
Jason van Gumster
Producer/animator for Hand Turkey Studios

Learn to:
• Create eye-popping 3D animations using

free Blender software

• Work with meshes, curves, and surfaces,
and add color, shades, texture, and
reflections

• Set your objects in motion with
rigging and animations

• Install Blender 2.48a from the bonus CD

Blender
Making Everything Easier!™

Bonus CD Includes
Blender 2.48a complete version! Save download time
and install the version you’ll use for this book.

See the CD appendix for details and complete system
requirements.

 Open the book and find:

• Why Blender is perfect for small
shops and independent artists

• How to navigate in three
dimensions

• Ways to make animations more
believable

• How to color vertices and provide
texture

• Tips on making Blender do the
animating for you

• What particle systems do

• Ten common problems new users
face

• How to work with the video
sequence editor

Jason van Gumster has produced a variety of animations and visual

effects for television and film as producer/animator for Hand Turkey

Studios. A Blender user since 1998, he’s given numerous Blender workshops

and blogs for Blender Nation, the primary news Web site for Blender users.

$34.99 US / $37.99 CN / £22.99 UK

ISBN 978-0-470-40018-0

Computer Graphics and
Image Processing

Go to dummies.com®

for more!

Create 3D models and
realistic scenes, and get
animated with Blender!
Blender can do all the cool 3D things, but trying to figure it
out on your own can make you feel as if you’re in a blender.
Relax! This book takes Blender step by step. First, you learn
to think the Blender way. Then you start modeling, adding
materials, lighting, rigging, and animating. Soon you’ll be
sharing your creations with the world!

• Become a Blenderhead — find out how Blender “thinks” and
learn your way around the program

• Develop detailed 3D scenes — create almost anything with
meshes, save time with modifiers, and make the best use of
Blender’s other object types

• Lights and texture — understand texture mapping, use different
lamp types, and take advantage of ambient occlusion

• Give it life — rig your characters for animation with shape keys,
hooks, and armatures, and understand inverse kinematics

• Get it out there — understand exporting, rendering,
compositing, and editing for output

Blender 2.48a
on CD-ROM

B
lender

van Gumster

spine=.816”

by Jason van Gumster

Blender
FOR

DUMmIES
‰

Blender For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affi liates in the United States and other countries, and may not be used without written permission.
All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2008942698

ISBN: 978-0-470-40018-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

www.wiley.com

About the Author
Jason van Gumster got into animation when he realized that he wanted to

create movies . . . but that actors are generally intolerant of having pianos

dropped on them. Using open source tools at nearly every step, Jason has

produced animations and visual effects for television, fi lm, and video games

in his offi cial capacity as a Production Monkey for Hand Turkey Studios, the

company he helped start in 2005. A Blender user since 1998, Jason has given

numerous live demonstrations and workshops on Blender internationally

and his Advanced Blender Fluids training DVD from cmiVFX is recognized as

one of the best learning resources for Blender’s integrated fl uid simulator.

In January of 2008, Jason worked with the Blender Foundation to assemble

the Blender Certifi cation Review Board and lead the launch of the Blender

Foundation Certifi ed Trainer (BFCT) program. He also periodically writes for

BlenderNation (www.blendernation.com), the primary news Web site for

Blender users. Based in Richmond, Virginia, Jason can often be found in cafés

and diners drawing, espousing the virtues of open source software, or catch-

ing confused looks from strangers as he contorts his body to better visualize

a scene he’s animating.

Dedication
To my friends and family, which I consider one and the same. You tolerate

my eccentricity, encourage my success, and give me a swift kick to the pants

when I’m completely full of it. I couldn’t appreciate you more.

Author’s Acknowledgments
My fi rst thanks go to Blender’s team of developers, lead by our “benevolent

dictator,” Ton Roosendaal. Without them, Blender would never exist in the

state that it does today. Of course, equally deserving of gratitude is the over-

all Blender community, without which Blender would never have been made

open source.

Thanks, also, to everyone at Wiley, particularly my acquisitions editor,

Kyle Looper, and my project editor, Linda Morris. They are refi ned profes-

sionals, and I’m grateful for their ability to keep me on task and (mostly) on

schedule. I’d also like to thank Bassam Kurdali for agreeing to work as the

book’s technical editor. He’s one of the most knowledgeable and talented

members of the Blender community, and I hate to think of how little sense

this book would’ve made without his input.

I’d also like to give a quick thank-you to the fi rst human who learned to fi lter

water through coffee grounds. Without your precious discovery, I’m certain

that not just this book, but many of my accomplishments would’ve never

occurred.

And fi nally, I’d like to thank my fellow Hand Turkeys, Warren Belfi eld and

Roberto Rubet. Not only are these guys talented artists and business part-

ners, but they are defi nitely true friends whose feedback (and insults) I value

greatly.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form

located at http://dummies.custhelp.com. For other comments, please contact our Customer Care

Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and

Media Development

Project Editor: Linda Morris

Acquisitions Editor: Kyle Looper

Copy Editor: Linda Morris

Technical Editor: Bassam Kurdali

Editorial Manager: Jodi Jensen

Media Development Project Manager:

Laura Moss-Hollister

Media Development Assistant Project

Manager: Jenny Swisher

Media Development Assistant Producers:

Angela Denny, Josh Frank, Shawn Patrick,

and Kit Malone

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant

(www.the5thwave.com)

Composition Services

Project Coordinator: Katherine Key

Layout and Graphics: Reuben W. Davis,

Joyce Haughey, Melissa K. Jester,

Sarah Phillipart, Christin Swinford,

Ronald Terry

Proofreader: Broccoli Information

Management

Indexer: Broccoli Information Management

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

Contents at a Glance
Introduction .. 1

Part I: Wrapping Your Brain Around Blender 7
Chapter 1: Discovering Blender ... 9

Chapter 2: Understanding How Blender Thinks .. 19

Chapter 3: Getting Your Hands Dirty Working in Blender ... 41

Chapter 4: Working in Edit Mode and Object Mode .. 53

Part II: Creating Detailed 3D Scenes 81
Chapter 5: Creating Anything You Can Imagine with Meshes 83

Chapter 6: Using Blender’s Non-Mesh Primitives .. 109

Chapter 7: Changing that Boring Gray Default Material ... 139

Chapter 8: Giving Models Texture ... 159

Chapter 9: Lighting and Environment ... 183

Part III: Get Animated! .. 211
Chapter 10: Animating Objects .. 213

Chapter 11: Rigging: The Art of Building an Animatable Puppet 235

Chapter 12: Animating Object Deformations ... 273

Chapter 13: Letting Blender Do the Work for You ... 293

Part IV: Sharing Your Work with the World 313
Chapter 14: Exporting and Rendering Scenes .. 315

Chapter 15: Compositing and Editing.. 325

Part V: The Part of Tens ... 355
Chapter 16: Ten Problems for New Users in Blender (and Ways around Them) ... 357

Chapter 17: Ten Tips for Working More Effectively in Blender 365

Appendix: About the CD ... 371
Bonus Chapter: Ten Excellent Community ResourcesOn the CD-ROM

Index .. 377

Table of Contents
Introduction ... 1

About This Book .. 1

Foolish Assumptions ... 2

How This Book Is Organized .. 3

Part I: Wrapping Your Brain around Blender 3

Part II: Creating Detailed 3D Scenes .. 4

Part III: Get Animated! ... 4

Part IV: Sharing Your Work with the World 4

Part V: The Part of Tens .. 4

Icons Used in This Book ... 4

Conventions Used in This Book ... 5

Where to Go from Here ... 5

Part I: Wrapping Your Brain Around Blender 7

Chapter 1: Discovering Blender. .9
Getting to Know Blender .. 9

Discovering Blender’s History ... 10

Making Open Movies and Games ... 12

Getting to Know the Interface .. 14

Fast to use versus fast to learn .. 15

The Blender non-blocking interface .. 15

Chapter 2: Understanding How Blender Thinks19
Looking at Window Types .. 19

Understanding the Buttons window .. 22

Working with screens .. 23

Setting user preferences ... 25

Navigating in Three Dimensions .. 30

Orbiting, panning, and zooming the 3D view 31

Changing views .. 32

Selecting objects .. 37

Taking advantage of the 3D cursor .. 38

Chapter 3: Getting Your Hands Dirty Working in Blender 41
Grabbing, Scaling, and Rotating ... 42

Differentiating between Coordinate Systems ... 42

Transforming an Object by Using the 3D Manipulator 44

Switching manipulator modes.. 44

Using the manipulator ... 45

Blender For Dummies viii
Saving Time by Using Hotkeys ... 48

G, S, and R: Transforming with hotkeys .. 48

Hotkeys and coordinate systems... 49

Using gestures to work faster ... 51

Numerical input ... 52

The Transform Properties fl oating window 52

Chapter 4: Working in Edit Mode and Object Mode 53
Making Changes Using Edit Mode ... 53

Distinguishing between Object mode and Edit mode 54

Selecting vertices, edges, and faces .. 54

Blender’s #1 modeling tool: Extrude ... 58

Adding to a Scene .. 63

Getting to know the toolbox that lives in your spacebar 63

Adding objects ... 64

Meet Suzanne, the Blender monkey .. 66

Joining and separating objects .. 67

Creating duplicates and links ... 68

Discovering parents, children, and groups 73

Saving, opening, and appending .. 77

Part II: Creating Detailed 3D Scenes 81

Chapter 5: Creating Anything You Can Imagine with Meshes.83
Pushing Vertices .. 84

Working with Loops and Rings .. 85

Simplifying Your Life as a Modeler with Modifi ers 89

Doing half the work (and still looking good!) with the

Mirror modifi er ... 92

Smoothing things out with the Subsurf modifi er 94

Using the power of Arrays .. 98

Sculpting Multi-Resolution Meshes ... 101

Sculpt panel .. 104

Brush panel ... 107

Texture panel ... 107

Chapter 6: Using Blender’s Non-Mesh Primitives109
Using Curves and Surfaces ... 109

Understanding the different types of curves 112

Working with curves.. 113

Understanding the strengths and limitations

of Blender’s surfaces ... 123

Using Meta Objects ... 124

Meta-wha? ... 125

What meta objects are useful for ... 127

ix Table of Contents

Adding Text .. 128

Adding and editing text ... 128

Changing fonts.. 132

Deforming text with a curve ... 135

Converting to curves and meshes ... 136

Chapter 7: Changing that Boring Gray Default Material139
Playing with Materials ... 140

Changing colors ... 143

Adjusting shader values .. 144

Refl ection and transparency .. 147

Assigning multiple materials to different parts of a mesh............ 151

Coloring Vertices with Vertex Paint .. 153

Chapter 8: Giving Models Texture. .159
Adding Textures .. 159

Using Procedural Textures ... 160

Distorted Noise .. 162

Voronoi.. 162

Musgrave ... 163

Noise .. 163

Blend .. 164

Magic ... 165

Wood ... 165

Stucci ... 165

Marble ... 166

Clouds.. 166

EnvMap.. 167

Understanding Texture Mapping ... 167

Unwrapping a Mesh ... 172

Painting Textures Directly on a Mesh ... 177

Baking Texture Maps from Your Mesh ... 179

Using UV Textures ... 181

Chapter 9: Lighting and Environment .183
Lighting a Scene ... 183

Knowing when to use which type of lamp 186

Lighting for Speedy Renders .. 195

Three-point lighting in Blender .. 197

Creating a “fake” Area light with buffered Spots 197

Outdoor lighting ... 199

Setting Up the World ... 200

Changing to something other than bright blue 201

Understanding ambient occlusion ... 202

Mist, stars, and sky textures .. 205

Blender For Dummies x
Part III: Get Animated! .. 211

Chapter 10: Animating Objects .213
Working with Animation Curves .. 214

Inserting keys ... 217

Editing motion curves ... 221

Using Constraints Effectively ... 225

The all-powerful Empty! .. 226

Copying the movement of another object 227

Putting limits on an object .. 231

Tracking the motion of another object ... 233

Chapter 11: Rigging: The Art of Building an Animatable Puppet. . . .235
Creating Shape Keys .. 235

Creating new shapes ... 236

Mixing shapes ... 238

Knowing where shape keys are helpful .. 240

Adding Hooks ... 240

Creating new hooks ... 241

Knowing where hooks are helpful ... 243

Using Armatures: Skeletons in the Mesh .. 244

Editing armatures .. 244

Putting skin on your skeleton... 252

Bringing It All Together in a Single Rig ... 257

Taking advantage of parenting and constraints 262

Understanding the difference between inverse

kinematics and forward kinematics ... 266

Making the rig more user-friendly ... 270

Chapter 12: Animating Object Deformations. .273
Working with the Action Editor ... 273

Animating Shape Keys .. 276

Animating with Armatures ... 278

Principles of animation worth remembering 279

Making sense of quaternions (or, “Why are there

four rotation curves?!”) ... 281

Copying mirrored poses ... 282

Seeing the big picture with ghosting ... 284

Visualizing motion with bone paths .. 285

Doing Non-Linear Animation .. 287

Mixing actions to create complex animation 288

Taking advantage of looped animation ... 290

xi Table of Contents

Chapter 13: Letting Blender Do the Work for You 293
Using Particles in Blender .. 294

Knowing what particle systems are good for 294

Using forces and defl ectors .. 298

Using particles for hair and fur .. 300

Giving Objects Some Jiggle and Bounce ... 302

Dropping Objects in a Scene with Rigid Body Dynamics 304

Simulating Cloth ... 307

Splashing Fluids in Your Scene .. 308

Part IV: Sharing Your Work with the World 313

Chapter 14: Exporting and Rendering Scenes.315
Exporting to External Formats ... 315

Rendering a Scene ... 317

Creating a still image ... 317

Creating a fi nished animation .. 320

Creating a sequence of still images for editing or compositing ... 322

Chapter 15: Compositing and Editing .325
Working with the Video Sequence Editor ... 326

Adding and editing strips.. 329

Adding effects ... 333

Rendering from the Video Sequence Editor 335

Working with the Node-Based Compositor .. 335

Understanding the benefi ts of rendering in passes 337

Working with nodes ... 340

Rendering from the Node Compositor .. 353

Part V: The Part of Tens .. 355

Chapter 16: Ten Problems for New Users in Blender
(and Ways around Them) .357

Auto Saves and Session Recovery Don’t Work .. 357

Blender’s Interface Is Weird or Glitchy ... 358

A Notorious “Black Stripe” Appears on Models 358

Objects Go Missing .. 359

Python Not Found .. 360

Edge Loop Select Doesn’t Work ... 360

A Background Image Disappears ... 361

There’s a Limit to Zooming .. 361

Lost Simulation Data ... 362

Blender Doesn’t Create Faces as Expected .. 362

Blender For Dummies xii
Chapter 17: Ten Tips for Working More Effectively in Blender.365

Use Blender’s Tooltips .. 365

Constantly Check Models from Different Views 365

Lock a Camera to an Animated Character .. 366

Occlude Background Geometry in Edit Mode ... 366

Name EVERYTHING (Organize Your Projects) .. 367

Use Layers Effectively ... 367

Do Low-Resolution Test Renders .. 368

Mind Your Mouse .. 369

Turn on Passepartout for Your Camera ... 369

Have Fun, but Take Breaks ... 370

Appendix: About the CD .. 371
System Requirements ... 371

Using the CD ... 372

What You’ll Find on the CD .. 372

Author-created material .. 373

Big Buck Bunny .. 373

Blender .. 374

VLC... 374

Troubleshooting .. 374

Customer Care ... 375

Bonus Chapter: Ten Excellent
Community ResourcesOn the CD-Rom

Blender.org

BlenderArtists.org

BlenderNation

Blender 3D: Noob to Pro Wikibook

BlenderNewbies

Tufts OpenCourseware Tutorials

Blender Model Repository

Blender Open Material Library

Blenderart Magazine

Blender IRC Channels on freenode.net

Index ... 377

Introduction

Blender: an awesome little 3D content creation suite that animates

characters, surprises nay-sayers, simulates physics, and gives you foot

massages if you’ve had a bad day! Okay, the last part is an exaggeration, but

it’s difficult to imagine a task in computer animation that Blender can’t do.

With it, you can create 3D models, animate those models, edit those anima-

tions into a movie, and even create video games with them. All this in a free

program that’s as small as a 9 MB download. Crazy!

Blender sits at a very unique position in the world of 3D computer graphics.

It used to be that to get into 3D modeling and animation, you only had a few

options and most of them were too expensive, too limiting, or – ahem – too

illegal for people just trying to see what this whole 3D thing was all about.

Blender circumvents all of that because it’s free. And it’s not just free as in,

“This costs me zero dollars.” It’s truly free software that a world full of devel-

opers and users constantly contribute to, enhancing and improving it at a

mind-boggling pace.

Of course, 3D computer graphics is a complex topic and all software of this

type is dense with buttons, options, settings, and unique ways of work-

ing. Perhaps more than any other program like it, Blender carries a pretty

heavy reputation for being difficult to understand. It’s not typically viewed

as software for beginners. But, if I’ve done my job right, this book will help

simplify things. Blender For Dummies is not just a book on using Blender.

Sure, I explain why things in Blender work in their peculiar Blenderish ways,

but I also make it a point to explain core principles of 3D computer graphics

as they are relevant. There’s no use in being able to find a button if you’re

not really sure what it does or how it works. My hope is that with this com-

bined knowledge, you can actually take advantage of Blender’s unique traits

to create your own high-quality 3D art as quickly and efficiently as possible.

Perhaps you can even become as addicted to it as I am!

About This Book
Blender is an extremely complex program used for the even more complex

task of producing high quality 3D models and animations. As such, there’s

no way I could cover every single feature and button in Blender within a

mere 400 pages. For that, I recommend you refer to the very excellent online

documentation available through Blender’s Web site at wiki.blender.org.

2 Blender For Dummies

The purpose of this book is to bring you up to speed on working in 3D space

with Blender so you can start bringing your ideas to life as soon as possible.

To that end, I focus on introducing you to the fundamental “Blender way” of

working. Not only do I show you how something is done in Blender, but I often

take the time to explain why things are done a certain way. This approach

should hopefully put you on the fast track to making awesome work and also

allow you to figure out new parts of Blender on your own when you come

across them.

You’ll notice throughout the book that I frequently make reference to the

Blender community. Blender’s user community is probably one if its most

valuable assets, and I would be remiss to neglect bringing it up. Not only do

many members of the community create great work, but they also write new

code for Blender, write and edit documentation, and help each other improve.

And understand that when I use the word “we” in reference to the community,

I include you in that as well. As of right now, you are a Blenderhead: a fellow

Blender user and therefore a member of our community.

It’s worth mentioning here that Blender is a truly cross-platform program,

running on Linux, Windows, Macintosh, and even variants of the Unix oper-

ating system. Fortunately, not much in Blender differs from one platform to

another. However, for the few things that are different, I’ll be sure to point

them out for you.

Foolish Assumptions
This book is written for two sorts of beginners: people who are completely

new to the world of 3D, and people who know a thing or two about 3D, but

are completely new to Blender. That being the case, I tend to err on the

side of explaining too much rather than too little. If you’re someone who

is already familiar with another program like 3DS Max, Maya, or Softimage,

you can probably skip a number of these explanations. Likewise, if you’re a

complete newbie, you might notice that I occasionally compare a feature in

Blender to one in another package. However, that is mostly for the benefit of

these other users. I write so you can understand a concept without having to

know any of these other programs.

I do, however, make the assumption that you have at least a basic understand-

ing of your computer. You should know how to start programs, find files, and

have a basic idea of the difference between a computer’s processor and its

hard drive. I assume you know how to use a mouse, and I highly recommend

that you use a mouse with at least two buttons and a scroll wheel. You can

use Blender with a one or two-button mouse, and I provide workarounds for

the unfortunate souls in that grim state (*cough*Mac users*cough*), but it’s

certainly not ideal. Because Blender makes use of all your mouse buttons,

3 Introduction

I make it a point to stipulate whether you need to left-click, right-click, or

middle-click. And in case you didn’t already know, the middle mouse button is

accessed by pressing down on your mouse’s scroll wheel.

Another assumption of sorts that I make is that you’re working with Blender’s

default settings and theme. You are more than welcome to customize the set-

tings for yourself, but if you do that, Blender might not behave exactly like I

describe. In most instances, I do make it a point to mention what Blender’s

default behavior is, so you know what to expect, but I can’t account for every

different configuration that Blender allows you to have.

One last assumption that I make is that you can access the Internet from time

to time. You don’t need an Internet connection to use Blender, but there are

a lot of resources online that definitely come in handy.

How This Book Is Organized
As with most books in the For Dummies series, Blender For Dummies is struc-

tured as a reference that you can refer back to over and over again. You

should be able to go to the Table of Contents or the Index and jump straight

to the topic you’re interested in. Of course, if you’re completely new to

Blender and 3D, the chapters build upon one another so you can read from

cover to cover.

Also, rather than give you tutorials that are only useful for creating one spe-

cific thing (“this is how you model a teacup” or “making the perfect tooth

material”), I tend to lean towards more broad explanations of a tool’s use and

purpose. That said, I use certain specific examples because they tend to be

fairly common tasks.

The book’s chapters are grouped into relatively cohesive sections called

Parts. Like the chapters, each part is meant to be modular and stand on its

own, but is also structured in such a way that each one adds to the next. The

following section describes the content of each part.

Part I: Wrapping Your
Brain around Blender
Not only is Blender complex, but it also has some pretty unique ways of

approaching the problem of creating in three dimensions. This part is dedi-

cated to melding your mind with the Blender way of thinking. If you’ve ever

started up Blender and wondered, “Why in the world is it doing things this

way?!” this part is well worth the read.

4 Blender For Dummies

Part II: Creating Detailed 3D Scenes
Each chapter in this Part is dedicated to getting your work to look good,

focusing on the skills of modeling, adding materials, and lighting your scenes.

The techniques here are geared primarily toward creating static images, but

nearly all of it is also relevant to getting animations to communicate clearly

and be believable (not to mention, totally sweet to look at).

Part III: Get Animated!
Motion! Motion! Motion! Very few things in the world compare to the excel-

lent feeling of bringing an inanimate object to life. It’s hard work and can be

very time-consuming, but the payoff of seeing a character move and watch-

ing people react to it is worth every little bit of toil you put into it. This Part

shows you the basics of rigging and animating, as well as touching on getting

Blender to do a little animating for you with simulated physics.

Part IV: Sharing Your Work with the World
You could sit in a room and create a mountain of awesome work just for your-

self, but there’s certainly something rewarding about putting your work out

for the world to see. That’s what this Part is all about. I walk you through the

adventures of rendering out still images and animations so you ultimately

have something worth sharing. This part also introduces the beautiful cheat-

ing that you can do with post production and video sequencing.

Part V: The Part of Tens
In a way, I really kind of wanted to write this entire book as a series of helpful

lists that would help get you started in Blender, but that’s not really the best

structure for the entire thing. That said, I had a lot of fun writing this part.

These chapters are geared to making sure your time with Blender is well-

spent, so I cover troubleshooting and tips on improving your experience.

Icons Used in This Book
 This icon calls out suggestions that help you work more effectively and

save time.

5 Introduction

 These are things that I think you should try to keep in mind while working in

Blender. Sometimes it’s a random tidbit of information, but more often than

not, it’s something that you’ll run into repeatedly and is therefore worth

remembering.

 Working in 3D can involve some pretty heavy technical information. You can

usually work just fine without ever having to know these things, but if you do

take the time to understand it, I bet you dollars to donuts that you’ll be able to

use Blender more effectively.

 This icon doesn’t show up often, but when it does, I definitely recommend that

you pay attention. You won’t blow up your computer if you overlook it, but

you could lose work.

Conventions Used in This Book
As a Blender user, I absolutely love hotkeys, and I use them generously in

examples throughout the book. Blender makes use of nearly every key on

your keyboard, so some keys are a bit difficult to put in writing, particularly

punctuation keys like the period (.) or tilde (~). When I suggest you press

these keys, I do just as did in the last sentence: I spell the symbol and then

put the actual symbol in parentheses.

I also make use of this cool little arrow (➪) for indicating a sequence of steps.

It could be a series of hotkeys to press or menu items to select or places to

look in the Blender interface, but the consistent thing is that they are used

for steps that you need to do sequentially.

Where to Go from Here
The easy answer here would be to say “Just dive on in!” but that’s probably

a bit too vague. As I mentioned before, this book is primarily intended as a

reference. If you already know what you’re looking for, flip over to the Table

of Contents or Index and start soaking in the Blender goodness. For those of

you who are just starting out, I suggest you merely turn a couple of pages,

start at Chapter 1, and enjoy the ride. And even if you are the sort of person

who knows exactly what you’re looking for, take the time to read through

other sections of the book. There are a bunch of valuable little bits of infor-

mation that may help you work more effectively.

Regardless of how you read this book, though, my one hope is that you find it

to be a valuable resource that makes you as addicted to Blender as I am.

6 Blender For Dummies

Part I
Wrapping
Your Brain

Around Blender

In this part . . .

Typically, when people first come into contact with

Blender, they feel an incredible shock of “Ahhh! What

is this crazy thing?!” The purpose of this part is to ease

you into the Blender swimming pool so you can start to

have fun with the rest of us. You get an idea of how

Blender thinks and how to start taking advantage of the

tools it provides you with. If you’ve got experience in

another 3D program, these chapters explain some of the

essential interface concepts that permeate nearly all tools

and features in Blender.

Time to have some fun. Wheeeeeeee!

Chapter 1

Discovering Blender
In This Chapter
▶ Figuring out what Blender is and what it’s used for

▶ Understanding Blender’s history

▶ Getting familiar with the Blender interface

▶ Becoming a part of the Blender community

In the world of 3D modeling and animation software, programs are usu-

ally expensive: Like, really, really, thousands-of-dollars-and-maybe-an-arm

expensive. And there are some valid reasons for that. Software companies

spend millions of dollars and countless hours developing these programs.

And the large production companies that buy these programs for their staff

make enough money to afford the high cost.

But what about us? You and I, the little guys? We are the ambitious dreamers

with big ideas, high motivation . . . and tight budgets. How can we bring our

ideas to life and our stories to a screen, even if it is our own computer moni-

tors? Granted, we could shell out that cash (and hopefully keep our arms)

for the expensive programs that the pros use. But even then, animation is a

highly collaborative art and it’s difficult to produce anything in a reasonable

amount of time without some help.

We need quality software and a strong community to work, grow, and evolve

with. Fortunately, Blender can provide us with both of these things. This

chapter is an introduction to Blender, its background, its interface, and its

community.

Getting to Know Blender
Blender is a free and open source 3D modeling and animation suite. Yikes!

What a mouthful, huh? Put simply, Blender is a computer graphics program

that allows you to produce high quality still images and animations using

three-dimensional geometry. If you’ve seen one of the recent animated fea-

ture films or watched a television show where they explain how they made

10 Part I: Wrapping Your Brain Around Blender

an actor look like he’s being chased by a giant monster even though he’s

really just standing in a big green room, you’ve seen what can be done with

3D computer graphics. In the right hands, Blender is capable of producing

this kind of work. With a little patience and dedication, your hands can be the

right hands.

One of the things that makes Blender different and special compared to

other comparable 3D software is the fact that it is free and open source. This

means that not only can you go to the Blender Web site (www.blender.org)

and download the entire program right now without paying a dime, but the

code that makes up the program, called the source, is also freely available

for download. For most programs, the source code is a heavily guarded and

highly protected secret that only certain people can see and modify (mostly

programmers hired by the company that distributes the program). Because

it’s open source, anybody can see Blender’s source code and make changes

to it. The benefit of this is that, rather than having a small group of paid pro-

grammers work on the program, Blender can be improved by programmers

all over the world!

Because of these strengths, Blender is an ideal program for small animation

companies, freelance 3D artists, independent filmmakers, students begin-

ning to learn about 3D computer graphics, and dedicated computer graphics

hobbyists. Blender has a reputation for being difficult to understand for new

users, but at the same time, it is also known for allowing experienced users to

bring their ideas to life. Fortunately, helping you bridge that gap is the very

reason this book exists.

Discovering Blender’s History
The Blender we know and love today wasn’t always free and open source. It’s

actually pretty unique in that it’s one of the few software applications that

was “liberated” from proprietary control by its user community.

Originally, Blender was written as an internal production tool for an award-

winning Dutch animation company called NeoGeo, founded by Blender’s

original (and still lead) developer, Ton Roosendaal. In the late 1990s, NeoGeo

started making copies of Blender available for download from their Web

site. Slowly but surely, interest grew in this less-than-2MB program. In 1998,

Ton spun off a new company, Not a Number (NaN), to try to market and sell

Blender as a software product. NaN still distributed a free version of Blender,

but also offered an advanced version with more features for a small fee.

There was strength in this strategy and by the end of 2000, there were well

over 250,000 Blender users worldwide.

11 Chapter 1: Discovering Blender

Unfortunately, even though Blender was gaining in popularity, NaN was not

making enough money to satisfy its investors, especially in the so-called “dot

bomb” era that happened around that time. Because of this, in the early part

of 2002, NaN shut its doors and stopped working on Blender.

Ironically, this is where the story starts to get exciting.

Even though NaN went under, Blender had developed quite a strong com-

munity by this time, and this community was eager to find a way to keep

their beloved little program from becoming lost and abandoned. In July

of 2002, Ton provided a way. Having established a non-profit called the

Blender Foundation, he arranged a deal with the original NaN investors to

run the “Free Blender” campaign. The terms of the deal were that, for a price

of €100,000, the investors would agree to release Blender’s source to the

Blender Foundation for the purpose of making Blender open source. Initial

estimations were that it would take as much as six months to raise the neces-

sary funds. Amazingly, the community was able to raise that money in a mere
seven weeks.

Because of the Blender community’s passion and willingness to put its

money where its metaphorical mouth is, Blender was released under the

GNU General Public License on October 13, 2002. With the source in the com-

munity’s hands, Blender had an avalanche of development and new features

added to it in a very short time. We were even finally able to have Undo, a

functionality that was conspicuously missing and highly desired since the ini-

tial releases of Blender by NeoGeo!

Six years later, the Blender community is larger and stronger than ever, and

Blender itself is a powerful modern piece of software that competes with

quality on par to similar software that costs thousands of dollars. Not too

shabby. Figure 1-1 shows a screenshot of Blender from its early days com-

pared to the Blender of today.

Figure 1-1:
Blender of

old (left)
versus

Blender of
today (right).

12 Part I: Wrapping Your Brain Around Blender

Making Open Movies and Games
One of the cool things about the programmers who write Blender is that

many of them also use the program regularly. They’re writing code not just

because they’re told to do it, but because they want to improve Blender for

their own purposes. Part of this has to do with Blender’s open-source nature,

but quite a bit also has to do with the fact Blender was an in-house produc-

tion tool, built for artists, based on their direct input, and often written by

the artists themselves.

Seeking to get even more of this direct artist feedback, the Blender Foundation

launched “Project Orange” in 2005. The purpose of the project was to create

an animated short movie using open source tools, primarily Blender. A team

of six members of the community were assembled in Amsterdam, in the

Netherlands, to produce the movie. Roughly seven months later, Elephants
Dream premiered and was released to the public as the first open movie,

meaning not only that it was created using open-source tools, but all of the

production files — 3D models, scenes, character rigs, and so on — were also

released under a permissive and open Attribution Creative Commons license.

Due to the success of the Orange project, Ton established the Blender

Institute in the summer of 2007 for the expressed purpose of having a per-

manent space to create open movie and game projects, as well as provide

the service of training people in Blender. The first open project to come out

of the Blender Institute was Project Peach, which, following the model of

Orange, assembled a team of artists who produced a short comedic anima-

tion called Big Buck Bunny, which premiere in April 2008. Like Elephants
Dream, all production files for the Peach project were released under an open

license. Figure 1-2 shows an image from Big Buck Bunny.

Figure 1-2:
Big Buck

Bunny.

13 Chapter 1: Discovering Blender

Not being inclined to rest on its laurels, the Blender Institute launched

Project Apricot as the team creating Big Buck Bunny was wrapping up its

production. Apricot was a project similar to Orange and Peach, but rather

than create an animated movie, the goal here was to create a video game

by combining Blender’s strengths with the strength of the Crystal Space

game engine. The result of this was Yo Frankie!, a game based on the “leader

squirrel” character from the Big Buck Bunny project. The DVD containing

this game shipped out in November 2008, containing playable levels in the

Blender game engine as well as the Crystal Space engine. And of course, all of

the content is freely available under a permissive Creative Commons license.

With the completion of each of these projects, the functionality and stability

of Blender increased by a large degree. Orange brought improved animation

tools, basic hair, and a node-based compositor. Peach provided enhanced

particles for better hair and fur, optimizations for large scenes, improved

rendering, and even better animation and rigging tools. Apricot revitalized

Blender’s internal game engine, which extended to better real-time visuals

when modeling and animating in Blender. In fact, much of the content of this

book wouldn’t even exist without these projects. For example, Chapter 13

starts with using Blender’s particle system to do exciting effects along with

hair and fur. Half of Chapter 15’s content is focused on the node compositor,

a way of combining and enhancing still images and animations. In fact, nearly

all of Part III is devoted to features that were enhanced or directly added for

one of these three projects.

All of these projects continue to exhibit the strength of the Blender com-

munity. This is because each of them are financed in a large part by DVD

pre-sales from users who understand that regardless of the project’s final

product, great improvements are the result and everyone benefits from that.

Joining the community
Congratulations! You’re part of a community.
As a Blender user, you’re joining a very diverse
group that spans all age ranges, ethnicities, pro-
fessional backgrounds, and parts of the globe.
We are a passionate bunch: proud of this little
3D program and more than willing to help others
enjoy using it as much as we do. Have a look
at Chapter 18 for a list of community resources
that are invaluable, not only for discovering
the intricacies of using Blender, but also for
improving yourself as an artist. You can find

innumerable opportunities for critique, training,
discussion, and even collaboration with other
artists, some of whom might also be Blender
developers. I’ve made quite a few good friends
and colleagues through the Blender community,
both through the various community Web sites
as well as by attending events like the annual
Blender Conference. I go by the name “Fweeb”
on these sites and I look forward to seeing you
around!

14 Part I: Wrapping Your Brain Around Blender

Getting to Know the Interface
Probably one of the most daunting aspects of Blender for newcomers and

long-time 3D professionals alike is its unique and somewhat peculiar inter-

face. It’s arguably the most controversial feature Blender has. In fact, merely

calling it a “feature” might raise the blood pressure of some of you who tried

using Blender in the past, but gave up in frustration when it did not behave

as you expected. Figure 1-3 shows what you’re presented with when you start

Blender for the first time. It’s been called everything from “brilliantly thought-

out” to “thrown together by a pack of monkeys.”

This book explains some of the design decisions in Blender’s interface and

ultimately allows you to be productive with it. Who knows, you might even

start to like it and wonder why other programs don’t work this way!

Figure 1-3:
The

first time
you start
Blender,

the entire
world might

seem like
an alien
planet.

15 Chapter 1: Discovering Blender

Fast to use versus fast to learn
One of the key things to remember is that Blender was originally designed

as an in-house tool for commercial production. Working in that industry

(especially television production) requires very short turn-around times

and extremely tight deadlines. For this reasons, 3D artists have to work very

quickly to produce high quality work in a short period of time. Blender was

built from the ground up to facilitate this need. And because artists worked

side-by-side with the developers, they could tailor the whole program to

match the way they worked.

The upside to this is that the program evolved with the artists and enabled

them to successfully produce great work at a blazingly fast rate. The down-

side is that, as with most things that are customized, Blender became

somewhat difficult to understand for people who had never been exposed

to it before. This is what I mean when I say “fast to use versus fast to learn.”

You can be extremely productive with Blender after you understand how it

thinks. However, your first few projects with Blender might be arduous. Of

course, alleviating that potential pain is what this book is all about.

The Blender non-blocking interface
The first thing to understand about Blender’s interface is the concept of a

non-blocking interface. This means that windows in Blender never overlap one

another and working in one window typically won’t restrict you from working

in any of the others. As an example, in most software, if you want to open a

new file or save your project, a file browser dialog box pops up for you to do

this. This is an overlapping window. Not only does it block things behind it

from view, but it usually also prevents you from making any changes to your

file. This isn’t the case with Blender. In Blender, the file browser shows up in

a window just like any other, and it makes perfect sense to be able to make a

couple tweaks to your scene before hitting the save button. Figure 1-4 shows

what this might look like.

 At first, this way of working might seem to be really restrictive. How do you

see different types of windows? Can you see them at the same time?

Everything looks like it’s nailed in place; is it even possible to change any-

thing? Fortunately, all of these things are possible and you get the benefit of

never having your view of one window obstructed by another. This is a great

way to be able to see what’s going on in your file at a glance.

16 Part I: Wrapping Your Brain Around Blender

Figure 1-4:
Doing those
last couple

of tweaks
before
finally

saving.

The windows can all be modified and changed in the same way: Change the

size of windows by left-clicking the seam between windows and dragging it

to a new position. This increases the size of one window while reducing the

size of some of those that adjoin it. You can also add new windows by right-

clicking the seam and choosing Split Area from the menu that pops up. After

you do that, a line appears under your mouse cursor. Move your mouse to

where you would like to create a new seam and left-click to confirm. If you

decide you no longer wish to have this additional window, you can remove it

by right-clicking that seam and selecting Join Areas. This darkens the window

your mouse is in and draws an arrow to indicate which window you would

like to remove. Figure 1-5 shows the process of splitting an area to create a

new window and then removing that window by joining areas. When I work in

Blender, I find myself constantly changing the screen layout by splitting and

joining new windows as I need them.

 When you right-click the seam between windows, you see a third option

that says No Header. Choosing this option removes the header bar from the

window your mouse cursor was in last. You can put the header back by right-

clicking the seam again and choosing Add Header. You can also change the

location of the header to either the top or bottom of the window it belongs

to. To do so, right-click the header bar and choose one of the three available

options: Top, Bottom, or No Header.

17 Chapter 1: Discovering Blender

Figure 1-5:
Creating

a new
window

and then
removing

that
window.

When working in Blender, you also occasionally need to maximize a window.

This is particularly useful when you’re working on a model or scene and you

just want to get all of the other windows out of your way so you can use as

much screen space as possible. To maximize any window, hover your mouse

over that window and press Shift+Spacebar. You can toggle back to the tiled

screen layout by pressing Shift+Spacebar again. These options are available in

almost all window types by choosing View➪Maximize/Tile Window from that

window’s header. The only exception to this is the Buttons window. In this

window, the option is available by choosing Panels➪Maximize/Tile Window.

 You might notice that the hot keys next to these menu items are Ctrl+UpArrow

for maximizing and Ctrl+DownArrow for tiling, rather than Shift+Spacebar.

Those hotkeys also work, but I find that I don’t have to move my left hand as

much to hit Shift+Spacebar, so that’s much more convenient for me.

 This non-blocking window philosophy, combined with the fact that Blender’s

entire interface is written in a standardized programming library for graph-

ics called OpenGL, is the precise reason that Blender looks the same, no

matter where you run it. Whether you run it from Linux, Windows, a Mac,

or even a cell phone, Blender looks and behaves like Blender. There’s an

additional benefit to being written in a 3D library like OpenGL: Many parts of

Blender’s interface allow you to zoom in on them. Try it! Place your mouse

in the Buttons window (the bottom window) and hold Ctrl while scrolling

your mouse wheel. You can make the panels in this window much larger or

smaller than they are by default. Pretty cool!

18 Part I: Wrapping Your Brain Around Blender

So now you have a taste of how Blender thinks. That’s not so bad, is it? Of

course not! Of course, this little bit is just a start into the wild world that is

Blender and it’s interface. The next chapter goes into the interface in more

detail and gets you started with editing objects in Blender.

Chapter 2

Understanding How
Blender Thinks

In This Chapter
▶ Familiarizing yourself with Blender’s windows

▶ Customizing Blender to fit the way you work

▶ Working in three-dimensional space

It’s time to get intimate with Blender. No, I don’t mean you need to start

placing scented candles around your computer. I mean this chapter’s

focus is a detailed introduction to Blender’s interface and how you can start

finding your way around in it. First of all, it’s pretty important to have an

understanding of the various types of windows that Blender has, and how

to access them. These windows are the gateways and tools for creating

whatever you want. And with the knowledge of what you can do with these

windows, the next thing is actually building those creations. To do that, you

need to understand how to work in a virtual three-dimensional space, and

specifically, you need to understand how Blender handles that space. These

topics are also covered in this chapter.

Looking at Window Types
Each Blender window can be changed to any window type. You can see what

window types are available by left-clicking the button on the far left of that

window’s header. Figure 2-1 shows the menu that appears when you press

this button.

20 Part I: Wrapping Your Brain Around Blender

Figure 2-1:
The Window

Type menu.

The window types available through this menu are as follows. Next to each of

these types is the hotkey sequence to bring up the window type quickly:

 ✓ Scripts Window: Blender has a built-in scripting engine that uses the

Python programming language. Scripts give Blender additional function-

ality and automate tedious tasks. This window is where you load these

scripts, and in the case of some scripts, it’s also where you interact

with them.

 ✓ File Browser: This window allows you to look through the files on your

computer.

 ✓ Image Browser: This window is much like the File Browser window,

except it shows icons for folders and files, including thumbnails, or

smaller-sized versions, of image files.

 ✓ Node Editor (Shift+F3): Blender has a Node Editor for materials as well

as for compositing. This window is where you modify these node struc-

tures. See Chapters 7 and 15 for more on this.

 ✓ Buttons Window (Shift+F7): Nearly all of the different buttons for

working on your scene reside in the panels of the Buttons Window.

This window is covered in-depth later in this chapter in the section,

“Understanding the Buttons Window.”

 ✓ Outliner (Shift+F9): The Outliner gives a hierarchical view of all the

objects in your scene and the ability to see how they are related to one

another. It’s also a quick way to select objects in a complex scene.

21 Chapter 2: Understanding How Blender Thinks

 ✓ User Preferences: Through the User Preferences window, you can cus-

tomize how you interact with Blender.

 ✓ Text Editor (Shift+F11): Blender’s integrated Text Editor is not only

handy for keeping notes about your scenes and models, but it’s also a

convenient place to write and test your own Python scripts in Blender.

 ✓ Audio Window: The Audio Window displays the waveform for any

audio file you load and relate it to the time and frame rate you specify

for your project.

 ✓ Timeline: The Timeline window offers you a convenient way to quickly

jump from one part of your animation to another.

 ✓ Video Sequence Editor (Shift+F8): Blender’s Video Sequence Editor

(VSE) is a lightweight video editor. It isn’t as powerful as some of the

programs created specifically for editing video, but it’s quite effective

for stringing a sequence of scenes together and doing basic effects, over-

lays, and transitions.

 ✓ UV/Image Editor (Shift+F10): With the UV/Image Editor, you can do

basic image editing as well as edit the texture coordinates for your

models. More on this in Chapter 7.

 ✓ NLA Editor (Ctrl+Shift+F12): NLA stands for non-linear animation. The

editor in this window allows you to mix pre-animated actions on a single

character (such as mixing a waving hand animation with a walking ani-

mation to have your character walk and wave her hand).

 ✓ Action Editor (Shift+F12): The Action Editor is where you create and

adjust actions. Actions can be used to animate all of a character’s move-

ment in a scene, or they can be mixed together in the NLA Editor.

 ✓ IPO Curve Editor (Shift+F6): IPO is short for InterPOlation. Blender’s IPO

Curve Editor shows a graphical representation of an object’s animatable

attributes as they change over time.

 ✓ 3D View (Shift+F5): This is arguably the most-used window in Blender.

The 3D View shows you the three-dimensional view of your model or

scene and allows you to modify it.

 The only window type that is not available through this menu is the Data

Browse window. You can access it by pressing Shift+F4. This window gives

you a view of the raw database-like structure of all of the objects in your proj-

ect file, called a .blend file (pronounced “dot-blend file”), because Blender

project files all end with “.blend”. It looks very similar to the File Browser

window except it shows only the data in the file you’re currently working on.

Most Blender artists never need to use this window, but it’s helpful for discov-

ering what exactly is going on in your saved project file and for doing some

technical maintenance on it. This window is more useful for Technical

Directors than it is for regular 3D artists and animators.

22 Part I: Wrapping Your Brain Around Blender

Understanding the Buttons window
The Buttons window is probably the second-most used window in Blender.

In it are a series of sub-windows, each with panels containing buttons dedi-

cated to modifying specific parts of your scene. Below is a list of each type

of sub-window:

 ✓ Logic (F4): This window is dedicated to Blender’s integrated game

engine. Chapter 12 touches on this topic briefly.

 ✓ Script: Some Blender scripts require you to enable options in this

window. In particular, the left-clicking Enable Script Links button allows

.blend files to use integrated scripts when first loaded.

 ✓ Shading (F5): The buttons in the Shading window allow you dramatically

change the appearance of objects in your scene. Chapters 7 and 8 go

into this window in much more detail.

 ✓ Object (F7): The Object sub-window allows you to make changes that

affect an object as a whole. This is also where physics and particles but-

tons live. See Chapter 13 for more on these topics.

 ✓ Editing (F9): Buttons in the Editing sub-window change slightly depend-

ing on what sort of object you have selected, but their primary purpose

is to make fundamental changes to the structure of an object.

 ✓ Scene (F10): Scene buttons determine what the final output of your

scene will look like when you decide to render it to an image or video.

The Scene buttons get covered more in-depth in Chapters 14 and 15.

If you have a background in another software package like 3DS Max or

Maya, you may be more comfortable with a screen layout that lines the

buttons panels vertically along one side of the screen. Fortunately, Blender

and the Buttons window allows for this. To get a vertical Buttons view,

follow these steps:

 1. Join the 3D view and the Buttons window by right-clicking the seam

between the windows and choosing Join Areas. Left-click in the

Buttons window to confirm the join.

 2. Split a new area on the right of the screen by moving your mouse to the

seam between the 3D view and the top header; right-click➪Split Area.

 Move the line until you like the position. Don’t worry too much about

location; you can always adjust it later.

 3. Change your new side window to the Buttons Window type by press-

ing Shift+F7 with your mouse in that window, or by selecting it from

the Window type list.

 4. Your buttons panels are still horizontally aligned. Fix this by right-

clicking anywhere in the Buttons window except for its header and

choosing Vertical from the Panel Alignment menu that pops up.

23 Chapter 2: Understanding How Blender Thinks

Figure 2-2 shows this process.

 One thing that may concern you is that this vertical Buttons window layout

might obscure some of the available buttons in the header. In this case, there are

two things you can do. The first thing you can do is left-click the downward-

pointing triangle at the left of the header. This collapses the text menus from

view so they’re out of the way when you don’t need them. If that still doesn’t

give you enough space, Blender has another trick up its sleeve: Middle-click

the header and drag your mouse left and right. This moves the contents of

the header left and right so you can bring those obscured buttons into view.

This feature is very handy for people who work on small monitors.

Working with screens
“Cool!” you say, “I like this vertical layout. Is there a way for me save it so

I don’t have to change Blender’s layout each time I load it?” As a matter

of fact, there is! Actually, you can make a variety of layouts depending on

the sort of work you’re doing. In Blender, these workspace layouts are

called screens, and, by default, Blender comes with five: Animation, Model,

Material, Sequence, and Scripting. When you first load Blender, it puts you

in the Model screen layout. You can cycle through these screens by pressing

Ctrl+← and Ctrl+→. If you prefer to use a menu, you can use the one at the

top of the window, as shown in Figure 2-3, and left-click the up/down arrows

next to the name of the current screen.

Figure 2-2:
Creating a

vertical
buttons
screen
layout.

24 Part I: Wrapping Your Brain Around Blender

Figure 2-3:
The Screens

menu.

 One thing worth mentioning here is that the “SR:” that appears before the

screen name is not actually part of the name. It’s just there to remind you that

this menu is for screens. Any screen can be renamed by switching to that

screen and left-clicking the screen’s name. From here, you can rename it to

anything.

 Something to note, however, is that the default screens have numbers as part

of their names (such as “1-Animation” and “3-Material”). This is done to keep

those screens in that specific order. The screens, and therefore the order that

they’re cycled through when you press Ctrl+← or →, are arranged in alphabet-

ical and numerical order, for fast and logical organization. Keep this in mind if

you’re creating a screen that you would like to appear in a specific place on

the list.

To create a new screen, left-click the up/down arrow next to the current

screen name in the header and choose Add New. This produces a new menu

where you can choose to duplicate an existing screen or start with an empty

one. From here, you can make the changes to your workspace layout, cre-

ating a vertical Button Window layout or a traditional “four-panel” layout

with a separate 3D View window for top, front, side, and perspective views.

When you are happy with changes you’ve made and you want to have these

screens available each time you start Blender, save your settings by choosing

File➪Save Default Settings or pressing Ctrl+U.

 Before creating a new screen that you want to keep around for future use, first

return to your default setup by selecting File➪New or pressing Ctrl+X. The

reason for this is that when Blender saves your user settings, it saves them to

a special .blend file that gets loaded each time it starts. So any models you

have in the 3D View and any changes you make to other layouts are saved,

too. Fortunately, if you’ve made a mistake, you can always return to the

default setup by choosing File➪Load Factory Settings and recreate your

custom layouts from there.

25 Chapter 2: Understanding How Blender Thinks

Setting user preferences
This section on user preferences is by no means comprehensive. The number

of options available in Blender’s User Preferences is mind-bogglingly large.

My intent here is to introduce you to the most helpful and relevant options

to get you working effectively. For specific details on every single button, see

the online documentation available at www.blender.org.

Of course, the first question is, “Where exactly are the buttons for

user preferences?” If you’ve used other programs, you might expect an

Edit➪Preferences option that pops up a new window with a bunch of options

to play with. Don’t go looking for that; You won’t find it. Remember that

Blender uses a philosophy of non-blocking windows. So, technically, the User

Preferences window can exist anywhere. Just change the window type to

User Preferences and BAM! All of the options are there for you.

 Actually, though, there’s an easier way. Left-click the seam between the 3D

view and the topmost header and drag it down. The user preferences are con-

veniently tucked above the main menu. This is the fastest way to get to the

preferences.

View & Controls
The first set of available options in Blender’s user preferences relate to views

and controls within the 3D window (shown in Figure 2-4). Moving from left to

right, some of the more useful options are as follows:

Figure 2-4:
The View

& Controls
options in
user pref-
erences.

 ✓ Object Info: This option is on by default and toggles whether the name

of the current frame number and active object are displayed in the lower

left corner of a 3D View window.

 ✓ View name: Off by default, turning this option on places text in the

upper left corner of a 3D View window to indicate the perspective from

which you’re viewing the scene (such as Top Perspective or Camera

Perspective).

26 Part I: Wrapping Your Brain Around Blender

 ✓ View rotation: By default, Blender uses the Trackball setting. However,

users who are familiar with other 3D programs might prefer the

Turntable setting. The difference may seem subtle to a new user, but it

can be very disorienting for people from other software packages who

may be used to turntable orbit style.

 ✓ Select with: This option is somewhat mislabeled because it does more

than change what you select with. It actually completely swaps what

the left mouse button and right mouse button do in Blender. Default is

Right Mouse. I cover this more later in this chapter in the section called

“Selecting objects”.

 ✓ Emulate 3-Button Mouse: Blender was designed to be used with a three-

button mouse. However, not all computers have three-button mice, par-

ticularly Macintosh machines and some tablet PCs. Enabling this option

helps these users compensate by using Alt+left-click to do what is nor-

mally done with the middle-click.

 ✓ Invert Zoom: Similar to the Trackball/Turntable option, some people are

more comfortable scrolling forward to zoom out and back to zoom in.

This gives users that option.

 ✓ Smooth View: Smooth View is probably one of the coolest “convenience

options” added to Blender in recent history. By default, it’s disabled

by being set to zero. However, change that value to its maximum of

1000, go to your 3D View window, and choose View➪Camera. The 3D

view smoothly animates the change from the default Top View to the

Camera’s perspective. Pretty slick, huh? The 1000 setting is a bit slow

for my tastes: I prefer a setting around 250. Play with it on your own and

see what works best for you.

Edit Methods
The next set of options is related to the act of editing objects. As shown in

Figure 2-5, the most relevant options are as follows:

Figure 2-5:
The Edit

Methods
options in

user prefer-
ences.

27 Chapter 2: Understanding How Blender Thinks

 ✓ Add New Objects: The two options for adding new options are new to

Blender as of version 2.46. Both are disabled by default. In this configu-

ration, Blender behaves much like any other 3D program when adding

new objects. New objects are added in Object mode and aligned with the

global axis. Enabling both of these options makes Blender behave like it

did prior to version 2.46.

 ✓ Undo: The options related to undo are pretty important. Here you can

adjust how many steps of undo you have when working in Blender

(default is 32), as well as toggle Global Undo on and off. Now, you may

be wondering why in the world anyone would ever want to disable the

ability to undo a mistake. The most common answer to this question is

performance. Having undo enabled requires more memory from your

computer and each level of undo requires a little bit more. Sometimes,

when working with very complex scenes or models, an artist might dis-

able undo so that all of the memory is dedicated to their current scene

rather than the steps used to create it. This occurs most when artists

work with Blender’s multi-resolution sculpt tools (see Chapter 5).

Language & Font
The first time you load this set of options, you see only a single button

that says International Fonts. However, when you click that button, you

get a set of options like the ones in Figure 2-6. This section is most useful

to non-English-speaking Blender users as it allows most menu items to be

translated to their native language. However, there is one additional ben-

efit for all Blender users. By turning on International Fonts, all text in the

Blender interface can be displayed in any TrueType font you choose. Simply

left-click the Select Font button and use the File Browser to track down

the font you would like to use. Even if you just use the default font that’s

built into Blender, you should notice that the text is much cleaner and less

jagged looking with this option enabled. Enabling this function causes your

machine to take a slight performance hit, but it’s usually barely noticeable

on even the slowest of machines.

Figure 2-6:
The

Language &
Font options
in user pref-

erences.

28 Part I: Wrapping Your Brain Around Blender

Themes
Blender has quite a bit of flexibility in adjusting how it looks. This is all done

through the Themes options, shown in Figure 2-7. By default, Blender ships

with two themes: Default and Rounded. Almost all of the screenshots taken

for this book are done using the Default theme. However, when I work in

Blender, I use my own theme that I derived from the Rounded theme. It’s a

bit darker and easier on the eyes. This is particularly important if, like me,

you’re known for sitting behind the computer and working in Blender for

10-15 hour stretches. In situations like that, the less stress you can put on

your eyes, the better. A copy of the theme I use is included on the DVD that

comes with this book. Feel free to use it for your Blender sessions, or make

your own! Everyone has their own tastes. In fact, one of the more popular

Blender users, Pablo Vazquez (known as VenomGFX) uses a theme that’s

completely purple and pink!

Figure 2-7:
The Themes

options in
user pref-
erences.

Auto Save
Before Blender had undo functionality, users relied heavily on its Auto Save

features. These options, as shown in Figure 2-8, are a life-saver, even in the

age of undo.

 ✓ Save Versions: Each time you manually save a file in Blender, it takes

your last save and stores it as an earlier version. You may have created

work in Blender before and noticed some .blend1 files in the same place

you saved your .blend files. Those .blend1 files are the earlier version.

This option allows you to determine how many of these earlier versions

you’d like Blender to retain for you.

 ✓ Auto Save Temp Files: Enabled by default, this is Blender’s auto save

functionality. It saves a “hot backup” in your Temp directory (adjust-

able in the File Paths options; see below) every few minutes, as dictated

by the Minutes field below this button. The Open Recent button closes

the current file you’re working on without saving and opens your most

recent backup in the Temp directory.

 ✓ Recent Files: The number in this field tells Blender how many of your

past files to remember when you go to File➪Open Recent or press

Ctrl+O.

29 Chapter 2: Understanding How Blender Thinks

 ✓ Save Preview Images: This option is turned off by default, but when

enabled, it saves a small preview image of each texture and material in

your project and embeds it into your .blend file. This way, you can use

Blender’s Image Browser to see materials and textures when you append

or link from other files.

Figure 2-8:
The Auto

Save
options in
user pref-
erences.

System & OpenGL
Whereas the View & Controls options dictate how you interact with Blender,

the options in the System & OpenGL section, shown in Figure 2-9, tend to

dictate more how Blender interacts with you. Many of the options here are

geared toward optimizing for performance, and generally the defaults work

well. Some of the more interesting options follow:

 ✓ Solid OpenGL lights: With these settings, you can adjust the standard

lighting used in your 3D View window. Some Blender users set these

colors to drastically different settings so they can have a good sense

of each side of their model and more easily see some of the contours.

You have the ability to turn on up to three lights. On each one, you

can adjust the direction of the light by left-clicking and dragging on the

sphere. You can adjust either of the two colors below (main color and

highlight or specularity color, respectively) by left-clicking them and

using the color picker that pops up.

 ✓ Emulate Numpad: This is a very handy option for laptop users. As you

see in the next section, Blender makes use of the numeric keypad for

quick access to top, front, side, and camera views in the 3D window.

Unfortunately, most laptop users do not have an easily accessible

numeric keypad on their keyboards. As a workaround for this, the

Emulate Numpad option uses the number keys at the top of the key-

board to have the functionality that the corresponding numpad num-

bers have. This disables the normal layer-switching functionality that

the number keys at the top of the keyboard have, but the ability to

quickly change views tends to be more valuable to users than the ability

to quickly change layers anyway.

30 Part I: Wrapping Your Brain Around Blender

Figure 2-9:
The System

& OpenGL
options in
user pref-
erences.

File Paths
The File Paths options shown in Figure 2-10 show the default locations

where Blender looks for or places certain files. Here you can indicate where

your fonts are located, where you want to save your renders by default,

and where to look for textures and sounds. However, probably the most

important path in this section is the one for Temp. This is the location

where Blender stores Auto Save files and it is also where it stores the notori-

ous quit.blend file, which is great for recovering your last blender session.

The default location for temporary files is /tmp/. Unfortunately for users

of Microsoft’s Windows operating system, this location does not make any

sense and actually doesn’t even exist. If you’re using Windows, I strongly

advise that you change this to “C:\Windows\Temp” or create a folder called

tmp on your C:\ drive. Linux users may also want to change this location

because some Linux distributions like Ubuntu automatically clear the /tmp

directory on each boot.

Figure 2-10:
The File

Paths
options in
user pref-
erences.

Navigating in Three Dimensions
As I mentioned earlier in this chapter, the 3D view is probably the most used

window type in all of Blender. It also has some of the most unique interface

decisions of any 3D software program. The purpose of this section is to guide

you to understanding how to wield this part of Blender like a virtual 3D ninja!

Alright, so perhaps I was a little over the top with the whole ninja thing, but

hopefully this section will take you at least one or two steps closer to that goal.

31 Chapter 2: Understanding How Blender Thinks

Orbiting, panning, and
zooming the 3D view
When trying to navigate a three-dimensional space through a two-dimensional

screen like a computer monitor, you can’t interact with that virtual 3D space

exactly like you would in the real world, or as I like to call it, meatspace. The

best way to visualize this is to imagine the 3D view as your eyes to this 3D world.

But rather than think of yourself as moving through this environment, imagine

that you have the ability to move this entire world around in front of you.

The most basic way of navigating this space is called orbiting. This is the

rough equivalent of rotating the 3D world around a fixed point in space. In

order to orbit in Blender, middle-click anywhere in the 3D view and drag your

mouse cursor around.

 Occasionally, you have the need to keep your orientation to the world, but

you’ll want to move it around so you can see a different part of the scene

from the same angle. In Blender, this is called panning, and you do it by hold-

ing Shift while middle-clicking in the 3D View. Now when you drag your

mouse cursor around, the world shifts around without changing the angle

that you’re viewing from.

The third way of navigating 3D space is when you want get closer to an

object in your scene. Similar to working with a camera, this is called zooming

the view. In Blender, there are two ways to zoom. The easiest method is by

using your mouse’s scroll wheel. By default, scrolling forward zooms in and

scrolling back zooms out. However, this method doesn’t always give you fine

control and some people don’t have a mouse with a scroll wheel. In these

cases, you can zoom by holding Ctrl while middle-clicking in the 3D view.

Now, when you drag your mouse cursor up or left, you zoom in, and when

you drag your mouse cursor right or down, you zoom out.

Of course, if you happen to be working with a mouse that does not have a

middle mouse button, Blender’s default behavior is to emulate the middle

mouse button by pressing Alt+left-click. So orbiting is Alt+left-click, panning

is Shift+Alt+left-click, and zooming is done with Ctrl+Alt+left-click. Table 2-1

has a more organized way of showing this.

Table 2-1 Keyboard/Mouse Keys for Navigating 3D Space
Navigation Three-Button Mouse Emulated Three-Button

Mouse

Orbit Middle-click Alt+left-click

Pan Shift+middle-click Shift+Alt+left-click

Zoom Ctrl+middle-click Ctrl+Alt+middle-click

32 Part I: Wrapping Your Brain Around Blender

Changing views
Although using the mouse to work your way around the 3D space is the most

common way to adjust how you view things, Blender has some menu items

and hotkey sequences that help give you specific views much faster and

more accurately than you can do alone with your mouse.

The View menu
On occasion, you want to know what a model looks like when it’s viewed

head-on from the front, side, or top. Blender has some convenient shortcuts

for quickly switching to these views. The most obvious way is to use the View

menu in the 3D view’s header, as shown in Figure 2-11. This menu lets you

choose the top, front, side, and user view, as well the view from any of the

cameras you may have in your scene. You can also use this menu to switch

between orthographic and perspective views. The orthographic view of a 3D

scene is similar to how technical drawings and blueprints are done. If two

objects are the same size, they always appear to be the same size, regardless of

how far away from you they are. This view is ideal for getting sizes and propor-

tions correct in your models, especially if they are based on blueprints or tech-

nical drawings. The perspective view is more akin to how we actually see things.

That is, objects in the distance look smaller than objects that are near you.

Figure 2-11:
The View

menu in the
3D View
window.

33 Chapter 2: Understanding How Blender Thinks

Behold the power of the numeric keypad!
The View menu is certainly helpful, but there’s an even faster way to change

your view: the numeric keypad. Each of the buttons on your keyboard’s

numeric keypad has an extremely fast way of changing your view in the 3D

window. It also has some options that aren’t available to you in the View

menu. Figure 2-12 is an image of the numeric keypad with an indication of

what each key does.

Figure 2-12:
The numeric

keypad
is your

ultimate
tool for

navigating
3D space.

Num
Lock Zoom

Out

/ * -

7

Zoom
In
Enter

8 9

4 5 6
Rotate
Left Persp.

Top
View

Rotate
Up

Rotate
Right

Front
View

Rotate
Down

Side
View
.

1

Camera
View

0

2 3

+

Notice that the hotkeys are arranged in a way that corresponds with how you

would expect them to be. Top view is at the top of the keypad at Numpad 7.

The front view is accessed at Numpad 1, and if you move to the right on the

keypad, you can see the side view by pressing Numpad 3. Because it’s the

view you render from, the active camera is the most important and therefore

gets the largest key at Numpad 0. Pressing Numpad 5 is a quick way to toggle

between orthographic and perspective views. If you have View Name turned on

in the Views & Controls section of the user preferences, it actively informs you

about which view you are using. And having the very cool Smooth View option

enabled definitely helps you keep from getting disoriented while working.

Here is where the numeric keypad shows its real power. You may have

noticed that the View menu doesn’t appear to give you the ability to see the

bottom, back, or left-side view of your scene. With the numeric keypad, it’s

easy. To see the opposite side of the standard views, press Ctrl while hitting

the corresponding Numpad key. For example, if you want to see the bottom

view, press Ctrl+Numpad 7. Of course, say you really like the View menu, or

you’re one of the unfortunate souls who doesn’t have a numeric keypad on

34 Part I: Wrapping Your Brain Around Blender

your keyboard. Well, the good news is that Blender’s developers thought

ahead and actually did add this functionality to the View menu, and it works

about the same way: Just hold Ctrl while picking your view, and you’ll get the

opposite side. Ctrl+View➪Front gives you the back view of your scene.

Now, maybe you got a little bit excited and hit Ctrl+Numpad 0 to see what

the opposite of the camera view is and had some unexpected results. This is

because Ctrl+Numpad 0 does something slightly different. It actually allows

you to treat any selectable object in Blender as a camera, with the view look-

ing down the object’s local Z-axis. If this doesn’t make any sense to you, take

a quick look at the beginning of Chapter 3 for more explanation on local and

global coordinate systems. It may seem like a strange feature to have, but it

can be really helpful for doing things like aiming lights and checking the line

of sight of an object or a character.

 Another cool thing you can do with Numpad 0 is to quickly snap the camera to

your user view. For example, say you’ve been working on 3D model for a while

from a certain angle and you want to see what the model looks like in a render

from that specific angle. Rather than try to grab and rotate your camera to get

close to this same angle, you can simply press Shift+Numpad 0 and the camera

jumps directly to where you are viewing your model from. I find myself using

this hotkey sequence quite a bit when I’m creating my models. Sometimes it’s

just easier to change your user view and snap your camera to it than it is to

aim the camera how you want it.

The numeric keypad also gives the ability to navigate your scene like you

might normally do with your mouse. This is done with the 8, 4, 6, and 2

keys on the keypad. Numpad 8 and Numpad 2 orbit the view forward and

back, respectively, whereas Numpad 4 and Numpad 6 orbit it left and right.

By default, Blender does these rotations in 15-degree increments, but you

adjust this to be more fine or coarse in your user preferences under Views

& Controls➪Rotation Angle. This a nice way to get a quick turntable view of

a scene, particularly if you have your View rotation set to Trackball in your

user preferences. You can also pan the view by pressing Ctrl in combination

with any of these buttons. For example, Ctrl+Numpad 4 and Ctrl+Numpad 6

pan the view left and right. You can even zoom the view by using the

Numpad-plus and Numpad-minus keys.

There are two more very useful hotkeys on the numeric keypad: Numpad-

slash (/) and Numpad-dot (.). They are somewhat more esoteric than the

other keys, but they definitely come in handy. Of the three, I tend to use

Numpad-slash the most. It toggles what Blender calls Local View. Basically,

it hides everything in your scene except for the object or objects you have

selected. It’s really useful for temporarily isolating a single object or set of

objects in a complex scene so that you can work on it without anything else

35 Chapter 2: Understanding How Blender Thinks

getting in your way. The Numpad-dot hotkey also comes in handy when you

want to focus on a specific part of your scene. It centers the objects you’ve

selected in the 3D View for you. This is particularly useful if you’ve rotated or

panned everything out of sight and you want to bring your selected objects

back into view. If the image in Figure 2-12 doesn’t quite work for you as a ref-

erence, Table 2-2 shows what each key does in a table-based format.

Table 2-2 Hotkeys on the Numeric Keypad
Hotkey Result Hotkey Result Hotkey Result

1 Front Ctrl+1 Back + Zoom in

2 Orbit back Ctrl+2 Pan down - Zoom out

3 Right side Ctrl+3 Left side / Toggle local
view

4 Orbit left Ctrl+4 Pan left . View selected

5 Ortho/
Persp

6 Orbit right Ctrl+6 Pan right

7 Top Ctrl+7 Bottom

8 Orbit for-
ward

Ctrl+8 Pan up

0 Camera
view

Ctrl+0 Set active
object as
camera

Shift+0 Set user view
as camera

One other key worth mentioning, although it’s not exactly on the numeric

keypad, is the Home key. Whereas using Numpad-dot brings your selected

objects into view, pressing Home zooms your view back until all objects in

your scene are visible in the 3D View. This is a very convenient key for get-

ting an overall idea of what’s going on in your scene.

Ways to See Your 3D Scene
Aside from changing the angle from which you view your 3D world, you may

also want to change how the world is shown in the 3D view. This is called the

draw type or draw mode for the view. By default, Blender starts in the Solid

draw type. This shows your models as solid 3D objects, lit by the OpenGL

lights you can set in Blender’s user preferences under System & OpenGL. You

can change the draw type by going to the 3D View’s header and left-clicking

the button that looks like a cube with little protrusions coming from its faces,

as seen in Figure 2-13.

36 Part I: Wrapping Your Brain Around Blender

Figure 2-13:
3D View

draw types.

Clicking this button reveals the following possible draw types:

 ✓ Textured: The Textured draw type attempts to faithfully show you what

your object will look like when textured and lit for the final render. It

may differ a bit from what the final looks like, but it should give you a

good idea to work from. Pressing Alt+Z quickly toggles between this

draw type and the Solid draw type. If you have the a modern acceler-

ated video card, you can enable GLSL shaders (Game➪Blender GLSL

Materials) and when you use image-based textures, the Textured draw

type will be more accurate. More on this topic is in Chapter 8.

 ✓ Shaded: The Shaded draw type is similar to the default Solid draw type,

except it uses the lights you actually have in the scene for lighting,

rather than the OpenGL lights set in the user preferences. This setting

is helpful for tweaking your lighting rig without constantly needing

to rerender. Press Shift+Z to quickly toggle between the Shaded and

Wireframe draw types.

 ✓ Solid: The default draw type that Blender starts with. Press Z to toggle

between this draw type and Wireframe. This is usually the standard work

mode for working in Blender. If you have an older video card, the Shaded

and Textured draw types will perform much slower than this one.

 ✓ Wireframe: This draw type shows the objects in your scene as transpar-

ent line-drawings. This is a good quick way to get an idea of the struc-

ture of your models. And because it’s a bunch of lines, Blender doesn’t

have to worry about shading and therefore doesn’t tax your computer’s

processor as much. On older computers, Blender is a lot more respon-

sive using the Wireframe draw type than the Solid, Shaded, or Textured

draw types.

 ✓ Bounding Box: The Bounding Box draw type replaces your 3D object

with a wireframe cube that shows how much space your object takes up

in the 3D world. It’s not as commonly used as the other draw types, but

it does come in handy for quickly placing objects in a scene or detecting

when two objects might collide.

Besides the menu in the 3D View’s header and the various combinations of

Z, Shift+Z, and Alt+Z for switching views, you can also press D anywhere in

the 3D view to bring up a menu under your mouse that allows you to choose

37 Chapter 2: Understanding How Blender Thinks

a draw type. You may also notice that if you have more than one 3D View

window, they don’t all have to have the same draw type. You can see the

wireframe of your model in one window while adjusting the lighting in the

Shaded draw type in another window.

Selecting objects
How you select objects is one of the most controversial design decisions in

Blender’s interface: In nearly every other program, you select things — be

they text, 3D objects, files, or whatever — by left-clicking them. This is not

the case in Blender. When you left-click in the 3D view, all it seems to do is

move around some strange crosshair thing. That is Blender’s 3D cursor. I talk

more about that later, but in the meantime, you’re probably thinking, “How in

the world do I select anything?”

The answer is simple: You select objects in Blender by right-clicking them.

Multiple objects are selected by Shift+right-clicking them.

Although this certainly seems strange, there is actually a reason for doing

it this way. This design decision was not made at random or just to be dif-

ferent for the sake of being different. There are actually two reasons: one is

philosophical and the other is practical. The first comes from how the mouse

is used in Blender. In Blender, the left mouse button is intended to be used

to perform or confirm an action. You left-click on buttons or menus and

left-click to confirm the completion of an operation like moving, rotating, or

scaling an object, and you use it to place the 3D cursor. Selecting an object

doesn’t really act upon it or change it. So right-click is used to select objects

as well as cancel an operation before it’s completed. It’s a bit abstract, but as

you work this way, it does actually begin to make sense.

The second reason is more practical: 3D modelers and animators are known

for working at a computer for insanely long stretches of time. Repetitive

stress injuries, or RSI, is a real concern. The more you can spread the work

across the hand, the lower the chance of RSI. By making it so you’re not

doing every single operation with the left mouse button, Blender helps in

this regard. Also, many 3D artists like to use a drawing tablet, rather than a

mouse. Having right-click to select is actually really helpful for this type of

interface.

 Bottom line, the “right-click to select” paradigm really is a nice, efficient way of

working in 3D space after you get used to it. However, if you try it out and still

don’t like it, Blender offers you the ability to swap left and right mouse button

usage in the View & Controls section of the user preferences window. Do note,

however, that this book is written with the default right-click behavior in

mind, so remember that as you read other chapters.

38 Part I: Wrapping Your Brain Around Blender

Taking advantage of the 3D cursor
“Okay,” you say, “I can handle the right-click-to-select thing. But what’s with

these crosshairs that move to where ever I left-click? It seems pretty useless.”

That’s the 3D cursor. It’s a unique concept that I’ve only seen in Blender and

it’s anything but useless. The best way to understand it is to think about a

word processor or text editor. When you add text or want to change some-

thing, it’s usually done with or relative to the blinking cursor on the screen.

Blender’s 3D cursor serves pretty much the same purpose, but in three

dimensions. When you add a new object, it’s placed wherever the 3D cursor

is located. When you rotate or scale an object, you can do it relative to the 3D

cursor’s location. And when you want to snap an object to a specific location,

you do it with the 3D cursor.

In terms of adjusting your 3D View, you can use the 3D cursor as a quick

way to recenter your view. To try this, place the 3D cursor anywhere in the

3D view by left-clicking. Now press C and watch as the View pans to put the

cursor at the center of the window. This is similar to pressing Numpad-dot,

except you don’t have to select any objects. Another convenient hotkey

sequence is Shift+C. This relocates the 3D cursor to the origin coordinates of

the 3D environment and then brings all objects into view. This is like pressing

Home with the added benefit of moving the cursor to the origin.

In Chapter 3, the topic of grabbing, scaling, and rotating objects is covered.

Usually, you want to use Blender’s default behavior of doing these operations

relative to the median point of the selected objects. However, you can also

perform any of these operations relative to the 3D cursor by pressing the

period (.) key on your keyboard or selecting 3D Cursor from the Pivot menu

in the 3D View’s header, as shown in Figure 2-14. You can use this menu to

switch back to the default behavior or press Shift+comma.

Figure 2-14:
The Pivot

menu in the
3D View
window.

39 Chapter 2: Understanding How Blender Thinks

The 3D cursor is also very useful for snapping, or moving to a specific point

in space. For a better idea of what this means, hover your mouse over the 3D

View window and press Shift+S. A menu like the one in Figure 2-15 appears.

Figure 2-15:
The Snap

menu.

Through this menu, you can snap your selected object to a fixed coordinate

on the grid in the 3D View, the location of the cursor, or to the center of the

grid, also known as the origin of the scene. You also have the ability to snap

the 3D cursor to the middle of multiple selected objects, a fixed location on

the grid, or to the active object in the scene. This is a very effective way to

move an object to a specific point in 3D space, and it’s all thanks to the little

3D cursor.

40 Part I: Wrapping Your Brain Around Blender

Chapter 3

Getting Your Hands Dirty
Working in Blender

In This Chapter
▶ Understanding coordinate system orientations

▶ Speeding up the process with hotkeys

▶ Making changes to 3D objects

Blender is built for speed, and its design heavily emphasizes working

as quickly and efficiently as possible for extended periods of time. On

more than one occasion, I’ve found myself working in Blender for 10-15 hours

straight. Although, admittedly, part of this has to do with my own minor

lunacy, the fact that I’m able to be that productive for that long is a testament

to Blender’s design. This chapter gets you started in taking full advantage of

that power. This chapter covers the meat and potatoes of interacting with

three-dimensional (3D) space in Blender, such as moving objects and edit-

ing polygons. If you’ve worked in other 3D programs, chances are good that

a number of Blender concepts will seem particularly alien to you. To quote

Yoda, “You must unlearn what you have learned” in your journey to become

a Blender Jedi. If you’ve never worked in 3D, you probably have an advantage

over a trained professional who’s used to a different workflow. Hooray for

starting fresh!

 In addition to having an emphasis on efficiency, Blender is designed to

allow you to work for as long as possible while incurring the least amount

of repetitive stress. For this reason, relatively few operations in Blender

require you to hold down a key. Typically, you press a key to begin the

operation and confirm its completion by left-clicking with your mouse or

pressing Enter. To cancel the operation, right-click, or press Esc.

42 Part I: Wrapping Your Brain Around Blender

Grabbing, Scaling, and Rotating
The three basic object operations in a 3D scene are the transformations

known (by mathematicians) as translation, scale, and orientation. People

who speak Blenderese use the terms grab, scale, and rotate, respectively.

Other programs might also use the term move in place of grab or size in

place of scale. You can use these three operations to place any object in 3D

space at any arbitrary size and with any arbitrary orientation. Also, because

Blender tries to maintain consistency throughout its interface, you can use

these transform operations in more than just the 3D view. For instance, the

same grab and scale operations work when you want to edit keyframes and

motion curves in the IPO, short for interpolation, window! How’s that for

convenient?

Differentiating between
Coordinate Systems

Before you bound headlong into applying transformations, such as rotation

and scaling, to your objects, you need to understand how coordinate systems

work in 3D space. All coordinate systems in Blender are based on a grid con-

sisting of three axes: X, Y, and Z. The X-axis typically represents side-to-side

movement, whereas the Y-axis represent front-to-back and the Z-axis goes

from top to bottom. This is referred to as the Cartesian grid. The origin, or

center, of this grid is at the (0,0,0) coordinate. The difference in the systems

lies in the way this grid is oriented relative to a selected 3D object. Figure 3-1

shows the Coordinate System Orientation menu in the 3D view header when

you left-click it.

Figure 3-1:
The

Coordinate
System

Orientation
menu.

As the figure shows, there are four orientations to choose from: View,
Normal, Local, and Global. Working in of these coordinate systems gives you

absolute control of how your object lives in 3D space. Depending on how you

would like to transform your object, one orientation might be more appropri-

ate than the others.

43 Chapter 3: Getting Your Hands Dirty Working in Blender

 This list describes details of the four possible orientations:

 ✓ View: The orientation from the perspective of the window. The View

orientation appears relative to how you’re looking at the 3D View

window. Regardless of how you move around in a scene, you’re always

looking down the Z-axis of the View coordinate system. The Y-axis is

always vertical, and the X-axis is always horizontal in this orientation.

 ✓ Normal: The orientation that’s perpendicular to some arbitrary plane.

When working with just objects, this description doesn’t really apply, so

the Normal axis is exactly the same as the Local axis. When you begin

editing meshes, though, it makes more sense because you have normals

to work with. Blender also uses the Normal orientation for the local

coordinate system of bones when working with Armatures for anima-

tion. Chapter 4 covers editing meshes in more detail and Chapter 11

covers working with Armatures depth.

 ✓ Local: The orientation of the object relative to its initial location and

orientation. In addition to the Global orientation, each 3D object in

Blender has a local coordinate system. The origin of this system isn’t

the same as the Global origin. Instead, this coordinate system is relative

to the center point of your object. The center point is represented by

the pink dot that’s usually located at the center of your 3D object.

 ✓ Global: The orientation of Blender’s base grid that you see in the 3D

View. In many ways, this is the primary orientation to which everything

else relates. When you first start Blender, you’re in Top view, looking

down the Z-axis. The Y-axis is marked in green, moving along the front-

to-back line, and the X-axis is in red, along the side-to-side line. The

origin is located directly at the center of the grid. For example, moving

in the negative X direction moves the object to the left, if you’re looking

from Top view.

 All these coordinate system explanations can be (please forgive the pun)

disorienting. An easy way to visualize this concept is to imagine that your

body represents the Global coordinate system and this book is a 3D object

oriented in space. If you hold the book out in front of you and straighten

your arms, you move the book away from you. It’s moving in the positive Y

direction, both globally and locally. Now, if you twist the book to the right a

few degrees and do the same thing, it still moves in the positive Y direction

globally. However, in its local axis, the book is moving in both a positive Y

direction and a negative X direction. To move it in just the positive local Y

direction, you move the book in the direction in which its spine is pointing.

To relate this concept to the View orientation, assume that your eyes are the

View axis. If you look straight ahead and move the book up and down, you’re

44 Part I: Wrapping Your Brain Around Blender

translating it along the View orientation’s Y-axis. For a clear reference, Figure

3-2 shows the difference between the coordinate systems.

Figure 3-2:
The Global,

Local, View,
and Normal
coordinate

orientations.

 The last object you select is the active object. If you’re using the Local or

Normal orientations and select multiple objects, the transform operations

happen relative to the active object’s orientation. (In Chapter 2, I show you

how to select multiple objects at the same time.)

Transforming an Object by
Using the 3D Manipulator

In Blender’s default configuration, the 3D manipulator is activated and viewable

at the center of your selected object. You can use the manipulator to transform

any object in a 3D scene. When Blender first starts, the manipulator is in

Translate (Grab) mode, which you can determine in two ways:

 ✓ The manipulator itself looks like a set of colored axes located at the

center of the selected object.

 ✓ The button with the red triangle on it (refer to Figure 3-1) is depressed

to indicate that the manipulator is in Translate mode. By default, the

manipulator is oriented to align with the Global axis.

 In all coordinate system orientations under Blender, blue represents the

Z-axis, green the Y, and red the X.

Switching manipulator modes
As you might expect, translation isn’t the only transform operation available

to you with the manipulator. Refer to Figure 3-1. The button with the green

circle on it activates Rotation manipulator mode, and the button with the

blue square activates Scale mode. Press the Rotation Mode button to see the

change in the look of the 3D manipulator. In this mode, the manipulator is a

set of circles around the object’s center, with the proper color representing

45 Chapter 3: Getting Your Hands Dirty Working in Blender

each axis. Pressing the Scale Mode button for the manipulator changes it to

look much like it does in Translate mode, except that you see a small cube,

rather than an arrow, at the end of each axis.

 The 3D manipulator should be familiar to you if you’ve used other programs,

where the corresponding tool might be called a widget or a gizmo. However,

the Blender manipulator also does something else: It lets you activate multiple

modes at the same time. Hold down Shift while pressing the appropriate

button to activate a manipulator. You can then make any combination of

transform modes active simultaneously. Many Blender users find this capabil-

ity particularly helpful for animation, where there are situations that require

quick access to translation and rotation but not necessarily to adjust the

object’s scale. Figure 3-3 shows the three separate modes of the manipulator

as well as the “combo” manipulator.

Figure 3-3:
The

Translate,
Rotate,

Scale, and
Combo

manipulator
modes.

Using the manipulator
To translate a selected object with the manipulator, follow these steps:

 1. Make sure that Translate mode is active by left-clicking the Translate

manipulator mode button in the 3D View’s header.

 2. Left-click the manipulator arrow that points in the direction you want

to move the object.

 For instance, to move an object along the X-axis, left-click the red arrow

on the manipulator.

 3. To confirm the placement of the object, left-click again or press Enter.

 To cancel the operation, right-click or press Esc.

 For quick adjustments, left-click-and-drag an arrow. When you release the

mouse button, the placement is confirmed.

In all transform operations, the same controls listed above are available in

the Blender multifunction buttons. Move in fixed increments by holding down

the Ctrl key. Hold down the Shift key while transforming an object to make

46 Part I: Wrapping Your Brain Around Blender

adjustments on a finer scale. Hold down the Ctrl+Shift key combo while trans-

forming to make adjustments in smaller fixed increments.

This fixed-increment control is similar to the basic snapping to the grid found

in other 2D and 3D applications. Blender also offers the ability to snap your

selected object to other objects in your scene. To turn this on, press the icon

shaped like a magnet in the 3D View’s header, as shown in Figure 3-4. After

it’s activated, you have a choice of snap modes: Closest, Center, Median, and

Active. The way snapping works, you first select what you want to transform.

Then you activate one of the various transform operations (Grab, Scale,

Rotate). While transforming, hold down Ctrl. As your mouse cursor comes

near a vertex in another mesh, a small circle appears around that vertex.

When this happens, your selection snaps according to the behavior dictated

by the snap mode you’ve chosen.

Figure 3-4:
The Snap

Target
Mode

button.

The different available types of Snap Target Modes that Blender provides you

are as follows:

 ✓ Active: In Object mode, the last thing that you select is considered the

active object. In Blender’s default theme, it’s a bit difficult to distinguish

from your other selected items, but active selections are a lighter color

than your other selected objects. When using Active snap mode, your

active selection is what snaps to your target vertex.

 ✓ Median: Median snap mode operates similar to Center snapping. In fact,

for two-dimensional meshes such as planes and symmetrical objects,

Median snapping is almost always identical to the results of Center snap

mode. However, when working in three dimensions and asymmetric

meshes, the calculated median and calculated center are not always the

same.

 ✓ Center: In Center snap mode, Blender calculates the true center of your

selection and snaps that to your target vertex.

 ✓ Closest: In this snap mode, the vertex in your selection that is nearest to

your target vertex is the one that snaps to it.

47 Chapter 3: Getting Your Hands Dirty Working in Blender

 Snapping modes work in both Object mode as well as Edit mode. For more

information on Edit mode, see Chapter 4.

 You can observe the changes made to your object in real time by looking in

the 3D View window’s header as you transform it. Figure 3-5 shows how the

header explicitly indicates how much you’re changing the object in each axis.

Notice also the white circle around the origin of the Translate manipulator

in Figure 3-3. To translate a selected object in the X and Y axis of the View

orientation, left-click this circle. This convenient shortcut prevents you from

having to continually switch orientation modes for the manipulator.

 Suppose that you don’t want to move the object in the direction of just one

axis. Instead, you prefer the freedom to move the object in the plane created

by two axes, such as the XY, XZ, or YZ planes. Just Shift+left-click on the axis

that’s perpendicular to the plane in which you want to move. This is the axis

that’s “normal to the plane,” as defined earlier in the chapter. For example,

assuming that you want to scale the object in the XY plane, Shift+left-click the

Z-axis cube of the Scale manipulator.

I use this technique a lot when modeling furniture and buildings. I can quickly

scale along a plane a cube that has the proper depth, to create a tabletop or

a wall. Figure 3-6 illustrates this concept.

 Transform operations are consistent across all manipulator modes in Blender,

so you can apply any of these methods of interacting with the Translate

manipulator in the Rotate and Scale manipulator modes. The only exception is

that Shift+left-clicking an axis on the Rotate manipulator operates just like

simply left-clicking the axis: It doesn’t make sense to try to simultaneously

rotate around two axes with any form of control. And don’t forget that you

aren’t limited to working in just the Global coordinate system. You can choose

any of the other three orientations from the Coordinate System Orientation

menu and the 3D manipulator adjusts to fit that axis.

Figure 3-5:
You can

view
changes

in the
3D View

window’s
header.

48 Part I: Wrapping Your Brain Around Blender

Figure 3-6:
Building a

tabletop out
of a cube.

Saving Time by Using Hotkeys
Now, many professional Blender users find that the manipulator obstructs

their view too much when working, so they disable it outright. To do this, go

to the 3D View’s header near the manipulator mode buttons and press the

button with the white pointing hand on it (refer to Figure 3-1 if you need to

refresh your memory). You can also do this by pressing Ctrl+spacebar and

selecting Enable/Disable. But wait, with the manipulator gone, how do I trans-

form my objects? I’m glad you asked. It is time to introduce you to one of the

most powerful features of Blender: hotkeys.

Part of the beauty of Blender’s hotkeys are that they take a lot of pressure off

of your mouse hand and shorten the distance of mouse-based operations. For

example, the Ctrl+spacebar combination that you used to disable the manip-

ulator also gives you the option to directly select which mode you want to

enable for the manipulator. Because the menu pops up right beneath your

mouse, you don’t have to travel all the way to the 3D View window’s header

each time you want to switch modes. It’s especially helpful if you’ve removed

the header from your 3D view or the manipulator mode buttons are somehow

obstructed. The accumulation of little time-saving actions like these makes

using hotkeys so powerful.

G, S, and R: Transforming with hotkeys
Nearly every piece of major functionality in Blender can be accessed with hot-

keys. Transforms are no exception. Remember that I said translate in Blenderese

is called grab? Use the following steps to Grab/Translate your object:

49 Chapter 3: Getting Your Hands Dirty Working in Blender

 1. Select the object you want to move by right-clicking it.

 2. Press G.

 Congratulations! You’re translating your object.

 3. And just like with the 3D manipulator, confirm the translation by left-

clicking or pressing Enter.

 Cancel by right-clicking or pressing Esc.

 To rotate your object, press R. Scale it by pressing S. See a pattern here? The

majority of Blender hotkeys are easy to remember. Most of them just use the

first letter from the operation in question. And just like when using the manip-

ulator, the familiar Ctrl, Shift, and Ctrl+Shift keypresses for fixed increments

and fine adjustments still apply here.

Hotkeys and coordinate systems
By default, your transformations all happen in the View coordinate system.

This means that no matter how you’re viewing the scene, you’re working

in the XY-plane of the window. Suppose, however, you want to grab your

object and move it in the Global Z-axis. You use a sequence of keypresses to

do this action. Use the following steps to grab an object and move it to the

Global Z-axis:

 1. With your object selected, press G.

 This puts you in Grab/Translate mode.

 2. Now, without canceling this operation, press Z.

 A blue line should appear that indicates the Global Z-axis. Your object

is locked to move only along that line. If you press Y, your object moves

only along the Global Y-axis and pressing X locks it to the Global X-axis.

Pretty neat, huh? This works with rotating and scaling as well (for example,

R➪Z rotates around the Global Z-axis and S➪X scales along the Global X-axis).

What about the Local axis? That’s just one more keypress in the sequence.

Follow these steps to grab an object and move it along its Local Y-axis:

 1. Act like you are going to translate the object in the Global Y-axis by

pressing G➪Y.

 2. Then press Y a second time.

 This gets you translating in the Local Y-axis. Pressing Y a third time

brings you back into moving in the default View coordinate system.

50 Part I: Wrapping Your Brain Around Blender

 Again, this works with scaling and rotation as well. Keying the sequence R➪
X➪X rotates around the local X-axis and S➪Z➪Z scales along the local Z-axis.

One of the more powerful features of the 3D manipulator is the ability to

work in a plane rather than just one axis. This, too, can be done with hotkeys

using the same logic used in the manipulator. Use Shift plus the letter of the

axis that’s perpendicular to the plane you want to move in. For instance, to

scale your object in the Global XY-plane, press S➪Shift+Z. For the Local XY

plane, press S➪Shift+Z➪Shift+Z. This same methodology also works for the

Grab operation (though, like with the manipulator, not for the Rotate opera-

tion). Table 3-1 shows most of the useful hotkey sequences for transforming

your objects.

Table 3-1 Useful Hotkey Sequences for Transformations
Grab Scale Rotate Orientation

G S R View

G➪Z S➪Z R➪Z Global Z-axis

G➪Y S➪Y R➪Y Global Y-axis

G➪X S➪X R➪X Global X-axis

G➪Z➪Z S➪Z➪Z R➪Z➪Z Local Z-axis

G➪Y➪Y S➪Y➪Y R➪Y➪Y Local Y-axis

G➪X➪X S➪X➪X R➪X➪X Local X-axis

G➪Shift+Z S➪Shift+Z N/A Global XY-plane

G➪Shift+Y S➪Shift+Y N/A Global XZ-plane

G➪Shift+X S➪Shift+X N/A Global YZ-plane

G➪Shift+Z➪
Shift+Z

S➪Shift+Z➪
Shift+Z

N/A Local XY-plane

G➪Shift+Y➪
Shift+Y

S➪Shift+Y➪
Shift+Y

N/A Local XZ-plane

G➪Shift+X➪
Shift+X

S➪Shift+X➪
Shift+X

N/A Local YZ-plane

There is one other, potentially faster, way to lock your transformations to

a particular axis: using the middle mouse button. Assume you want to grab

your object and translate it along the global X-axis. Select the object and

press G, as if you would do any translation. Now use your mouse to move the

object in the general direction of the X-axis. As you do this, middle-click and

release. Your object should automatically lock to the global X-axis. Blender

makes a guess based on the direction you’re moving the object in and, when

you middle-click, it locks your object to that axis. And of course, this also

works with the other transform operations on any of the global axes.

51 Chapter 3: Getting Your Hands Dirty Working in Blender

 An even faster way to constrain to axes involves using the middle mouse

button. As an example, select an object and Grab (G) it. Now move your

mouse in roughly the direction of the X-axis and then middle-click. A red line

should appear through your object’s centerpoint and the object should be

locked to moving along that line, constraining you to that axis. The same thing

works in both the Y- and Z-axes. For an even more interactive way of doing

this, hold down your middle mouse button while you’re Grabbing. All three

axes will appear and your object will lock to one of them as you bring your

mouse closer to them. I absolutely love this feature.

 To get a good idea of just how much Blender makes use of the keyboard, have

a look at the HotKey and MouseAction Reference in the Help menu (Help➪
HotKey and MouseAction Reference). This is a comprehensive list of all of the

hotkeys that Blender uses. It’s a great reference and is even searchable if you

happen to forget a hotkey or, say, five. (It’s okay, there are a lot of hotkeys.

Even veteran Blender users occasionally forget a few every now and then.)

Using gestures to work faster
In the previous section, you saw how Blender uses your mouse movement

to work with you and work faster by guessing your intent. This isn’t the only

way Blender uses mouse movement to enhance your workflow. Blender also

supports gestures. If you’ve used the Opera Web browser or Apple’s iPhone,

you may already be familiar with some of the power of gestures. In essence,

gestures rely on your making a movement with your mouse that Blender

interprets as a command. To perform a gesture, left-click and drag your

mouse, drawing a line. Blender’s primary gestures are for transformations,

and Figure 3-7 illustrates them. They’re also listed as follows:

 ✓ Grab/Translate: Draw a straight line.

 ✓ Rotate: Draw a curved line.

 ✓ Scale: Draw a V-shaped line.

Figure 3-7:
Mouse
move-

ments for
Blender’s
gestures.

 Translate Rotate Scale

52 Part I: Wrapping Your Brain Around Blender

 Gestures are particularly useful for Blender users who work with a drawing

tablet, PDA, or tablet PC. The pen-like interface of these devices makes it very

convenient to draw these shapes and work very quickly. Of course, even for

those of us who work with a mouse or trackball, gestures can be quite handy.

Numerical input
Not only can you use hotkeys to activate the various transform modes, but

you can also use the keyboard to explicitly input exactly how much you

would like your object to be transformed. You do this by simply typing in

the number of units you want to change after you activate the transform

mode. As an example, suppose you want to rotate your object 32 degrees

around the Global X-axis. To do this, press R➪X➪32 and confirm by press-

ing Enter. Translate your object -26.4 units along its Local Y-axis by pressing

G➪Y➪Y➪-26.4➪Enter. This can be a very quick and effective means of flip-

ping or mirroring an object because mirroring is just scaling by –1 along a

particular axis. For instance, to flip an object along the Global Z-axis, press

S➪Z➪–1➪Enter. For consistency, these numerical input operations are also

available when using the 3D manipulator.

The Transform Properties floating window
One other way to explicitly translate, scale, and rotate your object is through

the Transform Properties floating window. Although Blender’s interface

is primarily designed to be non-blocking, it does allow a few floating win-

dows. Transform Properties is one of them. To activate this window, go to

Object➪Transform Properties in the 3D View window’s header or press N.

The Transform Properties window floats over the 3D View and allows you to

explicitly enter numerical values for Location, Scale, and Rotation. Close the

Transform Properties window by left-clicking the X in its upper left corner or

by pressing N a second time.

 One thing to be careful of here is to note that, when in Object mode, the

values in the Transform Properties window do not change depending on

which coordinate system you’ve selected. Location is always in the Global ori-

entation, whereas Rotation and Scale are always in Local.

Chapter 4

Working in Edit Mode
and Object Mode

In This Chapter
▶ Making changes to your 3D objects

▶ Adding new objects to a scene

▶ Saving, opening, and appending .blend files

When working on a scene in Blender, your life revolves around repeat-

edly selecting objects, transforming them, editing them, and relat-

ing them to one another. You shift from dealing with your model in Object

mode to doing refinements in Edit mode. And this is not only the process for

modeling, but also for most of the other heavy tasks performed in Blender.

Therefore, the skills you pick up in this chapter can be reused in parts of

Blender that have nothing to do with modeling objects in 3D. Just as many of

the transform operations work in windows other than the 3D View, many of

the concepts here transfer nicely to other parts of Blender. Even if you don’t

know how to do something, chances are good that if you think like Blender

thinks, you’ll be able to guess.

Making Changes Using Edit Mode
Moving primitive objects around is fun and all, but you’re interested in get-

ting in there and completely changing these objects to match your vision.

You want to do 3D modeling. Well, you’re in the right place for that. This

section introduces you to Edit mode, a concept that’s deeply embedded

throughout Blender for editing objects. Even though this section is focused

mostly on polygon modeling, also called mesh editing, most of the same

principles apply for editing curves, surfaces, armatures, and even text.

Remember, when you understand how Blender thinks, it’s much easier to

figure out unknown parts of the program.

54 Part I: Wrapping Your Brain Around Blender

Distinguishing between Object
mode and Edit mode
In Chapter 3, everything you did was in what’s called Object mode. As its name

indicates, this is where you work with whole objects. However, it isn’t very

useful for actually changing the structure of your object. For example, right-

click the cube in the default scene to select it. You know that you can turn

it into a more rectangular shape by scaling it in one of the axes. But what if

you want to turn the cube into a pyramid? To do that, you need to modify the

actual components that make up the cube. You do this by entering Edit mode.

You can get to Edit mode in one of two ways: with the mouse or with a

hotkey. To use the mouse method, left-click the Object Mode button in the

3D View’s header. From the pop-up menu that appears, shown in Figure 4-1,

select Edit Mode. Now, if you’re working with an object other than a mesh,

such as an armature, the contents of this menu may vary slightly to relate

more to that object. However, with the exception of Empties, all objects have

an Edit mode.

Figure 4-1:
The Object

Mode
button.

 Of course, Blender also has a hotkey to enter Edit mode. Actually, technically

speaking, the hotkey toggles you between Object mode and Edit mode. Press

Tab to switch between modes. This is the preferred way to switch between

modes in Blender and it’s used so frequently that Blender users often use tab

as a verb and say they’re tabbing into Edit mode or Object mode. It’s some-

thing you come across fairly often in Blender user forums and in some of

Blender’s online documentation.

Selecting vertices, edges, and faces
After you tab into Edit mode, notice that the cube changes color and that

points form at each of the cube’s corners. Each of these points is a vertex.

The line that forms between two vertices is an edge. A face in Blender is a

polygon that has been formed by three or four connecting edges.

55 Chapter 4: Working in Edit Mode and Object Mode

 Faces in Blender are limited to only three-sided and four-sided polygons, often

referred to as tris (pronounced like tries) and quads. Other programs have

something called an n-gon that can have virtually a limitless number of sides.

Blender developers are working on building this feature into Blender and have

made great progress. However, at this time, only some development versions

of Blender have n-gon functionality. The current release is still limited to tris

and quads. This isn’t a completely horrible situation, however. A lot can still

be done with just three- and four-sided faces. In fact, most detailed character

models are made completely with quads, and all 3D geometry is reduced to

triangles when it gets to your computer hardware.

For polygon editing, there are actually three different types of Edit modes:

Vertex Select, Edge Select, and Face Select. By default, the first time you Tab

into Edit mode, you are in Vertex Select mode. You can tell this for two rea-

sons. First of all, you can see the individual vertices in the mesh. Secondly,

as Figure 4-2 shows, three new buttons show up in the 3D View’s header

when you are in Edit mode. The button on the left with the four dots on it is

selected, indicating that you are in Vertex Select mode.

Figure 4-2:
The Edit

mode Select
buttons.

To the right of the Vertex Select button is a button with a diagonal line in it.

Click this button to activate Edge Select mode. When you do this, notice that

the vertices are no longer visible on your mesh. Depressing the last button in

this block, which has a triangle shape on it, activates Face Select mode. When

Face Select mode is active, vertices are not visible and each polygon in your

mesh has a square dot in the center of it.

Now, you might be looking at these buttons and noticing that they’re blocked

together, kind of like the 3D manipulator buttons. Does this mean that, like

with the manipulator, you can simultaneously activate multiple modes?

Absolutely! Simply Shift+left-click the Select mode buttons to get this func-

tion. Some Blender modelers like to have Vertex Select and Edge Select

modes active at the same time to speed up their workflow. This gives them

immediate control at the vertex and edge level, and faces can be easily

selected with one or two extra clicks. Figure 4-3 shows the default cube in

each of the select modes as well as a Combo Select mode.

56 Part I: Wrapping Your Brain Around Blender

Figure 4-3:
Vertex

Select, Edge
Select, Face
Select, and

Combo
Select

modes.

 Of course, the various select modes can also be accessed with a hotkey

sequence. While you are in Edit mode, if you press Ctrl+Tab, you are pre-

sented with a menu that lets you switch between modes. This menu does not

let you set multiple modes, so if you want to do that, you still have to use the

buttons in the 3D View’s header.

Also, by default the first time you Tab into Edit mode, all vertices/edges/faces

are selected. Selecting things in Edit mode works just like selecting anywhere

else. Right-click on any vertex to select it. Multiple vertices can be selected

and deselected by Shift+right-clicking on them. Large groups of vertices can

be selected using the Border Select tool (press B) or Brush Select (press

B➪B). In Border and Brush Select, left-click and drag to add to your selec-

tion. Middle-click and drag to subtract from your selection and right-click or

press Esc to exit Border or Brush Select. Blender also has a Lasso Select func-

tionality. To use it, Ctrl+left-click and drag around the vertices you wish to

select. Anything within the selection region is added to your selection. And,

of course, all of these selection tools work in Edge and Face Select modes.

Figure 4-4 shows what the various selection tools look like when in use.

Figure 4-4:
Brush

Select,
Border
Select,

and Lasso
Select.

 If you want to select everything (in Object mode, all objects; and in Edit

mode, all vertices in the active object) you can do so by pressing A. The A

hotkey is a toggle, so anything previously selected when you press A will be

deselected. However, if nothing is previously selected, pressing A selects

everything. Using this hotkey, you’ll find yourself pressing A until you have

either everything or nothing selected.

57 Chapter 4: Working in Edit Mode and Object Mode

Another handy way to select things in Edit mode is by selecting linked verti-

ces. Linked vertices are a set of vertices within a mesh that are connected by

edges. In order to understand this better, go through the following steps:

 1. Right-click to select your default cube in Blender and tab into Edit mode.

 All of the vertices should be selected. If they are not, press A until they are.

 2. With all of the vertices selected, press Shift+D or spacebar➪Edit➪
Duplicate to duplicate your selection.

 When you do this, Blender creates a copy of your selection and auto-

matically switches to Grab mode.

 3. When you duplicate anything, Blender automatically Grabs the dupli-

cate, allowing you to move it. So just use your mouse pointer to move

your new cube off the original and confirm your placement by left-

clicking or pressing Enter.

 4. Notice that none of the vertices in the original cube are selected.

 Each cube represents a set of linked vertices. So what if you want

to select all of the vertices in that cube too? Sure, you could use the

Border, Brush, or Lasso Select tools mentioned above, but on complex

meshes, this could get cumbersome. Instead, place your mouse pointer

near any vertex in the original cube and press L. Blam! All of the vertices

in both of your cubes should now be selected.

Of course, the natural next question is, “How do I deselect linked vertices?”

That’s just as easy. Place your mouse cursor near any vertex on the duplicate

cube you created and press Shift+L. This deselects all of the vertices con-

nected to the one near your mouse pointer. I’ve found myself using L and

Shift+L pretty heavily when trying to place teeth in a mouth I’ve modeled.

These are very handy hotkeys.

Quite a few more selection options are available to you when working with

meshes. These selection methods are described in detail in Chapter 5.

 While you are in edit mode, you are can only work with the object at hand.

You cannot select and manipulate other objects while you’re in Edit mode.

If you are using Blender’s default settings, you might notice that you can see

through your model and even select vertices, edges, and faces on the back

side of the model, regardless of whether you are using the Solid or Wireframe

Viewport Shading settings (toggle between the two by pressing Z). On complex

models, this can get confusing and you can find yourself making selections

on the back of your model that you don’t want. To get around this, click the

Occlude Background Geometry button. It’s the button with the cube icon at

the right end of the Selection Modes block in the 3D View’s header. (Refer to

Figure 4-2 if you need a refresher.) Click this button to hide the vertices, edges,

and faces on the back of your model. This is often referred to as backface
culling and it is incredibly useful when you’re working with complex models.

58 Part I: Wrapping Your Brain Around Blender

Blender’s #1 modeling tool: Extrude
Besides the transform operations, the most commonly used modeling tool in

Blender is the Extrude function. In the physical world, extrusion is a process

whereby some material is pushed through a shaped hole of some sort. When

you were a kid, did you ever cut out a shape in cardboard and force clay or

mud or Play-Doh through it? If so, you were extruding. If not, you certainly

missed out on a good solid five to ten minutes of fun.

In 3D, extrusion follows a similar concept, except you don’t have to create

the hole to extrude through. Instead, that shape is determined by your selec-

tion and you can extend that selection in any direction. Use the following

steps to extrude:

 1. Select the object you want to edit by right-clicking it.

 2. Tab into Edit mode.

 3. Select the vertices, edges, or faces you wish to extrude.

 Do this using any of the selection methods listed in the previous section.

 4. Press E to extrude your selection.

 After you extrude your selection, Blender automatically puts you into Grab

mode, constraining the extrusion along its normal. There are advantages and

disadvantages to this. The advantages are that you have all the transform

functionality, such as axis-locking, snapping, and numerical input immediately

available to you. The disadvantage is that, because of this “autograb” behav-

ior, if you cancel the operation by right-clicking or pressing Esc, the newly

extruded vertices, edges, or faces are still there, just located in exactly the

same place as the vertices, edges, or faces that they originated from.

 For this reason, if you cancel an extrude operation, it’s always a good idea to

make sure your duplicate vertices, often called doubles, are no longer there. A

quick way to check is to press G after you’ve canceled your extrusion. If it

looks like you’re extruding again, you have doubles. You can get rid of doubles

in a variety of ways:

 ✓ If you still have the doubles selected, delete them by pressing X or Del

and choosing Vertices from the pop-up menu.

 ✓ If the canceled extrusion operation was the last thing you did, undo it by

pressing Ctrl+Z.

 ✓ If you are unsure whether you have doubles from previous canceled

extrusions, Blender has a special Remove Doubles function. Follow these

steps to use it:

59 Chapter 4: Working in Edit Mode and Object Mode

 1. In Edit Mode, select all by choosing Select➪Select/Deselect All

from the 3D View’s header or pressing A until all vertices are

selected.

 Blender’s Select All function is a toggle that selects everything or

nothing, depending on whether anything is already selected.

 2. Press W➪Remove Doubles and Blender removes all doubles

from your mesh.

 This option can be found in Mesh➪Vertices➪Remove

Doubles in the 3D View’s header, as well as the toolbox

(spacebar➪Edit➪Vertices➪Remove Doubles).

Depending on what you’ve selected, you may have a few options available

to you when extruding. If you have one vertex or a set of vertices that have

no connecting edges between them, you have no options. However, if you

have edges selected, you are presented with a pop-up that lets you choose

between extruding Only Vertices or Only Edges. If you have faces selected,

you are presented with four options: Only Vertices, Only Edges, Individual

Faces, or Region. Table 4-1 gives a more detailed description of each option.

Table 4-1 Extrusion Options
Option Selection Type Description

Only
Vertices

Vertices,
Edges, Faces

Extrudes the selected vertices relative to the
View Orientation, creating edges between the
new vertices and the ones they originated from.

Only
Edges

Edges, Faces Extrudes the selected edges relative to the
View Orientation, creating faces between the
new edges and the ones they originated from.

Individual
Faces

Multiple Faces Extrudes the selected faces relative to the
View Orientation, creating faces between the
new faces and the ones they originated from.
Note that the new faces are not directly con-
nected together. That is a region extrusion.

Region Single or
Multiple Faces

Extrudes the selected faces as a single unit in
the direction normal to the selection, creating
faces between the new region and the one it
originated from.

 Note that these options also depend on your selection mode. As you might

expect, if you’re in Edge Select mode, then you won’t see options pertaining to

vertices. And if you’re in Face Select mode, then options for both edges and

vertices will not be visible.

60 Part I: Wrapping Your Brain Around Blender

Now, when you’re modeling, the most common type of extrusion you want

is related to what you’ve selected. For instance, if you want to extrude an

edge, you select that edge, or if you select a group of faces, chances are

good that you want to extrude that as a region. As expected, Blender has

shortcuts for these common modeling tasks. To perform a quick extrusion,

use the following steps:

 1. Select your object and Tab into Edit mode.

 2. Select the vertices, edges, or faces you wish to extrude.

 3. Ctrl+left-click where you would like the extrusion to end.

 This automatically decides what kind of extrusion you want and

extrudes your selection right where you would like. Working this way

is particularly useful for doing a series of multiple extrusions, one right

after the other. You often do this when roughing out a shape by “draw-

ing” with vertices or edges.

Although Ctrl+left-clicking for quick extrusion is convenient for creating

rough models to start with, there are certainly workflow benefits to extruding

with the E key. The biggest benefit is the quick access to your other trans-

form tools. To illustrate this, use the following steps to model a skyscraper

from a single plane:

 1. Open Blender and tab into Edit mode on the default cube.

 2. Press Numpad 3 to change to Side View.

 3. Translate everything by one unit in the positive Z direction (G➪Z➪1➪
Enter).

 4. Middle-click and drag in the 3D view so you can get a good view of the

top face of the cube.

 5. Switch to Face Select mode (Ctrl+Tab➪Faces).

 6. Right-click to select the top-most face of the cube and delete it by

pressing X➪Vertices.

 7. Perform a multi-subdivide with two cuts (W➪Subdivide Multi➪2➪
Enter).

 8. Switch to Edge Select mode (Ctrl+Tab➪Edges).

 9. Select the edges that form the corners of the plane.

 Using regular right-clicking, Brush Select (B➪B), or Lasso Select

(Ctrl+left-click and drag) works best for this.

 10. Extrude these edges and scale them by 1.1 in the XY-plane (E➪S➪
Shift+Z➪1.1➪Enter).

 11. Select all (A➪A).

61 Chapter 4: Working in Edit Mode and Object Mode

 12. Extrude the region along the global Z-axis (E➪Region).

 By default, your extrusion is locked along the direction of the region’s

normal. Fortunately, because of the way you are working, that normal

coincides with the global Z-axis. The height of this level can be whatever

you like. I extruded mine by 3 units.

 13. With the region still selected, extrude again, but scale the region by

0.9 in the XY-plane (E➪Region➪S➪Shift+Z➪0.9➪Enter).

 14. Translate this new region along the Z-axis by 0.1 units (G➪Z➪0.1➪
Enter).

 15. Perform steps 12-14 as many times as you would like to get the sky-

scraper to your desired height.

 I gave mine three layers.

 16. On your last extruded region, scale the selection in the XY-plane to a

generally pyramid-shaped peak (S➪Shift+Z).

 17. Tab back into Object mode and behold the awesome beauty of your

skyscraper!

 Figure 4-5 shows an illustration of the major steps in this process.

Figure 4-5:
Modeling a
skyscraper

from a
single
plane.

62 Part I: Wrapping Your Brain Around Blender

 Going through this process, notice how immediately after executing the

extrude operation, you could scale the extrusion to create insets and outsets

to grow your building from. Using extrusion with your transform tools in this

manner gives you an immense amount of speed and flexibility when modeling.

Modeling organically with
the Proportional Edit tool

Often, when you are modeling organic objects
or objects with smoothly curved surfaces, such
as characters, creatures, or sports cars, you
may find yourself pushing and pulling a bunch
of vertices to obtain that smooth surface.
There’s an easier way to do this using Blender’s
Proportional Edit Tool (PET). If you come from
another 3D package, you might recognize this
as being similar to the “soft select” feature.
You activate PET by left-clicking the PET button,
which looks like two concentric circles in the
3D View’s header, in Edit mode and selecting
On. The hotkey for this operation is O. Now
when you perform a transform operation, a
circle appears around your selection. Any verti-
ces that are within this circle are influenced by
your transformation with a gradual falloff. You
can adjust the influence of the PET by scrolling
your mouse wheel or pressing Alt+Numpad-
plus and Alt+Numpad-minus. Additionally, you
can control how gradual the falloff is by left-
clicking the button with the curve icon next to
the PET button in the 3D view’s header or by
cycling through the options by pressing Shift+O.
You have the following options:

 ✓ Smooth Falloff: This is the default falloff for
PET — it offers a nice smooth transition
from your selected vertices to those out-
side of the PET’s influence.

 ✓ Sphere Falloff: Sphere Falloff works
as expected, with the falloff following a
general spherical shape from your selec-
tion. It does not have a particularly smooth

transition to vertices outside the PET’s
influence.

 ✓ Root Falloff: Root Falloff is similar to Sphere
Falloff, but it has a slightly sharper, more
parabolic shape. Like the Sphere Falloff, the
transition to outside vertices can be rather
abrupt.

 ✓ Sharp Falloff: This falloff setting is similar to
Smooth Falloff in that it offers a nice transi-
tion to the vertices outside the PET’s influ-
ence; however, the drop from your selected
vertices to the outside vertices is much
less gradual. This is useful for generating
creases and the appearance of seams in
your models.

 ✓ Linear Falloff: Linear Falloff has a “straight
line” transition from your selected vertices
to the vertices outside of the PET’s influ-
ence. This setting is pretty useful for cre-
ating corners and pyramid-like shapes on
your mesh.

 ✓ Random Falloff: This falloff setting is not
used very often, but it can be very helpful
for giving your models a natural, random-
ized feel. Of course, things can get a touch
out of hand, but this setting certainly has its
uses.

 ✓ Constant Falloff: With Constant Falloff, any
vertices that are within the PET’s influ-
ence range are transformed right with the
selected vertices with an abrupt drop to
outside vertices.

63 Chapter 4: Working in Edit Mode and Object Mode

Adding to a Scene
There’s got to be more to life than that plain default cube, right? Indeed, there

is. Blender offers a whole slew of primitives, or basic objects, to build from.

 Anytime you add a new object in Blender, the center of that object is located

wherever you’ve placed the 3D cursor.

Getting to know the toolbox
that lives in your spacebar
Anytime you want to add a new object in Blender, you want to use the tool-

box. To access the toolbox, hover your mouse in the 3D view and press

spacebar. Directly beneath your mouse, a menu pops up with the following

options:

 ✓ Add: This is where all Blender’s primitives live. These primitives include

modeling objects like meshes, curves, and meta-objects as well as spe-

cial primitives such as cameras, lights, and armatures.

 ✓ Edit: This menu item gives you a variety of editing options, depending

on the context of what you’re doing. In Object mode, not many options

are available to you other than creating duplicates and entering Edit

mode.

 ✓ Select: The Select menu provides you with different selection options. In

Object mode, the most commonly used functions are Select/Deselect All

and Inverse. In Edit mode, depending on the type of object you are edit-

ing, there are quite a few more options.

There is one more useful option in PET. On
complex meshes, you may want to use PET on
one set of vertices that are connected to one
another, but not to other nearby vertices in the
same mesh. For example, say you’ve modeled
a character and her hand is at her side near
her leg, and you would like to smoothly edit
her hand and pull it away from the leg with-
out having to gradually adjust the vertices of
the arm. PET is the perfect tool for this job.

However, when you try to use it, some of the leg
vertices are within the PET’s influence and you
end up moving those unintentionally. Wouldn’t
it be great if the PET could understand that you
only want to move the hand? Well, I have good
news: It can! Click the PET button in the 3D view
header and select Connected or press Alt+O.
The Connected option for PET only adjusts ver-
tices that are connected to each other within its
influence area. Neat, huh?

64 Part I: Wrapping Your Brain Around Blender

 ✓ Transform: Nearly all of the transform options discussed in the previous

section are available to you in this menu.

 ✓ Object: This menu has object-level operations, including copying, link-

ing, parenting, and moving layers. In Edit mode, the menu changes to

operations that are specific to the type of object you are editing.

 ✓ View: Options related to the 3D view live in this menu. Functions include

changing the view angle, adjusting the viewport shading mode, and play-

ing back animations.

 ✓ Render: From this menu, you have options for generating the final

output, or render, of your 3D scene from the perspective of your

camera. You can also enable the Render Preview floating window, which

renders according to the viewport orientation, rather than the camera.

 The toolbox gives you access to the majority of Blender’s functions. It is

actually possible to complete most tasks right from the toolbox menu. Of

course, this isn’t as fast or efficient as making use of all of Blender’s hotkeys,

but it’s good to know it’s possible, particularly for users who work using a

Tablet PC or PDA.

 You may notice that for pop-up menus like the toolbox, Blender places the last

menu option you choose directly under your mouse cursor. This is a workflow

feature to help increase your speed. The idea is that you often want to do the

same task multiple times in a row. Blender makes it easier by shortening the

distance you have to move your mouse with each function.

Adding objects
To add a new object to your scene, press spacebar➪Add and choose the type

of primitive you want to put into the scene. You have the following choices:

 ✓ Mesh: Meshes are polygon-based objects made up of vertices, edges,

and faces. They are the most common type of modeling object used in

Blender.

 ✓ Curve: Curves are objects made up of curved or straight lines that are

manipulated with a set of control points. Control points are similar to

vertices, but they can be edited in a couple of ways that vertices can’t.

Blender has two basic forms of curves, Bèzier curves and NURBS (Non-

Uniform Relational B-Spline) curves. You can also use curves as paths to

control other objects.

 ✓ Surface: A surface is similar to a mesh, but rather than being made up

of vertices, edges, and faces, surfaces in Blender are defined by a set of

NURBS curves and their control points.

65 Chapter 4: Working in Edit Mode and Object Mode

 ✓ Meta: Meta objects are unique primitives with the cool ability to kind of

melt into one another and create a larger structure. They are handy for a

variety of effects that involve blobby masses such as clouds or water, as

well as quick rough clay-like models.

 ✓ Text: The text object allows you to bring type into your 3D scene and

manipulate it like other 3D objects.

 ✓ Empty: The unsung hero of Blender objects. Empties do not show up in

finished renders: Their primary purpose is merely to serve as a refer-

ence position, size, and orientation in 3D space. This basic purpose,

however, allows them to work as very powerful controls.

 ✓ Group: A group is a set of objects you define as being related to each

other in some way. The objects in a group do not have to be the same

type and are handy for organization as well as appending sets of objects

from external files.

 ✓ Camera: Like real-world cameras, camera objects define the location

and perspective from which you are rendering your scene.

 ✓ Lamp: Lamp objects are necessary for lighting your scene. Just like in

the physical world, if you don’t have any light, you don’t see anything.

 ✓ Armature: Armature objects are skeleton-like structures that consist

of linked bones. The bones in an armature can be used to deform other

objects and are particularly useful for creating the puppet-like controls

necessary for character animation.

 ✓ Lattice: Like armature objects, lattices are used to deform other objects.

They are often used in modeling and animation to squash, stretch, and

twist models in a non-permanent way. Lately lattices are used less and

less in Blender because users have gained the ability to deform objects

with curves and meshes.

By default, when you add a new object in Blender, its local orientation is

aligned to the global axes. This default behavior is new to Blender as of ver-

sion 2.46. In prior versions of Blender, new objects were added with their

local orientation aligned to the view orientation. Blender also used to auto-

matically set newly added objects in Edit mode. One way is not really any

better than the other, and it depends mostly on your personal preference.

The latter method is a bit faster while the former is somewhat less disori-

enting. You can test out the old behavior by looking in Edit Methods under

Blender’s Preferences and clicking the appropriate buttons on the left side.

Figure 4-6 illustrates the difference between inserting a new object aligned to

the global axes versus inserting a new object aligned to the view orientation.

 Note that the preceding paragraph only makes sense if you are adding primi-

tives in Object mode. Blender allows you to add new primitives in Edit mode

as long as they are of the same type as the object you are editing. And because

you are adding to an already existing object, the new primitive is aligned to

view and the object’s orientation won’t change.

66 Part I: Wrapping Your Brain Around Blender

Figure 4-6:
New object

aligned to
global

orientation
versus

aligned
to view

orientation.

 If you want to add a new primitive aligned to the global orientation while in

Edit mode, add your object from the top view (Numpad 7). Figure 4-7 shows

how primitives added in Edit mode are aligned to view.

 When adding new objects, be aware of whether you are in Object mode or Edit

mode. If you add while in Edit mode, then your addition options are limited to

the type of object you’re editing. Also, your new object’s data is joined with

the object you’re editing. If you don’t want this to happen, then make sure you

Tab back to Object mode before adding anything new.

Figure 4-7:
Adding

primitives in
Edit mode.

Meet Suzanne, the Blender monkey
Many 3D modeling and animation suites have a generic semi-complex

primitive that is used for test renders, benchmarks, and examples that

necessitate something a little more complex than a cube or sphere. Most

of these other programs use famous Utah teapot as their test model. In

Blender, you have something a little more interesting and unique. Blender

has a monkey head that’s affectionately referred to as “Suzanne,” a refer-

ence to the ape in two of Kevin Smith’s films: Jay and Silent Bob Strike Back

67 Chapter 4: Working in Edit Mode and Object Mode

and Mallrats (close to the end). Add Suzanne to your scene by pressing

spacebar➪Add➪Mesh➪Monkey. If you look through the Blender commu-

nity’s forums and many of Blender’s release documentation, you see Suzanne

and references to her all over the place. In fact, the annual awards festival at

the Blender Conference in Amsterdam is called the Suzanne Awards. Figure

4-8 shows a test render featuring Suzanne.

Figure 4-8:
Suzanne!

Joining and separating objects
In the course of creating models for your scenes, you may have a need to join

or separate objects. You might have to do this if you accidentally add a new

primitive while you are still in Edit mode. Of course, you could simply undo,

tab into Object mode, and re-add your primitive, but why act like you made

a mistake and go through all those extra steps? There’s another way. Notice

that when you add a new primitive while in Edit mode, all of the elements

of your new primitive are selected and nothing from your original object is

selected. If only there was a command that would let you break this primi-

tive away from this object and into an object of its own. Fortunately, there is.

Press P➪Selected, and your new primitive is separated into its own object.

You can also access this function in the toolbox (spacebar➪Edit➪Vertices➪S

eparate) as well as the 3D view’s header (Mesh➪Vertices➪Separate).

Tab back into Object mode and right-click your new object to select it. Notice

that its center is located in the same place as its original object’s center. To put

the center of your new object at its actual center, press spacebar➪Transform➪
Center New. This checks the size of your object and calculates where its true

center is. Then Blender places the object’s center at that location. You can also

specify that the object’s center be placed wherever your 3D cursor is located

by pressing spacebar➪Transform➪Center Cursor. A third option is similar to

Center New, but it moves the object’s content rather than the center point. Do

this by pressing spacebar➪Transform➪ObData to Center. There are also but-

tons for placing the center of an object in the Mesh panel of the Editing Button

window (F9). Figure 4-9 shows a screenshot of this panel.

68 Part I: Wrapping Your Brain Around Blender

Figure 4-9:
The Mesh

panel in
the Editing

Buttons
window.

As expected, you can also join two objects of the same type into a single

object. To do this, you need to first select multiple objects. In Object mode,

you can use the Border Select or Lasso Select tools, or you can simply

Shift+right-click objects to add to your selection. The last object you select is

considered your Active Object and is the object that the others join into. With

your objects selected, press Ctrl+J to join them.

 You can only join objects that are of the same type. That is, you can join two

mesh objects, but you can’t join a mesh object with a curve object. Using par-

enting or groups might be more appropriate for that.

Creating duplicates and links
Earlier in this chapter, while working with linked vertices in Edit mode, you

saw an example that involved duplicating your selected vertices using Shift+D

(or spacebar➪Edit➪Duplicate). As you might expect, this operation also

works in Object mode. This duplication method is great if you intend on taking

an existing object and using it as a starting point to model another, more

individualized, object by tweaking it in Edit mode. However, suppose you

want your duplicated object to be identical to the original in Edit mode. And

wouldn’t it be nice if, when you do go into Edit mode, your changes happen to

the original as well as all of the duplicates? For something like that, you want

to use the power of linked duplicates. Linked duplicates are objects that share

the same internal data. This is similar to what other programs call instance
copies. The process to create a linked duplicate is pretty straightforward:

 1. Select the object you wish to duplicate by right-clicking it.

 2. With the object selected, press Alt+D or spacebar➪Edit➪Duplicate

Linked.

 3. From here, the behavior is just like regular duplication.

 The object is automatically in Grab mode. You can place it with your

mouse and confirm it by left-clicking it or by pressing Enter.

69 Chapter 4: Working in Edit Mode and Object Mode

In a few ways you can verify that this is, in fact, a linked duplicate. The easi-

est way would be to tab into Edit mode on the original object or any of the

duplicates. When you do this, all of the linked objects appear to go into Edit

mode and any changes you make here automatically update all the other

objects immediately. Figure 4-10 shows three linked duplicates of Suzanne

being simultaneously modified in Edit mode.

Figure 4-10:
Editing

duplicated
Suzannes!

A second way to verify their linked status is to look in the Editing buttons

in your Buttons window by pressing F9. In the Link and Materials panel that

appears, look at the text field at the top right. This is the Object Name field.

It should read OB and the name of your object as listed in the bottom left

corner of the 3D View. To the left of this field is the Datablock Name field. If

there is a number to the right of the name (and to the left of a button with an

F on it), that is the number of objects linked to this data. In other words, this

is the count of your linked duplicates. Figure 4-11 shows how this panel looks

when one of the Suzannes in the previous figure is selected.

Figure 4-11:
Three

objects are
sharing this

datablock.

70 Part I: Wrapping Your Brain Around Blender

One other way to see how duplicates are linked is with the Oops Schematic

in the Outliner window. Use the following steps to split open an Outliner

window with the Oops Schematic:

 1. Right-click the seam between the 3D View and the Buttons windows

and select Split Area.

 2. Place the split line so you create a new, somewhat narrower window.

 3. In this new window, change the window type to Outliner by pressing

Shift+F9 with your mouse pointer in the window or by left-clicking the

left-most button in the window’s header and selecting Outliner.

 4. By default, Blender puts you in the Outliner view of the Outliner

window. To change this, choose View➪Show Oops Schematic from the

Outliner’s header.

The Oops Schematic gives you an overview of all of the little bits of data in

your scene, called datablocks, including objects, materials, and mesh data.

With it, you can see how the datablocks relate to one another. Figure 4-12

shows the Oops Schematic for the above scene involving the three linked

duplicates of Suzanne.

Figure 4-12:
An Oops

Schematic
of linked

Suzannes.

71 Chapter 4: Working in Edit Mode and Object Mode

 Blender can do this because of the way Blender’s .blend files are structured.

Basically, it’s like a database with various datablocks linked to one another. In

programmer-speak, each datablock is called an object. The Oops Schematic is

one of the easiest ways to visualize this. In fact, OOPS is actually an acronym

for Object-Oriented Programming System. The real power comes in allowing

multiple objects to share each other. For example, you can have objects share

materials, mesh data, animation curves, actions, and even particle systems.

And different scenes can even share objects! Taking advantage of this feature

not only reduces the size of your .blend files, but it can also seriously reduce

the amount of redundant work you have to do.

So say you’ve been using Blender for a while without knowing about linked

duplicates and your .blend file is rife with redundant mesh data. Is there way

to get rid of those regular duplicates and make them linked duplicates? Of

course there is! Follow these steps:

 1. Select all of the objects that you would like to have share the same data.

 You can do this with any of the selection tools available to you (Border,

Brush, Lasso, and Shift+right-click). Note that all of the objects must be

of the same type, hence you can’t have a mesh object and a curve object

share the same data.

 2. With each of your desired duplicates selected, Shift+right-click the

object with the data you would like to share to make it an active object.

 3. Press Ctrl+L or spacebar➪Object➪Make Links to bring up the Make

Links pop-up. The third option from the top is the one you want.

 If you are working with meshes, this option says Mesh Data; if you’re

working with curves, it says Curve Data, and so on.

Figure 4-13 shows the above process using a bunch of cubes and a

Suzanne object.

Figure 4-13:
Linking

cubes to
Suzanne.

72 Part I: Wrapping Your Brain Around Blender

You probably noticed that the Make Links popup had some other interesting

options. Below is a description of what each one does:

 ✓ To Scene...: If you have multiple scenes in your .blend file, you can make

those scenes share the same objects. Left-clicking this option brings up

another menu with all of the scenes in the file. By choosing a scene, the

object or objects that you selected have a linked duplicate(s) created in

that scene.

 ✓ Object Ipo: This relates directly to animation. Ipo is short for “inter-

polation” and it’s the Blenderese term for the curves that describe the

motion of an animated object. Chapter 9 has more information on Ipos

if you’re not already familiar with them. Choosing this option causes all

of your selected objects to share the same motion curves as the active

object.

 ✓ Mesh/Curve/Lamp/and so on Data: This option is the one you used in

the example above. It links the internal data — be it a mesh, a curve, a

lamp, or nearly any other object — of the selected objects to the inter-

nal data of the active object. Again, note that for this to work, all the

selected objects must be of the same type. This is the only option where

that is important.

 ✓ Materials: Choosing this option causes all of the selected objects to

share the same material settings. For more information on materials,

have a look at Chapter 7.

Of course, if there’s a way to create links and duplicates, it’s logical (and cor-

rect) to think that there would be some way to convert a linked duplicate

into an object with its own, non-shared datablocks. In Blender, this is called

giving that datablock a single user. The reason for the single user terminology

goes back to how these datablocks are tied together. From the perspective of

the datablock, each object that’s connected to it is considered a user. Glance

back at Figure 4-12. Each Cube object is a user of the Suzanne datablock. By

choosing to “Make Single User,” you are effectively telling Blender to dupli-

cate that datablock and make sure it only connects to a single object. To do

this, select the object you would like to make a single user and then press U.

This brings up a menu with the following options:

 ✓ Object: Use this option when you have an object that is linked to mul-

tiple scenes and you would like to make changes to it that only appear in

the specific scene that you are currently working on.

 ✓ Object & ObData: For cases like the preceding example with the linked

Suzanne meshes where you have a linked duplicate that you would like

to edit independently of the other meshes, choose this option. Doing so

effectively converts a linked duplicate into a regular duplicate.

73 Chapter 4: Working in Edit Mode and Object Mode

 ✓ Object & ODdata & Materials+Tex: If you have an object that is not only

sharing internal object data with others, but also sharing material set-

tings, choose this option and both of those datablocks are duplicated

and singly linked to your selected object. Using this option is a pretty

good way to make sure that your selected object isn’t sharing with any

other objects.

 ✓ Materials+Tex: In cases where you no longer wish to share materials

between objects, choosing this option makes sure your selected object

has its own material settings independent of all the other objects.

 ✓ Ipos: This is the inverse of the Make Links➪Object Ipos. If your selected

object is sharing animation curves with any other objects, choosing this

option makes sure it has curves of its own.

 There is one other way to make object data a single user. Refer back to Figure

4-11. In that figure, the number 3 is highlighted, showing that three objects

share that particular datablock. If you left-click that number, a confirmation

box pops up, asking you if it is okay to make that a single user. Left-click again

or press Enter to confirm. This little button shows up in many places through-

out the Blender interface. The datablocks that it operates on vary with context

(for example, seeing this button in the Materials buttons means it’s working

on a material datablock; seeing it in the Ipo Curve Editor means it’s working

on Ipos, and so on), but it always means the same thing: Create a datablock

like this one that has only the selected object as its user.

Discovering parents, children, and groups
Working in 3D, you may encounter many situations where you will want a set

of objects to behave like a single organizational group. Now, if the objects

are all of the same type, you could join them into a single object, but even

with the L and Shift+L linked selection operations in Edit mode, this can get

unwieldy. And it would require you to tab into Edit mode each time you want

to work with an individual item. That’s not very efficient and it doesn’t give

you the flexibility of working with different kinds of objects as a single unit.

The better way to do it is with parent-child relationships or with groups.

Creating parent-child relationships between objects, or parenting in

Blenderese, organizes the objects hierarchically. This means that an object

can have any number of children, but no object can have more than a single

parent:

 1. To make an object a parent, first select the objects you wish to be

children.

 They do not have to be of the same type.

74 Part I: Wrapping Your Brain Around Blender

 2. Make your last selection (the active object) the object that you wish to

become the parent.

 3. After you’ve done this, press Ctrl+P or

spacebar➪Object➪Parent➪Make Parent.

 After you confirm the operation left-clicking or pressing Enter, Blender

adds a dotted line from the center point of each child object to the

center point of the parent. Now when you select just the parent object

and perform a transform operation on it, it affects each of the children.

However, if you select a child object and transform it, none of the other

children or the parent object are influenced.

Parenting is a great way to organize a set of objects that have a clear hier-

archy. For example, say you’ve modeled a dinner table and the chairs to

go around it. Now you would like to place that table and chairs in a room,

but the room is scaled much smaller than the table and chairs. Rather than

select, scale, grab, and move each object into place, you can parent each of

the chairs to the table. After you’ve done that, you can just select and trans-

form the table. When you do so, all of the chairs transform right along with it,

as if they were a single object! Woohoo! Figure 4-14 illustrates this example.

Figure 4-14:
Parenting

some chairs
to a table

and placing
them in a

room.

To clear a parent relationship, the process is only a click and a hotkey:

 1. Select the child object that you wish to remove from the hierarchy.

 2. Press Alt+P to clear the parent relationship. This brings up a pop-up

menu with three options:

75 Chapter 4: Working in Edit Mode and Object Mode

 • Clear Parent: This removes the parent-child relationship between

your selected object and its parent. If the parent object was trans-

formed after the parenting took place, the cleared child snaps

back to the position, scale, and rotation that it was in before it

was parented.

 • Clear and Keep Transformation (Clear Track): This option

behaves the same as Clear Parent, except any transformations that

were made while the selected object was a child are applied. This

means that the cleared child does not snap back to its original pre-

parented state.

 • Clear Parent Inverse: This option is a bit tricky to understand.

It actually does not remove the link between the selected child

object and its parent. Instead, it basically clears the parent’s trans-

formation from the child. This is handy for situations where you’ve

transformed an object before parenting it and you want it to relate

to the parent as if it had not been transformed prior to parenting.

To be honest, I don’t use this option very often, but it’s certainly

good to have around when you need it.

Of course, under some circumstances, parenting doesn’t make sense to use

for organizing a set of objects. A good example of this would be a lighting

setup that you would like to adjust and reuse. Sure, you could rationalize that

perhaps the key light is the most important light and therefore should be the

parent, but that’s a bit of a stretch and it doesn’t make much sense in more

complex setups.

For cases like these, Blender’s grouping feature is ideal. To create a

group, select all of the objects you wish to include in the group and press

Ctrl+G➪Add to New Group. When you do this, all of the objects in the group

share a green selection outline instead of the default pink. This is to indicate

that the object is a member of at least one group. That is another example

of how grouping and parenting differ. Whereas an object can only have one

parent, it can be a member of any number of groups. Now, when you press

Ctrl+G, you have a number of options:

 ✓ Add to Existing Group: This option only appears if there are already

other groups in existence. When you choose this option, a second menu

pops up with a list of existing groups. The selected object is added to

the one you pick.

 ✓ Add to Active Objects Groups: This option only appears if there are

already other groups in existence. Use this option similar to how you

would create a parent.

 1. Select the objects to be added to the group.

76 Part I: Wrapping Your Brain Around Blender

 2. Select an active object that is already the member of one or more

groups.

 3. Press Ctrl+G➪Add to Active Objects Groups. When you do this,

each of your selected objects are included in all of the same groups

that the active object is in. This is quite a time-saving shortcut.

 ✓ Add to New Group: This option is always available and creates a new

group, adding your selected objects to it.

 ✓ Remove from Group: This option only appears if there are already

groups in existence. Choosing this option pops up a second menu that

allows you to choose from which group you would like to remove your

selected objects.

 ✓ Remove from All Groups: This option is always available and choosing

it removes the selected objects from any groups they may be a member

of. Note that removing all objects from all groups does not delete those

groups while your Blender session is still active.

Furthermore, you might notice that groups have names. Press F7 to show the

Object buttons in the Buttons window. In the first panel, Object and Links,

there is a list of groups that the selected object belongs to. Left-click any

group name to change it to something more relevant to that group’s organiza-

tion. Clicking the X next to the group name removes the selected object from

that group. The set of layer buttons under the group name have a special

application for larger, more complex projects that involve linking groups

between .blend files. Basically, if some objects in your group are on a layer

that is not enabled in these buttons, then those objects will not be visible

when the group is linked to another file.

When you’re using parenting and groups, you gain the ability to rapidly

select your objects according to their groupings. To do this, press Shift+G.

This brings up a pop-up menu with a variety of options:

 ✓ Children: If you have a parent object selected, choosing this option

adds all of that object’s children to the list of selected objects.

 ✓ Immediate Children: Similar to selecting all children, accepting this

option traverses down the hierarchy by one step only. Children of chil-

dren are not added to the selection.

 ✓ Parent: If the object you’ve selected has a parent object, that parent is

added to the selection.

 ✓ Siblings (Shared Parent): This option is useful for selecting all of the

children of a single parent. Note that it does not select the parent object,

nor does it select any children that these sibling objects may have.

 ✓ Objects of Same Type: This is useful for making very broad selections.

Use this when you want to select all lamps or all meshes or armatures

in a scene. It bases its selection on the type of object you currently have

selected.

77 Chapter 4: Working in Edit Mode and Object Mode

 ✓ Objects on Shared Layers: Use this option to select objects that live on

the same layers. Note that if an object is on multiple layers, any of the

objects that share any layer with your selected object are added to the

selection.

 ✓ Objects in Same Group: This option adds to the selection any object

that is in the same group as your selected object. If the selected object

belongs to more than one group, a secondary pop-up menu displays

each of the group names for you to choose from.

 ✓ Object Hooks: If you’ve added hooks, which are objects that control

selected vertices or control points in an object, this option selects them.

More information on hooks can be found in Chapter 10.

 ✓ Object PassIndex: Similar to layers, objects may have a PassIndex value

that is useful for compositing and post-production work in Blender.

Choosing this option selects any objects that share the active object’s

PassIndex value. More information on PassIndex can be found in

Chapter 14.

Saving, opening, and appending
Quite possibly the most important feature in any piece of software is the

ability to save and open files. This was especially true for early versions of

Blender, which lacked any sort of undo function. Blender users learned very

quickly to save early, save often, and save multiple versions of their project

files. One of the benefits of all of this is that Blender reads and writes its files

very quickly, even for complex scenes, so you very rarely ever have to wait

more than a second or two to get to work or save your work.

To save to a file, choose File➪Save As from the main header or use the F2

hotkey. One strange thing that you might notice is that Blender does not

bring up the familiar Save dialog box that Windows, Mac, or Linux uses. This

is for two reasons. First and foremost, such a dialog box violates Blenders

non-blocking interface concept (see Chapter 2 for more on this). More impor-

tantly, though, the Blender file browser has some neat Blender-specific fea-

tures that aren’t available in the default OS save boxes. Not only that, but this

way, you can be guaranteed that no matter what kind of computer you use,

Blender always looks and behaves the same on each platform.

Take a look at the File Browser shown in Figure 4-15. The topmost text field is

the current path on your hard drive to the folder/directory you are currently

viewing. If you type in a word at the end of this text field, Blender creates a

new folder at that location with the name you typed. To the left of this text

field is a button with a P on it. Clicking this button takes you up the directory

structure on your hard drive. Beneath this button is a small button with up/

down arrow icons on it. Clicking this button gives you a list of commonly

used folders in which you can save your file. On Windows-based machines,

78 Part I: Wrapping Your Brain Around Blender

this button also displays drive letters if you have multiple hard drives. To

the right of this button is the text field for the actual name of your file. In this

field, type your project’s name. Pressing Enter or clicking the Save File button

in the upper right corner saves the file for you. Below this is a list of the files

in the current folder. If you aren’t familiar with Linux and Unix, the first two

items in this list might seem odd to you. The first is a single dot (.). Left-

clicking this refreshes the list. This is good for checking to see if new files

have been added to the current folder. The next item is a double-dot (..). Left-

clicking this is just like clicking the P button at the top of the File Browser.

Figure 4-15 shows the Blender File Browser window and labels the various

buttons in it.

Cancel

Open/SaveGo to Parent Folder

Shortcuts

Current File

Current Path

Show:Sort by:

Hidden

Details

Name

Type Time

Size

After you save your .blend file once, saving gets much quicker. To do a fast

save while you are working, you can choose File➪Save from the main header

or, even faster, press Ctrl+W and confirm the overwrite by left-clicking or

pressing Enter. On larger projects, however, you may not want to continu-

ally overwrite the same file. In those cases, it’s often more favorable to save

progressive versions of your project as you work on it. You could do this by

Figure 4-15:
The Blender
File Browser

window.

79 Chapter 4: Working in Edit Mode and Object Mode

opening the File Browser and typing a new name for each version. However,

that’s slow and we don’t like slow. Often, when people save versions of a

project file, they usually append a number to the end of the filename (for

example, file1.blend, file2.blend, file3.blend, and so on). Blender knows this

and aims to help you out. The ultra-fast way to do this is with the following

hotkey sequence: F2➪+➪Enter. Pressing + while in the File Browser automati-

cally appends that number to your filename for you. And if the file already

has a number, it increments it by one. And for logical consistency, pressing –

decrements that value. How’s that for speedy?

Opening a .blend file is a straightforward task. Choose File➪ Open from the

main header or press F1. This loads up the File Browser window again and

allows you to choose which file you would like to load. To load it, left-click

the filename and click the Open File button in the upper right corner. If you

have a large monitor and you don’t want to move your mouse that far or

you’re just interested in speedy shortcuts, you can quickly select and open a

file by middle-clicking it.

Now, what if you have a model of a really excellent character saved in one

.blend file and you’d like to bring it into a scene that you’ve been working on

in another .blend file? Wouldn’t it be convenient if you could bring that char-

acter in and not have to remodel it from scratch? Of course it would! This is

precisely what Blender’s Append feature is for. To append an item, choose

File➪Append from the main header or press Shift+F1. This again opens the

File Browser window, but now when you click on a .blend file, you can actu-

ally drill down into its structure. With this, you can select any datablock in

the file and bring it as well as anything it’s linked to into your project. This

means that if you select an object, you append that object, its object data

(mesh, curve, and so on), any materials and textures it may have, and any Ipo

curves linked to it. If you want to append just a material or texture, you can

do that, too!

 One thing to pay attention to when appending are two buttons at the bottom

of the File Browser window, as highlighted in Figure 4-16: Append and Link.

Figure 4-16:
The Append

and Link
buttons

in the
Append File

browser.

80 Part I: Wrapping Your Brain Around Blender

Of the two, Append is the default behavior. When this button is active, any

datablock that you append from another .blend file is completely copied into

the current .blend file. From here, you can make custom changes to either

file and neither has any influence on the other. However, if the Link button is

active, the datablock is not actually copied into the current .blend. Instead, a

reference is made that points to the datablock in the original file. I like to call

this a linked appendage. The advantage of this is that any changes you make

to the original file are automatically updated in the file that links to it. This is

really quite handy in large projects where you have a variety of models, mate-

rials, and other resources that you would like to use over and over again. One

of the complications of linked appendages, however, is that the linking file

can’t make any changes to the object that it links to. The only exception to

this rule is groups.

 When a group is made to a linked appendage, the linking file creates an empty

and binds the group reference to that as kind of a child. With this scheme, you

can successfully transform and even animate your linked object. If you don’t

use groups and you want to modify an object appended with a link, your only

option would be to make that appended object local to the current file. You do

this by selecting the appended object and pressing L➪Selected Objects. You

may also choose Selected Objects and Data or choose All to completely con-

firm that you are no longer linked to that other file. Of course, this increases

the size of your .blend file and removes the collaborative benefit of working

with linked appendages.

The moral of this story: If you are appending with links, it’s probably in your

best interest to create a group in the original file and create a linked append-

age to that from the new one. This is the primary way that things are done on

medium-to-large animation projects.

Part II
Creating Detailed

3D Scenes

In this part . . .

People don’t start using a 3D computer graphics pro-

gram to play with its interface. They use it because

they want to create something awesome. That whole

process starts with creating models. There are models for

characters, settings, props, and even text and logos. The

chapters in this part show you how to create meshes,

curves, surfaces, and text objects in Blender. These are the

building blocks used in CG to create incredible visuals.

In addition to modeling, lighting and materials can easily

make or break a scene. To that effect, this part also shows

how to set up lights effectively and how to use Blender’s

material system to get the models you create to look their

best.

Chapter 5

Creating Anything You Can
Imagine with Meshes

In This Chapter
▶ Working with vertices

▶ Using modifiers such as Mirror, Subsurf, and Array

▶ Sculpting meshes to have extremely high detail

Polygon-based meshes are at the core of nearly every computer-generated

3D animation from video games to television commercials to feature-

length films. Computers typically handle meshes more quickly than other

types of 3D objects like NURBS or metaballs, and meshes are generally a lot

easier to control. In fact, when it comes down to it, even NURBS and metaballs

are converted to a mesh of triangles — a process called tesselation — when

the computer hardware processes them.

For these reasons, meshes are the primary foundation for most of Blender’s

functionality. Whether you’re building a small scene, creating a character for

animation, or simulating water pouring into a sink, you’ll ultimately be working

with meshes. Working with meshes can get a bit daunting if you’re not careful,

because you have to control each vertex that makes up your mesh. The more

complex the mesh, the more vertices you have to keep track of. Chapter 4

gives you a lot of the basics for working with meshes in Edit mode, but in this

chapter, you are exposed to a bunch of the handy features Blender has that

help you work with complex meshes without drowning in crazy vertex soup.

 When working with meshes or any other type of 3D object in Blender, it’s

often helpful to work from reference images. If you have a separate monitor, it

can be helpful to have references displayed on it. However, you can also load

an image into the background of any orthographic 3D View by choosing

View➪Background Image and left-click the Use Background Image button in

the floating window that appears. The Load button allows you to pick any

image from your hard drive. People who model faces like to split the 3D View,

showing the front view on one side and the side view on the other. With refer-

ence photos of the same size in the proper window, it makes the process of

modeling very speedy.

84 Part II: Creating Detailed 3D Scenes

Pushing Vertices
A mesh consists of a set of vertices that are connected by edges. Edges con-

nect to each other to form either three- or four-sided faces. (Chapter 4 covers

this in more detail, along with how to work with each of these mesh building

blocks.) When you tab into Edit mode on a mesh, you can manipulate that

mesh’s vertices (or edges or faces) with the same basic Grab (G), Rotate (R),

and Scale (S) tools that work on all objects, as well as the very handy Extrude

(E) function. These actions form the basis for 3D modeling, so much so that

some modelers like to refer to themselves as vert pushers because sometimes

it feels like all they do is move little points around on a screen until things

look right.

Of course, there’s more to modeling than that. You actually have a choice

between two primary methodologies when it comes to modeling: box model-
ing and point-for-point modeling. The differences between the two are outlined

below:

 ✓ Box modeling: As its name indicates, box modeling starts with a rough

shape — typically a box or cube. By adding edges and moving them

around, the artist forms that rough shape into the desired model. Bit by

bit, you refine the model, adding more and more detail with each pass.

This technique tends to appeal to people with a background in sculp-

ture because the processes are very similar. If you need to add more to

the mesh outside of the initial box shape, you select a set of edges or

faces and extrude them out or pull them out. If you need to bring part of

the mesh in from the initial box shape, you select those edges or faces

and either extrude inward or just pull them in. This is a great way to

get started in modeling, but you run a danger of ending up with really

blocky models if you aren’t careful about how you move your edges

around.

 ✓ Point-for-point modeling: Point-for-point modeling consists of delib-

erately placing each and every vertex that comprises the model and

creating the edges and faces that connect these vertices. It’s actually

not as bad as it sounds. You can think about it like drawing in three

dimensions. And as you might expect, this technique appeals to people

who come from a drawing background (or control freaks like me!). The

advantage of this method is that you can control the final look of your

model and you’re less inclined to end up with a boxy shape. However,

some beginner modelers fall into the trap of getting too detailed too

quickly with this technique, so you have to be careful.

Figure 5-1 shows the basic steps in creating a rough human head using box

modeling techniques versus using a point-for-point method.

85 Chapter 5: Creating Anything You Can Imagine with Meshes

Figure 5-1:
Box

modeling
(left) and

point-
for-point

modeling
(right) a

simple
human

head.

Although many modelers have a preference for one methodology over the

other, most agree that each method has its advantages and often modelers

take a hybrid approach. They may use a point-for-point technique to rough

out the model and then make refinements by box modeling. With the advent

of 3D sculpting, which is covered later in this chapter, this way of working

has gotten even more popular.

Working with Loops and Rings
Regardless of whether you’re box modeling or point-for-point modeling,

understanding the concepts of loops and rings definitely makes your life as a

modeler a lot less crazy. Generally speaking, an edge loop is a series of edges

that connect to form a path where the first and last edges connect to each

other. This is the ideal case; I like to call it a “good” edge loop. Of course, this

raises the question, “What’s a ‘bad’ edge loop?” Well, calling them “bad” isn’t

really accurate because you can’t always avoid them, but bad edge loops are

a path of edges that don’t connect the first and last loop.

To get a better understanding of this, open Blender and add a UV Sphere

(spacebar➪Add➪Mesh➪UV Sphere) with the default settings for rings, seg-

ments, and radii. Tab into Edit mode on the sphere and Alt+right-click one of

the horizontal edges on the sphere. Doing this selects an edge loop that goes

all the way around the sphere, as shown in the left image of Figure 5-2. This is

what I call a good edge loop. Press A to deselect all and now Alt+right-click a

vertical edge. Notice that doing this selects a path of vertices that terminates

at the top and bottom poles, or junctions of the sphere, as shown in the right

image of Figure 5-2. That’s the other sort of edge loop.

86 Part II: Creating Detailed 3D Scenes

Figure 5-2:
A “good”
edge loop

(left) around
a sphere

and a non-
looping

edge loop
(right) on a

sphere.

The vertical loop doesn’t go all the way around because, technically speak-

ing, edge loops rely on four-point poles, or a vertex that’s at the junction of

four edges. Imagine that following an edge loop is like driving through a city.

The four-point pole would be like a four-way stop, where you have the option

of going left, right, or straight. Well, to properly follow the loop, you would

keep traveling straight. However, if you come up to a fork in the road (a

three-point pole) or a five-way (or more) intersection, you can’t necessarily

“just go straight” and be sure that you’re following the loop. Therefore, the

loop terminates at that intersection. That’s why the horizontal edge loop in

Figure 5-2, which is made up entirely of four-point poles, connects to itself

whereas the vertical loop stops at the top and bottom of the sphere, where

all of the edges converge to a single junction.

In addition to edge loops, you can also have face loops. A face loop consists

of the faces between two parallel edge loops. Figure 5-3 shows horizontal

and vertical face loops on a UV Sphere. In Blender, you can select face loops

when you are in Face Select mode (in Edit mode, press Ctrl+Tab➪Faces)

the same way you select edge loops in Vertex Select or Edge Select modes:

Alt+right-click a face in the direction of the loop you’d like to select. For

example, going back the UV Sphere, to select a horizontal face loop, Alt+right-

click the left or right side of one of the faces in that loop. To select a vertical

face loop, Alt+right click the top or bottom of the face.

 In some Linux window managers, the Alt key manipulates windows, which

supersedes Blender’s control of it and prevents you from doing a loop select.

Most of these window managers allow you to remap that ability to another key

(like the Super or Windows key). However, if you use a window manager that

doesn’t offer that remapping ability, or you just don’t feel like remapping that

key, you can still select loops by using Shift+Alt+right-click. This key combina-

tion allows you to select multiple loops, but if you have no vertices, edges, or

faces selected, it behaves just like Alt+right-click.

87 Chapter 5: Creating Anything You Can Imagine with Meshes

Figure 5-3:
Some

face loops
selected on

a sphere.

Now, say that rather than wanting to select an edge loop or a face loop,

you would like to select just the edges that bridge between two parallel

edge loops, as seen in Figure 5-4. These edges form an edge ring. You can

only do this from Edge Select mode (in Edit mode, press Ctrl+Tab➪Edges).

When you’re in Edge Select mode, you can select an edge ring by using

Ctrl+Alt+right-click. Trying to use this hotkey sequence in Vertex Select or

Face Select mode just selects a face loop.

Being able to select loops for selecting groups of vertices in an orderly fash-

ion can be a huge benefit and timesaver for modeling. Say you’re modeling a

bumper car and you have the shape of the car down, but no bumper. You can

quickly create this bumper by selecting a face loop around the bottom of the

car and extruding that region in the XY plane. (Tab to Edit mode➪Ctrl+Tab➪
Faces➪Alt+right-click the face loop➪E➪Region➪S➪Shift+Z➪left-click to con-

firm placement.) When creating organic models like humans or faces, using

edge loops effectively to control your topology, or the layout of the vertices,

makes the life of a character rigger and animator a lot easier (more on this in

the sidebar called “The importance of good topology” later in this chapter).

The ability to select loops and rings is nice, but the ability to create new

loops is even more helpful when you want to add detail to a model. You

do this with what’s called a loopcut. You can find this function in the Edge

Specials menu (Ctrl+E➪Loopcut). Alternatively, you can simply press Ctrl+R

to access it directly. Regardless of how you choose to enable it, notice

that when you run your mouse cursor over your model, a pink/purple line

88 Part II: Creating Detailed 3D Scenes

is drawn on the mesh, indicating where you might want to add your edge

loop. After you decide where you want to cut, left-click to confirm. Doing

so creates the edge loop and automatically enables the Edge Slide function

on that loop. With Edge Slide, you can move your mouse around and your

loop travels along the surface of the mesh, allowing you to place it precisely

where you want it to go when you left-click. If you ever want to use Edge Slide

without creating a new loop, select the edge loop (or portion of an edge loop)

that you want to slide and press Ctrl+E➪Edge Slide.

Figure 5-4:
An edge

ring
selected
on a UV
sphere.

 When doing a loopcut, you can actually do multiple parallel loop cuts at the

same time. When you activate the loopcut tool (Ctrl+R or Ctrl+E➪Loopcut),

scroll your mouse wheel and you’ll be able to add multiple loops all at the

same time. You can also explicitly enter a number to add a large number of

loops all at once. Note that if you add multiple loops at the same time, Blender

doesn’t go into the Edge Slide functionality because it doesn’t make sense to

slide multiple parallel edges.

You can make cuts other than loopcuts. They are accessible with the Knife

tool when you press K while in Edit mode. Doing so presents you with four

options:

 ✓ Loop Cut (CTRL+R): This is the loopcut tool as described above.

 ✓ Knife (Exact): Creates connected vertices exactly where the line from

the Knife tool intersects selected edges.

89 Chapter 5: Creating Anything You Can Imagine with Meshes

 ✓ Knife (Midpoints): Creates connected vertices located at the midpoints

of the edges that the Knife tool intersects. When I use the Knife, I tend to

use this feature the most.

 ✓ Knife (Multicut): This is the same as the midpoints option, but it creates

based on the number of cuts you specify. All new vertices are spaced

equally along the edges that the Knife tool’s line intersects.

Unlike the loopcut, the Knife tool works only on the vertices that are cur-

rently selected. Of course, it’s also helpful to see the actual edges that you’re

cutting through. To do that, I recommend switching to wireframe view or

turning off the Occlude Background Geometry button. To use the knife tool,

follow these steps:

 1. Select the edges you wish to cut.

 2. Orient the 3D view so you can see all of your selected edges.

 3. Press K and choose the type of knife cut you’d like to make.

 4. Draw a line to indicate where the cuts should be.

 You can draw the line in two ways. You can left-click+drag your mouse

cursor in the 3D View to draw line that way, or you can just left-click

without dragging. If you do it the latter way, Blender draws a straight

line between each place you click. If you decide you don’t want to cut,

you can cancel at any time by right-clicking or pressing Esc.

 5. After you’ve drawn your cut line, confirm it by pressing Enter.

 With that, your selected edges that intersect your cut line should have

additional vertices.

 With the knife tool, you must select the edges you wish to cut before using it.

Simplifying Your Life as a
Modeler with Modifiers

As I stated earlier in the chapter, working with meshes can get complicated

when you have complex models consisting of lots and lots of vertices.

Keeping track of these vertices and making changes to your model can

quickly become a very daunting and tedious task, even with the ability to use

loops and rings. You can quickly run into problems if you have a symmetrical

model where the left side is supposed to be identical to the right, or if you

need more vertices to make your model appear smoother. In times like these,

you really want the computer to take on some of this tedious additional work

so you can focus on the creative parts.

90 Part II: Creating Detailed 3D Scenes

Fortunately, Blender actually has something that does just that. They’re called

modifiers. Despite their rather generic-sounding name, modifiers are an

extremely powerful way to save you time and frustration by letting the com-

puter assume the responsibility for “grunt work” like adding smoothing ver-

tices or making your model symmetric for you. Another benefit of modifiers

is that they’re non-destructive, meaning that you can freely add and remove

modifiers to and from your object. As long as you don’t “apply” the modifier,

it won’t actually make any permanent changes to the object itself. You can

always return to the original, unmodified mesh.

The modifiers for mesh can be accessed in the Editing buttons (F9) on the

last panel, called Modifiers. Left-click the Add Modifier button to see a list of

the modifiers that are available. Figure 5-5 shows the Modifier panel with the

list of available modifiers for meshes.

Figure 5-5:
All of the
modifiers

you can use
on mesh
objects.

Because of space constraints, I can’t give an extensive description on every

modifier in the list, but I cover some of the most frequently used modifiers.

That said, all of Blender’s modifiers share some of the same controls between

them. Have a gander at Figure 5-6. It shows the Modifier panel with two modi-

fiers applied, Array and Bevel.

Figure 5-6:
The Array
and Bevel

modifiers in
the Modifier

panel.

91 Chapter 5: Creating Anything You Can Imagine with Meshes

The first thing to notice is that the modifiers are stacked one below the other.

This stacking is by design, and what’s more, the order in which the modifiers

appear in the stack is important. This is because one modifier feeds into the

next one. So the second modifier, Bevel in this case, doesn’t operate on the

original mesh data. It actually operates on the “new” mesh data provided by

the first modifier, Array, in this example.

 The stacking order for modifiers is a little bit counter-intuitive if you think

about it in terms of layers, where one builds on top of another. Blender’s mod-

ifier stack does not work like that. Instead, it would be better to think of

Blender’s modifier stack as a snowball rolling down a hill. Each modifier you

hit on the way down the hill adds something or changes something about your

snowball, modifying it more and more as it comes to the base of the hill. The

top-most modifier is the first modifier and operates on the original mesh data.

The modifier immediately below it works on the data that comes from the first

modifier, and so on down the line.

In the previous example, the object is first made into an array. Then, the

mesh that is created by the Array modifier has its edges beveled so that

they’re not as sharp-cornered. Now, you can change the stacking order by

using the up/down arrow buttons on the right side of each modifier block.

Left-clicking the up-arrow raises a modifier in the stack (bringing it closer to

being first), whereas the down-arrow lowers it. Left-click the X to the right

of these buttons to remove the modifier altogether. The downward triangle

that’s to the left of each modifier’s name collapses and expands that modi-

fier block when you left-click it. This is useful for hiding a modifier’s controls

after you’ve decided upon the settings you want to use.

To the right of the names of each modifier are three buttons. From left to

right, these buttons control whether the modifier is enabled for rendering,

viewing in Object mode, and viewing in Edit mode. You may be wonder-

ing why you would ever want to disable a modifier after you’ve added it to

the stack, rather than just removing it and adding it back in later. The main

reason for this is that many of the modifiers have an extensive set of options

available to them. You may want to see how your object renders with and

without the modifier to decide whether you want to use it. You may want to

edit your original mesh without seeing any of the changes made by the modi-

fier. If you have a slow computer, you want to have the modifier enabled only

when rendering so you can still work effectively without your computer chok-

ing on all the data coming from Blender. Those buttons next to each name

are for situations like these.

Some modifiers, like Array, have an additional little circle-shaped button

in the space after the enable/disable buttons. It’s not labeled with an icon

or anything, but its tooltip says Apply Modifier to Editing Cage During Edit

Mode. This means that not only are the effects of the modifier visible in Edit

mode, but you can also select and perform limited changes to the geometry

created by the modifier.

92 Part II: Creating Detailed 3D Scenes

Only two more buttons are common among all modifiers. They are the Apply

and Copy buttons on the right side of each modifier block in the stack. Left-

clicking the Apply button takes the changes made by the modifier and directly

applies them to the original object. Doing this actually creates the additional

vertices and edges in the original mesh to make it match the results done by

the modifier, and then removes the modifier from the stack. I said before that

modifiers were non-destructive, meaning that they don’t permanently change

the original object, but the Apply button is the one exception.

 The Apply button only works if the modifier is the first (top) modifier in the

stack.

The Copy button creates a duplicate version of the modifier and adds it to

the stack in the same position as the modifier you’re duplicating, essentially

forcing the original one further down the stack. You probably won’t be using

this function very often, but it’s really useful when you need to double up a

modifier, like if you want to bevel twice to get a more rounded edge than a

single bevel operation can get you.

Doing half the work (and still looking
good!) with the Mirror modifier
When I was first learning how to draw the human face, I used to have all sorts

of problems because I’d draw half the face and then realize that I still needed

to do just about the exact same thing all over again on the other side of the

face. I found it tedious and difficult to try and match the first half of my draw-

ing. Without fail, the first couple of hundred times I did it, something would

always be off. An eye would be too large, an ear would be too high, and so on.

I’m embarrassed to say that it actually took me quite a long time to get draw-

ings that didn’t look like Sloth from The Goonies. (Some of my co-workers

might argue that some of my drawings still look that way!)

Fortunately, as a 3D computer artist, you don’t have to go through all that.

You can have the computer do the work for you. In Blender, you do this with

the Mirror modifier (F9➪Modifiers➪Add Modifier➪Mirror). Figure 5-7 shows

the buttons and options available for this modifier.

Figure 5-7:
The Mirror

modifier.

93 Chapter 5: Creating Anything You Can Imagine with Meshes

The Mirror modifier basically makes a copy of all the mesh data in your

object and flips it along its local X, Y, or Z axis, or any combination of those

axes. The Mirror modifier also has the cool feature of merging vertices along

the center seam of the object, so it looks like one unified piece. You can

adjust how close vertices have to be to this seam in order to be merged by

changing the Merge Limit value.

The X, Y, and Z buttons dictate which axis or axes your object is mirrored

across. For most situations, the default setting of just the local X axis is all

you really need. I nearly always enable the Do Clipping button. This button

takes the vertices that have been merged —– as dictated by the Merge Limit

value — and locks them to the mirror axis. This is a great feature when

you’re working on vehicles or characters where you don’t want to acciden-

tally tear a hole along the center of your model while you’re tweaking its

shape with the Proportional Edit Tool (tab to Edit mode➪O). Of course, if

you have to pull a vertex away from the center line, you can temporarily dis-

able this button.

The next large button is Mirror Vgroups. Vgroups stands for vertex groups.

Vertices in a mesh can be assigned to arbitrary groups that you can des-

ignate in the Link and Materials panel of the Editing buttons, as shown in

Figure 5-8.

Figure 5-8:
Vertex

groups are
created with
the Link and

Materials
panel of the

Editing
buttons.

The actual process of creating vertex groups and assigning individual ver-

tices to a group is covered more in-depth in Chapter 11. However, the most

basic way to create a vertex group is to press the New button under Vertex

Groups in the Link and Materials panel while in Edit mode. This makes a new

vertex group named Group. Now select some vertices in your mesh and press

the Assign button back in the Link and Materials panel. Congratulations!

You’ve created a vertex group.

Now, the effect of the Mirror Vgroups button doesn’t make itself apparent

until you apply the Mirror modifier. Here’s how it works: Say you’ve selected

some vertices and assigned them to a group named Group.R, indicating that

94 Part II: Creating Detailed 3D Scenes

it’s the group for some vertices on the right-hand side. Say you’ve also cre-

ated another group called Group.L for the corresponding vertices on the left-

hand side, but because you have not yet applied the Mirror modifier, there’s

no way to assign vertices to this group. Well, if you have the Mirror Vgroups

button activated when you apply the Mirror modifier, the newly created

real vertices on the left side that correspond with the Group.R vertices are

automatically assigned to Group.L. This effect propagates to other modifiers

which are based on vertex group names, such as Armatures.

Referring back to Figure 5-7, the Mirror U and Mirror V buttons on the Mirror

modifier do the same kind of thing that the Mirror Vgroups button does, but

they refer to texture coordinates, or UV coordinates. (There’s more on UV

coordinates in Chapter 8.) The simplest explanation, though, is that UV coor-

dinates allow you to take a flat image and map it to a three-dimensional sur-

face. Enabling these buttons on the modifier mirrors the texture coordinates

in the UV Image Editor and can possibly cut your texture unwrapping time

in half. Also, unlike the Mirror Vgroups button, you don’t have to apply the

modifier to take advantage of the Mirror U or Mirror V features. To see the

results of what these buttons do, when you have a texture loaded and your

model unwrapped, bring up the View Properties floating window in the UV

Image Editor (View➪View Properties) and left-click the Final Shadow button.

Hooray for non-destructive modifiers!

The last option in the Mirror modifier is the text field at the bottom that says

Ob. By default, the Mirror modifier uses the object’s center point as the basis

for what to mirror. However, by typing in the name of any other object in this

field, you can use that object’s center as the point to mirror. With this, you

can use an Empty as a kind of dynamic center point. That allows you to do

fun things like animate a cartoon character splitting in half to get around an

obstacle (literally!) and joining back together on the other side.

 Blender’s text fields have tab completion, so you can type the first few letters

of an object’s name, press Tab, and, if the name is unique, Blender fills in the

rest of the name for you.

Smoothing things out with
the Subsurf modifier
Another commonly used modifier, especially for organic models, is Subsurf.

Subsurf is short for subdivision surfaces. If you have a background in another

3D modeling program, you might know them as sub-ds or subdivs. If you’re

not familiar with subdivision surfaces, the concept goes something like this:

Blender takes the faces on a given mesh and subdivides them with a number

of cuts that you arbitrarily decide upon (usually one to three cuts, or levels of
subdivision). Now, when the faces are subdivided, Blender moves the edges

of these faces closer together, trying to get a smooth transition from one

95 Chapter 5: Creating Anything You Can Imagine with Meshes

face to the next. The end effect is that a cube with a Subsurf modifier begins

looking more and more like a ball with each additional level of subdivision, as

shown in Figure 5-9.

Figure 5-9:
A cube with

increasing
levels of

subdivision
from 1 to 6.

Now, the really cool thing about subdivision surfaces is that because they’re

implemented as a modifier, you get the smooth benefit of additional geom-

etry without the headache of actually having to edit all of those extra verti-

ces. In the preceding cube example, even at a subdivision level of six, if you

Tab into edit mode, you control that form with just the eight vertices that

make up the original cube. This is a very powerful way of working and nearly

all high-end 3D animations use subdivision surfaces for just this reason. You

have the smooth organic curves of dense geometry with the much more man-

ageable control of a less dense, or low poly mesh, referred to as a cage.

For a better idea of the kind of results you can get with the Subsurf modifier,

I’m going to break out Suzanne and apply it to her with the following steps:

 1. Add a Monkey mesh (spacebar➪Add➪Mesh➪Monkey).

 Ooh! Ooh! Ooh!

 2. Set smooth rendering on the monkey (F9➪Link and Materials➪Set

Smooth).

 At this point, Suzanne is pretty standard. She looks smoother than the

faceted look she had when first added, but she’s still blocky looking.

 3. Add a Subsurf modifier to the monkey (F9➪Modifiers➪Add

Modifier➪Subsurf or use the Ctrl+1 hotkey combo).

 Now that’s Suzanne! Instantly, she looks a lot more natural and organic,

even despite her inherently cartoony proportions. Feel free to increase

the Levels number in the Subsurf modifier to see how much smoother

Suzanne can be.

96 Part II: Creating Detailed 3D Scenes

 4. Tab into Edit mode and notice that the original mesh serves as the

control cage for the subdivided mesh.

 Editing the cage with Grab (G), Rotate (R), Scale (S), and Extrude (E)

directly influences the appearance of the modified mesh within the cage.

Figure 5-10 shows the results of each of these steps.

Figure 5-10:
Adding the

Subsurf
modifier to

Suzanne.

As powerful as the Subsurf modifier is, only a limited number of options

come with it in the modifier stack. Figure 5-11 shows the Subsurf modifier

block as it appears in the Modifiers panel. The first option is a drop-down

menu that gives you the choice between Catmull-Clark subdivision or Simple

subdivision. The former is the default and behaves just like I’ve described

previously. The latter works more like doing W➪Subdivide multiple times in

Edit mode. It gives you more vertices in your meshes, referred to as geom-

etry, but not the same kind of organic smoothness that the Catmull-Clark

method provides. The simple subdivision method is good for some situations

though, so it’s nice that the option is available to you.

Figure 5-11:
The Subsurf

modifier.

The next button down is the Levels option, which allows you to set the level

of subdivision that you see on your model in the 3D View. It can be set to a

whole number from 1 to 6. Because I like to keep my 3D view fast and respon-

sive, I tend to keep this down at 1. Occasionally, I push it up to 2 or 3 to get

a quick idea of what it might look like in the final output, but I always bring

it back down to 1. Beneath the Levels option is a similar button for Render

97 Chapter 5: Creating Anything You Can Imagine with Meshes

Levels. When you create the final output of your scene or animation, Blender

uses this level of subdivision for your model, regardless of which level you

set for the 3D view. It has the same range that Levels does, but typically this

is set to a higher value because you usually want smoother, higher-quality

models in your final render. Don’t go too crazy with setting this value. On

most of my work, which can get pretty detailed, I rarely ever use a setting

higher than 3.

The Optimal Draw button is something I typically like to leave turned on all

the time. It hides the extra edges that are created by the modifier when you

view the model in wireframe view. On a complex scene, hiding the edges can

definitely help you make sense of things when working in wireframe. Figure

5-12 shows the difference Optimal Draw makes on a Suzanne model with

three levels of subdivision.

Figure 5-12:
Using

Optimal
Draw on
 a mesh

with three
levels of

subdivision.

 When working with the Subsurf modifier, I typically like to have this option on,

along with the Apply Modifier to Cage button, otherwise known as “that circle-

shaped button next to the modifier name.” Everyone’s different, though, so

play with it on your own and see what works best for you.

Use the Subsurf UV button for texturing. Like the Mirror U and Mirror V but-

tons in the Mirror modifier, enabling this button adds the additional geom-

etry to your UV map without requiring you to apply the modifier. Again, this

can be quite a helpful timesaver when you’re setting up your model for tex-

turing. Also like the Mirror U and Mirror V options, you can see the results of

the Subsurf UV button by enabling the Final Shadow button in the UV Image

Editor (Shift+F10➪View➪View Properties➪Final Shadow).

98 Part II: Creating Detailed 3D Scenes

Using the power of Arrays
One of the coolest and most-fun-to-play-with modifiers in Blender is the Array

modifier. In its simplest application, this modifier duplicates the mesh a

specified number of times and places those duplicates in line evenly spaced

apart. Have a model of a chair and need to put lines of chairs in a room to

make it look like a meeting hall? Using a couple of Array modifiers together is

a great way to do just that! Figure 5-13 is a screenshot of Blender being used

to create that sort of scene.

 You’re not limited to using just one Array modifier on your object. The effect

in Figure 5-13 was achieved by using two Array modifiers stacked together,

one for the first row of chairs going across the room and the second to create

multiple copies of that first row. Using multiple arrays in a row is an excellent

way to build a complex scene with just one object.

Blender’s Array modifier is loaded with all kinds of cool functions that can be

used in lots of interesting ways. Some ways facilitate our desire to be lazy by

making the computer do as much of the repetitive, tedious tasks for us as pos-

sible. (For example, it can be used to model a staircase or a chain-link fence or

a wall of bricks.) However, you could also use it to do some really incredible

abstract animations or specialized tentacles or even rows of dancing robots!

Figure 5-13:
Filling a

room with
chairs using

the Array
modifier.

99 Chapter 5: Creating Anything You Can Imagine with Meshes

The bulk of the power in the Array modifier lies in how it handles offsets, or

the distances apart that the duplicates are set relative to one another. As

shown in Figure 5-14, the Array modifier offers three different sorts of offsets,

all of which can be used at the same time.

Figure 5-14:
The Array

modifier.

 ✓ Constant Offset: This offset adds a fixed distance to each duplicated

object in the array, in Blender units. So setting the X value beneath this

button to -5.0 shifts each of the duplicates five units in the negative X

direction. The same behavior happens in the Y and Z axes when you set

the values for those offsets as well.

 ✓ Relative Offset: Think of the Relative Offset like a multiplication factor,

based on the width, height, and depth of the object. So no matter how

large or small the object is, if you set the Z value to 1.0, for example,

each duplicated object in the array is stacked directly on top of the one

below it. This type of offset is the one that’s used by default when you

first add the Array modifier.

 ✓ Object Offset: The Object Offset is my personal favorite offset because

of its incredible versatility. It takes the position of any object you name

in the Ob: field — I prefer to use Empties for this — and uses its relative

distance from the mesh you’ve added to Array as the offset. But that’s

just the start of it! Using this offset also takes into account the rotation

and scale of the object you enter. So if you have an Empty that’s one

Blender unit away from your object, scaled to twice its original size and

rotated 15 degrees on the Y axis, each subsequent duplicate is scaled

twice as large as the previous and rotated an additional 15 degrees. Now

you can make a spiral staircase like the one in Figure 5-15. And if you felt

inclined to create a staircase where the stairs can be collapsed into each

other and hidden, it’s a simple as animating the offset object!

100 Part II: Creating Detailed 3D Scenes

Figure 5-15:
1) Model the
step. 2) Add

an Empty
for Object
Offset and
rotate in Z.
3) Add the

Array modi-
fier. 4) Make

it pretty.

You also have a lot of control over how many duplicates the Array modifier

creates. This is controlled with the Length Fit drop-down menu at the top of

the Array modifier block. By default, the Length Fit setting is Fixed Count and

you explicitly enter the number of duplicates in the Count field below it. That

isn’t your only option, however. You actually have three:

 ✓ Fixed Count: As described above, this lets you explicitly enter the exact

number of duplicates you would like to create, up to 1000.

 ✓ Fixed Length: This creates the proper count of duplicate objects to fit in

the distance that you define. Bear in mind that this length is not exactly

in Blender units. It uses the local coordinate system of the object that

you’re making an array of, so the length you choose is multiplied by the

scale of that original object as shown in the Transform Properties float-

ing window (N).

 ✓ Fit to Curve Length: If you choose this option, you can enter the name

of a curve object in the Ob field below it. When you do this, Blender cal-

culates the length of that curve and uses that as the length to fill in with

duplicated objects. Using this option together with a Curve modifier

is a nice quick-n-dirty way of creating a linked metal chain like the one

shown in Figure 5-16.

Another cool feature in the Array modifier is the ability to merge the vertices

in one duplicate that are near the vertices in another. With the Merge button

enabled and some fine adjustment to the Limit value, you can make your

model look like a single unified piece, rather than being composed of indi-

vidual duplicates. I’ve used this feature to model rope, train tracks, and stair

rails, for example. The First Last button toggles to determine if the vertices in

the last duplicated instance are allowed to merge with the nearby vertices in

the first object of the array. Use this with Object Offset and you can create a

closed loop out of your duplicates, all merged together.

101 Chapter 5: Creating Anything You Can Imagine with Meshes

Figure 5-16:
Creating
a chain

using the Fit
Length to

Curve option
in the Array

modifier
along with

a Curve
modifier.

Say you’re using the Array modifier to create a handrail for your spiral stair-

case and you don’t want the handrail to simply stop at the beginning and

end. Instead, you’d like the end of the handrail to have ornamental caps. You

could model something and try to place it by hand, but this could get prob-

lematic if you have to make changes or animate the handrail in the future.

(Hey, this is computer graphics. Handrails that move and are animated make

complete sense!) So another way to handle this is to use the Start cap and

End cap fields in the Array modifier. After you’ve modeled what you want the

cap to look like, you can type the name of that object in these fields and it

will be placed at the beginning and the end of the array, respectively. Pretty

slick, huh?

Sculpting Multi-Resolution Meshes
Over the years, as computers have gotten more powerful and more capable

of handling dense high poly models with millions of vertices, computer

graphics artists have wanted more and more control over the vertices in

their meshes. Using a Subsurf modifier is great for adding geometry to make

models look more organic, but what if you’re modeling a monster and you

want to model a scar in his face? You have to apply the modifier to have

access and control over those additional vertices. And even though the

computer may be able to handle having them there, a million vertices is a lot

for you to try to control and keep track of, even with all of the various selec-

tion methods and the Proportional Edit tool. This is exactly why Blender has

multi-resolution meshes and Sculpt mode.

Multi-resolution, or multires for short, meshes address the problem of having

to apply the Subsurf modifier before you can directly control the vertices

that it creates. With a multires mesh, you can freely move between a level

1 subdivision and a level 6 subdivision, just like with the Subsurf modifier.

However, the difference is that you can directly control the vertices of the

level 6 subdivision just as easily as the level 1 subdivision using Blender’s

102 Part II: Creating Detailed 3D Scenes

Sculpt mode. And changes made at either level can be seen at the other one.

(To varying levels of detail, depending on the level you’re looking at. If you

make a very fine detail change in level 6, it may not be readily apparent at

level 1.) Figure 5-17 shows what the Multires panel looks like before and after

you add Multires to your model.

Turning a mesh into a multires mesh is as simple as left-clicking the Add

Multires button in the Multires panel and then left-clicking the Add Level

button for each level of subdivision that you would like to add to your mesh.

Unlike with the Subsurf modifier, you don’t have exactly six levels of subdivi-

sion to switch between. In Multires, the number can be as low as zero and

as high as your computer’s processor and memory can handle. And before

adding a level, you have the option of choosing Catmull-Clark Subdivision

or Simple Subdivision, like you can with the Subsurf modifier. The only dif-

ference here is that you cannot freely change between subdivision types on

a given level with Multires. After you left-click the Add Level button, your

choice is made.

 If you have a Subsurf modifier on your mesh, I recommend applying it to your

mesh or removing it from the modifier stack before adding Multires. Because

Multires uses the same process to create subdivision levels, you don’t need to

have both active at the same time.

After you have a level added, you have some additional options available. The

first two buttons that appear are Del Lower and Del Higher. Clicking these

buttons removes all subdivision levels less than or greater than the level you

are currently in, respectively. So if you have five levels of subdivision and

you’re at level 4, clicking Del Lower effectively kills levels 1 through 3. When

these levels are removed, the current level — in this example, level 4 —

becomes the new level 1. Del Higher works in a similar fashion.

Figure 5-17:
The Multires

panel in
 the Editing

buttons
before (left)

and after
(right),
adding

Multires
and a

couple
levels of

subdivision.

103 Chapter 5: Creating Anything You Can Imagine with Meshes

The next field down, Level, lets you set which subdivision level you’re cur-

rently looking at from the levels that you’ve added to your mesh. Below that

is the Edges field. The Edges field allows you to set which level’s edges you

would like Blender to show in the 3D view. Setting it to 1 gives you an effect

that’s similar to Optimal Draw on the Subsurf modifier. Higher values pro-

gressively show more and more edges. Some 3D modelers who use sculpting

tools like to overlay the model’s wireframe on the mesh (F7➪Draw➪Draw

Extra➪Wire) as they work so they can have an idea of how their topology

looks (see the sidebar “The importance of good topology” elsewhere in the

chapter for more).

In the bottom right of this area are two fields associated with rendering. The

Pin value determines which level of subdivision you want the modifier stack

to work on when you render. By default, this is set to level 1. Increasing this

value means that more vertices get seen by the modifier stack and can there-

fore substantially increase your render time, so do so carefully — or at least

with the knowledge that you may have time to go out for a long meal and a

nap while Blender renders your model. The Render value tells Blender which

subdivision level you would like to have rendered. By default, this is set to

your highest level. If you’re rendering a test preview, you can speed things up

by reducing this value.

 Currently, multires meshes are created and managed in the Multires panel of

the Editing buttons (F9). In future versions of Blender, the plan is to make

Multires work like any other modifier, so some features may vary slightly if

you’re using a version of Blender newer than version 2.47.

Now, if you try to tab into Edit mode on a multires mesh, you may be faced

with so many vertices that it’s not easy or even useful to select and edit just

one vertex or a few of them. Sculpt mode helps you manage all of these addi-

tional vertices created by Multires. It treats your mesh very much like a solid

piece of clay. You have a variety of “sculpt brushes” that help you shape and

form your mesh to look exactly how you want. Activate Sculpt mode from

the Mode menu in the header of the 3D view, as shown in Figure 5-18. When

you’re in Sculpt mode, three additional tabs show up in the Editing buttons

along with the Multires panel: Sculpt, Brush, and Texture.

Figure 5-18:
Going into

Sculpt
mode.

104 Part II: Creating Detailed 3D Scenes

 If you have a drawing tablet like the ones manufactured by Wacom, Sculpt

mode takes advantage of the pressure sensitivity that a tablet offers. You can

adjust the sensitivity and size of the tablet by going to Sculpt➪Input Settings

in the 3D View window’s header after you enter Sculpt mode.

Sculpt panel
Figure 5-19 shows the contents of the Sculpt panel. This is the primary panel

for working in Sculpt mode. In fact, if you have the Transform Properties

floating window (N) up in 3D view, when you switch to Sculpt mode, its con-

tent changes to match what’s in this panel so you have quick access to it

within the 3D view. The buttons in this panel can be broken down into three

sections: brush types, brush controls, and axis-related controls.

Figure 5-19:
The Sculpt

panel.

Brush types
Sculpt mode offers you seven different types of brushes to work with, each

one modifying your mesh in a very specific way. All brushes work by left-

clicking with the brush cursor over the mesh and dragging the cursor around

the 3D View. If you’re using a drawing tablet, this is a very natural way to

work. Below are brief descriptions of each sculpt brush:

 ✓ Draw (D): The Draw brush basically pulls the surface of your mesh out-

ward (or inward, if you enable the Sub button). By default, the brush

works with an even fall-off, so the raised areas you draw tend to flow

smoothly back into the rest of the mesh.

 ✓ Smooth (S): If you have jagged parts of your mesh or there are undesir-

able surface irregularities created while sculpting, using the Smooth

brush cleans up those bumpy parts and makes the surface of your mesh,

well, smoother.

 ✓ Pinch (P): If you enable the Pinch brush, vertices are pulled toward

the center of your brush cursor as you move it over the mesh. This is a

great way to add ridges and creases to a model.

 ✓ Inflate (I): The Inflate brush works a lot like the Draw brush. However,

rather than move vertices more or less uniformly from the meshes sur-

face, when you run the Inflate brush over your mesh, vertices move along

their own local normals. This brush is good for fattening parts of a model.

105 Chapter 5: Creating Anything You Can Imagine with Meshes

 ✓ Grab (G): When you left-click and drag your mouse cursor on a mesh

with the Grab brush activated, the vertices that are within the brush

cursor’s circle are moved to wherever you drag your mouse to. This is

like selecting a bunch of vertices in Edit mode and pressing G.

 ✓ Layer (L): The Layer brush is like the Draw brush with a maximum

height that it pulls the vertices, basically creating a raised mesa on the

surface of your mesh.

 ✓ Flatten (T): In some ways, this brush does the opposite of the Draw

brush. Where the Draw brush pulls vertices away from the surface of a

mesh, the Flatten brush lowers vertices to try and get them to be as flat

or planar as possible. If you’re sculpting a landscape and you decide to

remove a hill, this is the brush you want to use.

Brush controls
The next section of buttons, under the heading of Shape, actually control

how the sculpt brushes influence your mesh. The first two buttons, Add and

Sub, are only available for the Draw, Pinch, Inflate, and Layer buttons. Add

is the default behavior described previously. If you enable Sub, it does the

inverse. For instance, with Sub enabled, the Pinch brush pushes vertices

away from the center of the brush cursor instead of pulling them in. Also,

note that regardless of whether you’ve enabled Add or Sub, pressing Shift

while using the brush does the opposite behavior. For example, if you’re

using the Draw brush with Add enabled, the normal behavior creates a small

hill wherever you move your mouse cursor. If you press Shift+left-click and

drag, you sculpt a small valley instead. Alternatively, you can toggle between

Add and Sub by pressing V.

By default, if you left-click and hold your left mouse button down without

moving the mouse, the Sculpt tool doesn’t do a whole lot. It performs the

brush’s operation once and then waits for you to move your mouse. Suppose

you prefer that the brush keep operating for as long as you hold down the

left mouse button, regardless of whether you actually move the mouse.

Enabling the Airbrush button (A) gives you just that ability. So if part of your

mesh is an incredibly jaggy mess, you can switch to the Smooth brush (S),

enable Airbrush (A), left-click on the jagged area, and hold down that left

mouse button until the jaggies are gone.

The Size and Strength sliders control the size and strength of the brush

you’re currently using. There are hotkeys for changing these values while in

the 3D view so you don’t have to bring up this panel. To change brush size,

press F, move your mouse until the brush cursor is the desired size, and left-

click to confirm. To adjust the brush strength, press Shift+F and move your

mouse to the center of the circle that pops up to increase the strength or

away from the center to decrease the strength. When you’re at the strength

you want, left-click to confirm.

106 Part II: Creating Detailed 3D Scenes

Axis-related controls
The next two blocks of buttons control how the sculpt brushes modify your

mesh relative to the object’s local axes. For example, if you left-click the X

button under Symmetry, anything you do on the left side of the mesh auto-

matically also happens on the right side of the mesh. This is an excellent

timesaver for doing involved tasks like sculpting faces.

Likewise, the X, Y, and Z buttons under the LockAxis label constrain a ver-

tex’s movement in that axis. For instance, if you decide that you only want

the Draw brush to move vertices in the Z direction, you would left-click the X

and Y buttons under LockAxis to keep vertices under your brush cursor from

moving in those directions.

The importance of good topology
If you listen to modelers talk or if you visit some
of the Web forums where 3D modelers hang out,
you’ll hear the words topology and edge flow
pretty often. These concepts are very impor-
tant for a modeler, particularly if your model is
destined to be animated. These terms refer to
how the vertices and edges of your mesh lay
out across its surface. When using subdivision
surfaces to create organic models such as
people, animals, and even plants, keep a few
key guidelines in mind:

 ✓ Use quads: Try to avoid triangles whenever
possible. Four-sided polygons look better
when subdivided and they also tend to
deform more cleanly when an armature is
used to animate them.

 ✓ Minimize poles that don’t have four edges:
Remember that a pole is where mul-
tiple edges join at a single vertex. The UV
Sphere mesh has two large poles at its top
and bottom. Poles are harder to avoid than
triangles, but you should do what you can
to minimize their use because they can

terminate edge loops (making the “bad”
edge loops I described earlier in this chap-
ter) and they don’t deform as nicely as four-
edged poles. If you are forced to use a pole
like this, try to put it in a place on the mesh
that won’t deform a lot when it’s animated.

 ✓ Holes such as mouths and eye sockets
should be encircled by concentric edge
loops: This is particularly important for
character models that may be animated.
Having concentric edge loops like this
makes it easier to deform and animate
these highly expressive parts of the face.

 ✓ Edges should follow anatomy: Following
the flow of anatomy — particularly mus-
culature — is important because doing so
yields cleaner, more natural deformations.
Arms don’t pinch when you bend them;
the crease from the side of the nose flows
around the mouth. Following these little
rules really makes the lives of riggers and
animators much easier (and it helps make
the final animation look better).

107 Chapter 5: Creating Anything You Can Imagine with Meshes

Brush panel
The Brush panel gives you control over how your sculpting brushes behave.

By default, a curve controls how the intensity of the brush rolls off to the

edges of the brush cursor. You can disable this control in favor of a more

linear fall-off by left-clicking the Curve button, or you can edit the curve in

the graph to the right to have more customized intensity fall-off. Figure 5-20

shows the contents of the Brush panel.

Figure 5-20:
The Brush

panel for
sculpting.

Texture panel
In the Texture panel, you have a set of eight texture channels, in addition to

the Default, that you can use as brushes. So any texture that you can load or

create in the Texture buttons (F6) can be used as a brush when you sculpt.

This is an excellent way to get more details added to your mesh while sculpt-

ing. One button that you may want to use when you’ve loaded a texture into

this panel is the Rake button. When this button is enabled, the texture is

rotated as you sculpt to match the motion of the brush. This helps you avoid

creating unnatural patterns from your textures when you sculpt. Figure 5-21

shows the contents of the Texture panel.

Figure 5-21:
The Texture

panel for
sculpting.

 Sculpting with a high level of subdivisions can be taxing on your computer,

using a lot of memory to store all of those additional vertices. If you use too

many levels of subdivision, your computer may run out of memory and

Blender could lock up or crash. In an effort to prevent this and give them-

selves more vertices to play with, many 3D modelers who use Blender’s

Multires go to the User Preferences under Edit Methods to disable Global

108 Part II: Creating Detailed 3D Scenes

Undo and turn down the number of Undo Steps from the default value of 32

down to 0. This removes the safety net of undo, but it can often improve

Blender’s performance while sculpting.

Table 5-1 gives you a quick reference for the hotkeys used in Sculpt mode.

Table 5-1 Hotkeys for Sculpt Mode
Description Hotkey Menu Access

Draw Brush D Sculpt➪Draw

Smooth Brush S Sculpt➪Smooth

Pinch Brush P Sculpt➪Pinch

Inflate Brush I Sculpt➪Inflate

Grab Brush G Sculpt➪Grab

Layer Brush L Sculpt➪Layer

Flatten Brush T Sculpt➪Flatten

Toggle Add/Sub V or Shift+left-click Sculpt➪Add

Airbrush A Sculpt➪Airbrush

X Symmetry X Sculpt➪X Symmetry

Y Symmetry Y Sculpt➪Y Symmetry

Z Symmetry Z Sculpt➪Z Symmetry

Rotate Brush Ctrl+F Sculpt➪Rotate Brush

Brush Strength Shift+F Sculpt➪Strengthen Brush

Brush Size F Sculpt➪Scale Brush

Hide mesh outside of
selection box

Shift+Ctrl+left-click N/A

Hide mesh within
selection box

Shift+Ctrl+right-
click

N/A

Unhide All Alt+H N/A

Increase multires
level

Page Up N/A

Decrease multires
level

Page Down N/A

Chapter 6

Using Blender’s Non-Mesh
Primitives

In This Chapter
▶ Working with curve objects and NURBS surfaces

▶ Understanding the benefits of meta objects

▶ Using text in Blender

Although polygon-based meshes tend to be the bread and butter of

modelers in Blender, they aren’t the only types of objects that are

available to you for creating things in 3D space. Blender also has curves,

surfaces, meta objects, and text objects. These objects tend to have somewhat

more specialized purposes than meshes, but when you need what they

provide, they’re extremely useful.

Curves and surfaces are nearly as general-purpose as meshes, but they’re

particularly handy for anything that needs to have a smooth, non-faceted

look. They’re also important for models that require mathematical precision

and accuracy in their appearance. Meta objects are great at creating organic

shapes that merge into one another, such as simple fluids. You can also use

them to make a roughly sculpted model from basic elements if you don’t want

to work in Sculpt mode. Text objects are exactly what they sound like: You use

them to add text to a scene and manipulate that text in all three dimensions.

This chapter tells you more about working with all of these types of objects.

Using Curves and Surfaces
So, what’s the biggest difference between curves and surfaces when compared

to meshes? Math! Okay, I’m sorry. That was mean of me; I know that math can

be a four-letter word for many artists. Don’t worry, you won’t have to do any

math here. What I mean to say is that curves and surfaces can be described to

the computer with a mathematical function. Meshes, on the other hand, are

described with all of the individual vertices that they’re composed of. This

means that, in terms of the computer, curves and surfaces have two advantages:

110 Part II: Creating Detailed 3D Scenes

 ✓ They are very precise. When you get down to it, the best that a mesh

can be is an approximation of a real object. It can look really, really

good, but it’s not exact. Because curves are defined by math, they are

exactly the correct shape. This is why designers and engineers like

them. In fact, they’re used as the reference for creating real objects. (So

real objects are actually approximations of the curve design!)

 ✓ They take up less memory. Because the shape is mathematically

defined, the computer can save that shape by saving the math, rather

than saving all of the individual points. This means that complicated

curves and surfaces usually take up quite a bit less space than the same

shape made with meshes.

Of course, there are some caveats to these advantages. For one, curves

and surfaces can sometimes be more difficult to control. Since curves and

surfaces don’t really have vertices for you to directly manipulate; you have

to use control points. Depending on the type of curve, control points can sit

directly on the shape, or float somewhere off of the surface as part of a con-

trol cage.

Another thing to bear in mind is that even though curves and surfaces are per-

fect mathematical descriptions of a shape, the computer is actually an imper-

fect way of displaying those perfect shapes. At the beginning of Chapter 5, I

mentioned that all 3D geometry is eventually tessellated, or turned into a mesh

of triangles, when the computer processes it. This means that even though

curves and surfaces can take less memory on a computer, displaying them

smoothly may actually take more time for the computer to process. To speed

things up, you can tell the computer to use a rougher tessellation with fewer

triangles. This means that what you see in Blender is an approximation of

that perfect curve or surface shape. Do you find yourself thinking, “But hey, I

thought curves were supposed to be perfect mathematical descriptions of a

shape. What gives with these facets?” Well, the curve is perfect. It’s just hard

for the computer to show it to you directly.

But despite these minor disadvantages, using curves and surfaces is a really

smart move in quite a few cases. For example, most designers like to use

curves for company logos because curves can scale in print to any size

without looking jagged or aliased around its edges. What this means to you

as a 3D artist is that you can import the curves of a logo design and give the

logo some depth, dimension, and perhaps even some animation. Speaking of

animation, curves have quite a few handy uses there as well. For instance,

you can use a curve to define a path for an object to move along. Curves are

also used in Blenders Ipo Curve Editor to graph and control the changes to

an object’s properties over time. For modeling purposes, curves are great

for pipes, wires, and ornate organic shapes. Figure 6-1 shows a park bench. I

used only curves to model its sides.

111 Chapter 6: Using Blender’s Non-Mesh Primitives

Figure 6-1:
With the

exception of
the slats for

the seat and
back, this

entire park
bench was

modeled
with curves.

A set of curves used to define a shape in three dimensions is a surface. In

some ways, curve surfaces are very similar to the subdivision surfaces on

meshes that have the Subsurf modifier because they both have a control

cage that defines the final shape that’s created. The difference is that the

curve surface has space and precision benefits that meshes don’t have. Also,

surfaces are a little bit easier to add textures to because you don’t have to go

through the additional step of unwrapping, or flattening the surface so a two-

dimension texture can be applied to it. When you use a surface, you get that

unwrapping for free because it’s already done for you.

 For these reasons — especially the precision — architects, industrial design-

ers, and engineers prefer to work with surfaces on their models. Just about

everything in your house was designed by someone. That includes your water

faucet, your coffee maker, your television, your car, and even the house itself.

If it was manufactured within the last 20 years, chances are good that it was

designed on a computer and visualized with surfaces. Also, before the advent

of subdivision surfaces on meshes, early characters for computer animations

were modeled using curve surfaces because they were better at achieving

organic shapes. Of course, if you’re seen using curves to build a character

these days, you might be viewed as a bit of masochist . . . especially if you try

to do it in Blender. I go into why a little bit later in this chapter.

112 Part II: Creating Detailed 3D Scenes

Understanding the different
types of curves
In Blender, you can add curves by using Spacebar➪Add➪Curves and choos-

ing the type of curve you’d like to use from the menu that appears. As shown

in Figure 6-2, you can use two main kinds of curves: Bézier curves and NURBS
curves (the Path curve is a specific type of Bézier curve). Bézier curves are

generally used more for text and logos. By default, they only work in two

dimensions, but you can get them to work in all three if you need to. You can

tell you’re using a Bézier curve because if you Tab into Edit mode to look at

it, each control point has a pair of handles that can be used to give additional

control over the curve’s shape.

Figure 6-2:
The Add➪

Curves
menu.

NURBS stands for Non-Uniform Relational B-Spline. The control points

in NURBS curves don’t have handles like Bézier curves do. In fact, by

default, NURBS control points don’t normally even touch the curve shape

itself. Instead, the control points are weighted to influence the shape of the

curve. Control points with higher weights attract the curve closer to them.

Figure 6-3 shows the same curve shape made with Bézier curves and with

NURBS curves.

Figure 6-3:
An arbitrary

shape
created

with Bézier
curves (left)
and NURBS

curves
(right).

113 Chapter 6: Using Blender’s Non-Mesh Primitives

 One thing to keep in mind is that although curves can work in three dimen-

sions and can even create three-dimensional shapes like the park bench in

Figure 6-1, they cannot be extruded to create a surface. If you want to create a

surface, you need to actually navigate to the Surfaces menu (Spacebar➪
Add➪Surfaces) as shown in Figure 6-4. Notice that NURBS Curve and NURBS

Circle are also options on this menu. Be aware, however, that these types of

NURBS are treated differently than the NURBS curves available in the Curves

menu. In fact, Blender doesn’t even allow you to perform a Join (Ctrl+J)

between NURBS curves and NURBS surface curves. It’s a bit inconvenient, I

know, but the situations where you’d actually want to do something like that

are rare enough that you don’t need to worry about it that much.

Figure 6-4:
The Add➪

Surfaces
menu.

Working with curves
Surprisingly few specialized controls are specific to curves. Grab (G), Rotate

(R), and Scale (S) work as expected and, like with meshes, you can Extrude a

selected control point in Edit mode by either pressing E or Ctrl+left-clicking

where you would like to extrude to. Joining separate curves in Edit mode can

be done by selecting the end control points on each curve and pressing F,

like making a face with meshes.

One place this doesn’t work, however, is if the two control points you select

are on the same curve. For something like that, you’re probably wanting to

close the curve, or, in Blenderese, you want to make the curve cyclic. To do

this, press C while in Edit mode. Figure 6-5 shows a cyclic (closed) and non-

cyclic (open) Bézier curve.

 If you make a 2D curve cyclic, it creates a flat plane in the shape of your curve.

And putting one cyclic curve within the borders of another actually creates a

hole in that plane. However, this does not work with 3D curves because they

aren’t planar. In those situations, you want to use a surface.

114 Part II: Creating Detailed 3D Scenes

Figure 6-5:
The same

Bézier
curve,
cyclic

(left) and
non-cyclic

(right).

Curves are initially set to work only in two dimensions by default. It can be any

arbitrary two-dimensional plane you want, but the control points are constrained

to the curve object’s local XY plane. To allow the curve to work in three dimen-

sions, go to the Curve and Surface panel in the Editing buttons (F9), as shown in

Figure 6-6, and left-click the 3D button. When you enable 3D on the curve, you

might notice that in Edit mode, the curve now has little arrows spaced along it.

These arrows indicate the direction of the curve. All curves have direction, even

cyclic ones. Normally this isn’t all that important except for when you are using

the curve as a path. In that situation, the direction of the curve is the direction

that the animated object is traveling along the curve. Switching the direction of

the curve can be done by going to Curve➪Segment➪Switch Directions or press-

ing W➪Switch Directions. To hide these arrows, reduce the NSize value in the

Curve Tools1 panel, also shown in Figure 6-6.

Figure 6-6:
The panels
for editing
curves in

the Editing
buttons.

The 3D button

The buttons in the Curve and Surface panel are relevant to all curves, regard-

less of type. Some of the most important ones are in the right-hand column

of buttons. First up are the DefResolU and RenResolU values. These values

define the resolution of the curve. Remember that Blender only shows you

an approximation of the real curve. Increasing the resolution here makes

the curve look more like the curve defined by the math, at the cost of more

processor time. That’s why there are two resolution values. DefResolU is

115 Chapter 6: Using Blender’s Non-Mesh Primitives

the default resolution and it’s what you see in the 3D View. RenResolU is the

resolution that Blender uses when you render. By default, this is set to zero,

which means Blender uses whatever value that is in DefResolU.

With the exceptions of the 3D button – which I’ve already covered – and

Width, the rest of the buttons in this column pertain to extruding and bevel-

ing your curve objects. Width is pretty interesting because it allows you to

offset the curve from the control points. This is most apparent (and help-

ful) on cyclic curves. Values less than one are inset from the control points,

whereas values greater than one are outset. (This is a quick way to put an

outline on a logo or text because Blender does not have a stroke function for

curves as do Inkscape or Adobe Illustrator.)

The Extrude value is probably the quickest way to give some depth to a

curve, especially a 2D curve. However, you don’t want to confuse this with

the extrude capability you get by pressing E. This value affects the entire

curve in Object mode, rather than just the selected control points in Edit

mode. On a cyclic 2D curve, the flat planar shape that gets created extends

out in the local Z direction of the curve object, with the caps drawn on it.

And you can even control whether Blender draws the front or back cap by

enabling or disabling the Front and Back buttons on the Curve and Surface

panel. If you extrude a non-cyclic curve, you end up with something that

looks more like a ribbon going along the shape of the curve. This is also

what happens when you increase the extrude value on a 3D curve. Figure 6-7

shows some of the different effects you can get with an extruded curve.

Figure 6-7:
Some of the

different
things you

can do with
an extruded

curve.
 –

Of course, one of the drawbacks to extruding a curve is that you get a really

sharp edge at the corners of the extrusion. Depending on what you’re creat-

ing, harsh edges tend to look “too perfect” and unnatural. Fortunately, we

116 Part II: Creating Detailed 3D Scenes

have Bevel to take care of that for us. To give an extruded curve more natural

corners, simply increase the Bevel Depth value. You may notice that when

you do this, the bevel is really kind of simple: just a cut across the corner.

Say you want that to be even smoother. You can make that happen by

increasing the BevResol value. Like the DefResolU and RenResolU values, this

value increases the resolution of part of the curve. In this case, it’s the reso-

lution of the bevel. Increasing the BevResol value makes a smoother, more

curved bevel. This works on both cyclic and non-cyclic curves.

But say you want something more ornate, kind of like the molding or trim

you’d find around the doorway on a house. For that, you want to use a

BevOb, or Bevel Object. This basically means that you’re going to use the

shape of one curve to define the bevel on another. To get a better idea of

what I’m talking about, use the following steps:

 1. Create a Bézier circle (Spacebar➪Add➪Curves➪Bézier Circle).

 Scale up nice and large with S so you can see what’s going on.

 2. Extrude the circle by increasing the Extrude value in the Curve and

Surface panel of the Editing buttons (F9).

 The circle doesn’t have to be excessively thick, just enough to give it

some form of depth.

 3. Create a Bézier curve (spacebar➪Add➪Curves➪Bézier Curve).

 Tab into Edit mode and edit this curve a bit to get the bevel shape that

you want. Keep the curve non-cyclic for now. When you’re done editing,

tab back out to Object mode.

 4. Select your Bézier circle and, in the BevOb field of the Curve and

Surface panel in the Editing buttons, type in the name of your Bézier

curve.

 If you didn’t rename it, it’s probably called something like Curve or

Curve.001. After you confirm this by pressing Enter, the corners of your

Bézier circle are beveled with the shape defined by your Bézier curve.

Now for fun, follow the next step.

 5. Go back and make the BevOb curve cyclic.

 Doing so actually removes the front and back planes from the extrusion.

You’re left with a curve shape that follows the main Bézier circle’s path.

For extra kicks, select the Bézier circle and Tab into Edit mode. Select

any control point and press Alt+S to shrink or fatten the beveled shape

around that control point. Slick, huh?

 When you use a BevOb, you’re essentially handing control of the curve’s

shape over to the BevOb object. That being the case, after you do it changing

the values for Extrude, Bevel Depth, and BevResol has no effect on the curve

for as long as you have the BevOb there.

117 Chapter 6: Using Blender’s Non-Mesh Primitives

Figure 6-8 shows the results of these steps.

Figure 6-8:
Having fun
by adding

a BevOb
to a Bézier

circle.

 If you’re using a curve to model anything roughly cylindrical in shape such as

a pipe or a tube, there’s actually no need to use a BevOb curve. It’s a bit of a

hidden function, but you can get the same effect by beveling the curve. I know

that sounds odd (how do you bevel something that doesn’t have any cor-

ners?), but trust me, it works. You do it by disabling both the Front and Back

buttons in the Curve and Surface panel and then increasing the Bevel Depth.

Increasing the BevResol value makes the cross-section more circular. Hooray!

One less BevOb object to hide!

In the preceding example, I showed you that Alt+S can be used on individual

control points to shrink or fatten the thickness of the extrusion. However,

perhaps you would like to have more control than that along the length of the

curve. This is where you would use the TaperOb field. Like the BevOb field,

the TaperOb field uses one curve to define the shape of another. In this case,

you’re controlling the thickness along the length of the curve, and it works

in very much the same way: Create a separate curve that dictates the taper

shape and then type the name of that curve in the TaperOb field of the curve

you’d like to control. Figure 6-9 shows how a TaperOb can give you complete

control of a curve’s shape along its length.

 I prefer to create my BevOb and TaperOb curves in the Top view (Numpad 7)

along the X-axis. This way, I have a good frame of reference of where the

center line of the curve is. That’s important because BevObs use the center

line to define the front and back of a curve’s extrusion. And you can think of

TaperObs as a kind of profile that revolves around its local X-axis. Bringing

your control points to the center line makes the tapered curve come to a

point, whereas moving them away from the center line increases the

thickness there.

118 Part II: Creating Detailed 3D Scenes

Figure 6-9:
Using a

TaperOb
to control
a curve’s

lengthwise
shape.

One other thing that you can control on curves is the tilt of the control

points. In other programs, this might be called the twist property. To get a

good idea of what you can do with tilt, try the following steps:

 1. Create a Bézier Curve (Spacebar➪Add➪Curves➪Bézier Curve) and tab

into Edit mode.

 2. Make the curve cyclic (C).

 You may also want to select (right-click) the handles and rotate (R)

them so there’s a cleaner arc.

 3. Enable 3D on the curve (F9➪Curve and Surface➪3D).

 4. Select one of the handles and press T.

 When you do this, move your mouse cursor around the point in a clock-

wise fashion. While you do that, watch how the Tilt value in the 3D

view’s header changes.

 5. Confirm completion (left-click or Enter).

 If you increase the Extrude and Bevel Depth values, you should now

have something that looks a bit like Figure 6-10.

Editing Bézier curves
The most defining aspect of Bézier curves are the handles on their control

points. Handles on Bézier curves are always tangential to the curve and come

in one of four varieties in Blender:

119 Chapter 6: Using Blender’s Non-Mesh Primitives

 ✓ Aligned (H – toggles with Free): Aligned handles are always in a straight

line and they display in a pinkish color. If you grab (G) and move one

handle on a control point, the other moves in the opposite direction

to balance it out. You can, however have aligned handles of differing

lengths.

 ✓ Free (H – toggles with Aligned): Free handles are sometimes referred to

as “broken” handles. They display in black and don’t necessarily have

to be in a straight line. They are best suited for giving you sharp points

that smoothly flow to the next control point.

 ✓ Auto (Shift+H): These handles are set by Blender to give you the

smoothest possible result in the shape of your curve. They show up in

yellow and generally form a straight line with equal lengths on either

side. If you try to edit an Auto handle, it immediately reverts to an

aligned handle.

 ✓ Vector (V): Vector handles are broken like free handles, but they point

directly to the next control point. This makes the shape of the curve

an exactly straight line from one control point to the next. Editing the

handles on a vector control point turns it into a free handle.

Figure 6-10:
Fun with the
tilt function!

Mmmm...
twisty.

120 Part II: Creating Detailed 3D Scenes

Figure 6-11 shows four curves with the same exact control points, but with

different types of handles. And, yes, you can mix handle types in a single

curve. It’s actually quite handy when you need a figure to be smooth in some

parts and pointy in others.

Editing NURBS curves and surfaces
NURBS are a different kind of beast in terms of controls. They have control

points, but NURBS curves are conspicuously without handles. Now, remem-

ber that Blender treats a NURBS curve differently than a NURBS surface

curve. With that in mind, though, whether you’re dealing with a curve or a

surface curve, the following things generally apply to all NURBS:

 ✓ Each control point has a weight. The weight, which is a value between

0 and 1, influences how much that control point influences the curve. In

Blender, you set the weight with the buttons at the bottom of the Curve

Tools panel (see Figure 6-6 for reference). You can explicitly type the

weight in the Weight field, or left-click one of the buttons near it to give

it a preset value. After you decide the weight you want, left-click the Set

Weight button. The value in the Weight field is applied to all selected

control points.

Figure 6-11:
The same

curve with
aligned,

free, auto,
vector,

and a mix
of curve
handles.

121 Chapter 6: Using Blender’s Non-Mesh Primitives

 ✓ NURBS have knots. In math terms, knots are vectors that describe how

the resulting curve is influenced by the control points. In Blender, you

have three settings that you can assign to knots from the Curve Tools

panel: Uniform, Endpoint, and Bézier. By default, NURBS are assigned

uniform knots. You can tell this because the curve does not go all the

way to the end control points. Those control points’ weights are fac-

tored in with all of the others. Endpoint knots, in contrast, bring the

curve all the way to the last control points, regardless of weight. Bézier

knots treat the control points like they are free handles on a Bézier

curve. Every three control points act like the center and two handles on

a Bézier curve’s control points.

 ✓ NURBS have an order. An order is another math thing. What it really

means, though, is that the lower the order, the more the curve directly

follows the lines between control points. And the higher the order, the

smoother and more fluid the curve is as it passes the control points. The

values for order can also be changed in the Curve Tools panel.

Figure 6-12 shows the influences that curve weights, knot types, and order

can have on a NURBS curve.

Figure 6-12:
Decreasing

curve
weights on

a control
point, dif-
ferences

between the
three knot
types, and
increasing

the order of
a curve.

 After you set the weight of a control point or a knot type, you can always

set it to another value. However, there’s currently no easy way to find out

what weight each control point has or what type of knot the curve is using

(although the latter is pretty easy to guess visually). So keep in mind that on a

complex NURBS object, you might lose track of your weights.

122 Part II: Creating Detailed 3D Scenes

You might notice in the Curve Tools panel that the knot, order, and resolu-

tion controls can each be independently set for a U or a V value. If you’re

dealing with just a curve, the U direction is all you need to worry about.

However, a NURBS surface works in two directions: U and V. If you add a

NURBS Surface (Spacebar➪Add➪Surfaces➪NURBS Surface), you can visually

tell the difference between the U segments, which are pinkish, and the V seg-

ments, which are yellow.

One of the really cool things that you can do easily with NURBS surfaces

that’s difficult to do with other types of surfaces is a process called lofting.

(Other programs might call it skinning, but because that term actually means

something else for rigging, I use lofting here.) Basically, lofting is the process

of using a series of NURBS surface curves with the same number of control
points as a series of profiles to define a shape. The cool thing about doing it

in Blender is that after you have the profiles in place, it’s as simple as select-

ing all control points (A) and pressing (F). The classic use for this is modeling

the hull of a boat, as you see in the following steps and Figure 6-13:

 1. Add a NURBS surface curve (Spacebar➪Add➪Surfaces➪NURBS Curve)

and tab into Edit mode.

 2. Select All and Rotate -90 degrees around the X-axis (A➪R➪X➪-90).

 This forms the bottom of your boat.

 3. Model a cross-section of the boat’s hull. Add more control points using

Extrude (E or Ctrl+left-click) and move them around with Grab (G).

When doing this, it would be a good idea to press C and make the

curve cyclic.

 Try to keep the cross section as planar as possible. I like to work on this

from the front view (Numpad 1).

 4. Select all control points in your cross section and duplicate it along

the Y-axis (A➪Shift+D➪Y).

 5. Make adjustments to the new cross section to suit your tastes, but do

not add any control points.

 Lofting requires that each cross-section has the exact same number of

control points. If you add or remove control points from a cross-section,

it doesn’t work.

 6. Repeat steps 4 and 5 until you’re satisfied.

 7. Select All and press F.

 Congratulations! You’ve made a canoe!

123 Chapter 6: Using Blender’s Non-Mesh Primitives

Figure 6-13:
Using lofting

to create a
the hull of a

boat.

Understanding the strengths and limita-
tions of Blender’s surfaces
When compared to other tools that work with NURBS surface, Blender admit-

tedly falls short in some functions. You can extrude surface endpoints, do

lofting, and even spin surface curves (sometimes called lathing in other pro-

grams) to create bowl or cup shapes. However, that’s about it. Blender cur-

rently doesn’t have the functionality to do a ton of other cool things that can

be done with NURBS surfaces, such as using one curve to trim the length of

another or project the shape of one curve onto the surface of another. These

are things that you cannot currently do with Blender’s NURBS surfaces.

However, there’s actually hope. It’s been slow coming, but there’s recently

been more progress on the integration of better NURBS tools within Blender.

If you’re curious about this, do a Web search for “Blender and Nurbana”

to see how progress is coming. If all goes well, the next version of Blender

should show marked improvement. Ultimately, NURBS may even be able to

use a large quantity of the modifiers that we enjoy using on meshes.

A quick note on paths
You might be begrudging the fact that I glazed
over the fact that you can add a Path curve
(Spacebar➪Add➪Curves➪Path). The reason
for this is that just about any curve can be
turned into a path. By default, when you add a
path, it’s really a shortcut for adding a NURBS
curve with two buttons enabled in the Curve and
Surface panel: 3D and CurvePath. The important

one here is CurvePath. By enabling this button,
Blender understands that this curve is a path
and can be used to control the movement of an
animated object. To make any NURBS or Bézier
curve into a path, all you have to do is left-click
this button. I get more into the use of paths as
animation controls in Chapter 10.

124 Part II: Creating Detailed 3D Scenes

Using Meta Objects
Meta objects are cool little 3D surfaces that have been part of computer

graphics for a long time. Sometimes they are referred to as blobbies. The

principle behind them is pretty simple: Imagine that you have two droplets

of water and you begin moving these two droplets closer and closer to each

other. Eventually, the two droplets are going to merge and become a single,

larger droplet. That’s basically how meta objects work, except you have com-

plete control over when the droplets merge, how much they merge, and you

can re-separate them again if you’d like. You can also do something that’s

more difficult in the real world: You can subtract one droplet from the other,

rather than add them together into a merged object. They’re a ton of fun to

play with and there are some pretty neat applications for them. Figure 6-14

shows two metaballs being merged.

Figure 6-14:
Merging

two meta-
balls.

125 Chapter 6: Using Blender’s Non-Mesh Primitives

Meta-wha?
Meta objects are a bit like curves and NURBS in that their entire existence is

defined by math. However, unlike NURBS or even meshes, you cannot control

the surface of a meta object directly with control points or vertices. Instead,

the shape of their surface is defined by a combination of the object’s underly-

ing structure – a point, a line, a plane, a sphere, or a cube – and its proximity

to other meta objects. There are five meta object primitives:

 ✓ Metaball: The surface in this primitive is based on the points that are all

the same distance from a single center point. This means that you can

move and scale a metaball uniformly, but you cannot scale it in just one

direction.

 ✓ Metatube: Whereas the basis for a metaball is a single point, the basis

for a metatube is the line between two points. This means that you can

scale the surface uniformly, like a metaball, but you can also scale it in

its local X-axis, referred to as dx.

 ✓ Metaplane: The metaplane’s underlying structure is, as you may have

guessed, a plane. This means you have both the local X (dx) and the

local Y (dy) axis for scaling, as well as scaling uniformly.

 ✓ Metaellipsoid: At first glance, you might mistake this meta object for a

metaball. However, instead of being based on a single point, this object

is based on a sphere. So if you keep the local X, Y, and Z dimensions

equal, it behaves just like a metaball. However, you also have the

flexibility to allow you to scale in any of the three individual axes.

 ✓ Metacube: The metacube is like the metaellipse in that it’s also based on

a three-dimensional structure. In the metacube’s case, it’s a cube rather

than a sphere.

One of the coolest things about meta objects is that you can change from one

primitive to another on the fly using the MetaBall Tools panel in the Editing

buttons (F9). Figure 6-15 shows each of the primitives along with the default

settings for them in the MetaBall Tools panel.

The MetaBall Tools panel appears when you tab into Edit mode on a meta

object. The panel always displays the Stiffness value for the selected object.

This value controls the influence that the selected meta object has on other

meta objects. It’s indicated visually in the 3D View with a green ring around

the meta object’s center point. You can adjust the Stiffness value here in the

panel or, if you select the green ring (right-click), you can Scale (S) to adjust

the Stiffness visually. By right-clicking the pinkish ring outside of that green

ring, you can select the actual individual meta object.

126 Part II: Creating Detailed 3D Scenes

Figure 6-15:
The five

meta object
primitives.

MetaplaneMetatubeMetaball

Metaellipsoid Metacube

And depending on the type of meta object primitive you’re using, other

values of dx, dy, and dz may appear in the MetaBall Tools panel. You can

adjust these values here or in 3D View by using the S➪X, S➪Y, and S➪Z

hotkey sequences. At the bottom of the panel are buttons to either hide the

selected meta object or give it a negative influence, subtracting it from the

positive, and therefore visible, meta objects.

When you Tab back out to Object mode, you can move your combined

meta object (a meta-meta object?) as a single unit. Note, however, that even

though you’ve grouped these meta objects into a single Blender object, they

don’t live in a vacuum. If you have two complex Blender objects made up of

metas, bringing the two of them together actually causes them to merge. Just

something you may want to keep in mind and take advantage of in the future.

As a single Blender object, though, there are a few more things that you can

control using the MetaBall panel, shown in Figure 6-16. This panel is always

available to meta objects, whether in Object mode or Edit mode, and it nor-

mally sits to the right of the Link and Materials panel.

Figure 6-16:
The

MetaBall
panel.

127 Chapter 6: Using Blender’s Non-Mesh Primitives

The first two values in the MetaBall panel are Wiresize and Rendersize.

Wiresize controls how dense the generated mesh is for the meta object in the

3D view. Lower values are a finer mesh, whereas higher values result in much

more of an approximation. The Rendersize value does the same thing, except

it only has an effect at render time. The reason for this is that meta objects

can get really complex quickly and, because they’re generated entirely by

math, these complex combinations of meta objects tend to use a lot of com-

puter processing power. Working at a larger wiresize in the 3D view helps

keep your computer responsive while you work, whereas a finer Rendersize

value keeps things pretty on output.

 The Threshold value is an overall control for how much influence the metas

in a single Blender object have over each other. This value has a range from

zero to five, but in order for a meta object to be visible, it’s individual Stiffness

value must be greater than the Threshold value.

Below Threshold are four buttons that control how the meta objects get

updated and displayed in the 3D View:

 ✓ Always: The slowest and most accurate setting. This is the default.

Every change you make in the 3D View happens instantly (or as fast as

your computer can handle it).

 ✓ Half Res: Enabling this button reduces the resolution of the meta object

as you move or edit it to increase the responsiveness of the 3D View. As

soon as you finish transforming the meta object, it displays in full resolu-

tion again.

 ✓ Fast: As the name implies, this is nearly the fastest setting. When you

enable this button, Blender hides the meta objects when you perform

a transform and then re-evaluates the surface when you finish. It works

very nicely, but the downside is that you don’t get the nice visual feed-

back that Always and Half Res give you.

 ✓ Never: This is certainly the fastest update method. Basically, if you try

to edit a meta object, it hides everything and never updates in the 3D

View. Although this may not seem useful at first, if you decide to bind

your meta object to a particle system as a way of faking fluids, turning

this setting on definitely increases performance in the 3D View.

What meta objects are useful for
Alright, so what in the world can you actually use meta objects to make? There

are actually two answers to this question: all sorts of things, and not much.

The reason for this seemingly paradoxical answer is that meta objects can be

used to do quick, rough prototype models and they can also be used with a

particle system to generate simple fluid simulations. However, with the advent

of advanced modeling tools like multi-res sculpting and subdivision surfaces,

128 Part II: Creating Detailed 3D Scenes

meta objects don’t get used as often for prototyping. And with more advanced

fluid simulation and rendering technology, meta objects are also used less for

those applications as well.

That said, even though meta objects are used less for these purposes, that

doesn’t mean that they’re never used. In fact, not too long ago, I used a set

of metaballs with a glowing halo material to animate the life force being

forcefully pulled out of a guy. I mean, I could probably have used a particle

system or fluid simulator to do it, but using metaballs was actually faster to

set up and I had more direct control over where everything was placed on

the screen. So don’t count meta objects out just yet. There’s still some life in

these little suckers. Besides, they’re still fun to play with!

Adding Text
Over the years, working with text in Blender has come a long, long way.

As you might expect, the way you work with text in Blender has quite a

few differences from what you might expect of word processing software

like OpenOffice.org or Microsoft Word. What you might not expect is that

Blender’s text objects share a few features in common with desktop publish-

ing programs like Adobe InDesign or QuarkXPress. In fact, one Blender devel-

oper even went so far as to create his own version of Blender specifically

geared toward desktop publishing. If you’re interested in finding out more

about it, do a Web search for DTPBlender.

Blender’s text objects are really a specialized type of curve object. This

means that nearly all of the options I already described for the Curve and

Surface panel in the Editing buttons also apply to text. For example, you can

quickly bring text objects into the third dimension using the Extrude, Bevel,

and even the BevOb and TaperOb fields. Figure 6-17 shows an example of the

interesting things you can do with a single text object in Blender.

Adding and editing text
You add a text object in Blender the same way you would add any other

object: with the toolbox. Press Spacebar➪Add➪Text and a text object is

placed at the location of your 3D cursor with the default content of the word

Text. To edit the text, you tab into Edit mode. After you’re in Edit mode, the

controls begin to feel a bit more like a word processor, although not exactly.

For instance, you can’t use your mouse cursor to highlight text, but if you

press Shift+left arrow and shift+right arrow, depending on where the text

cursor is located, you can highlight text this way.

129 Chapter 6: Using Blender’s Non-Mesh Primitives

Figure 6-17:
Taking

advantage
of the

curve-based
nature of

Blender text
objects.

Shift+Ctrl+left/right arrow highlights whole words at a time. Backspace

deletes text and pressing Enter gives you a new line.

In addition to that, there are formatting controls in the Font panel of the

Editing buttons, as shown in Figure 6-18. Two of the coolest buttons here are

the Insert Text and Lorem buttons. If you already have a bunch of text created

and don’t feel like re-typing all of it in Blender, left-click Insert Text and use the

File Browser to find the text file you want to load. After you do, the content of

whatever is in that text file is added from the location of the text cursor. The

Lorem button generates filler text in the form of Latin gibberish, also known as

lorem ipsum text. Publishing layout designers use lorem ipsum a lot for defin-

ing layout when the actual content is not yet known. I’ve used this for adding

placeholder credits when I didn’t know everyone’s names and titles.

Figure 6-18:
The Font

panel.

 When you’re in Edit mode, notice that pressing Tab doesn’t indent your text

like you might expect because it’s already assigned to getting you back out

to Object mode. If you really, really need to use a Tab character, you have to

import that from another file or use the third-to-last character in the first row

of the Char panel (more on this in the next section, “Changing fonts”).

130 Part II: Creating Detailed 3D Scenes

Below the Insert Text and Lorem buttons is a block of alignment buttons to

help you align your text relative to the center point of the text object. You

have the following options:

 ✓ Left: Aligns text to the left. The text object’s center serves as the

left-hand guide for the text.

 ✓ Center: All text is centered around the text object’s center point.

 ✓ Right: Aligns text to the right. The text object’s center serves as the

right-hand guide for the text.

 ✓ Justify: Aligns text both on the left and on the right. If the line is not long

enough, Blender adds spacing, or kerning, between individual characters

to fill the space. This option requires the use of text frames. (See the

next section, “Working with text frames,” for more details.

 ✓ Flush: This works similar to the way Justify does, but with two exceptions.

First, if the line is the end of a paragraph, it doesn’t force the text to

align both sides. And second, Flush uses word spacing rather than

kerning to get lines to align properly. Like Justify, this option requires

the use of text frames.

 ✓ ToUpper: This really isn’t an alignment button, but it’s in the grouping, so

it’s worth covering here. Left-clicking this button toggles the characters in

your text object between all uppercase letters and all lowercase letters.

Working with text frames
An important thing to notice is that both the Flush and the Justify options

require the use of something called text frames. The Left, Center, and Right

align options all work relative to the location of the text object’s center. If

you want to align your text on both the left and the right side, you need more

than one reference point. Text frames are a way of doing this for you, but

with a couple of additional benefits as well. Basically, they’re a rectangular

shape that defines where the text in your text object lives. Text frames are

similar to the frames you might use in desktop publishing programs. They’re

also one of those things that you normally don’t see in 3D software.

To work with text frames, you use the block of buttons on the upper right

corner of the Font panel. The first button should read “1 TextFrame: 1”. This

means that you have one text frame in your text object and that’s the one

you’re currently working on. If you left-click the Insert button, the field changes

to say “2 TextFrame: 2,” meaning you’re on the second of two text frames. To

go back to the first text frame, left-click the arrow on the left of the TextFrame

field or left-click the center of it and type 1 for the value. You can delete the

current text frame by left-clicking the Delete button. Of course, having a text

frame doesn’t mean much if you don’t define its size and location. That’s what

the buttons at the bottom of the block are for. The X and Y fields determine

where the top left corner of the text frame is located, whereas the Width and

Height fields define its size in Blender units. As you adjust these values while in

Edit mode, you should see a dashed rectangle in the 3D View.

131 Chapter 6: Using Blender’s Non-Mesh Primitives

Now, the cool thing about text frames is that if you have more than one

defined, the text can overflow from one text frame into the other. This is an

excellent way to get very fine control over the placement of your text. You can

even do newspaper-style multi-column text this way, as shown in Figure 6-19.

Figure 6-19:
Using text
frames to
get multi-

column text
layouts.

If you’re working with a lot of text, you might find that Blender might not per-

form as speedily as you would like while editing. If you left-click the Fast Edit

button in the Font panel, Blender uses just the outline to the text in the 3D

View while in Edit mode. This gives Blender a bit of a performance boost so

you’re not waiting for characters to show up seconds after you finish typing

them.

Controlling text appearance
The block of buttons at the bottom of the Font panel control how the text

appears in the selected text object. Descriptions of each follow:

 ✓ Size: Font size on a scale from zero to ten. Adjusting this value should

adjust the font size as dictated by the font. This is generally a better way

to change the size of your text rather than simply scaling the text object.

 ✓ Linedist: Line distance, also referred to as leading. This value defines the

distance between lines of text in your text object and it also has a range

from zero to ten.

 ✓ Word spacing: Globally defines the space between words in your text

object. This field has a range from zero to ten.

 ✓ Spacing: The global distance between all characters in your text object,

also known as tracking. Like the previous fields, it has a range from zero

to ten.

132 Part II: Creating Detailed 3D Scenes

 ✓ Shear: A quick and dirty way to fake italics on a font. Values between 0

and 1 tilt characters to the right, whereas values between -1 and 0 tilt

them all to the left.

 ✓ X offset: Offsets the text object to the left or right of its default position.

Values less than zero shift it left, whereas values greater than zero shift

it right.

 ✓ Y offset: Offsets the text object up or down from its default position.

Values less than zero shift it down, whereas values greater than zero

shift up.

 ✓ UL position: Determines the position of the underline, if enabled (Ctrl+U

on highlighted text). This value has a range from -0.2 to 0.8.

 ✓ UL height: Controls the thickness of the actual underline, if enabled

(Ctrl+U on highlighted text). You can set this value between 0.01 and 0.5.

 If you’re familiar with typography, you may notice two things right off the bat.

First, the terms used here are not the standard typography terminology, and

second, the values are not in your typical percentage, point, pica, or pixel

sizes. There are two primary reasons for this. First, Blender is a 3D program

intended for 3D artists, many of whom may not be familiar with typography

terms and sizes. The second reason dovetails with that, but it’s a bit more on

the practical side. Blender text objects are 3D objects that can be just about

any size in virtual 3D space. Sizes like points, pixels, and picas don’t really

mean anything in 3D because there’s not a frame of reference, like the physical

size of a printed piece of paper.

Changing fonts
Another thing that’s different about Blender’s text objects is the way it

handles fonts. If you’re used to other programs, you might expect there to be

a drop-down menu that lists all of the fonts installed on your computer with

a nice preview of each. Unfortunately, Blender does not currently have that

ability. Instead, what you need to do is left-click the Load button and track

down the actual font file for the typeface that you would like to use. Below

are the standard places you might find fonts on Windows, Mac, and Linux

machines:

 ✓ Windows: C:\Windows\Fonts

 ✓ Mac OS: /System/Library/Fonts or /Library/Fonts

 ✓ Linux: /usr/share/fonts

133 Chapter 6: Using Blender’s Non-Mesh Primitives

After you load a font into your .blend file, it’s available for you to use when-

ever you want it from the font drop-down list. You always have Blender’s

built-in font available as well. Also, notice the button next to the drop-down

with the icon that looks like a present. Left-clicking this button packs the

font into your .blend file. This way, if you take your .blend file to a different

computer that doesn’t have the font you need, it’s not a problem because it’s

packed in. If the font is already packed, left-clicking this button unpacks it to

your computer’s hard drive.

Now you would think that after you have a font loaded, you should be good

to go, right? Well, not quite. See, Blender’s buttons for bold and italics are

kind of unique. They actually load a separate font altogether. The typical

use for this would be to load the bold and italics versions of the main font

you loaded. However, that’s not a complete requirement. You can actually

use an entirely different font altogether here. Because technically you can’t

arbitrarily change fonts in the middle of a text object, this is a good way to

get around that. Just make your bold or italics font the other font you want to

use! Figure 6-20 shows this in action. The way you assign a font to either bold,

italics, or even both is pretty straightforward:

 1. Left-click either the B or i button on the Font panel (or both).

 By default, the <built-in> font is chosen for this.

 2. Left-click the Load button to choose the font you would rather use.

 3. After you confirm, you should be set to go.

 That’s it!

Figure 6-20:
Using the
bold and

italics fonts
to use
widely

different
fonts in a

single text
object.

You may find that while you’re typing, you need certain special characters

like the copyright symbol or the upside-down question mark for sentences

written in Spanish. For these situations, you have three options:

134 Part II: Creating Detailed 3D Scenes

 ✓ If the special character is common, you may find it in Text➪Special

Characters.

 ✓ You can memorize the hotkey combination for various commonly used

special characters as listed in Blender’s online documentation.

 ✓ If the character is rare or just not in the menu, you can find it using

the box in the Char panel of the Editing buttons (F9). The Char panel

has a grid that displays all of the characters in the font that Blender

recognizes.

Another unique feature that Blender’s text objects have is the ability to use

any other Blender object as a font character. So if you want to use Suzanne

the monkey every time the uppercase S character is used, you can actually

do that. If you want to model letters with meta objects and spell something

with them, like in Figure 6-21, you can! It’s all done with the Ob Family field in

the Font panel. Just use the following steps:

 1. Type the name of your font “family” in Ob Family.

 This can be any name you’d like. I like to end it with a dot so I can dif-

ferentiate my characters later. For example, you may use “MetaLetter.”

(ending in the period) in this case.

 2. Model a character you wish to use.

 In this example, I’m using meta objects, so I would use

Spacebar➪Add➪Meta➪Metaball as my starting point and work from

there.

 3. Name this object with the family name plus the character it will repre-

sent.

 In this case, if you modeled an uppercase W, you would call it

“MetaLetter.W.” A lowercase W would be “MetaLetter.w.” Now you see

why we used the dot at the end of the family name in step 1. It helps

keep things organized.

 4. Repeat steps 2 and 3 for each character you need.

 5. Select (right-click) your text object and turn on Dupliverts (F7➪Anim

settings➪Dupliverts).

 6. Adjust size and spacing to fit. And poof! You’ve got metaletters!

 Now to finish, move the original font text to another layer so it’s out of

the way of your metaletters.

135 Chapter 6: Using Blender’s Non-Mesh Primitives

Figure 6-21:
Wheeeee!

Metaletters!

Deforming text with a curve
One of the other really powerful things you can do with Blender’s text objects

is to have the text flow along the length of a curve. This way, you can get text

that arcs over a doorway or wraps around a bowl or just looks all kinds of

funky. The key to this feature is the TextOnCurve field in the Font panel. To

see how this works, use the steps in the following example:

 1. Create a text object (Spacebar➪Add➪Text).

 Feel free to populate it with whatever content you would like.

 2. Create a curve to dictate the text shape

(Spacebar➪Add➪Curve➪Bézier Curve).

 This example uses a Bézier curve, but a NURBS curve works fine as well.

Also, I like to make my curve with the same center point location as my

text object. Granted, that’s just my preference, but it works nicely for

keeping everything easily manageable.

 3. Select (right-click) the text object and type the name of the control

curve in the TextOnCurve field.

 Blam! The text should now follow the arc of the curve. If you select

(right-click) the curve and tab into Edit mode, any change you make to it

updates your text object live.

136 Part II: Creating Detailed 3D Scenes

Figure 6-22 shows 3D text along a curve.

Figure 6-22:
Text on a

curve.

One thing to note is that you should keep your curve as a 2D curve. Because

the text is technically a special type of 2D curve, trying to get it to deform

along a 3D curve won’t work. For that, you’re going to need to convert the

text into a mesh, as described in the next section.

Converting to curves and meshes
Of course, while Blender’s text objects are pretty powerful, curves and meshes just do
some things better. Fortunately, you don’t have to model your type unless you really,
really want to. Instead, you can convert your text object into a curve or a mesh by
pressing Alt+C and choosing Curve, Curve (Single Filling Group), or Mesh. If you’re
curious as to some specific cases why you’d want to do this, here are a few:

137 Chapter 6: Using Blender’s Non-Mesh Primitives

 ✓ Custom editing the characters for a logo or a specific shape (convert to

a curve).

 ✓ You need to share your .blend file, but the license of your font prevents

you from legally packing it into the .blend (convert to a curve).

 ✓ Getting extruded text to follow a 3D curve (convert to a mesh).

 ✓ Rigging the letters to be animated with an armature (convert to a mesh).

 ✓ Using the letters as obstacles in a fluid simulation (convert to a mesh).

 ✓ Using the letters to generate a particle system (convert to a mesh).

 Using Alt+C also works on curve objects, surfaces, and meta objects to

convert them to meshes. Just be aware that most of these conversions are

permanent. You can’t go back on them without using the undo function.

138 Part II: Creating Detailed 3D Scenes

Chapter 7

Changing that Boring Gray
Default Material

In This Chapter
▶ Understanding how Blender handles materials

▶ Taking advantage of Vertex painting

As you work on your models in Blender, you’re eventually going to get

tired of that plastic gray material that all Blender objects have by

default. Nothing against neutral colors – or plastic, for that matter – but

we live in a vibrantly colorful world and you may occasionally want to use

these colors in your 3D scenes. To do this, you use materials and textures.

Blender’s way of adding materials and textures to an object is in some ways

one of the most confusing parts of the program, and it can be a pretty big

challenge to wrap your brain around the full functionality of it.

This chapter is intended to give you the skills to know enough to be dan-

gerous with Blender’s materials. Hopefully, with a little practice, you can

become lethal. Well, lethal might be the wrong word: I don’t think I’ve ever

heard of anyone killed by excessively sharp specular highlights. (Don’t worry

if you don’t get the joke right now. After you finish this chapter, you’ll realize

how horrible a pun this is.)

Playing with Materials
The easiest way to change the look of an object is to adjust its material. The con-

trols for this are in the Shading buttons (F5). The Shading buttons actually have

five subcontexts, accessible by the buttons in its header, as shown by Figure 7-1.

For now, I’m most interested in the Material button, which is accessed with the

second subcontext button: the one with a red sphere as its icon.

140 Part II: Creating Detailed 3D Scenes

Figure 7-1:
The

subcontext
buttons for

the Shading
buttons:

Lamp,
Material,
Texture,

Radiosity,
and World.

By default, all newly added objects in Blender share a gray, plastic-like mate-

rial. The settings for this gray material on the default cube objects is shown

in Figure 7-2. There are five blocks of panels visible:

 ✓ Preview: The Preview panel displays an image of the material on a vari-

ety of preset objects: a plane, a sphere, a cube, Suzanne’s head, hair

strands, and a sphere on a sky background.

Understanding how light reflects
To understand materials, it helps if you have
an idea of how human sight works. This is
because most rendering engines, or the code
that converts your virtual 3D environment into a
2D picture, use this as the basic model for how
they work. It goes something like this: In order
to see, you need to have light. The light comes
from one or more sources and bounces off of
any object within its range. When the light hits
these objects, they influence the direction that
the light bounces and how much of the incom-
ing light is absorbed versus reflected. When you
look around, you are seeing light that is bounced
off of these objects and into your eyes.

Most rendering engines, Blender’s included,
use a simplified version of this scenario. The
biggest difference can be summed up in the
following sentence: Unless otherwise stipu-
lated, light only bounces once. If you’ve ever

been in a professional photographer’s studio,
you might notice that they often have their
flash aimed away from their subject and into an
umbrella-shaped reflector that bounces light
back to whatever they’re shooting. The light
from the flash has at least two bounces to get
to the camera’s lens; once off of the umbrella
and once off of the subject. Because this is
more than one bounce, you can’t set up some-
thing like this in Blender and expect it to work.
Instead, you need to directly light your scenes,
and your materials themselves control that one
bounce the light has off of them and into the 3D
camera.

Exceptions to this do, of course, exist, as do
ways to cheat around them. I get into some of
them later on in this chapter and in the next,
particularly when talking about raytracing.

141 Chapter 7: Changing that Boring Gray Default Material

 ✓ Links and Pipeline: This panel creates new material datablocks and

controls how they link to objects in the scene. This panel also dictates

how the material is noticed by Blender’s internal renderer.

 ✓ Material: Set in this panel are broad, high-level controls for the active

material, including color, transparency, and some basic rendering prop-

erties, that affect the material colors.

 ✓ Shaders: The Shaders panel has a little bit finer-grained control over the

material than the Material panel does, dictating the specific ways that

colors appear and react to light on the objects in the scene.

 ✓ Texture: Materials are not limited to solid, flat colors on objects. You

can get finer control by using textures. This panel ties up to 10 textures

to a given material.

Figure 7-2:
The

Material
buttons.

Of these panels, the Links and Pipeline panel gives you the most high level

control over the material, defining which material gets assigned to the

selected object and how the renderer recognizes the material. On the first

line of buttons are datablock control buttons that link your material to the

current selection. It functions the same as the datablock control buttons

in the Link and Materials panel of the Editing buttons (F9), as explained in

Chapter 4. From left to right, here is a description of what each button does:

 ✓ The up/down button on the left gives you the ability to add a new

material or load an existing one that you’ve already created.

 ✓ The Datablock Name field allows you to give your material a custom

name. To do this, left-click in the field and type the name you want to use.

 ✓ If your material is linked to more than one object, it has a numbered

button next to it, representing the number of objects using this material.

Left-clicking this button creates a copy of the material that is used only

by the current active object.

 ✓ The X button disconnects the material datablock from the active object.

 ✓ The button with the icon that looks like a little car automatically creates

a name for the material when you left-click it. The name is based on the

current color of the material. Using a car icon may seem odd here, but if

you don’t think of it as a car, but an automobile, it begins to make sense.

(Yes, it’s kind of a goofy pun, but that’s what it means.)

142 Part II: Creating Detailed 3D Scenes

 ✓ The F button creates a “fake user” for the material datablock so it won’t

be deleted even though it may have no links to any objects in your scene.

 To the right of the datablock control buttons is a Nodes button. This activates

the advanced node-based material editor. Because that’s a more advanced

topic, look to Blender’s online documentation for more information.

The next line of buttons is a pretty unique set of controls. Using them

requires recalling information about how .blend files are structured. This is

detailed in Chapter 4, but basically Blender objects are separate from the

low level mesh, curve, surface, and so on, data. The objects link to this data.

Now, here’s how this relates to materials. By default, Blender’s materials link

to the low level datablock. You can verify this by noticing that the ME button

in the Links and Pipeline panel is enabled. The left image in Figure 7-3 shows

a screenshot from the Oops Schematic that illustrates this relationship.

However, you also have the option of linking the material to the object as

well, as shown in the right-hand screenshot of Figure 7-3. In fact, the middle

image shows that the material can actually link to both the mesh as well as

the object.

Figure 7-3:
The Oops

Schematic
showing

a material
linked to a

mesh, both
a mesh and

its object,
and just an

object.

Why is having the ability to link a material to either the mesh or the object a

useful option? Well, say you have bunch of objects that are linked duplicates,

sharing the same mesh information. If the material is linked to the mesh, all

of your linked duplicates have the exact same material. If you want to have

different a material for each duplicate, this structure won’t work. However, if

you link the material to the object datablock rather than the mesh datablock,

things work the way you want. Figure 7-4 shows a set of linked duplicate

Suzanne heads, each with a different material thanks to the ability to change

where the material datablock links to.

143 Chapter 7: Changing that Boring Gray Default Material

Figure 7-4:
Linked

duplicates
of Suzanne,
except they
don’t share

the same
material

datablock.

Changing colors
 The quickest and easiest way to customize the material on your object is to

change its color. This is done at the bottom of the Material panel. There are

three different types of colors you can set:

 ✓ Diffuse: The first color block, labeled Col. This is the main color of the

object, or the primary hue that the material reflects to the camera.

 ✓ Specular: One of the cool things about working in computer graphics is

that you have a say over things that you don’t normally control in the

real world. The Specular color, or Spec, is one of those things. By adjust-

ing this color, you actually control the color of the highlights on the

material.

 ✓ Mirror: Another material type of color that computer graphics gives you

the ability to control is the Mirror color. If you turn on reflections for a

material, the reflections in the object are tinted with the color you set

here.

“Great, great, great . . . so how do I actually change the color?” I’m glad you

asked. The simplest way to do this is to left-click on the color block next to

the type of color you want to set. When you do this, Blender’s color picker

pops up. Figure 7-5 shows what the color picker looks like.

Figure 7-5:
Blender’s

color picker.

144 Part II: Creating Detailed 3D Scenes

The color picker is similar to what you might find in other graphics applica-

tions. Left-click anywhere in the large gradient square to choose the color

you wish to use. By default, this square is all in the red hue. To change which

hue you want to work in, left-click in the color spectrum below this large

gradient to the color you want. The color picker also gives you the chance

to use and set color presets with the set of swatches to the left of the gradi-

ent square. Left-clicking any one of these swatches automatically changes to

that color. If you have a custom color that you would like to store, you can

Ctrl+left-click a swatch to set it there. That color is saved in the swatch until

you shut down Blender.

Another cool feature that the color picker gives you is a sampler. Left-click

the Sample button in the upper right corner of the color picker and your

mouse pointer changes to a color dropper. The next place you left-click is

sampled for color, making it your selected color. The cool thing is that you

can sample any color in Blender’s interface, including the buttons and icons,

if you want to.

 When it comes to setting colors for materials, more often than not, I keep my

spec and Mirror colors set to white. For the Mirror color, this can be particu-

larly helpful if you want to have non-tinted reflections. The only exception to

this is that, on occasion, it makes more sense to set the specular color to a

value that is slightly lighter than the diffuse color. No hard-and-fast rule tells

you when to go one way and when to go another in terms of the specular

color. It’s really a matter of experience and changing to what looks right in

your final render.

Adjusting shader values
Ah, computer graphics: You have nearly complete control over how your

materials look. Part of this control is how the diffuse and specular colors

are dispersed across the surface of the object. You control both of these

attributes independently with shader types. A shader type is a computer

algorithm that defines how the color reacts in the material, and it’s usually

named after the computer scientist or mathematician who came up with it.

So although the names may seem weird or arbitrary, the good news is that

they’re pretty universal from one piece of 3D software to another.

As you might guess, your shaders are set and controlled in the Shaders panel

of the Material buttons (F5). To change your diffuse shader type, left-click

the drop-down button at the upper left of the panel. By default, it’s set to the

Lambert shader, but you have the following options:

 ✓ Lambert: This is a good general purpose shader. The only adjustable

setting for this shader is Ref, or reflection. This controls how much light

the material reflects. The default setting of 0.8 means that the material

reflects 80% of the light and absorbs 20%.

145 Chapter 7: Changing that Boring Gray Default Material

 ✓ Oren-Nayar: The Oren-Nayar shader is similar to the Lambert shader,

although it has an additional roughness setting that takes into account

the imperfections that the surface of an object may have. This gives you

a material that reacts to light in a slightly more realistic way.

 ✓ Toon: In sharp contrast to the previous two shaders, the Toon shader

does not aim to be realistic. Instead, it tries to reproduce the hard-edged

cel shading that’s often seen in traditional hand-drawn animation. By

adjusting the Size and Smooth settings in addition to the Ref, you can

control the number of discrete colors that the shader uses.

 ✓ Minnaert: This shader is pretty slick. By default, it’s set up to behave

just like the standard Lambert shader. However, if you adjust its Dark

value to a number less than one, the edges of the object with this mate-

rial get lighter. Setting Dark to values greater than one darkens the parts

of the object that point to the viewer. This is a great way fake a backlight

on an object or give it a somewhat velvety look. I also like to use this

shader for shiny metals.

 ✓ Fresnel: Pronounced “FRAY-nel”, this shader is also a nice one to use for

metals and glassy materials. It’s like the Minnaert shader, except instead

of working relative to the viewer, it works relative to the light source.

Higher Fresnel values darken parts that point toward the light source

and this multiplies by the Fac, or factor value.

Figure 7-6 shows Suzanne shaded with each of the different diffuse shaders.

For simplicity, the specular value has been reduced to zero in this figure.

Figure 7-6:
Suzanne

with
Lambert,

Oren-Nayar,
Toon,

Minnaert,
and Fresnel

shaders.

With the control of the diffuse shader, you also have control over the way the

specular highlight appears on your materials. You change this by left-clicking

the drop-down menu below the Diffuse Shader button. All specular shad-

ers share a Spec value that controls the intensity of the specular highlights.

Higher values make the highlights brighter; lower values make them dimmer

and can reduce the specularity altogether. As with the diffuse shaders, you

have a choice of algorithms that control how the specular highlight appears.

These choices are listed below:

146 Part II: Creating Detailed 3D Scenes

 ✓ CookTorr (Cook-Torrance): The Cook-Torrance shader is Blender’s

default specular shader. In addition to the spec value, it also has a set-

ting to control hardness. Higher hardness values make the highlight

smaller and more compact, whereas lower values spread the highlight

over more of the object’s surface. This shader is good for shiny plastic

materials.

 ✓ Phong: This shader is nearly identical to the Cook-Torrance shader,

although not quite as optimized. The edge of the specular highlight with

this shader is a bit softer, making it a bit nicer for less shiny plastics and

organic materials.

 ✓ Blinn: The Blinn shader is a more refined shader that is generally more

accurate than the Cook-Torrance or Phong shaders. In addition to the

Spec and Hard values, this shader also has a Refr, or refraction setting.

Now, this refraction isn’t quite like you might expect. What you really

need to remember is that the Refr value controls the softness of the

highlight. It’s sort of a finer intensity control that Spec can give you.

This shader works well with the Oren-Nayar diffuse shader for getting

physically accurate materials that behave more like materials in the real

world.

 ✓ Toon: Like the Toon diffuse shader, the Toon specular shader breaks

the specular highlight into discrete bands of lightness to recreate the

look of traditional cartoon coloring.

 ✓ WardIso: I like to use the WardIso, short for “Ward Isotropic” shader

along with the Minnaert and Fresnel diffuse shaders for metallic or shiny

plastic materials. The rms, or root-mean-square, value is a mathematic

variable in the shader algorithm which controls the sharpness of the

highlight’s edge. Lower values are sharper and higher values are more

dispersed.

Figure 7-7 shows Suzanne with the default Lambert diffuse shader and each of

the different specular shaders.

Figure 7-7:
Suzanne

with Cook-
Torrance,

Phong,
Blinn,

Toon, and
WardIso
specular
shaders.

147 Chapter 7: Changing that Boring Gray Default Material

Reflection and transparency
In the “Changing colors,” section earlier in this chapter, I wrote about the

Mirror color setting. If you tried adjusting that color there, you might have

noticed that not much changed. This is because you did not have any sort of

reflection enabled to provide the mirroring. In order to enable mirroring, you

need to go to the Mirror Transp panel in the Material buttons (F5), as shown

in Figure 7-8. All of the Mirror settings are in the left column of this panel.

Activate reflections by left-clicking the Ray Mirror button and increase the

RayMir value using the slider directly beneath it.

Figure 7-8:
The Mirror

Transp
panel.

An important thing to know about doing reflections this way is that it uses

something called raytracing. In order to create accurate reflections, Blender’s

renderer follows, or traces, a ray of light as it bounces off of objects and into

the camera. And to make sure it’s accurate, the renderer follows thousands

of these rays. This accuracy, of course, comes at the expense of using more

processing power from your computer and may lengthen the rendering pro-

cess. Figure 7-9 shows an example image with high reflectivity.

 In order to properly see any raytraced results in your render, make sure that

the Ray button is enabled in the Render panel of the Scene buttons (F10).

Ray Mirror is also one of those exceptions to the “light only bounces once”

rule. In order to get a reflection, it has to have at least two bounces. The light

comes from the light source, bounces off of one object, and then off of your

reflective object before it reaches the camera. You can actually define how

many bounces the renderer recognizes by adjusting the Depth value in the

Ray Mirror column. Of course, the higher the Depth value, the more bounces

that Blender has to trace and therefore the longer your renders might take.

148 Part II: Creating Detailed 3D Scenes

Figure 7-9:
An example
image with
high levels

of raytraced
reflectivity.

In addition to reflectivity, you can also control an object’s transparency. Like

with 2D computer graphics, the main control for a 3D material’s transparency

is its alpha value. The alpha value in Blender runs on a scale from zero, for

completely transparent, to one, for completely opaque. You adjust this value

with the slider at the bottom of the Material panel, labeled “A”. Now, you

might notice that when you reduce the alpha value to make your material

more transparent, the preview panel does not show the result that you might

expect. Rather than showing the checkerboard pattern that’s behind the

preview object, a white-to-blue gradient shows up. What this means is that

as you reduce the alpha value, the more your object’s material is replaced

with your scene’s sky color. The sky color is set in the World buttons (F8).

Chapter 9 covers setting the sky color and other World settings in greater

detail.

Now, getting the object’s material to show the sky color rather than what’s

actually behind it doesn’t initially seem useful, but it’s actually a really quick

way to create a material that can make an object behave as a three-dimensional

mask. Of course, you may not want a mask and instead you want to see the

actual 3D environment through your object. The quickest and easiest way to

get this to happen is to enable the ZTransp button in the Links and Pipeline

panel. Doing so instantly makes the checkerboard background in the preview

panel show up through the preview object.

 Z-transparency is a quick way to get the rest of your scene’s environment to

show up through your object, but if you’re trying to re-create glass, you might

realize that things don’t look quite right. With real glass, the transparent mate-

rial actually bends the light, warping what you see through it. This is how a

magnifying glass works. Regular Z-transparency cannot easily recreate this

effect. In order to get that, you should use raytraced transparency instead.

149 Chapter 7: Changing that Boring Gray Default Material

You can activate raytraced transparency by left-clicking the Ray Transp

button in the Mirror Transp panel. When you enable this button, notice two

things. First, note that doing so automatically disables the ZTransp button.

You can’t have both of these settings active at the same time. The other thing

to notice is that initially, it doesn’t look like much changed by enabling Ray

Transp. This is because the index of refraction, or IOR, value is set to 1.00.

The index of refraction is the degree that the material bends light. A value of

1.00 means that the material has the same IOR as the air around it and there-

fore doesn’t bend light as it passes through it. However, increasing the IOR

warps the checkerboard pattern seen through the object. Now, the cool thing

about the IOR value is that it actually matches the physical IOR values of

real-world materials. This means you could look up the IOR value of a specific

material, like glass or jade, on a table online or in a physics book and use it

to get an accurately transparent material. Figure 7-10 shows the difference

in results that you get with straight alpha transparency, Z-transparency, and

raytraced transparency.

Figure 7-10:
From left

to right,
alpha trans-

parency,
z-transpar-

ency, and
raytraced
transpar-
ency with
an alpha

value of 0.5.

When it comes to the raytracing settings, both Ray Mirror and Ray Transp

have a few values in common. The first ones you might notice are the Fresnel

and Fac (for factor) sliders. The Fresnel setting adjusts an effect that’s simi-

lar to the Fresnel diffuse shader, but with a specific influence on reflectiv-

ity and transparency. For reflectivity, rather than decreasing the material’s

color value in the direction of the light source like the Fresnel diffuse shader,

increasing this value reduces the reflectivity relative to the camera.

For transparency, it’s a bit different. It’s also relative to the camera view,

but rather than clouding out the transparency in that direction, it actually

increases the transparency, reducing the color in the direction of the camera.

Another interesting thing about the Fresnel setting for raytraced transpar-

ency is that it actually works on Z-transparency also. Keeping this in mind

means you can take advantage of the Fresnel effect without having to fake it

with color ramps.

150 Part II: Creating Detailed 3D Scenes

Another common setting between these raytraced effects is the Gloss value.

The default value of 1.00 makes the material perfectly reflective and trans-

parent. Reducing this value on either side blurs the reflection or makes the

material more translucent than transparent. When changing the glossiness,

you might notice that the blurry reflection looks dirty or pixelated. This is

because of the way glossiness is done in Blender. The glossiness is approxi-

mated based on the Samples value, which is located beneath the Gloss

slider for both raytraced reflection and raytraced transparency. Increasing

the number of samples makes the glossiness appear more accurate, at the

expense of longer render times. Figure 7-11 shows some of the cool effects

you can get by varying the Gloss value.

Raytraced transparency versus Z-transparency
For simplicity, you might have the tempta-
tion to just use raytraced transparency all
the time. If you need the flat transparency
of Z-transparency, you can just set the IOR
to 1.00 and let it rock. However, for the sake
of your computer’s CPU, this is a mistake.
Z-transparency nearly always takes less pro-
cessing power than raytraced transparency.
This means that when you go to render, the
more raytracing that your scene has, the longer
your render typically takes. If you’re working
on an animation, you want to have your render
times for each frame as low as possible. So the
ideal thing to do is to use raytracing sparingly
and know when it’s the most to your advantage
to use it. Here is a short list that shows where
using raytraced transparency is best suited:

 ✓ Physically accurate materials for glass,
fluids, and transparent plastics.

 ✓ Translucent materials that blur or obscure
what you see through them, like sand-
blasted glass.

 ✓ Materials that are transparent up to a
certain depth and translucent to opaque
beyond that, like cloudy water or some min-
erals like imperfect crystals.

In short, you want to use raytracing where
it’s critical that you get a physically accurate
material that refracts light. For nearly every
other case, it’s in your best interest to use
Z-transparency. In fact, with enough work,
you can usually even fake translucent mate-
rials with some clever material settings and
Z-transparency. Another reason you may want
to use Z-transparency is because, unlike ray-
traced transparency, it doesn’t have a depth
limitation. If you have a series of five objects
with the same transparent material, using
Z-transparency shows all of the objects through
each other, whereas raytraced transparency
only shows as many objects as its Depth value
allows.

151 Chapter 7: Changing that Boring Gray Default Material

Figure 7-11:
Playing with

the gloss
value on an
object with

raytraced
reflec-

tions and
raytraced
transpar-

ency.

Assigning multiple materials
to different parts of a mesh
Using the same material across an entire object is great for objects that are

the same uniform material, but what if you wanted to have multiple differ-

ent materials on the same object? For that sort of situation, you want to use

material indices. Basically, you create a material index by defining a set of

object subcomponents — faces in meshes, individual characters in text, and

control points in curves and surfaces — and assigning them to a material.

You create material indices in the Link and Materials panel of the Editing but-

tons (F9). To get a good idea of how this works, assume you want to model

a beach ball and give it the classic primary-colored panels. Use the following

steps:

 1. Add a UV sphere mesh (Spacebar➪Add➪Mesh➪UVsphere).

 Use 12 segments, 12 rings, and a radius of 1.00. You may also add

a Subsurf modifier (Alt+1) and set the faces to render as smooth

(F9➪Links and Materials➪Set Smooth).

 2. Tab into Edit mode and switch to Face Select mode

(Tab➪Ctrl+Tab➪Faces).

152 Part II: Creating Detailed 3D Scenes

 3. Add a new material index (F9➪Link and Materials➪New).

 Make sure the New button that you left-click is in the right column under

the button that says “0 Mat 0.” Left-clicking New adds a swatch next to

this button and changes it to say “1 Mat 1,” meaning your object has one

material and you are on the first.

 4. Change the color to white by left-clicking the newly added swatch and

choosing white with the color picker.

 This makes the entire ball white. All of the faces are currently assigned

to this material index.

 5. Use face loop select to select two adjacent vertical face loops

(Alt+right-click and Shift+Alt+right-click).

 6. Add another new material index (F9➪Link and Materials➪New).

 This changes the material index value to “2 Mat 2,” meaning that there

are two material indices and you are working on the second one. Left-

clicking on the left arrow in this button sends you back to “2 Mat 1,” or

the first material index of two. Left-clicking the right arrow takes you

back to the second index.

 7. Change the color to blue by left-clicking the swatch and choosing blue

with the color picker.

 After you change the color of this swatch, you might expect the faces

that you have selected to automatically change to match this color.

That’s not quite how it works: Even though you have these faces

selected, they’re still assigned to the first material index. Use the next

step to remedy that situation.

 8. Assign the selected faces to the current material index (F9➪Link and

Materials➪Assign).

 The moment you left-click the Assign button, the selected faces should

all change to the blue color you picked in the last step.

 9. Using the process in steps 5 through 8, work your way around the

sphere, creating and assigning colors for the other panels.

 If you create a beach ball like the one in Figure 7-12, you should end up

with four material indices, one for each color on the ball.

Figure 7-12:
Creating a
beach ball
with a UV

sphere and
four mate-

rial indices.

153 Chapter 7: Changing that Boring Gray Default Material

Material indices aren’t limited to be used only by meshes. You can also use

them on curves, surfaces, and text objects. The process is similar to meshes,

with one main exception. Meshes, as shown in the previous example, allow

you to assign individual faces to different material indices. This is not the

case with curves, surfaces, and text objects, which assign material indices

to discrete closed entities. So individual text characters and curves can be

assigned to a material index. However, you can’t set the material index of an

individual control point or a portion of a text character. Figure 7-13 shows

material indices working on a curve, surface, and text object.

Figure 7-13:
Material

indices on
curves, sur-

faces, and
text objects.

Coloring Vertices with Vertex Paint
One of the downsides to material indices is the fact that although they make

it easy to define multiple colors and materials on a single mesh, there’s a very

distinct line between materials. The color of one material does not smoothly

transition into the next. For instance, if you want to create a car with a paint

job that’s light blue near the ground that smoothly transitions to a bright

yellow on its roof and hood, you could not effectively do this with material

indices. However, with vertex colors, it’s completely doable. This technique

only works on mesh objects, but it’s also a very effective way of quickly col-

oring a mesh without the hard-edged lines that material indices give you.

The way it works is pretty simple. You assign each vertex in your mesh a spe-

cific color. If the vertices that form a face have different colors, there’s a gra-

dient going from each vertex to the others, where the color is most intense

at the vertex and more blended with other colors the farther away it gets.

Figure 7-14 shows an example with a plane using black for the bottom left

154 Part II: Creating Detailed 3D Scenes

vertex, gray for the upper left vertex, and white for both of the vertices on

the right hand side. Notice how the color tries to smoothly blend in the face

created by the vertices.

Figure 7-14:
Vertex

colors on a
plane.

Of course, trying to go in and explicitly set the color for each and every

vertex in a mesh can get really tedious on complex meshes. To alleviate this

problem, Blender has a Vertex Paint mode. You activate Vertex Paint mode

by selecting (right-clicking) the mesh object that you would like to paint in

the 3D View and then pressing V. Your mouse cursor changes to look like a

paint brush and a new panel appears in the Editing buttons (F9) called Paint.

The Paint panel is shown in Figure 7-15.

Figure 7-15:
The Paint
panel for

Vertex Paint
mode.

The largest function of the Paint panel is setting the color you want to use

and controlling how that color is applied to the selected object. You can

choose the color you want by adjusting the RGB sliders or left-clicking the

color swatch and choosing the color you want with the color picker that

pops up. Also, if you have the Transform Properties floating panel (N) visible

in the 3D View when you switch to Vertex Paint mode, you may notice that

155 Chapter 7: Changing that Boring Gray Default Material

it changes to a floating color picker panel. This is pretty helpful for quickly

switching colors without going back down to the Buttons window. Figure 7-16

shows the Paint Properties floating panel in the 3D view, which has this color

picker.

Figure 7-16:
The Paint

Properties
floating

panel in the
3D view.

 Another cool little shortcut is that while you’re in Vertex Paint mode, right-

clicking automatically samples the color under your mouse cursor and sets

the paint color to that value. This is a pretty slick feature when you’re painting

with a set of defined colors on your mesh. No need to go to the color picker or

the Paint panel, just right-click over the color that you’ve used before and get

back to painting.

After you pick the color you want to use, left-click and drag your mouse over

vertices in the 3D View, and those vertices take on the color you’ve defined.

To get an idea of where the vertices that you’re painting actually exist on

your mesh, you may want to have Blender overlay the object’s wireframe in

the 3D view. To do this, navigate to the Draw panel in the Object buttons (F7)

and left-click the Wire button in the block of buttons under the Draw Extra

heading. When you do this, Blender adds the wireframe over the surface of

the object, making it much clearer where each of the vertices of the mesh lie.

By default, the base vertex color for an object is a flat white. If you would

rather start with a different base color, left-click the SetVCol button in the

Paint panel. Doing that sets all the vertices in your mesh to have the color

you have defined in the swatch above the button.

The column of buttons along the right side of the Paint panel controls how

the paint color is applied to the vertices. The default setting of Mix simply

blends the defined color with the color that the vertex already has assigned,

according to whatever value is set by the Opacity slider. Enabling the Add,

Sub, or Mul buttons takes the current color respectively and adds, subtracts,

or multiplies that with the current vertex color under the brush in the 3D

view. The Blur button is the only paint setting that doesn’t use the selected

color. It uses the vertices that are within the radius defined by the Size slider

and attempts to mix their colors, effectively blurring them. The Lighter and

Darker buttons take the value of the color you’ve chosen and use that to con-

trol how much influence it has on the already existing colors. So if you have

156 Part II: Creating Detailed 3D Scenes

your color set to full white, painting with Darker enabled won’t change the

vertex colors at all. But using that color to paint with Lighter enabled makes

it appear everywhere you work.

If you’re familiar with Sculpt mode, as discussed in Chapter 5, you may

be tempted to try to adjust the size of your brush by using the F hotkey.

Unfortunately, this is a bit of an inconsistency between Blender’s painting

modes and Sculpt mode. In the painting modes like Vertex Paint, Texture

Paint (Chapter 8), and Weight Paint (Chapter 11), pressing F enables a sub-

context in the paint mode that allows you to define a painting mask with the

faces of the mesh. The other way to enable the painting mask is to left-click

the button in the 3D view’s header with an icon of a triangle overlaying a

square, as shown in Figure 7-17.

Figure 7-17:
Enabling

the Painting
Mask

button.

When you enable the painting mask, you can select faces of your mesh

by right-clicking. After you do that, these faces are the only ones that are

affected by your painting. This is an excellent way of isolating a portion

of your mesh for custom painting without changing the color of the faces

around that area. By using a painting mask, you can actually get the hard-

edged color changes that you get with material indices, should you want

such a thing.

One of the downsides of vertex colors is that the amount of detail you can

paint is limited to the number of vertices in your mesh. So it used to be that if

you want to have more detail with vertex painting, you have to subdivide the

mesh multiple times to create more vertices to be painted. Using the Subsurf

modifier wouldn’t be enough simply because the additional vertices created

by that modifier are implicit and there’s no direct access to them. However,

with the advent of multi-resolution meshes, as covered in Chapter 5, the

situation is different. You can use the multi-resolution workflow outlined in

that chapter to get more vertices and therefore greater detail in your vertex

painting. Figure 7-18 shows a version of Suzanne and a ball, both colored and

painted using vertex colors and multi-resolution meshes.

157 Chapter 7: Changing that Boring Gray Default Material

Figure 7-18:
Using multi-

resolution
meshes

for highly
detailed

vertex
painting.

 In order to have your vertex colors appear in your render, you need to enable

the VCol Paint button in the Material panel of the Material buttons. Refer back

to Figure 7-2 if you need a refresher on where this button is located.

158 Part II: Creating Detailed 3D Scenes

Chapter 8

Giving Models Texture
In This Chapter
▶ Using procedural textures

▶ Unwrapping a mesh to use image-based textures

This chapter serves as a good pairing with Chapter 7. In that chapter,

I wrote about adjusting the materials on your objects, but that was

in broad strokes. That chapter covered how light reacts with the surface

of your material so you could deal with the object’s color, how that color

spreads across the surface of the object, and how the specular highlights

on that object behave. Of course, these are all broad strokes. If you want a

more controlled way of adjusting the look of your object, then using material

settings alone won’t get you there. You could use Vertex paint, but if you’re

working on a model that you intend to animate, this causes you to have many

extraneous vertices just for color. Those vertices end up slowing down the

processes of rigging, animating, and even rendering. Also, you may want to

have material changes that are independent of the edge flow and topology of

your mesh.

For those sorts of scenarios, you’re going to want to use textures. Generally

speaking, a texture is a kind of image that you stretch or tile over the surface

of your object to give it more detail without adding more vertices. Not only

can textures influence the color of your object, but they can allow you to

make additional adjustments, such as stipulating the specularity of some

specific parts of the model. For instance, on a human face skin tends to

be shinier across the nose and forehead, and a reduced specularity exists

around the eyes. With textures, you can control these sorts of things. And the

purpose of this chapter is to show you how you can apply that control.

Adding Textures
You can add and edit textures to a material using the Texture buttons (F6), as

shown in Figure 8-1.

160 Part II: Creating Detailed 3D Scenes

Figure 8-1:
The Texture

buttons.

Like the Material buttons, the Texture buttons have a Preview panel that

displays the texture as you work on it. By default, the display in the Preview

panel is completely black because the initial texture type is None. You can

change this in the Texture panel with the drop-down list button on the right

side of the panel. The left side of the panel is similar to the Texture panel in

the Material buttons, and for good reason. These are the same ten texture

channels that your material has available. The difference, though, is that with

the Texture buttons, you can actually control what goes into these channels.

Left-click any channel button to choose the channel that you want to work

on. The channels that have textures in them display the name of the texture

in the channel button. You can customize the name of the texture by left-

clicking the name field at the top of the panel. This name field is part of a set

of datablock control buttons that work just like the ones used in the Links

and Pipeline panel of the Material buttons or the Object and Links panel

of the Object buttons. As a quick refresher, here’s what each button in the

block does:

 ✓ The up/down button on the left gives you the ability to add a new

texture or load an existing one.

 ✓ The X button disconnects the texture datablock from the channel.

 ✓ The button with the automobile icon automatically creates a texture

name based on the texture type.

 ✓ The F button creates a fake user for the texture datablock so that

datablock won’t be deleted even though it may have no links to any

material’s texture channels.

Using Procedural Textures
You can use basically two kinds of textures in Blender: image-based textures

and procedural textures. Unlike image-based textures, where you explicitly

create and load an image as a texture, procedural textures are created in soft-

ware with a specific pattern algorithm. The advantage of procedural textures

is that you can quickly add a level of detail to your objects without worrying

about cleaning up seams from tiling errors or unwrapping the mesh. The

software handles all of this for you. Of course, procedurals can be a bit more

difficult to control than image-based textures. For instance, if you have a

161 Chapter 8: Giving Models Texture

character with dark circles under his eyes, getting those circles to only show

up where you want can be pretty tough, maybe even impossible. So the ideal

use for procedural textures is as broad strokes where you don’t need fine

placement control. They’re great for creating a foundation or a base to start

with, such as providing the rough texture an orange rind’s surface.

Blender has 11 procedural texture types that you can work with, accessible

through the Texture Type drop-down list menu in the Texture panel of the

Texture buttons (F6). In addition to these procedurals, you can also choose

PlugIn, Image, or None as textures. All of the available texture types are

shown in Figure 8-2.

Figure 8-2:
The

available
textures
you can
use that
are built

into Blender.

With only a couple of exceptions, when you select a texture type that you

wish to use, a third panel appears in the Texture buttons. The options from

one texture type to another vary, but with the exception of Voronoi, Noise,

Blend, and EnvMap, all of the procedural textures share an option called

Noise Basis. The Noise Basis is a specific type of pseudorandom pattern that

influences the appearance of a procedural texture. There are two controls

for the Noise Basis option that are always located at the bottom of the newly

created panel: a Noise Basis drop-down menu and a Nabla value. The Nabla

value offer some more advanced control of the sharpness or smoothness of

the texture when it’s applied to the material, but the Noise Basis offers an

immense amount of flexibility in controlling a procedural texture’s appear-

ance. Left-clicking this drop-down menu list box displays the options shown

in Figure 8-3.

Figure 8-3:
Noise Basis

types.

162 Part II: Creating Detailed 3D Scenes

The types of Noise Basis can be roughly broken down into three different

kinds of noise:

 ✓ CellNoise: A blocky, pixelated type of noise.

 ✓ Voronoi family: These noise types, including Crackle, F2-F1, F4, F3, F2,

and F1 are all roughly based on the same algorithm. One of the primary

attributes of Voronoi noise is a somewhat distinct partitioning through-

out the texture with generally straight lines. This is most apparent in the

Voronoi Crackle noise basis. These noise types are good for hammered

metal, scales, veins, and that dry desert floor look.

 ✓ Cloudy noise: Cloudy is my own terminology, but it includes the

Improved Perlin, Original Perlin, and Blender Original Noise Basis types.

These types of noise tend to have more organic feel to them and work

well for generic bump textures and clouds or mist.

The next few sections go into rough detail on each type of procedural texture.

Distorted Noise
The Distorted Noise texture is pretty slick. Actually, strike that; this type of

texture is best suited to very rough, complex surfaces. The way it works is

pretty cool, though. You use one procedural noise texture, specified by the

Distortion Noise menu, to distort and influence the texture of your noise

basis. With this, you can get some really unique textures. Figure 8-4 shows

the Texture buttons for controlling a Distorted Noise texture.

Figure 8-4:
Texture

buttons with
a Distorted

Noise
texture.

Voronoi
The Voronoi procedural texture does not have a Noise Basis. This is because

it’s a more detailed control over the same algorithm that is used for the

Voronoi Noise Basis options. It may be helpful to think of those basis options

as presets, whereas this texture gives you full control over what you can do

with the Voronoi texture. It’s a pretty versatile texture, too. You can use it

to create scales, veins, stained glass, textured metals, or colorful mosaics.

Figure 8-5 shows the Voronoi Texture buttons.

163 Chapter 8: Giving Models Texture

Figure 8-5:
Texture

buttons with
a Voronoi

texture.

Musgrave
This procedural texture is extremely flexible and very well suited for organic

materials. You can use it for rock cracks, generic noise, clouds, and even as a

mask for rust patterns. As a matter of fact, with enough tweaking, you could

probably get a Musgrave texture to look like nearly any other procedural tex-

ture. Of course, the trade-off is that it takes a bit longer to render than most

of the other textures. Figure 8-6 shows the Texture buttons for controlling a

Musgrave texture.

Figure 8-6:
Texture

buttons with
a Musgrave

texture.

Noise
This is the simplest procedural texture in Blender (well, the None texture

type is probably simpler, but it’s not very useful). This texture has no con-

trols: It’s simply raw noise. That means that you’ll never get the same results

twice using this texture. Each time you render, the noise pattern is differ-

ent. This might be annoying if you’re looking to do a bump map. However, if

you’re looking to have “white noise” on a TV screen, this texture is perfect.

As Figure 8-7 shows, the Noise texture has absolutely no controls.

Figure 8-7:
Texture

buttons with
a Noise
texture.

164 Part II: Creating Detailed 3D Scenes

Blend
The Blend texture is one of the unsung heroes in Blender’s procedural tex-

ture arsenals. It may seem like a simple gradient, but with the right mapping,

it’s really quite versatile. I’ve used Blend textures for mixing two other tex-

tures together, creating simple toon-like outlines for meshes, and for adjust-

ing the color along the length of hair strands. The real power of the Blend

texture can be seen when you use it with a colorband that you define in the

Colors panel of the Texture buttons. Figure 8-8 shows the Texture buttons for

controlling a Blend texture.

Figure 8-8:
Texture

buttons with
a Blend
texture.

Behold the power of the colorband!
One of the really powerful and under-recognized
tools in Blender is the colorband. It’s basically a
gradient editor, and its interface is used in pro-
cedural textures, ramp materials, the material
node editor, and even the node compositor. For
materials, you can enable the colorband in the
Ramps tab of the material buttons. For proce-
dural textures, it appears in the Color tab. It’s
a great way to adjust the color of the stripes
in the Wood texture or determine which colors
you want to use for your Blend texture. You can
even use the colorband with a ramp shader to
have a more controlled custom toon coloring
than you can get with the diffuse or specular
Toon shaders. It works much like gradient edi-
tors in other programs. By default, it starts with
a color positioned at either end of the colorband
bar and the color smoothly transitions from one
side to the other. The color can be any value in
the RGB spectrum, and you also can control its
transparency with the alpha value.

To change a color, first select it by either
left-clicking its position in the colorband or
adjusting the value in the Cur field. Color posi-
tions count up from left to right, starting at zero.
So with the default arrangement, the transparent
black color on the left is 0 and the cyan color on
the right is 1. After you have selected the color,
you can change its value by using the RGB and A
sliders, or you can left-click the swatch and use
the color picker that pops up. To move the color
position, you can left-click and drag it along the
colorband, or you can adjust the Pos, or Position
value after you’ve selected it.

To add a new color position, left-click the Add
button. This creates a 50% gray color at the
halfway point in the color band. Any position
may be deleted by selecting it and left-clicking
the Del button.

It may not seem like much, but mastering the
colorband and knowing when to use it makes
your workflow for adding materials and textures
much faster.

165 Chapter 8: Giving Models Texture

Magic
At first glance, the Magic texture may seem to be completely useless — or at

the very least, too weird to be useful. However, I’ve managed to find quite a

few cool uses for this eccentric little texture. If you treat it as a bump map, it

works well for creating a knit texture for blankets and other types of cloth. If

you stretch the texture with your mapping settings, you can use it to recreate

the thin filmy look that occurs when oil mixes with water. And, of course, you

can use it to make a wacky wild-colored shirt. Figure 8-9 shows the controls

for the Magic texture.

Figure 8-9:
Texture

buttons with
a Magic
texture.

Wood
The Wood texture is a bit of a misnomer. Sure, you can use it to create textures

that are pretty close to what you see on cut planks of wood. However, it’s a lot

more versatile than that. You can use the wood texture to create nearly any

sort of striped texture. I’ve actually even used it to fake the look of mini-blinds

in a window. Figure 8-10 shows the Wood Texture button controls.

Figure 8-10:
Texture

buttons with
a Wood
texture.

Stucci
Stucci is a nice organic texture that’s most useful for creating bump maps.

It’s great for industrial and architectural materials like stucco, concrete, and

asphalt. It’s also handy if you just want to give your object’s surface a little

variety and roughen it up a bit. In Figure 8-11 are the buttons for controlling

the options of the Stucci texture.

166 Part II: Creating Detailed 3D Scenes

Figure 8-11:
Texture

buttons with
a Stucci
texture.

Marble
This texture has a lot of similarities with the Wood texture; however, as

Figure 8-12 shows, it’s a lot more turbulent. You can use it for creating the

look of polished marble, but the turbulent nature of the texture also lends

itself nicely to be used as a fire texture and, to a lesser extent, the small rip-

ples you get in ponds, lakes, and smaller pools of water.

Figure 8-12:
Texture

buttons with
a Marble

texture.

Clouds
The Clouds texture is a good general purpose texture. You can treat it as a

go-to texture for general bumps, smoke, and clouds. Figure 8-13 shows the

Texture buttons for controlling a Clouds texture.

Figure 8-13:
Texture

buttons with
a Cloud
texture.

167 Chapter 8: Giving Models Texture

EnvMap
EnvMap is short for environment map. It’s a way of using a texture to fake

reflections on your object. It works by taking the position of a given object

and rendering an image in six directions around that object: up, down, left,

right, forward, and back. These images are then mapped to the surface of

your object. So, this isn’t exactly a procedural texture in the traditional

sense, but because the environment images are taken automatically, I’ll say

it’s part procedural and part image-based.

Environment maps aren’t as accurate as using raytraced reflection, but

they can be quite a bit faster. So if you need a generically reflective surface

that doesn’t need to be accurate, environment maps are a handy tool that

keep your render times short. One thing to note about the EnvMap panel,

as shown in Figure 8-14, is the Ob field. By default, this field is set to be the

object that you intend on mapping the texture to. However, sometimes you

can get a better reflective effect by using the location of a different object,

such as an empty. This is particularly true when applying an environment

map to an irregular surface.

Figure 8-14:
Texture

buttons with
an EnvMap

texture.

 When using environment maps, make sure you do two things. First, enable the

Refl button in the Map To panel of the Material buttons (F5). Secondly, enable

the EnvMap button in the Render panel of the Render buttons (F10). Unless

you do both of these things, your environment map won’t work properly.

Understanding Texture Mapping
After you’ve created your texture, be it procedural or image-based, you’re

going to have to relate that texture to your material and, by extension, the

surface of your object. This is done with a process called mapping, which

basically consists of relating a location on a texture to a location on the sur-

face of an object. Mapping controls are located in the panels of the last block

of the Material buttons (F5). Specifically, I’m referring to the Map Input and

Map To panels, as shown in Figure 8-15.

168 Part II: Creating Detailed 3D Scenes

Figure 8-15:
The Texture,

Map Input,
and Map To

panels in
the Material

buttons.

The Map Input panel controls how the texture is mapped to the object,

defining how the texture coordinates are projected on it. The most important

buttons are the block of mapping options at the top of this panel. The

following list explains the type of mapping that each button represents:

 ✓ Glob (Global coordinates): Choosing this option uses the scene’s coordi-

nates to define the texture space. So if you have an animated object with

a texture mapped this way, the texture will seem to be locked in place as

the object moves across it. It’s a kind of strange effect, but it’s a helpful

effect in a few situations, such as faking shadows on a moving character.

 ✓ Object: This is a neat option, allowing you to use a different object’s loca-

tion as a means of placing a texture on your object. To tell Blender which

object you want to use for this, type its name in the Ob field. For example,

you could load an image texture of a logo and place that logo on a model

of a car by using the location, size, and orientation of an empty.

 ✓ UV: UV coordinates are probably the most precise way of mapping a tex-

ture to an object. NURBS surfaces have UV coordinates by default. For

meshes, however, getting UV coordinates requires you to go through

a process called unwrapping. To understand this process, think about

a globe and a map of the world. The map of the world uses the latitude

and longitude lines to relate a point on the three-dimensional surface

of the globe to the two-dimensional surface of the map. In essence, the

world map is an unwrapped texture on the globe, whereas the latitude

and longitude lines are the UVs. More on unwrapping in the next section,

“Unwrapping a Mesh.”

 ✓ Orco (Original coordinates): This is the default setting and should

work fine for most situations, especially when you are using procedural

coordinates.

 ✓ Stick (Sticky or Camera coordinates): Sticky coordinates are a way of

getting a somewhat precise mapping based on the location and orienta-

tion of the camera. You position your camera at some location, pointing

toward your object. In the Editing buttons (F9), within the Mesh panel,

left-click the Make button next to the word Sticky. This creates a map-

ping on the mesh based on the camera’s current position. And now,

unlike Global or Window coordinates, when you animate the object or

the camera, the texture won’t move. It stays stuck to the object.

169 Chapter 8: Giving Models Texture

 ✓ Strand: This option is not visible by default. It only appears when your

object has a particle system with the Strand render option enabled.

When that happens, this button takes the place of the Stick button. As

the name indicates, it’s intended specifically for particle strands. When

activated, the texture is mapped along the length of the strand.

 ✓ Win (Window coordinates): This option is similar to the Global coordi-

nates option, but rather than use the scene’s global coordinates, it uses

the coordinates from the finished render window. In other words, it uses

the camera’s coordinates. But unlike Sticky coordinates, which use the

camera’s coordinates just once, this option always uses them. So if the

object is animated, the texture is not stuck to it. It remains in place.

 ✓ Nor (Normal coordinates): Enabling this button causes the texture to be

mapped according to the normal vectors along the surface of the object.

This is helpful for effects that require textures to react to the viewing

angle of the camera.

 ✓ Refl (Reflection coordinates): The reflection option uses the direction

of a reflection vector to map your texture to the object. Basically, you

want to use this option with an environment map texture (EnvMap) to

get fake reflections when you don’t need the accuracy of raytracing.

 ✓ Stress: Stress maps are a pretty cool option that’s intended for use

with dynamic or simulated geometry. The stress value is the difference

between the location of an original texture coordinate and location of

the coordinate when rendered. As an example, say you have a character

with stretchy arms. You could use stress mapping as a mask to make the

arms more translucent the more they stretch.

 ✓ Tangent: In some ways, this option is similar to Normal coordinates.

However, rather than use the surface normal, it uses an optional tangent

vector to map the texture coordinates. Notice that I wrote “optional”

tangent vector. By default, there is no tangent vector on the material,

so enabling this button by itself won’t do much to it. However, if you

left-click the Tangent V button at the top right of the Shaders panel, you

have a tangent vector for your texture to work with.

In addition to these map inputs, you can also control what’s called the texture
projection. This, along with the map input, controls how the texture is applied

to the mesh for everything except UV textures. Because UV textures explic-

itly map a texture coordinate to a coordinate on the surface of your object,

changing projection doesn’t have an effect on anything. Blender has four dif-

ferent types of projection:

 ✓ Flat: This type of projection is the easiest to visualize. Imagine you have

your texture loaded in a slide projector. When you point it at a wall, you

get the best results. However, if you point it at a curved or uneven sur-

face, you get a little bit of distortion. This is basically what happens with

Flat projection.

170 Part II: Creating Detailed 3D Scenes

 ✓ Cube: Cube projection uses the same idea as flat projection, but rather

than having just one projector, imagine you have one pointing at the

front, left, and top of your object (and shining through to the other

side). The texture appears on all six sides of the cube. Of course, when

you try to project on a more curved surface, you still get some seams

and distortion.

 ✓ Tube: Tube projection is where the slide projector metaphor kind of

stops making sense. Imagine that you have the unique ability to project

on a curved surface without the distortion. This, of course, is pretty

close to impossible in the real world, but pretty trivial in computer

graphics. Using Tube projection is ideal for putting labels on bottles or

applying other sorts of textures to tubular objects.

 ✓ Sphere: Spherical projection is best suited for spherical objects like

planets and balls, and it’s also the “cleanest” way to apply a texture to

an arbitrary three-dimensional surface because it usually doesn’t leave

any noticeable seams as does Cube projection.

Figure 8-16 shows a set of primitive objects with Flat, Cube, Tube, and Sphere

projection.

Figure 8-16:
Projecting
textures in

different
ways on the
same set of
3D objects.

Along the right side of the Map Input panel are fields that give you finer control

over how your texture is positioned on your object. The ofsX, ofsY, and ofsZ

values define an offset in the X, Y, and Z directions, respectively. And the sizeX,

sizeY, and sizeZ values scale the texture in each of those directions. The grid of

Xs, Ys, and Zs at the bottom left of this panel allow you to reorder the axes of

the texture, letting you flip it around to try and get the best fit.

171 Chapter 8: Giving Models Texture

 The offset and size values are not relative to the global or local coordinates in

the 3D View. They’re actually relative to the texture image itself. The X and Y

values are horizontal and vertical whereas the Z value is a depth value into the

texture. The Z values don’t have a lot of influence unless the texture is a pro-

cedural texture with a Noise Basis.

Not only do you control how a texture is mapped to an object, but you also

control how that texture affects the material. The controls for this are in the

first two rows of buttons of the Map To panel.

 Some of these Map To buttons are simple toggles. Left-clicking them once

turns them on and left-clicking them a second time turns them off. However,

most of them are three-state buttons. This means that the first left-click enables

the option, but the second left-click changes the text in the button to yellow,

indicating that the texture’s effect on the material is inverted. A third left-click

on the button disables it.

You can use any combination of the following options:

 ✓ Col (Color — toggle): Affects the material’s diffuse color.

 ✓ Nor (Normal — three-state): Influences the direction of the surface

normals on the material. Enabling this button enables bump mapping.

It can give your object much more detail without the computational

slowdown of additional geometry.

 ✓ Csp (Specular Color — toggle): Affects the material’s specular color.

 ✓ Cmir (Mirror Color — toggle): Affects the material’s mirror color.

 ✓ Ref (Reflection — three-state): Influences the reflection value in the

material’s diffuse shader.

 ✓ Spec (Specularity — three-state): Influences the specularity in the

material’s specular shader.

 ✓ Amb (Ambience — three-state): Affects the amount of ambient light the

material gets.

 ✓ Hard (Specular Hardness — three-state): Affects the specular hardness

values for the specular shaders that support it.

 ✓ RayMir (Raytraced Reflection — three-state): Influences the amount of

raytraced reflection that the material has.

 ✓ Alpha (three-state): Controls the transparency and opacity of the material.

 ✓ Emit (three-state): Affects the material’s emit value for radiosity.

 ✓ TransLu (Tranlucency — three-state): Affects the amount of translu-

cency in the material.

172 Part II: Creating Detailed 3D Scenes

 ✓ Disp (Displacement – three-state): This option is similar to the Nor

option, except that it actually moves the geometry of the object based

on the texture map. Whereas bump mapping only makes it look like

geometry is added and moved around by tricking out the surface

normal, displacement actually moves it around. The downside to

Blender’s displacement is that you have to have the vertices already in

place to move around. It won’t create them for you on the fly. You can

get around this a bit by using the Subsurf modifier, but creating your

additional vertices with that definitely increases your render times.

Unwrapping a Mesh
In the previous section, I mentioned that the most precise type of mapping

you can use is UV mapping. Not only is UV mapping precise, but it also

allows you to take advantage of a couple of other features in Blender, such

as Texture Paint mode and texture baking. With NURBS surfaces, you get

UV coordinates “for free” as part of their structure. However, Blender is pre-

dominantly a mesh editor, and in order to get proper UV coordinates on your

mesh objects, you must put them through a process known as unwrapping.

You unwrap a mesh in Blender by selecting all vertices (A) and pressing U

while in Edit mode (Tab). Of course, pressing U brings up a menu with a vari-

ety of options to choose from, as shown in Figure 8-17.

Figure 8-17:
The UV

Calculation
unwrapping

menu.

However, despite this variety of options, unless your mesh is simple or a

special case, you should use the first menu item, Unwrap. Blender has very

powerful unwrapping tools, but to take full advantage of them, you need to first

define some seams. Remember that you’re basically trying to flatten 3D surface

to a 2D plane. In order to do so, you need to tell Blender where it can start pull-

ing the mesh apart. This is a seam. If you were unwrapping a globe, you might

choose the prime meridian as your seam. I like to think about it like a stuffed

animal, such as a teddy bear. The seam is where the bear is stitched together

from flat pieces of cloth. To add a seam to your mesh, use the following steps:

173 Chapter 8: Giving Models Texture

 1. Tab into Edit mode and switch to Edge Select mode (Tab➪Ctrl+Tab➪
Edges).

 You could also do this from Vertex Select mode, but I find that it’s easier

in Edge Select.

 2. Select the series of edges you want to make into a seam (right-click➪
Shift+right-click).

 Using an edge loop selection (Alt+right-click) can really be helpful here.

Everyone has their own tastes when it comes to defining seams, but a

good rule of thumb is to put them on parts of the mesh that are easier to

hide.

 3. Use the Edge Specials menu to make the seam (Ctrl+E➪Make Seam).

 Seams on your mesh are highlighted in orange. If you mistakenly make a

seam with the wrong edges, you can remove the seam by selecting those

edges (right-click) and pressing Ctrl+E➪Clear Seam.

With your seams defined, you’re ready to unwrap your mesh. In order to see

what you’re doing, though, there are a couple changes you should make to

your screen layout. First, you should probably change the drawtype of your

3D View to Textured (Alt+Z). Then split off a new window and change it to be

a UV/Image Editor window (Shift+F10). Your layout should look something

like what is shown in Figure 8-18.

Figure 8-18:
A typical

screen
layout
for UV

unwrapping
and editing.

174 Part II: Creating Detailed 3D Scenes

The next thing you need is an image to map to your mesh. It’s common prac-

tice when unwrapping to use something called a test grid. This is basically an

image with a colored checkerboard pattern. It’s helpful for trying to figure

out where the texture is stretched on your mesh. To add a test grid, go to

the UV/Image Editor window and choose Image➪New or press Alt+N. When

you do this, a set of buttons like the ones in Figure 8-19 are shown. Name

the image something sensible, like “Test Grid” and left-click the UV Test Grid

button. Leave the other settings at their defaults for now. Next, left-click OK.

After you do this, the test grid image appears in the UV/Image Editor window.

Figure 8-19:
The New

Image but-
tons for

adding a
test grid

image.

 It’s possible to unwrap your mesh without going through the process of

adding a test grid, but I find that it’s helpful to have the grid up there so you

have a frame of reference to work from when unwrapping.

 Also, you should note the size of the test grid image. The most obvious thing

is that it’s square. When you create the image, you have the option of making

it non-square, but UV texturing is optimized for square images, so it’s in your

best interest to keep it that way. Another tip that helps performance when

working with UV textures is to make your texture size a power of two. (In other

words, a number that you get by continually multiplying 2 by itself.) The

default size is 1024 pixels square. That’s 210, or 2 multiplied by itself 10 times.

The next larger size would be 2048 pixels and the next size down would be 512

pixels.

Alrighty, now you’re ready to unwrap your mesh. You should still be in Edit

mode on your mesh. If you aren’t, tab back on in. From here, unwrapping is

pretty simple:

 1. Select all vertices (A).

 Remember that the A key is a toggle, so you may have to hit it twice to

get everything selected.

 2. Unwrap the mesh (U➪Unwrap).

 Poof! Your mesh is now unwrapped! If you used a Suzanne to practice

unwrapping, you may have something that looks like Figure 8-20.

175 Chapter 8: Giving Models Texture

Figure 8-20:
An

unwrapped
Suzanne

head.

From here, you can edit your UV layout to arrange the pieces in a logical fash-

ion and minimize stretching. You can tell a texture is stretched with your test

grid. If any of the squares on the checkerboard look distorted or grotesquely

non-square-shaped, stretching has taken place. If you don’t see the test grid

texture on your monkey, make sure you’re in the Textured Draw Type (Alt+Z).

The controls in the UV/Image Editor are very similar to working in the 3D

View. The Grab (G), Rotate (R), and Scale (S) hotkeys all work as expected, as

well as the various selection tools like Border select (B), Brush select (B➪B),

and Edge Loop Selection (Alt+right-click). There’s even a cursor to help with

snapping and providing a frame of reference for rotation and scaling.

If you’re trying to fix stretching, you might notice that moving some vertices in

your UV layout to fix stretching in one place distorts and causes stretching in

another part. To help with this, Blender offers you two very helpful features:

vertex pinning (P) and Live Unwrap Transform (UVs➪Live Unwrap Transform).

They actually work together. The workflow goes something like this:

 1. In the UV/Image Editor, select the vertices that you want to define as

“control vertices” (right-click➪Shift+right-click).

 These are usually the vertices at the top and bottom of the center line

and some corner vertices. I tend to prefer using vertices that are on the

seam, but sometimes it’s helpful to use internal vertices.

 2. Pin these selected vertices (P).

176 Part II: Creating Detailed 3D Scenes

 When you do this, the vertices should appear larger and a bright red

color. If you ever want to unpin a vertex, select it (right-click) and press

Alt+P.

 3. Turn on Live Unwrap Transform (UVs➪Live Unwrap Transform).

 If there’s a checkmark to the left of this menu item, you know it’s cur-

rently enabled.

 4. Select one or more pinned vertices and move them around (right-

click➪G).

 As you edit these pinned vertices, all of the other vertices in the UV

layout automatically shift and adjust to compensate for this movement

and help reduce stretching.

 When using pinned vertices and Live Unwrap Transform, selecting and moving

unpinned vertices isn’t normally going to be very helpful. This is because the

moment you select and move a pinned vertex, any manual changes you’ve

made to unpinned vertices are obliterated.

 You can actually see the changes you make in the UV/Image Editor in real time

if you left-click the “lock” button in the header of the UV/Image Editor window.

It’s the last button, the one with a little lock icon in it.

Figure 8-21 shows the unwrapped Suzanne head from before, after a bit of

editing and adjustment.

Figure 8-21:
An

unwrapped
and (mostly)
stretchless

Suzanne
head.

177 Chapter 8: Giving Models Texture

Painting Textures Directly on a Mesh
So now you have an unwrapped mesh so the texture doesn’t stretch on it.

Woohoo! But say that, for some crazy reason, you don’t want your object to

have a checkerboard as a texture and you want to actually use this UV layout

to paint a texture for your mesh. There are actually two ways to handle this:

Paint directly on the mesh from within Blender, or export the UV layout to

paint in an external program like The GIMP or Photoshop. I actually prefer to

use a combination of these methods. I normally paint directly on the mesh in

Blender to rough out the color scheme and perhaps create some bump and

specularity maps. Then I export that image along with an image of the UV

layout to get more detailed painting done in an external program.

After you have an unwrapped mesh, the starting point for all of this is

Blender’s Texture Paint mode. Activate it by left-clicking the mode button in

the 3D view’s header, as show in Figure 8-22.

Figure 8-22:
Choosing

Texture
Paint mode

from the
mode but-
ton on the
3D view’s

header.

From here, things are pretty similar to Vertex Paint mode, with a few excep-

tions. The Transform Properties floating panel becomes a Paint Properties

floating panel with a color picker and a Paint panel appears in the Editing

buttons (F9), but the content of that panel is pretty different from the Paint

panel that you have with Vertex Paint. The most striking difference is that

you actually have a Brush datablock with definable attributes. With the Add

New button at the bottom, you can actually define a texture for your brush,

so you’re not just painting flat colors. You define the brush texture in the

Texture buttons (F6) like you set up any other texture. This gives your paint-

ing quite a bit more flexibility.

When you’re in Texture Paint mode, start painting directly on your mesh

by left-clicking and dragging your mouse cursor on it. If you have a test

grid image already loaded on the image, you will begin painting directly on

this image. In fact, if you still have the UV/Image Editor window open, you

can watch the test grid image get updated as you paint your mesh. And

actually, you can paint directly on the UV image itself by enabling painting

178 Part II: Creating Detailed 3D Scenes

(Image➪Texture Painting). With Texture Painting enabled in the UV/Image

editor, you can also press C and an Image Paint floating panel appears with

the same buttons that are available in the Paint panel of the Editing buttons.

Because of this, when I paint textures in Blender, I like to have my screen laid

out like Figure 8-23 shows. I have the 3D View and UV/Image Editor windows

both in Texture Paint mode, whereas my Buttons window shows the Texture

buttons (F6) for editing brush textures. It’s a pretty effective way to get work

done.

Figure 8-23:
A good
screen

layout for
texture

painting
directly on
your mesh.

Of course, despite the cool things that you can do with Blender’s Texture

Paint mode, there are some things that you’re better off doing in full-blown

2D graphics program like The GIMP or Photoshop. To work on your image in

another program, you need to save the texture you’ve already painted as an

external image. You should also export your UV layout as an image so you

have a frame of reference to work from while painting. To save your painted

texture, go to the UV/Image Editor and choose Image➪Save As. This brings

up a File Browser window that allows you to save the image to your hard

drive in any format you like. I prefer to use PNG because it has small file sizes

and lossless compression.

179 Chapter 8: Giving Models Texture

With your image saved, the next thing you probably want is your UV layout. To

export this, you need to run a script. You access it from the UV/Image Editor

window while in Edit mode (Tab). Navigate to UVs➪Scripts➪Save UV Face

Layout. A button box pops up with some options, as shown in Figure 8-24.

Figure 8-24:
Options for

exporting
your UV

layout.

For now, leave all of these values at their defaults, with the exception of Size.

For size, you want to use the same size that your texture image is. By default,

the value is 512, but if your texture image is 1024x1024, like the default test

grid is, you should change this value to 1024. When you left-click the OK

button, a File Browser window appears, allowing you to save your UV layout

to your hard drive as a Targa image. With the UV layout exported, you can

load both of these images (the saved texture and the exported UV layout) as

layers in your image editing program and proceed to paint the exact texture

you want to use on your mesh. You may even paint separate textures for

bump maps or specularity maps.

Baking Texture Maps from Your Mesh
There’s another benefit that unwrapping your mesh gets you: render baking.

Render baking is creating a flat texture for your mesh that’s based on what

it looks like when you render it. What good is that? Well, it’s really useful to

people who wish to create models for use in video games. Because every-

thing in a game has to run in real time, models can’t usually have a lot of

complicated lighting or highly detailed meshes with millions of vertices. To

get around this, you can fake some of these effects by using a texture. And

rather than paint on shadows and detail by hand, you can let the computer

do the work and use a high resolution render instead.

Although this technique is used a lot in video games, it’s also helpful when

creating models that will be animated for film or television. If you can create

a model that looks really detailed, but still has a relatively low vertex count,

your rendering and animating process goes faster. Another use is for texture

painters. Sometimes it’s helpful to have an ambient occlusion or shadow

texture as a frame of reference to start painting a more detailed texture.

180 Part II: Creating Detailed 3D Scenes

Alright, so how do you create these textures? Well, the magic all happens

in the Bake panel of the Render buttons (F10). This panel is shown in

Figure 8-25.

Figure 8-25:
The Bake

panel in the
Render

buttons.

As the figure shows, you have six different kinds of images that you can

bake out:

 ✓ Full Render: This is the whole mess — textures, vertex colors, shadows,

ambient occlusion, specular highlights — the works.

 ✓ Ambient Occl: Ambient occlusion, or AO, is an approximated form of

global illumination, or the effect that happens from light bouncing off of

everything. If you have AO enabled in the World buttons (F8), the results

of it can be baked by enabling this button.

 ✓ Shadow: Any shadows that fall on this object are baked out as a texture.

 ✓ Normals: A normal map is similar to a bump map, but instead of just

using a grayscale image to define height, normal maps can get even

more detailed by using a full color image to define height as well as

direction. Artists who like to use Sculpt mode bake the normals from

their sculpted mesh to a low-resolution version of the mesh to get

details on the model without the additional geometry.

 ✓ Textures: This option takes all of the textures you’ve applied to the

mesh, both image-based and procedural, and flattens them out to a

single texture.

 ✓ Displacement: Baking displacement is similar to baking normals. The dif-

ference is that normal maps just redirect surface normals to provide the

illusion of more geometry, whereas a displacement map can actually be

used to move geometry around and create real depth on the surface of

the object. Using displacement maps in Blender can be computationally

expensive. However, a few third-party rendering engines have a nice way

of handling displacement maps without the need to heavily subdivide

your mesh.

After you have an unwrapped mesh, the steps to bake a new texture are

pretty straightforward. Create a new image in the UV/Image Editor (Alt+N) at

the size you want the texture to be and just choose the type of texture that

you’d like to bake out from the Bake panel. After you’ve done that, left-click

the Bake button and wait for the texture to be generated.

181 Chapter 8: Giving Models Texture

That said, if you want to use a high resolution sculpt as the basis for a normal

map on a lower-res mesh, you need to do a couple of extra steps to get it to

work properly. The workflow goes something like this:

 1. Model your object using multires and Sculpt mode.

 When you’re done sculpting, you should have a few levels of multires.

 2. Duplicate your object, but don’t move it from its current location

(Shift+D➪right-click).

 It may be helpful to move this copy to another layer to temporarily get it

out of your way (M➪Alt+1).

 3. Select the original object and unwrap it at its lowest multires level.

 It doesn’t have to be the absolute lowest level, but it should be the level

that you intend on rendering and animating with.

 4. Add a new image in the UV/Image Editor (Alt+N).

 This image should be the size of the texture you want to bake to.

 5. Select (right-click) the duplicated, high-resolution version of your

object and then add the low-resolution version to the selection

(Shift+right-click).

 This makes the low-resolution version of the mesh your active object.

 6. In the Bake panel of the Editing buttons (F9), left-click the Selected to

Active button.

 This tells Blender that you want to take the detail of the high-resolution

mesh and bake it as a texture for the low-resolution mesh.

 7. Choose Normals as the type of texture you’d like to bake.

 When you do this, a drop-down menu button appears on the left side of

the panel. The options in this menu let you define the Normal Space that

you would like to bake. The one you want to choose is Tangent.

 8. Left-click Bake.

 When you’re done, you can save your freshly baked normal map to a file

on your hard drive. Done!

Using UV Textures
After you have a bunch of UV textures created, either from painting them

yourself or by baking them from the mesh, you need a way to bring them

back into Blender. This is where Image textures in your Texture buttons (F6)

come in. Figure 8-26 shows the Texture buttons with image textures on two

different channels, one for a color map and another for a bump map.

182 Part II: Creating Detailed 3D Scenes

Figure 8-26:
The Texture
buttons with

two Image
textures
loaded.

The process for adding an Image texture is pretty similar to adding any of the

procedural textures:

 1. Choose Image from the Texture Type drop-down list in the Texture

panel.

 2. In the Image panel, left-click the Load button.

 This opens a File Browser window where you can find the image you

want to load as a texture.

 3. With the image loaded, left-click the Clip button in the Map Image

panel.

 This isn’t a critical step, but it’s something I like to do. Basically, it pre-

vents the image from tiling. Because this is a UV texture, I don’t need it

to tile.

 4. Bring up the Material buttons (F5) and left-click the UV button in the

Map Input panel.

 This tells the material to use your UV layout for texture coordinates to

properly place the texture. Even if the image isn’t the original one you

painted in Texture Paint mode, as long as you painted the texture using

the UV layout as your reference, it should perfectly match your mesh.

 5. In the Map To panel, choose the material attributes you want the tex-

ture to influence.

 If the texture is just a color map, left-click the Col button. If it’s a bump

map, left-click the Nor button, and so on.

 6. Repeat steps 1–5 for each texture channel that you want add a UV

image texture to.

Chapter 9

Lighting and Environment
In This Chapter
▶ Taking advantage of different types of lights in Blender

▶ Setting up effective lighting

▶ Changing the look of your scene with background images, colors, and ambient

occlusion

In terms of getting the work you’ve created in Blender out to a finalized

still image or animation, having your scene’s environment and lighting set

up properly is incredibly important. It goes along hand-in-hand with setting

up materials on your object (covered in Chapter 7) as well as the rendering

process (covered in Chapter 14). Without light, the camera — and by exten-

sion, the renderer — can’t see a thing. You could create the most awesome

3D model or animation in the world, but if it’s poorly lit, it won’t look good.

This chapter covers the types of lights available to you in Blender and details

some of the best practices to use them in your scenes. In addition to lighting

details, I go into setting up the environment in your scene with the settings in

the World buttons. In many ways, these things are what give your scenes that

final polish that make them look good.

Lighting a Scene
Lighting has an incredible amount of power to convey your scene to the

viewer. Harsh, stark lighting can give you a dramatic “film noir” look. Low-

angle lights with long shadows can give you a creepy horror movie feeling,

whereas brighter high-angle lights can make things look like they are taking

place during a beautiful summer day. Or, you can use a bluish light that proj-

ects a hard noise cloud texture and make your scene feel like it’s happening

under water.

184 Part II: Creating Detailed 3D Scenes

Equally important is setting up your environment. Depending on how you

set it up, you can achieve a variety of looks. You can set your scene in an

infinitely large white space, commonly known as “the white void” in film and

television. Or, you can set your environment to place your scene outside

during the day or somewhere on the moon. When you combine good lighting

and a few tricks, you can make your scene take place just about anywhere.

Figure 9-1 shows a pretty simple scene with a few different environment and

lighting schemes to illustrate this point.

Figure 9-1:
Different

lighting con-
figurations
can drasti-
cally affect

the look of a
scene.

Before I get too deep into how all of this is done in Blender, you should

understand some standard lighting setups and terminology. The cool thing

is that most of this information isn’t limited to use in 3D computer graphics,

but it’s actually pretty standard in professional film, video, and still photog-

raphy. In fact, quite a few photographers and directors like to use 3D graph-

ics to test out lighting setups before arriving on set for shooting. (And you

thought you were just making pretty pictures on a computer screen! Ha!)

One of the most common ways to arrange lights is called three-point lighting.

As the name implies, it involves the use of three different sets of lights. It’s

a common studio setup for interviews and it’s the starting point for nearly

all other lighting arrangements. Figure 9-2 shows a top-down illustration of a

typical three-point lighting setup.

Setting up a three-point lighting scheme starts with placing your subject at

the center of the scene and aiming your camera at that subject. Then you set

up your main light, the key light. This is usually the most powerful light in

the scene. It’s where your main shadows come from as well as your brightest

highlights. Typically, you want to set this light just to the left or just to the

right of your camera and you usually want it to be higher than your subject.

This is to ensure that the shadows fall naturally and you don’t get that creepy

flashlight-under-the-chin look that your friends used for telling scary stories

around the campfire.

185 Chapter 9: Lighting and Environment

Figure 9-2:
A typical

three-point
lighting

setup.
 Fill

Key

Back

After your key light is established, the next light you want to place is the fill
light. The purpose of the fill light is to brighten up the dark parts of your sub-

ject. See, the key is great for putting shadows on your subject, but without

any other light, the shadows are stark black and they obscure your subject.

Unless you’re aiming for a dramatic lighting effect, this is not what you nor-

mally want. The fill light tends to be less powerful than the key, but you want

it to have a wider, more diffuse throw. The throw is the radius of space that

the light reaches. For instance, a flashlight has a narrow throw, whereas

fluorescent lights throw light wider. You want this wide throw on your fill

because it reduces the amount of highlight generated by this light. You don’t

want highlights from your fill to compete with the highlights from your key.

As far as placement goes, you normally want to place your fill on the oppo-

site side of the camera from the key and roughly at the same height as your

subject.

186 Part II: Creating Detailed 3D Scenes

 Here’s a good way to figure out a good place to position your fill light. Draw an

imaginary line from your key light to your subject. Now, with your subject as

the pivot point, rotate that line 90 degrees. When you do that, the line points

right where you should place the fill.

The last light in a three-point lighting configuration is the back light or rim
light. This light shines at the back of your subject, creating a small edge of

light around the profile. That sliver of light helps separate your subject from

the background and serves as the nice little bit of polish that often separates

a mediocre lighting setup from a really good one. Now, I’ve sat through long

discussions about the best way to position a back light (yes, my friends are

nerds, too). Some people like to make it directly opposite from the key light.

This works well, but sometimes the light rim competes with the key’s high-

lights. Other people prefer placing it opposite to the camera. This, too, is a

good way to go, but if the subject moves, you risk the possibility of blinding

the audience. And yet another group of people recommend placing the back

light opposite to the fill. This can create a nice rim of light that complements

the key, but it can also look a bit unnatural.

As you can see, everything is a trade-off when it comes to lighting. And don’t

even get me started on whether the back light should be above or below the

subject! In fact, the only really consistent thing that people agree on is that

the light should generally point toward the subject. So the bottom line is that

the best course of action is to play around with your back light and see for

yourself where you get the best results. As for the power and throw of the

back light, you typically want to use a back light that is less powerful than

your key so things appear natural. The throw can vary because the high-

lights are all on the opposite side of your subject. I personally like to keep it

narrow, but a wide throw can work nicely for large scenes.

That’s basic three-point lighting for you. It works well in computer graphics

as well as the “real world” and it’s the starting point for most other lighting

configurations. Lower the angle of your key to make your subject creepy.

Remove or reduce the power of your fill and back lights to get more dramatic

shadows. Place your key behind your subject to get a mysterious or romantic

silhouette. Add additional lights pointing away from your subject to light the

rest of the environment. And that’s just the tip of the iceberg!

Knowing when to use which type of lamp
After you’re familiar with the basic principles of three-point lighting, you can

use the knowledge to light your scenes in Blender. To add a new light, use

spacebar➪Add➪Lamp and you see the menus shown in Figure 9-3.

187 Chapter 9: Lighting and Environment

Figure 9-3:
Adding a

lamp in the
3D View.

The Lamp menu offers you the following types of lights to choose from:

 ✓ Lamp: This is often referred to as a point light or an omni light, mean-

ing that the light is located at a single point in space and emanates in

all directions from that point. The default scene when you first load

Blender has a single light of this type in it. This is a good general pur-

pose light, but I prefer to use it as secondary illumination or as a fill

light.

 ✓ Sun: The Sun lamp represents a single universal light that comes from

a single direction. Because of this, the location of the Sun lamp in your

scene doesn’t really matter, just the orientation. This type of light is the

only one that affects the look of the sky and is well suited as a key light

for scenes set outdoors.

 ✓ Spot: In many ways, the Spot is the workhorse of CG lighting. It works

quite a bit like a flashlight or a theater spotlight and, of all the light

types, it gives you the most control over the nature of the shadows and

where light lands. Because of this control, spots are fantastic key lights.

 ✓ Hemi: A Hemi lamp is very similar to the Sun lamp in that it doesn’t

matter where you place the lamp in your scene. It’s orientation is the

most important aspect of it. However, because it’s treated as a full

hemisphere of light around the scene, lighting from a Hemi tends to be

softer and flatter than the Sun. Hemis are also the only Blender light that

cannot cast shadows. I like using them for fills and back lights. They’re

also handy for outdoor lighting.

 ✓ Area: Area lights are powerful lights that behave similar to Spots; how-

ever, the shadows tend to be softer and more accurate because they’re

based on having a grid of lights to work with. Because of this, they work

well for key lights, but because they tend to take more time to process,

you should use them sparingly.

188 Part II: Creating Detailed 3D Scenes

Figure 9-4 shows what each light type looks like in the 3D view.

Figure 9-4:
From left to
right, Lamp,

Sun, Spot,
Hemi, and

Area lights.

Universal lamp options
When you’ve chosen a type of lamp and added it to the scene, the controls

to modify these lamps are in the Lamp buttons, which are a subcontext of

the Shading buttons. Pressing F5 with a Lamp selected automatically brings

up the Lamp buttons. With a couple of exceptions, all of the lamps share a

few of the same controls and panels in this window. Figure 9-5 highlights the

options that are universal for nearly all lights.

Figure 9-5:
Panels and

options
available

for all lamp
types.

One of the really cool things about Blender’s lamps is that you can instantly

change lamp types whenever you want. Simply right-click the lamp you want

to work with and choose the type of lamp you would like it be in the Preview

panel. This is a great feature for quickly sorting out the type of light you want

to use. You can test out different lighting schemes without having to clutter

the scene with a bunch of extraneous lights that you have to move to other

layers or hide.

189 Chapter 9: Lighting and Environment

The Energy value and RGB sliders control the strength and color of the lamp. I

rarely set the Energy to a value greater than 1.0, but when you need it, it’s handy

to have the option. And of course, if you’d rather not use the RGB sliders, you

can left-click the color swatch beneath them and use Blender’s color picker.

The Dist value is visible for all light types, but it only really has any meaning

for the Lamp, Spot, and Area lights. The value is in Blender units and, if an

object is farther away from the light than that distance, it receives no light.

For each of the light types, there’s an indicator that defines the range of this

value. For the Area light, it’s a line pointing in the direction that the light is

facing. For the Spot, it’s the length of the cone. For the Lamp, there is no indi-

cator on by default, but if you left-click the Sphere button in the Lamp panel,

a dashed circle appears to indicate the distance of the Lamp’s throw.

 Be careful when enabling the Sphere button on the Lamp. It subtly changes

how the light works. With Sphere enabled, light coming from the Lamp starts

to weaken, or attenuate, starting at the light’s location, so by the time it gets

to the Dist value, no light is available. However, if you have Sphere disabled,

that attenuation doesn’t start until you actually reach that Dist value, so you

have a farther throw. Having Sphere enabled makes the light behave more like

it would in the real world (or, as I like to say, meatspace), but it’s often more

convenient to keep it disabled.

With the exception of the Hemi light, each light has the option of using ray-

tracing to cast shadows. This is enabled in the Shadow and Spot panel by

left-clicking the Ray Shadow button and is the default behavior for new lights.

Know, however, that using raytraced shadows can drastically increase your

render times. The next section goes more deeply into some techniques for

optimizing your lighting to try to deal with that. However, if you do want to

use raytraced shadows, you should be aware of a few options:

 ✓ QMC Sampling Types: You generally have the choice between Adaptive

QMC and Constant QMC. QMC stands for Quasi-Monti Carlo, and is an

algorithm for taking random samples. Generally speaking, the Adaptive

QMC setting should give you faster render times.

 ✓ Soft Size: This controls how blurry the edge of your cast shadows are.

The higher the value, the blurrier the shadow. However, with only one

sample (the next option) the shadows will not blur that much. Blurry

shadows require more shadows.

 ✓ Samples: This dictates how many samples the raytraced light uses.

Increasing this value increases the accuracy of the shadows at the

expense of longer render times.

 ✓ Threshold: This option is only available when you choose the Adaptive

QMC sampling type. It basically helps the renderer decide which sam-

ples to use and which ones to ignore. A higher Threshold value shortens

your render times, but may decrease the accuracy of your shadows.

190 Part II: Creating Detailed 3D Scenes

 ✓ Shadow color: Left-click this swatch to get a color picker for selecting

the color of your cast shadow.

 Without getting too deep into all of the crazy mathematical details,

understanding QMC requires knowing a little bit more about how raytracing

works. In Chapter 7, I give a brief description of raytracing that said it’s done by

tracing each and every vector of light bouncing from the light source(s) to the

camera. This is somewhat over-simplified. Tracing every single vector would take

an incredibly excessive amount of time. In order to get around that, program-

mers decided to take a sampling of those vectors and approximate everything

in between them. To make the best use of these samples, they first tried just

randomly picking them. The problem with this, though, is that raw random

selection doesn’t give consistent or accurate results. Samples may or may

not be where they’re most useful. So to accommodate that, they decided that

samples could be random, but they should be evenly dispersed. This is basically

Constant QMC. Of course, the downside to constant QMC is that you still might

be taking samples from parts of the scene that don’t need very many. If you can

stay random, but have more of the samples taken from busier parts of the scene,

you might get better performance. This is the logic behind Adaptive QMC.

Like with materials for objects, you can also apply textures to your lights and

apply them to the lamp’s color, it’s shadow’s color, or both. This is a great

way to use lighting to enhance the environment of your scene or to fake cer-

tain lighting effects that are typically only achievable with raytracing. One

specific example are caustic effects. If you have some free time, take a glass of

water and shine light through it. Due to the refractive nature of the glass and

the water, you usually see a strange light pattern on the table near or around

the glass. This is an example of caustics and, if you don’t need 100% accu-

racy, you can fake it with a noise texture on a spot light. On a larger scale,

caustics are what make the cool moving patterns you can see on the bottom

of a swimming pool.

Light-specific options
As you can see in Figure 9-5, the Lamp light type has options that are avail-

able on nearly every other light type but doesn’t have much in the way of

unique controls. The same could actually be said of the Hemi light. In fact, it

has fewer controls because Hemis can’t cast shadows. However, the remain-

ing three lights have some interesting options that allow you to optimize

their usage to meet your needs.

Sun
The Sun lamp, in particular, is a lot more useful in Blender 2.48 because it

has the ability to behave more like the real sun. It’s the only type of light that

Blender has that influences the look of the sky and even provides some atmo-

spheric effects. You control this lamp with the Sky/Atmosphere panel that

appears in the Lamp buttons. By default, both the Sky and Atmosphere but-

tons are disabled, but you can turn them on with a left-click. Figure 9-6 shows

the panels and options for the Sun light type.

191 Chapter 9: Lighting and Environment

Figure 9-6:
Lamp

buttons for
the Sun light

type.

When you enable the Sky button, you get the set of buttons that control how

the Sun lamp influences the sky background. The first thing you may want

to do is make the Sun visible. Doing this requires that you increase the Sun

Bright and Sun Size values. Now if you try to render your scene, you may

not see the Sun in your sky, even if you’ve placed the Sun lamp within your

camera’s view. This is because, if you recall, the position of the Sun lamp is

irrelevant to how it lights the scene. Only its orientation is important. So if

you want to see your Sun, you may have to angle the camera up and more

skyward. You also have to rotate the lamp so it points in the opposite direc-

tion that the camera’s pointing.

Now, when you look at the sky on a clear day — the real sky outside; you

know, in the for-really-real world — you may notice that it’s naturally lighter

near the horizon and gets darker as it moves farther from the horizon. The

Hor Bright and Hor Spread values are what you use to recreate and control

this effect in Blender. At the top of the panel is the Turbidity value. Keep this

at a low value for clear day skies and increase it for more foggy, overcast

skies.

When you enable the Atmosphere button, you get some buttons that control

the Sun’s influence on how the air in your scene looks from a distance. These

options are best suited for cases where you have a wide camera shot that

shows off a large portion of your set’s environment. There’s really no good

way to preview the effects of these values other than to do test renders.

Here’s a quick guideline to help understand what each one does, though:

 ✓ Sun Intens: Increasing this value makes objects in the distance bluer,

mixing with the natural sky color.

 ✓ Inscattering: Increasing this value makes the light appear to scatter

more between the camera and the objects it’s pointing at. Set this to 1.0

for the most physically accurate results.

 ✓ Extinction: Lower numbers for this option reduce the amount of detail

the light brings out in your objects. Like inscattering, having this set to

1.0 gives you the most physically accurate results.

 ✓ Distance: This setting is similar to Extinction, except it controls how

much detail you see as you get closer to the camera. At low values,

everything can be seen. As you increase the value, the light becomes yel-

lower and distant objects become more and more like silhouettes.

192 Part II: Creating Detailed 3D Scenes

Spot
When working with Spot lights, you have the option of two different ways to

cast shadows: raytraced and buffered. The simplest way to know the differ-

ence between the two is to know that, generally speaking, raytraced shadows

are more accurate whereas buffered shadows render faster. Regardless of

which type of shadows you decide to cast (if you decide to have this lamp

cast shadows at all), a couple of settings are always available for Spots:

 ✓ SpotSi: Spot Size. This controls the width of the Spot’s throw, measured

in degrees. So a value of 180 is completely wide, whereas a value of 30

gives you a narrower cone. Unless I’m doing something special, I like to

start with my Spots around 60 degrees.

 ✓ SpotBl: Spot Blur. This controls the sharpness of the edges at the

boundary where the Spot’s cone of influence ends. Lower values give

you a crisp edge, whereas higher values soften it, making the light

appear somewhat more diffuse.

 ✓ Halo: Enabling this button allows the renderer to show the full cone of

light generated by the Spot. This is called volumetric light. You see this

effect when you use a flashlight in a dusty room or when you want the

“sunbeams from the sky” effect.

 ✓ HaloInt: Halo Intensity. This value has no influence unless you enable

the Halo button. If you do have Halo enabled, increasing this value

increases the intensity, or brightness, of the volumetric halo effect.

 ✓ Square: Enable this button if you would prefer the Spot light to come

from a square source rather than a round one.

If you decide to use buffered shadows rather than raytraced ones, the

options in the Shadow and Spot panel change. All of the raytraced shadow

controls — QMC sampling, Soft Size, Samples, and Threshold — are replaced

with a somewhat more involved set of options. The reason for this is because

buffered shadows are more of an image-based process than the raytracing

method. This means that there are more ways to control how the shadows

look because you’re no longer constrained by the limits of reality. Figure 9-7

shows the Lamp buttons for a Spot lamp with buffered shadows.

Figure 9-7:
Lamp

buttons for
a buffered
Spot lamp.

193 Chapter 9: Lighting and Environment

Trying to sort out all of these controls can be daunting. However, the following

values are the most important ones that you should know about:

 ✓ ShadowBufferSize: Buffered shadows is an image-based technique.

The Shadow Buffer Size is the resolution of the image used to create the

shadows. Lower values work faster, but look more jagged.

 ✓ Samples: If you increase this value, Blender creates multiple versions

of the shadow buffer and mixes them together to get smoother shadow

edges. This increases render times, but if you want soft shadows with

blurry edges, more samples make it look better.

 ✓ Halo Step: This value only has an effect if you have the Halo option

enabled. Adjusting it controls your volumetric shadow, or how much of

the volumetric effect your object blocks. Higher values render faster, but

are less accurate. Setting it to one gives you the best, albeit the slowest,

results. However, setting it to zero means that there is no volumetric

shadow, so you have the volumetric cone, but your object won’t block it

at all.

 ✓ Bias: Normally you can leave this value at its default setting. It offsets

the shadow from where it connects to the shadow-casting object.

Occasionally, you may get some weird jaggies or artifacts in your shad-

ows. Increasing the Bias can help get rid of those artifacts. If you do

have to adjust the Bias, adjust it only as low as it can go before artifact-

ing. Otherwise, your shadows will begin to look very unnatural.

 ✓ Soft: Increasing this value makes your shadows softer and blurrier. To

use this setting effectively, make sure you have a Samples value greater

than one. And at the same time, you get the best results by not setting

the Soft value higher than double your Samples value. So at the default

Samples setting of 3, you should keep your Soft value below 6.

 ✓ ClipSta/ClipEnd: Clip Start and Clip End. Consider these values as a sec-

ondary control in addition to the Dist value. Objects that appear within

these two values, indicated by a line on the Spot lamp in the 3D View,

cast shadows, whereas objects outside of this range do not. Keeping the

Clip values as close to your shadow-casting objects as possible gives

you the most accurate results. If you don’t want to adjust these values

manually, left-click the car (automobile) icon next to either one. Blender

automatically sets the clip values to include objects within the Spot’s

cone.

 ✓ SampleBuffers: It’s easy to misunderstand the usefulness of this set-

ting and confuse it with the normal Samples setting. In essence, it basi-

cally does the same thing. However, this was added to Blender with the

specific purpose of helping render hair and fur more effectively. Higher

values give you better results, but at the cost of using more system

memory when rendering. Unless you’re rendering hair or fine detail,

keep this set to one.

194 Part II: Creating Detailed 3D Scenes

Area
Area lamps are very similar to Spots, except unlike Spots, which can use

both buffered and raytraced shadows, Area lamps can only use raytracing

for creating shadows. This makes the shadows generally smoother and more

accurate; however, they can increase your render time dramatically. Figure

9-8 shows the panels and options for Area lights.

Figure 9-8:
The Lamp

buttons for
Area lights.

The way an area light works is pretty simple. Imagine that at the lamp’s loca-

tion, you don’t have a single light, but instead you have a grid of lights and

you can control the width and height of this grid as well as the number of

lights in it. This means you have even more control over your lamp’s throw.

To control the dimensions of your Area lamp, use the Size value in the

Lamp panel. This size is measured in Blender units and, by default, controls

both the width and the height of the Area lamp. You control the number of

lights in the Area lamp by adjusting the Samples value in the Shadow and

Spot panel. Because the default shape of the lamp is a square, increasing

the number of samples gives you the square of the sample value. So setting

Samples to 3 creates 9 lights in the grid, and setting it to 5 creates 25 lights in

the grid.

If you would rather have a rectangular Area lamp, left-click the drop-down

menu above the Size button and change the shape from Square to Rect. When

you do this, the Samples value changes to SampleX and SampleY, giving

you control over the number of horizontal and vertical lights you have on

your Area light’s grid. The total of lights you have in the grid is the value of

SampleX multiplied by the value of SampleY. Figure 9-9 shows an illustration

of how the lights are arranged in square and rectangular Area lamps.

 When working with Area lights, remember that you actually have multiple

lights arranged on the lamp’s grid. This can make an Area light with an Energy

of 1.0 excessively bright. So if you use an Area lamp, try a much lower Energy

value. I usually drop it down 0.050 and use that as my starting point.

195 Chapter 9: Lighting and Environment

Figure 9-9:
Light

arrange-
ment on a

square (left)
and rectan-
gular (right)

Area light.
 Square Rectangle

Lighting for Speedy Renders
I haven’t yet talked about six buttons in the Lamp buttons: I like to refer to

them as my “cheat buttons” because they’re incredibly useful for achieving

lighting effects that are difficult or impossible in the real world. The functions

that these buttons control are really what makes lighting in 3D computer

graphics so powerful. More often than not, if you use them effectively, they

can speed up your render times without having a negative effect on the overall

quality of your image. Figure 9-10 highlights these buttons in the Lamp buttons.

Figure 9-10:
The “cheat
buttons” in

the Lamp
panel and

the Shadow
and Spot

panel.

Descriptions of the function of each button are below:

 ✓ Layer: Enabling this button makes the light illuminate only the objects

that are on the same layer as the light. In real-world lighting, technicians

do a lot of work to hide or mask out some lights, so they only shine on

certain parts of the scene. For instance, you may want to brighten up the

environment without making the lighting on your characters any brighter.

You don’t have to mask anything out: You just enable the Layer button

and make sure your characters aren’t on the same layer as the light.

196 Part II: Creating Detailed 3D Scenes

 ✓ Negative: Turning on this button enables what is, in my opinion, one of

the coolest capabilities in CG lighting, inverting the light’s output. What

this means is that you can basically shine darkness on your scene! This

is impossible to do in meatspace and it opens the door to all sorts of

interesting possibilities. If part of your scene is too bright or you want to

have deeper shadows, don’t play with adjusting the Energy of your lights

or increasing the Samples for your shadows. Just shine some darkness

on the area with a negative light!

 ✓ No Diffuse: Sometimes when you’re lighting, you want to have fine con-

trol of your highlights, but you don’t want to change the basic illumina-

tion of the scene. If you turn off shadow casting for the light and enable

this button, you basically have a specular highlight that you can move

around your subject at will. This is not a commonly used feature, but

having it available has certainly made my life easier on more than one

occasion.

 ✓ No Specular: Earlier in this chapter, I explain that in three-point light-

ing, you want to reduce the highlights produced by the fill so they don’t

compete with the key’s highlights. Meatspace lighting technicians often

attempt to do this by diffusing the fill as much as possible. In Blender,

you don’t have to go through the trouble. You can just turn off the

lamp’s specular highlights altogether by left-clicking this button. Pretty

sweet, huh?

 ✓ OnlyShadow/Layer: Enabling this option allows your lamp to cast shad-

ows without adding any additional light to the scene. The best reason

why you’d want to do such a thing is to reduce render times by using

buffered Spots for shadows while using other lights without shadows for

your main illumination. The Layer button just beneath this works like

the Layer button in the Lamp panel, but only relates to shadows.

 Any object — even lights — can exist on multiple layers. This dramati-

cally increases the power of layer-only lights and shadows. With the object

selected, press M to bring up the layer selection pop-up. To place your object

on more than one layer, Shift+left-click the layer buttons you want it on.

I often tell people that when it comes to computer graphics, if you’re not cheat-

ing or faking something, you’re probably doing it wrong. I say this because

even though you can get great results by using raytraced shadows everywhere

with the highest number of samples, this all comes at the expense of high

memory usage and lengthy render times. So your scene may look perfect, but

if you’re taking 16 hours to render every frame in an animation, you could be

rendering for a month and not even have two seconds of it done.

A large part of being a CG artist is doing everything you can to reduce the

amount of work that needs to be done by both you and the computer while

still creating high-quality images. You don’t want to be old and gray by the

time your first animation is complete. This is why CG artists worry so much

about keeping their render times as short as possible and why they use func-

tions like these to cut corners where they can.

197 Chapter 9: Lighting and Environment

Three-point lighting in Blender
As I mentioned at the beginning of the chapter, my preferred lighting rig in

Blender usually starts with a three-point lighting setup. This is what I nor-

mally start with:

 ✓ Key: A buffered Spot works well as the key light. Keep all settings at their

default values except for the Spot Size and Clip range. Set the Spot Size to

60 and activate the auto icons for the Clip Start and Clip End values.

 ✓ Fill: Typically, this is a Hemi with an Energy of 0.5 and the No Specular

button enabled in the Lamp panel.

 ✓ Back: Also a Hemi, but the Energy is usually between 0.75 and 1.0 to get

a nice rim light. The lamp is behind the subject, so specularity doesn’t

matter as much, but just to make sure it doesn’t complete with the key’s

spec, I normally enable the No Specular button on this light as well.

Figure 9-11 shows what this three-point rig looks like. This is a good setup for

“studio lighting” and it works really well for scenes set indoors or for lighting

isolated objects.

Figure 9-11:
A standard
three-point
lighting rig.

Creating a “fake” Area light
with buffered Spots
Using a buffered Spot as your key works nicely, but an Area light can usually

give you softer shadows. However, Area lights can only use raytracing for

shadows, and you have somewhat limited control of the Area light’s shape

because it can only be a flat square or rectangle. To get around these limita-

tions, you can actually be creative with buffered Spots and use them to make

198 Part II: Creating Detailed 3D Scenes

your own Area light. To do this, start with the three-point rig in the last

section and then go through the following steps:

 1. Create a circle mesh (Spacebar➪Add➪Mesh➪Circle).

 Set the number of vertices to 8, set the radius to 2.0, and enable the Fill

button.

 2. Add the Spot to your selection, making it the Active object.

 Adding the circle should have made it selected by default, so all you

should have to do is Shift+right-click the buffered Spot you’re using as

your key.

 3. Copy the location and rotation of the Spot to the circle object

(Ctrl+C➪Location, Ctrl+C➪Rotation).

 This should place the circle in the same place as the Spot with the same

orientation.

 4. Make the circle your Active object (Shift+right-click).

 This keeps both the Spot and the circle selected, but now the circle is

active.

 5. Parent the Spot lamp to the circle (Ctrl+P➪Make Parent).

 Now if you just have the circle selected and try to move it around, the

Spot follows.

 6. Turn on Dupliverts for the circle (F7➪Anim settings➪Dupliverts).

 Dupliverts are a cool part of Blender. When you have an object parented

to a mesh, activating Dupliverts on the mesh object places a copy of the

child object at every vertex on the parent.

 7. Congratulations! You now have an Area lamp created by buffered

Spots arranged on a custom shape.

 Now you can select your Spot and adjust its settings to taste. I typically

use the following settings as my starting point:

 • Energy: 0.200

 • SpotBl: 1.000

 • Samples: 8

 • Soft: 16.00

 • ClipSta/ClipEnd: These values may need to be manually adjusted to

make sure the shadow appears properly.

Figure 9-12 shows the basic three-point lighting rig above with a circular Area

light created with buffered spots.

199 Chapter 9: Lighting and Environment

Figure 9-12:
Using

Dupliverted
buffered
Spots to
create a
buffered

Area light.

Outdoor lighting
What if you have a large scene or your scene is set outdoors? The limited

lighting cone of a single Spot or Area light makes it difficult to illuminate the

whole scene in a believable way. For this, I usually bounce between one of

two solutions. Both of them involve the Sun lamp. The easiest solution to

implement is to change the buffered Spot into a Sun with raytraced shad-

ows. This is a nice way to go because you get shadows for all objects in your

scene and, with the sky and atmosphere settings, you can get a really believ-

able result. That said, lighting your scene this way brings two disadvantages.

First, it uses raytracing for your shadows, so that can increase your render

times if you’re not careful. And second, because the Sun illuminates the same

everywhere, you don’t have as much control over individual shadows. An

alternative situation is to use the Sun for full scene lighting and atmosphere,

but leave the shadow creation to the Spot light. To do this, begin with the

basic three-point lighting rig above and proceed with the following steps:

 1. Add a Sun lamp (Spacebar➪Add➪Lamp➪Sun).

 I like to put the Sun at the center of the scene (press Shift+C to put the

3D cursor at the center before adding the Sun).

 2. Add the buffered Spot to your selection (Shift+right-click).

 The newly added Sun should be selected by default. Shift+right-clicking

the Spot also selects it and makes the Spot light the Active object.

200 Part II: Creating Detailed 3D Scenes

 3. Copy the Spot light’s rotation (Ctrl+C➪Copy Rotation).

 Now light from the Sun is coming from the same direction as the Spot.

Location for the Sun is irrelevant.

 4. Make the Spot light a shadow-only light (F5➪Shadow and Spot➪
OnlyShadow).

 5. Disable shadows on the Sun by selecting the Sun (right-click) and then

disabling raytraced shadows by left-clicking the Ray Shadow button in

the Shadow and Spot panel.

 Done! If you have other objects in your scene that need shadows, make

a linked duplicate (Alt+D) of your shadow-only spot and position the

duplicate by Grabbing (G) it to the correct location.

Figure 9-13 shows an outdoor lighting rig with a shadowless Sun and shadow-

only buffered Spots.

Figure 9-13:
An outdoor
lighting rig

with the
lights all

selected.

Setting Up the World
When you set up your scene for rendering, lighting is really only part of the

equation. You must also consider your scene’s environment. For instance,

are you outdoors or indoors? Is it daytime or nighttime? What color is the

sky? Are there clouds? What does the background look like? These are con-

siderations you have to make when thinking about the final look of your

image. Fortunately, nearly all of the controls for setting up your environment

are in the World buttons (F8), shown in Figure 9-14.

201 Chapter 9: Lighting and Environment

Figure 9-14:
The World

buttons.

Changing to something other
than bright blue
If you’ve worked in Blender for a while and gotten a few renders out, you

might be pretty tired of that incredibly bright blue background color that

the renderer uses by default. Here’s where you change that color: Look in

the World panel of the World buttons. The left color swatch sets the horizon

color. You can adjust it by using the RGB sliders below it or by left-clicking

the swatch and using the color picker.

 To the right of the horizon color is the zenith color. You may notice that trying

to change this color doesn’t seem to affect the background color at all. This is

because, by default, Blender is set to use only the horizon color, so you end

up with a solid color as the background. To change this, left-click the Blend

button in the Preview panel. When you do this, the Preview should show a

linear gradient that transitions from the horizon color at the bottom to the

Zenith color at the top. If I’m doing a render where I just want to see a model

I’ve created, I often use this setup with my horizon color around 50% gray and

my zenith color nearly black.

Of course, the next question you might have is, “Okay, so what do the other

two buttons in the Preview panel do?” I’m glad you asked. You can actually

activate any combination of these buttons. Here is a description of what each

button does when enabled:

 ✓ Blend: Enables a gradient going from the horizon to the zenith. When

enabled by itself, the horizon is always at the bottom of the camera view

and the zenith is at the top. This is good for when you want to have a

static background that doesn’t change based on the camera’s orientation.

 ✓ Paper: You typically use the Paper setting with both Blend and Real

also enabled. It keeps the horizon at the center of the camera, no matter

where it’s pointing. It also adjusts the gradient to make sure that the full

zenith color is visible as well as the full horizon color.

 ✓ Real: Enabling Real sets the horizon to the XY ground plane and the

gradient moves in the opposite direction to the zenith color. A bonus to

202 Part II: Creating Detailed 3D Scenes

this is that, because the horizon is locked to the XY ground plane, the

gradient rotates with the camera, giving a much more realistic feeling

to the background. I’m very fond of this setting, especially if I’m using a

texture in the background.

Figure 9-15 shows a simple scene rendered with the various combinations of

the Blend button enabled with the other two buttons so you can get a better

idea of what they do.

Figure 9-15:
Ways to

control the
Blend gradi-
ent and the

horizon.

Understanding ambient occlusion
Take a look outside. Now, hopefully it’s daytime or this isn’t going to work,

but notice how much everything seems to be illuminated. Even on a bright

sunny day, the deepest shadows aren’t completely black. The reason for this

is that light from the sun is basically bouncing off of every surface many times,

exposing nearly all objects to at least some amount of light. In computer

graphics, this phenomenon is often referred to as global illumination, or GI,

and it’s pretty difficult to recreate efficiently. As you may have guessed, the

biggest reason for this is the “light only bounces once” rule that I talked

about at the beginning of Chapter 7.

Another reason, which goes hand-in-hand with this one, is that all this

bounced light also actually makes subtle details, creases, cracks, and wrin-

kles more apparent. At first, this may seem like a paradox. After all, if light is

bouncing off of everything, intuitively, it would make sense that everything

should end up even brighter and seem flatter. However, remember that not

only is the light bouncing off of everything, but it is also casting small shad-

ows from all the weird angles that it bounces from. This is what brings out

those minor textural details.

The GI effect is most apparent outdoors on overcast days where the light

is evenly diffused by cloud cover. However, you can even see it happening

in well-lit rooms with a high number of light sources (think about an office

building with rows and rows of fluorescent lights lining the ceiling). Now, you

can somewhat fake this effect by using a Hemi lamp, but the problem with

Hemis is that they don’t cast shadows, so you don’t get that nice added detail

that you GI gives you.

203 Chapter 9: Lighting and Environment

The bad news is that Blender’s internal renderer doesn’t actually have a

“true” global illumination capability. You can use radiosity to do it, but it’s

a bit slow, unwieldy, and it’s not really designed for that purpose. The good

news, however, is that Blender does have a great way of approximating the

GI effect. It’s done with a feature called ambient occlusion or AO. Often called

“dirty GI” or “dirt shader,” AO basically looks for the cracks, creases, and

small details in your object and makes them more apparent by making the

rest of the model brighter, making the details darker, or a combination of

the two. To enable AO, go to the Amb Occ panel in the World buttons (F8).

Blender gives you two ways of calculating AO: as an approximation or with

raytracing. Figure 9-16 shows the Ambient Occlusion panel with the options

for approximate AO and raytraced AO.

Figure 9-16:
The Ambient

Occlusion
panel in the

World
buttons with

raytraced
AO options

(left) and
approximate

AO options
(right).

 If you’re going to use raytraced AO, make sure you have the Ray button

enabled in the Render panel of the Render buttons (F10).

As Figure 9-16 shows, most of the controls in raytraced and approximate AO are

the same. Below is a description of the options available for both types of AO:

 ✓ Use Falloff: This option controls the size of the extra shadows that the

AO creates. When you enable it, a value field appears below the button.

Setting this value to higher numbers makes the shadows more subtle.

Note that for this option to work, you must have the Plain button enabled.

 ✓ Add/Sub/Both: With these buttons, you can control how the AO creates

the shadows. Enabling the Add button brightens the rest of the object,

making the details apparent by simply staying their own color. Enabling

the Sub button darkens the detailed areas while keeping the object’s

original shading. If you enable both, the details tend to really pop out,

but occasionally they pop too much. However, if you increase the Falloff

value, that can help mitigate the situation.

204 Part II: Creating Detailed 3D Scenes

 ✓ Plain/Sky Color: These buttons control the source color for the diffuse

energy used by AO. Setting it to Plain means the diffuse energy is just

white light. Setting it to Sky Color uses the horizon and zenith colors to

provide the diffuse energy. Also, if you’re using raytraced AO, there is an

additional option to use the sky texture for AO’s diffuse energy.

 ✓ Energy: This the energy for the AO effect. The effect created by the Add

and Sub buttons is multiplied by this value. Usually it’s a good idea to

keep this at 1.0.

 Another setting that you may want to adjust is the Ambient color value in the

World panel. You can change it by adjusting its RGB sliders or by left-clicking

the swatch and using the color picker. The Ambient color adds itself to the

overall color of the scene. I don’t normally advocate setting the Ambient

color to anything other than black because it has a tendency to wash out the

shading in the scene under most circumstances. However, when you use the

Ambient color with ambient occlusion enabled, the shading isn’t washed out

as much and you actually end up with a more believable image.

The other values for raytraced and approximate AO are there for refining

and optimizing how they work. If you read about raytraced lights earlier in

this chapter, the settings for raytraced AO should be pretty familiar. I recom-

mend using Adaptive QMC for raytraced AO because it typically yields faster

results at good quality. Using the other sampling types usually gives you a

noisier, or more speckled, result.

When choosing between raytraced and approximate AO, there are a set of

trade-offs to keep in mind. As you might expect, raytraced AO gives you

more accurate results, but it usually takes longer to process. Approximate

AO works very fast and doesn’t suffer the noise problem that you get with

raytraced AO. Of course, some people actually prefer that noisy grain that

raytraced AO gives, and approximate AO is a bit more error-prone in creating

its shadows, especially where things touch. So it may take some additional

time to set things up so that they look believable. Both techniques offer

advantages and disadvantages. You have to weigh them for yourself and see

which works best for your projects. I personally prefer approximate AO for

the short render times. Figure 9-17 shows the same scene rendered with both

types of AO, as well as without any AO at all.

205 Chapter 9: Lighting and Environment

Figure 9-17:
From left to

right, with
their render

times:
no AO,

raytraced
AO, and

approximate
AO.

Mist, stars, and sky textures
The other tab next to the Ambient Occlusion panel is the Mist/Stars/Physics

panel. These settings are somewhat primitive in terms of what they actually

do, but they can be pretty handy in a pinch for creating nice atmospheric

effects and quick backgrounds. Figure 9-18 shows the Mist/Stars/Physics

panel.

Figure 9-18:
The Mist/

Stars/
Physics

panel.

Mist
Blender’s Mist works by taking objects as they go into the distance and

decreasing their opacity so that they mix more with whatever the back-

ground image or color is. To use it, left-click the Mist button in the Mist/

Stars/Physics panel. From here, you can adjust the Start and Dist values.

Start defines how far away from the camera the mist starts to take effect. Dist

is the distance from the Start value that the mist effect is at 100%. Anything

farther away from the camera than this now shows up in the render.

206 Part II: Creating Detailed 3D Scenes

 These values are in Blender units, but it can be difficult to know intuitively

where they actually fall in the scene, relative to your camera. Fortunately,

there’s a way to see this visually. Select (right-click) the camera and switch to

the Editing buttons (F9). On the right side of the Camera panel are four but-

tons under the label of Show. Left-click the Mist button. When you do this, a

line should appear extending from your camera. If you switch back to the

World buttons (F8) and adjust the Start and Dist values, you can now see

exactly where the mist region of influence is. Figure 9-19 shows a scene in the

3D view with a camera that has its mist limits visible.

Figure 9-19:
A camera
in the 3D

view with its
mist limits
visible. To
the right is
a render of
that scene.

The Quad, Lin, and Sqr buttons control how the mist gets thicker from start

to finish. Quad tends to be a more subtle effect, whereas Sqr tends to make

the mist thicker faster. If you want to limit the mist to a certain height, like

when you see an early morning mist in a field, adjust the Height value. Like

the other values, this is set in Blender units and works relative to the XY

ground plane. The Mist value increases the mist’s intensity. Be careful with

this setting. Putting it too high hides your entire scene from you.

Stars
Blender’s Stars feature is a quick way of adding star-like halos to your scene.

You enable it by left-clicking the Stars button in the Mist/Stars/Physics panel.

There aren’t very many controls for stars, but they can definitely have an

effect on how the stars appear. One thing to bear in mind is that Blender cre-

ates these stars in 3D space. They actually have a physical location and they

aren’t just a randomly generated speckled background. Descriptions of each

option are as follows:

 ✓ StarDist: This is the average distance between stars. Stars are randomly

placed in the background, but this controls how dense the star field is.

 ✓ MinDist: This value controls the minimum distance that stars can be

from the camera. Unless you want stars to show up in front of some

objects in your scene, this value should be larger than the distance

between the camera and the farthest object away from it.

207 Chapter 9: Lighting and Environment

 ✓ Size: Size controls the size of the stars. Like StarDist, this is an average

value. For realistic stars, use a relatively small Size value.

 ✓ Colnoise: Increasing this value colors the stars randomly. Setting this to

its maximum value makes your scene look a bit like a piñata exploded

in space. However, putting this at a lower value like 0.050 gives some

subtle variety to your stars.

Figure 9-20 shows a simple scene rendered with the Stars feature enabled.

Figure 9-20:
Monkeee-

eeeeeyyyyy-
sssssss

-innnnnn
Spaaa-

aaaace!

 When using stars, enable the Real button in the Preview panel of the World

buttons (F8). This way, if you animate your camera moving in the scene, the

stars actually behave realistically.

Sky Textures
Flat colors, gradients, and stars are nice, but there are definitely cases where

you would rather have an image as your background. Doing this is pretty

straightforward. The World for your scene, like materials and lights, can have

a texture applied to it. You do this with the Texture and Input panel and the

Map To panel in the World buttons as shown in Figure 9-21.

The Texture and Input panel has the familiar texture channels like the ones

used by materials and lights. The Map To panel gives you the ability to map

the color of the texture to the Blend, horizon color, and the upper and lower

zenith colors. To use an image as your Sky texture, use the following steps:

208 Part II: Creating Detailed 3D Scenes

Figure 9-21:
The Texture

and Input
panel and

the Map To
panel in the
World but-
tons, used
for adding
textures to

your sky.

 1. Left-click the Add New button in the Texture and Input panel

(F8➪Texture and Input➪Add New).

 This creates a new texture and places it in the first texture channel.

 2. Switch to the Texture buttons and change the Texture Type to Image

(F6➪Texture➪Texture Type➪Image).

 3. In the Image panel, left-click the Load button and use the File Browser

to find the image you want to use.

 If you would like to use Blender’s Image Browser, Ctrl+left-click the Load

button.

 4. Switch back to the World buttons and map the texture to the horizon

color (F8➪Map To➪Hori).

 You can leave Blend enabled if you’d like, but it’s not necessary.

 5. In the Preview panel, enable the Real button (F8➪Preview➪Real).

 This ensures that the sky moves properly as you move your camera in

the scene.

 6. Tweak the mapping and input settings to taste.

 In the Texture and Input buttons, you may have to adjust the input as

well as the texture size and offset. I tend to get best results with the

Global input setting, but it may be different for you. In the Map To panel,

you can control how the Sky texture interacts with the horizon and

zenith colors. It’s worth it to play around with these settings a bit to

land on the look you want. When you’re finished, you may have some-

thing that looks like Figure 9-22.

209 Chapter 9: Lighting and Environment

Figure 9-22:
A simple

scene
with a Sky
texture as

well as the
World but-

tons that set
it up.

210 Part II: Creating Detailed 3D Scenes

Part III
Get Animated!

In this part . . .

There’s just something about making things move. Your

work can take on a life of its own and communicate to

an audience in a way that a single still image could never

do. It has to do with how the visuals you create work in

coordination with time. This part goes into the steps you

need to go through to give your creations the illusion of

life. Not only is there technical information on the details

of Blender’s tools for rigging characters and creating ani-

mations, but the chapters in this part also cover some of

the essential principles of animation that are applicable to

all forms of animation.

The last chapter in this part goes into how to make

Blender do the heavy lifting in animation. Integrated simu-

lation tools allow you to do complex, physically accurate

animations more quickly than you could by hand. Blender

gives you this power.

Chapter 10

Animating Objects
In This Chapter
▶ Using the Ipo Curve Editor

▶ Putting constraints on objects and taking advantage of these constraints

I have to make a small admission: Animation is not easy. It’s time-consuming,

frustrating, tedious work where you often spend days, sometimes even

weeks, working on what ends up to be a few seconds of finished animation.

An enormous amount of work goes into it. However, there’s something

incredible about making an otherwise inanimate object move, tell a story,

and communicate to an audience. Getting those moments when you have

beautifully believable motion – life, in some ways – is a positively indescrib-

able sensation. The process of animation truly has my heart more than any

other aspect of computer graphics. It’s simply my favorite thing to do. It’s

like playing with a sock puppet, except better because you don’t have to

worry about wondering whether or not it’s been washed.

This chapter, as well as the following three chapters, go pretty heavily into

the technical details of creating animations using Blender. It’s a great tool for

the job. Beyond what this book can provide you with, though, animation is

about seeing, understanding, and recreating motion. I highly recommend that

you make it a point to get out and watch things. And not just animations: Go

to a park and study how people move. Try to move like other people move so

you can understand how the weight shifts and how gravity and inertia com-

pete with and accentuate that movement. Watch lots of movies and television

and pay close attention to how people’s facial expressions can convey what

they’re trying to say. If you get a chance, go to a theater and watch a play.

Understanding how and why stage actors exaggerate their body language is

incredibly useful information for an animator.

While you’re doing that, think about how you can use the technical informa-

tion in these chapters to recreate those feelings and that motion with your

objects in Blender.

214 Part III: Get Animated!

Working with Animation Curves
In Blender, the fundamental way for controlling and creating animation is

with animation curves called Ipos. Ipo is short for interpolation. To under-

stand interpolation better, flash back to your grade school math class for a

second. Remember when you had to do graphing, or take the equation for

some sort of line or curve and draw it out on paper? By drawing that line,

you were interpolating between points. Don’t worry though; I’m not going to

make you do any of that. That’s what we have Blender for. In fact, the follow-

ing example should help explain things more clearly:

 1. Start with Blender’s default scene (Ctrl+X➪Erase All).

 2. Select the default cube object and switch to the camera view (right-

click, Numpad 0).

 3. Split the 3D View window vertically and change one of the new

windows to the Ipo Curve Editor window (right-click➪Split Area,

Shift+F6).

 4. In the right column of the Ipo Curve Editor, left-click LocZ.

 This selects the control for the cube’s position in the global Z-axis.

 5. Ctrl+left-click in the graph area of the Ipo Curve Editor.

 This creates a single control point and a colored line in the Ipo Curve

Editor. You should also see the default cube jump up or down along

the Z-axis, depending on where you clicked. This colored line is the Ipo

curve.

 6. Create more control points for this curve by Ctrl+left-clicking in other

parts of the Ipo Curve Editor.

 Your Blender screen should look something like the one in Figure 10-1.

Congratulations! You’ve just created your first animation in Blender. Here’s

what you’ve done: The largest part of the Ipo Curve Editor is a graph. Moving

from left to right on this graph – its X-axis – is moving forward in time.

Moving up and down on this graph changes the value of whatever channel

you’ve selected from the list along the right side of the Ipo Curve Editor. So

the curve that you created describes and controls the change in the cube’s

Z-axis location as you move forward in time. Blender creates the curve by

interpolating between the control points you’ve created. You can see the

result for yourself by playing back the animation. Keeping your mouse cursor

in the Ipo Curve Editor window, press Alt+A. This makes a green vertical line

move from left to right in the graph. As it does this, you should basically see

your cube bouncing up and down in the 3D View. Press Esc to stop the play-

back. You can watch the animation in a more controlled way by left-clicking

215 Chapter 10: Animating Objects

in the graph area of the Ipo Curve Editor and dragging your mouse cursor

left and right. The vertical green line, called the timeline cursor, follows your

mouse cursor, and you can watch the change happening in the 3D View. This

is called scrubbing.

There’s actually a screen layout in Blender specifically set up for animation.

You can choose it from the Screen Layout button at the top of the Blender

window or by using the Ctrl+left arrow hotkey combination. When you do

this, you should have a screen layout that looks like the one in Figure 10-2.

This screen layout is pretty similar to the one you created in the earlier

example, except that you also have an Outliner window and a Timeline

window. The Outliner is helpful for selecting objects in complex scenes that

have many, many objects to work with. The Timeline gives you a central

place to control the playback of your overall animation. This way, you can

use the Ipo Curve Editor to focus on specific detailed animations. Like the Ipo

Curve Editor, you can scrub the Timeline by left-clicking in it and dragging

your mouse cursor left and right.

Figure 10-1:
Animating
the Z-axis

location of
the default

cube object.

216 Part III: Get Animated!

Figure 10-2:
The

Animation
screen

layout in
Blender.

 One change I usually like to make to this layout is the addition of another 3D

View window split from the Outliner. I set this window to a shaded or textured

camera view and remove its header. I do this so that I can use any perspec-

tive in the main 3D View window but still retain an idea of what the camera

sees. That way, I don’t end up animating something that will never be on

camera. In this camera-view window, I also disable the Transform Manipulator

(Ctrl+Spacebar➪Enable/Disable). In the main 3D View, I swap out the Translate

manipulator for the Rotate manipulator (Ctrl+Spacebar➪Rotate) and change

its coordinate space to Normal (Alt+Spacebar➪Normal). I do this because nor-

mally I can Grab and Scale with the G and S hotkeys pretty quickly, but, often,

precise rotation when animating is faster and easier with the Rotate manipula-

tor. Plus, this manipulator doesn’t obstruct my view as much as the other ones

do. Figure 10-3 shows my modified Animation screen layout.

Working in the Ipo Curve Editor is very similar to working in the 3D View.

Middle-clicking moves around your view of the graph and Ctrl+middle-clicking

allows you to interactively scale your view of the curve horizontally and

vertically at the same time. If you prefer using your scroll wheel, you can

navigate the entire graph that way. Plain scrolling zooms in and out, whereas

Shift+scrolling moves the graph vertically and Ctrl+scrolling moves it verti-

cally. You can select individual Ipo curves by right-clicking on them or toggle

selecting all or no curves by pressing A. Even Border Select works by pressing

B and using your mouse to draw a box around the curves you want to select.

217 Chapter 10: Animating Objects

Figure 10-3:
The

Animation
screen lay-

out with a
modification

to allow a
referential

camera
view.

Inserting keys
You might be thinking, “Well, that was pretty neat, but there’s got to be a

more controlled way of adding control points than Ctrl+left-clicking in the Ipo

Curve Editor. It seems awfully imprecise.” And if you were thinking that, you’d

be completely correct. Although it’s possible to work like this, Blender uses a

workflow that’s a lot more like traditional hand-drawn animation. In traditional

animation, a whole animated sequence is planned out ahead of time. Then an

animator goes through and draws the primary poses of the character. These

drawings are referred to as keyframes or keys. They’re the poses that the char-

acter must make in order to most effectively convey the intended motion to

the viewer. With the keys drawn, they are handed off to a second set of anima-

tors called the inbetweeners. These animators are responsible for drawing all of

the frames between each of the keys in order to get smooth motion.

Translating this to how work is done in Blender, you should consider your-

self the keyframe artist and Blender the inbetweener. Using the example

at the beginning of this chapter, every time you Ctrl+left-clicked in the Ipo

Curve Editor, you created a keyframe. By interpolating the curve between

those keys, Blender creates the in-between frames. Some animation programs

refer to this as tweening.

218 Part III: Get Animated!

To have a workflow that’s even more similar to traditional animation, you

would prefer to be able to define your keyframes in the 3D View. Then you

could use the Ipo Curve Editor to tweak the change from one keyframe to the

next. And this is exactly what you can do. In the 3D View, press I to bring up

the Insert Key menu, as shown in Figure 10-4.

Figure 10-4:
The Insert
Key menu.

Through this menu, you can create keyframes for the main animatable chan-

nels for an object. They are described in more detail here:

 ✓ Loc: Insert a key for the object’s X, Y, and Z location.

 ✓ Rot: Insert a key for the object’s rotation in the X, Y, and Z axes.

 ✓ Scale: Insert a key for the object’s scale in the X, Y, and Z axes.

 ✓ LocRot/LocScale/LocRotScale/RotScale: Inserts keyframes for various

combinations of the previous three values.

 ✓ VisualLoc/VisualRot/VisualLocRot: Inserts keyframes for location, rota-

tion, or both, but based on where the object is visually located in the

scene. These options are explicitly made for use with constraints, which

are covered later in this chapter.

 ✓ Layer: Inserts a keyframe for the layers that the object exists on.

Keyframing this channel is a great way to make objects disappear from

view. Note that because layers are discrete elements and Blender can’t

smoothly transition from one to another, the curve for this channel

jumps from one value to the next with no smooth interpolation.

 ✓ Available: If you have already inserted keys for some of your object’s

channels, choosing this option adds a key for each of those already-

existing curves in the Ipo Curve Editor. If there are no curves already

created, no keyframes are inserted.

 ✓ Mesh: This inserts a key for the mesh itself. This is important for shape

keys, a topic covered in more detail in Chapter 11.

219 Chapter 10: Animating Objects

When Blender sets keyframes for location, rotation, and scale, you should

bear in mind which coordinate system the Ipo Curve Editor is using. Location

is stored in global coordinates, whereas rotation and scale are stored in the

object’s local coordinate system.

So to see the basic workflow for animating in Blender, bring up the default

scene (Ctrl+X) and use the following steps:

 1. Switch to the Animation screen layout (Ctrl+left arrow).

 2. Insert an initial location keyframe (I➪Loc).

 This creates a keyframe at frame one in your animation. If you look at

the Ipo Curve Editor, notice that LocX, LocY, and LocZ are highlighted

and have colored blocks next to them.

 3. Move forward ten frames (up arrow).

 This puts you at frame eleven. The up arrow and down arrow hotkeys

move you ten frames forward or backward in time, regardless of the

window your mouse cursor is in. To move forward or back one frame at

a time, use the left and right arrow keys. Of course, you could also use

the Timeline or Ipo Curve Editor to change what frame you are in.

 4. Grab your cube and move it to a different location in 3D space (G).

 5. Insert a new location keyframe (I➪Loc).

 Now you should have curves in the Ipo Curve Editor that describe the

motion of the cube.

There is another way to insert keys, and it’s actually a little bit easier. It’s a

feature called Autokey, and like its name indicates, it automatically creates

keys when you move, resize, and scale your object. To enable the Autokey

feature, look in the Timeline window. Next to the VCR-like controls for con-

trolling animation playback is a button with a red circle on it, like the Record

button on a VCR. Figure 10-5 shows this button. Left-click it to activate

Autokey. Now you can simply use the Grab (G), Rotate (R), and Scale (S)

tools as you move forward in time and keyframes are automatically inserted

for you. Pretty sweet, huh?

Figure 10-5:
The Autokey

button in
the Timeline

window.

220 Part III: Get Animated!

Some of the other Blender window types allow you to set keys for other attri-

butes as well. For instance, if you bring up the Material buttons and press

I with your mouse cursor in that window, a menu with a set of materials-

related keyable channels appears. Figure 10-6 shows the different Insert Key

menus that appear for the various Buttons windows.

Figure 10-6:
From L to
R: Insert

Key menus
for Lamp,
Material,
Texture,

World, and
Physics, and

the menu
for Editing

when a
camera is
selected.

You may notice that if you insert a key using these menus, many times,

their curves don’t seem to appear in the Ipo Curve Editor. This is because

the types of keyable channels have been broken down and organized into

seven different possible categories: Object, Material, World, Texture, Shape,

Constraint, and Sequence. To show the curves and keyable channels in these

categories, look in the Ipo Curve Editor’s header. By default, you’re looking at

the Object curves, so there’s a button in the header next to the Ipo datablock

button that says Object. Left-click that button to see and choose from the

other available Ipo types. Figure 10-7 shows what this menu looks like.

Figure 10-7:
The Ipo

Types
menu in

the header
of the Ipo

Curve
Editor.

221 Chapter 10: Animating Objects

Editing motion curves
After you know how to add keyframes to your scene, the next logical thing

to do is tweak, edit, and modify those keyframes as well as the interpola-

tion between them. This, too, happens in the Ipo Curve Editor. Earlier in

this chapter, I said the Ipo Curves Editor is similar to the 3D View and that

individual motion curves could be selected by right-clicking or by using the

B key for border selecting. Well, it goes further than that. Not only can you

select motion curves in the Ipo Curve Editor, but you can Tab into Edit mode

with them and edit them like a 2D Bézier curve object in the 3D View. The

only constraint on this is that Ipo Curves cannot cross themselves. Having a

curve that describes motion in time do a loopty-loop doesn’t logically make

any sense.

For more detailed descriptions of the hotkeys and controls for editing Bézier

curves in Blender, have a look at Chapter 6. Selecting and moving control

point handles, as well as the hotkeys for Free/Aligned (H), Auto (Shift+H), and

Vector (V) handles all work as expected. However, because these curves are

specially purposed for animation, you have a few additional controls over

them. For instance, you can control the type of interpolation between control

points on a selected curve by pressing T or going to Curve➪Interpolation

Mode in the Ipo Curve Editor’s header. Doing so gives you the following

options, as shown in Figure 10-8:

 ✓ Constant: This is sometimes called a step function because a series of

them look like stair steps. Basically, this interpolation type keeps the

value of one control point until it gets to the next one, where it instantly

changes.

 ✓ Linear: The interpolation from one control point to the next is a com-

pletely straight line. This is similar to changing both control points to

have Vector handles.

 ✓ Bézier: The default interpolation type. This uses Auto handles on the

control points to smoothly transition from one to the next. In traditional

animation, this is referred to easing in and easing out of a keyframe.

Figure 10-8:
Changing
the inter-
polation

type on a
selected Ipo

curve.

222 Part III: Get Animated!

You can also change what a selected Ipo curve does before and after its

first and last keyframes. This is called the curve’s Extend Mode and you

can change it by pressing E or navigating to Curve➪Extend Mode in the Ipo

Curve Editor’s header. When you do this, notice that there are four possible

choices:

 ✓ Constant: This is the default setting. The values of the first and last con-

trol points are maintained into infinity beyond those points.

 ✓ Extrapolation: Rather than maintaining the same value in perpetuity

before and after the first and last control points, this extend mode takes

the direction of the curve in those control points and extends the curve

that way.

 ✓ Cyclic: A Cyclic extend mode takes the entire shape of the curve from

the first control point to the last one and repeats it before and after those

“control points so that the same motion loops over and over forever.

 ✓ Cyclic Extrapolation: This option combines the previous two extend

modes. So the same motion loops before and after the first and last key-

frames, but it loops in the direction that the Ipo curve is going when it

gets to those points.

Figure 10-9 shows the menu for the different type of extend modes, as well as

what each one looks like with a simple Ipo curve.

Figure 10-9:
The four
different

extend
modes you

can have on
Ipo curves.

If you have an object with a high number of animation curves, it may be help-

ful to hide extraneous curves from view so you can focus on the ones you

truly want to edit. To toggle a curve’s visibility, Shift+left-click its name in

the keyable channel list along the right side of the Ipo Curve Editor. Doing

so shows its name in either white text or black text. Black text means the

curve is hidden, whereas white text means it’s visible. Also, if the channel

has a color swatch to the left of it, then you know it’s been keyed. That color

swatch is useful for selecting the curve (left-click the swatch) as well as visu-

ally distinguishing one curve from another because the color in the swatch is

the color of the curve in the graph of the Ipo Curve Editor.

223 Chapter 10: Animating Objects

If you need explicit control over the placement of a curve or a control point,

the Ipo Curve Editor has a floating panel like the 3D View has. You bring it up

the same way too: either press N or choose View➪Channel Properties. With

this floating panel, you can enter the exact value that you would like to set

your selected curve, control point, or keyframe to. Figure 10-10 shows the

Channel Properties floating panel in the Ipo Curve Editor. Note that the panel

has a heading that says “Transform Properties”. It’s a little user-interface

inconsistency in Blender. Just know that they’re the same thing.

Figure 10-10:
The Channel

Properties
floating

panel (N)
in the Ipo

Curve
Editor.

There’s another really helpful feature for editing curves in the Ipo Curve Editor.

Often, you may run into the occasion where you need to edit all of the control

points in a single keyframe to change the overall timing of your animation. It

may be tempting to select all curves with the A key, Tab into Edit mode, and

use Border Select (B) to select the strip of control points you want to move

around. However, there’s an cleaner and easier way to do this. Rather than go

through that process, press K in the Ipo Curve Editor or choose View➪Show

Keys. This shows your keys in the graph as a series of yellow vertical lines.

These keys can be selected (right-click) and moved around in the graph by

pressing G. You can even duplicate keys by pressing Shift+D.

When you’re moving around keys or even control points in the Ipo Curve

Editor, you should hold down Ctrl. This ensures that you’ve moving them

around in frame-length increments. It’s a good practice to make sure your

keyframes actually happen on the frame, rather than between frames. If you’re

ever unsure as to whether a key is on the frame, select it (right-click) in the

Ipo Curve Editor and press Shift+S➪To Frame. This snaps the selected keys to

their nearest frame.

The Show Keys functionality also has one more trick up its sleeve. Move

your mouse cursor into the 3D View and press K. Doing this actually shows

ghosted wireframes of your object’s keyframes. This is kind of a 3D version

of something called onionskinning in traditional animation. This can give

you a very clear picture of your entire animation at a glance. But wait, it gets

better! Note that if you right-click one of the yellow key lines in the Ipo Curve

Editor, the corresponding key is also highlighted in the 3D View. Now you can

224 Part III: Get Animated!

use your Grab (G), Rotate (R), and Scale (S) hotkeys to interactively edit and

adjust that keyframe while the other keyframes are in view. How’s that for

totally awesome? Figure 10-11 shows the Show Keys feature in action.

Figure 10-11:
“Press K
in the 3D

View to
show your

object’s
keyframes
and make

them
directly

editable.

Table 10-1 covers some of the most common hotkeys and mouse actions

used to control animation in the Ipo Curve Editor.

Table 10-1 Commonly Used Hotkeys and Mouse Actions
 for the Ipo Curve Editor
Mouse Action Description Hotkey Description

Left-click graph Move time cursor Alt+A Playback animation

Left-click channel Hide/Reveal channel
(Shift+left-click for
multiple)

E Extend Mode

Left-click swatch Select channel K Show keys

Right-click Select channel O Clean Ipo curves

Middle-click Pan graph Shift+O Smooth Ipo curves

Ctrl+middle-click Scale graph N Channel Properties

Scroll Zoom graph Shift+S Snap Menu

Shift+scroll Pan graph vertically T Ipo Type

Ctrl+scroll Pan graph
horizontally

Home Fit curves to graph

225 Chapter 10: Animating Objects

Using Constraints Effectively
Occasionally I get into conversations with people who assume that because

there’s a computer involved, doing good CG animation takes less time than

traditional animation techniques. In most cases, this is not true. High quality

work takes roughly the same amount of time, regardless of the technique.

The time is just spent in different places. Whereas in traditional animation, a

very large portion of the time is spent drawing the inbetween frames, CG ani-

mation lets the computer handle that. However, traditional animators don’t

have to worry as much about optimizing for render times, tweaking and re-

tweaking simulated effects, or modeling, texturing, and rigging characters.

That said, computer animation does give you the opportunity to cut corners

in places and make your life as an animator much simpler. One of the fea-

tures that fits this description perfectly are constraints. Literally speaking,

a constraint is a limitation put on one object by another, allowing the uncon-

strained object to control the behavior of the constrained one. The simplest

example of a type of constraint is parenting. This is covered in more detail

in Chapter 4, but as a quick example, bring up the default scene in Blender

(Ctrl+X). Now Shift+right-click the Lamp so both it and the cube are selected

and the Lamp is the active object. Press Ctrl+P➪Make Parent. After this,

select just the Lamp (right-click) and Rotate (R) it. The cube now rotates

around the Lamp because it’s the child object. If you insert keyframes for the

Lamp’s rotation, you’d automatically be animating the cube without really

doing any extra work! This parent-child relationship is the very simplest

form of constraint in Blender. With constraints like this one, and ones that

are even more powerful, you can do quite a lot without doing much at all.

Animation is hard work; it’s worth it to be lazy whenever you can.

Although parenting with the Ctrl+P hotkey combination is a constraint in

the literal since of the word, it’s used in Blender for doing more things than

simply binding the location, orientation, and size of one object to another.

For that reason, it’s not a constraint like the ones discussed later in this

chapter. In fact, to see the actual constraints that you do have available to

you, go to the Object buttons (F7) and left-click the Add Constraint button in

the Constraints panel. When you do this, you see the menu that looks like the

one in Figure 10-12.

Because of limitations to this book’s page count, I can’t cover the function

of each and every constraint in full detail. However, the end of this chapter

gives some usage examples for some of the more frequently used constraints.

226 Part III: Get Animated!

Figure 10-12:
The types of
constraints

available
by default

within
Blender.

The all-powerful Empty!
Of all the different types of objects available to you in Blender, none of them

are as useful or versatile in animation as the humble Empty. It’s not much:

just a little set of axes that indicate a position, orientation, and size in 3D

space. It doesn’t even show up when you render. However, this means that

it’s an ideal choice for use as control object and it’s a phenomenal way to

take advantage of constraints. To illustrate this, allow me to use simple par-

enting as an example again.

One of the things that 3D modelers like to have is a turnaround render of the

model they create. Basically, it’s like taking the model, placing it on a turn-

table, and spinning it in front of the camera. It’s a great way to show off all

sides of the model. Now, for simple models, you can just select the model,

rotate it in the global Z-axis, and you’re done. However, what if the model

consists of many objects, or for some reason everything is at a strange angle

that looks odd when spun around the Z-axis? Selecting and rotating all of

those little objects can get time-consuming and annoying. A better way of

handling it is with the following rig:

 1. Add an Empty (spacebar➪Add➪Empty).

 2. Grab the Empty and move it to somewhere at the center of the

model (G).

 3. Select the camera and position it so the model is in the center of view

(right-click, G).

 It would be wise to aim the camera roughly at the location of the Empty.

 4. Add the Empty to your selection (Shift+right-click).

 This makes the Empty the Active object in the selection.

 5. Make the Empty the camera’s parent (Ctrl+P➪Make Parent).

 6. Select the Empty and insert a rotation keyframe (right-click, I➪Rot).

227 Chapter 10: Animating Objects

 7. Move forward in time 50 frames.

 8. Rotate the Empty 90 degrees in the Z-axis and insert a new rotation

keyframe (R➪Z➪90, I➪Rot).

 In doing this, you should notice that the camera obediently matches the

Empty’s rotation.

 9. Bring up the Ipo Curve Editor and set the Extend Mode for the RotZ

channel to Extrapolate (Shift+F6, right-click, E➪Extrapolate).

 10. Switch to the camera view and playback the animation (Numpad 0,

Alt+A).

 In the 3D View, you should be seeing what appears to be your model

spinning in front of your camera. Congratulations, you’ve made a

turnaround.

In this setup, the Empty behaves as the control for the camera. Imagine that

there’s a beam extending from the Empty’s center to the camera’s center

and that rotating the Empty is the way to move that beam. And you can add

to this. Suppose you wanted the Lamp to stay with the camera, rather than

remaining static throughout the turnaround. You could solve this by parent-

ing (Ctrl+P) the lamp to either the Empty or the Camera. Either way gets you

the results you’re looking for.

Copying the movement of another object
Using simple parenting is helpful in quite a few instances, but it’s often not as

flexible as you need it to be. You can’t control or animate the parenting influ-

ence or just use the parent object’s rotation without inheriting the location

and scale as well. And you can’t have movement of the parent object in the

global X-axis influence the child’s local X-axis location. More often than not,

you need these sorts of refined controls rather than the somewhat ham-fisted

Ctrl+P parenting.

Copy location, scale, and rotation
To this end, there are a set of constraints that provide you with just this sort

of control. They are the Copy Location, Copy Rotation, and Copy Scale con-

straints. Figure 10-13 shows what each of these constraints look like when

added in the Constraints panel.

You can mix and match multiple constraints on a single object in a way that’s

very similar to the way you can add multiple modifiers to an object. So if you

need both a Copy Location and a Copy Rotation constraint, just add both.

After you add them, you can change which order they come in the stack to

make sure they suit your needs.

228 Part III: Get Animated!

Figure 10-13:
The Copy
Location,

Copy
Rotation,
and Copy

Scale
constraint

controls.

Words and picture aren’t always the best way of explaining how constraints

work. It’s often more to your benefit to see them in action. To that end,

CD-ROM that accompanies this book has a few example files that illustrate

how these constraints work. It’s worth it to load them up in Blender and play

with them to really get a good sense for how these very powerful tools work.

Probably the most apparent thing about these constraints is how similar

their options are to one another. The most critical setting, however, is the

object that you name in the Target field. If you’re using an Empty as your con-

trol object, this is where you type that Empty’s name. Unless you do so, the

Constraint Name field at the top of the constraint block remains bright red

and the constraint simply won’t work.

Next up is the Offset button. This is useful if you’ve already adjusted your

object’s location, rotation, or scale prior to adding the constraint. By default,

this feature is off, so the constrained object mirrors the target object’s behav-

ior completely and exactly. With it enabled, though, the object adds the

target object’s transformation to the constrained object’s already set loca-

tion, rotation, or scale values. The best way to see this is to create a Copy

Location constraint with the following steps:

 1. Start with the default scene (Ctrl+X).

 2. Grab the default cube to a different location (G).

 3. Add an Empty (spacebar➪Add➪Empty).

 4. Select the cube and put a Copy Location constraint on it (right-click,

F7➪Constraints➪Add Constraint➪Copy Location).

 When you do this, the cube automatically snaps directly to the Empty’s

location.

229 Chapter 10: Animating Objects

 5. Left-click the Offset button in the Constraints panel.

 The cube goes back to its original position. Grabbing (G) the Empty

influences the cube’s location from there.

To the right of the Offset button are a series of six buttons, with the X, Y,

and Z buttons already enabled, separated by disabled buttons with minus

signs on them. These buttons control which axis or axes the target object

influences. If the axis button is enabled and the minus button next to it is

also enabled, the target object has an inverted influence on the constrained

object in that axis. Using the previous Copy Location example, if you left-click

the X button and then Grab the Empty and move it in the X-axis (G➪X), the

cube remains perfectly still. However, left-clicking the X button as well as the

minus button next to it causes the cube to translate in an opposite X direc-

tion when you move the target Empty.

Beyond these options, one of the most useful settings that’s available to all

constraints is at the bottom of each constraint block. I’m talking about the

Influence slider. This slider works on a scale from zero to one, with zero being

the least amount of influence and one being the largest amount. With this,

you have the capability of just partially copying the target object’s attributes.

There’s more to it, though. Notice the Show and Key buttons to the right of

the slider. With the Key button, you can animate the influence of the con-

straint. The show button makes the constraint curves visible in an Ipo Curve

Editor window if you have one open. Say you’re working on an animation that

involves a character with telekinetic powers using his ability to make a ball

fly to his hand. You can do that by animating the influence of a Copy Location

constraint on the ball. The character’s hand is the target and you start with

zero influence. Then, when you want the ball to fly to his hand, you increase

the influence to one and set a new keyframe. BAM! Telekinetic character!

When setting keys for constraints, the Ipo curves for the influence doesn’t

show up in the default Ipo Curve Editor. To see these curves, either press the

Show button next to the Influence slider or use the Ipo Type menu in the Ipo

Curve Editor’s header.

It’s in your best interest to use the Show button to see the constraint Ipo. The

reason for this is that if there are multiple animated constraints on the same

object, left-clicking Show insures that you’re looking at the right one.

The CSpace buttons in these constraints are pretty interesting, although they

have a somewhat specialized use. Specifically speaking, they only really have

any effect if the constrained object is also parented to an object that is not

the target object. Consider the previous offset Copy Location example, but

make a few changes:

 1. Rotate the target Empty an arbitrary amount in the Z-axis (R➪Z).

 Somewhere around 30 degrees should be fine — just enough so that it’s

different from the global coordinate system.

230 Part III: Get Animated!

 2. Add a new Empty to the scene (spacebar➪Add➪Empty).

 3. Grab the new Empty and move it so that it’s not near the origin (G).

 If you want some specific numbers, bring up the Transform Properties

floating panel and set LocX to -2, LocY to 2, and LocZ to 7.

 4. Rotate the new Empty some arbitrary amount in the Z-axis (R➪).

 Again, no specific number is necessary — just something that offsets it

from the global coordinate space.

 5. Parent the cube to the new Empty (right-click the cube, Shift+right-

click the new Empty, Ctrl+P➪Make Parent).

Now with the above set up, you can play with the CSpace options. The left

button controls the coordinate space in which the constraint evaluates the

target and the right button controls the coordinate space in which the con-

straint evaluates the constrained, or owner, object. With both of these values

set to World Space, the constraint behaves as you would expect. Move the

target Empty and the cube obediently follows along. However, left-click the

right button and change the Owner Space to Local (Without Parent) Space.

Now, select the target Empty and move it in the global X-axis (right-click,

G➪X). Notice that the cube moves, but not quite like you’d expect. Rather

than move along the global X-axis with the target Empty, the cube actually

moves along its local X-axis. That, in a nutshell, is what you can do by chang-

ing the CSpace buttons. This gets used quite a bit more when creating ani-

mation rigs using Blender’s armatures. There’s more information on that in

Chapter 11.

The Child Of constraint
Okay, so I lied a little bit when I said you couldn’t control or animate the

influence of a parent-child relationship in Blender. That was a half-truth. It’s

true that if you use Ctrl+P to make one object the parent of another, no addi-

tional controls are available to you. However, if you add a Child Of constraint,

the situation changes a bit. Figure 10-14 shows that if you create a parent-

child relationship between objects using this constraint, you have quite a few

controls available to you.

Figure 10-14:
Options for
the Child Of
constraint.

231 Chapter 10: Animating Objects

After you type in the name of the object you wish to use as the parent, you

can choose any combination of location, rotation, and scale channels in the

X, Y, and Z axes for the parent relationship. You can even take advantage of

having an offset from where the standard parent-child relationship would

put your object. And, like the other constraints, you can control and animate

how much this constraint has an effect on your object by using the Influence

slider and keying its values over time.

Another unique feature of this constraint is the VG field that shows up after

you type in a valid object in the OB field. In the VG field, you can type the name

of a vertex group in the parent mesh. When you do this, the constrained child

object is the child of those specific vertices. To create a vertex group, tab into

Edit mode on the parent object and select a couple of vertices. Then switch to

the Editing buttons (F9) and left-click the New button under Vertex Groups in

the Link and Materials button. This creates a new vertex group called Group.

To make the vertices you’ve selected part of the group, left-click the Assign

button. This is covered in more detail in Chapter 11. Figure 10-15 shows a

Suzanne head parented to a vertex group consisting of a single vertex on a

circle mesh.

In many ways, this constraint is a much more flexible and powerful way of

parenting than using Ctrl+P. Of course, regular parenting can do some things

that this constraint can’t, like Dupliverts. Perhaps, however, future versions

of Blender will merge the functions of these two features.

Figure 10-15:
Parenting
an object

to a vertex
group.

Putting limits on an object
Often when animating objects, it’s helpful to prevent objects from being

moved, rotated, or scaled beyond a certain extent. Say you’re animating a

character trapped inside a glass dome. It would be helpful to you as an

232 Part III: Get Animated!

animator if Blender forced you to keep that character within that space. Sure

you could just pay attention to where your character is and visually make

sure he doesn’t accidentally go farther than he should be allowed, but why

do the extra work if you can have Blender do it for you? Figure 10-16 shows

the constraint options for most of the limiting constraints Blender offers you.

Figure 10-16:
The options

for the
limiting

constraints
that Blender

offers you.

Descriptions of what each of these constraints does are below:

 ✓ Limit Location/Rotation/Scale: Unlike most of the other constraints,

these three constraints don’t have a target object that they’re con-

strained to. They’re just limitations on what the object can do within

its own space. For any of them, you can define minimum and maximum

limits in the X, Y, and Z axes. After you’ve defined the limit, you enable

it by left-clicking the button for that limit next to it. The For Transform

button that’s in each of these constraints can be pretty helpful. To

better understand what it does, enable the Transform Properties float-

ing panel in the 3D View. If you have limits and For Transform is not

enabled, the values in the Transform Properties panel change even after

you reach the limits defined by the constraint. However, if you enable

For Transform, the value in the Transform Properties panel is clipped to

the limitations you defined with the constraint.

 ✓ Limit Distance: This constraint is similar to the previous ones except

it relates to the distance from the centerpoint of a target object. The

Clamp Region menu gives you three ways to use this distance:

 • Inside: The constrained object can only move in the sphere of

space defined by the Distance value.

 • Outside: The constrained object can never enter the sphere of

space defined by the Distance value.

 • Surface: The constrained object is always the same distance from

the target object, no more and no less.

 ✓ Floor: The Floor constraint uses the centerpoint of a target object to

define a plane that the centerpoint of the constrained object can’t move

beyond. So, technically, you can use this constraint to define more than

a floor; you can also use it to define walls and a ceiling as well. One thing

233 Chapter 10: Animating Objects

to keep in mind is that this constraint defines a plane. If your target

object is an uneven surface, it will not use that object’s geometry to

define the limit of the constrained object, just it’s centerpoint. Despite

this limitation, this constraint is actually quite useful. This is especially

true if you enable the Use Rot button. Doing that allows the constrained

object to recognize the rotation of the target object, so you can have an

inclined floor if you like.

 When animating while using constraints, particularly limiting constraints, it’s

in your best interest to insert keyframes using the VisualLoc and VisualRot.

This sets the keyframe to where the object is located visually, within the limits

of the constraint, rather than how you actually transformed the object. For

instance, assume you have a Floor constraint on an object that you’re animat-

ing to fall from some height and land on a floor plane that’s even with the

XY grid. For the landing, you Grab (G) object and move your mouse cursor 4

Blender units below the XY grid. Of course, because of the constraint, your

object stops following the mouse when it hits the floor. Now, if you insert a

regular Loc keyframe here, the Z-axis location of the object is set to -4.0 even

though the object can’t go below zero. However, if you insert a VisualLoc key,

the object’s Z-axis location is set to what you see it as, zero.

Tracking the motion of another object
Another set of constraints that are helpful for animation are tracking con-

straints. Their basic purpose is to make the constrained object point either

directly at or in the general direction of the target object. They’re useful for

things like controlling the eye movement of characters or building mechani-

cal rigs like pistons. Figure 10-17 shows the options for three of Blender’s

tracking constraints.

Figure 10-17:
Control

options for
Blender’s

tracking
constraints.

Descriptions of each of these constraints are below:

 ✓ Track To: Of these constraints, this one is the most straightforward.

In other programs, this constraint may be referred to as the Look At

constraint, and that’s what it does. It forces the constrained object to

point at the target object. The best way to see this would be to load the

234 Part III: Get Animated!

default scene (Ctrl+X) and add a Track To constraint to the camera with

the target object being the cube. Now, no matter where you move the

camera to, it always points at the cube’s centerpoint. By left-clicking the

X, Y, and Z buttons next to the To and Up labels, you can control how

the constrained object points to the target.

 ✓ Locked Track: The Locked Track constraint is similar to the Track To

constraint, with one large exception: It only allows the constrained

object to rotate on a single axis. This means that the constrained object

points in the general direction of the target, but not necessarily directly

at it. A good way to think about this is to imagine you’re wearing a neck

brace. With the brace on, you can’t look up or down; you can only rotate

your head left and right. So if a bird flies overhead, you can’t look up to

see it pass. All you can do is turn around and hope to see the bird flying

away.

 ✓ Stretch To: This constraint isn’t exactly a tracking constraint like Track

To and Locked Track, but it’s behavior is similar. It makes the con-

strained object point toward the target object like the Track To con-

straint. However, it also changes the constrained objects scale relative

to the distance that the target is away from it, stretching that object

toward the target. And it can even try to preserve the volume of the con-

strained object to make it seem like it’s really stretching. This is a great

constraint for cartoony effects as well as controlling organic deforma-

tions such as rubber balls and the human tongue. On a complex char-

acter rig, you can use the Stretch To constraint to help simulate muscle

bulging.

Chapter 11

Rigging: The Art of Building
an Animatable Puppet

In This Chapter
▶ Making shape keys

▶ Taking advantage of hooks

▶ Working with armatures to control characters

▶ Building a simple character rig

When it comes to character animation, a character is often a single

seamless mesh. This makes it virtually impossible to animate that

character with any detailed movement using the object animation techniques

in Chapter 10. I mean, you can move the whole character mesh at once from

one location to another, but you can’t make the character smile or wriggle

her toes or even bend her arms. You could break the mesh apart and use a

complex set of parenting and constraints, but then you lose the nice seam-

less nature of the mesh.

What you really want to do is find ways to animate specific parts of the mesh

in a controlled way without tearing the mesh apart. To do that, you need

to create a rig for your character. A rig is an underlying structure for your

mesh that allows you to control how it moves. It’s an integral part of modern

computer animation and, if it’s done well, it makes the life of an animator

monumentally easier. Think about it like turning your 3D mesh into a remote

control puppet. This chapter explains the various tools and techniques used

to create rigs. Then you can create a rig for nearly any object in Blender and

have a blast animating it.

Creating Shape Keys
If your mesh, whether it’s a character or a tree or a basketball, is to be ani-

mated in a detailed way, it has to deform from its original shape to a new and

different shape. If you know what this new shape looks like, you can model

236 Part III: Get Animated!

it ahead of time. As an example, say you have a cartoony character, maybe

the head of a certain monkey. You know that you’re going to need her eyes to

bulge out because all cartoon characters’ eyes do this. To do this in Blender,

you create a shape key, sometimes called a morph target in other programs. A

rough outline of the process goes something like this (the next section in this

chapter goes into more detail):

 1. Start with your original mesh.

 2. Edit the vertices of the original mesh without creating new geometry

to the new pose you want to use.

 In our example, you would model the character’s eyes all bulgy. (Yes,

bulgy is a real word. I think.)

 3. Record this new arrangement of your vertices as a shape key to be

used later when you animate.

Creating new shapes
So that’s the general example, but where are the actual controls? They’re in

the Editing buttons (F9) in the Shapes panel. Figure 11-1 shows three different

states for the Shapes panel. By default, it looks pretty innocent and empty

with just the one Add Shape Key button. However, when you left-click that

button, you get buttons to control the Basis shape, or the original shape that

other shape keys relate to. Left-clicking the Add Shape Key button a second

time gives you another set of controls that controls the change from the

Basis shape to this one, named Key 1.

Figure 11-1:
The three

different
sets of

options that
the Shapes

panel can
provide you.

The best way to see how all of this works is to go through a practical exam-

ple. Staying with the “bug-eyed monkey” theme, use Suzanne as your test

subject, and go through the following steps:

237 Chapter 11: Rigging: The Art of Building an Animatable Puppet

 1. Start with the default scene and delete the cube (Ctrl+X, right-click the

cube, X).

 2. Add Suzanne, give her a Subsurf modifier, set her smooth, and rotate

her 90 degrees around the X-axis (spacebar➪Add➪Mesh➪Monkey,

Ctrl+1, Tab➪W➪Set Smooth➪Tab, R➪X➪90).

 3. Change to the front view (Numpad 1).

 4. Add a shape key (F9➪Shapes➪Add Shape Key).

 For quicker access, you can use the I➪Mesh hotkey sequence. This cre-

ates your Basis shape. The other shapes that you create will be relative

to this one.

 5. Tab into Edit mode and change the mesh to have bulged eyes.

 Be sure that as you do this, you do not add any extra vertices to the mesh.

The shape should be defined by moving around the vertices you already

have. A quick way to get make Suzanne’s eyes bulge is to move your

mouse cursor over each eye and press L to select just the vertices there.

Then, with the Proportional Edit Tool (O) turned on, Scale (S) the eyes.

 6. While still in Edit mode, add a new shape key (I➪Mesh).

 Now the Shapes panel should look like the last one in Figure 11-1. You’ve

created Key 1. If you want, you can rename it in the Shapes panel by left-

clicking its name field. I named mine “Eye Bulge.”

 7. Tab back to Object mode.

 Figure 11-2 illustrates this process.

Figure 11-2:
Creating a
bug-eyed

shape key
for Suzanne.

238 Part III: Get Animated!

This process creates two shape keys, the Basis and Eye Bulge. Using the

slider in the Shapes panel, you can smoothly transition from the Basis shape

to the Eye Bulge shape. A value of zero means that Eye Bulge has no influence

and you just have the Basis, whereas a value of one means that you’re fully at

the Eye Bulge shape. But here’s where things get really cool. Notice the Min

and Max values to the left of the slider. The Min is set to 0.0 and the Max is

set to 1.0. Just for kicks, change the Max value to 2.0 and pull the slider all the

way to the right. Doing this pushes your bulged eyes larger than your actual

shape key made them. Now change the Min value to -1.0 and pull the slider to

the left. Now Suzanne’s eyes pinch in to a point smaller than the Basis pose.

Figure 11-3 shows the results of these changes. This is a great way to provide

even more extreme shapes for your characters without having to do any

additional shape key modeling. How’s that for cool?

Figure 11-3:
Suzanne

with
excessively
bulged and

pinched
eyes, just

by changing
the mini-
mum and
maximum
values for

a single
shape key.

Mixing shapes
From this point, you can create additional shape keys for the mesh. Say

you want to have a shape key of Suzanne’s mouth getting bigger, like she’s

screaming because her eyes have gotten so huge. If that’s the case, the first

thing you want to do is switch back to the Basis key. To do this, use the left/

right arrows next to the key’s name in the Shapes panel. You can also left-

click the up/down arrow button and choose Basis from the list. The reason

for doing this is because unless you’re doing something special, it’s a good

idea to have most of your shapes based on the Basis. Otherwise, you may

end up accidentally over-amplifying a shape key or nullifying it. When you’re

back at the Basis key, the process is about the same as before:

239 Chapter 11: Rigging: The Art of Building an Animatable Puppet

 1. Tab into Edit mode and model the mouth open with the existing

vertices.

 One thing to note here is that you’re not really touching Suzanne’s eyes.

You’re just editing the mouth to get bigger.

 2. While still in Edit mode, add a new shape key (I➪Mesh).

 Feel free to name this key whatever you want. I called mine “Scream.”

 3. Tab back into Object mode.

 Figure 11-4 shows the results of this process.

Figure 11-4:
Creating

a scream
shape key.

Now that you have the Scream shape key, you can freely mix it with the Eye

Bulge shape key or you can have Suzanne screaming with her regular, bulge-

free eyes. The choice is yours. You have the flexibility here to mix and match

your shape keys as it pleases you. And animating the mesh to use these keys

is really easy. Split off an Ipo Curve Editor window from your 3D view and

change the Ipo Type to Shape by left-clicking the drop-down button in the Ipo

Curve Editor’s header that says Object. You should notice that you have two

animation channels here with the names you gave your shape keys. Scrub the

timeline cursor forward in time and adjust the sliders in the Shapes panel.

When you do this, new keys are added to the curves in the Ipo Curve Editor.

Now you can freely scrub the timeline and watch Suzanne bulge and scream

to your complete delight. Figure 11-5 shows a screenshot of me having

exactly this kind of fun.

240 Part III: Get Animated!

Figure 11-5:
Animating

shape keys
with the
Shapes

panel
and the

Ipo Curve
Editor.

Knowing where shape keys are helpful
Now, you could do an entire animation using shape keys. But do I recommend

doing that? No. There are other ways to control your meshes that may give

you more natural movement for things like animating arms and legs. That

said, shape keys are the perfect choice for things that can’t be done with

these other means (or, at least, that are very difficult). One big one is facial

animation. The way parts of the face wrinkle up and move around is pretty

difficult to re-create without modeling those deformations in. Furrowed

brows, squinty eyes, natural-looking smiles, and phonemes, or mouth shapes

for lip-syncing, are where shape keys shine. You can also team them up with

other controls discussed later in this chapter to achieve cool effects like car-

toon stretchiness, muscle bulges, and morphing objects from one shape to

another.

Adding Hooks
Shapes work well for getting specific pre-defined deformations, but they can

be pretty limiting if you want to have a little bit looser control over your

mesh. It’s also not as easy to use them on curve and surface objects. For

241 Chapter 11: Rigging: The Art of Building an Animatable Puppet

these sorts of situations, we have another control mechanism: hooks. Hooks

are a special kind of modifier that takes a set of vertices or control points and

binds them to be controlled by another object, usually an Empty.

Creating new hooks
The workflow for adding a hook is pretty straightforward. You Tab into Edit

mode and select one or more vertices or control points. Then you press

Ctrl+H➪Add, To New Empty. When you do this, an empty is created at a loca-

tion that’s the middle point of all your selected vertices or control points. You

get a new modifier added to the Modifiers panel in the Editing buttons (F9),

as shown in Figure 11-6.

Figure 11-6:
Control

options for
the Hook
modifier.

 You may try to find the Hook modifier as a selectable option in the list of avail-

able modifiers in the Modifiers panel. Don’t look too hard; you won’t find it.

Because it requires you to actively select vertices or control points for the hook

to control, the Hook modifier can only be added using Ctrl+H in the 3D View.

Tab back into object mode and transform the hook. When you do, all the ver-

tices or control points that you assigned to the hook move with it. And with

the options in the Hook modifier, you can control how much influence the

hook has over these vertices or control points. The following example should

give you a clearer understanding of this:

 1. Start with the default scene in Blender (Ctrl+X).

 2. Select the cube and Tab into Edit mode.

 All of the cube’s vertices should be selected by default. If they are not,

press A until they are.

 3. Do a multi-subdivide with four cuts (W➪Subdivide Multi➪Number of

Cuts: 4).

 4. Select one of the cube’s corner vertices (right-click).

 5. Press Numpad+ a few times to increase the vertex selection.

 6. Add a new hook (Ctrl+H➪Add, To New Empty).

242 Part III: Get Animated!

 7. Tab back into Object mode.

 At this point, behavior is as expected. If you select and move the Empty,

all of the vertices that you assigned to the hook move with it, like they

were parented to the Empty.

 8. Increase the Falloff value in the Hook modifier to 2.0

(F9➪Modifiers➪Hook-Empty➪Falloff: 2.0).

 Now when you select and transform the Empty, the way the vertices

follow it is much smoother, kind of like when you’re modeling with the

Proportional Edit Tool enabled. For additional kicks, do the next step.

 9. Add a Subsurf modifier to the cube and have it drawn smooth (Ctrl+1,

F9➪Link and Materials➪Set Smooth).

 Now the transition is even smoother, as shown in Figure 11-7.

Figure 11-7:
A cube

smoothly
deformed by

a hook.

 Does it bug you a bit that Blender placed the hook in the middle of your mesh?

It would be easier to select if it were closer to the corner. Fortunately, the

hook menu and modifier give you the option to do just that. There are two

things that you can do. First, you can simply reposition the empty at a more

acceptable location. And second, you can actually move the center of influ-

ence for the hook itself. The next example uses your smooth cube from before

and does both of these things.

243 Chapter 11: Rigging: The Art of Building an Animatable Puppet

 1. Select the cube and Tab into Edit mode.

 2. Select the corner vertex of the cube that you selected in the last example.

 3. Snap the 3D cursor to this vertex (Shift+S➪Cursor➪Selection).

 4. Tab back into Object mode and select the Empty.

 5. Snap the Empty to the location of the 3D cursor

(Shift+S➪Selection➪Cursor).

 This deforms the cube, but don’t worry about that.

 6. Select the cube again and Tab into Edit mode.

 7. Clear the hook offset (Ctrl+H➪Clear Offset➪Hook-Empty).

 8. Tab back into Object mode.

 Now the hook performs like before, but with the Empty sitting outside of

the mesh, making it easier to select and visualize.

 9. Select the cube and left-click the Recenter button in its modifier

options (F9➪Modifiers➪Hook-Empty➪Recenter).

 This sets the hook center to the same location as the Empty. Now when

you transform the Empty, you have a slightly different sort of deforma-

tion that points directly at the Empty’s center and looks quite a bit

nicer, in my opinion. Figure 11-8 shows these steps visually.

Figure 11-8:
Moving

the hook
Empty and

recentering
the hook’s

location.

Knowing where hooks are helpful
The best use for hooks is for large organic deformations. Like shape keys,

they’re nice for creating muscle bulges and cartoony stretching. You can

even use them along with shape keys. Because shape keys always use the

244 Part III: Get Animated!

same shape as the basis for deformation, adding a hook can give it a little bit

more variety. For example, in the bug-eyed Suzanne example that you did for

shape keys, you could add a hook for one of the eyes so it bulges more than

the other one. It’s touches like these that can give more character to your 3D

characters.

 The other great use for hooks is in animating curves. All of the things in the

previous examples work for curves and surfaces as well as meshes. If you

have a curve that you’re using as a character’s tail, you can add a hook at each

control point and then you can animate that tail moving around.

Using Armatures: Skeletons in the Mesh
Shape keys and hooks are great ways to deform a mesh, but the problem with

them is that both are lacking a good underlying structure. They’re great for

big, cartoony stretching and deformation, but for a more structured deforma-

tion, like an arm bending at the elbow joint, the motion that they produce is

pretty unnatural-looking. To solve this, 3D computer animation took a page

from one of its meatspace contemporaries, stop-motion animation. Stop-
motion animation involves small sculptures with a metal skeleton underneath

them, referred to as an armature. The armature gives the model both struc-

ture and a mechanism for making and holding poses. Blender has the same

thing and it too is called an armature.

To add an armature to your scene, go to the 3D View window and press

spacebar➪Add➪Armature. The result initially appears to be rather unspec-

tacular. As Figure 11-9 shows, it creates a single object with a weird shape

called an octahedron. Continuing to use the skeleton analogy, this is referred

to as a bone in the armature. The wide end of the bone is referred to as

the bone’s head or root and its narrow end is referred to as the bone’s tail.
Typically, a bone pivots at the head. This becomes more important as you

work your way through this chapter.

Editing armatures
Now it’s time to take that rather inauspicious single bone armature and do

something more interesting with it. Like nearly every other object in Blender,

you can edit it in more detail by selecting it (right-click) and Tabbing into

Edit mode. In Edit mode, there are three things you can select: the sphere at

the bone’s head, the sphere at the bone’s tail, and the bone itself. Selecting

the bone body actually also selects both the head and tail spheres as well.

245 Chapter 11: Rigging: The Art of Building an Animatable Puppet

Figure 11-9:
An arma-

ture object
with a

single bone.
Woohoo!

There are four ways to add a new bone to the armature:

 ✓ Extrude: Select either the head or tail of the bone and press E to extrude

a new bone from that point. This is the most common way to add new

bones to an armature. If you add a bone by extruding from the tail, you get

the additional benefit of having an instant parent-child relationship. The

new bone is the child of the one you extruded it from. These bones are

linked together, tail to head, and referred to as a bone chain. The Ctrl+left-

click extrude shortcut for meshes and curves also works for bones as well.

 ✓ Duplicate: Select the body of the bone you want and press Shift+D to

duplicate it and create a new bone with the same dimensions, parent

relationships, and constraints.

 ✓ Subdivide: Select the body of the bone you want and press

W➪Subdivide. This gives you two bones in the space that the one you

selected used to occupy. The cool thing about this option is that it keeps

the new bone in the correct parent-child relationship of the bone chain.

 ✓ Use the toolbox: Press spacebar➪Add➪Bone while still in Edit mode.

This creates a new bone with its head at the location of the 3D cursor.

 Armatures can get very complex very quickly, so you should name your bones

as you add them. Let me say that again: name your bones as you add them.

The fastest way to name your bones is to use the Transform Properties float-

ing panel in the 3D View (N), shown in Figure 11-10. Left-click the name in the

Bone field in the right column of this panel and type a name for the bone that

makes sense. For example, if you have a two-bone chain to control a charac-

ter’s arm, you may name one bone “arm_upper” and the other “arm_lower.”

246 Part III: Get Animated!

Figure 11-10:
Using the

Transform
Properties

floating
panel to

name your
bones.

Blender has a pretty cool way of understanding symmetric rigs, or rigs that

have a left side that’s identical to the right. For cases like this, it’s best to use a

“.L” and “.R” suffix on your bone names. So in the previous example, if you are

rigging a character with two arms, the bones in the left arm would be named

“arm_upper.L” and “arm_lower.L”. The right arm bones would be named “arm_

upper.R” and “arm_lower.R”. This gives you a couple of advantages, but the

one that’s most apparent when modeling is the X-Axis Mirror feature.

To understand this better, create a new armature at the origin (Shift+C➪C)

and follow these steps:

 1. Tab into Edit mode on your new armature and change to the front

view (Numpad 1).

 2. Select the tail of the bone for this armature and extrude a new bone to

the right (E).

 3. Name this bone “Bone.R”.

 4. Select the tail of the main, or root, bone again and extrude another

new bone, but this time to the left (E).

 5. Name this bone “Bone.L.”

 6. In the Armature panel of the Editing buttons, enable the X-Axis Mirror

button (F9➪Armature➪X-Axis Mirror).

 7. Select the tail of Bone.R and Grab it to move it around (G).

 Now, wherever you move the tail of this bone, the tail of Bone.L matches

that movement on the other side of the X-axis. In fact, you can even

extrude (E) a new bone, and a new bone is extruded on both sides of the

axis. As you might guess, this can speed up the rigging process immensely.

247 Chapter 11: Rigging: The Art of Building an Animatable Puppet

As you continue to build your armature, another pretty useful set of tools

is in the Specials menu. You access it by pressing W in the 3D View. Two of

the options in this menu are the Subdivide function and the Switch Direction

function. As you may guess about the former, it takes the selected bones and

creates more bones in their place, based on the number of subdivisions you

would like to have. This is good if you’ve done something like make a charac-

ter’s spine a single bone and then later want to change that to two or three

bones. The Switch Direction function is also pretty helpful. It prevents you

from trying to do the same thing with an imprecise rotation.

 When editing bones, it’s a good idea to have the mesh you’re rigging for vis-

ible. This way, you get your proportions correct. A good rule of thumb for

placing bones is to think about where the character’s real anatomical bones

would be located. Then use that as your guideline to where to place the bones

in the character’s armature.

Parenting bones
One of the important things that make armatures helpful is the notion of how

its bones relate to one another. The most important of these relationships is

the parent-child relationships between bones. The same hotkeys for parenting

and unparenting objects also work with bones, but there are a couple addi-

tional features. To illustrate this, start a new scene (Ctrl+X), delete the default

cube (X), add a new armature object (spacebar➪Add➪Armature), and then

tab into Edit mode. After you’ve done that, go through the following steps:

 1. Duplicate the single bone created and place it somewhere in space

(Shift+D).

 After you confirm placement (left-click), this new bone should be

selected.

 2. Add the original bone to your selection (Shift+right-click).

 3. Press Ctrl+P to make the original bone the parent of the duplicate.

When you do this, you are given two options:

 • Connected: Choosing this option moves the head of the child

bone to the same location as the tail of the parent. This creates

a bone chain as if you’d created the second bone by extruding it

from the first.

 • Keep Offset: Choosing this option leaves the child bone in place

and draws a dashed relationship line between the two bones.

They’re not connected, but one still has an influence on the other.

 4. After you’ve created the parent relationship, select the child bone.

248 Part III: Get Animated!

 5. Clear the parent relationship by pressing Alt+P.

 When you do this, you have another pair of options:

 • Clear Parent: Choosing this option removes any sort of parent-

child relationship this bone has. This also means that if it was

connected to the parent bone, it is now disconnected and can be

moved around freely.

 • Disconnect Bone: This option doesn’t actually clear the parent

relationship. Instead, if you have bones that are connected, choos-

ing this option maintains the parent-child relationship, but you can

move the child bone independently of the parent. It would behave

as if you made the parent by using the Keep Offset option.

Figure 11-11 shows two bones that are unparented, parented with an offset,

and parented as a connected bone.

Figure 11-11:
Bones that
are unpar-
ented, with

an offset
parent, and

parented
with a

connection.

 You may notice that even with bones parented – connected or otherwise – if

you rotate the parent bone, the child does not rotate with it as you might

expect in a typical parent-child relationship. This is because you are still in

Edit mode, which is designed mostly for building and modifying the arma-

ture’s structure. The parent-child relationship actually works in a special

mode for armatures called Pose mode. You access this mode by pressing

Ctrl+Tab. When you’re in pose mode, if you select individual bones and rotate

them, their children rotate with them, as you might expect. From there, you

can swap back out to Object mode by pressing Ctrl+Tab again, or you can

jump back into Edit mode by just pressing Tab.

249 Chapter 11: Rigging: The Art of Building an Animatable Puppet

Armature panels in the Editing buttons
When working with armatures, the Editing buttons (F9) have some panels

with options that are incredibly helpful. Select all the bones in your armature

(A) and have a look at the Editing buttons. What you see should look like

Figure 11-12.

Figure 11-12:
Editing

buttons for
armatures.

 Because the Armature Bones panel can display options for up to five bones

at the same time, it may be a good idea to change your screen layout and put

your Buttons window along the left or right side of the screen and display

them vertically.

As you may have guessed, the Armature panel provides options for the

Armature overall while the Armature Bones panel provides options for the

currently selected bone or bones. Looking at the Armature Bones panel first,

there are some options and controls that are immediately helpful. The first

row of buttons lets you name your bone and define its parent. Rename the

bone by left-clicking in the BO field and typing a new name. The drop-down

menu to the right of the name field displays the selected bone’s current

parent, if it has one, and allows you to choose another existing bone as its

parent. If you have a parent defined here, the Co button to the right of it

allows you to tell Blender whether it’s connected to its parent. These options

change a bit between Edit mode (Tab) and Pose mode (Ctrl+Tab), so keep

that in mind.

There are two other really important sets of buttons in the Armature Bones

panel. The first is the Deform button. It’s a simple toggle that tells Blender

whether this bone will be used to directly deform geometry. A quick way of

explaining it is that you can have bones that actually deform your mesh and

bones whose purpose are to control the location of these deformer bones.

Disabling the Deform button for those controller bones is how you prevent

them from directly controlling your mesh’s geometry.

The other really important buttons in the Armature Bones panel are those

on the last row. These are bone layers. Just as you can place objects on

layers in Object mode, Blender’s armatures have a special set of layers to

themselves. The reason for this is that character rigs with armatures can get

250 Part III: Get Animated!

pretty involved. Using bone layers is a good way to keep the rig logical and

organized. Left-click on a layer button to assign the bone to it. If you would

like the bone to live on more than one layer, you can Shift+left-click the layer

button.

Notice that there’s a corresponding row of layer buttons in the Armature

panel. These buttons control which layers the armature is actually display-

ing. One thing to note is that unlike Blender’s regular layers, these layers do

not indicate whether they have anything in them, so you just have to keep

track of where you place things.

Below the layer buttons in the Armature panel are a set of buttons for con-

trolling how bones in the armature are displayed. A description of each bone

follows:

 ✓ Bone types: Only one of these four buttons can be enabled at any point

in time. Note, however, that even though the bone type may not be

drawn in the 3D View, the things it influences are still valid. That is,

even if you’re displaying Stick bones, they still control the same vertices

within the range of the Envelope bones. Figure 11-13 shows examples of

each of these bone types.

 • Octahedron: The default bone type. These bones are great for

building a rig because they show which way the bone points and if

it’s rotated.

 • Stick: Draws the bones as a thin stick. I like to animate with my

bones in this draw type so they stay out of my way while I work.

 • B-Bone: Bones are drawn as boxes and can be treated as simple

Bézier curves. To make them deform more smoothly, increase the

individual bones’ Segm, or segment value in the Armature Bones

panel. One thing to note is that even if you don’t use the B-Bone

drawtype, Blender still pays attention to the Segm value. So if your

character deforms in an expected way, this may be why.

 • Envelope: Draw the bones with a scalable sphere at each end and

a tube for the bone. Vertices within the influence area of these

bones will be affected by them. Alt+S increases the bone’s range.

 ✓ Extra display options: All, one, or none of these controls can be enabled

in any combination you desire.

 • Axes: Display the center axes of the bones. This is helpful for

understanding their true position and orientation.

 • Names: Display the name of each bone in the 3D view. This can

make selection and defining constraints much easier.

251 Chapter 11: Rigging: The Art of Building an Animatable Puppet

 • Shapes: To help communicate a bone’s purpose to the animator,

any bone in Blender can be replaced with any object in your scene.

While in Pose mode, for a selected bone in the Armature Bones

panel, you define the object you want by typing its name in the OB

field. Enabling the Shapes button allows the replaced object to be

seen in Pose mode.

 • Colors: To help organize bones in an armature for an animator,

you can actually define custom colors for bones by using bone

groups (explained later in this chapter in the section entitled

“Making the rig more user-friendly”). Set all facial controls to blue,

or the left side of the armature in red. Use whatever convention

you care to and enable this button so you can make use of it.

 Two other buttons I like to enable in this panel are X-Ray and Quaternion. The

X-Ray button does the same thing that the X-Ray button in the Object buttons

(F7) does. It allows you to see the bone in the 3D View, even if it’s technically

inside or behind another object. This makes your bones much easier to select

when animating. The Quaternion button is more relevant after you begin ani-

mating with your rig, but enabling it makes the armature deform the mesh a

lot more cleanly than if it’s disabled.

Figure 11-13:
The different

drawtypes
for bones

in Blender
from top

to bottom:
Octahedron,

Stick,
B-Bone, and

Envelope.

252 Part III: Get Animated!

Putting skin on your skeleton
Armatures and bones are pretty interesting, but they do you no good if

they don’t actually deform your mesh. If you’ve been using the last section

as a guide for the tools to create your own rig, you might notice that when

you Ctrl+Tab to Pose mode, you can Grab, Rotate, and Scale bones, but the

moving bones have no influence whatsoever on your mesh. What you need to

do is bind the vertices of the mesh to specific bones in your mesh. This bind-

ing process is commonly referred to as skinning. Blender has two primary

ways of going about this: Envelopes and Vertex Groups.

Quick and dirty skinning with envelopes
Envelopes are the quickest way to get the mesh’s vertices to be controlled

by the armature. Nothing extra has to be created: It’s just a simple parenting

operation that seals the deal. To use envelopes to control your mesh, use the

following steps:

 1. In Object mode or Pose mode, select the mesh by right-clicking it and

then add the armature to your selection by Shift+right-clicking.

 2. Press Ctrl+P to make the armature the parent of the mesh.

 A set of options appears: You want to choose Armature. Immediately

after you select the type of armature, you are prompted with a question

about whether to make vertex groups. For this example, choose Don’t

Create Groups.

 3. After you do this, when you Ctrl+Tab into Pose mode, the mesh

should be under the influence of your armature.

 To see this better, go to the Armature panel in the Editing buttons and

enable the Envelope drawtype for the bones. This lets you see exactly

where the influence of your envelopes really lie. And if some part of your

mesh is not under the influence of an envelope, you can Tab into Edit

mode and edit its size and influence.

That’s the basic workflow for envelopes. Figure 11-14 illustrates this in action.

Now, envelopes are great for quickly roughing out a rig and testing it on your

mesh, but for detailed deformations, they aren’t ideal. Where the influence

of multiple envelopes overlap can be particularly problematic, and there’s a

good tendency for envelope-based rigs to have characters pinch a bit at their

joints. For these cases, a more detailed approach is necessary.

 That said, using envelopes in your armature does give you one distinct control

that you can’t have with armatures otherwise. You can actually use an arma-

ture with envelopes to control the deformation of curves and surfaces. So long

as a control point is within the influence space of a bone’s envelope, it can be

modified and therefore be animated with the armature.

253 Chapter 11: Rigging: The Art of Building an Animatable Puppet

Figure 11-14:
Using enve-

lopes to
control your

armature’s
influence
over the

mesh.

Assigning weights to vertices
So if envelopes are the imprecise way of controlling your mesh, what’s the

precise way? The answer is vertex groups. Chapter 10 briefly touches on

vertex groups in reference to the use of the Child Of constraint. A vertex
group is basically what it sounds like: a set of vertices that have been

assigned to a named group. In many ways, it’s a lot like a material index, as

discussed in Chapter 7. Besides the fact that vertex groups don’t deal with

materials, there are a couple of distinctions between them and material indi-

ces. First of all, vertex groups are not mutually exclusive. Any vertex may

belong to any number of vertex groups that you define. The other distinction

is that a vertices can be given a weight, or a numerical value that indicates

how much that particular vertex is influenced or dedicated to the vertex

group. A weight of 1.0 means that the vertex is fully dedicated to that group,

whereas a weight of zero means that the vertex may as well not even be part

of the group.

To use vertex groups with armatures, you need to do two things first. First of

all, like with envelopes, it’s best that the mesh object is a child of the arma-

ture object.

Secondly, vertex groups need to have the exact name of the bones that

control them. So if you have a bone called “pelvis,” there should be a cor-

responding vertex group with the same name. The vertices assigned to that

group then have their position influenced by the location, rotation, and scale

of the pelvic bone. That influence is tempered by the vertices’ weights.

To adjust the assignments and weights of vertices in their respective vertex

groups, you can use the Link and Materials panel in the Editing buttons (F9).

All of the vertex group controls are on the left side of the panel, as shown in

Figure 11-15. You create a new group with the New button and select the ver-

tices that you wish to assign to the group. With the vertices selected, you can

adjust the value in the Weight field and then assign them by left-clicking the

Assign button.

254 Part III: Get Animated!

Figure 11-15:
The Link and

Materials
panel gives
you control
over vertex

groups.

 Something to note about vertex weights is that they are normalized to 1.0.

That is, a vertex can be a member of two vertex groups and have a weight of

1.0 for both. In cases like this, Blender adjusts the weights internally so they

add up to 1.0. So in my example, that double-grouped vertex behaves like it

has a weight of 0.5 on both groups.

Of course, on a complex armature, this process of creating vertex groups and

painstakingly assigning weights to each vertex can get excessively tedious.

Fortunately, Blender has a couple tools to make things less painful. First of

all, you don’t have to create all of the vertex groups by yourself. Recall the

process of skinning with envelopes. You have to parent the mesh to the arma-

ture there and, in doing so, you’re presented with a few options, as shown

in Figure 11-16. For using envelopes only, you choose Ctrl+P➪Armature➪
Don’t Create Groups. However, the other options give you a lot of power:

Figure 11-16:
The ver-

tex group
options you

get when
parenting a
mesh to an

armature.

 ✓ Don’t Create Groups: As the name says, this option does not create any

vertex groups, thereby ensuring that the mesh is only influenced by the

bone envelopes.

 ✓ Name Groups: This option creates vertex groups for you using all of

the bones that have the Deform button enabled in the Armature Bones

panel. However, it doesn’t automatically assign any vertices to any of

the groups. Use this option if you want to handle assigning weights on

your own. Without assigning any weights, the default behavior is to be

controlled just by bone envelopes.

255 Chapter 11: Rigging: The Art of Building an Animatable Puppet

 ✓ Create from Envelopes: This option is a bit of a compromise. It first

creates the vertex groups based on the bones with their Deform option

turned on. Then it looks at the influence area of the bone envelope

and uses that to assign vertices to the group, with their weights varied

accordingly. The advantage of this option is that it gets you weighted

vertices. The downside, though, is that if the influence area of your enve-

lopes isn’t set up well, the weight assignment can look messy.

 ✓ Create from Bone Heat: This is my favorite option to use. It works like

the Create from Envelopes option, but instead of using the influence

area of the bone envelopes to determine weights, it uses a more com-

plex process that generally results in better vertex assignments and

weights.

Regardless of which option you choose, you’ll likely have to go in and manu-

ally tweak the weights of the vertices. And as you’ve noticed, trying to do

that just from the Link and Materials panel can be pretty painful. Fortunately,

there’s a solution for that as well called Weight Paint mode. This mode is

almost exactly like Vertex Paint mode, as described in Chapter 7, except that

rather than painting color on the mesh, you’re painting the weight assign-

ment to a vertex group. To access Weight Paint mode, select the mesh (right-

click) and press Ctrl+Tab. Even if you don’t intend to paint weights, this is a

great way to see how the weights were assigned by Blender if you used the

Create from Envelopes or Create from Bone Heat options.

The way that weights are visualized is kind of like a thermal map where red

is the hottest value and blue is the coldest value. Extending this logic to work

with bone weights, vertices that are painted red have a weight of 1.0, whereas

vertices painted blue are either not assigned to the vertex group or have a

weight of zero. The 50% weight color is bright green.

After you’re in Weight Paint mode, you get a new Paint panel in the Editing

buttons (F9), as shown in Figure 11-17. Also like with Vertex Paint, if you have

the Transform Properties floating panel visible in the 3D View (N), it changes

to a Weight Paint Properties floating panel. This panel shares the same con-

tent as the Paint panel in the Editing buttons.

Figure 11-17:
The Paint

panel in the
Editing but-
tons when

Weight
Paint mode

is activated.

256 Part III: Get Animated!

Some buttons in this panel are more interesting and helpful than others. The

first of the useful buttons is the Wire button. Enabling this button overlays

the mesh’s wireframe on it. This is actually really helpful when weight paint-

ing because it helps you see where the actual vertices on the mesh are. That

way, you’re not just painting in empty space where no vertices exist.

The next button that’s pretty helpful is the Vgroup button. This limits your

paintable vertices to the ones that are already part of the vertex group you’re

working on. This way, you don’t accidentally add a set of vertices on the

other side of the mesh to the group you’re working on while you try to tweak

their weights. This is especially useful if you’re trying to paint weights with a

mouse, which can be a bit harder to control for painting than a drawing tablet.

I also love the X-Mirror button. It can literally cut your weight painting time

in half. When you enable this button, Blender takes advantage of the left/

right naming convention discussed earlier in this chapter and allows you to

paint symmetrically. So if you’re tweaking the vertex weights on the left leg,

Blender automatically updates the weights for the corresponding bone on

the right leg so that they match. If that ain’t cool, I don’t know what is.

The actual process of weight painting is nearly identical to painting colors

with vertex paint. However, there is one other thing with weight painting,

and that’s the need to tell Blender which vertex group you’re painting. There

are two ways to do this. The slow way, you already know: Select the group

from the Vertex Groups menu in the Link and Materials panel in the Editing

buttons (F9). Of course, though, there’s a faster way. That is to simply right-

click the bone that you want to paint weights for. Doing that selects the bone

and automatically switches to the corresponding vertex group in the mesh

and allows you to paint it. Figure 11-18 shows a mesh in Weight Paint mode

with some painting done on it. Because weight paint relies so much on color,

I highly recommend you look at the corresponding full-color version of this

image in this book’s color insert.

 If you choose to use vertex groups, you have something else to decide. Refer

back to the Armature panel in Figure 11-12. At the bottom of the panel is a

block of buttons under the heading of Deform Options. With both of the first

two buttons, Vertex Groups and Envelopes, enabled, the mesh is influenced by

both vertex groups as well as the bone envelopes. This can be useful in some

instances, but I tend to prefer to work with just one or the other. And if I’ve

created vertex groups and assigned weights to vertices, I generally disable the

Envelopes button. Your rigging needs may be different, but this works for me

because this way I know that the only reason a vertex is deforming improperly

is that I didn’t assign its weight properly. I don’t have to concern myself with

the influence of the bone’s envelope.

257 Chapter 11: Rigging: The Art of Building an Animatable Puppet

Figure 11-18:
Painting

vertex
weights.

Bringing It All Together in a Single Rig
As you may have guessed, rigging is a pretty intensive process. You need to

be technically-minded and creative at the same time. The best riggers I’ve

ever met are the sort of people who fit this description and have an eye for

the big picture. These are the sort of people who enjoy playing Minesweeper,

finding pleasure in solving the integrated relationships in each part of

that game.

Well, regardless of whether you’re one of these people, the best way to

understand the full process of rigging is to actually create a rig of your own.

The examples throughout the rest of this section are done with a simple stick

figure character that I like to use for creating quick animations that test body

language and timing. I love animating with stick figures, even in 3D. Ninety

percent of an animated character’s personality comes through in his body

language. Animating with stick figures allows you to focus on that essential

part of the process and keeps you from getting distracted with secondary

details.

258 Part III: Get Animated!

This stick figure, in both rigged and unrigged versions, is included with the

CD-ROM that accompanies this book, so that you have a finished reference as

well as a file to practice with. So you can have an idea of what you’re looking

for, Figure 11-19 shows the stick figure in a pose in the 3D View. Of course,

if you have a character already modeled and want to rig it, that’s great. You

should be able use the techniques here for nearly anything you want to build

a rig for.

Figure 11-19:
Say hello to

Stickman! Hi,
Stickman!

If you load the stickman.blend file from the DVD, the first thing you might

notice is his pose. He’s standing up with his arms out to his sides. This is

referred to as a T pose because the character looks like the letter T. This is

probably the most common pose that modelers use when they create their

characters and it’s the most preferred pose for riggers. Some modelers may

also model with the arms at the sides or somewhere halfway between the T

pose and having arms at the side. There are valid reasons people give for any

of these poses, but ultimately it really comes down to personal preference. I

find that the T pose is easier for me to rig, so I have little bias for that one.

Now, time to get an armature in this mesh. Probably the best way to handle

this is to create the centerline bones first. These would be the body bones,

the head, and the hip bone. To do this, use the following steps:

259 Chapter 11: Rigging: The Art of Building an Animatable Puppet

 1. Add your armature and start with the first body bone

(spacebar➪Add➪Armature).

 2. Enable X-Ray viewing for the armature (F9➪Armature➪X-Ray).

 Doing this ensures that you can see the bones of your armature, even if

you’re in the Shaded draw mode and the bones are inside your charac-

ter’s mesh.

 3. Tab into Edit mode and move this bone up in the Z-axis until it’s

around Stickman’s waistline (G➪Z).

 4. Select the tail of this bone and move it up in the Z-axis until it’s at the

top of the torso (right-click, G➪Z).

 5. Subdivide this bone into two bones (W➪Subdivide).

 Name the bottom bone “body.1” and the top bone “body.2.”

 6. Select the joint between the two bones and move it back in the Y-axis

a little bit (right-click, G➪Y).

 This helps the bones match the natural curvature of the spine a little bit

better.

 7. Select the tail of body.2 and extrude it up in the Z-axis to the top of

Stickman’s head (right-click, E➪Z).

 Name this bone “head.”

 8. Select the head of body.1 and extrude it down in the Z-axis to the

bottom of Stickman’s pelvis (right-click, E➪Z).

 Name this bone “hip.” If you enable the Names and X-Ray buttons in the

Armature panel of the Editing buttons (F9), you should now have some-

thing that looks like Figure 11-20.

The next step is to create bones for the arms and the legs. The way to do this

is to create bones for half of the rig and then let Blender do the rest of the

work for you by mirroring the bones. First things first, though — you have to

create one half of the rig:

 1. Switch to the front view and select the head bone and duplicate it,

putting its root at Stickman’s left shoulder joint (Numpad 1, right-click,

Shift➪D).

 Note that by doing it this way, the new bone is an offset child of the

body.2 bone. Name this new bone “arm_upper.L.”

 2. Select the tail of arm_upper.L and move it to Stickman’s elbow. It may

help to press Ctrl to guarantee that the bone is perfectly horizontal

(right-click, G➪Ctrl).

260 Part III: Get Animated!

Figure 11-20:
Stickman

has an
armature

for his
centerline.

 3. Extrude this tail to create a new bone along the X-axis that extends to

Stickman’s hand (E➪X).

 Name this new bone “arm_lower.L.”

 4. From the front view, select the hip bone and duplicate it, placing the

new bone’s head at the top of Stickman’s left leg (Numpad 1, right-

click, Shift+D).

 5. Select this new bone’s tail and move it along the Z-axis to Stickman’s

feet (right-click, G➪Z).

 6. Select this bone and subdivide it into two bones (right-click,

W➪Subdivide).

 Name the top bone “leg_upper.L” and the bottom bone “leg_lower.L.”

 7. Select the joint between these bones and move it forward in the Y-axis

a little bit (right-click, G➪Y).

 This gives the knee a little bit of bend, which helps deformation later on.

 8. Parent leg_upper.L to hip (right-click leg_upper.L, Shift+right-click

hip, Ctrl+P➪Keep Offset).

 You should now have something that looks like Figure 11-21.

261 Chapter 11: Rigging: The Art of Building an Animatable Puppet

Figure 11-21:
A half-

skeleton
Stickman!

Now for the really cool part of letting Blender do the work for you. You want to

select all of the bones that aren’t on the centerline, duplicate them, and mirror

them along the X-axis. The specific hotkeys and steps to do this are below:

 1. Select both arm bones and both leg bones (B).

 2. Duplicate the selected bones and immediately press Esc (Shift+D, Esc).

 This places the newly created bones in the exact same location as their

originators.

 3. Switch to using the 3D cursor as your pivot (period [.]).

 You should be building your armature around the Z-axis, so it would

probably be a good idea to make sure your 3D cursor is at the origin

(Shift+C).

 4. Mirror these new bones along the X-axis (Ctrl+M➪X).

 5. Switch back to using the median point as your pivot (Shift+comma [,]).

 6. Have Blender automatically give these new bones the .R suffix to indi-

cate that they’re on the right side (W➪Flip Left-Right Names).

 Pow! All of your bones should be properly named now and your rig

should now look like what’s in Figure 11-22.

262 Part III: Get Animated!

Figure 11-22:
Stickman

with a skel-
eton in him.
He’s almost

rigged,
but he still

needs some
controls.

Taking advantage of parenting
and constraints
What you currently have in place is the basic structure of the rig’s arma-

ture. The primary function of these bones is to deform the character mesh.

Technically, you could animate with just these bones after you skin them

to the mesh. However, there are some additional bones that you can (and

should) add to the armature to make it easier to animate. They work by

taking advantage of the parenting set up by the bone chains and combining

them with some reasonable constraints.

For example, you currently have a structured skeleton in place, but what

happens if you Ctrl+Tab into Pose mode and Grab the body.1 bone and

move it (G)? Because the entire upper body is directly or indirectly a child

of this bone, the upper torso, arms, and head move with the body.1 bone.

Unfortunately, the lower half of the body doesn’t share this relationship, so

as Figure 11-23 shows, you end up tearing Stickman’s skeleton in half. Ouch!

To compensate for this, you need a bone that both the hip and body.1 relate

to, binding the upper half of the body to the lower half. This is what you call

the root bone. Moving this bone should move the entire armature. Adding this

bone to the rig is pretty simple:

263 Chapter 11: Rigging: The Art of Building an Animatable Puppet

Figure 11-23:
There’s
nothing

relating the
upper body

to the lower
body, so you

can acci-
dentally tear

Stickman
in half.

 1. Tab into Edit mode on the armature and switch to the side view

(Numpad 3).

 2. Select the head of either the body.1 or hip bones (right-click).

 Both heads are located in the same place, so it doesn’t really matter

which one you select.

 3. Extrude a new bone in the Y-axis (E➪Y).

 You should move in the positive Y direction, towards the back of

Stickman. Name this bone “root.”

 4. Select the body.1 and hip bones and then select the root bone (right-

click, Shift+right-click, Shift+right-click).

 5. Make root the parent of both body.1 and hip (Ctrl+P➪Keep Offset).

 This parent relationship means that you can move the entire armature

by just selecting and moving the root bone. Before doing this, some

people may choose to switch the direction of the root bone (W➪Switch

Direction) so that they can have the root bone actually connected to

body.1 and hip. It’s all a matter of taste, but I prefer not to do that.

Because bones naturally rotate around their head, it’s more useful to me

to keep the head of the root bone in the center of the character. In my

opinion, it helps make bending at the waist look more natural.

 6. Select the root bone and disable the Deform button in the Armature

Bones panel (right-click, F9➪Armature Bones➪Deform).

264 Part III: Get Animated!

 This bone is intended purely to control the other bones. You don’t want

any of the mesh’s vertices assigned to it. Your Stickman rig should now

look something like Figure 11-24.

Figure 11-24:
Adding a

root bone
to the rig

prevents the
top of the

body from
unnecessar-

ily leaving
the bottom.

Another convenient control bone that you may want to add is a head control.

Sure, you can rotate the head bone as you wish, but often it’s easier to use

a bone as the head’s (or eyes’) target. That way, when you want the charac-

ter to look at something, you just move the target bone to that something’s

location. An added benefit of this is that by doing it this way, you can suc-

cessfully create complex moves, such as keeping the character looking at an

object as he walks by it. Again, you could do this by animating the rotation

of the head bone by itself, but this control certainly simplifies things for the

animator. To do this, you just use a Track To constraint:

 1. Tab into Edit mode and select the head bone (Tab, right-click).

 2. Duplicate the head bone and move it in the Y-axis (Shift+D➪Y).

 The idea here is that you want the control bone to be far enough in front

of the face so you can have some control without getting in the way of

the rest of the rig. I moved mine about 3 Blender units out. Name this

bone “head_target.”

 3. Clear the parent relationship on the head_target bone (Alt+P➪Clear

Parent).

265 Chapter 11: Rigging: The Art of Building an Animatable Puppet

 Because the head_target bone came into being by duplicating the head

bone, it inherited the parent relationship with the body.2 bone. You

don’t want that because you want to be able to move the head target

independently of the rest of the rig.

 4. Ctrl+Tab into Pose mode, select the head_target bone, and then also

select the head bone (right-click, Shift+right-click).

 5. Add a Track To constraint to this bone (Ctrl+Alt+C➪Track To).

 This should automatically add a Track To constraint to the Constraints

panel in the Editing buttons (F9). Chances are good that it also made

the head bone rotate toward head_target and point directly at it. This is

certainly not the behavior you want. To fix this, you need to change the

alignment axes that the constraint works on.

 6. In the Track To constraint, change the To axis to X and the Up axis to Y.

 This should fix the head bone so it points in the proper direction. Now

when you Grab (G) the head_target bone and move it around, the head

bone always points at it.

 7. Select the head_target bone and disable the Deform button in the

Armature Bones panel (right-click, F9➪Armature Bones➪Deform).

 Like the root bone, this bone is not intended to deform the mesh, so dis-

abling the Deform button ensures this. Figure 11-25 shows what your rig

should look like now.

Figure 11-25:
The

Stickman
rig, now

with head
control!

266 Part III: Get Animated!

Your Stickman is mostly functional now. However, there’s another constraint

that is a staple of nearly all character rigs and is monumentally helpful to ani-

mators. It’s called an inverse kinematics, or IK, constraint. The next section

goes into what this constraint does, how it works, and how to give your rig

its benefits.

Understanding the difference between
inverse kinematics and forward kinematics
When it comes to animating characters in 3D with an armature, you have two

ways to move limbs around: inverse kinematics and forward kinematics, or IK

and FK. Kinematic is just a fancy way of saying motion. By default, your rig is

set up to use FK. Say you have a bone chain and you want to place the tip of

the last bone to a specific location in 3D space. In order to achieve this, you

have to rotate the first bone in the chain, and then the next, and then the next,

and so on until you can get that last bone’s tip properly placed. You’re working

your way forward down the bone chain. Because of the parenting relationships

between the bones, you can currently do this with your Stickman rig right now.

That’s FK. It gets the job done, but it can be awfully difficult and tedious to

try and get the tip of that last bone exactly where you want it. It would be

nice if you could just grab that tip, put it in place, and let the computer figure

out how all the other bones have to bend to compensate for that. This, basi-

cally, is the essence of IK. You move the tip of the last bone and Blender

works backwards up the chain to get the other bones properly placed.

To see what this is like, select your Stickman armature and Ctrl+Tab into

Pose mode. Now, select the body.2 bone and press G to Grab and move it.

Notice that all it does is rotate. It doesn’t actually change its location. Now

go to the Armature panel of the Editing buttons (F9) and left-click the button

that says Auto IK. This isn’t a real IK constraint, but it will help you under-

stand how IK works. Now Grab and move the body.2 bone. Notice that now, it

moves around, and the body.1 bone rotates to compensate for the locations

that you try to put body.2. Selecting the head bone or one of the arm_lower

bones results in similar behavior. Click around and play with it. It’s pretty

cool. When you’re done, disable the Auto IK button.

IK is really awesome stuff and it’s very powerful, but it’s not the ultimate

solution for animating. See, one of the core principles of animation is move-

ment that happens in arcs. Generally speaking, arcing movement is move

believable and natural-looking. Things that move in a straight line tend to

look stiff and robotic. Think about how a person’s arms swing when they

walk. It doesn’t necessarily matter exactly where the hand is. The entire arm

rotates and swings back and forth. That is FK movement. If you’re animating,

you can recreate that motion by keying the upper arm bone at the extreme

ends of the rotation.

267 Chapter 11: Rigging: The Art of Building an Animatable Puppet

In contrast, IK movement tends to happen in a straight line. You’re just

keying the tip of the chain, so that tip moves directly from one location to the

next. To recreate a swinging arm in IK, you’d need at least three keyframes:

one at each extreme and one in the middle to keep the hand from going in a

straight line. And even then you might need even more intermediary keys to

try to get that smooth arc that you get automatically with FK.

Where IK shines is when the tip of the bone chain needs to be precisely

positioned. A perfect example of this are feet. When a person walks, the feet

must touch the ground. Trying to achieve this with just FK usually ends up

with feet that look “floaty” and not locked into place as the character moves.

Another example is if the character is holding on to something and doesn’t

want to let go of it. You want to keep the hand in place and let the elbow

bend naturally. In instances like these, IK is really helpful. The biggest use,

though, is for foot/leg rigs on characters. And to that end, you’re going to use

the following steps to add IK controls to the Stickman rig:

 1. Tab into Edit mode on the armature and select the tip of the leg_

lower.L bone.

 You can actually select either the left or right bone. Because you have

X-Axis Mirror enabled, whatever you do on one side also happens on the

other.

 2. Extrude a new bone in the Z-axis (E➪Z).

 You don’t have to extrude the new bone very far. Just enough to know

it’s there. Name this bone “leg_IK.L,” and make sure that the mirrored

bone is named “leg_IK.R.”

 3. Disconnect leg_IK.L from leg_lower.L (Alt+P➪Disconnect Bone).

 4. Ctrl+Tab into Pose mode, select leg_IK.L, and add leg_lower.L to the

selection (right-click, Shift+right-click).

 5. Add an IK constraint (Shift+I➪To Active Bone).

 This adds an IK constraint in the Constraints panel. Go to this panel and

change the ChainLen value to 2. By default, the IK bone chain goes all

the way back to the head of the hip bone. You actually only want it to

have an influence to the head of the upper leg bone. Setting the chain

length to 2 confirms this.

 6. Perform steps 4 and 5 on leg_IK.R and leg_lower.L.

 Sadly, X-Axis Mirror only works in Edit mode, so you have to add your IK

constraints on both sides on your own.

 7. Select the leg_IK.L and leg_IK.R bones and disable the Deform

button for each of them in the Armature Bones panel (F9➪Armature

Bones➪Deform).

 Like the root and head_target bones, these are control bones and should

not be used for skinning. At this point, you have a basic IK rig on your

character’s feet. It should look something like Figure 11-26.

268 Part III: Get Animated!

Figure 11-26:
A basic

IK rig for
the legs of
Stickman.

Test your rig out by selecting the root and moving it around, particularly up

and down the Z-axis. The leg bones in your Stickman rig should bend all by

themselves to compensate for the location of the root bone relative to the IK

bones. You can also select each of the leg_IK bones and move them around

to control the bending of each leg independent of the other.

In doing this, however, you may notice that there are occasions where the

legs don’t quite know how to bend. They may randomly flip backward or roll

out in odd angles. This is because, aside from slightly bending the rig at the

knees when you created the leg bones, you haven’t provided the legs with

much of a clue as to how exactly they should bend. Fortunately, the solu-

tion to this is pretty simple. It’s called a pole target. To define it, you need to

create two more bones, one for each leg:

 1. Tab into Edit mode on Stickman’s armature and select leg_IK.L.

 Again, because X-Axis Mirror is enabled and you’re in Edit mode, choos-

ing either leg_IK bone works fine.

 2. Switch to side view, duplicate the bone, and move the new bone to

somewhere in front of the knee (Numpad 3, Shift+D).

 Name this bone “knee.L” and make sure the mirrored bone is named

“knee.R.”

 3. Rotate knee.L 180 degrees in the X-axis (R➪X➪180).

 This step isn’t essential. I just like to have my floating bones pointing up.

269 Chapter 11: Rigging: The Art of Building an Animatable Puppet

 4. Parent knee.L to leg_IK.L (right-click knee.L, right-click leg_IK.L,

Ctrl+P➪Keep Offset).

 5. Ctrl+Tab into Pose mode.

 6. Select leg_lower.L and, in the IK constraint panel, enter Armature

under the Pole Target field for OB. Enter knee.L in the BO field that

appears after that.

 Doing this defines knee.L as the pole target for the left leg’s IK chain.

When you do this, however, the knee joint for the left leg may instantly

pop to the side, bending the leg in all kinds of weird ways. The next step

compensates for that.

 7. Still in leg_lower.L’s IK constraint panel, adjust the Pole Offset value

to -90.

 This should cause the leg’s knee joint to properly point at the knee.L

bone. If it doesn’t, try adjusting this until it looks correct. Usually this

value is 0, 90, -90, or 180. The reason for this is because the default

behavior is to point leg_lower.L’s local X-axis toward the pole. If the

local X-axis isn’t forward, adjusting the offset accounts for this.

 8. Perform steps 6 and 7 on leg_lower.R.

 At this point, you have a fully configured IK rig for both of Stickman’s

legs. You’re nearly ready to animate him. For reference, your rig should

look like the one in Figure 11-27.

Figure 11-27:
A completely

working
Stickman rig.

270 Part III: Get Animated!

At this point, it should be pretty safe to skin the Stickman mesh to your

armature. Using the bone heat method should give you the best results, so

select the mesh (right-click), select the armature (Shift+right-click) and press

Ctrl+P➪Armature➪Create from Bone Heat. Now when you move around and

pose your rig, the Stickman mesh should obediently follow in kind. To ensure

that your deformations look good, go to the Armature panel and look at the

Deform Options. Disable Envelopes and enable Quaternion. This should keep

the mesh from pinching unnaturally at Stickman’s joints.

Making the rig more user-friendly
At this point, you’ve got a great basic rig that you can start animating with

immediately. However, you can make a few tweaks that make it even more

usable. The first thing you can do is change the way the bones display in the

3D View. Now that you’re done with the bulk of rigging, knowing which end of

a bone is the head or the tail is a bit less important. Go to the Armature panel

in the Editing buttons (F9) and change from Octahedron to Stick. Stick bones

are the least obtrusive bones that are immediately available to you. Now you

can see more of your mesh while you’re animating and there’s not as much

clutter and geometry in the way. Figure 11-28 shows the Stickman rig with

stick bones.

Figure 11-28:
Stickman . . .
rigged with

sticks!

271 Chapter 11: Rigging: The Art of Building an Animatable Puppet

Another relatively new feature to Blender that is quite helpful for organizing

your rigs is the ability to create bone groups. To do this, select the bones you

would like to group together and press Ctrl+G. When you do this, you get four

options:

 ✓ Add Selected to Active Group: If you already have a group created and

it’s the one visible in the Link and Materials panel, choosing this option

adds the selected bones to that group.

 ✓ Add Selected to Group: Choosing this option gives you a second pop-up

that gives you a list of your existing groups, as well as the ability to add

a new group. Whichever you pick, the selected bones are added to it.

 ✓ Remove Selected from Groups: If the bones you have selected are part

of any groups, choosing this option removes them.

 ✓ Remove Active Group: Choosing this option removes the group that is

currently visible in the Link and Materials panel. Note that this does not

remove the bones, just the group that they’re associated with.

I used the bone groups feature to create groups for my main bone chains: left

arm, right arm, left leg, right leg, and body. I left root, head, and head_target

groupless. Create your own groups as you see fit.

Beyond organization, there’s an additional benefit to using bone groups. You

can define custom bone colors based on the bone groups you have. The con-

trol for this is in the Editing buttons. First, in the Armature panel, enable the

Colors button under display options. Then, in the Link and Materials panel,

left-click the button that says Default Colors and choose a Theme Color Set

from the menu that pops up. I used this feature to make all of my left-side

bones green and my right-side bones red. It’s a good visual trick to let you or

another animator quickly identify which bones are being used. Figure 11-29

shows what the bone groups and bone colors options look like in the Link

and Materials panel.

Figure 11-29:
The Link and

Materials
panel with

controls
for bone

groups and
bone colors

for those
groups.

272 Part III: Get Animated!

Besides groups, another organizational tool for making your rig more usable

are bone layers. Bone groups make it easy to visualize bones and even select

them. However, bone layers are a faster, more reasonable way of showing

and hiding the bones in your rig. As an example, have a look at Stickman’s

legs. They’re entirely controlled by the IK and knee bones. Because you

can see the Stickman mesh, you really don’t need to see these leg bones. In

some ways, they just get in the way of seeing your character’s acting. In that

case, it makes plenty of sense to move them to a different layer and hide that

layer. To do this, use Shift+right-click, Border Select (B), or press L with your

mouse over the leg bones to select the entire leg chain and then press M to

move them to a different layer. I moved the bones to the first layer in the

second block of layers. Now, if you ever want to see those bones, just go to

the Armature panel and enable the layer there. In the meantime, though, as

Figure 11-30 shows, your Stickman rig is much cleaner and now you’re really

ready to start animating.

Figure 11-30:
Stickman,
reporting
for duty!

Chapter 12

Animating Object Deformations
In This Chapter
▶ Becoming familiar with the Action Editor

▶ Animating shape keys

▶ Using armatures for animations

▶ Animating quickly with the Non-Linear Animation window

Looking at the title of this chapter, you may find yourself wondering how

this chapter is different from Chapter 10. Both chapters cover anima-

tion, but this chapter covers the cool things you can do in Blender if you’re

animating with a fully rigged mesh. Chapter 10 covers what is often referred

to as object animation: that is, animating the attributes of a single object.

You can actually squeeze quite a bit of personality out of object animation.

However, the level of control and detail that you can get when your object

has an animation rig is exponentially greater. There are simply way more

possibilities for expression and communication. And at the same time, the

process of animating is a little bit more complex. With an animation rig, there

are more bits and pieces to manage, keep track of, and control.

Trying to manage all of that additional complexity can be daunting if all you

have to work with is the Outliner and the Ipo Curve Editor. Fortunately,

Blender offers a few more features that help make rigged character animation
easier to wrap your head around.

Of course, this doesn’t change anything that’s covered in Chapter 10. In fact,

if you’re not familiar with the Ipo Curve Editor and the process of setting key-

frames in Blender, you probably ought to go back and review that chapter.

Working with the Action Editor
So you have a rigged character that you want to animate. Awesome! Change

your screen layout to the Animation layout (Ctrl+left arrow). After that,

the first thing that you’re probably going to want to do is change the 3D

View to the Shaded draw type (Z), change the Translate widget to the

Rotate widget (Ctrl+spacebar➪Rotate), and set it to Normal orientation

274 Part III: Get Animated!

(Alt+spacebar➪Normal). You should switch to Normal orientation because

when you’re animating with an armature, most of the time, you’re animat-

ing bone rotations. By setting the rotation widget to the Normal coordinate

space, you can have quick, controlled manipulation of bone rotations without

having the widget get in your way too much.

The next thing you need to do is go to the Ipo Curve Editor and change the

Ipo Type to Pose. This gives you the channels necessary for animating bones.

Of course, as nice as seeing those channels may be, the Ipo Curve Editor

only shows the keyframes for a single selected object or bone. The Timeline

window shows multiple keys, but you don’t have a good way to see which

key belongs to which object, and the Timeline provides no tools for actually

editing these keyframes, aside from inserting and deleting them. You need a

different window: one that lets you see the keyframes for multiple bones and

edit their timing individually. What you’re looking for is the Action Editor

window (Shift+F12), shown in Figure 12-1.

Figure 12-1:
The Action

Editor.

As Figure 12-1 shows, when you have an armature selected, the Action Editor

shows a channel for each of the keyed bones in the rig. Furthermore, if

you’ve got a rig that has bone groups, the Action Editor actually breaks up

the channels according to those bone groups.

The Action Editor’s ability to understand bone groups really makes it easy to

see if any bone in a group gets animated. Now, the Action Editor doesn’t give

you full control over the Ipo curves for each animatable channel in a single

bone. You do have the ability to “drill down” to the individual location, rota-

tion, and scale keys per axis on each channel by left-clicking the triangle icon

to the left of each one. But to edit curves, you still need the Ipo Curve Editor.

The Action Editor shows a diamond-shaped dot to indicate that a key has

been created. This way, you can get a sense for the “big picture” in your char-

acter animation. When it comes to editing the overall timing of a character’s

performance, the Action Editor is really the tool for the job.

275 Chapter 12: Animating Object Deformations

Like other parts of Blender, you can select individual keyframes by right-

clicking the diamond-shaped keyframe indicator. Multiple keyframes can

be selected in a variety of ways. You can use the familiar Shift+right-click or

Border Select (B) functions. However, there’s another way to select that’s

incredibly helpful. If you have an Action Editor open and a few keyframes

set, right-click any keyframe to select it. Now, with that key selected, press K.

Doing this selects any other key in the armature that’s on the same frame as

your selected key. This is called a column key selection. You can get similar

functionality with the time cursor. If you place your time cursor on a column

of keys and press Ctrl+K, that column of keys is selected, rather than the

column with your original selected keys.

 Initially, you might not think that column key selection would be all that

useful. However, if you think about the process used for animating – espe-

cially cartoon-style animation – it starts making more sense. The workflow for

animation is usually to go from pose to pose. This means that at each pose

that you key, multiple bones are all keyed at the same time, forming a column

in the Action Editor. In fact, unless you’re doing some kind of frantic, shaky

animations, it’s a pretty good practice to make sure you have nice columns in

your Action Editor. Uneven columns tend to indicate that your timing may

be off on a specific part of the rig. Of course, this is a guideline more than a

hard-and-fast rule.

After they’re selected, keys can be manipulated with Grabbing (G) and

Scaling (S). When performing these actions, there are two things to pay atten-

tion to. First of all, when you scale selected keyframes, the scale is relative

to the position of the time cursor in the Action Editor window. So if you want

to increase the length of your animation by stretching out the keyframes, put

your time cursor at frame 1 before scaling. If you place it in the middle or

at the end, the keys at the beginning of your animation are arranged so that

they take place before your animation starts. This is typically exactly what

you don’t want, so be careful.

The other thing to take into account is that even though the time cursor

snaps to frames, the individual keyframes do not. When Grabbing (G), you

can get around this by holding down Ctrl while you’re moving the keys

around. This snaps the keys to even increments of 1 frame length. When

Scaling keyframes, however, the same trick doesn’t work. Instead, you need

to use snapping. With your mouse in the Action Editor window press Shift+S.

You should get a menu that looks like the one in Figure 12-2.

Figure 12-2:
The Snap

menu in
the Action

Editor.

276 Part III: Get Animated!

You have three options in this menu:

 ✓ Nearest Frame: Choosing this option takes the selected keys and shifts

them to the even frame number that’s closest to them.

 ✓ Current Frame: This option snaps selected keys to the location of the

time cursor in the Action Editor.

 ✓ Nearest Marker: Blender’s Action Editor allows you to place reminders

on the timeline referred to as markers. You can add a new marker at the

location of the timeline cursor by pressing M in the Action Editor window.

If you have one or more of these markers on you timeline, choosing this

option snaps selected keyframes to the marker that’s nearest to it.

Alternatively, you can use Blender’s autosnapping feature. Enable it by left-

clicking the button in the Action Editor’s header that says “No Snap.” That’s

the default snapping type. It has almost all the same options mentioned

above. The only difference is the Frame Step option, which behaves like

pressing Ctrl while moving keys.

 If you’re familiar with other animation software or traditional hand-drawn

animation, you might recognize Blender’s Action Editor as being similar to a

dope sheet. In traditional animation, the dope sheet was the entire animation

planned out, frame by frame, on paper prior to a single pencil line being drawn

by the animator. In computer animation, it’s taken on a slightly different

meaning and purpose. Some software has a dope sheet editor that allows the

animator to see the keyframes and timing for all of the animatable channels

in a character, and in some packages, a whole scene. Blender doesn’t quite

have that right now as the Action Editor is limited to showing multiple bones

in the same armature at the same time, but not other animatable channels or

objects. Hopefully, however, this will change in the future and Blender will

have an even more powerful Action Editor. In the meantime, what Blender

does have certainly isn’t anything to turn your nose up to.

Animating Shape Keys
 Although the Action Editor is optimized to be used with armature objects, it

still has some other tricks up its sleeves. You can use it as a more intuitive

way of animating shape keys. Take a gander back at Figure 12-1 and notice that

the header of the window has a drop-down menu that says Action Editor. This

button controls the editing modes that the Action Editor can take on. If you

left-click the button, you see that there are three modes to choose from:

 ✓ Action Editor: This is the default mode described in the last section. It

can handle objects, but it’s optimized for working with armatures.

 ✓ ShapeKey Editor: An Action Editor mode for tweaking shape keys. For a

refresher on shape keys, have a look at Chapter 11.

277 Chapter 12: Animating Object Deformations

 ✓ Grease Pencil: This is for a very new feature in Blender that allows you

to draw and write notes on the 3D View. The cool thing about this fea-

ture is that it actually allows you to animate those drawings. This Action

Editor mode is how you can edit the timing of those drawn animations.

If you have a mesh with shape keys, each shape has a channel on the left of

the Action Editor. Figure 12-3 shows the shape key Action Editor for the bug-

eyed screaming Suzanne example from Chapter 11.

Although it’s nice to be able to tweak the Ipo curves for the transition from

one shape to the next, the simpler Action Editor interface is certainly a lot

better and less cluttered for characters that have many, many shape keys.

But you get another really sweet bonus by using the Action Editor. Notice the

word Sliders above the shape channels. If you left-click the triangle icon to

the right of that, Blender makes the shape key sliders from the Shapes panel

available to you. Now you can animate multiple shape keys without having

to cycle through them in that panel. And what’s more, if you left-click on one

of the channel names, a little box pops up that allows you to set the custom

minimum and maximum values for the sliders. You can even rename the

shape key through this box.

To make a long story short, the ability to use sliders to edit your shape keys

in the Action Editor is pretty sweet and an extremely powerful feature.

Figure 12-3:
Using the

Action
Editor for

animating
shape keys.

278 Part III: Get Animated!

Animating with Armatures
Alright, so now it’s time to get to animating. If you’re already used to object

animation, using armatures to animate using the Action Editor extends natu-

rally from that base. When I animate, I like to use the following process:

 1. Pre-plan the animation.

 This can’t be emphasized enough: There’s nothing worse than sitting

down to animate without a plan. You end up doing two or three times

the amount of work you would’ve done if you’d just done a little plan-

ning, and the results are usually worse for the effort. Know what you’re

going to animate and have an idea about the timing of the motion. If you

can, sketch out a few quick thumbnail drawings of the sequence. Even if

the drawings are stick figures, they can be really helpful for determining

poses and figuring out how things are going to look.

 2. Set your timeline at frame 1 and create the starting pose for your char-

acter by manipulating its rig.

 3. Select all visible bones (A) and Insert a LocRot keyframe for every-

thing (I➪LocRot).

 Granted, there’s a good chance that most of the bones can’t be Grabbed,

so setting a location keyframe for them is kind of moot. However, setting

a keyframe for all the bones is faster than going through and figuring

out which bones can be keyed for just rotation and which bones can be

keyed for both rotation and location.

 4. Move the timeline cursor forward to roughly when you think the next

major pose should happen.

 5. Create your character’s second pose.

 If the next pose is a hold, or a pose where the character doesn’t change

position, you can duplicate the keys of the previous pose by selecting

them and pressing Shift+D.

 6. Select all visible bones (A) and Insert an Available keyframe

(I➪Available).

 7. Continue with steps 4-6 until you complete the last major pose for

your character.

 8. Using the Action Editor, play back the animation, paying close atten-

tion to timing.

 In fact, pay even more attention to timing than the accuracy of the poses.

 9. Go through the keys set in the Action Editor and tweak the timing of

the poses so they look natural.

279 Chapter 12: Animating Object Deformations

 10. Continuing to tweak, go back and start adding secondary poses and

keyframes for secondary motion between your major poses.

 11. Continue on this course, refining the timing and detail more and more

with each pass.

 You should notice that in the last set of steps, a pattern is beginning to

emerge. One of the luxuries we have in computer animation is the ability to

continually go back and tweak things, make changes, and improve the ani-

mation. You can take advantage of this process by training yourself to work

in passes. Animate your character’s biggest, most pronounced motion first.

Make sure you have the timing for that down right. Then move to the next

pass, working on slightly more detailed parts of the performance. The biggest

reason to work this way is time. It’s much easier to go in and fix the timing on

a big action if you do it earlier. Otherwise, you run into situations where you

find yourself shuffling around a bunch of detail keys after you find out that

your character doesn’t get from Point A to Point B in the right amount of time.

 Don’t be afraid to break out a stopwatch and act out the action to find out

exactly how long it takes to perform and what the action feels like. If you’re

fortunate enough to have friends, have them act out the action for you while

you time it. Animation is all about timing. One of the things that I like to

tell people is, “If you can tell a joke that people genuinely laugh at, you can

animate.” This is because both animating and telling jokes both rely almost

entirely on good timing. You can tell a bad joke, or even speak a completely

unfunny sentence and make people laugh if you do it with the right timing.

Animation is the same way. It may be the most mundane of actions, but if you

nail the timing on it, naturally it becomes a lot more interesting.

Principles of animation
worth remembering
As you create your animations, draw on a variety of sources to really capture

the essence of some action, motion, or character expression. My first and

most emphatic recommendation is to keep your eyes open. Watch everything

around you that moves. Study it and try to get an idea of how its structure

facilitates motion. Then think about how you would recreate that.

Of course, merely gawking at everything in the world isn’t the only thing

you should do (and you should be prepared for the fact that people might

look at you funny). Studying early animation is also a good idea. Most of the

principles that those wonderfully talented pioneers developed for animation

are still relevant and applicable to computer animation. In fact, you should

remember the classic 12 basic principles of animation that were established

280 Part III: Get Animated!

by some of the original Disney animators. This is a bit of divergence, but if

your aim is to create good animation, you should know about these prin-

ciples and try to use them in even the most simple of animations:

 ✓ Squash and stretch: This is all about deformation. Because of weight,

anything that moves gets deformed somehow. A tennis ball squashes to

an oval shape when it’s hit. Rope under tension gets stretched. Cartoon

characters hit all believable and unbelievable ranges of this when they’re

animated, but it’s valuable, albeit toned-down, even in realistic animation.

 ✓ Anticipation: The basic idea here is that before every action in one

direction, there’s a build-up in the opposite direction first. A character

that’s going to jump bends her knees and moves down first to build up

the energy to jump up.

 ✓ Staging: The idea of staging is to keep the frame simple. The purpose of

animation is to communicate an idea or a movement or an emotion with

moving images. You want to convey this as clearly as possible with the

way you arrange your shots and the characters in those shots.

 ✓ Straight-ahead action versus pose-to-pose action: These are the two pri-

mary methods of animating. The process that I discussed near the begin-

ning of this chapter is more of a pose-to-pose technique. Pose-to-pose

can be more clear, but it may be a bit cartoony. Straight-ahead action is

generally more fluid and realistic, but the action may be less clear.

 ✓ Follow through and overlapping action: The idea here is to make sure

your animations adhere – or seem to adhere – to the laws of physics. If

there is movement in one direction, the inertia of that motion requires

you to animate the follow-through even if you’re changing direction.

 ✓ Ease in and ease out: Ease in and ease out, sometimes known as “slow in,

slow out” means that natural movement does not stop and start abruptly.

It flows smoothly, accelerating and decelerating. By using Bézier curves

in the Ipo Curve Editor, you actually get this principle for free.

 ✓ Arcs: Along the same lines as the previous two principles, most natural

movement happens in arcs. So if your character is changing direction

or moving something, you typically want that to happen in some sort of

curved, arc motion. Straight lines are generally stiff and robotic.

 ✓ Secondary action: These actions are those additional touches that make

characters more real to the audience. Clothing that shifts with charac-

ter movement, jiggling fat or loose skin, and blinking eyes are just a few

actions that can breathe life into an otherwise stiff robot.

 ✓ Timing: This is, in my opinion, one of the most important of the 12

principles. Everything happens according to time. If the timing is off,

it throws off the effect for the whole animation. This doesn’t just mean

controlling the timing of actions to appear believable. It also means

story-based timing: knowing exactly the right time to make a character

give a sad facial expression that impacts the audience the most.

281 Chapter 12: Animating Object Deformations

 ✓ Exaggeration: Exaggeration is one of the things that makes animation

fun. You can do anything with animation and you’re nearly duty-bound

to take advantage of that fact. Otherwise, you may as well just work in

video or film with for-real people.

 ✓ Solid drawing: Solid drawing refers to the actual skill of being able to

draw. Computer animators can get away with not being experts at draw-

ing, but it’s to your benefit to make the effort. This is because drawing

is an extension of seeing. When you draw, you turn on a part of your

brain that studies how things look relative to each another. Being able to

see the world with these eyes can make all the difference in recreating

believable motion.

 ✓ Appeal: This one is easy. Make things that are awesome. If you’re going

to animate something that is boring, what’s the point? It needs to be

interesting for you to make and it’s nice if it’s also interesting for other

people to watch.

 Those are the basic principles of animation, but not a single one of them is

carved in stone. You can effectively break every one of them and still pull off

some incredible animation. That said, more often than not, it’s in the best

interest of your work and your sanity that you at least start within these prin-

ciples and then find ways where you can break them in the best way possible.

Making sense of quaternions (or, “Why
are there four rotation curves?!”)
Even though the bulk of your time animating with armature is spent working

with the Action Editor, you still may frequently need to tweak things in the

Ipo Curve Editor. If you do go to the Ipo Curve Editor and view the Pose Ipo

type with the intention of tweaking rotation, you may run into a particularly

jarring shock. The RotX, RotY, and RotZ channels that you would expect for

rotation aren’t there: They’ve been replaced with four channels to control

rotation, called quaternions. Figure 12-4 shows a set of quaternions in the Ipo

Curve Editor, describing the rotation of some bone.

 Quaternions are a different way of defining rotations in 3D space and they’re

quite a bit different from the standard X, Y, and Z or Euler (pronounced

“oiler”) rotations. They’re used in the rotation of bones because Euler rota-

tions can get into a nasty situation referred to as gimbal lock, which involves

being mathematically unable to compensate for or adjust a rotation because

you only have three axes to define it. Having that happen in an armature

is unacceptable. Fortunately, quaternions don’t suffer from gimbal lock.

However, they do suffer from another affliction: They have virtually no intui-

tive relationship to rotation that non-mathematicians can understand.

282 Part III: Get Animated!

Figure 12-4:
Quaternions

in action!
They’re

nearly
incompre-
hensible!

To make a long story short, it may be easier for you to tweak a rotation by

adding additional keyframes to the rotation. If you’re not fond of mathemat-

ics, you may very well go crazy trying to figure out how they relate to your

bone’s rotation.

Copying mirrored poses
One of the beauties of working in computer animation is the ability to take

advantage of the computer’s ability to calculate and process things so that

we don’t have to. In the animation world, we love to find ways that the com-

puter can do more work. Granted, we can (and should) always temper the

computer’s work with our own artistic eye, but there’s nothing wrong with

doing half the work and letting the computer do the other half. To that end,

let me introduce three incredible little buttons to you in Figure 12-5.

Figure 12-5:
Pose copy
and paste

buttons
in the 3D

View’s
header.

These three buttons are located at the far right end of the 3D View’s header

and are only visible when you have an armature in Pose mode. “What do they

do,” you ask? Why, these buttons are designed for copying and pasting poses

from the armature. From left to right, the buttons are Pose Copy, Pose Paste,

and Pose Mirror Paste. Here’s how to use them:

283 Chapter 12: Animating Object Deformations

 1. Select all bones (A).

 You can actually get away with just selecting a few bones, but this actu-

ally illustrates my point a little better.

 2. Left-click the Copy Pose button.

 Doing this loads the armature’s pose into the computer’s memory.

 3. Move to a different location in the timeline where you would like your

character to resume this pose.

 4. Paste the pose back to the character.

 In pasting, you have two options:

 • Paste Pose: This takes the coordinates of all the bones you

selected when copying the pose and applies those poses back to

your character exactly as you copied them.

 • Mirror Paste: This option does the same thing as the regular Paste

Pose, except it takes advantage of Blender’s built-in left/right

naming convention (see Chapter 11 for more details) and pastes the

mirrored version of the pose to your character. This is really handy

if you’re doing something like creating a walk cycle. You can create

a left-foot-forward pose and then use Mirror Paste to instantly

create a right-food-forward pose. Figure 12-6 shows a character

posed one way and then mirror pasted to pose the other.

Figure 12-6:
All you have

to do is put
one foot
forward,

and Blender
handles

the other
for you.

284 Part III: Get Animated!

 Note that after you paste the pose, you need to insert a keyframe for that pose

at that location. Otherwise, the next time you scrub the timeline, the pose

won’t be there and you’ll have to copy and paste it all over again.

Seeing the big picture with ghosting
Traditional animation has a process called onionskinning, which consists of

drawing on relatively thin paper and working on a table with a light in it. With

this setup, the animator can stack his drawings on top of each other and get

an overall sense of the motion in the animation. In Chapter 10, I introduce

the Show Keys feature (press K while doing object animation) to display the

object’s keyframes in the 3D View. Unfortunately, when working with arma-

tures, the Show Keys feature doesn’t work in the 3D View. However, another

feature works in a similar way and is, in some ways, even nicer than the Show

Keys feature. It’s for your rig, and it’s called Ghosting. The controls for it are

in the Editing buttons (F9) on the left side of the Visualizations panel, as

shown in Figure 12-7.

Figure 12-7:
The Visual-

izations
panel for

armatures
has options
for showing

ghosts of
your rigs.

To get the best sense of what the Ghost feature does, increase the Ghost

value in this panel to its maximum value of 30 ghosts. Now, for short anima-

tions or non-complicated movement, having this enabled might not be all

that useful. However, it’s great for the more common forms of animation that

are a bit longer and more complex. Having Ghost turned on is a great way to

get a sense of where your character’s coming from and where she’s going.

Granted, it’s not like the Show Key feature of object animation, where you

can actually select and edit the real keyframe from the 3D View, but as a way

of having three-dimensional onionskinning, it’s certainly useful. Figure 12-8

shows a character jumping up and down, visualized with armature ghosting.

285 Chapter 12: Animating Object Deformations

Figure 12-8:
Turning

on ghosts
in the

Visualization
panel allows

you to see
a 3D onion-
skin of your

rig’s motion.

Visualizing motion with bone paths
One of the fundamental principles of animation is having arcs for movement.

Smooth arcs are favorable for believable, natural-looking animated move-

ment. To that end, Blender has a nice feature that makes it easier to analyze

your animation and figure out if you have acceptable arcs in your character’s

movement. This feature is called Bone Paths and it’s also available from the

Visualizations panel in the Editing buttons, highlighted in Figure 12-9.

Figure 12-9:
The controls

for display-
ing Bone

Paths in the
3D View.

286 Part III: Get Animated!

This feature isn’t like Ghosts, where you just turn them on and they display

instantly. They may take a second to generate. In order to generate them,

first select the bone or bones that you want to visualize, and then left-click

the Calculate Path button on the bottom left side of the Visualizations panel.

This uses the settings along the right side of the panel to create the Bone

Path visualization. An added bonus to this feature is the ability to show the

location of the keys along the path as a bright dot by left-clicking the Show

Keys button in the Visualizations panel. If you want, you can also show the

numerical frame numbers along the curves by enabling the Frame Nums

feature in the same panel. Figure 12-10 shows the same jump animation as

before, but this time with Bone Paths enabled.

Figure 12-10:
Bone Paths

help visu-
alize the

motion of
bones

in your
armature.

One thing to note is that, although it might be nice, you can’t actually change

or edit the Bone Path directly. It can only reflect the motion created by your

keyframes. So if you notice that the curve isn’t as smooth as you might like,

you need to go back into the Action Editor and Ipo Curve Editor and tweak

the motion a bit there. Then when you re-calculate the Bone Paths, hopefully

you should have a cleaner result.

287 Chapter 12: Animating Object Deformations

Doing Non-Linear Animation
Animation is hard work, really hard work. So any time you can cut down the

amount of work you have to do without detracting from the quality of the

final animation, it’s a good thing. Computer animation has given us another

cool way to effectively and efficiently cut corners: non-linear animation.

Non-linear animation, or NLA, is a way of animating that can only really be

done with computers. In the previous section of this chapter, the process of

animating is very linear and straightforward. You may animate in passes, but

you’re still generally working forward in time with the full start-to-finish of

your animation already planned out.

What if you didn’t have to work this way? What if you could animate little

chunks of your character’s motion and then mix and match as you like?

Like mixing a simple hand-waving motion with a jumping animation so your

character is sometimes just jumping and sometimes jumping and waving his

arms? This is the basic concept behind non-linear animation. It’s applying

many of the same principles used in non-linear video editing and applying

them to 3D computer animation.

The idea is that you create a library of simple motions or poses and then

combine them any way you like to create much more complex animated

sequences. This is useful for background characters in larger productions

and it’s also very handy for video game developers. Instead of trying to pull

a specific set of frames from a single unified timeline, they can now just

make a call to one or more of these library animations and let the computer

do the rest of the work. In Blender, the basic building blocks for this library

are Actions. Earlier in this chapter, I explained that Actions are really cool

for visualizing the complete animation of an armature. Well, it turns out that

they’re even cooler than that. You can create multiple actions within a single

.blend file.

 To create a new action, use the Action datablock in the header of the Action

Editor window, as highlighted in Figure 12-11. This datablock widget is just like

the one used for materials, textures, Ipos, and even objects in other parts of

Blender’s interface. Create a new action by left-clicking the up/down arrow

on the left side of the datablock and choosing Add New. And you can give

your Action a custom name by left-clicking on the name field and typing in its

new name.

288 Part III: Get Animated!

Figure 12-11:
Using the

Action
datablock in

the Action
Editor to
create a

new action
for your

armature.

With the new action created, you can create another core animation and start

building up your character’s Action library. Animate waving each arm, a walk

cycle, various facial expressions, a standing idle animation, and any other

simple action that comes to mind. Ultimately, your library will be populated

enough that you’ll want to start mixing and matching them together. To do

this, you’re going to want to use the NLA Editor (Ctrl+Shift+F12) window. Add

the NLA Editor to the Animation screen layout with the following steps:

 1. Left-click the seam at the top of the Timeline window and drag it up,

making more room for that window.

 Because the NLA Editor is covering the entire animation, it makes sense

to forsake the timeline and use the NLA Editor exclusively. But if you still

would like to use the Timeline, you can split if off of another window.

 2. Change the Timeline window to the NLA Editor (Ctrl+Shift+F12).

 In doing this, you should have a screen layout that looks something like

Figure 12-12.

 The NLA is a very cool feature of Blender, but don’t rely on it too much for ani-

mation. Blender has had the NLA Editor for a long time, but it could still use

some refinement to be a truly effective tool. There was some heavy discussion

about it at the last Blender Conference and hopefully there will be improve-

ments to it in future versions of Blender. The good news is that most of what I

explain here should still apply.

Mixing actions to create
complex animation
To add one of your actions to the NLA Editor, bring your mouse into the NLA

Editor window and press Shift+A. This brings up a menu of all the Actions

you’ve created so you can choose one to add to the NLA Editor. After you

choose the Action you would like to add, it’s placed in the NLA Editor as a

289 Chapter 12: Animating Object Deformations

strip and is positioned wherever the time cursor is located. And now you can

continue to keep adding Actions to the NLA. Of course, unless you make the

last frame of one Action strip match the pose at the head of the next frame,

the animation looks pretty erratic.

Figure 12-12:
An anima-

tion screen
layout

with the
NLA Editor
added to it.

The NLA editor

The way to smooth things out is to bring up the Transform Properties float-

ing panel in the NLA Editor. Figure 12-13 shows a full-screen NLA Editor

window with the Transform Properties floating panel visible. To make the

transition from one strip to the next smoother, either enable the Auto-

Blending button for each strip and let them overlap a bit, or manually set the

blend-in and blend-out values in this panel. This is how you create complex

animations from a library of simple Actions.

Figure 12-13:
Using the

Transform
Properties

floating
panel in the
NLA Editor.

290 Part III: Get Animated!

Taking advantage of looped animation
Another benefit of using the NLA is the ability to easily loop any Action strip

and rescale its timing. This is done also in the NLA Editor with the Transform

Properties floating panel. On the right side of the panel are some buttons

under the heading of Options. The very first of these options is Repeat. By

default, this is set to 1.0. However, you can increase this value as much as

you like. As you do, you should see the strip increase in length proportional

to the increase of the Repeat value. Now, to have an effective looping anima-

tion, it’s definitely in your best interest to make the first pose in the action

and the last pose in the action identical. The easiest way to do this is to use

the copy and paste pose buttons in the 3D View:

 1. In the NLA Editor, select the Action strip you want to loop (right-click).

 2. In the Action Editor, move the time cursor to the first pose in the

Action (left-click and drag).

 3. In the 3D View, select all bones (A) and left-click the Copy Pose button

in the header.

 4. Back in the Action Editor, move the time cursor to some place after

the last keyframe.

 5. In the 3D View, left-click the Paste Pose button in the header.

 6. Insert a new keyframe (I➪Available).

 When you get to this step, all of the bones should still be selected, so

there’s no need to reselect anything.

 7. Now when you return to the NLA Editor, the Action strip should auto-

matically be longer to account for the addition frame at the end.

 Additionally, it should also loop seamlessly upon playback (Alt+A).

The Transform Properties floating panel also gives you the opportunity to

rescale Actions. If you want an action to play faster or slower, you can adjust

the Scale value in this panel. Values greater than 1.0 increase the length of

the strip, slowing down the action, and values lower than 1.0 decrease the

length of the strip, speeding up the action. Figure 12-14 shows the NLA Editor

with looped strips that have varied scales.

 Be careful when changing the scale of Action strips. More often than not,

changing the scale results in a keyframe being placed at what’s called a

fractional frame, or a spot on the timeline that isn’t a nicely rounded frame

number. This isn’t necessarily a bad thing, but animations do tend to look

a little bit better if the keyframes fall on full frames so the audience has the

chance to “read” the pose.

291 Chapter 12: Animating Object Deformations

Figure 12-14:
Action

strips in the
NLA Editor,
looped and

rescaled.

 Many of these animation concepts, especially ones involving the NLA, are

much easier to grasp if you can see them in motion. After all, this is animation,

the art of motion. Have a look at the .blend files that accompany this book to

get a stronger notion of how these things work together.

292 Part III: Get Animated!

Chapter 13

Letting Blender Do
the Work for You

In This Chapter
▶ Playing with particles

▶ Simulating physics with soft body and rigid body dynamics

▶ Working with cloth simulation

▶ Creating fluid animations with Blender’s fluid simulator

When animating, some actions are difficult or very time-consuming to

get right, such as explosions, fire, hair, cloth, and physics-related

actions like moving fluids and bouncing objects. In order to get these things

to look right, one solution is to let the computer do the work and create a

simulation of that action taking place. You use variables like gravity and mass

to define the environment and the computer calculates how the objects in

the scene behave based on the values you set. It’s a great way to get nearly

accurate motion without the need to key everything by hand. That said, don’t

make the mistake of thinking simulations give you a huge time savings in ani-

mation. This isn’t necessarily true, as some highly detailed simulations can

take hours, or even days, to complete. Instead, think of it as a way to more

reliably animate detailed, physically accurate motion better than you might

be able to do by hand alone.

 This chapter only scratches the surface of what can be done with the simula-

tion tools in Blender, so you should certainly look at additional resources,

such as Blender’s official online documentation, as well as Tony Mullen’s

Bounce, Tumble, and Splash! (published by Wiley) book on physics simulation

in Blender to get a full understanding of how each feature works. But hope-

fully, this chapter gives you an idea of the possibilities you have at hand.

294 Part III: Get Animated!

Using Particles in Blender
Blender has had an integrated particle system from its early beginnings.

Over the years, though, it has grown and matured into a much more power-

ful system for creating particle-based effects like hair, flocks, and explosions.

And the particle system gets more and more powerful with every release.

The controls for Blender’s particle systems live in the Object buttons (F7).

Figure 13-1 shows the header for the Object buttons window. You can get to

the Particle buttons by left-clicking the button in the header that looks like

a small explosion. Alternatively, you can keep pressing F7 until the particle

panels appear. Initially, this buttons window looks pretty barren, with just a

single panel that says Particle System. However, if you have a Mesh object

selected and press Add New in this panel, five more panels for controlling

particle behavior appear in the window.

Figure 13-1:
Left-click

the Particle
buttons icon

to bring up
the particle

control
panels.

Particle buttons icon

Knowing what particle
systems are good for
Particle systems have a handful of good uses. Each of these uses involves

large numbers of individual objects that share some general behavior. This

means that particle systems are ideal for groups of objects that move accord-

ing to physics, such as fireworks or tennis balls being continuously shot at

a wall. It also makes particle systems good for simulating hair and fur. If the

path that an individual particle travels along were to be considered a strand,

you could use groups of these particle strands to make hair. This is exactly

what Blender does. There’s also one other use for particle systems, and that

is simple flocking or crowd simulation. Say you want to have a swarm of

gnats constantly buzzing around your character’s head. A particle system is

a great way to pull off that effect. Figure 13-2 shows the panels you have avail-

able when you add a new particle system.

295 Chapter 13: Letting Blender Do the Work for You

Figure 13-2:
The panels in
the Particle

buttons.

The Particle System panel offers you three types of particle systems to

choose from: Emitter, Reactor, and Hair. In most instances, you will probably

use the Emitter type. Reactor particle systems create particles based on the

behavior of another particle system. And Hair particle systems are the way to

create manageable hair and fur in Blender.

If you choose Emitter, the five values on the lower left of the Particle System

panel are important for controlling how many particles you have and how

long they exist in your scene. Here is a brief explanation for each value:

 ✓ Amount: As the name implies, this is the total number of particles cre-

ated by the mesh. After the mesh generates this number of particles,

it stops. There are a couple ways to get more particles, but the most

straightforward way is to increase this number.

 ✓ Sta: Short for “Start,” this is the frame where particles start being emit-

ted from the source object. By default, this is set to frame 1, but if you

don’t want to have your particles start until later in your animation, you

can increase the value in this field.

 ✓ End: This is the frame where Blender stops emitting particles from

the source object. By default, this is set to frame 100. This means that

with the default values for Amount and Sta (1000 and 1.0, respectively),

Blender creates ten particles in each new frame in the animation up to

frame 100.

 ✓ Life: The Life value controls how long an individual particle exists in

your scene. With the default value of 50.0, this means that a particle

born on frame 7 disappears from the scene when you reach frame 57. If

you find that your particles aren’t lasting as long as you need them to,

increase this value.

 ✓ Rand: This is a value that pertains specifically to the Life of the particle.

At its default of 0.0, it doesn’t change anything. However, if you increase

this value, it introduces a random variation to the life of your particles.

This way, not all of the particles born on one frame disappear at the

same time, so you end up with a more natural effect.

Any of these types can be associated with one of four varieties of phys-

ics simulation models: None, Newtonian, Keyed, and Boids. Very rarely do

you have a need to use None as an option, but it’s good to have. Typically,

296 Part III: Get Animated!

the default Newtonian setting is the most useful option because it tends to

simulate real-world physical attributes such as gravity, mass, and veloc-

ity. Occasionally, though, you may want to have more explicit control over

your particles, such as when you are shaping the hair on a character. This is

where Keyed physics come to play. You can use the Emitter object of one par-

ticle system to control the angle and direction of another one.

To create a basic particle system, use the following steps:

 1. Add a mesh to work as your particle Emitter

(spacebar➪Add➪Mesh➪Grid➪OK).

 In this example, I’m using a simple grid, but really any mesh works. In

fact, depending on what you’re trying to do, different mesh types work

better than others. The key thing to remember is that particles tend to

be emitted from the faces of your mesh. They move away from the face

in the direction of that face’s normal.

 2. Navigate to the Particle Buttons (F7➪F7➪F7) and add a new particle

system.

 After you press the Add New button, all of the options available to par-

ticles become visible. Of course, trying to play back the animation now

won’t be all that interesting. You need to set a few options first.

 3. Choose the type of particle system you wish to use from the Particle

System panel.

 In this example, I’m choosing the default setting of Emitter. Feel free to

try using one of the other types, but be aware that Reactor particle sys-

tems require that you have more than one particle system set up. Also,

a button I usually click in this panel is the Random button that appears

under Emit From.

 Left-clicking this button changes the timing on the birth of your parti-

cles, making it look more natural and less mechanical.

 4. Decide what type of physics you would like to have controlling your

particles.

 As I mentioned before, Newtonian physics are usually the most common

type of particle system used, but I’m also pretty fond of Boids physics

for Emitter particle systems. It just looks cool, and they’re a lot of fun!

 5. Adjust the physics settings to control particle behavior.

 For Newtonian physics, you have to give your particles some sort of

initial velocity. I tend to adjust the Normal velocity first because it gives

the most immediate results. Values above zero go along each face’s

normals, whereas values below zero go in the opposite direction. Boid

particles don’t require an initial velocity, but the settings do adjust how

each Boid particle interacts with its neighboring particles.

297 Chapter 13: Letting Blender Do the Work for You

 6. Play back the animation to watch the particles move (Alt+A).

 When you playback, it would be a good idea to make sure you’re at

frame 1 when you start. Otherwise, you might not see the proper parti-

cle simulation. Watch how your particles move and behave. If you don’t

like how they’re working, press Esc to stop the playback and go adjust

your settings. Then play the animation again. This back-and-forth tweak-

ing is how you refine your particle system’s behavior.

Figure 13-3 shows the above process being done. Bear in mind that this is a

very basic particle system setup and you’re just barely scratching the surface

of what’s possible. I definitely recommend that you take some time to play with

each of the settings and figure out what they do, as well as read some of the

more in-depth documentation on particles in Blender’s online documentation.

Figure 13-3:
Creating a
basic par-

ticle system.

298 Part III: Get Animated!

Using forces and deflectors
After you’ve created a basic particle system, you can have a little bit of

fun with it, controlling the behavior of your particles. You control this by

using forces and deflectors. A force is a controlling influence on the overall

behavior of the particles, such as wind, vortices, and magnetism. In contrast,

in Blender terms a deflector is basically something that a particle collides

with and impedes its progress. Generally speaking, forces are defined using

Empties, whereas deflectors are created with Meshes.

All of the controls for forces and deflectors live in the Physics buttons.

Referring back to Figure 13-1, the Physics buttons are accessed by left-

clicking the button to the left of the Particle buttons icon. You can also reveal

these buttons by pressing F7 repeatedly, cycling through the Object buttons

until they appear. For particle forces, use the Fields panel on the far left. In a

separate tab on that panel are the Collision settings. This is specifically for

particle collisions, or deflectors.

Now, I could go through each and every option available here exhaustively,

but things usually make more sense if you have an example to work with.

That being the case, use the following steps to create a particle system that

creates particles that are influenced by a wind force that causes them to col-

lide with a wall and then bounce off of it:

 1. Create a simple particle system.

 If you need a refresher, use the steps in the last section to create a basic

Emitter particle system with Newtonian physics.

 2. Add an Empty (spacebar➪Add➪Empty).

 This Empty is the source of your wind force. The wind moves along the

Empty’s local Z-axis, so keep that in mind as you position and orient it in

space.

 3. Make the Empty a Wind force.

 Navigate to the Physics buttons (F7➪F7) and, in the Fields panel, choose

Wind from the menu. When you do this, notice that the Empty now has

circles arranged along its local Z-axis. This is a visual cue to let you

know that you’ve got a wind force. Increasing the Strength value in the

Fields panel spaces out four circles to help show how much wind you’re

creating. Scrub back to frame 1 and you can play back the animation

(Alt+A) to see how your wind is affecting the movements of the particles.

 4. Add a Plane (spacebar➪Add➪Mesh➪Plane).

 This Plane is your deflector. Grab the plane (G) and move it so that it’s

in the path of the wind that is pushing your particles. Rotate (R) the

plane to make sure the particles actually run into it head-on.

299 Chapter 13: Letting Blender Do the Work for You

 5. Make the Plane a Collision object.

 In the Physics buttons, left-click the Collision tab in the Field panel

and left-click the Collision button in this panel. Whammo! You’ve made

a deflector! If you set your time at frame 1 and play back the anima-

tion (Alt+A), your particles should be blown by your wind force into

your plane, which they should bounce off of rather than shoot straight

through.

Figure 13-4 shows this results of this step-by-step process. And like the sec-

tion before this one, you’re just seeing the tip of the iceberg in terms of

what’s possible with forces and deflectors. There are all sorts of cool forces

and settings that you can use to get some very unique behavior out of your

particle systems.

Figure 13-4:
Creating a
wind force
that blows

your par-
ticles into

a plane,
which they

bounce
off of.

300 Part III: Get Animated!

Using particles for hair and fur
It would be remiss of me to cover particles and not say anything about

Blender’s hair and fur system. Blender uses particles to create hair and fur for

your characters. As you may have guessed, this is done when you choose Hair

as the type of particle system you want from the Particle System panel in the

Particle buttons. From there, the setup is roughly the same as using a regular

Emitter system with Newtonian physics, but there are two notable differences.

The first difference is the Set Editable button that appears to the right of the

particle system type menu. By left-clicking this button, you freeze the particle

settings that you’ve already set and, by doing so, you make it so you can spe-

cially customize the hair in Blender’s Particle Edit mode. Figure 13-5 shows a

screenshot of an object with particle hair being combed in Particle Edit mode.

Figure 13-5:
Combing

hair in
Particle

mode.

You switch to Particle mode using the Mode menu in the 3D View window’s

header. With your Emitter object selected, left-click the menu and choose

Particle Mode. When you’re in Particle mode, you have the ability to directly

edit particle hair, including combing, cutting, growing, and smoothing it out.

To see these controls, enable the Particle Edit Properties floating window by

pressing N or choosing Particles➪Particle Edit Properties from the 3D View’s

301 Chapter 13: Letting Blender Do the Work for You

header. Particle Mode gives you a circular brush like the one used in sculpt-

ing and vertex paint modes. You can adjust its size and strength using the

sliders in the Particle Edit Properties window or by pressing F and Shift+F,

respectively.

The other thing that differs in the setup of hair particles is the use of child
particles. Creating and displaying hair particles can take up a lot of comput-

ing power, and when animating, you don’t necessarily want to be waiting on

Blender to draw your character’s fur in the 3D window. To deal with this,

there are two solutions, and the results are best when they’re used together.

The first thing is to reduce the number of viewable particles in the 3D view.

This is done with the Disp value in the Visualization panel of the Particle but-

tons. Disp changes the percentage of particles being displayed in the 3D view.

When you make this change, fewer particles show up in the 3D View, but all

of them appear when you render. That gives you the best of both worlds.

Of course, for characters with a lot of hair, just reducing the displayable

particles might not be enough. This is where child particles are useful. In

the last panel of the Particle buttons, left-click the Children tab and choose

Faces from the menu in this panel. This causes additional particle strands to

grow from the faces of your emitter, with their locations determined by the

particles around them. The Children panel has two Amount settings on the

left column. The first Amount dictates how many particles are seen in the 3D

View. For speed while animating, I often set this value to zero. The second

value is the Render Amount. This is the number of child particles that each

parent particle has at render time.

With the particle system properly generating your hairs, the only thing you

have to worry about now is controlling how Blender renders this hair. Here’s

a quick-and-dirty rundown of the steps I go through to get the hair to render

nicely (a reference file for this is included on the CD-ROM that comes with

this book):

 1. Enable Strand render in the Visualization panel of the Particle buttons.

 This tells Blender’s rendering engine to render the particles as strands.

Another helpful option in this panel is the Emitter button on the left side

under the Render label. Enabling this option makes the emitter visible,

which is helpful if you’re using your actual character mesh to generate

the hair.

 2. In the Material buttons (F5), turn on ZTransp in the Links and Pipeline

panel and set your Alpha value to zero in the Material panel.

 If you’re using the Hair strands preview type in the Preview panel (I

recommend doing this), you may notice that your hair is virtually non-

existent because of the zero Alpha value. Don’t worry: This will all make

sense in the next couple of steps.

302 Part III: Get Animated!

 3. In the Texture buttons (F6), add a new Blend texture and use the

Colorband in the Colors panel to control the color and transparency

along the length of the hair.

 The most important thing here is that the right hand side of the color-

band should be completely transparent. All other color positions in it

should be opaque.

 4. Back in the Material buttons (F5), under the Map Input panel, enable

the Strand button. In the Map To panel, enable Col and Alpha.

 Now the Preview panel should show hair strands that use your color-

band gradient along the length each strand, feathered out to semi-

transparent tips.

 5. Still in the Material buttons, go to the Links and Pipeline panel and

left-click the Strands button near the bottom of the panel.

 There are a couple fields here worth mentioning:

 • Make sure Use Tangent Shading is enabled. This gives the hair a

nice shiny effect.

 • Enable the Use Blender Units button. By default, Blender’s hair

strands are measured in pixels. This works fine except in situa-

tions where you have a hairy object move toward or away from the

camera. Enabling this button makes the hair size relative to your

scene rather than the size of your final render.

 • Because you’re using Blender Units for hair size, you need to

reduce the sizes for the Start and End of the hair strands. I usually

use something like 0.02 and 0.01, respectively. You may need a few

test renders to get it just right for your object.

 • The other sliders control the shape of the strands; you can adjust

these to taste with a few test renders.

Giving Objects Some Jiggle and Bounce
Have you ever sat and watched what happens when a beach ball gets hit or

bounces off of the ground? Or seen what happens when someone places a

plate of Jell-O on a table? Or observed how a person’s hair moves when they

shake their head? When these things move and collide with other objects, they

have a bit of internal jiggle that can be difficult to reproduce correctly with reg-

ular animation tools. This is the basis for what we refer to as soft body dynam-
ics. That effect can be simulated in Blender using the second set of panels in

the Physics buttons (F7➪F7). What follows is a simple step-by-step process for

creating a simple soft body simulation with the default cube object:

303 Chapter 13: Letting Blender Do the Work for You

 1. Select the cube with a right-click and grab it up in the Z-axis so it

floats above the 3D grid (G➪Z).

 You want to give the cube some height to fall from. It doesn’t have to be

very high; 3 to 5 Blender units should be enough.

 2. Create a Plane mesh as a ground plane (Spacebar➪Add➪Mesh➪Plane)

and Scale it larger so that you have something for the Cube to hit (S).

 This is the surface for your jiggly cube to bounce off of. It may be helpful

to put your 3D cursor at the origin (Shift+C) before adding the plane.

 3. In the first Collision panel of the Physics buttons (F7➪F7), left-click the

Collision button.

 Doing so makes Blender understand that the plane is an obstacle for our

falling cube.

 4. Right-click the cube to select it and then left-click the Soft Body button

in the Soft Body panel.

 That’s all you really have to do to enable soft body physics on your 3D

objects. However, in order to get the cube to properly act according to

gravity, there’s one more step.

 5. Left-click the Use Goal button in the Soft Body panel.

 This disables the default Use Goal behavior of soft bodies. This means

that when Use Goal is enabled, you can define a group of vertices in the

object to be unaffected by the soft body simulation. A scenario where

you may want to do this would be a character with loose skin, like the

jowls of a large dog. You may want the dog’s snout to be completely con-

trolled by your armature animation, but have the jowls that hang off to

be influenced by soft body simulation. Because in this case we want the

entire object to be affected by the simulation, it’s best just to turn it off.

 6. Play back the animation (Alt+A) to watch the cube fall, hit the ground

plane, and jiggle as it lands again.

 Pretty cool, huh? Figure 13-6 shows this process being completed. As

with particles, it’s a good practice to make sure you’re at frame 1 before

playing back your simulation.

Now, I have to admit that I cheated a bit in the example above by using a cube.

If you were to try those steps with another type of mesh, like a UV Sphere or

Suzanne, the mesh would collapse and look like it instantly deflated when it

hit the ground plane. In order to get around this, you need to adjust one more

setting. In the Soft Body panel on the last row of buttons is a button that says

Be: with a default value of 0.00. This value sets the Bending Stiffness of your

object. With a setting of zero, there is no stiffness, so the mesh collapses.

However, if you set this to a higher value such as 3.0 or 5.0, the falling mesh

retains its shape better when it collides with the ground plane.

304 Part III: Get Animated!

Figure 13-6:
Dropping a
jiggly cube

into the
scene.

Dropping Objects in a Scene
with Rigid Body Dynamics

Not everything that reacts to physics has the internal jiggle and bounce that

soft bodies have. Say, for example, you have to animate a stack of heavy steel

girders falling down at a construction site. For that, you don’t want to have

a soft body simulation. You’d much prefer to have what’s called rigid body
dynamics. As their name implies, rigid bodies don’t get warped by collisions

the way that soft bodies do. They either hold their form when they collide, or

they break.

Unlike the other physical simulation, the controls for rigid bodies are not in

the Physics buttons. Not yet, at least; there are plans to integrate the rigid

body simulation tools with the other physics tools in a future release of

Blender. In the meantime, however, the way to get rigid body dynamics in

Blender is to use the integrated game engine. Use the following steps to get a

simple rigid body simulation with the default cube:

 1. Select the cube by right-clicking and Grab it up in the Z-axis by a few

Blender units (G➪Z).

 Like the soft body simulation, 3 to 5 Blender units should be fine.

 2. Create a mesh Plane to act as the ground

(spacebar➪Add➪Mesh➪Plane) and Scale it larger so that you have

something for the Cube to hit (S).

 3. In the World buttons (F8), make sure the physics engine is set to Bullet

and the gravity is set at 9.80.

305 Chapter 13: Letting Blender Do the Work for You

 You can find these settings at the top of the Mist/Stars/Physics panel.

Bullet is the name for the main physics suite built into Blender’s game

engine.

 4. Right-click the cube to select it and bring up the Logic buttons (F4).

 The Logic buttons house the controls for Blender’s integrated game

engine. There’s a lot that goes on here, but you’re really only interested

in the left-most column.

 5. Left-click the Actor button and enable the Dynamic and Rigid Body

buttons.

 Left-clicking the Actor button makes the cube recognized as a moving

object in the game engine. By turning on the Dynamic and Rigid Body

attributes, you tell the game engine that the cube is going to have simu-

lated movement, and that motion will be controlled by the rigid body

dynamics simulator.

 6. Left-click the Bounds button.

 Activating the Bounds button enables the game engine to understand

that the cube has boundaries that need to be recognized for collisions.

Because you’re using a cube, the default setting of Box will work fine

in this example. For more complex meshes, you may prefer to use the

Convex Hull or Triangle Mesh settings.

 7. Test the simulation by pressing P to start the game engine.

 At this point, you have a valid rigid body simulation. You can stop the

game engine at any time by pressing Esc. If you’d like, you can rotate

(R) the cube to an odd angle and rerun the simulation to see how that

affects the cube’s motion. However, even though you have a valid simu-

lation now, at this point, you can’t see the simulation when you play

back using Alt+A. This is because the simulation is only happening in the

game engine. To get it to play back in regular Blender, you have to feed

the simulation data to Blender’s animation system. That is done with the

next steps, called baking the simulation.

 8. Enable recording game physics to Blender’s animation system.

 To do this, go to the main header and enable the Record Game Physics

to IPO option (Game➪Record Game Physics to IPO).

 9. Start the game engine (P) to run the simulation.

 When the simulation is complete, press Esc to get back into the regular

interface.

 10. The simulation is now baked to Ipo curves.

 You can see this by selecting the cube (right-click) and bringing up an

Ipo Curve Editor window (Shift+F6). Now when you play back the anima-

tion (Alt+A), the results of the simulation should appear just fine. Figure

13-7 shows a breakdown of these steps.

306 Part III: Get Animated!

Figure 13-7:
Creating
a simple

rigid body
simulation.

307 Chapter 13: Letting Blender Do the Work for You

Simulating Cloth
Cloth simulation and soft body simulation are very similar in Blender. There

are a few key differences, though. Both soft bodies and cloth work on open as

well as closed meshes. (That is, the mesh could be flat like a plane or more

of a shell like a cube or sphere.) However, soft bodies tend to work better on

closed meshes, whereas cloth is better suited for open ones. Also, the cloth

simulator tends to work better with self collisions. Think about the fabric of

a flowing dress. In the real world, if you bunch up part of a dress, it’s techni-

cally colliding with itself. In computer simulations, you want to re-create that

effect; otherwise, the fold of one part of the dress breaks through the fold of

another part, giving you a completely unrealistic result. The cloth simulator

handles situations like this much better than the soft body simulator.

Revisiting the simple default cube, here’s a quick walk-through on getting

some cloth to drape across it:

 1. Create a mesh Grid (Spacebar➪Add➪Mesh➪Grid➪OK) and Grab it

along the Z-axis (G➪Z) so that it’s above the default cube. Scale the

Grid so it’s larger than the Cube (S).

 It doesn’t have to be too high over the cube; just a couple of Blender

units should be plenty.

 It would also probably be a good idea to Set Smooth these vertices

(Tab➪W➪Set Smooth➪Tab).

 2. Apply a Subdivision Surfaces modifier to the plane (Ctrl+1).

 This just gives the simulator even more vertices to work with. Of course,

adding too many vertices causes the simulation to take a long amount of

time, but this should be fine for this example.

 3. In the Cloth panel of the Physics buttons (F7➪F7), left-click the Cloth

button to enable the cloth simulator.

 The default material preset for the cloth simulator is Cotton. That

should work fine here, but feel free to play with the values and change

them to something else.

 4. In the Collision tab of this same panel, left-click the Enable Self-

Collisions button.

 This ensures that the simulator does everything it can to prevent the

cloth from intersecting with itself. At this point, your cloth simulation is

all set up for the plane. However, if you were to play the animation with

Alt+A right now, the plane would drop right through the cube. You want

the cube to behave as an obstacle, so follow the next steps.

 5. Select the cube object (right-click) and navigate to the Collision tab on

the left-most panel in the Physics buttons and left-click the Collision

button.

308 Part III: Get Animated!

 This is where things can be a little confusing. You may have noticed that

there are actually three different Collision panels in the Physics but-

tons. Well, think of the left-most Collision panel as the controls for gen-

eral collisions, whereas the other panels are specific to soft body and

cloth objects, respectively. Because the cube is not a cloth or soft body

object, you use this panel to control how those other objects collide

with it.

 6. Your simulation is set up. Press Alt+A to watch the cloth simulate.

 Figure 13-8 shows what the results of this process should look like. Make

sure that you’re at frame 1 before playing back the simulation.

Figure 13-8:
Creating a

simple cloth
simulation.

Splashing Fluids in Your Scene
In my opinion, one of the most remarkable features in Blender is its inte-

grated fluid simulator. This thing is just really cool and a ton of fun to play

with, to boot. Before running head-long into fluid simulation-land, however,

309 Chapter 13: Letting Blender Do the Work for You

you should know a few things that are different about the fluid simulator.

Like most of the other physics simulation controls, the main controls for the

fluid simulator are in the Physics buttons (F7➪F7). However, unlike the other

simulations, which can technically work in an infinite amount of space, the

fluid simulator requires a domain, or world, for the simulation to take place.

Otherwise, the numbers get to be incredibly large, making the simulation

slow to solve.

 Another difference is that the fluid simulator actually creates a separate

mesh for each and every frame of animation that it simulates. Because of the

detail involved in a fluid, these meshes can get to be quite large and take up

a lot of memory. To account for that, the fluid simulator actually saves these

meshes to your hard drive in .bobj.gz files. The other simulation systems also

save data to your hard drive, but because fluid simulation data can take up

an enormous amount of hard drive space, you need to tell Blender where to

save these files. And because these files can get pretty large, it’s a good idea to

make sure you have plenty of hard drive space available for storing your simu-

lation meshes.

The fluid simulator has all of the other features of the other physics simula-

tors. It recognizes gravity, understands static and animated collisions, and

has a wide array of available controls. Use the steps below to create a simple

fluid simulation:

 1. Right-click the default cube and Scale (S) it larger.

 This cube serves as your simulation’s domain. The domain can actu-

ally be any size, but I definitely recommend that you use a cube or box

shape as the domain. Other meshes are turned into a box shape just

based on their width and height. In this example, I scaled the default

cube by 5 units.

 2. In the Fluid panel of the Physics button, left-click the Enable button

and choose Domain from the block of buttons to the right.

 Now the fluid simulator recognizes your cube as the domain for the

simulation. Figure 13-9 shows the Fluid panel with the Domain button

enabled.

Figure 13-9:
The Fluid

panel with
options for

a domain
object.

310 Part III: Get Animated!

 3. Set the location where simulation meshes are saved.

 This is in the bottom input box of the panel. By default, Blender sends

the .bobj.gz files to the /tmp directory, but I recommend you create your

own folder somewhere else on your hard drive, especially if you’re on

Windows and don’t have a /tmp directory. Left-click the folder icon to

navigate to that location with the File Browser window.

 4. Decide at which resolution you would like to bake the simulation.

 These values are set in the same panel as Resolution and Preview-

Res. The Resolution setting is the value that is used when you render.

Typically, it’s a higher number than the Preview-Res, which is usually

used in the 3D view, so you want a smaller number for this so you can

get your timing correct. The defaults should work fine for this example,

although higher values would look better. Be careful, though, depending

on the type of machine you’re using: Values greater than 150 may try to

use more RAM than your computer has, bringing the simulation time to

a crawl.

 5. Determine the time that you want to simulate the fluid’s behavior.

 The Start Time and End Time values in the Fluid panel are the time of

the simulation, measured in seconds. By default, the simulator starts

at 0.0 and runs until 0.3 seconds. An important thing to realize here is

that this time is scaled across the full number of frames in your anima-

tion, as noted in the Anim panel of the Render buttons. This means that

if you’re using Blender’s default frame rate of 25 fps and length of 250

frames, you’re simulation will be in slow motion, showing three-tenths of

a second of fluid simulation over a span of 10 seconds. For this test, I set

the End time in the Fluid simulator to 3.0 seconds and the duration of

the animation to be 75 frames long.

 6. Create a mesh to act as the fluid in your simulation

(spacebar➪Add➪Mesh➪Icosphere).

 For this, I typically like to use an Icosphere, but any mesh will work. To

give yourself some more room, you may also want to move this mesh up

the Z-axis (G➪Z) to somewhere near the top of the domain cube, so you

have some room for the fluid to fall.

 7. In the Fluid panel of the Physics button, left-click the Enable button

and choose Inflow from the block of buttons to the right.

 This sets your source mesh as the source for the fluids entering the

domain. Choosing Inflow means that the mesh constantly produces

more and more fluid as the simulation goes on. If you would prefer to

have a single fluid object with a fixed volume, choose Fluid instead of

Inflow. Figure 13-10 shows the Fluid panel with the Inflow fluid type

chosen.

311 Chapter 13: Letting Blender Do the Work for You

Figure 13-10:
The Fluid

panel with
options for

an inflow
object.

 8. Give the Inflow object an initial velocity in the negative Z direction.

 This value doesn’t have to be large: –0.10 should work just fine. You

want to make this value negative so that it pushes the fluid down. This

initial velocity is added to the force already set by gravity. At this point,

your simulation is configured.

 9. Select the domain cube (right-click) and bake the simulation.

 Do this by clicking the large Bake button in the Fluid panel. I know that

this sounds odd — “Baking fluids? Really?” — but that’s the terminology

used. You are running the simulation for each frame and “baking” that

frame’s simulation result to a mesh that’s saved on your hard drive. If

you look at it like that, it kind of makes sense.

 10. Watch the progress of the fluid simulation.

 Depending on how powerful your computer is, this baking process can

be pretty time-consuming. I once had a four-second fluid simulation that

took 36 hours to bake. (Granted, it was at a high resolution and I had

a lot of crazy Inflow objects and complex moving obstacles, so it was

entirely my own fault.) Just know that the more complexity you add to

your simulation and the higher the resolution, the more time it’s going

to take. Along with watching the actual simulation, you can keep an eye

on a progress bar at the top of the screen that shows which frames the

simulator is processing.

 11. Play back the finished simulation with Alt+A.

 One thing to note here is that your mesh looks faceted. This is easily

fixed by pressing the Set Smooth button in the Link and Materials panel

of the Editing buttons (F9).

And, POW: You have water pouring into your scene! Using these same basic

steps, you can add obstacles to the scene that can move the water around as

you see fit. Check out the color insert for an awesome still image created with

the fluid simulator by Blender artist, Mike Pan.

312 Part III: Get Animated!

Part IV
Sharing Your Work

with the World

In this part . . .

So you’ve created something awesome. Well, as great

as that is, it’s always more fun to show it to other

people. You can get feedback and critiques for improve-

ment and you can get accolades and awards for your

excellent work. In order to do that, you want to get your

scenes out as still images and your animations out as

video files. The chapters in this part don’t just focus on

rendering your 3D scene: They also cover the integrated

Node Compositor and video sequencer. These tools are

fantastic for quick fixes, adjustments, and visual effects

such as mixing your animation with live video.

Chapter 14

Exporting and Rendering Scenes
In This Chapter
▶ Exporting to other programs

▶ Rendering still images and animations

Working in Blender is great, but, eventually, you’ll want to make the

things you create viewable in programs other than Blender. You

may want to have a still image of a scene, or a movie of your character fall-

ing down a flight of stairs, or you may want to export the geometry and

textures of a model to use in a video game. In these situations, you want to

export or render. The best way to remember the difference between the

two is that exporting takes your 3D data from Blender and restructures it so

that other 3D programs can understand it, whereas rendering is the process

of taking your 3D data and creating a 2D picture from the perspective of a

camera. That 2D image can then be seen in image editors like The GIMP and

Photoshop or movie players like QuickTime and VLC.

Exporting to External Formats
There are two primary reasons why you’d want to export to a different 3D file

format than Blender’s .blend format. The most common is to do additional

editing in another program. For instance, if you’re working as a modeler on

a large project and you decide to use Blender, chances are good that whom-

ever hired you unfortunately is not using Blender, so you’re probably going

to have to save it in a format that their program understands.

The other reason for exporting is for video games. Many video games have

a public specification for the file format they use for the 3D information in

them. Blender can export in many of these formats, allowing you to create

custom characters and sets for the games that support them.

316 Part IV: Sharing Your Work with the World

All of Blender’s exporters are scripts written in the Python programming

language. This means that if you have the knowledge (or know someone who

does), you can customize pretty quickly an exporter for your needs. It also

means that if you there’s a format that Blender doesn’t currently export to,

it’s pretty easy to write a script to add that support.

Although all of the export scripts that ship with Blender support the basic

specifications in their respective formats, they may not support all of the fea-

tures. For instance, many of the exporters have difficulty getting armature or

animation information out of them. So keep this in mind and, as many open

source programmers like to say, “Your mileage may vary.”

In order to export to a different format, choose File➪Export and choose

the format that you would like to use. Some of these exporters immediately

pop up a second box so you can choose some options that are specific to

that exporter. After you make your choices there, you get the File Browser

window, where you can tell Blender where to save your new file. Figure 14-1

shows the Export menu with a list of the available file types.

Figure 14-1:
File➪

Export➪
Wheee-

eeee!

317 Chapter 14: Exporting and Rendering Scenes

Rendering a Scene
More often than exporting, though, you probably want to render your scenes.

Rendering creates an image or animation that nearly anyone can view, even

if they don’t have Blender. You can upload your renders to a Web site for

others to see and comment on, or you take your renders into an image edit-

ing program or video editor for additional processing

When you render an image, you’re creating a two-dimensional image from

your three-dimensional scene, using the perspective of your camera object.

This is very much like taking a photograph or a movie in the real world. If you

don’t have a camera, you can’t take a picture. Likewise in Blender, if there’s no

camera in your scene, Blender doesn’t know what to render, so make sure you

have a camera in there.

Creating a still image
Rendering single images, or stills, in Blender is remarkably easy. Blender actu-

ally offers three different ways to do it. The fastest way is to simply press

F12. Alternatively, you can click the large Render button in the Render but-

tons (F10) or choose Render➪Render Current Frame from the top header.

Any way you decide to do it, by default, Blender pops up a new window

where the render output shows up while it’s being created. However, I’m not

particularly fond of Blender popping up a new window. I prefer to have just

one window to work within. Fortunately, there are options available to allow

you (and me!) to do just that. The control for where the render is displayed is

in the Output panel of the Render buttons. It’s the menu button at the bottom

of the panel. By default, it’s set to Render window. The grid of buttons to the

left is used to tell Blender where to place the Render window. The default set-

ting places it in the upper right corner of your screen. Click any of these but-

tons to place the window there. If you have more than one button depressed

at the same time, Blender places the Render window approximately between

those two points on your screen.

Figure 14-2 shows the Output panel and the three different options you have

for where to send your renders. I like to use Image Editor or Full Screen.

When you choose one of these options, rather than open a new window

for the render, Blender uses its integrated Image Editor window to display

the rendered output. If you choose Image Editor, Blender takes the largest

window in your screen layout and changes it to the UV/Image Editor window

to display your image. Choosing Full Screen does the same thing, except it

also maximizes that window to the entire Blender work area. For any of these

render options, you can quickly toggle between your regular Blender screen

and the render screen by pressing F11.

318 Part IV: Sharing Your Work with the World

Figure 14-2:
To view

your
renders,

choose to
use Full
Screen,

Image
Editor, or

Render
Window.

Another cool feature that works regardless of which way you like to see

your renders is the render buffer swap. When you have your render output

onscreen and press J with your mouse cursor in that window, Blender

switches to a different image buffer. The first time you do this, it may seem

odd because it will just give you a blank window. However, make a small

change to your scene and render again (F12). Now when you press J on your

render, you can quickly compare the differences between the two renders.

This is a great way to see whether you like the changes you’ve made.

Now, you have your image rendered, but you still haven’t saved it anywhere

on your hard drive, so that you can share it with other people. This, too, is

easy, but before you save, you may want to change the file format you save

to. This is done in the Format panel of the Render buttons, as shown in

Figure 14-3.

Figure 14-3:
Format

panel in
Render

buttons.

You choose your format in the bottom block of buttons on this panel. By

default, Blender renders to JPEG images. If you wish to render to a different

image format, such as PNG, Targa, TIFF, or OpenEXR, left-click on the first

button in this block and choose your desired format. Below the format

selection button are a couple of options that relate to how the image is

319 Chapter 14: Exporting and Rendering Scenes

output. For instance, the Q button is a quality setting. It controls the level of

compression in the image. Higher numbers give higher quality renders with

low compression (and therefore larger file sizes), whereas smaller numbers

give lower quality renders with heavy compression. The FPS buttons are

more relevant for animation, so I cover those in the next section.

The BW/RGB/RGBA buttons are pretty important for both animations and

stills. They control whether Blender renders a black and white (grayscale)

image, a full color image, or a color image with an alpha channel for transpar-

ency. Typically, you use one of the latter two. RGB is the most common and

is supported by all formats, creating a full color image. There are occasions,

however, when you want to render with transparency. As an example, say

you’ve made a really cool building model and you want to add your building

to a photo of some city skyline. For this, you need everything that’s not your

building, including the background of your image, to be rendered as trans-

parent. That transparency is defined by an alpha channel. The alpha channel
is basically a grayscale image that defines what is and is not transparent.

Totally white pixels are opaque and totally black pixels are transparent. Gray

pixels are semi-transparent.

Not all image formats support an alpha channel. For instance, the JPEG and

BMP formats don’t recognize alpha, so if you have RGBA set, Blender just

omits the alpha information when saving to either of these. If you want to

make sure your alpha channel is preserved, though, choose one of the follow-

ing formats: PNG, Targa, TIFF, or OpenEXR.

The Format panel also gives you control over the size of your final render

with the buttons at the top of the panel. The SizeX and SizeY values set the

width and height of your image in pixels. The AspX and AspY values are for

determining the horizontal and vertical aspect ratio of your image. This is for

certain circumstances where you want to render your image with rectangu-

lar pixels rather than square ones. Typically, this is done only for television

formats, so unless you know exactly what you’re doing or if you’re using a

preset, I’d recommend setting these to the same value. I use 1.0 most of the

time.

Speaking of presets, Blender offers a number of format presets for you to

render to. These are listed down the right side of the panel, and left-clicking

any one of them changes settings throughout the Render buttons to get the

render to properly match that format. This is a great timesaver when you

know, for instance, that you have to render to high definition video specifica-

tions, but for some reason cannot remember all of the right resolution and

frame rate information.

320 Part IV: Sharing Your Work with the World

Whenever you change the size or aspect settings in the Format panel, you

need to render your scene again (F12) to get it to appear in the right size.

Re-rendering is not necessary, however, for setting your output file format.

After you’ve adjusted all your settings, rendered, and chosen your output file

format, there’s just one thing left to do: save your still. Saving is quick and

painless. Press F3 (File➪Save Rendered Image) and Blender brings up a File

Browser window, where you can dictate where on your computer you want

to save your render. That’s it!

Remember, if you’re rendering a still image, it’s not saved anywhere on

your hard drive unless you explicitly save it by pressing F3 or navigating to

File➪Save Rendered Image. I can’t tell you how much time I spent re-rendering

images that I forgot to save when I first started using Blender. Hopefully, you

can learn from my mistake.

Creating a finished animation
For rendering animations, the steps are similar to rendering stills, but you

have a few more considerations. The largest consideration deals with the

format you choose. If, for instance, you choose a still image format like JPEG,

PNG, or OpenEXR, Blender creates an individual image for each frame in your

animation. However, if you choose the AVI, QuickTime, or FFMPEG options,

Blender creates a single movie file that contains all the frames in the anima-

tion, as well as any sound you use for the animation. Note that Macintosh and

most Windows users have the QuickTime option available, but Linux users

are able to use only FFMPEG or AVI.

In the case of QuickTime and FFMPEG, you have a second set of choices

that enables you to pick the codec, or compression format, you want to use.

QuickTime has its own dialog box that pops up, whereas FFMPEG reveals

tabs for two more panels in the Render buttons: Video and Audio. Figure 14-4

shows these two new panels.

Figure 14-4:
The Video
and Audio

panels in
the Render

buttons.

321 Chapter 14: Exporting and Rendering Scenes

The Video panel lets you choose which codec you would like to use, and it

also offers you the ability to tweak how the actual video gets compressed.

More often than not, though, the default settings tend to work pretty well. The

button at the top of the right column in this panel is a preset selector. Using

this menu automatically enables the proper settings to render for these out-

puts, such as DV, DVD, and VCD. The Audio panel gives you similar control to

the sound that Blender renders, but arguably the most important button in

this panel is the Multiplex audio button. Left-clicking this button ensures that

the movie file has both the video and audio information embedded in it.

Make sure you test your files if you want other people to be able to read them.

I can’t tell you how many times I’ve rendered a movie file that plays just fine on

my Linux machine, but won’t even open on a Windows or Macintosh machine.

It’s kind of ugly and makes everyone look bad. So make sure you try to view the

file on as many machines as possible before sharing it with the world.

A note about formats and codecs
When it comes to video files, you’ll often hear
people refer to formats, containers, codecs, and
compression formats. Trying to figure out what
each thing is can get to be pretty confusing. To
start at the beginning, codecs are compression
formats. They are the algorithms, or methods, by
which all the frames in a video are compressed,
in an effort to make the size of the movie file
small. When one codec has a better compres-
sion ratio than another, it means that for the
small file size created with that codec, there’s
a higher quality image when it’s played back.
Some examples of video codecs are MPEG-
4, h.264, Sorenson, MPEG2, and DV. Common
audio codecs are MP3, FLAC, and Vorbis.

Some codecs can live on their own as files,
often called raw files, but more often, they are
wrapped in container format like QuickTime or
AVI. QuickTime and AVI don’t actually do any
compression on their own. Instead, they serve
as a home for the codecs to live in. The ben-
efit of a container format is that it can contain
both audio and video data, and it supports a
bunch of different codecs. Theoretically, a
player that can read QuickTime files can be

made to understand anything that’s wrapped
in a QuickTime container. The other benefit of
container formats is something called meta-
data. Basically, metadata is information about
the file, packed alongside the codecs in it. This
includes functional information like knowing the
codecs used in the container, as well as sup-
plemental information like knowing who made
the file, when, and for which project.

The relationship between codecs and contain-
ers does get a bit hairy because a few codecs
also can be containers, such as MP4. MP4 is the
type of file for an MPEG-4 video, and therefore
the raw format for that type of codec. However,
MP4 can act as a container for not only MPEG-4
video (and all the nuanced ways you can create
MPEG-4 videos), but also any other MPEG video
codec and audio codec. These kinds of scenar-
ios can drive an artist crazy (okay, crazier than
normal). If you have the time, it’s worth learn-
ing more about it. If you don’t, I’d recommend
simply sticking with QuickTime or AVI for your
delivery format and then pick your favorite com-
pression codecs from there.

322 Part IV: Sharing Your Work with the World

The other consideration to make when saving an animation is where on your

hard drive you intend to store it. Enter this information on the first text box

on the Output panel. By default, Blender saves your animations to the /tmp

directory on your computer. However, you might not have a /tmp directory,

or you explicitly may want to save the animation to a different folder on your

hard drive. Left-click the file folder icon to the left of this text box and navi-

gate to where you want to save your animation.

I would highly recommend that if you choose to save a sequence of still images,

you should create a specific folder just for these render files. You’re going to

create a lot of files. If the animation is 250 frames long and you render to still

images, you’re going to get 250 individual images saved to your hard drive.

So, to render animation, the steps are pretty similar to rendering a still:

 1. Set up your resolution and output format in the Format panel.

 Now, if you’ve been working on your animation, hopefully you’ve set all

this up already. Although changing the output resolution (the width and

height) of the image after you animate generally is not too bad, changing

to other frame rates after the fact can get to be a pain. The frame rate is

set with the FPS button in the second block of buttons.

 2. Confirm the start and end frames for your animation in the Anim panel.

 This is another setting that you probably already made while animating,

but it’s worth it to double-check these start and end frames to make sure

that they’re correct.

 3. Verify where you want to save your file in the Output panel.

 4. Animate by pressing Ctrl+F12.

 Also you can press the large Anim button in the Render buttons or choose

Render➪Render Animation. Your animation immediately starts being cre-

ated. Now go get a cup of coffee. This might take quite some time.

 Unlike the Render button, which does not save anything to your hard drive,

clicking the Anim button automatically saves your renders wherever you stip-

ulate in the Output panel.

Creating a sequence of still images
for editing or compositing
In reading the last section, you may have found yourself wondering, “He

keeps talking about rendering out a sequence of still images rather than a

single movie file. Why would I ever want to do that?” There are actually a

couple of situations where this makes sense. One of the biggest reasons for

323 Chapter 14: Exporting and Rendering Scenes

rendering still is for compositing, or combining multiple images together.

When you do compositing, you often rely on having an alpha channel that

makes everything transparent except for your rendered subject. Most video

formats simply don’t support an alpha channel, so to accommodate this, you

render out a sequence of still images in a format that does support alpha,

such as PNG.

Another reason that you may want to have a still images sequence instead of

a movie file is for editing, or sequencing multiple video and animation clips.

To get smaller file sizes, many video codecs throw out large chunks of image

data from one frame to the next. The result is a small file that plays well,

but is pretty difficult to edit because in editing, you may want to cut on a

frame that doesn’t have very much image data at all. Using a sequence of still

images guarantees that all image data for each and every frame is completely

there for smooth editing.

The third reason you may want to render a sequence of still images is largely

practical. When rendering to a movie format, what happens if you decide to

stop the render and change a small part of it? Or what happens if Blender

crashes in the middle of rendering? Well, you have to restart the whole

render process from the start frame. This, of course, is painful. If you render

using a sequence of still images, those images are saved the second that

they’re created. This means that if your render gets stopped for any reason,

you don’t have to start rendering again from the beginning. You can adjust

the Sta (short for Start) value in the Anim panel of the Render buttons (F10)

to pick up where you left off and resume the render process.

324 Part IV: Sharing Your Work with the World

Chapter 15

Compositing and Editing
In This Chapter
▶ Editing video and animations with Blender’s Video Sequence Editor

▶ Compositing images, video, and un-rendered scenes

In live-action film and video, the term post-production usually includes

nearly anything associated with animation. Nearly every animator or

effects specialist has groaned upon hearing a director or producer say the

line, “We’ll fix it in post.” Fortunately, in animation, post-production is more

specific, focusing on editing and compositing.

Editing is the process of taking rendered footage – animation, film, or video –

and adjusting how various shots appear in sequence. This is typically done

using a non-linear editor (NLE). An NLE, like Apple’s Final Cut Pro or Adobe

Premiere, differs from older linear tape-to-tape editing systems that required

editors to work more sequentially. With an NLE, you can easily edit the begin-

ning of a sequence without worrying too much about it messing up the timing

at the end. Blender has very basic NLE functions built into its integrated

Video Sequence Editor.

Compositing is the process of mixing animations, videos, and still images into

a single image or video. It’s the way that credits show up over footage at the

beginning of a movie, or how an animated character is made to appear like

she is interacting with a real world environment. Blender has an integrated

compositor that can be used to do these sorts of effects, as well as simply

enhance your scene with effects such as blur, glow, and color correction.

This chapter is a quick guide to editing and compositing using Blender’s

Video Sequence Editor and Node Compositor. Understand that these topics

are large enough for a book of their own, so the content of this chapter isn’t

comprehensive. That said, you can find enough solid information here and in

Blender’s online documentation (wiki.blender.org) to figure it out. I’ve

tried to explain not only Blender’s interface for these tools, but also some

fundamental concepts such as non-linear editing and working with nodes.

With this understanding, these tools can help turn your work from “Hey,

that’s cool” to “Whoa!”

326 Part IV: Sharing Your Work with the World

Working with the Video Sequence Editor
Figure 15-1 shows the default Sequence screen in Blender, accessible through

the Screens menu in the header or by pressing Ctrl+Right Arrow twice from

the default Modeling screen. The large window in the middle of the screen is

a Video Sequence Editor (VSE) window in Sequence mode. In this mode, you

can add and modify sequences, called strips, in time. The numbers across the

bottom of the Sequencer correspond to time in the VSE in seconds. The num-

bers to the left label the tracks, or channels, that the strips live in. The upper

left window is an Ipo Curve Editor in its Sequence view, used for tweaking the

influence or timing of individual strips. To the right of that is a VSE window in

Image Preview mode. When you’re editing, the footage under the time cursor

appears in this window. At the bottom is a Timeline window and a Buttons

window.

Figure 15-1:
The

Sequence
screen in
Blender.

VSE
(Image Preview mode)

Ipo Curve Editor
(Sequence view)

VSE
(Sequence mode)

Timeline

327 Chapter 15: Compositing and Editing

The settings in the Format panel amid the Render buttons (F10) are impor-

tant for editing in Blender because that’s where you set the frame rate, mea-

sured in frames per second (fps), and resolution for the project. If you are

editing footage that runs at a different frame rate or resolution than the one

that is set here, that footage is adjusted to fit. This means that if your proj-

ect is at standard HD settings (24 fps and 1920x1080 pixels in size), but you

import an animation rendered at 50 fps and at a size of 640x480 pixels, the

footage appears stretched and in slow motion.

Besides the Render buttons, other Scene buttons are relevant to sequences.

Notice the second set of buttons in the header, as seen in Figure 15-2.

By default, the first button is depressed, giving you the Render buttons.

However, you also have Sequencer buttons, Animation/Playback buttons, and

Sound Block buttons.

Figure 15-2:
From left

to right:
Render

buttons,
Sequencer

buttons,
Animation/

Playback
buttons, and
Sound Block

buttons.

As you might guess, the most relevant set of buttons for working in the VSE

are the Sequencer buttons. Five panels are available in the Sequencer but-

tons: Edit, Input, Filter, Proxy, and Effect. Depending on the type of strip you

select, all panels may not be visible. For instance, audio strips can’t have

proxies, so that panel doesn’t show up when you select one of those strips.

Figure 15-3 shows the default panels in the Sequencer buttons for an image

strip.

Figure 15-3:
The

Sequencer
buttons.

328 Part IV: Sharing Your Work with the World

Following are descriptions for the most commonly used panels:

 ✓ Edit: The buttons in this panel pertain to where a selected strip appears

in the VSE and how it interacts with other strips. You can name individ-

ual strips for easy identification, control how a strip blends with strips

beneath it, mute or lock a strip, set the frame that the strip starts at, and

adjust which channel the strip lives in.

 ✓ Input: The buttons in this panel allow you to crop and move the strip

around the frame, as well as control which portion of the strip shows up

in the Sequencer.

 The Reload button is also quite helpful. Assume you’ve added an image

to the Sequencer, but decide that you would like to modify it in another

program before continuing to edit. After you make your changes, you

need to make Blender aware that the file has been updated. Left-clicking

Reload in this panel does that for you.

 ✓ Effect: This panel only appears for certain effect strips that have edit-

able attributes. More detail on some effects that use this panel are given

later in this chapter in the section “Adding effects.”

The Animation/Playback buttons, as shown in Figure 15-4, control how

Blender plays and renders scenes. With this panel, you can change pretty

quickly the project frame rate, the start and end frames for playback, and

how many frames Blender steps forward or back when you press the up/

down arrow keys. However, the most relevant button for the VSE is the Sync

button. Clicking this button ensures that your audio plays back in sync with

your video while editing. Nothing is worse than doing a ton of work to get

something edited only to find out that none of the audio lines up with the

visuals after you render.

Figure 15-4:
The

Animation/
Playback

buttons.

The Sound Block buttons can be used to modify both individual audio clips

as well as the sound for the overall project. Figure 15-5 shows the available

panels in the Sound Block buttons context: Sound, Listener, and Sequencer.

As you may have guessed, the most relevant panel for the VSE is the

Sequencer panel. In it, some of the functions of the Animation/Playback but-

tons are duplicated with the Sync button. However, this panel has a few other

helpful buttons too.

329 Chapter 15: Compositing and Editing

Figure 15-5:
The Sound

Block
buttons.

Enabling the Scrub button plays a small bit of audio at each frame change

while you’re editing. This is a great way to know where you’re at in your

audio, and it’s also quite helpful to confirm that your audio and video are

actually in sync. The next set of buttons controls the overall volume for the

project. The Main mix slider adjusts the volume in decibels (dB). This means

that setting the slider to zero actually keeps the sound as it is in the VSE.

Values above zero make the sound louder, and negative values soften it. You

also have the option of muting all sound outright.

The Mixdown button is like the Anim button in the Render buttons, except

instead of creating an animation, it mixes all of the audio in the VSE into a

single WAV file and saves it on your hard drive. You may want this sort of fea-

ture if you’re animating to some dialogue and you have the timing right, but

you want to add effects and tweak the sound in an external program. Doing a

mixdown gives you a single properly-timed audio file that you can add to.

Before I get heavily into using the VSE, let me first say that Blender’s VSE is

not a complete replacement for a traditional NLE. Although it is a very power-

ful tool, the VSE is best suited for animators who want to create a quick edit

of their work. Professional video editors may have trouble because VSE is

missing a number of expected features, such as a listing of available footage,

sometimes called a clip library or bin. That said, Blender’s VSE was used suc-

cessfully to edit both of the open movie projects, Elephants Dream and Big
Buck Bunny, and I’ve found it more than sufficient for quite a few of my own

projects, so you’ll ultimately have to decide for yourself.

Adding and editing strips
So you want to use the VSE to edit some footage you have. The first thing you

have to do is bring that footage into Blender. You do this by clicking in the

Sequencer window and pressing Spacebar. Figure 15-6 shows the menu of

options that appears when you do this.

330 Part IV: Sharing Your Work with the World

Figure 15-6:
The Add

Sequence
Strip menu.

Generally speaking, there are four primary kinds of strips that you can

import: still images, movies, audio, and scenes. These are represented by the

following options in the menu:

 ✓ Image Sequence: Selecting this option brings up a File Browser window

that allows you to select one or more images in any of the formats that

Blender recognizes. If you select just one image, the VSE displays a strip

for that one image that can be resized in time arbitrarily. If you select

multiple images, the Sequencer interprets them as a sequence of images

and places them all in the same strip with a fixed length that matches

the number of images you selected.

 ✓ Movie/Movie + Audio (HD): When you select these options, the File

Browser that comes up allows you to select a video file in one of the

many formats Blender supports. Note that when you use the Movie

option, no audio is imported. However the Move+Audio (HD) option

loads the audio along with the video file as separate strips in the

sequencer.

 ✓ Audio (RAM)/Audio (HD): These options give you a File Browser

window for loading an audio file into the VSE. For Audio (RAM), Blender

takes your selected file and plays it from your computer’s RAM. This

option is nice because the sequence strip shows the audio waveform,

making editing easier. However, sound quality tends to be worse, with

periodic pops and hisses. Audio (HD) reads the sound directly from the

hard drive. There’s no waveform on the strip and it may perform a bit

slower than the Audio (RAM) option, but it tends to give more accurate

results with fewer pops and less hissing. When importing audio, you

331 Chapter 15: Compositing and Editing

definitely want to import sound files in WAV format. It gives you the best

quality sound, when other compressed sound formats like MP3 won’t

work.

 ✓ Scene: Scene strips are an extremely cool feature that is unique to

Blender. When you select this option, a secondary menu pops up that

allows you to select a scene from the .blend file you are working in. This

means that if you use a single .blend file with multiple scenes in it, you

can edit those scenes together to a final output sequence without ever

rendering out those scenes first! This is a very handy feature that allows

you to create a complete and complex animation entirely within a single

file. It’s also a great way to use Blender to create overlaying graphics,

like titles, on video that you are editing.

The other options in the menu are strips used mostly for effects and transi-

tions. They are covered more in-depth in the next section.

When you load a sequence strip, it is brought into the VSE under your mouse

cursor. Left-clicking your mouse or pressing Enter confirms the placement

of the strip. Table 15-1 shows helpful mouse actions for working efficiently in

the VSE.

Table 15-1 Helpful Mouse Actions in the VSE
Mouse Action Description

Right-click Select strip to modify. Right-clicking on the arrow at either
end of the strip selects that end of the strip and allows you to
trim or extend the strip from that point.

Shift+Right-click Select multiple strips.

Middle-click Pan the VSE workspace.

Ctrl+Middle-click Zoom height and width of the VSE workspace.

Scroll wheel Zoom the width in and out of the VSE workspace.

Left-click Move the time cursor in the VSE window. Left-clicking and
dragging scrubs the time cursor, allowing you to view and
hear the contents of the Sequencer as fast or slow as you
move your mouse.

One thing you might notice is that quite a few of the controls are very simi-

lar to those present in other parts of Blender, such as the 3D View and Ipo

Curve Editor. This is very true also when it comes to the hotkeys that the VSE

recognizes, although there are a few differences that are worth mentioning.

Table 15-2 is a list of some the most common hotkeys used for editing.

332 Part IV: Sharing Your Work with the World

Table 15-2 Common Features/Hotkeys in the VSE
Hotkey Menu Access Description

G Strip➪Grab/Move Grabs a selection to move else-
where in the VSE.

E Strip➪Grab/Extend from
frame

Grabs a selection and extends one
end of it relative to the position of
the time cursor.

B Select➪Border Select Border select, for selecting mul-
tiple strips.

Shift+D Strip➪Duplicate Duplicates the selected strip(s).

X Strip➪Delete Deletes the selected strip(s).

K Strip➪Cut (hard) at Current
Frame

Splits a strip at the location of the
time cursor. Similar to the razor
tool in other NLEs.

M Strip➪Make Meta Strip Combines selected strips into a
single “meta” strip.

Alt+M Strip➪Separate Meta Strip Splits a selected meta strip back
to its original individual strips.

Tab Strip➪Enter/Exit Meta Strip Tabs into a meta strip to allow
modification of the strips within it.

H Strip➪Mute Strips Hides a strip from being played.

Alt+H Strip➪Unmute Strips Unhides a strip.

Shift+L Strip➪Lock Strips Prevents selected strips from
being moved or edited.

Alt+Shift+L Strip➪Unlock Strips Allows editing on selected strips.

Alt+A View➪Play Back Animation Plays the animation starting from
the location of the time cursor.

Editing in the Sequencer is pretty straightforward. If you have two strips

stacked one above the other, when the timeline cursor gets to them, the

strip that’s in the higher channel takes priority. By default, that strip simply

replaces any of the strips below it. You can, however, change this behavior

in the Edit panel of the Sequencer buttons. The first drop-down list button on

the left of the panel controls the Blend mode of the selected strip. You can

see that the default setting is Replace, but if you left-click this button, you get

a short list of modes similar to the layer blending options you would see in

a program like Photoshop or The GIMP. Besides Replace, the ones I use the

most are Alpha Over and Add.

333 Chapter 15: Compositing and Editing

The Ipo Curve Editor is useful for animating all kinds of values in Blender,

and it has a specific mode for the Sequencer. You might notice that no matter

what kind of strip you select, there’s only one animatable value on the right

side: Fac. This controls the influence factor that the strip has on the rest of

the sequence. For instance, on a sound strip, you can use the Ipo Curve Editor

to animate the loudness of the audio in that strip. A value of 1.0 is the original

volume of the strip; values less than 1.0 make the audio softer, and values

greater than 1.0 make the audio louder. The same works for image and movie

strips. These strips are completely visible at a value of 1.0 and gradually fade

away the lower you get. There are a couple of differences when you use Ipo

curves on effects strips. I go over a couple of these in the next section.

Chapter 10 has more detail on using the Ipo Curve Editor, but one key differ-

ence between the Ipo Curve Editor when used for Sequences is that the Fac

value has a defined range, shown by a solid black line. For most strips, that

range is from zero to one on the Y-axis and zero to one hundred on the X-axis.

The X-axis value represents a percentage of the length of the selected strip.

So no matter how long your strip is or where in time it’s located, the Ipo curve

sticks with it and scales to whatever its length is. Of course, this makes it dif-

ficult to create frame-accurate Ipo curves relative to the actual time in the

Sequencer. To allow for that kind of accuracy, click the IPO Frame Locked

button in the Edit panel of the Sequencer buttons. When you do that, the

X-axis values in the Ipo Curve Editor match the time values in the Sequencer.

By combining the Ipo Curve Editor with Blending modes, you can create

some very cool results. Say you have a logo graphic with an alpha channel

defining the background as transparent and you want to make the logo flicker

as if it’s being seen through poor television reception. To do this, follow

these steps:

 1. Add a your logo image to the Sequencer (Spacebar➪Image Sequence).

 2. Make sure the logo’s strip is selected (right-click) and, in the Edit

panel, change the strip’s Blend mode to Alpha Over.

 3. In the Ipo Curve Editor, create a curve that randomly bounces many

times between the values of 1.0 and 0.0.

 4. After tweaking the curve to your taste, you should now have your

flickering logo effect.

Adding effects
As noted in the previous section, pressing Spacebar provides you with quite

a few options other than importing audio and video elements. A large portion

of these options are effects, and many typically require that you select two

strips that are stacked on top of each other in the VSE. When necessary, I

point out which ones these are.

334 Part IV: Sharing Your Work with the World

Pay close attention to the order in which you select your strips because this

often has a dramatic influence on how the effect is applied. A general rule

of thumb is that the second strip you select is the primary controller of the

effect.

Here is a list of the available options:

 ✓ Cross/Gamma Cross: These effects are crossfades or dissolves between

overlapping strips. To use them, select the strip you want to start with

and then Shift+right-click the strip you want to transition to. Next press

Spacebar➪Cross. A new red strip is created that’s the length of the

overlap between your two selected strips. On playback (Alt+A), one

clip fades away as the other appears. This effect also works in audio to

smoothly transition from one sound to another. Gamma Cross works the

same Cross, but takes the additional step of correcting the color in the

transition for a smoother dissolve.

 ✓ Add/Sub/Mul: These effects are the same as the Blend mode settings in

the Edit panel of the Sequencer buttons. Unless you really need some

special control, I’d recommend using those Blend modes rather than

adding these as effects sequences. It works just as well and keeps your

Sequencer from getting too cluttered. Using these effects requires that

you select two strips before pressing spacebar and adding any of them.

 ✓ Alpha Over/Under/Over Drop: These effects strips control how one

strip’s alpha channel relates to another. These are also available as

Blending modes and I’d also suggest you apply these effects that way in

most cases. One example of a time where it makes sense to use these

as strips would be if you needed to stack more than one of these effects

together or if you needed to use an Ipo curve to individually control the

effect. Otherwise, stick with the Blend mode.

 ✓ Wipe: Wipe is a transition effect like Cross and Gamma Cross. It transi-

tions from one strip to another like a sliding door, a la the Star Wars

movies. This effect also uses the Effect panel in the Sequencer buttons

to let you choose the type of wipe you want, including single, double,

iris, and clock wipe. Also you can adjust the blurriness of the wiping

edge and the direction the wipe moves.

 ✓ Glow: The Glow effect works on a single strip. It takes a given image and

makes the bright points in it glow a bit brighter. Ever wonder how some

3D renders get that glowing, almost ethereal quality? This is one way

to do it. The Effect panel in the Sequencer buttons lets you adjust the

amount of glow you have and the quality of that glow.

 ✓ Transforms: This effect provides very basic animation controls for the

location, scale, and rotation of a strip. The effect works on a single strip

and the controls for it can be found on the Effect panel of the Sequencer

335 Chapter 15: Compositing and Editing

buttons. Each attribute has a start and end value, giving you limited

animation controls. For more control, you can use an Ipo curve on this

effect strip.

 ✓ Speed Control: With the Speed Control effect, you can adjust the play-

back speed of individual strips. In the Effect panel of the Sequencer

buttons, you can choose to influence the Global Speed (1.0 is “regular

speed”; setting it to 0.50 makes the strip play half as fast; setting it to

2.0 makes it play twice as fast). You can also have more custom control

using the Ipo Curve Editor.

Rendering from the Video Sequence Editor
To render your complete edited sequence from the VSE, the steps are largely

identical to the ones outlined for creating a finished animation in the previ-

ous chapter. Actually, there’s only one additional thing that you must do. In

the Render buttons, on the Anim panel, you need to press the Do Sequence

button. Activating this button lets Blender know that you want to use the

strips in the Sequencer rather than anything that’s in front of the 3D camera

for your final output. If you don’t press this button, Blender just renders

whatever the camera sees, which may be just the default cube that starts

with Blender, or whatever else you might place in front of the 3D camera.

Working with the Node-Based
Compositor

As I mentioned at the start of this chapter, compositing is the process of

mixing multiple visual assets to create a single image or sequence of images.

By this definition, you might notice that technically Blender’s Video Sequence

Editor qualifies as a sort of compositor because you can stack strips over

each other in channels and blend them together with effects and transi-

tions. Although this is true, the VSE is nowhere near as powerful as the Node

Compositor is for mixing videos, images, and other graphics together.

What makes the Node Compositor so powerful? Well, it’s in the name: nodes.

One of the best ways to understand this is to imagine an assembly line. In

an assembly line, each step in the process depends on the step immediately

preceding it and feeds directly into the following step. This is similar to

the layer-based approach used in many image manipulation programs like

Photoshop and The GIMP. Each layer has exactly one input from the previous

layer and one output to the following one. Figure 15-7 illustrates this idea.

336 Part IV: Sharing Your Work with the World

That works well, but let’s enhance the assembly line a bit. Say some steps pro-

duce parts that can go to more than one subsequent step, and that other steps

can take parts from two or more earlier steps and make something new. And

take it a bit further by saying that groups of these steps could be duplicated

and integrated easily to other parts of the line. We would then have an assembly

network like that depicted in Figure 15-8. This is what you can do with nodes.

Figure 15-7:
An assem-

bly line
approach,

like the lay-
ers in The

GIMP or
Photoshop.

Process 1 Process 2 Process 3

Figure 15-8:
Turning

our simple
assembly
line into a

complex
assembly
network.

Source 1

Source 2 Process A

Process D

Process G

Process J Output 4

Output 3

Output 2

Output 1

Process C

Process B

Process E

Process H

Process F

Process ISource 3

337 Chapter 15: Compositing and Editing

Understanding the benefits
of rendering in passes
Before taking full advantages of nodes, it’s worthwhile to take a quick

moment and understand what it means to render in passes. Assume for a

moment that you’ve animated a character walking into a room and falling

down. Even though the camera doesn’t move, the room is pretty detailed, so

it takes a fairly long time for your computer to render each frame. However,

you notice that because the camera doesn’t move, you can really render the

room just once. Then if you render your character with an alpha channel, you

can superimpose the character on just the still image of the room, effectively

cutting your render time in half (or less)!

That’s the basics of rendering in passes. In the previous example, there were

two passes, one for the background and one for the character. However, you

can have many more passes with more detailed content. For instance, if you

wanted to, you could have a render pass that consists of just the shadows in

the image. Then you can take that pass and adjust it to give all the shadows

a slightly bluish hue. Or you could tint a character red to isolate her while

she’s walking through a gray, blurry environment.

Another thing to understand for compositing 3D scenes is the concept of

Z-depth. Basically, Z-depth is the representation of the distance that an object

is from the camera, along the camera’s local Z-axis. Z-depth is used quite

often in compositing. If you were to describe Z-depth in terms of a black and

white image, objects that are nearly white would be the closest to the camera

and objects that are nearly black would be almost out of the camera’s view-

able range. The compositor can use this scale to make an object look like it

fits in a scene even though it was never rendered with it.

To do render passes in Blender, you use render layers. It’s important to make

a distinction here between Blender’s regular layer system and render layers.

They are separate things, although render layers do use Blender’s layer system.

Basically, you can decide arbitrarily which Blender layers you would like to

include or exclude from any of the render layers you create. All of the controls

for this are in the Render Layers panel in the Render buttons. It’s usually a tab

combined with the Output panel. Figure 15-9 shows the Render Layers panel.

Figure 15-9:
The Render

Layers
panel.

338 Part IV: Sharing Your Work with the World

The first block of Blender layers shows which ones are going to be sent

actively to the renderer. Beneath the layers block is a drop-down list for the

Render layer you are currently working in. The first button enables or disables

whether this render layer is rendered. From this part on, this block of buttons

works just like any of the datablock buttons in other parts of Blender, giving

you the ability to rename, select, add or delete render layers. The only differ-

ence is the Single button next to the layer name. It gives you the option of ren-

dering just that layer. This is good for spot-checking a layer and making quick

adjustments without having to render all of the other layers.

The blocks below this strip are where all the power of render layers lives.

These buttons offer a lot of control, so it’s worthwhile to understand what

each one does. The first set is another block of Blender layer buttons. These

buttons determine which Blender layers actually belong in this render layer.

For example, if you’re creating a render layer for background characters and

you have all of your background characters on layers 3 and 4, you would

Shift+left-click those layers in this block.

Below this block of layer buttons is another block of buttons that specify

which pipeline products to deliver to the renderer. This refers to major ren-

derable elements of this render layer that are seen by the renderer. If you dis-

able Halo, for instance, no halo materials are sent to the renderer. Basically,

they are omitted. You can use these buttons in complex scenes to turn off

pipeline features you don’t need in an effort to shorten your render times.

Here is a brief description of some of the more useful pipeline features:

 ✓ Solid: This is for solid faces. Basically, if you disable this option, the

only things that render are lights, halo materials, and particles. Any

solid-surfaced object doesn’t appear.

 ✓ Z-tra: This is short for Z-transparency. If you have an object that has a

Z-transparent material, enabling this button ensures that that material

gets rendered.

 ✓ Strand: Strands are static particles rendered in place. They’re often used

to approximate the look of hair or grass. Keeping this option enabled

ensures that your characters aren’t bald and that their front lawns aren’t

lifeless deserts.

 ✓ AllZ: The simplest way to explain this option is with an example. Say

you have a scene with a wall between your character and the camera.

The character is on one render layer and the wall is on another. If you’re

on the character’s render layer and you enable this option, the charac-

ter is masked from the render layer and doesn’t appear. With AllZ off,

the character shows up on its render layer.

 ✓ Mat: In this text entry field, you can enter the name of any available

material in the .blend file. This was originally designed to aid in creating

339 Chapter 15: Compositing and Editing

preview renders. However, you could also use this feature to make all

objects in this layer behave as a mask or have some other special

material.

Underneath the pipeline products button block are the buttons that control

which passes are included in the render layer. These passes are most useful

when used in the Node Compositor because essentially they make composit-

ing so interesting and fun. Here are some of the most useful passes:

 ✓ Combined: The Combined pass is the fully mixed, rendered image as it

comes from the renderer before getting any processing.

 ✓ Z: This pass is a mapping of the Z-depth information for each object in

front of the camera. It is useful for masking as well as effects like depth
of field, where a short range of the viewable range is in focus and every-

thing else is blurry.

 ✓ Vec: Short for vector, this pass includes speed information for objects

moving before the camera. This data is particularly useful for the Vector

Blur node, which gives animations a nice motion blur effect.

 ✓ Nor: An abbreviation for normal, the information in this pass relates

to the angle that the geometry in the scene has, relative to the camera.

This can be used for additional bump mapping as well as completely

altering the lighting in the scene without re-rendering.

 ✓ UV: The UV pass is pretty clever because it sends the UV mapping data

from the 3D objects to the compositor. Basically, this allows the ability

to completely change the textures on an object or character without the

need to re-render any part of the scene.

 This is often used along with the Index pass to specify on which object

you want to change the texture.

 ✓ Index: This pass carries index numbers for individual objects, if you

set them. This allows very fine control over which nodes get applied to

which objects. This is similar to plain masking, but somewhat more pow-

erful because it makes isolating a single object or group of objects so

much easier.

 ✓ Col: The color pass delivers the colors from the render, completely

shadeless, without highlights or shadows. This can be helpful for ampli-

fying or subduing colors in a shot.

 ✓ Spec: The specularity pass. This pass delivers an image with the specu-

lar highlights that appear in the render.

 ✓ Shad: This pass contains all of the cast shadows in the render, both

from raytraced shadows as well as buffered shadows. This is the pass

you would use in my previous example about taking the shadows from

the render and adjusting them (such as giving them a bluish hue).

340 Part IV: Sharing Your Work with the World

 ✓ AO: This pass includes any ambient occlusion data generated by the

renderer. If you use this pass, it’s a good idea to double check and see if

you’re using Approximate or Raytraced AO in the Amb Occ panel of the

World Buttons. If you’re using Raytraced AO, verify that raytracing is

turned on in your Scene buttons (F10).

Working with nodes
After you set up your render layers the way you like, you’re ready to work in

the Node Compositor. Unlike the VSE, Blender does not ship with a default

screen layout for compositing. Fortunately, the model screen layout serves

the purpose quite nicely. Change the 3D View window to Node Editor by

pressing Shift+F3, or by choosing Node Editor from the Window Type menu

at the left of the 3D view’s header. By default, Blender puts you in the Node

Editor for materials. This is not where you want to be. Look in the header

for the button that looks like a human face. Left-click that icon to enable

the Composite node editor. This won’t appear to change much. However,

click the Use Nodes button that appears just to the right in the header. This

should present you with a screen layout that looks similar to the one shown

in Figure 15-10.

As shown in Figure 15-10, Blender starts by presenting you with two nodes,

one input and one output. You can quickly tell which is which by looking at

the location of the connection points on each node. The left node labeled

Render Layer has connection points on the right side of it. This means that it

can only serve as an input to other nodes and cannot receive any additional

data, so it’s an input node. It adds information to the node network. In con-

trast, the node on the right, labeled Composite, is an output node because it

has no connection points on its right edge, meaning it cannot feed informa-

tion to other nodes. Essentially, it’s the end of the line, the result. In fact,

when you render using the Node Compositor, the Composite node is the final

output that gets displayed in Blender’s render window.

I personally prefer to see the progress of my node network as I’m working,

without having to constantly refer back to another window for the results

of my work. Fortunately, Blender can facilitate this with another sort of

output node: the Viewer node. To add a new node, position your mouse

cursor in the Node Editor window and press Spacebar. This presents you

with a variety of options that I go into detail on in a bit. For now, navigate

to Add➪Output➪Viewer. This creates a new output node labeled Viewer. If

the Render Layer input node was selected when you added the Viewer node,

you’ll notice that it automatically creates a connection, also called a noodle,
between the two nodes. Noodles are drawn between the circular connec-

tion points, or sockets on each node. If the noodle was not created for you,

you can add it by clicking the yellow Image socket on the Render Layer node

and dragging your mouse cursor to the corresponding yellow socket on the

Viewer node.

341 Chapter 15: Compositing and Editing

Figure 15-10:
Starting

with nodes
in the

Composite
Node Editor.

However, making this connection doesn’t seem to do much. You need to take

three more steps:

 1. Left-click the Backdrop button in the Node Editor’s header.

 This loads a black box in the background of the compositor window.

(Don’t worry, this is supposed to happen, I promise.)

 2. Go to the Anim panel in your Scene buttons (F10) and left-click the Do

Composite button.

 3. Render the scene by left-clicking Render or pressing F12.

 When the render is complete and you return to the Blender interface by

pressing F11, you should notice that the empty black box has been magi-

cally replaced with the results of your render. Now anything that feeds

into this Viewer node is instantly displayed in the background of the

composite window.

This is the way I typically like to work when compositing. In fact, I often take

it one step further and press Shift+Spacebar to maximize the Node Editor to

the full window size.

342 Part IV: Sharing Your Work with the World

If you find that the backdrop gets in your way, you can disable it by click-

ing on the Backdrop button in the Node Editor’s header, or you can move it

around in the compositor window by Shift+middle-clicking in the window and

dragging the image around. Also you can get more space by middle-clicking

in the compositor window and dragging the entire node network around, or

by using your scroll wheel to zoom in and out on the nodes. Table 15-3 shows

most of the frequently used mouse actions in the Node Editor.

Table 15-3 Commonly Used Mouse Actions in the Node Editor
Mouse Action Description

Right-click Select a node.

Shift+Right-click Select multiple nodes.

Middle-click Pan compositor work area.

Shift+Middle-click Move backdrop image.

Ctrl+Middle-click Zoom compositor work area.

Scroll wheel Zoom compositor work area.

Left-click (on a node) Select a node. Click and drag to move the
node around.

Left-click (on a socket) Attach or detach a noodle to/from the socket
you click on. Click and drag to the socket you
want to connect to.

Left-click+drag the bottom right
corner of a node

Resize the node.

Left-click+drag in the compositor
workspace

Create a box. Any noodles in the box’s area
are deleted, leaving just nodes. Think of it as
“cutting noodles.”

Ctrl+Left-click Lasso select.

Another thing to notice are the controls at the top of each node, as seen in

Figure 15-11. Specifically speaking, there are four buttons, the triangle on the

left and the plus, equal, and sphere buttons on the right. Below is a descrip-

tion of what each button does:

 ✓ Triangle: Expands and collapses the node, essentially hiding the infor-

mation in it from view.

 ✓ Plus: Hides and shows sockets that have no connections. This button is

useful for simplifying the display of your node network. However, a word

of warning: It’s pretty easy to forget that you have hidden sockets on

your node and go a little crazy wondering where they ran off to.

 ✓ Equal: Menu expand/collapse. Press this button to hide or show editable

values in the selected node. Any values that you set manually are hidden

from view.

343 Chapter 15: Compositing and Editing

 ✓ Sphere: View window expand/collapse. This icon is available only on

nodes that have an image window, like a render layer node, any output

node, or texture node.

Figure 15-11:
Each node

has buttons
at the top

that control
how you

see it in the
compositor

window.

For the most part, editing nodes in Blender conforms to the same user inter-

face behavior that’s in the rest of the program. Nodes are selected with right-

click, you can grab and move nodes by pressing G, and you can Border Select

multiple nodes by pressing B. Of course, there are a few differences that

pertain specifically to the Node Editor. Table 15-4 shows some of the most

common hotkeys used in Node Editor.

Table 15-4 Commonly Used Hotkeys in the Node Editor
Hotkey Menu Access Description

Spacebar N/A Open toolbox menu

G Node➪Grab/Move Grab a node and move it

B Select➪Border Select Border select

X Node➪Delete Delete node(s)

Shift+D Node➪Duplicate Duplicate node(s)

E Node➪Execute
Composite

Pushes input data through the node
network, refreshing the outputs without
re-rendering

Ctrl+G Node➪Make Group Creates a group out of the selected nodes

Alt+G Node➪Ungroup Ungroups the selected group

Tab Node➪Edit Group Expands the node group so you can edit
individual nodes within it

H Node➪Hide/Unhide Toggles the selected nodes between
expanded and collapsed views

Ctrl+R Node➪Rename Pops up an input box that lets you
rename the node

344 Part IV: Sharing Your Work with the World

When connecting nodes, pay attention to the colors of the sockets. The sock-

ets on each node come in one of three different colors and each one has a

specific meaning for the type of information that is either sent or expected

from the node. The colors and their meanings are as follows:

 ✓ Yellow: Color information. Specifically, this socket relates to color in the

output image, across the entire red/green/blue/alpha (RGBA) scale. This

is the primary type of data that should go to output nodes.

 ✓ Gray: Numeric values. Whereas the yellow sockets technically get four

values for each pixel in the image – one for each red, green, blue, and

alpha – this socket gets or receives a single value for each pixel. You can

visualize this as a grayscale image. These sockets are used mostly for

masks. For instance, the level of transparency in an image, or its alpha

channel, can be represented by a grayscale image, with white for opaque

and black for transparent (and gray for semi-transparent).

 ✓ Blue: Geometry data. These sockets are pretty special. They send and

receive information that pertains to the 3D data in the scene, such as

speed, UV coordinates, and normals. It’s pretty difficult to visualize

these values in a two-dimensional image; it usually ends up looking like

something seen through the eyes of the alien in Predator.

As Table 15-4 shows, nodes can also be grouped together. This is actually

one of the really powerful features of the Node Editor. You can border select

a complex section of your node network and press Ctrl+G to create quickly a

group out of it. There are a few really nice benefits to this. First of all, it can

simplify the look of your node network so it’s not a huge mess of noodles

(spaghetti!). More than simplification, though, it’s a great organizational tool.

Because you can name groups like any other node, you can group sections

of your network that serve a specific purpose. For example, you could have a

blurry background group and a color-corrected character group.

But wait, there’s more! (Do I sound like a car salesman yet?) When you create

a group, it’s added automatically to the Group menu when you go to add a

new node (spacebar➪Add➪Group). To understand the benefit of this, imag-

ine you’ve created a really cool network that gives foreground elements a

totally sweet glow effect. If you make a group out of that network, you can

now instantly apply that glow to other parts of your scene or scenes in other

.blend files. Go ahead: Try it and tell me that’s not cool – you can’t do it!

 When working with nodes, it’s a good idea to have the network flow from the

left to the right. Wherever possible, you want to avoid creating situations

where you feed a node’s output back to one of the nodes that gives it input.

This is called a cyclic connection. If you’ve ever heard the painfully loud feed-

back noise that happens when you place a microphone too close to a speaker,

you have an idea of why this is a bad idea.

The best way to get a solid idea of all of the compositing information I’ve

shared so far in this section is to run through a quick example. To make

345 Chapter 15: Compositing and Editing

things easier, I’ve set up a small scene with Suzanne and a cube and included

it on the CD-ROM that comes with this book. It’s a file called simplecomp-

start.blend. It’s a very simple scene. Suzanne and a cube are sitting on a

plane. Suzanne is on layer 1 and the cube is on layer 2. All the other objects,

including the camera and light, are on both layers. Now it’s playtime:

 1. In the Render Layers panel of the Render buttons, change the name of

the current render layer to Monkey, and in the layer block beneath it

enable only layer 1.

 Doing this means that the only Blender layer that the Monkey render

layer recognizes is layer 1 (where Suzanne lives).

 2. Add a new Render Layer and name it Cube. Enable only layer 2 in the

layer block below this render layer’s name.

 Like the previous step, this means that the Cube render layer deals only

with Blender layer 2, where the cube lives.

 3. Enable Do Composite in the Anim panel, and change the 3D view

into a Composite Node Editor with a backdrop(Shift+F3➪Composite

Nodes➪Use Nodes➪Backdrop).

 Go ahead and render the scene by pressing F12. Notice that in the final

result you see only Suzanne and the cube’s shadow, but not the cube.

To see the cube, proceed to the next steps.

 4. Add a Viewer node (Spacebar➪Add➪Output➪Viewer) and wire it to

the Monkey render layer node’s image output.

 Now you should see the render of the Monkey render layer as your

backdrop.

 5. Select the Monkey render layer node and duplicate it (right-click➪
Shift+D) and use the menu at the bottom of the node to choose the

cube render layer.

 If you wire this node to your viewer node, you’ll see the render of the

Cube render layer. Now you can use any of the various effects nodes

that Blender has to modify Suzanne or the cube independently. Maybe

you want to blur the cube or tweak Suzanne’s color. These are just some

of the things that you can do from this point. However, what if you want

to recombine the two render layers? That’s the next step.

 6. Add a Z Combine node (Spacebar➪Add➪Color➪Z Combine).

 There’s more detailed information on this node in the node descriptions

later in this chapter, but Z Combine uses Z-depth data to tell which parts

of one render layer belong in front of parts in another.

 7. Wire the Image and Z sockets of the Monkey render layer node to one

pair of corresponding sockets on the Z Combine node and the Image

and Z sockets of the Cube render layer to the other pair.

 Now if you make a noodle between the Z Combines Image output

and your Viewer node, you can see the finished image, with Suzanne

346 Part IV: Sharing Your Work with the World

properly placed in front of the cube. Wire this same output to your

Composite node and now you can save a still image of this scene.

For reference, I’ve included a finished version of this scene on the CD-ROM as

well, called simplecomp-end.blend.

Blender has quite an extensive list of nodes that you can add to your net-

work. In fact, it seems like with every release of Blender, there are more and

more incredible node types added to the compositor. One thing to notice is

that many nodes have a Fac, or factor, value that you can usually either set

with a value from another node or explicitly set by typing. Values less than

one make the node have less influence and values greater than one make the

node have more influence than usual over the image.

Input
The input nodes are one of the two most important node types in the Node

Compositor. If your node network doesn’t have any inputs, you don’t have a

composite. Figure 15-12 shows each of these nodes side-by-side.

Figure 15-12:
Input nodes:

Render
Layer,

Image,
Texture, and

Time.

 ✓ Render Layer: This node feeds input from a scene into the compositor.

The drop-down menu at the bottom of the node allows you to pick any

of the render layers you’ve created in any scene. Notice also the button

to the right of this menu. Press this button to render just this layer. This

is a handy feature that allows you to update a portion of your node net-

work without needing to re-render all the layers in the network.

 ✓ Image: The name for this node is a bit over-simplistic because it can

actually load more than just a single still image. The Image node allows

you to bring any sort of image data into the compositor, including

sequences of images and movie files, and allows you to control when the

sequence starts, how long it is, and whether to loop it continuously.

347 Chapter 15: Compositing and Editing

 One thing to notice about the Image node in Figure 15-12 is the node’s

header. Rather than saying Image, it actually gives the name of the image

that’s loaded. In the case of Figure 15-12, the filename is frame_0001.png

 ✓ Texture: The Texture node is unique as an input node in that it’s the

only one that can actually receive input data as well. Through this node,

you can take any texture that you’ve built in Blender and add it to your

node network. This node is particularly useful with UV data because it

can actually let you change the textures on objects in your image with-

out re-rendering.

 ✓ Time: This is probably one of the most powerful, yet misunderstood

nodes in Blender. Unlike the VSE, the Node Compositor is not tied to the

Ipo Curve Editor, so it can be difficult to animate attributes of individual

nodes. The Time node is a way around this. You might notice that there

are no numbers for the X and Y values in this node’s graph. Well, the X

values still represent time, varying from the start and end frames you

stipulate in the buttons at the bottom of the node. The Y values work

on a range from zero to one. You can customize this with the orange

Clipping Options button. Because this node isn’t designed for heavy

editing like the Ipo Curve Editor, the controls are simplified. Left-click on

the curve to create a new control point and left-click+drag that point to

move it around. Multiple points can be selected with Shift+left-click.

Output
In the previous section, I said that Input nodes are one of the two most

important node types in Blender. As you may have guessed, the Output

nodes are the other important node types, for a similar reason. If you don’t

have an output node, Blender doesn’t know what to save when it renders.

Blender recognizes the Composite node as the final output from the Node

Compositor. When you set up your output files for animation in the Render

Buttons, or when you press F3 to save a render, it’s the information that

comes to this node that Blender saves out. The Viewer node is similar, but

it’s not for final output. Viewer nodes are great for spot-checking sections of

your node network and making sure things are going the way you want them

to. Also, output from these nodes is seen in the compositor window’s back-

drop, if you enable it.

Color
The Color nodes have an enormous influence over the look of the final

output. As their name implies, they directly affect how colors appear, mix,

and balance in your render. And because an image is basically just a bunch

of colors arranged in a specific pattern, you can understand why these nodes

have so much control. Figure 15-13 shows some of the most commonly used

Color nodes. A description of each follows.

 ✓ RGB Curves: This is arguably one of the most powerful color nodes. It

takes image data and allows you to use curves to adjust the combined

348 Part IV: Sharing Your Work with the World

color, or any of the red, green, or blue channels in the image individu-

ally. You edit these curves the same way you edit the curve in the Time

node. Left-clicking the C, R, G, and B buttons on the upper left changes

between combined, red, green, and blue color channels, respectively.

With the RGB Curves, you can actually do anything that the Hue

Saturation Value, Bright/Contrast, and Invert nodes can do, but with

even more control.

 ✓ Mix: I personally use this node quite a bit. The Mix node has 16 differ-

ent blending modes to allow you to control how to combine two input

images. If you’ve used image editing software like Photoshop or The

GIMP, they should be pretty familiar to you. One thing to remember in

this node – and it’s something I used to constantly get backwards – is

that the upper image input socket is the background image, whereas the

lower image input socket is the foreground image.

 ✓ AlphaOver: This node is very similar to the Mix node, except it deals

exclusively with combining images using their alpha channels. Again,

remember that the lower socket is the foreground and the upper socket

is the background image. The other thing to note with this node is the

ConvertPremul button. Basically, if you see weird white or black edges

around parts of your foreground elements, left-clicking this button

should fix those nasty edges.

 ✓ Z Combine: Like the Mix and AlphaOver nodes, the Z Combine node

mixes two sets of image data together. However, rather than using

straight color information or alpha channels, this node can use Z-depth

information. As the example above shows, this is a great way to get an

object to look like it properly fits in a scene.

Figure 15-13:
Color

nodes: RGB
Curves, Mix,

AlphaOver,
and Z

Combine.

Vector
Vector nodes are the way that 3D data from your scene can be used to influ-

ence the look of your final 2D image. The usage of these nodes tends to be

a bit advanced, but they allow you to do things like change the lighting in

a scene or even change the speed that objects move through the scene . . .

all without re-rendering! If you render to an image format that understands

349 Chapter 15: Compositing and Editing

render passes, like the very cool OpenEXR format (more on this in the next

section), and you include vector and normal passes, these nodes can be a

huge timesaver.

Filter
Filter nodes can drastically change the look of an image and are probably the

number one way to fake any effect in an image. These nodes actually process

the pixels in an image and can do things like put thick black lines around an

object, give the image a variety of customized blurs, or make bright parts of

the image glow. Figure 15-14 shows some of the most useful Filter nodes.

Figure 15-14:
Blur, Vector

Blur,
Defocus,

and Glare
nodes.

 ✓ Blur: As its name implies, this node applies a uniform blur across the

entire input image. The first button gives you a drop-down menu to

select the type of blur you want to use. I typically like to use Gauss for

most of my effects. When you first apply this node, it might not seem

like anything is happening. Change the values in the X and Y buttons to

adjust the blur size on a scale from 0 to 256, or 0.0 to 1.0, depending on

whether you press the Relative button.

 ✓ Vector Blur: This node is the fastest way to get motion blur out of

Blender. The Vector Blur node takes speed information from the Vector

pass (enable Vec in the Render Layer panel of the Render buttons) and

uses it to fake the motion blur effect. One button I recommend you

enable in this node, especially if you’re doing character animation, is the

Curved button. This gives objects that are moving in an arc a more natu-

ral, curved motion blur. Note that this node is specifically for use with

3D data coming from Blender. It can’t add motion blur to any arbitrary

footage.

 ✓ Defocus: Blender’s Defocus node is the way to fake the depth of field,

or DOF, effect you get with a real camera. If you’ve seen a photo where

something in the middle of the picture is in focus, but objects in the

foreground and background are blurry, this is called a shallow DOF and

350 Part IV: Sharing Your Work with the World

it looks pretty sweet. You can get an idea where the camera’s focal point

is by selecting the camera in your scene and turning on Limits in the

Editing buttons. Then when you adjust the DOF Dist value, you can see

the focal point as a yellow cross.

 ✓ Glare: This node is a really quick way to give the bright parts in your

render just a little extra bit of kick. The Fog Glow and Streaks options in

the first drop-down menu are what I tend to use the most. Of all the other

buttons this node gives you to play with, probably the most influential

one is the Threshold button. Setting the threshold to values between 0.0

and 1.0 tends to work best for me, but results vary from image to the next.

Converter
These handy little utility nodes have a variety of purposes, including converting

one set of data to another and ripping apart or recombining elements from a ren-

dered image. The Color Ramp and ID Mask nodes in particular get used quite a

bit. The Color Ramp node is great for helping visualizing or re-visualizing numeri-

cal values on a scale. For instance, the only way to get a good sense of what the

Z-depth of an image looks like is to map Z values along a manageable scale and

then feed that to a white-to-black color ramp, as shown in Figure 15-15.

Figure 15-15:
Visualizing
a scene’s

Z-depth.

351 Chapter 15: Compositing and Editing

The ID Mask node is handy because it allows you to isolate an object even

more specifically than with layers and render layers. Assume you want to

apply the Glare node to a ball that your character is holding. If the scene is

complex enough, it doesn’t really make a lot of sense to give that ball a layer

all by itself. So you can give the object a PassIndex value in the Object and

Links panel of the Objects buttons. Then, by using the ID Mask node, you can

isolate just that ball and make it all shiny.

Matte
The matte nodes are specifically tailored for using color information from

an image as a way of isolating certain parts of it. This is referred to as keying

because you pick the main color, or key color, to represent transparency.

This is the fundamental basis for those cool bluescreen effects that they use

in movies. The filmmaker shoots the action over a blue or green screen (blue

is used for analog film, whereas green is typically used for digital footage),

and when he gives the footage to a compositor, the green or blue parts are

removed and replaced with other footage or something built in 3D.

Distort
The Distort nodes typically do general-purpose image manipulation operations

like Translate, Rotate, Scale, Flip, or Crop It. Want to do that spinning newspa-

per effect you see in old movies? Wire an image of a newspaper and the Time

node to the Rotate and Flip nodes and you’ve got it! There are three somewhat

special nodes in the Distort nodes worth talking more about: Displace, Map UV,

and Lens Distortion. Figure 15-16 shows each of these nodes.

Figure 15-16:
Distort
nodes:

Displace,
Map UV,
and Lens

Distortion.

352 Part IV: Sharing Your Work with the World

 ✓ Displace: This is a great node for doing quick and dirty image distor-

tions such as heat waves in the desert, fake refraction, or making an

object appear to push through the image on the screen. The key to this

is the Vector input socket. If you feed a grayscale image to it, it uses

those values to shift pixels in the image. Connecting a color image, nor-

mals, or vectors shifts the image around with a more three-dimensional

effect, thereby giving you things like the heat wave effect.

 ✓ Map UV: In this entire chapter I’ve been talking about how one of the

cool things that the Node Compositor can do is change textures on

objects after you’ve already rendered them. Well, this is the node that

lets you do just that. To use it, you’ll want to enable the UV pass on your

render layer. Feed that pass to this node, along with the new texture you

want to use, and BAM! Your new texture is ready to be mixed back with

the image. To make sure you’re changing the texture on the right object,

combine this with the ID Mask node before mixing. Cool, huh?

 ✓ Lens Distortion: Sometimes it’s desirable to introduce the effects that

some special (or, in some cases, poor) lenses have on the final image.

The Lens Distortion node does that. You can get everything from a wide

fisheye lens look to that strange effect when an old projector isn’t cali-

brated properly and the colors don’t quite line up right.

Group
When you press Ctrl+G to create a node group, that group is placed in this

menu. This means that when you group a set of nodes, you instantly have

the ability to apply that network to other parts of your composition. Also, as

I mentioned before, grouping gives you the ability to share node networks

between .blend files. When you append or link a node group from another

file, it shows up in this menu.

 Whenever you have the opportunity, name everything you create. This is espe-

cially important for groups because they’re automatically added to the Group

menu. Using names that make sense makes choosing the right node group a

lot easier. You can always rename node groups by selecting them and press-

ing Ctrl+R.

Dynamic
Another common name for Dynamic nodes are PyNodes, or python nodes.

Blender has an integrated scripting engine that uses the Python programming

language. By using Python for compositing, this means that you (or some-

one you know with more programming background) could write a custom

compositor node that does exactly what you want. After you have that script

loaded in Blender, the custom node you’ve written appears in this menu.

353 Chapter 15: Compositing and Editing

Rendering from the Node Compositor
If you’re using the Node Compositor, you already know all of the basic steps

for getting a rendered image out of it. Of course, if you’ve skipped straight to

this section, here’s the quick version: Press the Do Composite button on the

Anim panel in the Render buttons.

That said, there’s one other thing to know about rendering from the com-

positor. Say you’re working on a larger production and want to save your

render passes to an external file format so either you or another compositor

can work on it later without re-rendering the whole scene. You would have

to save your renders to a file format that understands render layers and

render passes. That format is the venerable OpenEXR file format, developed

and gifted to the world by the cool people at Industrial Light & Magic. Now

I know what you’re thinking, “Using this format is as easy as setting up my

render layers and then choosing OpenEXR from the menu in the Format

panel of the Render Buttons.” That’s actually two-thirds correct. You do set

up your render layers and you do go to the Format panel. However, choosing

OpenEXR only saves the final composite output in an OpenEXR file (exten-

sion .exr), but none of the layers or passes. In order to get that information,

you should instead choose MultiLayer. With this format, you get an OpenEXR

file that has all of the layer and pass information stored with it.

Pay close attention to your hard drive space when you choose to render like

this. Keeping all of your render layers and passes is a great way to tweak

and make adjustments after rendering; however, the file size for each indi-

vidual .exr file can be huge. Whereas an HD frame in PNG format may only be

a couple hundred kilobytes, an OpenEXR file on the same frame with all the

passes enabled could be well over 100 megabytes. Yes, megabytes. So make

sure you do test saves to get a good benchmark for the file size and see that

you have enough hard drive space to store all those frames.

354 Part IV: Sharing Your Work with the World

Part V
The Part of Tens

In this part . . .

This is the (more) fun part of the book. These chapters

are quick lists to help make you a better Blender user.

Blender is a dense program, stuffed full of features. And

it’s constantly changing and having new features and

enhancements added to it. Because of this, it’s not diffi-

cult to forget things or get stumped with strange issues.

The chapters here give you ways to deal with these

issues. It’s an incredible world, and it’s great to have you

as a part of it!

Chapter 16

Ten Problems for New Users in
Blender (and Ways around Them)

The community forums and web pages for Blender are brimming with

questions from new users. Many of them are the same question, or deriv-

atives of the same question. The purpose of this section is to identify some of

the most common ones and give you solutions to them so you don’t have to

dig through these Web sites (unless you really, really want to).

Auto Saves and Session Recovery
Don’t Work

This problem is mostly unique to users of Microsoft Windows, but even if

you’re on another operating system, it’s worth it to double-check on this. It

happens because your Temp directory is improperly set to a folder that does

not exist on your computer. If this path is not set properly, your auto saves

and Blender’s session recovery (File➪Recover Last Session) don’t work.

The Recover Last Session feature is particularly important to have for those

cases where you close Blender without saving your project. It’s amazing how

many people have lost hours of work because Blender crashed (it happens

sometimes!) or they accidentally closed Blender without saving. Don’t be that

person!

By default, Blender sets the Temp path at /tmp, a directory that doesn’t exist

in Windows. There are two solutions to this problem:

 ✓ Create the /tmp directory. In Windows, you would create “C:\tmp”. After

you do that, all auto saves and recoverable sessions are stored there.

 ✓ Change the Temp path in the File Paths Section of the User Preferences

window to a directory of your choice that already exists. Many people

like to use C:\Windows\Temp.

358 Part V: The Part of Tens

 ✓ Get into the habit of quitting Blender by pressing Ctrl+Q or navigating to

File➪Quit Blender rather than clicking the window’s close button (the X

in the corner). In Windows, closing by pressing the X doesn’t get you a

quit.blend.

Blender’s Interface Is Weird or Glitchy
Blender uses OpenGL, an accelerated 3D programming library, for its entire

interface. Because of this, it often uses parts of the library that might never

get touched by other programs. On some machines, Blender might run very

slow or you may see weird screen glitches around the mouse pointer or

menus. The first thing to check is the drivers for your video card. Go to the

Web site for the manufacturer of your video card and see if they have any

updates for it. You may want to try turning off any fancy effects that your

operating system adds, such as transparent windows, shadows on the mouse

cursor, or 3D desktop effects. Because all of these little bits of eye candy

tend to be hardware-accelerated, they might be conflicting with Blender a bit.

At the very least, turning them off usually makes your computer use fewer

resources like processor power and memory, thereby making more of those

resources available to Blender. If you’re using an nVidia video card, make

sure the Flipping checkbox in your OpenGL settings is not enabled.

A Notorious “Black Stripe”
Appears on Models

Often when modeling, you might run into a situation where there is a strange

black crease that goes along some edges. It’s usually most apparent when

modeling with the Subsurf modifier turned on. What’s happening here is

that the normals for one of the faces adjoining this edge are facing the wrong

direction. Usually the quickest way to fix this is to have Blender recalculate

the normals for the model and attempt to have them all face outside. To do

this, go into Edit mode, select all, and press Ctrl+N. This typically alleviates

all issues. If it doesn’t, however, you may have to go in and manually flip

the normals yourself. This is easiest to do from Face Select mode with Draw

Normals turned on in the Editing buttons (F9➪Mesh Tools More). With that

set, you can see which normals are facing the wrong way. From there, select

the offending faces and press W➪Flip Normals. If that still doesn’t solve your

problem, it could mean that you have multiple vertices in the same place or

you have faces inside your mesh. Multiple vertices can be fixed by pressing

W➪Remove Doubles. Internal faces are harder to auto-detect, but if you view

your mesh in Wireframe, it may be more apparent.

359 Chapter 16: Ten Problems for New Users in Blender (and Ways around Them)

Objects Go Missing
Occasionally you might run into a problem where not everything shows up

in your 3D View, even though you’re positive you didn’t delete anything. The

first thing to do is make sure nothing is hidden. Pressing H in Blender hides

whatever you have selected and it’s easy to accidentally hit it when you’re

actually trying to press G and grab an object. Fortunately, you can unhide all

hidden objects pretty quickly by pressing Alt+H.

If you’re sure nothing is hidden, next try to make all layers visible and check

to be sure you didn’t inadvertently move your object to a different layer. You

do this by pressing the tilde (~) key. You may also want to press Home to

bring all objects into view.

One last thing to check is to see if you are in Local View, the view that iso-

lates all objects except for a few that you select. The hotkey that toggles this

view is Numpad-slash (/) and it can be pretty easy to accidentally hit it when

using the numeric keypad to change views. One quick way to tell if you’re in

Local View is to look at the header for the 3D View. If there are no layer but-

tons where they’re supposed to be, you are in Local View.

If none of these things worked, there actually is the chance that you deleted

your object on accident. Fortunately, if you haven’t closed your file, you

can recover from this as well. I’m going write the next few steps under the

assumption that your object was a Mesh, but the same technique works for

curves, text, and other types of objects. See, when you delete an object in

Blender, it doesn’t actually get completely deleted until you close the file, so

it still exists in Blender’s internal database for this file. To recover a deleted

object, use the following steps:

 1. Create a dummy object that’s the same type as the one you’re trying to

recover.

 For meshes, using Spacebar➪Add➪Mesh➪Empty mesh is particularly

handy.

 2. Bring up the Editing buttons (F9) and look in the Links and Materials

panel. Press the up/down arrow to the left of the first field in this

panel.

 When you do this, a list of all of the objects in the scene that share this

type pops up. Anything you’ve deleted has an empty circle next to it.

Figure 16-1 shows what this might look like.

 3. If your deleted object is in this list, select it and the dummy object you

added in the first step is instantly replaced with the mesh for your

deleted object. Neat, huh?

360 Part V: The Part of Tens

Figure 16-1:
Deleted

objects in
the Link and

Materials
panel of

the Editing
buttons.

Python Not Found
If you run Blender from a terminal window (or you’re a Windows user), you

might see something like this show up in there:

Checking for installed Python... No installed Python
found.

Only built-in modules are available. Some scripts may not
run.

Continuing happily.

Although this is an error, it’s not a huge worry. This is basically saying that

Blender can’t find the Python language anywhere on your computer. For

most cases, this isn’t a big deal. Blender has part of the Python language built

into it and all of the Python scripts that ship with Blender work just fine even

if you don’t have Python already on your machine. It only becomes an issue

if you download a Blender script that requires the full Python language. In

that case, you need to download and install Python from its Web site (www.
python.org/download/).

Also, do not close the terminal window. This immediately ends your Blender

session. The Blender developers are working to make it so that this terminal

window doesn’t appear, but until they do, we just have to deal with it.

Edge Loop Select Doesn’t Work
This happens the most on Linux machines that use the Gnome desktop

environment. The Blender hotkey for doing a loop selection is Alt+right-

click. Unfortunately, in Gnome and a few other window managers, this key

sequence pops up a menu for controlling the window. There are two possible

fixes for this. The easiest one is to use Shift+Alt+right-click. This is the com-

bination typically used to select multiple loops, but if nothing is selected, it

works exactly the same as the Alt+right-click combination.

361 Chapter 16: Ten Problems for New Users in Blender (and Ways around Them)

Of course, that’s a bit of a kludge. A better solution would be to modify the

window manager and bind the function that it ties to the Alt key to another

key, like the infamous “super” or Windows key that most modern keyboards

have. Fortunately, this is a very simple process. From the Gnome taskbar, go

to System➪Preferences➪Windows. This brings up a dialog box that allows

you to change the movement key from Alt to Ctrl or Super. I would recom-

mend you change it to super because Blender also makes extensive use of the

Ctrl key as well.

A Background Image Disappears
When using a photographic or drawn reference to base your models on, it’s

a common practice to load the reference image in the background of the 3D

View (see Chapter 5 for more on this). However, when working this way, you

may orbit your view to do a spot-check and then when you return to side (or

front or top) view, the background image may disappear, even though the

Background Image floating panel says it’s still there.

The answer here is that you are viewing the scene through Perspective view

rather than the Orthographic one. Blender doesn’t show the background

reference image in perspective. Switch back to Orthographic by pressing

Numpad 5. It makes sense to do this because a Perspective view introduces

distortion and scaling to the way the scene is viewed, so it’s not a good idea

to model from reference in this type of view. The Orthographic view is much

more effective at getting a model to match a reference image.

There’s a Limit to Zooming
When working in Perspective view, you may notice that occasionally you

can’t zoom in on your scene as much as you would like. This is because

there’s a center point that you’re zooming toward and you are very near it.

There are three workarounds for this. The first is to place the 3D cursor at

the location you would like to zoom to and press C. This centers the view

on the 3D cursor and gives you a clearer target to zoom in on. The other

option that may help is to select the object that you want to zoom in on and

press Numpad-dot (.). This centers the view on that object’s center point so

you can now use that as your zoom target. Alternatively, you can try pop-

ping quickly into Orthographic view by pressing Numpad 5. Because there

is no perspective distortion in the Orthographic view, the way it zooms is

somewhat different and it might give you a better angle that you couldn’t get

before.

362 Part V: The Part of Tens

Lost Simulation Data
As mentioned in Chapter 13, Blender saves some simulation data to your

hard drive. This is especially true for fluid simulations, where simulation data

can take up gigabytes and gigabytes of hard drive space. If that simulation

data isn’t where Blender expects it to be, your simulation doesn’t show up in

your .blend file. Generally this happens for one of three reasons:

 ✓ You work on more than one computer. If you work in Blender on more

than one machine and only copy the .blend file between the two, the

simulation data isn’t where it needs to be on the second computer. You

need to copy that simulation data to the same place on the second com-

puter for it to show up properly.

 ✓ You accidentally changed or deleted the path to the simulation data.

This isn’t common, but it does happen. Fortunately, the fix is simple.

Select the domain object for your fluid simulation and go to your

Physics buttons (F7➪F7). In the Fluid panel, the path to your simulation

data is the last field. Enter the proper path here or left-click the folder

icon to the left of the field and find the proper directory with the File

Browser.

 ✓ You are using the /tmp directory for your simulations. Initially, this

doesn’t seem like that big of a deal. However, on some operating sys-

tems, the /tmp directory is periodically purged, deleting everything in it.

If this happens, your simulation won’t show up and your only option is

to re-bake it. Using /tmp all the time also has another nasty side effect:

Different .blend files overwrite the simulation data that’s in there. So you

might run into a situation where you open one .blend with a fluid simula-

tion only to see the simulation results from another file. Again, the only

solution in case is to re-bake your simulation. This time, however, set

the path somewhere else so this doesn’t happen again.

Blender Doesn’t Create Faces
as Expected

So you’re modeling along and having a good old time creating your next awe-

some creature. At some point along the line, though, you select four vertices

with the intent of creating a quad, or four-side face, between them. Only

instead of creating your nice quad when pressing F, Blender gives you two

triangles, and they look all twisted. This is because the vertices are not copla-
nar, or all in the same plane in 3D space. Or Blender might give you an error

that says “The selected vertices form a concave quad.” A concave face is

when a vertex is placed within the triangular shape formed by the other three

vertices, as seen in Figure 16-2.

363 Chapter 16: Ten Problems for New Users in Blender (and Ways around Them)

Figure 16-2:
You should

avoid
creating
concave

faces.

In either case, the solution is to move the offending vertex until the quad you

want to form is convex and roughly coplanar. You can do this by manually

moving the vertices around, or you can repeatedly use the Smooth opera-

tion (Editing buttons➪Mesh Tools➪Smooth or W➪Smooth). This is a pretty

common practice in Blender. In fact, the very cool Bassam Kurdali, director

of Elephants Dream, found himself pressing the Smooth button so often, he

actually made his own custom version of Blender that binds the T key to

the Smooth operation so he wouldn’t have to move his mouse as much! You

don’t necessarily have to go to those lengths, but it’s great to know that the

option is available.

364 Part V: The Part of Tens

Chapter 17

Ten Tips for Working More
Effectively in Blender

Working in Blender is a ton of fun in any case, but you can get into a

few good work habits to make the experience even more enjoyable.

These good habits let you work faster without sacrificing the quality of your

work. In this chapter, I detail ten of my best suggestions for working more

efficiently and effectively in Blender.

Use Blender’s Tooltips
Blender is a dense program. It’s not uncommon for users to forget what a

button does or come across a menu that they’ve never used before. This

is especially true if don’t use Blender for a while. If you don’t know what a

button in Blender does, hover your mouse pointer over it. More often than

not, a helpful tooltip pops up that concisely describes what the button does.

And even if it isn’t completely clear, you have a better idea of what to search

for to get help.

Constantly Check Models
from Different Views

If you work in a single window environment, modeling and animating using

just one 3D View window, you should definitely make it a point to periodi-

cally orbit around your scene and look at it from a bunch of different angles.

This is particularly important when modeling because it’s very easy to get

a model that looks perfect from the front, but really distorted and goofy-

shaped from one side. Split off another 3D View window if you need it, or use

the numeric keypad hotkeys to quickly do spot-checks from different angles.

366 Part V: The Part of Tens

I also recommend taking advantage of the Smooth View option in the Views

& Controls section of the user preferences. This option may seem like just

simple eye candy at first, but it’s actually quite helpful at helping you figure

out which orientation you’re viewing your scene from. See Chapter 2 to see

how to modify this option.

Lock a Camera to an Animated Character
When animating a character, you may often run into a case where you’re

trying to animate a secondary detail on the character as he’s moving. For

situations like this, I like to create a new camera and parent it to the charac-

ter. This way, the camera goes anywhere the character does. I find this very

helpful for facial animation on a moving character. To do this, use the follow-

ing steps:

 1. Add a new camera (spacebar➪Add Camera) and put it in front of your

character’s face.

 2. With the camera still selected, Shift+right-click the head bone of your

character to add it to the selection.

 3. Press Ctrl+P➪Bone to parent the camera to the bone.

 Now, wherever the head goes and whichever direction it turns, the

camera is always looking at your character’s face.

 4. Whenever you want to work on the facial animation for your character,

select this camera and switch to its view by pressing Ctrl+Numpad 0.

Also, you can bring up the View Properties floating panel (View➪View

Properties) and type in the name of the object you want to look at in the

Object field under the View Locking label. This gives you a similar effect,

but the view is locked on that object’s centerpoint. I like using the camera

method described above because it gives me a bit more control over what

I’m looking at.

Occlude Background Geometry
in Edit Mode

This tip leans a bit toward personal taste, but on complex models, Blender’s

default way of handling Edit mode can get to be a bit unwieldy. When you

are using the Shaded, Solid, or Textured draw type, Blender makes all verti-

ces, edges, and faces of an object visible, even if they are on the back of your

model. This can make it difficult to right-click parts of the object that you

really want to select. You might be trying to select a vertex on your character’s

367 Chapter 17: Ten Tips for Working More Effectively in Blender

face, but mistakenly pick one on the back of his head. Turning on the Occlude

Background Geometry button (the second-to-last button in the 3D View’s

header with the cube icon) hides these vertices, edges, and faces on the back

side of your object. If you need to select one of them, you can orbit around

the scene to the other side and select it there. Or you can briefly switch to the

Wireframe draw type by pressing Z and then selecting the back side geometry

you want.

Name EVERYTHING (Organize
Your Projects)

Each and every time you add something to your scene in Blender, make it a

point to give it a name that makes sense. Trust me, it’s a very disorienting

feeling when you open a .blend file that you haven’t worked on in a while

and you see that your characters are Cube.001, Cube.012, and Sphere.007,

and that really cool skin material you made is called Material.015. On small,

one-shot projects it might not be so bad, but imagine a situation where you

are working on putting materials on a totally sweet killer robot model. You

remember that you’d made a model of a metal toolshed a few weeks back

that has the perfect brushed aluminum look that you need. If you properly

named that material, it’s much easier to find.

And on larger projects, good organization is even more valuable. Not only

is it smart to name everything in your .blend file, but it’s also a good idea to

have a good structure for your projects. For most of my projects, I have a

separate directory for the project. Within that directory, I create sub-direc-

tories for my libraries of models, materials, textures, and finished renders.

For animations, my renders directory is broken down even further into each

shot. Of course, anyone who’s seen my desk might never believe I’m that

organized in my projects, but it’s true! I promise!

Use Layers Effectively
Although there are only 20 available layers, Blender’s layering system is very

versatile and used for a variety of purposes. Objects can live on more than

one layer, lights can be made to only illuminate the layers they are on, and

you can use layers to animate the visibility of objects in your scene. As such,

it’s in your best interest to keep some form of organization in mind.

One of the things I like to do is place all of my models on the top row of

layers (layers 1-10) and all other objects like lights, cameras, and armatures

on the bottom row (layers 11-20). Another thing I like to do is keep “high pri-

ority” objects such as characters and animated things on the left-most layers,

368 Part V: The Part of Tens

while keeping static objects like backgrounds on the right-most layers. Also,

specifically for character animation, when I put my character in one layer, I

place his rig in the layer directly below it. It’s a little convention I like to stick

to and it certainly is a help for me when I want to quickly make sense of a

.blend file that I haven’t opened in a long time.

Of course, this organizational style might not work for you, but you should

definitely make it a point to create some conventions that you can remember

and reuse.

Do Low-Resolution Test Renders
When you’re finalizing the look of a model, you often have to make a quick

change to the model and press F12 to see what it will look like when ren-

dered. It’s often a case of “hurry up and wait.” If you’re not careful, you could

spend more time waiting for those little test renders than you do actually

working on your model. When just doing test previews, here are a couple of

tips for reducing the render time:

 ✓ Turn off OSA. OSA is oversampling and it’s used to reduce aliasing, or

that jaggy stair-stepping that happens around some edges in your ren-

ders. The way it works in Blender is by actually rendering the same sec-

tion multiple times and averaging out the results to make those edges

smoother. This is great for final renders, but can really eat up time when

you just want to do a quick test. Disable OSA by left-clicking its button in

the Render panel of the Scene buttons (F10).

 ✓ Render at 50% or 25% size. Most of the time, when you’re doing a test,

you don’t really have to see what the full-sized final image will look like.

This is especially true if the final render is for print or film, where the

final resolution can be greater than 4000 pixels wide. Now, you could

manually enter a smaller size in the Format panel of the Scene buttons,

but Blender offers a faster way. If you look in the Render panel, you see

a button that says 100% with buttons below it that say 75%, 50%, and

25%. Left-clicking any of these buttons makes Blender render your image

at that percentage of the final size, thereby reducing the render time for

your test preview.

 ✓ Turn off computationally intensive features if you don’t need them.

Features like ambient occlusion (AO), raytracing, and radiosity look

great in a final render, but if you’re just looking at the form of a model,

they aren’t necessarily needed for a test. You can turn off raytracing

and radiosity in the Render panel of the Scene buttons. Turning off AO

requires you to go to the World buttons (F8) and disable it in the Amb

Occ tab.

369 Chapter 17: Ten Tips for Working More Effectively in Blender

 ✓ Render just the layers you need. If you’re working on just one model

in a scene and only want to do a test render for that model, disable the

layers for other objects in the scene. As long as you have the object and

lights in the scene, your test render will be helpful, accurate, and most

importantly, speedy.

 ✓ Use the Border Render feature. If you’re only interested in doing a test

render on a particular part of your scene, switch to the camera view

(Numpad 0) and use Border Render by pressing Shift+B and using your

mouse to draw a box around the part of the shot you’re interested in.

When youfinish doing tests, you can take this border off by left-clicking

the Border button in the Render panel of the Scene buttons.

Mind Your Mouse
When you’re using Blender’s hotkeys to transform objects, where you place

your mouse cursor before performing the operation is pretty important. This

is particularly true for rotating and scaling. For rotating, it’s a good practice

to keep your mouse distant from the object’s center point. Doing so gives you

more control over how you rotate. With your mouse cursor too close to the

center, you can have your object spinning in all kinds of unpredictable ways.

The same is true for scaling, but it’s more dependent on whether you are

scaling up or down. If you are scaling up, it makes sense to bring your mouse

cursor a bit closer to the selection’s center point so you don’t hit the edge of

your screen before you get the object to the size you want. If you’re scaling

down, start with your mouse cursor farther away from the selection’s center

point and, as with rotation, you have more control of how small your object

can get. For grabbing, it’s a bit less important, but I generally like to have my

mouse somewhere near my object’s center point.

Turn on Passepartout for Your Camera
In the non-Blender world, a passepartout has a few definitions, including

“master key” and a reference to a character in Around the World in 80 Days.

The main definition that’s used in Blender is a kind of ornamental mat that’s

used to frame a picture. In Blender, it’s used in much the same way for camera

objects. By default, cameras have this option turned off, but I find it to be very

useful. To enable it, select your camera by right-clicking on it and switch to the

camera’s view (Numpad 0). In the Editing buttons (F9) within the Camera panel

is a Passepartout button on the right-hand side, as seen in Figure 17-1. Left-

clicking this button enables it and you should notice that the area in your 3D

View that is out of the camera’s viewable area is darkened. You can adjust just

how much it’s darkened to match your tastes by modifying the Alpha slider

beneath the Passepartout button. I usually set mine to around 0.700.

370 Part V: The Part of Tens

Figure 17-1:
The Passe-

partout
button is on
the right of

the Camera
panel.

Have Fun, but Take Breaks
Don’t be afraid to just play with Blender. If you ever find yourself wondering

“What does this button do?” just press it and find out. Now, if you’re working

on something important, you should probably save first, but definitely make

it a point to experiment and try things out. By this kind of playing, not only

can you figure out how to use new parts of Blender, but you can also find

new ways of using existing features in cool ways that might not have been

intended.

Working in 3D can be incredibly serious fun, but it can also be a bit addic-

tive. I certainly have had days in the past where I would sit down to work in

Blender in the morning, and, the next time I looked away from the monitor,

the sky would be dark and I’d realize that I missed lunch and was on my

way to missing dinner, too. Not only is this unhealthy, but, ultimately, it can

hurt the quality of your work. Now, I’m obviously the last person who would

ever tell you to stop working when you’re “in the zone,” but try to step away

from the computer for a bit to rest your eyes, get some food, stretch your

legs, or even talk to another human being. (Chatting on IRC doesn’t count!

Remember, away from the computer.) If you do this for just ten minutes

every few hours, you come back to the computer refreshed, more produc-

tive, and you might even have a solution for getting rid of that nasty triangle

in your mesh.

Appendix

About the CD
In This Appendix
▶ System requirements

▶ Using the CD with Windows, Linux, and Mac

▶ What you’ll find on the CD

▶ Troubleshooting

What would any Blender book be without a disk full of goodies on it?

Well, hopefully the world will never know. The CD that comes with

this book is packed not only with copies of Blender for Linux, Windows, and

Macintosh platforms, but also with example files for each chapter and a copy

of the movie Big Buck Bunny in high resolution . . . you know, for creative

inspiration. I wanted to make sure that every megabyte of the CD had some-

thing worthwhile on it. This chapter goes though the content of the disk and

explains how to get at it.

System Requirements
Make sure that your computer meets the minimum system requirements

shown in the following list. If your computer doesn’t match up to most of

these requirements, you may have problems using the software and files on

the CD. For the latest and greatest information, please refer to the ReadMe

file located at the root of the CD-ROM.

 ✓ A PC running Microsoft Windows or Linux with kernel 2.4 or later.

 ✓ A Macintosh running Mac OS X or later.

 ✓ A video card that supports accelerated OpenGL graphics. Most modern

cards support this, but you should double-check yours.

 ✓ A CD-ROM drive.

372 Blender For Dummies

If you need more information on the basics, check out these books published

by Wiley Publishing, Inc.: PCs For Dummies by Dan Gookin; Macs For Dummies

by Edward C. Baig; iMacs For Dummies by Mark L. Chambers; Windows XP
For Dummies and Windows Vista For Dummies, both by Andy Rathbone.

Using the CD
To install the items from the CD to your hard drive, follow these steps.

 1. Insert the CD into your computer’s CD-ROM drive.

 The license agreement appears.

 Note to Windows users: The interface won’t launch if you have autorun

disabled. In that case, choose Start➪Run. (For Windows Vista, choose

Start➪All Programs➪Accessories➪Run.) In the dialog box that appears,

type D:\Start.exe. (Replace D with the proper letter if your CD drive

uses a different letter. If you don’t know the letter, see how your CD

drive is listed under My Computer.) Click OK.

 Note for Mac Users: When the CD icon appears on your desktop, dou-

ble-click the icon to open the CD and double-click the Start icon.

 Note for Linux Users: The specifics of mounting and using CDs vary

greatly between different versions of Linux. Please see the manual or

help information for your specific system if you experience trouble using

this CD. In most cases, the CD should be automatically mounted and an

icon for it appears on your desktop. Double-click this icon to browse the

contents of the CD.

 2. Read through the license agreement and then click the Accept button

if you want to use the CD.

 The CD interface appears. The interface allows you to browse the con-

tents and install Blender with just a click of a button (or two).

What You’ll Find on the CD
The following sections are arranged by category and provide a summary of

the software and other goodies you’ll find on the CD. If you need help with

installing the items provided on the CD, refer to the installation instructions

in the preceding section.

For each program listed, I provide the program platform (Linux, Windows,

or Mac) plus the type of software. The programs fall into one of the following

categories:

373 Appendix: About the CD

 ✓ Shareware programs are fully functional, free, trial versions of copy-

righted programs. If you like particular programs, register with their

authors for a nominal fee and receive licenses, enhanced versions, and

technical support.

 ✓ Freeware programs are free, copyrighted games, applications, and utili-

ties. You can copy them to as many computers as you like — for free —

but they offer no technical support.

 ✓ GNU software is governed by its own license, which is included inside

the folder of the GNU software. There are no restrictions on distribu-

tion of GNU software. See the GNU license at the root of the CD for more

details.

 ✓ Trial, demo, or evaluation versions of software are usually limited either

by time or functionality (such as not letting you save a project after you

create it).

Author-created material
For all operating systems. All the examples provided in this book are located

in the Author directory on the CD and work on any machine that can run

Blender. These are the .blend files that were used to create many of the fig-

ures in this book. When you open each file in Blender, you see a Text Editor

window that explains the content of the file and usually gives you suggestions

or tasks to complete in the file. The structure of the examples directory is

Author/Chapter1
Author/Chapter2

Also included is a Bonus Chapter that details ten online resources to help

you get in touch with the Blender community and stay current on develop-

ments in the software.

Big Buck Bunny
Creative Commons Attribution 3.0 License.

For all operating systems. Big Buck Bunny is the second open movie project

created by the Blender Foundation. The purpose was to assemble a small

team of 3D artists to create a “funny and furry” movie with Blender. Because

of this project, Blender gained quite a few features that you can now take full

advantage of. You can read more about it and even download the project’s

.blend files for free at www.bigbuckbunny.org.

374 Blender For Dummies

Blender
GNU software.

For Linux, Windows, and Mac OS. You can’t have a CD accompanying a book

on Blender without including a copy of Blender itself. That would just be

crazy! On the CD is a copy of the current stable version of Blender, version

2.48a, for each of the major operating systems, including 32-bit Windows,

Intel Macintosh, and 32-bit Linux. Everything in this book is tailored to that

version of Blender and the provided sample files all work with it. If you’re

using a 64-bit operating system, Mac OS on a PowerPC computer, or Solaris,

head on over to www.blender.org to get a copy for those platforms.

VLC
GNU software.

For Linux, Windows, and Mac OS. VLC is short for Video LAN Client, and it’s

an excellent media player that plays nearly any sound or movie file that you

throw at it. I’ve included it on the CD-ROM because occasionally Windows

Media Player or QuickTime have trouble playing some movie formats. If you

have problems playing Big Buck Bunny in one of those players, give VLC a try.

For more information on VLC, check out www.videolan.org/vlc.

Troubleshooting
Blender works admirably on most computers with the minimum system

requirements. It even runs on my mobile phone! Alas, your computer may

differ, and Blender may not work properly for some reason.

The two likeliest problems are that you don’t have enough memory (RAM)

for the programs you want to use, or you have other programs running that

are affecting installation or running of a program. If you get an error message

such as Not enough memory or Setup cannot continue, try one or

more of the following suggestions and then try using the software again:

 ✓ Turn off any antivirus software running on your computer. Installation

programs sometimes mimic virus activity and may make your computer

incorrectly believe that it’s being infected by a virus.

 ✓ Close all running programs. The more programs you have running, the

less memory is available to other programs. Installation programs typi-

cally update files and programs; so if you keep other programs running,

installation may not work properly.

375 Appendix: About the CD

 ✓ Have your local computer store add more RAM to your computer. This

is, admittedly, a drastic and somewhat expensive step. However, adding

more memory can really help the speed of your computer and allow

more programs to run at the same time.

Customer Care
If you have trouble with the CD-ROM, please call Wiley Product Technical

Support at 800-762-2974. Outside the United States, call 317-572-3993. You can

also contact Wiley Product Technical Support at http://support.wiley.
com. Wiley Publishing provides technical support only for installation and

other general quality control items. For technical support on the applications

themselves, consult the program’s vendor or author.

To place additional orders or to request information about other Wiley prod-

ucts, please call 877-762-2974.

376 Blender For Dummies

Index
• Numerics •
3D button, 114
3D cursor, 38–39
3D manipulator

switching modes, 44–45
using, 45–48

3D View window
cursor, 38–39
draw types, 35–37
header of, 47, 55, 282
multiple, 365–366
numeric keypad hotkeys,

33–35
orbiting in, 31
overview, 21, 30
panning in, 31
selecting objects, 37
View menu, 32
zooming in, 31

• A •
Action datablock, 287–288
Action Editor, 21, 273–277
Action strip, 289–291
active objects, 44, 68
Active snap mode, 46
Actor button, 305
Adaptive QMC, 189–190
Add button

Ambient Occlusion
panel, 203

Paint panel, 155
Sculpt panel, 105

Add effect, 334
Add Level button, 102
Add menu, 63
Add Multires button, 102
Add New Objects option, 27
Add Selected to Active Group

option, 271
Add Selected to Group

option, 271

Add Sequence Strip
menu, 330

Add Shape Key button, 236
Add to Active Objects

Groups option, 75–76
Add to Existing Group

option, 75
Add to New Group option, 76
Airbrush button, 105
algorithms, 321
aliased edges, 110
aliasing, 368
Aligned handles, 119–120
alignment buttons, 130
AllZ button, 338
Alpha button, 171
alpha channel, 319
Alpha Over Drop effect, 334
Alpha Over effect, 334
alpha transparency, 149
Alpha Under effect, 334
alpha value, 148
AlphaOver node, 348
Always button, 127
Amb button, 171
Ambient color value, 204
Ambient Occl button, 180
ambient occlusion (AO),

202–205, 340, 368
Ambient Occlusion

panel, 203
Amount value, 295
anatomy, fl ow of, 106
Anim button, 322
animation. See also

constraints;
deformations; rigging

cloth, 307–308
Ipo curves, 214–224
overview, 213
particles, 294–302
principles of, 280–281
rigid body dynamics,

304–306

soft body dynamics,
302–304

splashing fl uids, 308–311
animation curves. See

Ipo curves
Animation screen layout,

215–217, 288–289
Animation/Playback

buttons, 328
anticipation principle, 280
AO (ambient occlusion),

202–205, 340, 368
AO pass, 340
appeal, principle of, 281
Append button, 79–80
appending fi les, 77–80
Apply button, 92
Apply Modifi er to Editing

Cage During Edit Mode
button, 91

approximate AO, 204–205
arcs, 280, 285
Area lamp, 187–188, 194–195,

197–199
armature objects, 65
Armature panels,

248–251, 256
armatures

bone paths, 285–286
copying mirrored poses,

282–284
editing, 244–251
ghosting, 284–285
overview, 278–279
principles of animation,

279–281
quaternions, 281–282
skin, 252–257

Array modifi er, 90–91, 98–101
Atmosphere button, 191
attenuation, 189
Audio (HD) option, 330–331
Audio (RAM) option, 330–331
Audio panel, 320–321
Audio window, 21

378 Blender For Dummies

Auto handles, 119–120
Auto Save feature, 28–29,

357–358
Auto Save Temp Files option,

Auto Save section, 28
Autokey feature, 219
Available option, 218
Axes button, 250
axis color, 44
axis-related controls, 106

• B •
B button, 133
back light, 186, 197
backface culling, 57
background, 201–202, 361,

366–367
Bake panel, 180
baking, 305, 311
B-Bone button, 250–251
Be button, 303
Bending Stiffness value, 303
Bevel Depth value, 116
Bevel modifi er, 90–91
BevOb fi eld, 116–117
BevResol value, 116
Bézier curves, 112, 118–120
Bézier interpolation, 221
Bias value, 193
Big Buck Bunny movie,

12–13, 373
bin, 329
“black stripe” problem, 358
Blend button, 201–202
.blend fi les, 21, 71, 373
Blend procedural

texture, 164
Blender

on CD, 374
coordinate systems, 42–44
fi les, 77–80
gestures, 51–52
history of, 10–11
hotkeys, 48–52
interface, 14–18
open-source nature of,

12–13
overview, 9–10
toolbox, spacebar, 63–64

Blender Foundation, 11–12
Blender Institute, 12–13
Blender Original Noise Basis

type, 162
Blinn specular shader, 146
blobbies, 124
bluescreen effects, 351
Blur button, 155
Blur node, 349
.bobj.gz fi les, 309–310
Boids physics, 295–296
bold font, 133
bone groups, 271
bone layers, 249–250, 272
bone paths, 285–286
bones, 244–247, 250–251
Border Render feature, 368
Border Select tool, 56
Both button, 203
bouncing objects, 302–304
Bounding Box draw type, 36
Bounds button, 305
box modeling, 84–85
Brush panel, 107
Brush Select tool, 56
brushes, 104–105
buffered shadows, 192
Buttons window, 20,

22–23, 220
BW button, 319

• C •
cage, 95, 110
Calculate Path button, 286
camera objects, 65, 366,

369–370
Cartesian grid, 42
Catmull-Clark subdivision

button, 96, 102
caustic effects, 190
CD, with book, 371–375
cel shading, 145
CellNoise type, 162
Center button, 130
center point, 43–44
Center snap mode, 46
Channel Properties fl oating

panel, 223
channels, 326

Char panel, 134
Child Of constraint, 230–231
children, 73–77, 301
Children option, 76
Children panel, 301
Clear and Keep

Transformation
option, 75

Clear Parent Inverse
option, 75

Clear Parent option, 75, 248
clip library, 329
ClipEnd value, 193
ClipSta value, 193
Closest snap mode, 46
cloth, 307–308
Clouds procedural

texture, 166
Cmir button, 171
codec, 320–321
Col button, 171
Col pass, 339
Collision panel, 307–308
Colnoise button, 207
color

axis, 44
background, 201–202
material, 143–144
socket, 344
specularity, 29
swatches, 222

Color nodes, 347–348
color picker, 143–144
Color Ramp node, 350
colorband, 164
Colors button, 251
column key selection, 275
Combined pass, 339
Combo manipulator

mode, 45
Combo Select edit mode,

55–56
community, user, 2, 11, 13
Composite node, 347
Composite Node Editor,

340–341
compositing. See

Node Compositor
compression ratio, 321
concave face, 362–363

379379 Index

concentric edge loops, 106
Connected option, 63,

247–248
Constant extend mode, 222
Constant Falloff option, 62
Constant interpolation, 221
Constant Offset, 99
Constant QMC, 189–190
constraints

Child Of, 230–231
Copy Location, 227–230
Copy Rotation, 227–230
Copy Scale, 227–230
Empty object, 226–227
Floor, 231–232
Limit Distance, 231
Limit Location, 231
Limit Rotation, 231
Limit Scale, 231
Locked Track, 234
overview, 225–226
rigging, 262–266
Stretch To, 234
Track To, 233–234

container format, 321
control points, 110, 112, 120
Converter nodes, 350
CookTorr (Cook-Torrance)

specular shader, 146
Coordinate System

Orientation menu, 42
coordinate systems, 42–44,

49–51
coplanar vertices, 362
Copy button, 92
Copy Location constraint,

227–230
Copy Rotation constraint,

227–230
Copy Scale constraint,

227–230
copying

mirrored poses, 282–284
modifi ers, 92
movement of other objects,

227–230
Create from Bone Heat

option, 255
Create from Envelopes

option, 255

Cross effect, 334
crossfades, 334
cross-platform program, 2
Crystal Space game

engine, 13
Csp button, 171
CSpace buttons, 229–230
Cube projection, 170
Current Frame option, 276
Curve button, 107
Curve Data option, 72
curves

Bézier, 118–120
converting text to, 136–137
deforming text with,

135–136
Extend Mode, 222
Ipo, 214–224
motion, editing, 221–224
NURBS, 120–123
overview, 64, 109–111
types of, 112–113
using, 113–123

customer care, 375
cyclic connection, 344
cyclic curve, 113–114
Cyclic extend mode, 222
Cyclic Extrapolation extend

mode, 222

• D •
Darker button, 155
Data Browse window, 21
datablocks, 70–71
Default theme, 28
defl ectors, 298–299
Defocus node, 349
Deform button, 249
deformations

Action Editor, 273–276
armatures, 278–286
non-linear animation,

287–291
shape keys, 276–277
text, 135–136

DefResolU value, 114–115
Del Higher button, 102
Del Lower button, 102
deleted objects, 359–360

deleted paths, 362
demo versions of

software, 373
depth of fi eld (DOF), 339, 349
Diffuse color, 143
direction, curve, 114
disable button, 91
Disconnect Bone option, 248
Disp button, 172
Displace node, 351
Displacement button, 180
dissolves, 334
Dist value, 189
Distance value, 191
Distort nodes, 351–352
Distorted Noise procedural

texture, 162
Do Clipping button, 93
Do Sequence button, 335
DOF (depth of fi eld), 339, 349
domain, 309
Domain button, 309
Don’t Create Groups

option, 254
dope sheet, 276
doubles, 58
Draw brush, 104
draw types (draw modes),

35–37
duplicates, 68–73,

142–143, 245
Dupliverts, 198–199
Dynamic nodes, 352

• E •
easing in, 221, 280
easing out, 221, 280
edge fl ow, 106
edge loop, 85–87, 360–361
edge ring, 87–88
Edge Select mode, 54–57, 87
Edge Slide function, 88
Edges fi eld, 103
Edit menu, 63
Edit Methods options, 26–27
Edit mode

Edge Select mode, 54–57
Extrude function, 58–63
Face Select mode, 54–57

380 Blender For Dummies

Edit mode (continued)

versus Object mode, 54
occluding background

geometry in, 366–367
overview, 53
Vertex Select mode, 54–57

Edit panel, 328
Editing buttons, 248–251
Editing sub-window, 22
Effect panel, 328
effects, adding, 333–335
Elephants Dream movie, 12
Emit button, 171
Emitter particle systems,

295–296
empty objects, 65, 226–227
Emulate 3-Button Mouse

option, 26
Emulate Numpad option, 29
enable button, 91, 101
End Time value, 310
End value, 295
Energy button, 204
Energy value, 189, 194
Envelope button, 250–251
envelopes, 252–253
environment, 200–209
EnvMap procedural

texture, 167
Equal button, 342
error messages, 374
Euler rotations, 281
evaluation versions of

software, 373
Exact option, 88
exaggeration, 281
Export sub-menu, 316
exporting

scenes, 315–316
UV layout, 179

Extend Mode, 222
Extinction value, 191
Extrapolation extend

mode, 222
Extrude function, 58–63
Extrude value, 115
extrusion, bone, 245

• F •
Fac value, 346
face loop, 86–87

Face Select mode, 54–57
faces, troubleshooting,

362–363
facial animation, 240
Falloff options, 62
Fast button, 127
Fast Edit button, 131
File Browser window, 20,

77–79
File Paths options, 30
fi les, 77–80
fi ll light, 185–186, 197
Filter nodes, 349–350
First Last button, 100
Fit to Curve Length option,

100–101
Fixed Count option, 100
Fixed Length option, 100
Flat projection, 169–170
Flatten brush, 105
fl ipping objects, 52
Floor constraint, 231–233
Fluid panel, 309
fl uids, 308–311
Flush button, 130
follow-through, 280
Font panel, 129–136
fonts, 27
forces, 298–299
Format panel, 318–320, 327
forward kinematics, 266–270
four-point poles, 86
fractional frame, 290
“Free Blender” campaign, 11
Free handles, 119–120
freeware programs, 373
Fresnel diffuse shader, 145
Fresnel effect, 149
Full Render button, 180
Full Screen option, 317–318
fur, 300–302

• G •
game engine, 304–305
Gamma Cross effect, 334
gestures, 51–52
ghosting, 284–285
GI (global illumination), 180,

202–203
gimbal lock, 281
gizmo, 45

Glare node, 350
Global coordinates

option, 168
global illumination (GI), 180,

202–203
Global orientation, 43–44
globally aligned objects,

65–66
Gloss value, 150–151
Glow effect, 334
GNU software, 373
Grab brush, 105
grabbing

gestures for, 51–52
hotkeys for, 48–51
keyframes, 275
overview, 42

Grab/Translate gesture, 51
Grease Pencil mode, 277
groups, 65, 73–77, 352

• H •
hair, 300–302
Hair particle systems, 295
Half Res button, 127
Halo button, 192
Halo Step value, 193
HaloInt button, 192
handles, 118–120
Hard button, 171
head bones, 244, 264–265
header, 16
Help menu, 51
Hemi lamp, 187–188
hidden objects, 359
highlighting text, 128–129
holds, 278
hooks, 77, 240–244
Hor Bright value, 191
Hor Spread value, 191
HotKey and MouseAction

Reference, 51
hotkeys

for coordinate systems,
49–51

for grabbing, 48–51
IPO Curve Editor, 224
Node Editor, 343
with numeric input, 52
numeric keypad, 35
for rotating, 49–50

381381 Index

for scaling, 49–50
Sculpt mode, 108
in VSE, 332

• I •
i button, 133
icons, used in book, 4–5
ID Mask node, 350
Image Browser window, 20
Image Editor option, 317–318
image formats, 318–321
Image node, 346
Image Paint fl oating

panel, 178
Image Sequence option, 330
image textures, 182
Immediate Children

option, 76
Improved Perlin type, 162
inbetweeners, 217
index of refraction (IOR), 149
Index pass, 339
Individual Faces extrusion

option, 59
Infl ate brush, 104
Infl ow button, 310–311
Infl uence slider, 229
Input nodes, 346–347
Input panel, 328
Inscattering value, 191
Insert Key menus, 218–219
Insert Text button, 129
Inside option, Clamp Region

menu, 232
instance copies, 68–71
interface, 14–18, 358
International Fonts

button, 27
interpolation, 72, 214
inverse kinematics, 266–270
Invert Zoom option, 26
IOR (index of refraction), 149
IPO Curve Editor

animating shape keys,
239–240

editing motion curves,
221–224

inserting keys, 217–220
overview, 21, 214–216
strip editing for

sequences, 333

Ipo curves
keyframes, inserting,

217–220
motion curves, editing,

221–224
overview, 214–217

Ipo Types menu, 220
Ipos option, 73
italic font, 133

• J •
jiggling objects, 302–304
joining objects, 67–68
Justify button, 130

• K •
Keep Offset option, 247–248
kerning, 130
Key button, 229
key light, 184, 197
Keyed physics, 295–296
keyframes (keys),

217–220, 233
kinematics, 266–270
Knife tool, 88–89
knots, 121

• L •
Lambert diffuse shader, 144
Lamp Data option, 72
Lamp menu, 187
Lamp option, 187–188
lamps

“cheat buttons,” 195–200
faking Area with buffered

Spots, 197–199
light-specifi c options,

190–195
overview, 65
types of, 186–187
universal options, 188–190

Language & Font options, 27
laptop users, 29
Lasso Select functionality, 56
lathing, 123
lattice, 65
Layer brush, 105

Layer button
Lamp panel, 195
Shadow and Spot panel, 196

Layer option, 218
layers

bone layers, 249–250, 272
render layers, 337
using effectively, 367–368

leading, 131
Left button, 130
Length Fit drop-down

menu, 100
Lens Distortion node, 352
Level fi eld, 103
levels of subdivision, 94–95
Levels option button, 96
Life value, 295
Lighter button, 155
lighting. See also lamps

outdoor, 199–200
overview, 140, 183–186
Solid OpenGL lights

settings, 29
three-point, 197

Limit Distance constraint,
231–232

Limit Location constraint,
231–232

Limit Rotation constraint,
231–232

Limit Scale constraint,
231–232

Linear Falloff option, 62
Linear interpolation, 221
Linedist button, 131
Link and Materials panel, 69,

93, 253–254, 271, 359–360
Link button, 79–80
linked appendages, 80
linked duplicates, 68–73,

142–143
linked vertices, 57
Links and Pipeline panel,

141–142, 148, 302
Live Unwrap Transform,

175–176
Load button, 132–133
Loc option, 218
Local orientation, 43–44
Local view, 34–35
LockAxis buttons, 106
Locked Track constraint, 234

382 Blender For Dummies

locking camera to
characters, 366

LocRot option, 218
LocRotScale option, 218
LocScale option, 218
lofting, 122–123
Logic buttons, 305
Logic sub-window, 22
loopcut, 87–88
looped animation, 290–291
loops, 85–89
Lorem button, 129
lorem ipsum text, 129
low poly mesh, 95
low-resolution test renders,

368–369

• M •
Magic procedural

texture, 165
Main mix slider, 329
Make Links pop-up menu,

71–72
Map Input panel, 167–170
Map To panel, 167–168, 171,

207–208
Map UV node, 352
mapping textures, 167–172
Marble procedural

texture, 166
markers, 276
Mat button, 338–339
Material index, 151–153
Material panel, 141, 143
Materials

assigning multiple, 151–153
color of, 143–144
coloring vertices, 153–157
controls for, 140–153
overview, 139
refl ection, 147–151
shader types, 144–146
transparency, 147–151

Materials option, 72
Materials+Tex option, 73
matte nodes, 351
Median snap mode, 46
Merge button, 100
Merge Limit value, 93

Mesh Data option, 72
mesh editing. See Edit mode
Mesh option, Insert Key

menu, 218
Mesh panel, Editing Button

window, 67–68
meshes. See also modifi ers

assigning multiple materials
to different parts of,
151–153

converting text to, 136–137
loops, 85–89
modeling methodologies,

84–85
multi-resolution, 101–108
overview, 64, 83
painting textures directly

on, 177–179
rings, 85–89
unwrapping, 172–176

meta objects, 65, 124–128
metaball, 125–126
MetaBall panel, 126–127
MetaBall Tools panel,

125–126
metacube, 125–126
metadata, 321
metaellipsoid, 125–126
metaletter, 134–135
metaplane, 125–126
metatube, 125–126
Midpoints option, 88
MinDist button, 206
Minnaert diffuse shader, 145
Mirror color, 143–144
Mirror modifi er, 92–94
Mirror Transp panel, 147, 149
Mirror U button, 94
Mirror V button, 94
Mirror Vgroups button,

93–94
mirrored poses, 282–284
mirroring, 52
Mist button, 205–206
Mist feature, 205–206
Mist/Stars/Physics panel,

205–209
Mix button, 155
Mix node, 348
Mixdown button, 329

Modifi er panel, 90
modifi ers

Array, 98–101
Mirror, 92–94
overview, 89–92
Subsurf, 94–97

morph targets, 236
motion curves, editing,

221–224
mouse actions

gestures, 51–52
IPO Curve Editor, 224
Node Editor, 342
VSE, 331

mouse cursor, 369
Movie + Audio (HD)

option, 330
Movie option, 330
Mul button, 155
Mul effect, 334
multi-column text layout, 131
Multicut option, 88
Multires panel, 102
multi-resolution (multires)

meshes, 101–108
Musgrave procedural

texture, 163

• N •
Nabla value, 161
Name Groups option, 254
names

bone, 245–246
item, 367
screen, 24

Names button, 250
NaN (Not a Number)

company, 10–11
Nearest Frame option, 276
Nearest Marker option, 276
Negative button, 196
NeoGeo company, 10
networks, node, 336
Never button, 127
New Image buttons, 174
Newtonian physics, 295–296
n-gon, 55
NLA (non-linear animation)

Editor, 21

383383 Index

NLE (non-linear editor), 325
No Diffuse button, 196
No Specular button, 196
Node Compositor. See also

nodes
overview, 335–336
rendering from, 352–353
rendering in passes,

337–340
Node Editor window, 20
nodes

Color, 347–348
Converter, 350
Distort, 351–352
Dynamic, 352
Filter, 349–350
groups of, 344, 352
Input, 346–347
matte, 351
Output, 347
overview, 340–346
Vector, 348

Noise Basis option, 161–162
Noise procedural

texture, 163
non-blocking interface, 15–18
non-linear animation

looped animation, 290–291
mixing actions, 288–289
overview, 287–288

non-linear animation (NLA)
Editor, 21

non-linear editor (NLE), 325
Non-Uniform Relational

B-Spline (NURBS)
curves, 112–113, 120–123

Non-Uniform Relational
B-Spline (NURBS)
surfaces, 120–123

noodle, 340
Nor button, 171
Nor pass, 339
Normal coordinates

option, 169
Normal orientation, 43–44
normalized vertices, 254
normals, 358
Normals button, 180
Not a Number (NaN)

company, 10–11

numeric keypad, 29, 33–35
numerical input, hotkeys

with, 52
NURBS (Non-Uniform

Relational B-Spline)
curves, 112–113, 120–123

NURBS (Non-Uniform
Relational B-Spline)
surfaces, 120–123

• O •
Ob Family fi eld, 134
Ob text fi eld, 94
Object & ObData option, 72
Object & ODdata &

Materials+Tex option, 73
Object and Links panel, 76
Object buttons window, 294
Object Hooks option, 77
Object Info option, 25
Object Ipo option, 72
Object menu, 64
Object mode, 54
Object Offset, 99
Object option

Map Input panel, 168
U menu, 72

Object PassIndex option, 77
Object sub-window, 22
Object-Oriented

Programming System
(Oops) Schematic,
70–71, 142

objects. See also animation
adding, 64–66
children, 73–77
duplicates of, 68–73
groups of, 73–77
joining, 67–68
linked duplicates of, 68–73
missing, 359–360
parents, 73–77
separating, 67–68
Suzanne, 66–67

Objects in Same Group
option, 77

Objects of Same Type
option, 76

Objects on Shared Layers
option, 77

Occlude Background
Geometry button, 57

octahedron, 244
Octahedron button, 250–251
Offset button, 228–229
offset values, 170–171
offsets, 99
omni light, 187
onionskinning, 223, 284
Only Edges extrusion

option, 59
Only Vertices extrusion

option, 59
OnlyShadow button, 196
Oops (Object-Oriented

Programming System)
Schematic, 70–71, 142

open movie, 12
open source, 10
OpenEXR fi le format, 353
OpenGL programming

library, 17
opening fi les, 77–80
Optimal Draw button,

Subsurf modifi er, 97
orbiting, 31
Orco (Original coordinates)

option, 168
order, 121
Oren-Nayar diffuse

shader, 145
organization, 367
origin, 42
Original coordinates (Orco)

option, 168
Original Perlin type, 162
Orthographic view, 32, 361
OSA (oversampling), 368
outdoor lighting, 199–200
Outliner window, 20, 69, 215
Output nodes, 347
Output panel, 317
Outside option, 232
overlapping action, 280
oversampling (OSA), 368
overwriting fi les, 78

384 Blender For Dummies

• P •
Paint panel, 154–155
Paint Properties fl oating

panel, 154–155, 177
painting mask, 156
panning, 31
Paper button, 201–202
Parent option, 76
parenting

bones, 247–248
as constraint, 225, 230–231
overview, 73–77
rigging, 262–266

Particle buttons icon, 294
Particle Edit mode, 300
Particle Edit Properties

fl oating window, 300–301
particles

defl ectors, 298–299
forces, 298–299
fur, 300–302
hair, 300–302
systems, 294–297

passepartout, 369–370
PassIndex, 77
path curve, 123
paths, 285–286, 362
Perspective view, 32, 361
PET (Proportional Edit Tool),

62–63
phonemes, 240
Phong specular shader, 146
Physics buttons, 298,

302–303, 307–309
Pinch brush, 104
pipeline products, 338
Pivot menu, 38
Plain button, 204
planes, 298–299
Plus button, 342
point light, 187
point-for-point modeling,

84–85
pole target, 268–269
poles, 85, 106
polygon modeling, 53
Pose Copy button, 282–283
Pose Mirror Paste button,

282–283
Pose mode, 248

Pose Paste button, 282–283
pose-to-pose action, 280
post-production

Node Compositor, 335–340,
352–353

overview, 325
Video Sequence Editor,

326–335
powers of two, 174
precision, 110
Preview panel, 141, 160
Preview-Res setting, 310
primitives. See also curves

meta objects, 124–128
overview, 63
surfaces, 109–111, 120–123
text, 128–137

principles of animation,
280–281

procedural textures
Blend, 164
Clouds, 166
Distorted Noise, 162
EnvMap, 167
Magic, 165
Marble, 166
Musgrave, 163
Noise, 163
overview, 160–162
Stucci, 165–166
Voronoi, 162–163
Wood, 165

Project Apricot, 13
Project Orange, 12–13
Project Peach, 12–13
Proportional Edit Tool (PET),

62–63
PyNodes (python nodes), 352
Python language, 316, 360

• Q •
Q button, 319
QMC (Quasi-Monti Carlo)

sampling types, 189–190
quads, 55, 106
Quaternion button, 251
quaternions, 281–282

• R •
Rake button, 107
Rand value, 295
Random Falloff option, 62
raw fi les, 321
Ray Mirror button, 147, 149
Ray Transp button, 149
RayMir button, 171
raytraced AO, 203–205
raytraced shadows, 189, 192
raytraced transparency,

148–150
raytracing, 147–148
Reactor particle systems, 295
Real button, 202
Recent Files option, 28
Recover Last Session

feature, 357
rectangular Area light, 195
Ref button, 171
reference images, 83
refl ection, 147–151
Refl ection coordinates

option, 169
Region extrusion option, 59
Relative Offset, 99
Reload button, 328
Remove Active Group

option, 271
Remove Doubles function,

58–59
Remove from All Groups

option, 76
Remove from Group

option, 76
Remove Selected from

Groups option, 271
render baking, 179–181
render buffer swap, 318
Render buttons, 317, 327
Render Layer node, 340, 346
render layers, 337
Render Layers panel, 337–338
Render Levels option button,

96–97
Render menu, 64
Render Window option,

317–318
rendering engines, 140
Rendering fi elds, 103

385385 Index

rendering scenes
fi nished animation, 320–322
low-resolution testing,

368–369
from Node Compositor,

352–353
in passes, 337–340
sequences of still images,

322–323
still images, 317–320
from Video Sequence

Editor, 335
Rendersize value, 127
RenResolU value, 114–115
Repeat option, 290
repetitive stress injuries

(RSI), 37, 41
Resolution setting, 310
RGB button, 319
RGB Curves node, 347–348
RGB sliders, 189
RGBA button, 319
rigging

armatures, 244–257
constraints, 262–266
creating, 257–261
hooks, 240–244
kinematics, 266–270
parenting, 262–266
shape keys, 235–240
user-friendly, 270–272

Right button, 130
rigid body dynamics, 304–306
rim light, 186
rings, 85–89
Roosendaal, Ton, 10–12
root bone, 244, 262–264
Root Falloff option, 62
Rot option, 218
Rotate gesture, 51
rotating

gestures for, 51–52
hotkeys for, 49–50
numeric keypad, 34
overview, 42

Rotation manipulator mode,
44–45, 47, 215

RotScale option, 218
Rounded theme, 28
RSI (repetitive stress

injuries), 37, 41

• S •
Sample button, 144
SampleBuffers setting, 193
Samples option, 189
Samples value, 193
Save dialog box, 77
Save Preview Images

option, 29
Save Versions option, 28
saving

animations, 322
fi les, 77–80

Scale gesture, 51
Scale manipulator mode,

44–45
Scale option, 218
scaling

gestures for, 51–52
hotkeys for, 49–50
keyframes, 275
overview, 42

Scene buttons, 327
Scene option, 331
Scene sub-window, 22
screen layout, 22–24, 173,

178, 215–217
Screens menu, 24
Script sub-window, 22
Scripts Window, 20
Scrub button, 329
scrubbing, 215
Sculpt mode, 101–108
Sculpt panel, 104–106
seam, 16, 172–173
secondary action, 280
Select menu, 63
Select with option, View &

Controls section, 26
selecting objects, 37
self collisions, 307
separating objects, 67–68
Sequence screen, 326
Sequencer buttons, 327, 332
Sequencer panel, 328–329
Session Recovery feature,

357–358
Set Editable button, 300
SetVCol button, 155
Shad pass, 339
Shaded draw type, 36

shader types, 144–146
Shaders panel, 141, 144
Shading buttons, 140
Shading sub-window, 22
Shadow and Spot panel,

192–193
Shadow button, 180
Shadow color option, 190
ShadowBufferSize

button, 193
shallow DOF, 349
shape keys

Action Editor, 276–277
creating, 236–238
mixing, 238–240
overview, 235–236
when useful, 240

Shape section, 105
ShapeKey Editor mode, 276
Shapes button, 251
Shapes panel, 236–240
Shared Parent option, 76
shareware programs, 373
Sharp Falloff option, 62
Shear button, 132
Show button, 229
Show Keys feature, 223–224
Siblings option, 76
Simple Subdivision button,

96, 102
simulation data, lost, 362
single user, 72–73
Size buttons

Font panel, 131
Format panel, 319
Mist/Stars/Physics

panel, 207
Size slider, 105
Size values

Area Lamp panel, 194
Map Input panel, 170–171

skin, 252–257
skinning, 122
Sky Color button, 204
Sky textures, 207–209
Sky/Atmosphere panel, 190
Smooth brush, 104
Smooth Falloff option, 62
Smooth View option, 26, 366
Snap menu, 275
Snap Target Mode button, 46
snapping, 39, 46

386 Blender For Dummies

sockets, 340, 344
soft body dynamics, 302–304
Soft Body panel, 303
Soft Size option, 189
Soft value, 193
Solid button, 338
Solid draw type, 36
solid drawing, 281
Solid OpenGL lights

option, 29
Sound Block buttons,

328–329
source code, 10
spacebar toolbox, 63–64
Spacing button, 131
Spec button, 171
Spec pass, 339
special characters, 133–134
Specials menu, 247
Specular color, 143
specular shaders, 146
specularity color, 29
speed, production, 15
Speed Control effect, 335
Sphere button, 189, 343
Sphere Falloff option, 62
Sphere projection, 170
spinning, 123
splashing fl uids, 308–311
Spot lamp, 187–188, 192–193,

197–199
SpotBl setting, 192
square Area light, 195
Square button, 192
squash and stretch

principle, 280
Sta value, 295
stack, modifi er, 91
staging principle, 280
StarDist button, 206
Stars button, 206
Stars feature, 206–207
Start cap fi eld, 101
Start Time value, 310
step function, 221
stick bones, 270
Stick button, 250–251
Sticky coordinates

option, 168
Stiffness value, 125

still images
rendering scenes as,

317–320
sequences of, 322–323

stop-motion animation, 244
straight-ahead action, 280
Strand button, 338
Strand option, 169
Strand render option, 301
Strands button, 302
Strength slider, 105
Stress option, 169
Stretch To constraint, 234
stretching, 175
strips, 289–291, 326, 329–332
Stucci procedural texture,

165–166
Sub button

Ambient Occlusion
panel, 203

Paint panel, 155
Sculpt panel, 105

Sub effect, 334
Subdivide function, 247
subdivision, bone, 245
subdivision surfaces, 94–95
Subsurf modifi er, 94–97
Subsurf UV button, 97
Sun Intens value, 191
Sun lamp, 187–188, 190–191,

199–200
surface, curve, 111
Surface option, Clamp Region

menu, Limit Distance
constraint, 232

surfaces, 64, 109–111,
120–123

Suzanne, 66–67
Suzanne Awards, 67
Switch Direction

function, 247
symmetric rigs, 246
Symmetry buttons, 106
System & OpenGL options,

29–30

• T •
T pose, 258
Tab character, 129
tab completion, 94
tabbing, 54
tail, 244
Tangent option, 169
TaperOb fi eld, 117–118
Temp path, 30
tesselation, 83, 110
test grid, 174
text

adding, 128
appearance of, 131–132
converting to curves and

meshes, 136–137
deforming with curves,

135–136
editing, 129–130
fonts, 132–135
overview, 65
text frames, 130–131

Text Editor window, 21
text frames, 130–131
TextOnCurve fi eld, 135–136
Texture and Input panel,

207–208
Texture buttons, 159–160,

181–182
Texture node, 347
Texture Paint mode, 177–178
Texture panel, 107–108, 141
texture projection, 169–170
Texture Type drop-down list

menu, 161
Textured draw type, 36
textures

adding, 159
mapping, 167–172
painting directly on

meshes, 177–179
procedural, 160–167
render baking, 179–181
Sky, 207–209
unwrapping meshes,

172–176
UV, 181–182

Textures button, 180
Themes options, 28

387387 Index

3D button, 114
3D cursor, 38–39
3D manipulator

switching modes, 44–45
using, 45–48

3D View window
cursor, 38–39
draw types, 35–37
header of, 47, 55, 282
multiple, 365–366
numeric keypad hotkeys,

33–35
orbiting in, 31
overview, 21, 30
panning in, 31
selecting objects, 37
View menu, 32
zooming in, 31

three-point lighting,
184–186, 197

three-state buttons, 171
Threshold option, 189
Threshold value, 127
throw, 185–186
tilt property, 118–119
Time node, 347
timeline cursor, 215
Timeline window, 21, 215,

219, 288
timing, 278–280
/tmp directory, 30, 322,

357, 362
To Scene... option, 72
toolbox, spacebar, 63–64
tooltips, 365
Toon diffuse shader, 145
Toon specular shader, 146
topology, 87, 106
ToUpper button, 130
Track To constraint, 233–234,

264–265
tracking, 131
Transform menu, 64, 67
Transform Properties

fl oating panel, 52,
245–246, 289–290

transformations, 50
Transforms effect, 334–335
translating, 48–49. See also

grabbing

TransLu button, 171
transparency, 147–151,

319, 338
trial versions of software, 373
Triangle button, 342
tris, 55
troubleshooting

Auto Save feature, 357–358
“black stripe” problem, 358
CD, 374–375
disappearance of

background image, 361
Edge Loop select, 360–361
faces, 362–363
interface, 358
missing objects, 359–360
Python language, 360
Session Recovery feature,

357–358
simulation data, lost, 362
zooming, limits of, 361

Tube projection, 170
turnaround render, 226–227
turn-around time, 15
tweening, 217
twist property, 118–119

• U •
UL height button, 132
UL position button, 132
Undo option, 27
unwrapping, 111, 168,

172–176
Use Falloff button, 203
Use Goal button, 303
user community, 2, 11, 13
User Preferences window, 21,

25–30
UV Calculation unwrapping

menu, 172
UV coordinates, 94
UV coordinates option, 168
UV pass, 339
UV textures, 181–182
UV/Image Editor, 21, 94,

175–178

• V •
VCol Paint button, 157
Vec pass, 339
Vector Blur node, 349
Vector handles, 119–120
Vector nodes, 348
vert pushers, 84
vertex groups, 93–94,

254–255
Vertex Paint mode, 153–157
vertex pinning, 175–176
Vertex Select mode, 54–57
vertical Buttons view, 22–23
vertices

assigning weights to,
253–257

coloring, 153–157
pushing, 84–85

VG fi eld, 231
Vgroup button, 256
video cards, 358
Video LAN Client (VLC), 374
Video panel, 320–321
Video Sequence Editor.

See VSE
View & Controls options,

25–26
view aligned objects, 65–66
View menu, 32, 64
View name option, 25
View orientation, 43–44
View Properties fl oating

panel, 366
View rotation option, 26
Viewer node, 340, 347
Visualizations panel, 284–286
VisualLoc option, 218, 233
VisualLocRot option, 218
VisualRot option, 218, 233
VLC (Video LAN Client), 374
Voronoi family types, 162
Voronoi procedural texture,

162–163
VSE (Video Sequence Editor)

effects, adding, 333–335
overview, 21, 326–329
rendering from, 335
strips, adding and editing,

329–333

388 Blender For Dummies

• W •
Ward Isotropic specular

shader, 146
weight, vertex, 253
Weight Paint mode, 255–256
Weight Paint Properties

fl oating panel, 255–256
weighted control points, 112,

120–121
widget, 45
Window coordinates

option, 169
window modifi cation, 16–17
Window Type menu, 20
windows, see also names of

specifi c windows, 19–21
Wipe effect, 334

Wire button, 256
Wireframe draw type, 36
Wiresize value, 127
Wood procedural

texture, 165
Word spacing button, 131
World buttons, 200–201

• X •
X button, 93
X offset button, 132
X-Mirror button, 256
X-Ray button, 251

• Y •
Y button, 93
Y offset button, 132
Yo Frankie! video game, 13

• Z •
Z button, 93
Z Combine node, 348
Z pass, 339
Z-depth, 337
zenith color, 201
zooming, 17, 31, 361
Z-tra button, 338
ZTransp button, 148
Z-transparency, 148–150, 338

GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is

not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to

share and change the works. By contrast, the GNU General Public License is intended to guarantee your

freedom to share and change all versions of a program--to make sure it remains free software for all its

users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it

applies also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are

designed to make sure that you have the freedom to distribute copies of free software (and charge for

them if you wish), that you receive source code or can get it if you want it, that you can change the soft-

ware or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surren-

der the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if

you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to

the recipients the same freedoms that you received. You must make sure that they, too, receive or can

get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the soft-

ware, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this

free software. For both users’ and authors’ sake, the GPL requires that modifi ed versions be marked as

changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modifi ed versions of the software inside

them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protect-

ing users’ freedom to change the software. The systematic pattern of such abuse occurs in the area of

products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have

designed this version of the GPL to prohibit the practice for those products. If such problems arise sub-

stantially in other domains, we stand ready to extend this provision to those domains in future versions

of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to

restrict development and use of software on general-purpose computers, but in those that do, we wish to

avoid the special danger that patents applied to a free program could make it effectively proprietary. To

prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modifi cation follow.

TERMS AND CONDITIONS

0. Defi nitions. “This License” refers to version 3 of the GNU General Public License. “Copyright” also

means copyright-like laws that apply to other kinds of works, such as semiconductor masks. “The

Program” refers to any copyrightable work licensed under this License. Each licensee is addressed

as “you”. “Licensees” and “recipients” may be individuals or organizations. To “modify” a work

means to copy from or adapt all or part of the work in a fashion requiring copyright permission,

other than the making of an exact copy. The resulting work is called a “modifi ed version” of the

earlier work or a work “based on” the earlier work. A “covered work” means either the unmodifi ed

Program or a work based on the Program.

 To “propagate” a work means to do anything with it that, without permission, would make you

directly or secondarily liable for infringement under applicable copyright law, except executing

it on a computer or modifying a private copy. Propagation includes copying, distribution (with or

without modifi cation), making available to the public, and in some countries other activities as well.

 To “convey” a work means any kind of propagation that enables other parties to make or receive

copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not

conveying.

 An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a

convenient and prominently visible feature that (1) displays an appropriate copyright notice, and

(2) tells the user that there is no warranty for the work (except to the extent that warranties are

provided), that licensees may convey the work under this License, and how to view a copy of this

License. If the interface presents a list of user commands or options, such as a menu, a prominent

item in the list meets this criterion.

1. Source Code. T he “source code” for a work means the preferred form of the work for making modi-

fi cations to it. “Object code” means any non-source form of a work. A “Standard Interface” means an

interface that either is an offi cial standard defi ned by a recognized standards body, or, in the case

of interfaces specifi ed for a particular programming language, one that is widely used among devel-

opers working in that language.

 The “System Libraries” of an executable work include anything, other than the work as a whole, that

(a) is included in the normal form of packaging a Major Component, but which is not part of that

Major Component, and (b) serves only to enable use of the work with that Major Component, or to

implement a Standard Interface for which an implementation is available to the public in source code

form. A “Major Component”, in this context, means a major essential component (kernel, window

system, and so on) of the specifi c operating system (if any) on which the executable work runs, or a

compiler used to produce the work, or an object code interpreter used to run it.

 The “Corresponding Source” for a work in object code form means all the source code needed to

generate, install, and (for an executable work) run the object code and to modify the work, includ-

ing scripts to control those activities. However, it does not include the work’s System Libraries, or

general-purpose tools or generally available free programs which are used unmodifi ed in perform-

ing those activities but which are not part of the work. For example, Corresponding Source includes

interface defi nition fi les associated with source fi les for the work, and the source code for shared

libraries and dynamically linked subprograms that the work is specifi cally designed to require, such

as by intimate data communication or control fl ow between those subprograms and other parts of

the work.

 The Corresponding Source need not include anything that users can regenerate automatically from

other parts of the Corresponding Source.

 The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the

Program, and are irrevocable provided the stated conditions are met. This License explicitly affi rms

your unlimited permission to run the unmodifi ed Program. The output from running a covered work

is covered by this License only if the output, given its content, constitutes a covered work. This

License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not convey, without conditions so

long as your license otherwise remains in force. You may convey covered works to others for the

sole purpose of having them make modifi cations exclusively for you, or provide you with facilities

for running those works, provided that you comply with the terms of this License in conveying all

material for which you do not control copyright. Those thus making or running the covered works

for you must do so exclusively on your behalf, under your direction and control, on terms that pro-

hibit them from making any copies of your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under the conditions stated below.

Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law. No covered work shall be deemed

part of an effective technological measure under any applicable law fulfi lling obligations under

article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or

restricting circumvention of such measures.

 When you convey a covered work, you waive any legal power to forbid circumvention of technologi-

cal measures to the extent such circumvention is effected by exercising rights under this License

with respect to the covered work, and you disclaim any intention to limit operation or modifi cation

of the work as a means of enforcing, against the work’s users, your or third parties’ legal rights to

forbid circumvention of technological measures.

4. Conveying Verbatim Copies. You may convey verbatim copies of the Program’s source code as

you receive it, in any medium, provided that you conspicuously and appropriately publish on each

copy an appropriate copyright notice; keep intact all notices stating that this License and any non-

permissive terms added in accord with section 7 apply to the code; keep intact all notices of the

absence of any warranty; and give all recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey, and you may offer support or

warranty protection for a fee.

5. Conveying Modifi ed Source Versions. You may convey a work based on the Program, or the modi-

fi cations to produce it from the Program, in the form of source code under the terms of section 4,

provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modifi ed it, and giving a relevant date.

b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifi es the requirement in section 4 to

“keep intact all notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes into

possession of a copy. This License will therefore apply, along with any applicable section 7

additional terms, to the whole of the work, and all its parts, regardless of how they are pack-

aged. This License gives no permission to license the work in any other way, but it does not

invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-

ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices,

your work need not make them do so.

 A compilation of a covered work with other separate and independent works, which are not by

their nature extensions of the covered work, and which are not combined with it such as to form a

larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the

compilation and its resulting copyright are not used to limit the access or legal rights of the compi-

lation’s users beyond what the individual works permit. Inclusion of a covered work in an aggregate

does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms

of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source

under the terms of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribution

medium), accompanied by the Corresponding Source fi xed on a durable physical medium cus-

tomarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical distribu-

tion medium), accompanied by a written offer, valid for at least three years and valid for as

long as you offer spare parts or customer support for that product model, to give anyone who

possesses the object code either (1) a copy of the Corresponding Source for all the software in

the product that is covered by this License, on a durable physical medium customarily used

for software interchange, for a price no more than your reasonable cost of physically perform-

ing this conveying of source, or (2) access to copy the Corresponding Source from a network

server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide the

Corresponding Source. This alternative is allowed only occasionally and noncommercially, and

only if you received the object code with such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge),

and offer equivalent access to the Corresponding Source in the same way through the same

place at no further charge. You need not require recipients to copy the Corresponding Source

along with the object code. If the place to copy the object code is a network server, the

Corresponding Source may be on a different server (operated by you or a third party) that sup-

ports equivalent copying facilities, provided you maintain clear directions next to the object

code saying where to fi nd the Corresponding Source. Regardless of what server hosts the

Corresponding Source, you remain obligated to ensure that it is available for as long as needed

to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers

where the object code and Corresponding Source of the work are being offered to the general

public at no charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded from the Corresponding

Source as a System Library, need not be included in conveying the object code work.

 A “User Product” is either (1) a “consumer product”, which means any tangible personal property

which is normally used for personal, family, or household purposes, or (2) anything designed or

sold for incorporation into a dwelling. In determining whether a product is a consumer product,

doubtful cases shall be resolved in favor of coverage. For a particular product received by a partic-

ular user, “normally used” refers to a typical or common use of that class of product, regardless of

the status of the particular user or of the way in which the particular user actually uses, or expects

or is expected to use, the product. A product is a consumer product regardless of whether the

product has substantial commercial, industrial or non-consumer uses, unless such uses represent

the only signifi cant mode of use of the product.

 “Installation Information” for a User Product means any methods, procedures, authorization keys,

or other information required to install and execute modifi ed versions of a covered work in that

User Product from a modifi ed version of its Corresponding Source. The information must suffi ce to

ensure that the continued functioning of the modifi ed object code is in no case prevented or inter-

fered with solely because modifi cation has been made.

 If you convey an object code work under this section in, or with, or specifi cally for use in, a User

Product, and the conveying occurs as part of a transaction in which the right of possession and

use of the User Product is transferred to the recipient in perpetuity or for a fi xed term (regardless

of how the transaction is characterized), the Corresponding Source conveyed under this section

must be accompanied by the Installation Information. But this requirement does not apply if neither

you nor any third party retains the ability to install modifi ed object code on the User Product (for

example, the work has been installed in ROM).

 The requirement to provide Installation Information does not include a requirement to continue to

provide support service, warranty, or updates for a work that has been modifi ed or installed by the

recipient, or for the User Product in which it has been modifi ed or installed. Access to a network

may be denied when the modifi cation itself materially and adversely affects the operation of the

network or violates the rules and protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided, in accord with this section

must be in a format that is publicly documented (and with an implementation available to the public

in source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms. “Additional permissions” are terms that supplement the terms of this License by

making exceptions from one or more of its conditions. Additional permissions that are applicable to

the entire Program shall be treated as though they were included in this License, to the extent that

they are valid under applicable law. If additional permissions apply only to part of the Program,

that part may be used separately under those permissions, but the entire Program remains gov-

erned by this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option remove any additional permis-

sions from that copy, or from any part of it. (Additional permissions may be written to require their

own removal in certain cases when you modify the work.) You may place additional permissions

on material, added by you to a covered work, for which you have or can give appropriate copyright

permission.

 Notwithstanding any other provision of this License, for material you add to a covered work, you

may (if authorized by the copyright holders of that material) supplement the terms of this License

with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this

License; or

b) Requiring preservation of specifi ed reasonable legal notices or author attributions in that mate-

rial or in the Appropriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modifi ed versions

of such material be marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Declining to grant rights under trademark law for use of some trade names, trademarks, or ser-

vice marks; or

f) Requiring indemnifi cation of licensors and authors of that material by anyone who conveys

the material (or modifi ed versions of it) with contractual assumptions of liability to the recipi-

ent, for any liability that these contractual assumptions directly impose on those licensors and

authors.

 All other non-permissive additional terms are considered “further restrictions” within the meaning

of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is

governed by this License along with a term that is a further restriction, you may remove that term.

If a license document contains a further restriction but permits relicensing or conveying under this

License, you may add to a covered work material governed by the terms of that license document,

provided that the further restriction does not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you must place, in the relevant

source fi les, a statement of the additional terms that apply to those fi les, or a notice indicating

where to fi nd the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the form of a separately written

license, or stated as exceptions; the above requirements apply either way.

8. Termination. You may not propagate or modify a covered work except as expressly provided

under this License. Any attempt otherwise to propagate or modify it is void, and will automatically

terminate your rights under this License (including any patent licenses granted under the third

paragraph of section 11).

 However, if you cease all violation of this License, then your license from a particular copyright

holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and fi nally ter-

minates your license, and (b) permanently, if the copyright holder fails to notify you of the violation

by some reasonable means prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is reinstated permanently if the copy-

right holder notifi es you of the violation by some reasonable means, this is the fi rst time you have

received notice of violation of this License (for any work) from that copyright holder, and you cure

the violation prior to 30 days after your receipt of the notice.

 Termination of your rights under this section does not terminate the licenses of parties who have

received copies or rights from you under this License. If your rights have been terminated and not

permanently reinstated, you do not qualify to receive new licenses for the same material under

section 10.

9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to

receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a

consequence of using peer-to-peer transmission to receive a copy likewise does not require accep-

tance. However, nothing other than this License grants you permission to propagate or modify any

covered work. These actions infringe copyright if you do not accept this License. Therefore, by

modifying or propagating a covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipi-

ent automatically receives a license from the original licensors, to run, modify and propagate that

work, subject to this License. You are not responsible for enforcing compliance by third parties

with this License.

 An “entity transaction” is a transaction transferring control of an organization, or substantially all

assets of one, or subdividing an organization, or merging organizations. If propagation of a covered

work results from an entity transaction, each party to that transaction who receives a copy of the

work also receives whatever licenses to the work the party’s predecessor in interest had or could

give under the previous paragraph, plus a right to possession of the Corresponding Source of the

work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the rights granted or affi rmed under

this License. For example, you may not impose a license fee, royalty, or other charge for exercise

of rights granted under this License, and you may not initiate litigation (including a cross-claim or

counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offer-

ing for sale, or importing the Program or any portion of it.

11. Patents. A “contributor” is a copyright holder who authorizes use under this License of the

Program or a work on which the Program is based. The work thus licensed is called the contribu-

tor’s “contributor version”.

 A contributor’s “essential patent claims” are all patent claims owned or controlled by the contribu-

tor, whether already acquired or hereafter acquired, that would be infringed by some manner,

permitted by this License, of making, using, or selling its contributor version, but do not include

claims that would be infringed only as a consequence of further modifi cation of the contributor

version. For purposes of this defi nition, “control” includes the right to grant patent sublicenses in a

manner consistent with the requirements of this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the con-

tributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify

and propagate the contents of its contributor version.

 In the following three paragraphs, a “patent license” is any express agreement or commitment, how-

ever denominated, not to enforce a patent (such as an express permission to practice a patent or

covenant not to sue for patent infringement). To “grant” such a patent license to a party means to

make such an agreement or commitment not to enforce a patent against the party.

 If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source

of the work is not available for anyone to copy, free of charge and under the terms of this License,

through a publicly available network server or other readily accessible means, then you must either

(1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the

benefi t of the patent license for this particular work, or (3) arrange, in a manner consistent with the

requirements of this License, to extend the patent license to downstream recipients. “Knowingly

relying” means you have actual knowledge that, but for the patent license, your conveying the cov-

ered work in a country, or your recipient’s use of the covered work in a country, would infringe one

or more identifi able patents in that country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate

by procuring conveyance of, a covered work, and grant a patent license to some of the parties

receiving the covered work authorizing them to use, propagate, modify or convey a specifi c copy

of the covered work, then the patent license you grant is automatically extended to all recipients of

the covered work and works based on it.

 A patent license is “discriminatory” if it does not include within the scope of its coverage, pro-

hibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are

specifi cally granted under this License. You may not convey a covered work if you are a party to

an arrangement with a third party that is in the business of distributing software, under which you

make payment to the third party based on the extent of your activity of conveying the work, and

under which the third party grants, to any of the parties who would receive the covered work from

you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by

you (or copies made from those copies), or (b) primarily for and in connection with specifi c prod-

ucts or compilations that contain the covered work, unless you entered into that arrangement, or

that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting any implied license or other

defenses to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom. If conditions are imposed on you (whether by court order, agree-

ment or otherwise) that contradict the conditions of this License, they do not excuse you from the

conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your

obligations under this License and any other pertinent obligations, then as a consequence you may

not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for fur-

ther conveying from those to whom you convey the Program, the only way you could satisfy both

those terms and this License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this

License, you have permission to link or combine any covered work with a work licensed under

version 3 of the GNU Affero General Public License into a single combined work, and to convey the

resulting work. The terms of this License will continue to apply to the part which is the covered

work, but the special requirements of the GNU Affero General Public License, section 13, concern-

ing interaction through a network will apply to the combination as such.

14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new

versions of the GNU General Public License from time to time. Such new versions will be similar in

spirit to the present version, but may differ in detail to address new problems or concerns.

 Each version is given a distinguishing version number. If the Program specifi es that a certain num-

bered version of the GNU General Public License “or any later version” applies to it, you have the

option of following the terms and conditions either of that numbered version or of any later version

published by the Free Software Foundation. If the Program does not specify a version number of

the GNU General Public License, you may choose any version ever published by the Free Software

Foundation.

 If the Program specifi es that a proxy can decide which future versions of the GNU General Public

License can be used, that proxy’s public statement of acceptance of a version permanently autho-

rizes you to choose that version for the Program.

 Later license versions may give you additional or different permissions. However, no additional

obligations are imposed on any author or copyright holder as a result of your choosing to follow a

later version.

15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT

PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE

COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.

SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY

SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO

IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR

CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING

ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE

OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA

BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE

OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR

OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided

above cannot be given local legal effect according to their terms, reviewing courts shall apply local

law that most closely approximates an absolute waiver of all civil liability in connection with the

Program, unless a warranty or assumption of liability accompanies a copy of the Program in return

for a fee.

END OF TERMS AND CONDITIONS

Jason van Gumster
Producer/animator for Hand Turkey Studios

Learn to:
• Create eye-popping 3D animations using

free Blender software

• Work with meshes, curves, and surfaces,
and add color, shades, texture, and
reflections

• Set your objects in motion with
rigging and animations

• Install Blender 2.48a from the bonus CD

Blender
Making Everything Easier!™

Bonus CD Includes
Blender 2.48a complete version! Save download time
and install the version you’ll use for this book.

See the CD appendix for details and complete system
requirements.

 Open the book and find:

• Why Blender is perfect for small
shops and independent artists

• How to navigate in three
dimensions

• Ways to make animations more
believable

• How to color vertices and provide
texture

• Tips on making Blender do the
animating for you

• What particle systems do

• Ten common problems new users
face

• How to work with the video
sequence editor

Jason van Gumster has produced a variety of animations and visual

effects for television and film as producer/animator for Hand Turkey

Studios. A Blender user since 1998, he’s given numerous Blender workshops

and blogs for Blender Nation, the primary news Web site for Blender users.

$34.99 US / $37.99 CN / £22.99 UK

ISBN 978-0-470-40018-0

Computer Graphics and
Image Processing

Go to dummies.com®

for more!

Create 3D models and
realistic scenes, and get
animated with Blender!
Blender can do all the cool 3D things, but trying to figure it
out on your own can make you feel as if you’re in a blender.
Relax! This book takes Blender step by step. First, you learn
to think the Blender way. Then you start modeling, adding
materials, lighting, rigging, and animating. Soon you’ll be
sharing your creations with the world!

• Become a Blenderhead — find out how Blender “thinks” and
learn your way around the program

• Develop detailed 3D scenes — create almost anything with
meshes, save time with modifiers, and make the best use of
Blender’s other object types

• Lights and texture — understand texture mapping, use different
lamp types, and take advantage of ambient occlusion

• Give it life — rig your characters for animation with shape keys,
hooks, and armatures, and understand inverse kinematics

• Get it out there — understand exporting, rendering,
compositing, and editing for output

Blender 2.48a
on CD-ROM

B
lender

van Gumster

spine=.816”

	Blender For Dummies®
	Table of Contents
	Introduction
	Part I Wrapping Your Brain Around Blender
	Chapter 1 Discovering Blender
	Getting to Know Blender
	Discovering Blender’s History
	Making Open Movies and Games
	Getting to Know the Interface

	Chapter 2 Understanding How Blender Thinks
	Looking at Window Types
	Navigating in Three Dimensions

	Chapter 3 Getting Your Hands Dirty Working in Blender
	Grabbing, Scaling, and Rotating
	Differentiating between Coordinate Systems
	Transforming an Object by Using the 3D Manipulator
	Saving Time by Using Hotkeys

	Chapter 4 Working in Edit Mode and Object Mode
	Making Changes Using Edit Mode
	Adding to a Scene

	Part II Creating Detailed 3D Scenes
	Chapter 5 Creating Anything You Can Imagine with Meshes
	Pushing Vertices
	Working with Loops and Rings
	Simplifying Your Life as a Modeler with Modifiers
	Sculpting Multi-Resolution Meshes

	Chapter 6 Using Blender’s Non-Mesh Primitives
	Using Curves and Surfaces
	Using Meta Objects
	Adding Text

	Chapter 7 Changing that Boring Gray Default Material
	Playing with Materials
	Coloring Vertices with Vertex Paint

	Chapter 8 Giving Models Texture
	Adding Textures
	Using Procedural Textures
	Understanding Texture Mapping
	Unwrapping a Mesh
	Painting Textures Directly on a Mesh
	Baking Texture Maps from Your Mesh
	Using UV Textures

	Chapter 9 Lighting and Environment
	Lighting a Scene
	Lighting for Speedy Renders
	Setting Up the World

	Part III Get Animated!
	Chapter 10 Animating Objects
	Working with Animation Curves
	Using Constraints Effectively

	Chapter 11 Rigging: The Art of Building an Animatable Puppet
	Creating Shape Keys
	Adding Hooks
	Using Armatures: Skeletons in the Mesh
	Bringing It All Together in a Single Rig

	Chapter 12 Animating Object Deformations
	Working with the Action Editor
	Animating Shape Keys
	Animating with Armatures
	Doing Non-Linear Animation

	Chapter 13 Letting Blender Do the Work for You
	Using Particles in Blender
	Giving Objects Some Jiggle and Bounce
	Dropping Objects in a Scene with Rigid Body Dynamics
	Simulating Cloth
	Splashing Fluids in Your Scene

	Part IV Sharing Your Work with the World
	Chapter 14 Exporting and Rendering Scenes
	Exporting to External Formats
	Rendering a Scene

	Chapter 15 Compositing and Editing
	Working with the Video Sequence Editor
	Working with the Node-Based Compositor

	Part V The Part of Tens
	Chapter 16 Ten Problems for New Users in Blender (and Ways around Them)
	Auto Saves and Session Recovery Don’t Work
	Blender’s Interface Is Weird or Glitchy
	A Notorious “Black Stripe” Appears on Models
	Objects Go Missing
	Python Not Found
	Edge Loop Select Doesn’t Work
	A Background Image Disappears
	There’s a Limit to Zooming
	Lost Simulation Data
	Blender Doesn’t Create Faces as Expected

	Chapter 17 Ten Tips for Working More Effectively in Blender
	Use Blender’s Tooltips
	Constantly Check Models from Different Views
	Lock a Camera to an Animated Character
	Occlude Background Geometry in Edit Mode
	Name EVERYTHING (Organize Your Projects)
	Use Layers Effectively
	Do Low-Resolution Test Renders
	Mind Your Mouse
	Turn on Passepartout for Your Camera
	Have Fun, but Take Breaks

	Appendix About the CD
	System Requirements
	Using the CD
	What You’ll Find on the CD
	Troubleshooting
	Customer Care

	Index

