No

multiplex
(mux)

encoding 2 or more files to 1, for example 1 audio and 1 video file,
if more streams of the same type are present, the choice is on user

Yes Yes

overlay (PiP) 2 or more videos are displayed at once beside or one over another No Yes

Concatenation with shell command

Prerequisites for media files concatenation

special
file format

Concatenated can be only certain file formats:
audio - MP3 (header of 2nd file will disappear), uncompressed like WAV, PCM, etc.
video - MPEG-1, MPEG-2 TS, DV

format
conformance

all concatenated files are of the same format, it means 2 MP3 files can be joined, but 1
MP3 with 1 WAV cannot

stream
conformance

all concatenated files:
- contains the same number of streams of each type
- audio streams use the same codec, sample rate and channel layout
- video streams use the same resolution

To comply with this requirements it is often needed to convert the input files, use -q 1 or similar option to
keep the initial quality, details are in the chapter Conversion Between Formats.

On Windows we can use the copy command with a /B flag to indicate a binary mode, between the files
must be a plus sign. The generic form of the copy command for concatenating N files is:

copy /B file1+file2+...+fileN-1+fileN outputFile

For example to concatenate files videoclip1.mpg and videoclip2.mpg to the file video.mpg, we can use the
command:

copy /B videoclip1.mpg+videoclip2.mpg video.mpg

On Linux, Unix and OS X we can use the cat command in the form: cat file1 files2 > file3,
therefore we can modify the previous example like:

cat videoclip1.mpg videoclip2.mpg > video.mpg

23. Advanced Techniques

180

Concatenation with concat protocol
Another option is to use a concat protocol, prerequisites are like with the copy command. For example to
modify the previous example utilizing this protocol we can use the command:

ffmpeg -i concat:"videoclip1.mpg|videoclip2.mpg" -c copy video.mpg

Concatenation with concat filter
Special filter for an audio and video concatenation is a concat filter described in the table:

Multimedia filter: concat

Description Concatenates audio and video files one after the other. The filter works on segments (files)
of synchronized video and audio streams, where all segments must have the same number
of streams of each type, for example 1 audio and 1 video, or 2 audio and 1 video, etc.

Syntax concat=a=a_streams:v=v_streams:n=segments[:unsafe]
all parameters are optional

Description of parameters

a number of output audio streams, default value is 0

n number of segments, default value is 2

unsafe safe mode activation, if set, concatenation will not fail with segments of a different format

v number of output video streams, default value is 1

Prerequisites for a proper filter results:
all segments must start at timestamp 0
corresponding streams must use in all segments the same parameters, especially the video size
recommended is the same frame rate, otherwise the output will use a variable frame rate

Concat filter enables to join various formats, some examples are:

ffmpeg -i input1.avi -i input2.avi -filter_complex concat output.avi
ffmpeg -i input1.avi -i input2.avi -filter_complex concat output.mp4
ffmpeg -i input1.avi -i input2.mp4 -filter_complex concat output.webm
ffmpeg -i input1.avi -i input2.mp4 -i input3.mkv -filter_complex ^
concat=n=3 output.flv
ffmpeg -i input1.avi -i input2.avi -i input3.avi -i input4.avi ^
-filter_complex concat=n=4 output.mp4
f -i 1.avi -vf movie=2.avi[a];[in][a]concat a.mp4

Other types of joining
audio merging (several streams to 1 multichannel stream) - described in the chapter Digital Audio
mixing several audio files to 1 - described in chapter Digital Audio
multiplex - described in the chapter FFmpeg Fundamentals, section Selection of media streams
overlay - described in the chapter Overlay - Picture in Picture

23. Advanced Techniques

181

Removing logo
Some videos contain a company logo, usually in the top-left corner, common example are recordings of TV
programs. FFmpeg contains 2 special filters to remove logos and while the final effect is not always
perfect, in many cases is acceptable.
delogo filter

Video filter: delogo

Description Hides a TV station logo by a simple interpolation of the surrounding pixels. User sets a
rectangle covering the logo and it usually disappears (but in certain case the logo is more
visible). The filter accepts parameters as a string of the form "x:y:w:h:band", or as a list of
key=value pairs, separated by ":".

Syntax delogo=x=0:y=0:w=width:h=height[:t=band:show={0,1}]
parameters in [] are optional, show is 0 or 1

Description of parameters

x, y coordinates of the top-left corner of the logo

w, h width and height of the logo

band or t thickness of the fuzzy edge of the logo rectangle, default value is 4

show parameter for locating, default value is 0, if set to 1, a green rectangle shows on the screen
as an aid to find the correct x, y, w and h parameters

For example to remove a logo from the top-right corner of 800x600 pixels sized video illustrated on images
below at first we estimate the logo position with a show option that will display a green rectangle:

ffmpeg -i eagles.mpg -vf delogo=x=700:y=0:w=100:h=50:t=3:show=1 nologo.mpg

Now we can precisely specify the position and the logo presence is almost invisible:

ffmpeg -i eagles.mpg -vf delogo=x=730:y=0:w=70:h=46:t=1 nologo.mpg

23. Advanced Techniques

182

Fixing of shaking video parts
Some parts of the video taken without a tripod or from a vehicle usually includes shaking - small changes
in horizontal and vertical shift that can be in certain cases corrected with a deshake filter:

Video filter: deshake

Description Fixes small changes in the horizontal and vertical shift, useful when the video was taken
without a tripod or from the moving vehicle.

Syntax deshake=x:y:w:h:rx:ry:edge:blocksize:contrast:search:filename
all parameters are optional

Description of parameters

x, y, w, h Coordinates and size of rectangular area where to search for motion vectors, x and y are
top left corner coordinates, w is width and h is height. These parameters have the same
meaning as the drawbox filter which can be used to visualize the position of the
bounding box. This is useful when simultaneous movement of subjects within the frame
might be confused for camera motion by the motion vector search. If any or all of x, y, w
and h are set to -1 then the full frame is used. This allows later options to be set without
specifying the bounding box for the motion vector search. Default - search the whole
frame.

rx, ry specify the maximum extent of movement in x and y directions in the range 0 - 64 pixels,
the default value is 16

edge specifies how to generate pixels to fill blanks at the edge of the frame, the value is an
integer from 0 to 3:
0 - fill zeros at blank locations
1 - original image at blank locations
2 - extruded edge value at blank locations
3 - mirrored edge at blank locations, the default value

blocksize specifies the blocksize to use for motion search, the value is from range 4 - 128 pixels,
the default value is 8

contrast Specifies the contrast threshold for blocks. Only blocks with more than the specified
contrast (difference between darkest and lightest pixels) will be considered. The value is
from range 1 - 255, the default value is 125.

search specifies the search strategy:
0 = exhaustive search, the default value
1 = less exhaustive search

filename if included, a detailed log of the motion search is written to the specified file

Parameters can be entered sequentially in the default sequence or specified with their name in any order:

ffmpeg -i travel.avi -vf deshake fixed_travel.avi
ffmpeg -i travel.avi -vf deshake=contrast=160 fixed.avi
ffmpeg -i travel.avi -vf deshake=blocksize=4:filename=log.txt fixed.avi

23. Advanced Techniques

183

Adding color box to video
With a drawbox filter we can find precise coordinates for the rectangular area where to search for motion
vectors, it is used in the deshake filter. Other use include various diagrams, schemes, etc.

Video filter: drawbox
Description Draws a box with specified color and specified size on the selected area of the input.

Syntax drawbox[=x:y:width:height:color:thickness]
Description of parameters

color, c standard color name or hexadecimal value in the form 0xRRGGBB[AA]
height, h height of the box, the default value is 0

thickness, t thickness of the box edge in pixels, the default value is 4
width, w width of the box, the default value is 0

x, y coordinates of the top-left corner of the box, default values are 0

For example to add a yellow box with the size 600x400 pixels on the SVGA sized input 150 pixels from
the left and 0 pixels from the top, we can use the command:

ffmpeg -i ship.avi -vf drawbox=x=150:w=600:h=400:c=yellow ship1.avi

Number of frames detection
If you need to know how many frames contains your video file, you can use the command:

ffmpeg -i input.mpg -f null /dev/null

The 2 last lines from the displayed output looks like:
frame= 250 fps=0.0 q=0.0 Lsize= 0kB time=00:00:10.00 bitrate= 0.0kbits/s
video:16kB audio:0kB subtitle:0 global headers:0kB muxing overhead -100.000000%

The number 250 after frames= denotes the total number of video frames, it can be also calculated from the
frame rate and duration, but the result is not always exact.

23. Advanced Techniques

184

Detection of ads, section transitions or corrupted encoding
Longer video recorded from TV, internet, etc., can contain short parts with advertisement, transitions,
incomplete frames and other unwanted content. If this parts include black frames, they can be detected with
a blackdetect filter that is described in the table.

Video filter: blackdetect

Description Detects video parts that are almost completely black and outputs lines containing the time
for the start, end and duration of detected black intervals expressed in seconds. Lines are not
displayed if the the loglevel is set below AV_LOG_INFO value.

Syntax blackdetect[=d=duration:pic_th=pbr_threshold:pix_th=px_threshold]

Description of parameters (all are optional)

Parameter name Unit Description Default

black_min_duration, d second Positive floating-point number determining the
minimum duration of the black frames in video.

2.0

picture_black_ratio_th,
pic_th

floating-point
number
between
0 and 1.0

Ratio between fully black pixels and non-black
pixels, for example if the frame size is 400x300 (120
000 pixels in total) and 12000 pixels are not black,
then the ratio is 0.9.

0.98

pixel_black_th,
pix_th

floating-point
number
between
0 and 1.0

Treshold setting which pixels is taken as black, it
equals to the expression:
(absolute_threshold–luminance_minimum_value) /
luminance_range_size)

0.1

For example, to detect black frames from the source mptestsrc, the command is (console output follows):

ffmpeg -f lavfi -i mptestsrc -vf blackdetect -f sdl 'test'

23. Advanced Techniques

185

Detection with blackframe filter
Another filter that detects dark frames is a blackframe filter described in the table:

Video filter: blackframe

Description Detects frames that are almost black and outputs lines containing:
- frame number of detected frame
- percentage of the blackness
- position in the file if known or -1 otherwise
- timestamp
Lines are not displayed if the the loglevel is set below AV_LOG_INFO value.

Syntax blackframe[=amount:[treshold]]
all parameters are optional

Parameters

amount percentage of the pixels which are under the threshold, default value is 98

threshold number below which are pixels considered black, default value is 32

Filters blackdetect and blackframe are similar, but each displays different information. The output from the
blackframe filter using the same video source as with the blackdetect filter is displayed on the image:

ffmpeg -f lavfi -i mptestsrc -vf blackframe -f sdl 'test'

23. Advanced Techniques

186

Selecting only specified frames to output
Special multimedia filters aselect for audio and select for video enable to precisely specify which frames
will remain and which are excluded from the output.

Audio filter: aselect and Video filter: select
Description Selects frames to the output, expression is evaluated for each input frame and the frame is

selected if value of expression is non zero, otherwise the frame is skipped.

Syntax select=expression
default value of expression is 1

Variables in expression
n sequential number of the filtered frame, starting from 0

selected_n sequential number of the selected frame, starting from 0
prev_selected_n sequential number of the last selected frame, NAN if undefined

TB timebase of the input timestamps
pts PTS (Presentation TimeStamp) of the filtered video frame, expressed in TB units,

NAN if undefined

t PTS of the filtered video frame, expressed in seconds, NAN if undefined

prev_pts PTS of the previously filtered video frame, NAN if undefined

prev_selected_pts PTS of the last previously filtered video frame, NAN if undefined

prev_selected_t PTS of the last previously selected video frame, NAN if undefined

start_pts PTS of the first video frame in the video, NAN if undefined

start_t time of the first video frame in the video, NAN if undefined

pict_type
(video only)

type of the filtered frame, can assume one of the following values:
I ... intraframe, P ... predictive frame, B ... bidirectional frame, S ...switch frame,
SI ... switching I frame, SP ... switching P frame, BI ... special intraframe, that is
not a keyframe (VC-1 video codec)

interlace_type
(video only)

frame interlace type, can assume one of the following values: PROGRESSIVE,
TOPFIRST, BOTTOMFIRST

PROGRESSIVE frame is progressive (not interlaced)

TOPFIRST frame is top-field-first

BOTTOMFIRST frame is bottom-field-first

key 1 if the filtered frame is a key-frame, 0 otherwise

pos position in the file of the filtered frame, -1 if the information is not available (for
example for synthetic video)

scene
(video only)

value between 0 and 1 to indicate a new scene; a low value reflects a low
probability for the current frame to introduce a new scene, while a higher value
means the current frame is more likely to be one

23. Advanced Techniques

187

Audio only variables for aselect audio filter

consumed_sample_n number of selected samples before the current frame

samples_n number of samples in the current frame

sample_rate input sample rate

Because the default value of the select expression is 1, the next 2 examples of the select filter usage
produce the same result - all frames are selected to the output (value 0 will select nothing):

ffmpeg -i input.avi -vf select output.avi
ffmpeg -i input.avi -vf select=1 output.avi

To select a part from 20 to 25 second, we can use the command:

ffmpeg -i input.avi -vf select="gte(t\,20)*lte(t\,25)" output.avi

To select intraframes only to the output, we can use the command:

ffmpeg -i input.avi -vf select="eq(pict_type\,I)" output.avi

Scaling input by changing aspect ratios
Chapter Resizing and Scaling Video described the scale filter for resizing the video frame. Another method
is to use the setdar and setsar filters that change the display aspect ratio DAR and sample aspect ratio
SAR, their relation is expressed by equation (details about aspect ratio are in the Glossary):

DAR = width/height * SAR

Video filters: setdar, setsar

Description The setdar filter sets the display aspect ratio and setsar the sample aspect ratio.

Syntax setdar[=r=aspect_ratio[:max=number]]
setdar[=aspect_ratio[:number]]

Description of parameters

r, ratio aspect ratio, value can be a floating point number or expression, default value is 0

max maximum integer value for expressing numerator and denominator when rounding the
aspect ratio to a rational number, default value is 100

Examples how to use the setdar and setsar filters:

ffplay -i input.avi -vf setdar=r=16/9
ffplay -i input.avi -vf setdar=16/9
ffplay -i input.avi -vf setsar=r=1.234
ffplay -i input.avi -vf setsar=1.234

23. Advanced Techniques

188

Screen grabbing
To record the display output to the video file, for example to create a tutorial, we can use the dshow input
device with installed UScreenCapture Direct Show source filter, that can be downloaded from

http://www.umediaserver.net/bin/UScreenCapture.zip

To grab the fullscreen content we can use the command:

ffmpeg -f dshow -i video="UScreenCapture" -t 60 screen.mp4

If we want to grab a specific screen area, we must use the regedit Windows utility to modify certain
registry keys, details are in the README file included in the downloaded UScreenCapture.zip file.

Detailed video frame information
To display information for each video frame we can use a showinfo filter described in the table:

Video filter: showinfo

Description Shows a line containing information about each input video frame, data are in the form of
key:value pairs. The filter has no parameters and should be used with -report option.

Syntax -vf showinfo

Description of displayed parameters

n sequential number of the input frame, starting from 0

pts Presentation TimeStamp of the input frame, expressed as a number of time base units;
the time base unit depends on the filter input pad

pts_time Presentation TimeStamp of the input frame, expressed as a number of seconds

pos position of the frame in the input stream, -1 if this information in unavailable and/or
meaningless (for example in case of synthetic video)

fmt pixel format name

sar sample aspect ratio of the input frame, expressed in the form numerator/denominator

s size of the input frame, expressed in the form widthxheight

i interlaced mode: P for progressive, T for top field first and B for bottom field first

iskey 1 if the frame is a key frame, 0 otherwise

type picture type of the input frame: I for an I-frame, P for a P-frame, B for a B-frame, ? for
unknown type (more in documentation of the AVPictureType enum)

checksum Adler-32 checksum (hexadecimal) of all the planes of the input frame

plane_checksum Adler-32 checksum (hexadecimal) of each plane of the input frame, expressed in the
form [c0 c1 c2 c3]

http://www.umediaserver.net/bin/UAECCapture.zip

23. Advanced Techniques

189

For example the next command produces information printed below, included are the first 3 lines:

ffmpeg -report -f lavfi -i testsrc -vf showinfo -t 10 showinfo.mpg

n:0 pts:0 pts_time:0 pos:-1 fmt:rgb24 sar:1/1 s:320x240 i:P iskey:1 type:I
checksum:88C4D19A plane_checksum:[88C4D19A]
n:1 pts:1 pts_time:0.04 pos:-1 fmt:rgb24 sar:1/1 s:320x240 i:P iskey:1 type:I
checksum:C4740AD1 plane_checksum:[C4740AD1]
n:2 pts:2 pts_time:0.08 pos:-1 fmt:rgb24 sar:1/1 s:320x240 i:P iskey:1 type:I
checksum:B6DD3DEB plane_checksum:[B6DD3DEB]

Audio frequency spectrum
To visualize an audio frequency spectrum we can use a showspectrum filter described in the table:

Multimedia filter: showspectrum

Description Transforms an audio input to the video output

Syntax showspectrum[=s=widthxheight[:slide=number]]

Description of parameters

size, s output video size, default value is 640x480

slide sets if the spectrum will slide along the window, default value is 0

For example the image below displays the sound spectrum created by the command:

ffmpeg -i audio.mp3 -vf showspectrum audio_spectrum.mp4

23. Advanced Techniques

190

Audio waves visualization
The waves from an audio input can be visualized by a showwaves filter described in the table:

Multimedia filter: showwaves

Description Converts input audio to the video containing the representation of the audio waves.

Syntax showwaves[=n=number[:r=rate[:s=video_size]]]

Description of parameters

n number of samples printed on the same column, larger value decreases the frame rate,
cannot be used in combination with the rate parameter

rate, r frame rate, default value is 25, cannot be used in combination with the n parameter

size, s video size, default value is 640x480

For example to visualize the waves from the music.mp3 file to waves.mp4 file, we can use the command:

ffmpeg -i music.mp3 -vf showwaves waves.mp4

Voice synthesis
With included libflite external library, the human voice can be synthesized with an flite audio source that
was derived from Flite (Festival Lite) - a small embeddable TTS (Text to Speech) engine. It is developed
by the CMU Speech Group on Carnegie Mellon University, USA. Flite is completely written in C language
and reimplements the core parts of the Festival architecture for the compatibility between voices designed
for each system. Festival Speech Synthesis System from the University of Edinburgh is a framework for
building the speech synthesis systems. More details about Flite are on http://www.speech.cs.cmu.edu/flite

http://www.speech.cs.cmu.edu/flite

23. Advanced Techniques

191

Audio source: flite

Description Synthesizes a human speech with a selected voice type using the libflite library that is not
included in official Windows binaries due to its big size.

Syntax flite="text"[:v=voice[:n=n_samples]]
flite=textfile=filename[:v=voice[:n=n_samples]]

Description of parameters

list_voices if set to 1, displays the list of available voices

n, nb_samples maximum number of samples per frame, default value is 512

text source text for the speech

textfile filename containing the text

v, voice available voices: female - slt, male - awb, kal, kal16, rms; the default voice is kal and its
sample rate (frequency rate) is 8000 Hz, other voices use 16000 Hz

Because flite library adds to the ffmpeg.exe file over 10 MB, it is not in official binaries and the Windows
binaries can be downloaded from http://ffmpeg.tv/flite.php (Linux and OS X users can compile them). To
display a list of available voices we can use the command:

ffmpeg -f lavfi -i flite=list_voices=1

To let the computer read the text from the Message.txt file with a female voice, the command is:

ffplay -f lavfi -i flite=textfile=Message.txt:v=slt

For example to save the words “Happy New Year to all” to the file wish.wav we can use the command:

ffmpeg -f lavfi -i flite=text="Happy New Year to all":v=kal16 wish.wav

If we want to slow down the speech for a better listening, we can use the command:

ffmpeg -f lavfi -i flite=textfile=text.txt -af atempo=0.5 speech.mp3

Saving output to multiple formats at once
Though it is clear from the command syntax explained in the first chapter, this is a remainder that we can
save the result of processing to multiple formats with one command, for example we can save the output
from flite speech engine to MP3, WAV and WMA formats in one command:

ffmpeg -f lavfi -i flite=textfile=speech.txt speech.mp3 speech.wav speech.wma

We can also combine audio and video formats, if we specify an audio format from the video input format,
only audio stream is included, the file clip.mp3 from the next example contains only audio stream:

ffmpeg -i clip.avi clip.flv clip.mov clip.mp3 clip.mp4 clip.webm

http://ffmpeg.tv/flite.php

23. Advanced Techniques

192

Additional media input to filtergraph
By default input files are specified before any filters with -i options and the first input is available in the
filtergraph with an [in] link label. If we want to filter additional file, we can use an amovie source for audio
and movie source for video files, they are described in the table:

Audio source: amovie & Video source: movie

Description Reads audio and/or video streams from a media (movie) container. Required parameter is
the filename of the media file and optional key=value pairs are separated by a colon.

Syntax movie=video_name[:options]
amovie=audio_name[:options]

Available key=value pairs in options parameter

f,
format_name

format of the movie - container or input device, if not specified, it is determined from the
extension or probed

loop number of time the stream is read in sequence, if -1, the best video (audio with amovie)
stream is selected

sp,
seek_point

seek point in seconds, if set, the input starts from the given time

s,
streams

- stream to be selected, multiple streams are specified with a + sign, order is important
- special names dv (movie) and da (amovie) specify the default (best) video / audio stream
- syntax how to specify particular streams is explained in the first chapter

si,
stream_index

index of the stream to read, if -1, the best stream is selected, it is the default value
(deprecated, the s parameter is preferred)

For example to display a logo on the input video we can use the command:

ffmpeg -i video.mpg -vf movie=logo.png[a];[in][a]overlay video1.mp4

For instance, with the sp (seek_point) option set to 5, the logo will be displayed 5 seconds from the start:

ffmpeg -i video.mpg -vf movie=logo.png:sp=5[a];[in][a]overlay video1.mp4

24. Video on Web
Due to its omnipresence Internet is the top medium for showing your videos created or edited with ffmpeg.
Beside uploading to the popular video sharing websites like YouTube, Vimeo, etc, it is useful to know how
to include a media file to the webpage. To make sure, that users with different browsers and media support
can listen and see your audio and video, it is recommended to provide your media files in all supported
formats for HTML5 and alternatively for Adobe Flash Player.

HTML5 support on main browsers
Adding media files on the web with HTML5 is relatively easy and there are devices that support HTML5,
but not Flash Player, so it is useful to learn what media formats are supported in various browsers. FFmpeg
is able to convert your audio and video to any of specified HTML5 formats. Files in OGG container format
use a Theora video codec and Vorbis audio codec, that are free to use also in commercial projects, the same
free use is available with WebM format. Please note that by default ffmpeg encodes the OGG audio with a
FLAC codec, that these browsers cannot play, an -acodec libvorbis option must be included.

HTML5 Audio Support

Browser MP3 OGG* WAV

Apple Safari 5+ yes no yes

Firefox 3.6+ no yes yes

Google Chrome 6+ yes yes yes

Internet Explorer 9+ yes no no

Opera 10.6+ yes yes yes

Maxthon 3+ yes yes yes

HTML5 Video Support

Browser MP4 OGG WEBM

Apple Safari 5+ yes no no

Firefox 3.6+ no yes yes

Google Chrome 6+ yes yes yes

Internet Explorer 9+ yes no no

Opera 10.6+ no yes yes

Maxthon 3+ yes yes yes

HTML5 support for Internet Explorer is available from the version 9, previous versions 6, 7 and 8 can
install a Google Chrome Frame plugin from

https://developers.google.com/chrome/chrome-frame
An online test how your browser supports particular HTML5 features is located on the web

http://html5test.com

http://html5test.com/
https://developers.google.com/chrome/chrome-frame

24. Video on Web

194

Adding audio with HTML5
To provide our audio for the playback on any major browser, the most versatile format is MP3 supported
on all browsers except Firefox, and for Firefox we provide OGG or WAV format. The new tag in HTML5
for audio inclusion is <audio> tag described in the table:

<audio> tag
all attributes are optional

Attribute Values Description

autoplay autoplay if set, audio starts playing when it is ready

controls controls if set, displayed are controls: Play, Pause, Seeking, Volume

loop loop if set, audio plays over and over again

preload auto, metadata, none auto - entire audio file is loaded
metadata - only metadata are loaded
none - audio file is not loaded with the web page
Do not use it with autoplay attribute; it is recently not supported
in IE and Opera.

src URL absolute or relative URL of the audio file

Because we want to specify for the same audio at least 2 files in a different format, the src attribute of
<audio> tag is not used and between opening <audio> and closing </audio> tag are added multiple
<source> tags. Browser will scan included media files and select the first one it supports for the playback.

<source> tag
src attribute is required

Attribute Values Description

media media_query no browser supports it now, describes type of media resource

src URL absolute or relative URL of the audio file

type MIME_type MIME type of media resources, recently:
audio: audio/mpeg, audio/ogg, audio/wav
video: video/mp4, video/ogg, video/webm

The next HTML code includes audio file with displayed controls and looping, it is saved to text file called
for example audio.htm with other HTML elements like doctype, head, title, body, div, etc.

<audio controls='controls' loop='loop'>
<source src='music.mp3' type='audio/mpeg' />
<source src='music.ogg' type='audio/ogg' />

Audio element is not supported in your browser, please update.
</audio>

To start an automatic playback, we can add the attribute autoplay='autoplay'.

24. Video on Web

195

Audio controls in various browsers

Browser audio player

Firefox 4

Google Chrome 6

Internet Explorer 9

Maxthon 3

Opera 12

Adding video with HTML5
The tag for video in HTML5 is a <video> tag and its attributes autoplay, controls, loop and mute use the
value equal to the attribute name (e.g. loop=’loop’), but many browsers accept skipping this value, so for
not production usage we can use <video autoplay controls loop>.

<video> tag
all attributes are optional

Attribute Values Description

autoplay autoplay if set, video starts playing when it is ready

controls controls if set, button controls are displayed: Play, Pause, Seeking, Volume, Toggle
fullscreen, Subtitles, etc.

height pixels height of the video player

loop loop if set, video plays over and over again

muted muted if set, audio stream is muted, recently not supported in Apple Safari and
Internet Explorer

poster URL URL of image file displayed during video download, if not present,
displayed is the first frame of the video

preload auto
metadata

none

auto - entire audio file is loaded
metadata - only metadata are loaded
none - audio file is not loaded with the web page
Do not use it with autoplay attribute; now it not works in IE.

src URL absolute or relative URL of the video file

width pixels width of the video player

24. Video on Web

196

To make video visible on all major browsers, we must provide at least 2 different formats, the best choice is
MP4 and WEBM. So the src attribute of <video> tag is not used and between opening <video> and closing
</video> tag are added multiple <source> tags described in the previous section. Browser will scan
included media files and select the first one it supports for the playback.
For example to include a video file with displayed controls and looping, we can use the HTML code:

<video controls='controls' loop='loop' width='640' height='480'>
<source src='videoclip.mp4' type='video/mp4' />
<source src='videoclip.webm' type='video/webm' />

video element is not supported in your browser, please update.
</video>

Adding video for Flash Player
For browsers without HTML5 support we can include to the <video> tag an <object> tag for the SWF
format (ffmpeg -f videoclip.mp4 videoclip.swf). The <object> tag contains <param> tags
and <embed> tag for browsers that do not support <object> tag.

<object width='400' height='300'>
<param name='src' value='videoclip.swf' />
<param name='loop' value='true' />
<embed src='videoclip.swf' width='400' height='300' loop='true' />

</object>

Video sharing websites
Successful introduction of the video sharing service by YouTube was followed by many similar websites
in English and other languages. YouTube is still the most popular, but some other servers provide
additional features. Almost all video sharing websites support the following media formats: 3gp, avi, asf,
flv, mkv, mp4, mpegps, mov, ogg, wmv, etc. The list of most popular video sharing webs is in the table.

24. Video on Web

197

Most popular video sharing websites

Name Visitors
monthly

Description
(monthly visitors count is from USA only and grows)

YouTube
youtube.com

800,000,000 - most popular video web, 3rd most visited website overall, over 4 billion
video views daily
- 1080p HD videos, max. 2 GB and 15 minutes
- support for 3D videos and videos in 4k format (4096x3072 resolution)
- available on mobile phones, iPod, PlayStation, Xbox, etc.
- Flash Player and HTML5 video
- video editor, captions, etc.
- user comments, rating, video responses, etc.
- images and audio files unsupported

DailyMotion
dailymotion.com

61,000,000 HD videos, maximum file size 2 GB and 60 minutes, audio 90 kbps MP3
or AAC, Flash Player or HTML5
Users can create slideshows from images, 30 images max, MP4 output

Vimeo
vimeo.com

17,000,000 HD videos (1920x1080), max. file size 5 GB, unlimited duration
- Flash Player, HTML5
- over 8 million registered users, 65 million unique visitors monthly
- bitrate of encoded videos is among the highest (2000 kbps on average,
5000 maximum)

Metacafe
metacafe.com

9,200,000 - short entertainment videos (movies, games, music, sport, TV clips, etc.)
- max. file size 100 MB, videos are converted to 320x240 FLV, VP6, bit
rate 330 kbps, MP3 audio
- 17 million views per day, 40 million unique monthly visitors worldwide

Break
break.com

6,800,000 - funny videos (pop culture, lifestyle, trasportation, games, etc.)
- videos selected to homepage get reward: first $400, second $500, third
and all next $600

Veoh
veoh.com

6,100,000 - videos can be organized to series and channels
- blocked in several countries

RuTube
rutube.com

4,000,000 max. file size 300 MB and VGA resolution, Flash Player; in Russian, nice
interface, reported 30 mil. unique visitors monthly, also Facebook login

Internet Archive
archive.org

1,600,000 - users can upload video, audio, documents, free books, etc.
- permanent storage

Multiply.com 695,000 user profiles, very popular

Qik.com 505,000 mobile-based

Phanfare.com 323,000 photos and videos

Sevenload.com 192,000 blocked in several countries

OpenFilm.com 114,000 films, music, community
ScienceStage.com 100,000 science-oriented media portal, users can upload also files in mp3, vob and

swf formats

24. Video on Web

198

Videoprocessing on webserver
Due to popularity of ffmpeg and video sharing websites some webhosting companies offer the support for
videoprocessing on the server with ffmpeg that requires a bigger CPU load than traditional websites. The
preview of several webhosts including the parameters they offer is in the table:

Webhosting services with FFmpeg support

Name URL Description

CirtexHosting
www.cirtexhosting.com

Supported: FFmpeg, FFmpeg-PHP, Mplayer + Mencoder + Yamdi +
Yasm, flv2tool + GD Library, Xvidcore + Faac + Faad2, Libogg +
Libvorbis + Libtheora, Libx264+ Libopencore-amrnb + Libopencore-
amrwb, LAME MP3 Encoder

GlowHost
www.glowhost.com

Available modules: FFmpeg and FFmpeg-PHP, GD Library 2+, MPlayer
and MEncoder, FAAD/FAAC, FLVTool2, Libogg and Libvorbis, LAME
MP3 Encoder, x264 / H.264, MPEG-4 AVC

HostUpon
www.hostupon.com

All modules to start a video website, Youtube clone or social network
with video uploading. Scripts on FFmpeg hosting: Boonex Dolphin,
PHPMotion, Social Engine, ABKsoft Scripts, Joomla Video Plugin,
Clipshare, ClipBucket, Social Media, Rayzz, Vidi Script etc.

PacificHost.com
www.pacifichost.com

Webhosting with option to create and run online video sharing websites
like YouTube. They employ software to convert video: ffmpeg-php,
mplayer, mencoder, flvtool2, lame, libogg, libvorbis, xvid, theora, faac,
phpshield loaders. PacificHost's FFmpeg includes the modules: libfaac,
libfaad, libxvid, libamr-nb, libamr-wb, libgsm, libogg, libtheora, and
libvorbis.

VPSDeploy
https://vpsdeploy.com/whm-
cpanel-ssd-hosting.php

Managed hosting with: FFmpeg support, flvtool2, X.264 plugin, libogg,
flac and LibTheora for videostreaming

file://C:/a/ffmpeg/1/https://vpsdeploy.com/whm-cpanel-ssd-hosting.php
file://C:/a/ffmpeg/1/https://vpsdeploy.com/whm-cpanel-ssd-hosting.php
http://www.pacifichost.com/ffmpeg-hosting.shtml
http://www.hostupon.com/ffmpeg-hosting.html
http://www.glowhost.com/
http://www.cirtexhosting.com/

24. Video on Web

199

Monetizing video uploads
Some video sharing websites offer a payment for viewing uploaded videos:

YouTube Partner Program gives creators tools and programs to build audiences and to monetize their
videos. Monetized videos will display adds, more information is on the webpage
http://www.youtube.com/account_monetization

Blip.tv pays 50% from included adds, but creator must upload and an original video series and not all
series are accepted, more information is on
http://blip.tv/users/apply

NowVideo.eu pays $10 for each 1000 video streams (complete visitor views), details are on
http://www.nowvideo.eu/affiliate.php

Break.com selects interesting videos from users and includes them to its homepage. Creators of these
videos are paid for each video from $200 to $600, the amount depends on the user’s decision to sell or
to license the video and other conditions, more information is on
http://info.break.com/break/html/upload_videos.html

http://info.break.com/break/html/upload_videos.html
http://www.nowvideo.eu/affiliate.php
http://blip.tv/users/apply
http://www.youtube.com/account_monetization

25. Debugging and Tests
To detect errors and to test various inputs, parameters, performance, etc. we can use several FFmpeg filters,
options and sources. When the console output is long, the -report option will save the test results to the file
named ffmpeg-yyyymmdd-hhmmss.log , where the part in italic typeface denotes the current date and time.

debug, debug_ts and fdebug options
The basic debugging tool in FFmpeg is a -debug option that has 17 possible values described in the table:

Option: debug

Description Prints specific debugging information about selected audio, subtitle or video stream(s).

Syntax -debug[:stream_specifier]
Description of available values

pict picture info

rc rate control

bitstream bitstream

mb_type macroblock (MB) type

qp per-block quantization parameter (QP)

mv motion vector

dct_coeff DCT coefficient

skip skip

startcode startcode

pts presentation timestamp

er error recognition

mmco memory management control operations (H.264)

bugs bugs

vis_qp visualize quantization parameter (QP), lower QP are tinted greener

vis_mb_type visualize block types

buffers picture buffer allocations

thread_ops threading operations

For example, we save a short output from mptestsrc source to an MP4 (H.264) file with an mmco value:

ffmpeg -debug mmco -f lavfi -i mptestsrc -t 0.5 output.mp4

To the console output were added 12 lines describing individual frames; description of included terms:
QP - quantization parameter
NAL - Network Abstraction Layer units
Slice: B - bi-predictive, I - intra-coded, P - predicted

25 Debugging and Tests

201

[libx264 @ 03decb60] frame= 0 QP=13.00 NAL=3 Slice:I Poc:0 I:1024 P:0 SKIP:0 size=93 bytes
[libx264 @ 03decb60] frame= 1 QP=31.03 NAL=2 Slice:I Poc:2 I:1024 P:0 SKIP:0 size=1376 bytes
[libx264 @ 03decb60] frame= 2 QP=21.76 NAL=2 Slice:P Poc:10 I:1 P:222 SKIP:801 size=253 bytes
[libx264 @ 03decb60] frame= 3 QP=24.00 NAL=2 Slice:B Poc:6 I:1 P:8 SKIP:1014 size=44 bytes
[libx264 @ 03decb60] frame= 4 QP=21.00 NAL=0 Slice:B Poc:4 I:1 P:2 SKIP:1021 size=26 bytes
[libx264 @ 03decb60] frame= 5 QP=22.94 NAL=0 Slice:B Poc:8 I:1 P:5 SKIP:1018 size=32 bytes
[libx264 @ 03decb60] frame= 6 QP=25.26 NAL=2 Slice:P Poc:18 I:5 P:158 SKIP:861 size=238 bytes
[libx264 @ 03decb60] frame= 7 QP=23.51 NAL=2 Slice:B Poc:14 I:2 P:7 SKIP:1015 size=45 bytes
[libx264 @ 03decb60] frame= 8 QP=23.99 NAL=0 Slice:B Poc:12 I:3 P:6 SKIP:1015 size=46 bytes
[libx264 @ 03decb60] frame= 9 QP=25.47 NAL=0 Slice:B Poc:16 I:1 P:9 SKIP:1012 size=46 bytes
[libx264 @ 03decb60] frame= 10 QP=28.09 NAL=2 Slice:P Poc:24 I:6 P:39 SKIP:979 size=118 bytes
[libx264 @ 03decb60] frame= 11 QP=26.42 NAL=2 Slice:B Poc:22 I:1 P:13 SKIP:1009 size=63 bytes
[libx264 @ 03decb60] frame= 12 QP=25.49 NAL=0 Slice:B Poc:20 I:4 P:9 SKIP:1011 size=62 bytes

Another debugging option is -debug_ts that prints a timestamp information during processing, for instance
we can modify the previous example and use only 0.1 second time (3 frames):

ffmpeg -debug_ts -f lavfi -i mptestsrc -t 0.1 output.mp4

To the console output are added the next lines:

demuxer -> ist_index:0 type:video next_dts:NOPTS next_dts_time:NOPTS next_pts:NOPTS
next_pts_time:NOPTS pkt_pts:0 pkt_pts_time:0 pkt_dts:0 pkt_dts_time:0 off:0
decoder -> ist_index:0 type:video frame_pts:0 frame_pts_time:0 best_effort_ts:0
best_effort_ts_time:0 keyframe:1 frame_type:1
[libx264 @ 023ef4c0] using mv_range_thread = 88
demuxer -> ist_index:0 type:video next_dts:40000 next_dts_time:0.04 next_pts:40000
next_pts_time:0.04 pkt_pts:1 pkt_pts_time:0.04 pkt_dts:1 pkt_dts_time:0.04 off:0
decoder -> ist_index:0 type:video frame_pts:1 frame_pts_time:0.04 best_effort_ts:1
best_effort_ts_time:0.04 keyframe:1 frame_type:1
demuxer -> ist_index:0 type:video next_dts:80000 next_dts_time:0.08 next_pts:80000
next_pts_time:0.08 pkt_pts:2 pkt_pts_time:0.08 pkt_dts:2 pkt_dts_time:0.08 off:0
decoder -> ist_index:0 type:video frame_pts:2 frame_pts_time:0.08 best_effort_ts:2
best_effort_ts_time:0.08 keyframe:1 frame_type:1
demuxer -> ist_index:0 type:video next_dts:120000 next_dts_time:0.12 next_pts:120000
next_pts_time:0.12 pkt_pts:3 pkt_pts_time:0.12 pkt_dts:3 pkt_dts_time:0.12 off:0
decoder -> ist_index:0 type:video frame_pts:3 frame_pts_time:0.12 best_effort_ts:3
best_effort_ts_time:0.12 keyframe:1 frame_type:1
No more output streams to write to, finishing.
[libx264 @ 023ef4c0] scene cut at 1 Icost:252652 Pcost:248376 ratio:0.0169 bias:0.0250 gop:1 (imb:0
pmb:900)
[libx264 @ 023ef4c0] frame= 0 QP=13.00 NAL=3 Slice:I Poc:0 I:1024 P:0 SKIP:0 size=93
bytes
muxer <- type:video pkt_pts:0 pkt_pts_time:0 pkt_dts:-1024 pkt_dts_time:-0.08 size:782
[libx264 @ 023ef4c0] frame= 1 QP=21.48 NAL=2 Slice:I Poc:2 I:1024 P:0 SKIP:0 size=926
bytes
muxer <- type:video pkt_pts:512 pkt_pts_time:0.04 pkt_dts:-512 pkt_dts_time:-0.04 size:926
[libx264 @ 023ef4c0] frame= 2 QP=26.98 NAL=2 Slice:P Poc:4 I:1 P:6 SKIP:1017 size=50
bytes
muxer <- type:video pkt_pts:1024 pkt_pts_time:0.08 pkt_dts:0 pkt_dts_time:0 size:50

Option -fdebug has only 1 possible value ts and is often used together with -debug_ts option for various
tests, for instance to debug DTS (decoding timestamp) and PTS (presentation timestamp) relations. Using
the modified command from previous example, the console output shows the added lines that are listed
after the command:

25 Debugging and Tests

202

ffmpeg -fdebug ts -f lavfi -i mptestsrc -t 0.1 output.mp4

[libx264 @ 0206cb00] using mv_range_thread = 88
[lavfi @ 0229c2c0] ff_read_packet stream=0, pts=1, dts=NOPTS, size=393216, duration=0, flags=0
[lavfi @ 0229c2c0] read_frame_internal stream=0, pts=1, dts=1, size=393216, duration=1, flags=1
[lavfi @ 0229c2c0] ff_read_packet stream=0, pts=2, dts=NOPTS, size=393216, duration=0, flags=0
[lavfi @ 0229c2c0] read_frame_internal stream=0, pts=2, dts=2, size=393216, duration=1, flags=1
[lavfi @ 0229c2c0] ff_read_packet stream=0, pts=3, dts=NOPTS, size=393216, duration=0, flags=0
[lavfi @ 0229c2c0] read_frame_internal stream=0, pts=3, dts=3, size=393216, duration=1, flags=1
No more output streams to write to, finishing.
[libx264 @ 0206cb00] scene cut at 1 Icost:252652 Pcost:248376 ratio:0.0169 bias:0.0250 gop:1 (imb:0
pmb:900)
[libx264 @ 0206cb00] frame= 0 QP=13.00 NAL=3 Slice:I Poc:0 I:1024 P:0 SKIP:0 size=93 bytes
[libx264 @ 0206cb00] frame= 1 QP=21.48 NAL=2 Slice:I Poc:2 I:1024 P:0 SKIP:0 size=926 bytes
[libx264 @ 0206cb00] frame= 2 QP=26.98 NAL=2 Slice:P Poc:4 I:1 P:6 SKIP:1017 size=50 bytes

Flags for error detection
Detection of errors in ffmpeg processing can be specified by an -err_detect option described in the table:

Option: err_detect

Description Detects an error, which type is specified by the flag.

Syntax -err_detect[:stream_specifier] flag

Description of available flags

aggressive consider things that a sane encoder should not do as an error

bitstream detect bitstream specification deviations

buffer detect improper bitstream length

careful consider things that violate the specification and have not been seen in the wild as errors

compliant consider all specification non compliances as errors

crccheck verify embedded CRCs

explode abort decoding on minor error detection

For example, to detect an improper bitstream length we can use the command:

ffmpeg -report -err_detect buffer -i input.avi output.mp4

Logging level setting
Logging level determines what content is displayed in the console output during processing, available
values for modifications are: quiet, panic, fatal, error, warning, info, verbose, debug. To set the logging
level we can use option -v or -loglevel option, for example for a verbose level we can use the command:

ffmpeg -loglevel verbose -i input.avi output.mp4

25 Debugging and Tests

203

Timebase configuration test
Filters asettb and settb are used to test timebase configuration, asettb is for audio input and settb for video
input. Both filters have the same parameters and are described in the common table:

Audio filter: asettb & Video filter: settb

Description Both filters set the time base, that will be used for output frame timestamps. This setting is
used to test the timebase configuration and similar features. The syntax and parameters of
both filters are the same.

Syntax settb=expr
result of expr is a rational number, can contain variables described below

Variables available in expression

AVTB sets default timebase value (AVTB = default timebase)

intb input timebase

sr sample rate, only for asettb

The next examples set the time base, first one to AVTB, second one to 0.3 and third one to 1.5 multiple of
the input timebase:

ffmpeg input.mpg -vf settb=AVTB output.mpg
ffmpeg input.mpg -vf settb=0.3 output.mpg
ffmpeg input.mpg -vf settb=1.5*intb output.mpg

Testing encoding features
To generate various test patterns for a discrete cosine luma, chroma, for frequency and amplitude of the
luma and chroma, etc. we can use an mptestsrc filter from MPlayer project that is described in the table:

Video filter: mptestsrc

Description Generates various tests related to chroma, luma and other video properties. If used without
parameters, all test are performed until user stops the process.

Syntax mptestsrc[=t=test_type[:d=duration[:r=rate]]]
Description of parameters

test, t - name of the selected test, available tests are dc_luma, dc_chroma, freq_luma,
freq_chroma, amp_luma, amp_chroma, cbp, mv, ring1, ring2
- default value is "all"

duration, d duration of test in seconds or in HH:MM:SS format

r frame rate, the default value is 25

The next table illustrates the samples of particular test values.

25 Debugging and Tests

204

Pattern Syntax Picture
DC luma mptest=t=dc_luma

DC chroma mptest=t=dc_chroma

luma frequency mptest=t=freq_luma

chroma frequency mptest=t=freq_chroma

luma amplitude mptest=t=amp_luma

chroma amplitude mptest=t=amp_chroma

Coded Block Pattern (CBP) mptest=t=cbp

Motion Vector (MV) mptest=t=mv

test ring 1 mptest=t=ring1

test ring 2 mptest=t=ring2

25 Debugging and Tests

205

Test patterns
To detect various bugs and to provide sources for the video tests FFmpeg contains 3 special video sources
listed below. Except the color parameter they share the same parameters with the color source that is
described in the chapter Image Processing, section Creating images.
RGB test pattern
To test RGB and BGR color spaces available is the video source
named rgbtestsrc,

ffplay -f lavfi -i rgbtestsrc

Color pattern with scrolling gradient and
timestamp
To generate a video pattern similar to TV pattern, the testsrc video
source can be used with the command:

ffplay -f lavfi -i testsrc

SMPTE bars pattern
Color bars pattern from the Society of Motion Picture and Television
Engineers (SMPTE) can be created with the command:

ffplay -f lavfi -i testsrc

Simple packet dumping or with payload (hexadecimally)
For more precise debugging also the payload can be dumped with -hex option, usually with -report option
to save results to the file in the current directory. Using this option, the processing is very slow and the
report file is much bigger. The example of the command is:

ffmpeg -dump -hex -report -i input.mpg output.flv

25 Debugging and Tests

206

CPU time used and memory consumption
To display used CPU time and memory consumption during processing we can use a -benchmark or
-benchmark_all options that produce similar output:

-benchmark option shows results after encoding
-benchmark_all shows results during encoding, in various steps

The computer systems that do not support maximum memory consumption data will display 0 instead of
value. Both options are global options and are entered at the beginning of the command, for example:

ffmpeg -benchmark -i input.avi output.webm

At the end of the console output is added a line starting with bench: and the utime denotes the time that
was used by the CPU (Central Processing Unit of the computer) during processing. The benchmark_all
option displays the results during processing, the screen after completing is on the image below.

ffmpeg -benchmark_all -i input.avi output.mpg

Glossary
4cc or fourcc
fourcc (also FourCC - Four Character Code) is an identifier for a video codec, compression format, color
or pixel format used in media files. A character means a 1 byte (8 bit) value, so fourcc always have 32 bits
(4 bytes) in a file. 4 characters in a fourcc is generally limited to be within the human readable characters
in the ASCII table, so it is easy to convey and communicate what the fourccs are within a media file. AVI
files is the most widespread, or the first widely used media file format, to use fourcc identifiers for the
codecs used to compress the various video/audio streams within the files. Some of the more well known
fourccs include DIVX, XVID, H264, DX50, etc. Examples of using fourcc in FFmpeg:

-vtag (or -tag:v) option sets the fourcc value for the video stream
-atag (or -tag:a) option sets the fourcc value for the audio stream
-tag option sets the fourcc value for all streams

Aspect ratio
Aspect ratio is a ratio between the width and height of an image or a video frame.

Types of aspect ratio

Type Abbreviation Description

Display Aspect Ratio DAR Aspect ratio of images and videos as displayed.
Alternative names are Image Aspect Ratio (IAR) and Picture
Aspect Ratio.

Storage Aspect Ratio SAR Aspect ratio in which an image or video frames are stored,
depends on the video source.

Pixel Aspect Ratio PAR Ratio of a pixel width to its height, in most LCDs it is 1:1, but
some analog devices use the rectangular pixels.

Original Aspect Ratio OAR Term from Home Cinema standard, denotes the aspect in
which the video was originally created, many films has wide
aspect like

Modified Aspect Ratio MAR Home Cinema standard term, means the aspect to which the
OAR was adjusted to conform with aspect ratio of output
screen available, usually 4:3 or 16:9.

The relation between DAR, SAR and PAR can be expressed by equation

DAR = PAR x SAR

In ffmpeg there is an -aspect option that can be used to specify an output video:

-aspect[:stream_specifier]

Thomas Alva Edison and William Dickson created in 1892 an universal standard with the film of 35 mm
width, where perforations determine a frame size of 24.89x18.67 mm, it is approximately a 4:3 or 1.33:1
ratio. Since then many aspect ratios where created and some of them are described in the next table.

Glossary

208

Common aspect ratios

1.33:1 or 4:3 Original film aspect ratio widely used today for LCD monitors, TV screens, camcorders,
etc. It is also a standard for MPEG-2 compression.

1.618:1 Golden ratio, FFmpeg contains it as a built in constant PHI, where
PHI=(1+sqrt(5))/2

1.77:1 or 16:9
(also 1.78:1)

Widescreen standard used for High Definition TV, LCD monitors, camcorders, etc. It is
one of 3 aspect ratios in MPEG-2 standard. Ratio 16:9 can be derived from 4:3, where 42

= 16 and 32 = 9.

1.85:1 Widescreen cinema standard in US and UK introduced in 1953.

2.2:1 or 11:5 70 mm film standard developed in 1950s, it is also a part of MPEG-2 standard with the
value 2.21:1.

2.37:1 New standard introduced in 2010 in so called "21:9 cinema displays". The ratio is
derived from 4:3, where 43:33 = 64:27 = 2.37.

2.39:1 35 mm film standard that is anamorphic and is used from 1970 as ‘Scope’ or Panavision
format. Blu-ray discs utilize this ratio as 2.4:1 and record films in resolution 1920x800.

CIE
International Commission on Illumination (in French CIE - Commission internationale de l'éclairage) is an
institution and authority on light, illumination, color spaces etc., more in the chapter Color Corrections.

Color depth, bit depth, bits per pixel
Color depth, bit depth and bits per pixel are terms describing how many bits are used to specify color
properties of each pixel components from the image. The most used color depths are in the table:

Common color depths
Bits per pixel Number of colors Corresponding pixel formats available in ffmpeg
1 (B&W) 21 = 2 monob, monow
2 (CGA) 22 = 4 no pixel format (2 bpp was used in early computers)
3 23 = 8 no pixel format (used in early home computers with TV display)
4 (EGA) 24 = 16 rgb4, rgb4_byte, bgr4, bgr4_byte

8 (VGA) 28 = 256 gray, pal8, bgr8, rgb8
12 212 = 4096 yuv420p, yuv411p, yuvj420p, nv12, nv21, rgb444be, rgb444le
16 high color 216 = 65,536 yuyv422, yuv422p, yuvj422p, yuv440p, yuvj440p, rgb565be, etc.
24 true color 21 = 16,777,216 rgb24, bgr24, yuv444p, yuvj444p, gbrp, 0rgb, rgb0, yuva422p, etc.
32 true+alpha 24-bit with alpha argb, rgba, abgr, bgra, yuva444p, yuv422p16be, yuv422p16le
30 deep color 230 = 1,073,741,824 yuv444p10be, yuv444p10le, gbrp10be, gbrp10le
36 deep color 236=68,719,476,736 yuva444p9be, yuva444p9le, gbrp12be, gbrp12le, yuv444p12be etc.
48 deep color over 280 trillion rgb48be, rgb48le, bgr48be, bgr48le, yuva422p16be, yuva422p16le

Glossary

209

Color models and color spaces
Color space is derived from a color model. Color models describe
the methods that can be used to model the human vision. When such
mathematical model describing how to represent the colors as
numbers is supplemented with a precise definitions for the
interpretation of these numbers, such set of colors is regarded to be
a color space. Numeric color representations commonly use 3 or 4
components to describe each color. More precise specification requires bigger numbers, details are in the
previous section. 5 color models are considered major: CIE, CMYK, HSL/HSV, RGB and YUV and video
technologies utilize commonly RGB and YUV. Computer monitors use pixels to display information and
color spaces are implemented as the pixel formats, their list is in the second chapter.

Color vision
While human ear is sensitive to the vibrations with the frequency from 16 to 20,000 Hz, human eye is able
to perceive electromagnetic waves with the frequency from about 405 THz (740 nanometres) to 789 THz
(380 nanometers). The dark light without a color is perceived with the special eye cells called cones and the
trichromatic vision is provided by the rod cells. 3 different types of rod cells are sensitive to 3 basic colors:
red, green and blue:

L (long waves) rods - sensitive to waves from about 564 to 580 nm - red color
M (medium waves) rods - sensitive to waves from about 534 to 545 nm - green color
S (short waves) rods - sensitive to waves from about 420 to 440 nm - blue color

The peak sensitivity of the rods is for the waves of about 498 nm, therefore the green color is the perceived
better than the red color and even better than the blue color, more details are in the chapter Interlaced
Video.

DCT - Discrete Cosine Transform
Discrete cosine transform is used in compression of audio and visual data with lossy codecs, where it
reduces the amount of stored data several times. It transforms a complex signal to its complex spectrum
using a sum of cosine functions that oscillate at different frequencies. DCT is a special type of a discrete
Fourier transform (DFT), where input and output samples are real numbers (DFT works with complex
numbers). Examples of DCT use with ffmpeg:

option -dct[:stream_specifier] to set DCT algorithm for any codec
option -idct[:stream_specifier] to set DCT implementation for any codec
value ildct (use interlaced DCT) in -flags option for any codec
value dct_coeff in -debug option for any codec
value dct (sum of absolute DCT transformed differences) and value dctmax in -cmp, -subcmp, -mbcmp,
-ildctcmp, -skipcmp and -precmp options for any codec
option -skip_idct[:stream_specifier] option for any codec

Decoder
During transcoding, decoder processes encoded data packets from the demuxer and produces uncompressed
frames for the next processing. Definition from FFmpeg documentation:
"Decoders are configured elements in FFmpeg which allow the decoding of multimedia streams."
The list of decoders can be displayed with the command:

ffmpeg -decoders

Glossary

210

Demuxer (demux)
In transcoding process, demuxer (also demux and demultiplexer) reads the input file(s) and produces
encoded data packets that are sent to the decoder for decoding.
Definition from FFmpeg documentation:
"Demuxers are configured elements in FFmpeg which allow to read the multimedia streams from a
particular type of file."
Demuxers are listed among available formats, details are in the second chapter. Information about a
particular demuxer can be displayed with the command:

ffmpeg -h demuxer=demuxer_name

Encoder
During transcoding encoder processes uncompressed frames and encodes them according to the selected
codec to the data packets that are sent to the demuxer, usually with some compression, lossy or lossless.
Definition of the encoder from FFmpeg documentation:
"Encoders are configured elements in FFmpeg which allow the encoding of multimedia streams."
The list of encoders is in the second chapter and can be displayed with the command:
ffmpeg -encoders
To display a detailed information about a particular encoder we can use the command:
ffmpeg -h encoder=encoder_name

FFmpeg configuration
The possibilities of a native FFmpeg source code are improved by including the code of additional software
libraries from other open source projects. These libraries are included before the compilation using an
--enable-library option to the configuration file named configure. With every console usage of ffmpeg,
ffplay and ffprobe tools is displayed the actual FFmpeg configuration with enabled additional libraries, like
in the next console output:

configuration: --enable-gpl --enable-version3 --disable-pthreads --enable-
runtime-cpudetect --enable-avisynth --enable-bzlib --enable-frei0r --enable-
libass --enable-libcelt --enable-libopencore-amrnb --enable-libopencore-amrwb
--enable-libfreetype --enable-libgsm --enable-libmp3lame --enable-libnut
--enable-libopenjpeg --enable-librtmp --enable-libschroedinger --enable-
libspeex --enable-libtheora --enable-libutvideo --enable-libvo-aacenc
--enable-libvo-amrwbenc --enable-libvorbis --enable-libvpx --enable-libx264
--enable-libxavs --enable-libxvid --enable-zlib
libavutil 51. 73.101 / 51. 73.101
libavcodec 54. 56.100 / 54. 56.100
libavformat 54. 27.101 / 54. 27.101
libavdevice 54. 2.100 / 54. 2.100
libavfilter 3. 16.104 / 3. 16.104
libswscale 2. 1.101 / 2. 1.101
libswresample 0. 15.100 / 0. 15.100
libpostproc 52. 0.100 / 52. 0.100

Displayed are also versions of FFmpeg native libraries: libavutil, libavcodec, etc.

Glossary

211

JPEG
JPEG has usually 2 meanings:

Joint Photographic Experts Group that is a predecessor of Moving Pictures Experts Group (MPEG).
JPEG group was founded in 1986 and created JPEG, JPEG 2000 and JPEG XR standards.
lossy compression method for images and video frames with about 10:1 compression without a visible
decreasing of quality, it is used in many image formats including JPG images that are widely used on
the webpages and in digital cameras.

Due to the lossy compression JPEG format is not suited for multiple editing and certain technical tasks.
Segments that create the JPEG image are delimited with various markers (SOI, SOF0, SOF2, DHT, etc.).
During encoding the content is converted to the YCbCr (YUV in FFmpeg pixel formats) color space, where
Y denotes the luminance channel and Cb and Cr two chrominance channels. Chrominance channels are
optionally downsampled and each channel is split to 8x8 blocks that are converted to the frequency domain
by a normalized 2-dimensional discrete cosine transform (DCT) of type II.
Examples of using JPEG and derived standards in FFmpeg:

mjpeg2jpeg bitstream filter converts MJPEG/AVI1 packets to complete JPEG/JFIF packets
mjpegadump bitstream filter is used for conversion to MJPEG file format
decoders and encoders based on JPEG: jpeg2000, jpegls, ljpeg, mjpeg, mjpegb (only decoder), nuv
(RTJPEG), sp5x (Sunplus JPEG), adpcm_ima_smjpeg (audio, only decoder)
file formats: ingenient (raw MJPEG, only decoding), mjpeg, mpjpeg (MIME multipart, only encoding),
smjpeg (Loki SDL MJPEG)

Macroblock
Division of image or video frame to the macroblocks is a part of encoding using the discrete cosine
transform (DCT). In FFmpeg are macroblocks used in various AVC codec context options, H.263 encoder
options, ProRes encoder options, libx264 options, libxavs options, etc.

Glossary

212

Motion vector
Motion vector represents a macroblock in a picture according to the position of macroblock in another
picture (reference picture). Motion vector is the main element in the motion estimation during video
compression. The official definition from the H.264 standard is:
A two-dimensional vector used for inter prediction that provides an offset from the coordinates in the
decoded picture to the coordinates in a reference picture.
Examples of motion vector use in FFmpeg:

value mv4 (use four motion vector by macroblock (mp4)) in -flags option for any codec
value guess_mvs (iterative motion vector (MV) search) in -ec (error concealment strategy) option for
any codec
value mv (motion vector) in -debug option for any codec
-vismv[:stream_specifier] (visualize motion vector) option for any codec
-me_range[:stream_specifier] (limit motion vectors range) option for any codec
-bidir_refine option for any codec (refine 2 motion vectors used in bidirectional macroblocks)
deshake filter uses x, y, w and h parameters to specify a rectangular area to search for motion vectors

MPEG
MPEG (pronunciation "em-peg") stands for Moving Pictures Experts Group, what is a team of multimedia
experts established by ISO/IEC in 1988 to develop standards for audio and video compression and
transmission. MPEG standards include:

MPEG-1
MPEG-2
MPEG-4
MPEG-7
MPEG-21

MPEG is divided to the teams called working groups.

MPEG-1
Official definition of the standard is: "Coding of moving pictures and associated audio for digital storage
media at up to about 1.5 Mbps." It was standardized in 1993 and the primary target was to encode video
and sound for a storage on the Compact Disc. MPEG-1 is used on Audio CD, Video CD and optionally on
SVCD and low quality DVD. Before MPEG-2 it was also used on digital satellite and cable TV networks.
The part of the standard is a popular audio format MP3, what is abbreviation of MPEG-1 Audio Layer III.
In ffmpeg you can select this format with the option -f mpeg1video, for example:
ffmpeg -i input.avi -f mpeg1video output.mpg

MPEG-2
MPEG-2 standard official definition is: Generic coding of moving pictures and associated audio
information (ISO/IEC 13818). This wide standard was released in 1995 and contains transport, video and
audio specifications for broadcast TV. Its compression scheme is used for:

terrestrial digital TV, namely ATSC, DVB and ISDB
satellite digital TV, e.g. Dish Network
digital cable TV
Super Video CD, DVD Video and occasionally on Blu-ray Discs

In ffmpeg you can select this format with the option -f mpeg2video, for example:
ffmpeg -i input.avi -f mpeg2video output.mpg

Glossary

213

MPEG-4
The official definition of the standard by ISO/IEC is: "Coding of audio-visual objects". It was standardized
in 1998 and the main features are:

new encoding algorithm ACE (Advanced Coding Efficiency), that enables about 11 times less data
storage/bandwidth than MPEG-2
decoder is a rendering processor and the compressed bitstream describes 3D shapes and surface texture
supports MPEG-J (Java API), what is program solution for developing of custom interactive
multimedia applications
supports IPMP (Intellectual Property Management and Protection) for the use of proprietary
technologies to manage and protect content like DRM (Digital Rights Management).

For output files with MP4 extension ffmpeg automatically selects h264 encoder and yuv420p pixel format.

Muxer (mux)
During transcoding muxer (also mux or multiplexer) processes encoded data packets and produces a file of
the specified format. Definition of the muxer in FFmpeg documentation:
"Muxers are configured elements in FFmpeg which allow writing multimedia streams to a particular type of
file."
The list of muxers is in the second chapter among available formats. To display details about a particular
muxer we can use the command:
ffmpeg -h muxer=muxer_name

Pixel
Pixel or pel is derived from picture element and represents the smallest controllable element of the digital
image or video frame. The shape of the pixel is usually a square, but some frame resolutions use
rectangular pixels. The ratio between pixel width and height is a pixel aspect ratio, often abbreviated PAR.
ffmpeg contains pixel formats that contain 1, 3 or 4 components and are displayed with the command:
ffmpeg -pix_fmts

Protocol
The term protocol in computer terminology usually means a set of communication rules for data receiving
and transmitting. Definition of the protocol in FFmpeg documentation:
"Protocols are configured elements in FFmpeg which allow to access resources which require the use of a
particular protocol."
The list of available protocols is in the second chapter and can be displayed with the command:
ffmpeg -protocols
Examples of protocols are http (Hypertext Transfer Protocol), rtmp (Real-Time Messaging Protocol), tcp
(Transmission Control Protocol), udp (User Datagram Protocol), etc.

Quantization
Quantization of digital signal involves reducing a range of values to a representative single value. Media
processing includes audio and video quantization, in audio are quantized sound amplitudes and video
encoding involves color and frequency quantization. Both audio and video quantization can utilize the DCT
transform. Examples of ffmpeg options related to quantization:

value naq (normalize adaptive quantization) in -flags option for any codec
qp (quantization parameter) and vis_qp (visualize QP) values in -debug option for any codec
-trellis[:stream_specifier] (rate-distortion optimal quantization) option for any codec

Glossary

214

Sampling and sampling rate
To sample a continuous (analog) signal means to reduce it to a discrete
signal, for instance sound waves (illustrated on the image) are converted to
a sequence of samples. Values of these samples are expressed in numbers
and this digital form can be saved to computer files. Sampling rate (or
frequency rate) determines the number of samples per second, typical audio
sample rates are multiples of 8000 Hz and 11025 Hz. Human ear sensitivity
range is from 16 Hz to 20 kHz and due to sampling theorem at least 40 kHz
frequency is needed to represent all audible sounds, selected was 44,100 Hz as a standard for CD audio.

Video
The term video was created when television was invented and denotes a technology for manipulating of
moving pictures in an electronic form (compares to the film - a photochemical form) , what can include:

capturing
recording
compressing
encoding
decoding
transmitting (broadcasting) etc.

The main video features are:
frame rate
aspect ratio
storage type (analog or digital)
color space
interlaced or progressive
quality (perceived by users)
bits per pixel (color depth)
codec (digital video only)
3 dimensional (3D)

Video represents still images that are projected in a fast sequence specified by frame rate to make an
illusion of a continuous motion, the minimal frame rate when human eyes see a continuous scene is about
15 images (frames) per second. Video is derived from the film that is a mechanical technology for
processing moving pictures and was developed initially for the cinema and television, which used
interlacing to eliminate flickering. FFmpeg works with many video formats, that are listed in the second
chapter. Some formats enable to store multiple different sequences of moving pictures and these sequences
are called video streams; their numbering is zero-based, the first stream is numbered 0, the second is
numbered 1, etc.

Video filters
Filters in FFmpeg are implemented via libavfilter library. For optimal performance they are often used in
filterchains (comma-separated filter’s descriptions) and filtergraphs (semi-colon separated filterchains).
With filtergraphs can be used the labeled links that can substitute an input in the filterchains that follows, a
special [in] link label is created by default and denotes the input entered with -i option. Combining filters to
filterchains and filtergraphs is more preferred than repeated processing that involves slight changes caused
by compression algorithms. The list of filters is in the 2nd chapter and is showed by: ffmpeg -filters
Video filters can be divided according to several criteria and the general classification is in the next table:

Glossary

215

Video filters (general classification)

Filter type Description Examples

Prefilters used before encoding contrast adjustment

deflicker

deinterlace

denoise

scale (downsample, upsample)

Intrafilters used in encoding (usually part of
a video codec)

deblock

Postfilters used after decoding deblock, deinterlace, dering

Note: Some filters like deinterlace are listed in 2 categories because the modification of input video
stream depends on a software implementation.

Video pipeline
Video pipeline describes the processing of video frames from a raw video input to the final output on a
display device, a simplified video pipeline is illustrated on the diagram. ffmpeg contains 2 special input
devices dv1394 and iec61883 that enable to record directly from the FireWire port used by digital
videocameras.

About the author
Frantisek Korbel is a Zend Certified Engineer and his work includes programming, video editing and web
design. In 2004 he created a First Aid Basics freeware using Macromedia Flash and since then he often
works with animations and video. Using Adobe AIR in 2009 he developed a Learning Periodic Table of
chemical elements. Big part of his activities is devoted to the volunteering, mainly for educational and
community projects in developing countries (Africa – nkolfoulou.org, oyoko.org), India (kidedu.org), etc.
He participates in various projects by UN Volunteering and on WaterWiki.net website design coordinated
by United Nations Development Programme. For this book he created a supporting website ffmpeg.tv.

Links
Book homepage: http://ffmpeg.tv
Facebook: http://ffmpeg.tv/facebook
Twitter: http://twitter.com/FFmpeg
YouTube: http://youtube.com/FFmpegTv

http://youtube.com/FFmpegTv
http://twitter.com/FFmpeg
http://ffmpeg.tv/facebook
http://ffmpeg.tv

	Introduction
	Welcome
	First steps
	Dedicated website
	Conventions
	Your feedback is important

	1. FFmpeg Fundamentals
	FFmpeg introduction
	Developers of FFmpeg
	Participation in FFmpeg development
	FFmpeg download
	Command line syntax
	Windows Command Prompt and its alternatives
	Path setting
	Renaming to shortened form
	Displaying output preview
	Preview with FFplay media player
	Preview with SDL output device

	SI prefixes available in FFmpeg
	Transcoding with ffmpeg
	Filters, filterchains and filtergraphs
	Selection of media streams
	Lavfi virtual device
	Color names

	2. Displaying Help and Features
	Text help in FFmpeg tools
	Available bitstream filters
	Available codecs
	Available decoders
	Available encoders
	Available filters
	Available formats
	Available layouts of audio channels
	FFmpeg license
	Available pixel formats
	Available protocols
	Available audio sample formats
	FFmpeg version
	Using MORE command for output formatting
	Redirecting output to file

	3. Bit Rate, Frame Rate and File Size
	Frame (frequency) rate introduction
	Frame rate setting
	Using -r option
	Using fps filter

	Predefined values for frame rate
	Bit (data) rate introduction
	Setting bit rate
	Constant bit rate (CBR) setting
	Setting maximum size of output file
	File size calculation

	4. Resizing and Scaling Video
	Resizing video
	Predefined video frame sizes
	Considerations when resizing - Nyquist sampling theorem
	Special enlarging filter
	Advanced scaling
	Scaling video proportionately to input
	Scaling to predefined width or height

	5. Cropping Video
	Cropping basics
	Cropping frame center
	Automatic detection of cropping area
	Cropping of timer

	6. Padding Video
	Padding basics
	Padding videos from 4:3 to 16:9
	Padding videos from 16:9 to 4:3
	Padding from and to various aspect ratios
	Pillarboxing - adding boxes horizontally
	Letterboxing - adding boxes vertically

	7. Flipping and Rotating Video
	Horizontal flip
	Vertical flip
	Introduction to rotating
	Rotation by 90 degrees counterclockwise and flip vertically
	Rotation by 90 degrees clockwise
	Rotation by 90 degrees counterclockwise
	Rotation by 90 degrees clockwise and flip vertically

	8. Blur, Sharpen and Other Denoising
	Blur video effect
	Sharpen video
	Noise reduction with denoise3d
	Noise reduction with hqdn3d
	Noise reduction with nr option

	9. Overlay - Picture in Picture
	Introduction to overlay
	Command structure for overlay
	Logo in one of corners
	Logo in top-left corner
	Logo in top-right corner
	Logo in bottom-right corner
	Logo in bottom-left corner

	Logo shows in specified moment
	Video with timer
	Other overlay examples

	10. Adding Text on Video
	Introduction to adding text on video
	Text positioning
	Horizontal location setting
	Vertical location setting

	Font size and color setting
	Dynamic text
	Horizontal text movement
	Vertical text movement

	11. Conversion Between Formats
	Introduction to media formats
	File formats
	Media containers

	Transcoding and conversion
	Introduction to codecs
	Overwriting same named output files
	Generic options for conversion
	Private options for conversion
	MPEG-1 video encoder
	MPEG-2 video encoder
	MPEG-4 video encoder
	libvpx video encoder
	AC-3 audio encoder

	Simplified encoding of VCD, SVCD, DVD, DV and DV50

	12. Time Operations
	Duration of audio and video
	Setting with -t option
	Setting with number of frames

	Setting delay from start
	Extracting specific part from media file
	Delay between input streams
	One input file
	Two or more input files

	Limit for processing time
	Shortest stream determines encoding time
	Timestamp and time bases
	Encoder timebase setting
	Audio and video speed modifications
	Video speed change
	Audio speed change

	Synchronizing audio data with timestamps

	13. Mathematical Functions
	Expressions that can use mathematical functions
	Built-in arithmetic operators
	Built-in constants
	Table of built-in mathematical functions
	Examples of using functions

	14. Metadata and Subtitles
	Introduction to metadata
	Creating metadata
	Saving and loading metadata to/from the file
	Deletion of metadata
	Introduction to subtitles
	Subtitles encoded directly to video

	15. Image Processing
	Supported image formats
	Creating images
	Screenshots from videos
	Animated GIFs from videos
	Images from FFmpeg video sources
	Video conversion to images

	Resizing, cropping and padding images
	Flipping, rotating and overlaying images
	Conversion between image types
	Creating video from images
	Video from one image
	Video from many images

	16. Digital Audio
	Introduction to digital audio
	Audio quantization and sampling

	Audio file formats
	Sound synthesis
	Stereo and more complex sounds
	Binaural tones for stress reduction

	Sound volume settings
	Multiple sounds mixed to one output
	Downmixing stereo to mono, surround to stereo
	Simple audio analyzer
	Adjusting audio for listening with headphones
	Audio modifications with -map_channel option
	Switching audio channels in stereo input
	Splitting stereo sound to 2 separate streams
	Muting one channel from stereo input

	Merging 2 audio streams to 1 multichannel stream
	Audio stream forwarding with buffer order control

	17. Presets for Codecs
	Introduction to preset files
	Examples of preset files
	Preset file libvpx-1080p.ffpreset
	Preset file libvpx-1080p50_60.ffpreset
	Preset file libvpx-360p.ffpreset
	Preset file libvpx-720p.ffpreset
	Preset file libvpx-720p50_60.ffpreset

	18. Interlaced Video
	NTSC, PAL and SECAM TV standards
	Interlaced frame type setting
	Field order change of interlaced video
	Deinterlacing
	yadif filter
	Option -deinterlace
	Deinterlacing filters from MPlayer project
	Pullup filter

	Interlaced video and digital television

	19. FFmpeg Components and Projects
	FFplay introduction
	Key and mouse controls during playback
	FFplay show modes

	FFprobe introduction
	FFserver introduction
	FFmpeg software libraries
	libavcodec
	libavdevice
	libavfilter
	libavformat
	libavutil
	libpostproc
	libswresample
	libswscale

	Projects using FFmpeg components
	HTML5 support in Google Chrome
	Videoprocessing on YouTube and Facebook
	Multimedia frameworks utilizing FFmpeg
	Video editors
	Audio editors
	Media players using FFmpeg

	20. Microphone and Webcam
	Introduction to input devices
	List of available cameras and microphones
	Available options for webcam

	Displaying and recording webcam input
	Using two webcams
	Recording sound and sending it to loudspeakers

	21. Batch Files
	Advantages of batch files
	Batch file commands
	Typical usage of batch files
	Tone generator
	Creating Jingle Bells
	Simplified conversion

	22. Color Corrections
	Video modifications with lookup table
	Conversion to monochrome (black-and-white) image

	Introduction to color spaces
	YUV color space and its derivatives
	Luma (luminance) and chroma (chrominance)

	Pixel formats
	RGB pixel format modifications
	Color balance

	Modifications of YUV pixel format
	Brightness correction

	Hue and saturation setting
	Comparison in 2 windows
	2 windows compared horizontally
	2 windows compared vertically
	Space between windows
	Modified version first
	2 modified versions without input

	Comparison in 3 windows
	3 windows compared horizontally
	3 windows compared vertically
	Input in the middle window

	Brightness correction in 2 and 3 windows
	Comparison in 4 windows

	23. Advanced Techniques
	Joining audio and video files
	Concatenation with shell command
	Concatenation with concat protocol
	Concatenation with concat filter
	Other types of joining

	Removing logo
	delogo filter

	Fixing of shaking video parts
	Adding color box to video
	Number of frames detection
	Detection of ads, section transitions or corrupted encoding
	Detection with blackframe filter

	Selecting only specified frames to output
	Scaling input by changing aspect ratios
	Screen grabbing
	Detailed video frame information
	Audio frequency spectrum
	Audio waves visualization
	Voice synthesis
	Saving output to multiple formats at once
	Additional media input to filtergraph

	24. Video on Web
	HTML5 support on main browsers
	Adding audio with HTML5
	Adding video with HTML5
	Adding video for Flash Player
	Video sharing websites
	Videoprocessing on webserver
	Monetizing video uploads

	25. Debugging and Tests
	debug, debug_ts and fdebug options
	Flags for error detection
	Logging level setting
	Timebase configuration test
	Testing encoding features
	Test patterns
	RGB test pattern
	Color pattern with scrolling gradient and timestamp
	SMPTE bars pattern

	Simple packet dumping or with payload (hexadecimally)
	CPU time used and memory consumption

	Glossary
	About the author

