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Chapter 1

Systems engineering

if you’re looking for trouble, you came to the right place

Elvis Presley

1.1 Problems with systems

1.1.1 Systems

Systems form an integral part of every aspect of our lives. When most people hear
the term ‘systems engineering’ they think of technical systems, such as an aeroplane,
car or train but, in many cases, this is only the tip of the iceberg. Consider the
sheer range of systems that can be classified into different types. The following
list of types of systems is not intended to be exhaustive but is presented here,
rather, to try to encourage the readers to expand the context of systems in their
own minds.

• Large-scale, organisational-type systems, such as social and political systems.
• Living systems, such as the human body and the environment.
• Nontangible systems, such as process models and software.
• Behavioural systems, such as martial arts, crossing the road, doing the shopping

and going about everyday life.
• Physical systems, such as vehicles, buildings and home appliances.

Of course, any complete system consists of a number of these systems to become a
system of systems. The term ‘systems engineering’ then, means applying engineering
to such systems, but what do we mean by engineering? A simple way to define
engineering is by thinking of it as problem solving, therefore, when we talk about
systems engineering, we are talking about problem solving with systems at any point
in the life cycle. It would seem appropriate, therefore, at this point to try to define
‘systems engineering’ properly.
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1.1.2 Defining systems engineering – first attempt

This book is concerned, primarily, with applying the Unified Modelling Language
(UML) to systems engineering. It would seem appropriate, therefore, to give some
definitions for systems engineering at this initial stage. However, this is not as
simple as it may appear as there are many definitions from which to choose and
it would be precipitous to state a definition at this stage without giving some thought
to the issues involved. It is not only important to understand the needs for systems
engineering, but also to understand what a system is. Therefore, deriving a definition
for systems engineering will be left until later in this chapter when we have more of
an idea about the scope and complexity of the field of systems engineering. Rather
than a single, definitive statement of what exactly systems engineering is, this book
will put forward two definitions – one technical, one practical – which should always
be kept at the back of your mind while going about life, but more of this later.

1.1.3 The need for systems engineering

It was stated in the introduction to this chapter that an understanding of why we need
systems is required, together with an understanding of what, exactly, a system is
[1, 2 and 12]. This section aims to address the first of these two points, by asking the
question, why do we need systems engineering? Is there a real need or is it just some
academic exercise to appear knowledgeable and to sell books?

In order to understand the need for systems engineering, let us first look at some
of the driving forces behind it. These include the following:

Increased size of the global market and the global village: As the world gets smaller
and many boundaries, whether social, political or economical are removed, the need
to compete in this freer world becomes more important. The vast increase in the
efficiency of communications over the last few years has meant that it is now possible
to trade on a worldwide scale at the touch of a button. The presence of the Internet
and, more to the point, its increased use by all sections of society, means that if a
product is cheaper in one country than another, customers do not have to leave the
comfort of their armchairs to go there and buy it effectively. With virtual working it is
now feasible to work ‘closely’ with people on the other side of the world, rather than
being restricted to working with ‘local’ people. With such an increase in competition,
it is important that the systems we produce are the best anyone anywhere can offer.

Increased technological performance: As the speed and efficiency of technology
increase, the demand for such systems also increases. Customers will always want
products that are smaller, more efficient and smarter than previous models and will
accept no arguments as to why this is not so. It is crucial that these rapidly-changing,
advanced systems are managed and understood if they are to provide the safety and
reliability required of a modern-day system.

Ubiquitous computers: Computers are now an integral part of almost any complex
system and will generally involve software of some description which is, arguably,
the most complex of man’s creations. Software must, therefore, be fully understood
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and managed as part of a large, complex system otherwise we run the risk of another
software crisis. The world of software engineering has recently undergone a watershed
of understanding, which has led to the realisation that the Mickey Mouse sorcerer’s
apprentice approach to writing code was simply not good enough. Software is an
unpredictable beast that needs to be contained by applying software engineering
techniques that increase the chance of project success enormously. However, when
this software is released into an integrated complex system, software engineering
techniques alone are not sufficient for the increased problem space, hence the variety
and range of techniques that can control the beast must be increased accordingly.
Software engineering is a subset of systems engineering that limits itself to a single
discipline. Clearly, there are many similarities between the two disciplines and it is
important to learn lessons from any source available.

Quality: This must be an integral part of the whole life cycle of system development
and will ensure the future of systems and their associated business [3]. One of the
problems with quality is that it is often perceived as simply a ‘certificate on a wall’ or
a ‘badge with a profile drawn on it’. However, quality should be viewed as a frame
of mind that should be adopted by all project personnel. Only when we think in
terms of quality can we hope to produce systems that have quality that is in-built,
rather than tacked on as an afterthought.

Integration of systems: This brings together all the points listed above. Systems engi-
neering encompasses all areas of engineering and management and, as such, requires
new levels of understanding. This introduces problems of complexity, communica-
tion between different disciplines and conditions ripe for potential misunderstandings
between project personnel. All of this, naturally, should be avoided.

Finally, it must be remembered that massive losses are made each year due to project
failure and disasters, many of which could have been avoided with the application of
adequate systems engineering.

The points raised here are not complete but provide a brief introduction as to why
people are sometimes caught unawares and can end up with a potential disaster on
their hands once it is too late to do anything about it. Also, it should be borne in mind
that it doesn’t matter how many successful projects you run or how many perfect
systems you develop as everybody will remember your only project failure over
any number of successes. It only takes a single failure to occur for people to lose
confidence in you, your organisation or your system and, once that happens, it can
be almost impossible to put it right.

1.1.4 Disasters and failures

Left unchecked in any system, problems may lead to either failure or disaster. In order
to understand this, consider the following two broad groups that categorise most
results of problems:

• System disasters: By which we mean that something going wrong results in the
loss of human life, damage to the environment or damage to property. In many
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cases, these are systems that have run successfully and error free for many years,
sometimes decades, before disaster strikes.

• Project failures: By which we mean a project that is either never completed or
one that was abandoned soon after its initial operation.

Although there are many reasons behind these two types of system problems, there
are a number of common themes that emerge from almost all examples of them, and
these will be explored in the next section.

For examples of failures and disasters, see References 4–7.

1.1.5 Causes of problems

History has taught us that, whatever the nature of disaster or failure, there are a few
common causes that crop up time and time again. This conclusion has been reached
by many authors and may be summarised by considering three points – complexity,
communications and a lack of understanding – the ‘three evils of systems engineering’.

Complexity: This is certainly one of the main causes of system problems. This may be
because the complexity of a system may have been underestimated or not taken into
account at all [8]. It may also be that the complexity has been ‘unmanaged’, by which
we mean that it may have been uncontrolled or unmeasured. In order to manage such
complexity, however, it is important to have a good idea of what, exactly, complexity
is – which will be discussed in some detail in a subsequent section. Mismanaging
complexity will lead to a lack of understanding and bad communications.

Communications: A lack of communication or inefficient communication will con-
tribute to project failure. The communication here could be between people, systems,
organisations or any project stakeholder. It is important to identify the communication
needs in a project and then to communicate effectively. Poor communications will
lead to ambiguities, which may result in complexity and confusion that is inevitable
if people cannot understand each other. Communications will be discussed in more
detail later in this chapter.

Lack of understanding: This is a problem that may occur for any number of reasons,
such as a lack of experience, not understanding the domain, not speaking the right lan-
guage, underestimating complexity, and so forth. There are many aspects of a project
that must be understood, but two aspects that are common failures are a lack of
understanding of the problem and a lack of understanding of the solution. A lack of
understanding of the problem could be due to a number of factors, including a lack
of specific domain knowledge, differences in terminology or not understanding how
an external system works. A lack of understanding of the solution will often be due
to people choosing solutions that they have no experience of, or trying out immature
technology or, in many cases, because they have caught the dreadful affliction
of ‘buzzword-fever’ and want to use particular solutions as they are perceived as
exciting, or sexy new techniques. Remember, a little knowledge can be a dangerous
thing.
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One point that should stand out after reading this list is that each of the problems is
likely to lead to difficulties in the other two areas, or to put it another way, it is a
circular problem. This means that we must try to address all of these issues in some
way and keep the problems to a minimum. Half of the battle with these problems is
in trying to highlight where they occur during a project. At what stage then should
we concentrate on trying to spot these areas and are they more likely to occur early
on during the development of a project or in the later stages?

These problems do not simply occur during the design and implementation of
a project, but may appear at any phase in the project’s life cycle, hence there is a
need for effective control and management of a project’s life cycle. The problems
themselves are just as likely to happen at any point of project development, but
the later they do, the more they become compounded. For example, by the design
phase it is far more expensive to correct a fault than if it were found during the
requirements phase. Therefore, the way in which we approach systems engineering
must be applicable at any point in the project life cycle rather than simply focusing
on a single phase or phase activity. This will turn out to be a fundamental requirement
for systems engineering.

1.1.6 Defining a system

The motivation behind systems engineering has been discussed, but what do we
actually mean by a system? A common misconception is that a system is simply
a product that may be delivered at the end of a project. However, this is not the case.
A system may include any or all of the following points:

• A product or set of products that are delivered to the customer as part of the overall
system. The product may be a physical system that may be picked up and touched
or it may be a virtual system such as software. A system may not necessarily be
a technical system, but may be an ecosystem, a social system, a political system
or an economical system. Taking matters to an extreme point, a system may be
a human being, which is, arguably, one of the most complex systems in the world.

• Operational procedures or knowledge concerning the final product that will enable
the customer to successfully install and run the system, and the end users to
successfully operate the system. It is important that this information is built into the
system design, rather than being added after the system has been fully developed.

• Support and maintenance of the system, to take into account future refinements,
error corrections, updates and servicing.

• Training to enable customers and end users to use and operate the system in a
safe and reliable fashion. This will not only ensure the safety and comfort of end
users, but may also prolong the life of the system itself.

• Integration with other systems, as it is crucial to the operation of the system
to make sure that it fits seamlessly with other components in the operational
environment.

A system, therefore, is more than a final product. It is a living, evolving entity that
requires looking after and occasional help and therapy. In order to keep a system in
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top condition, a sound understanding of the way it looks and behaves is required both
under normal conditions and under atypical conditions.

1.1.7 Defining systems engineering – second attempt

Based on what has been discussed so far in this chapter, two definitions for systems
engineering are suggested. The first definition of systems engineering that is derived
directly from these discussions, taking all the points that were raised here, is:

Systems engineering is concerned with defining and implementing an approach to solving
problems, while managing complexity and communicating effectively over the entire
lifetime of a project.

Another definition of systems engineering that has been derived indirectly from all
the points raised in this chapter is:

Systems engineering is the implementation of common sense.

This may seem like a strange definition, but all of the points that have been raised in
this section are sound, basic engineering principles. In addition, when problems are
analysed and the resultant causes identified, the initial reactions from most people
are shock, horror and amusement that people could be stupid enough to allow it to
happen in the first place!

1.1.8 Summary

In summary, therefore, the following points are raised so far in this chapter.

• There is a need to engineer systems in order to make them as safe and reliable as
possible and in order to give people confidence in the systems that we produce.

• Many problems with systems have three common themes: complexity, communi-
cations and a lack of understanding. All three of the problem areas must be borne
in mind when engineering a system.

• A system was defined not simply as a product, but as products with a set of
associated services.

• The nature of a system need not be physical, as it could be an intangible system,
such as software or a social system.

• Systems engineering was defined in the context of this book as an approach to
solving problems, while managing complexity and communicating effectively
over a whole life cycle.

• Systems engineering was also defined as the implementation of common
sense.

This section introduces the main issues involved with systems engineering and
the following sections look at some of these issues in more detail. These issues
are complexity, communications and understanding in Section 1.2, and quality in
Section 1.3.
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1.2 Complexity, communication and understanding

1.2.1 Introduction

This section looks at the points that were raised in the previous sections as major
causes of problems and discusses them in more detail. The main proposal here is
that if we can understand a little about the nature of these problems, hopefully we
can go some way towards addressing them so that we do not allow history to repeat
itself with yet more failures and disasters. The main aim is to try to draw up a set
of requirements that, when met, will allow us to go some way towards solving these
problems. The term ‘some way’ is used here as it is impossible to eliminate all
problems, but we must still do as much as we can. This is the same theory as the
one concerning testing a system, according to which it is impossible to test a system
100 per cent and it is only possible to test a system to give a degree of confidence
that the system will work under all anticipated circumstances.

The first of the points to be addressed is that of complexity, which will be discussed
in the following section.

1.2.2 Complexity

Complexity is currently a hot topic in systems engineering and there are many
excellent texts available that describe it in great detail. This section aims to define
complexity at a high level so that it can be understood, to a limited degree, by everyone
reading this book. For more in-depth discussions and philosophical musing, readers
are directed towards the titles referenced at the end of this chapter.

To start the discussion, it is necessary to visit the world of software engineering
and to consider the work of Fred Brooks. Brooks, often viewed as the father of soft-
ware engineering and one of the great software philosophers (if such a thing exists),
identifies two main types of complexity that exist in almost all systems (software or
otherwise): essential complexity and accidental complexity [9].

It is important to be able to distinguish between these two types of complexity,
so that they can be identified, or potential areas identified, within a system.

1.2.2.1 Essential complexity

Essential complexity is so called, not because it is vital to the system, but because
it is in the essence of the system. This means that it is an inherent part of a system
and, as such, cannot be eliminated. Clearly, the presence of such complexity is a big
problem, which means that it is even more important that these areas of essential
complexity are identified and have attention drawn to them in order that their effect
on the rest of the system be minimised.

As an example of essential complexity, consider any system using a PC or similar
computer. Within a PC there is a level of complexity that will exist within the PC
itself. There is nothing that can be done to minimise the complexity of the hard-
ware of the PC, short of taking it apart and completely redesigning it. The next
level of complexity that exists is that of the operating system about which, again,
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it is not possible to do anything, short of reinstalling another operating system. It
may even be the case that there is more than one operating system, although more
recently developed operating systems now claim seamless integration with the hard-
ware, rather than using a middle-level operating system. If someone wants to develop
software on the PC, there is the complexity of an interactive development environ-
ment that enables the user to write and manage the code, together with the complexity
of the language and the compiler itself. This gives a number of factors that cannot be
changed in any way and, hence, such a system will exhibit essential complexity as it
lies within the essence of the system. All this before even a single line of code has been
written!

Another example may be a legacy system that may have to exist as part of a new
system. In real life, systems tend to evolve rather than be started from scratch, and
thus legacy systems are often a necessary evil. It is often impossible or unfeasible to
change a legacy system in any way; therefore, essential complexity will always exist
within the legacy system.

One argument that is often put forward is that if there is nothing that can be done
about essential complexity, then what is the point of thinking about it in the first place?
The answer to this concerns project risk. If all areas of complexity are identified,
it is possible to perform a risk-assessment exercise to determine any parts of the
system that are critical to the success of the project. If these areas of complexity are
known, it is possible to design the system so as to minimise the risk of the essentially
complex parts.

It is essential that, in the case of legacy systems, the interfaces between the systems
are fully understood. This means that they should be modelled not just from a data-
driven view, or the ‘what’ of an interface, but also in terms of its behaviour, or the
‘how’ of the interface.

1.2.2.2 Accidental complexity

Accidental complexity differs from essential complexity as, unlike essential com-
plexity, which is inherently part of a system, accidental complexity is complexity that
creeps into the system by accident. As accidental complexity is caused by accident
or, to put it another way, by error (or even omission), it is possible to do something
about it. In an ideal world, the solution would be to eliminate accidental complexity
altogether, but in reality the best that can be hoped for is to minimise accidental
complexity as much as possible.

In order to be able to minimise accidental complexity, it is crucial to understand
how it may creep into a system. A number of causes of accidental complexity are
discussed in the list below:

• Poor front-end life cycle activities. This includes, for example, requirements
engineering, which drives the rest of the project. If the requirements are not
right or have not been engineered adequately, complexity may creep in right
at the beginning of the system’s life cycle. This may be due to the fact that
a requirement has not been analysed sufficiently and the complexity has been
underestimated.
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• Too few levels of abstraction are understood. It is crucial to look at different levels
of focus, or abstraction, of a system ranging from high-level conceptual views to
very low-level detailed views.

• A lack of understanding of the system or the techniques being used. This is
particularly prevalent in the problem domain when the analysis is being carried
out, which will lead to accidental complexity. Many projects fail due to the fact
that the problem is not understood well enough before the design is started,
which means that the likelihood of creating a correct solution is very small
indeed.

• A lack of effective communications. This may well lead to complexity and sets
off a vicious circle as communications and complexity tend to chase each other’s
tails and each results in the other. Poor communications, particularly at earlier life
cycle phases such as requirements and analysis, may lead to all sorts of problems
later on in the project. Even very simple terms will have meaning to some people
but not others, or may have totally different meanings altogether.

Accidental complexity, therefore, is something that we can go a long way towards
addressing and, as such, it is important to be able to minimise such complexity.

1.2.3 Minimising complexity

In an ideal world, complexity would be eliminated altogether. However, in reality
this is almost always not the case and thus complexity must be first identified and
then minimised.

Complexity may be minimised by effective communication and by applying
that great maxim that impacts upon all areas of life, KISS, or ‘keep it simple
stupid!’.

In order to do this, a well-defined approach is essential. This approach must be
simple, straightforward and correct. By ‘correct’, we mean that the approach must
be consistent within itself and comply with the way in which people work. The
approach must also be known by all staff and interpreted by each team member in
the same way.

1.2.4 Communications

1.2.4.1 Introduction

The subject of communications has already reared its ugly head at several points
during this chapter, but what exactly is meant by communications? It is probably safe
to say that everyone realises that communication is important for any project or any
system, but what channels of communication exist? They exist at different levels and
it is important to have an idea of what these levels are. These include:

• A channel of communication that exists at an organisational level. Many projects
will consist of workers from more than one organisation, which has the potential
to lead to communication problems. The languages used by organisations may
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differ, with both technical and spoken languages and the protocols involved in
talking to other people or groups of people possibly differing radically between
organisations.

• A channel of communication that exists between different teams within a single
organisation. People may work in disparate areas of the company and will thus
have a completely different vocabulary due to their different areas of technical
expertise. In addition, communications between teams may be semi-deliberate for
fear of competition from rival groups within a single organisation, for example.
This may, in extreme cases, even lead to sabotage between groups as one group
is desperate to keep up with another. This may take on a relatively harmless form
of sabotage, such as withholding information, or a far more malicious form of
sabotage, such as feeding deliberate misinformation to another team. A further
aspect of communication between teams that may lead to problems is that people
assume other teams know something or have done something that may be crucial
to the project. Making assumptions can be dangerous when it is taken for granted
that everybody knows what they are, and they should, therefore, be explicitly
defined and communicated.

• At a lower level of communication, a channel exists between different resources,
such as hardware, software, networks, protocols, and so on. This may manifest
itself by a particular piece of hardware not working with other hardware or new
versions of software not working with older operating systems or software. It may
also be caused by legacy systems that have existed within a system for many years
yet, for whatever reason, remain a crucial part of a system.

• Problems may also exist between different levels of management. Many reasons
exist for this, such as fear of ‘shooting the messenger’. People are often scared of
reporting failure, even if it has nothing to do with them, as it may be perceived
as being the direct fault of the messenger. This may also manifest itself because
there are too many layers of management within an organisation, making effective
communication impossible due to the complexity of getting a single message to
a high level of management via several other managers. People will often gloss
over problems, which may result in the snowball effect of a simple problem the
size of a small snowball gently rolling down a hill for as long as it is ignored,
before finally reaching the bottom of the hill where it can no longer be ignored,
is the size of a house, and destroys everything in its path or, in this case, leads to
the demise of the project.

These levels of communication have been seen to have their own dangers within a
project if not properly identified. It is crucial, therefore, to identify communication
interfaces between the roles of people involved within a project. For example, who
reports to whom within the organisation? What are the interfaces to other organisations
and who is allowed to communicate across these boundaries? How are problems
reported and to whom? Is blame associated with the reporting of problems or is the
cause of the problem the main concern?

These difficulties can all be amplified by a single aspect of communication – that
of the language being used.
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1.2.4.2 Languages

One of the basic requirements for communicating between one or more entities is
to have some sort of language that each can speak. Any problems with a language
will compound the problems related in the previous section. Many problems with
languages exist, including the following:

• People from different countries may speak different languages, hence making
communication almost impossible without an interpreter. Of course, the actual
interpreter may introduce a number of ambiguities into the translation, thus
causing additional complications and confusions.

• People with different working backgrounds may understand different things from
the same term. For example, the word ‘fencing’ may apply to making fences
and barriers, the noble art of swordplay or, indeed, selling stolen goods. The
meaning of each of these is completely different and such a misunderstanding
could potentially lead to large problems within a project.

• People from different countries may ‘think’ that they speak the same language,
but do not! Perhaps one of the most unpredictable problems occurs when people
think that they speak the same language but, in reality, there are big differences in
the meaning of words. An example of this is American English vis-à-vis English.
These two languages are deceptively similar but each has many words that either
have no meaning in the other language or a completely different meaning. There
is an old adage that the United States and the United Kingdom are separated by
a common language and this is absolutely true. Many terms are taken for granted
as having the same meaning when they do not. There are many examples of
embarrassing situations that have occurred through simple miscommunications
but one that occurs often concerns the definition of the verb ‘to table’. In the
United Kingdom, if you are in a meeting and something comes up that is not on
the original agenda, often a request is made to ‘table’ it, which means to discuss
it in detail at some point in the meting. In the United States, however, the term
‘to table’ means to put it under the table and not to talk about it!

The previous three points refer to spoken languages, but these are not the only types
of language that may be used on a project, and problems may also exist as a result of
differences in technical languages such as:

Programming languages: In the case of software, there may be different versions,
or flavours, of languages. Anyone who has ever used the C programming language,
for example, will know that there are numerous definitions of the language itself,
which will depend on many things, including the manufacturer chosen. Even when
a language is chosen from a particular manufacturer, there will be different versions
of the language, the compiler and the interactive development environment (where
appropriate).

Modelling languages: It was very much the case that before the advent of the UML,
there were over 100 modelling languages, making intercompany communication
extremely difficult. Even with a standard language, such as the UML, different
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people have different slants on the same concepts. Luckily, there is a single source of
reference for the UML, so any ambiguities can be quickly sorted.

Clearly, there is a need for an unambiguous language that all interested parties can
understand, which points towards a requirement for a common language.

1.2.4.3 Common languages

As the points raised in the previous section have made clear, there is a need for
a common language. This relates to the old adage about ‘everybody singing from the
same sheet’ where it is crucial that everyone understands the same thing by every
term used. This also relates back to the famous ‘Tower of Babel’ story from the
Bible (suggested as a good example by Brookes), which involved a group of people
who wanted to build a tower up to heaven, so that they could talk to God (this is
a somewhat abridged version of the Bible story!). According to the original story,
the builders worked very well together and were actually achieving their original
objective and reaching heaven with their tower. God, however, had other plans for
the people of Babel and made each of them speak a different language, thus rendering
communication impossible. Rather than try to solve this problem, the Babelonians
decided to go their separate ways, with the result that the world is now made up of
people who speak different languages and the tower, sadly, was never completed.
This is one of the first ever recorded project failures.

There are many advantages to having a common language, including:

Saving on training: If an organisation uses three or four different languages to
represent different areas of business, clearly it is necessary to train staff in all
languages. By using a single, unified language, it is possible to save by training all
staff once in the same language. This also means that the company knowledge of that
language will increase and improve as every member of staff will be familiar with the
language.

Cross-boundary communication: If people from different areas of business or
departments in a company all speak the same language, clearly the communications
between such people will improve and leave less room for ambiguity.

A common language also equates to having a common medium of communication
and thus a common ground for everyone to use.

1.2.5 A good approach

In order to address the three evils of systems engineering, it is important that any
project is approached in a concise, well-understood and well-defined manner. If the
approach that is adopted does not take these three evils into account, the three most
common causes of project failure and disaster are left unchecked and the battle to
deliver a project on time will be lost almost before it is begun. Such an approach,
therefore, has the following requirements:

Consistent: The approach must be correct with regard to itself and must make sense
to those adopting it. Many approaches that are defined in books, standards and other
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forms of reference are actually not correct, in that they contain inconsistencies or do
not have a common vocabulary. If this is the case, there is a strong possibility that
people will not understand the approach properly and this will lead to communication
problems and complexity.

Concise: Any approach chosen must contain enough information to convey all of
its meaning, yet not so much that it becomes verbose. One of the major problems
facing anyone who is trying to introduce a new approach, or to standardise an existing
approach, is to get it into a form that is manageable and that will not deter potential
users by its sheer volume and complexity.

Repeatable: In order to perform any type of worthwhile assessment on a project, it is
important that the approach is repeatable. This means that results from more than one
project may be compared and value drawn from these comparisons. If the approach
is required to be improvable in some way, then making sure that it is repeatable is
absolutely critical.

Measurable: Having a concise, consistent and repeatable approach is still not enough
unless the outputs of the approach (the things that are delivered on the project) are
measurable in some way. Again, if the approach is to be improvable, then being able
to measure it is essential.

Improvable: This is important in order to ensure that the approach is as good and
reliable as possible with sustained implementation over a long period of time. This
is a point that has already been mentioned twice and is one that feeds into two of the
other requirements – those of repeatability and measurability.

Tailorable: No single approach will be applicable to every type of project and
therefore it is essential that any defined approach must be ‘tailored’ to meet the
needs of an individual project.

From this list of requirements, it should be clear that there is far more work involved
in creating an approach than meets the eye. This will be a recurring theme throughout
the rest of this book and is the focus of Chapter 6.

1.2.5.1 Summary

In summary, therefore, the following points are raised in this section:

• Complexity will always exist in systems as either essential complexity or
accidental complexity. Whichever form exists, it is crucial to identify all areas
of potential complexity and, once identified, to address them in some way.

• Communication or, more to the point, effective communication, is key to the
success of any project. One crucial part of this is to have a common language that
can be adopted by all people involved in the project.

• Above all, a well-defined approach is required – one that can be understood by
all people involved in the project.

These points raise issues that relate directly to ‘quality’, which is discussed in detail
in the next section.
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1.3 Quality

1.3.1 Introduction

There is a need for quality throughout today’s society. This quality is required for
everything that people may buy, be it a product or a service. As engineers, it is impor-
tant to have a good idea of what quality is and what it means to us as professionals.
Apart from a moral and ethical obligation to produce quality systems, there is also
a legal obligation, in many cases, to be able to demonstrate the quality of a product.
An example of this is if, as a practising engineer, you produce a piece of software that
results in the death or injury of another person, it is the engineer (you) who are person-
ally responsible, rather than the company employing the engineer. It does not matter
if there are disclaimers on the software (which so many manufacturers seem keen
to put on their products) because the moment a person is hurt, all disclaimers mean
nothing! The only way that it is possible to prove innocence under such circumstances
is to demonstrate, in a court of law, that current best practice had been followed to
produce the software or, put another way, you must demonstrate the quality of the
approach to produce the code [10, 11].

It is crucial, therefore, that engineers provide products and services in which
people can have a high degree of trust and confidence. There are several ways that,
as a customer, it is possible to judge or assess the quality of the service or product.
Consider, for example, purchasing any product for use by your family. Imagine that
you were about to buy a car seat for a baby or small child for use in a family car.
Clearly, the product that is bought must inspire a high degree of confidence from the
customer’s point of view as, in the worst-case scenario, there is a child’s life at risk
if something goes wrong.

It is crucial, particularly in the case of children, that the product is safe and has
met stringent quality guidelines, but the problem is, how does one know that the
product has met these guidelines? In real life, the first thing that should be looked
for would be an indication of the quality of the product. In the United Kingdom, for
example, one would look for the Kite mark, which is an indication that the product
has met a particular British Standard. Indeed, one would hope that if a product such
as a child’s car seat did not display a Kite mark then you would not purchase that
product. Another example of such a symbol that indicates quality is the European
quality mark, which is depicted by the ‘CE’ symbol.

Any product that displays such a quality symbol gives the customer confidence
in the product and assurance that the product has passed stringent safety and quality
tests. The same is true for services, not just products. When employing a person or
awarding a contract it is usual to look for certain indications of quality of work, such
as: examples of previous work, qualifications, experience and professional status
(for example, membership of a professional organisation, chartered status, etc.).

Certain manufacturers or service providers have such a good reputation that simply
seeing their logo or trademark will inspire confidence in a product or service. Think
of car manufacturers and then think of the following criteria: safety, comfort, build
quality, performance and budget. When looking at each of these criteria, it is likely
that particular car manufacturers will spring immediately to mind.
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However, can the same be said of the way that we approach systems engineering?
What should people look for when purchasing or specifying systems?

This section addresses this point in particular and discusses how to demonstrate
quality of both products and services and relate them to systems engineering. It also
derives a number of definitions for terms such as quality that are crucial to our
understanding of systems engineering.

1.3.2 The need for quality

The term ‘quality’ is frequently used and quoted, yet is often misunderstood. Before
we can understand quality, it is important that we understand the need for quality.
There are many reasons why people require quality for their organisation:

Customer confidence: If the customer has confidence in a product or brand of product,
they are likely to select these products over others. Certain organisations are always
associated with a particular level of quality of product and, given a choice, customers
will almost always select the quality brand. Consider the example of buying a brand-
new car. Which manufacturer will you choose? Clearly, money is a major driving
factor behind the purchase of a car, but what about the actual name of the manu-
facturer? How much impact will that have on the decision to buy or not to buy the
particular brand of vehicle?

More maintainable: Systems that are more maintainable will save money over those
that are not very maintainable. Many examples of this can be found in current
literature. For example, experience has shown that the most expensive phase of the
life cycle is the maintenance phase. Systems should be designed with maintainability
in mind.

Common sense: At the end of the day, it is simply common sense to provide quality
systems.

Unfortunately, it is a fact that many organisations will not act unless it either saves
money or makes money. It is therefore very important to be able to relate quality back
to financial terms as, above all else, this is (unfortunately) the only way that some
individuals or organisations will react. It should be made quite clear how each of the
points raised here may relate directly back to finance.

1.3.3 Level of responsibility

The level of responsibility taken on by complex systems is constantly increasing.
As these systems permeate our lives, often in ways that go unnoticed, they are
being given more and more responsibility, especially where safety-critical systems
are concerned. Some areas in which complex systems play a role that includes
safety-critical elements are:

Closed loop control systems: Today, some computer-based systems are completely in
control of a number of areas of process control, such as manufacturing processes and
plant monitoring processes. It is essential, therefore, that any such control systems
have been designed and built with safety and reliability in mind.
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Autopilots for aeroplanes and ships: Autopilots are increasingly being used
in modern transport. Many air passengers clap after the successful landing of an
aeroplane, but in most cases they are applauding a piece of software, as humans are
mainly required for emergency or atypical situations. Needless to say, the software
has no appreciation of such applause although it does amuse pilots!

Braking systems in cars: As technology is used increasingly in cars, so we see an
increase in the level of responsibility that these complex systems have. The modern
car may have computer-controlled brakes, suspension and steering, in addition to
non-safety-critical applications such as electric windows, electric wing mirrors and
windscreen wipers. Many cars today have cruise control, systems to aid steering and
even systems to aid more complex tasks such as parking.

This increased level of responsibility thus increases the need for quality in the systems
and the way in which they are produced.

1.3.4 Requirements for systems professionals

Over the last few years, the requirements for systems professionals have changed.
It is no longer good enough to be a programming guru or an extraordinary designer.
Instead, it is becoming increasingly important to show an awareness of wider issues,
even if you are not an expert in them. These include:

Quality policies, standards and procedures, both in-house and those in the public
domain: Any member of an organisation who is not aware of quality issues, even at
a high level, runs the risk of causing problems on a project. Even if no problems arise
directly from this, it is highly possible (and, indeed, probable) that an organisation
will fail a quality audit if members of their staff are not aware of the company’s quality
policies.

Safety policies: These may be policies that relate to the system itself, such as safety-
critical systems, or they may be basic safety policies for staff, such as fire regulations.
Clearly, failure to meet either of these could result in injury or loss of life.

Roles and responsibilities: It is essential that every task or action carried out by an
organisation has a role defining who is responsible for that action. This is particularly
important when things go wrong, or if things ‘don’t get done’, as it provides a good
starting point for getting to the heart of the problem. For example, who takes the
blame when a system developed by you causes an accident? This has already been
mentioned and, if appropriate roles and responsibilities are not defined, it could mean
blame for something arriving on your shoulders, which, by rights, should not be there.

These other areas of interest of which engineers must have knowledge are really
concerned with the approach taken, or the process followed, in certain areas. Clearly,
it is impossible for any single person to have a complete, expert knowledge in all
areas, but is important to have at least an appreciation of the other processes that exist
within an organisation.



Systems engineering 17

1.3.5 Processes and quality

The points raised in the previous section are all well and good, but how does this
relate to quality? In order to answer this, it is time to come up with some definitions
for quality. This is very difficult as there are many, many different definitions for
quality. The two definitions chosen here are as defined by ISO (International Standards
Organisation) and are:

• ‘fitness for purpose’
• ‘conformance to requirements’.

‘Fitness for purpose’ means that the system must do what it is supposed to do. This
is actually not the same as saying that the system should work. Proving that a sys-
tem works is ‘verification’, while proving that something does what it is supposed
to do is ‘validation’. Therefore, it is possible to have a fully working system that
has been verified, but if it does not meet its original requirements it cannot be
validated.

‘Conformance to requirements’ means that the system must be able to demonstrate
that it meets its original requirements. The original requirements state what the system
is supposed to do and thus conformance to requirements is really another way of saying
‘validation’.

In order to demonstrate something, it is vital to have a source of reference against
which the demonstration can be compared. In the case of demonstrating quality,
the source of reference that the system is compared against is usually a standard, a
procedure, or both.

When demonstrating quality, it is the approach taken that is compared to an
established norm in order to demonstrate compliance. Formally, this approach is
known as its ‘process’. Processes have been encountered twice already in this chapter
in the following way:

• Requirements for a good approach were drawn up, which means that they are
requirements for a process.

• A sound knowledge of processes was required for systems professionals, which
means that these processes describe an approach to engineering, management,
support services, customer supplier relationships and organisational activities.

Therefore, it is the ‘process’ that is assessed or audited when demonstrating
compliance with a standard, which will demonstrate the quality of an approach.

1.3.6 Standards

An important aspect, therefore, of demonstrating quality is to have a standard
according to which compliance can be demonstrated. The definition of the ‘standard’
as used here is ‘a form of reference that has been agreed upon’.

Unfortunately, in the world of systems engineering, there are literally hundreds
of standards, which is simply too many! Interpreting this according to our definition,
there are a great many references that have been agreed upon!
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In order to make sense of this incredible number of standards, they may be grouped
into four broad categories:

• International standards, which are recognised in many countries, such as:
ISO, IEEE (Institute of Electrical and Electronic Engineers), IEC (International
Electrotechnical Commission), IEE (Institution of Electrical Engineers), BSI
(British Standards Institution), EN (European Normative – except in French) and
ANSI (American National Standards Institute). Although some of these appear
to be country specific, such as BSI and ANSI, they are in fact recognised in
many countries. Most companies will comply, or try to comply, with at least one
international standard. These are usually the standards that give a basic quality
indicator recognised in many countries.

• Publicly-available specification (PAS) is one step down from the full-blown inter-
national standard and is often generated as a fast-track route to get a standard into
circulation quickly. Organisations such as the British Standards Institution and
ISO offer the creation of PASs as a service and they will often lead to becoming
an internationally-recognised standard.

• Industry standards, which are defined when a group of industrial companies get
together and decide to do things in the same way. Industry standards include:
UML, CORBA (Common Object Request Broker Architecture) and ODBC (Open
Data Base Connectivity). At least some of these will be familiar to most readers
(if not now, then by the end of this book). The rationale behind this is that interna-
tional standards are typically very slow to produce and many never make it past
the draft stage before they are abandoned.

• In-house standards, which are defined on a company-by-company basis and
are found in all large organisations. Examples of these are available in the public
domain and include the European Space Agency (ESA), which publishes its soft-
ware standards in a book, and DERA (Defence Evaluation and Research Agency
[whose name is apt to change], which is UK-based) standards, which are available
on the Internet.

Perhaps it is due to the large number of standards that it is very difficult to understand
many of them in any practical fashion. The next section looks at a number of the
problems faced by anyone wishing to use any of the standards.

1.3.7 Problems with standards

Many problems exist with standards, which is particularly annoying as much of
this chapter has so far been devoted to stating how important they are for effec-
tive systems engineering. There are two main areas into which these problems fall,
which are problems within individual standards and problems between different
standards.

• Some standards are too long. For example, both ISO 15504 Software process
improvement and capability determination (SPICE) and EIA 731 Standard for
systems engineering capability are several hundred pages long. The problem
here is that many potential users will be deterred even before they begin to try
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to understand and use the standards. However, length is not always superflu-
ous, nor is it an indication of complexity as in the case of the two standards
mentioned here – the information in the standards is very clear and, quite unbe-
lievably, very easy to understand. The length of the documents stem from the
fact that they are simply very thorough and both attempt to provide a frame-
work for assessing every process within an organisation with regard to process
improvement.

• Some standards are too brief and, hence, are too high level to be of any practical
use. As an example of this, ISO 9001 (arguably the most widely recognised
standard in the world) is only 24 pages long. This is a standard that covers almost
all applications of systems specification and design, yet it is incredibly brief.
As a consequence, the standard itself is written at a very high level and is thus
open to a great deal of ambiguity when being interpreted by different people. The
balance between a standard being too long or too brief is a difficult concept to
achieve.

• Some standards are very difficult to understand. This may be for any number
of reasons, such as: they are too long or too brief, as mentioned previously, or
they have been written by a committee. Of course, they may simply be badly
written!

The points raised so far are relevant when a single standard is being used; however,
in many cases, it may be desirable to meet more than one standard. Consider the
case where a company may have an organisation-wide policy to meet an estab-
lished international standard such as ISO 9001 Model for quality assurance in design
development, production, installation and servicing, but may also have to meet an
industry-specific standard such as EN 50128 Railway applications, software for
railway control and protection systems, which applies to the rail industry. There
may also be government standards that have to be met, such as, in the case of the
rail industry in the United Kingdom, the guidelines laid out by HMRI (Her Majesty’s
Railway Inspectorate).

There are problems associated with trying to meet more than one standard that
are in addition to all the points raised concerning single standards:

• Nomenclature. The terms used by different standards differ enormously,
with some basic concepts having completely different meanings. This comes
back to communication problems as each standard is written in a different
language.

• Some standards assume that particular processes may already exist or have already
been defined or complied with. A number of standards, for example, assume
an ISO 9001 standard-compliant management system. This adds additional
constraints to what may at first impression seem like a single standard and will
include all the problems mentioned previously in this section.

Meeting a single standard is, in many cases, difficult to demonstrate. Meeting more
than one standard is often orders of magnitude more difficult than meeting a single one.
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1.3.8 Consequences of problems with standards

All of the problems raised in the previous section will lead to adverse affects on the
project. These will include:

Complexity: If not identified and addressed, this may lead to communication
problems if complex information is conveyed to other people and, hence, to a lack of
understanding.

Communication problems: These may lead to complexity if ideas are not communi-
cated properly by a team and, hence, to a lack of understanding.

Lack of understanding: This may lead to communication problems if the information
is not fully understood and, hence, complexity if the information modelled is not
correct, concise or consistent.

These three points should be quite familiar by now and should only serve to reinforce
how important it is that they can be addressed.

1.3.9 Compliance with standards

Compliance with a standard is generally demonstrated by carrying out either an
assessment or an audit. These two are similar yet subtly different and, in very simple
terms, can be differentiated as follows:

An audit: During an audit, an organisation has its practices compared to that of a
standard as defined and documented in the organisation’s operating procedures. This
often takes the form of taking these procedures as a starting point and then actively
looking for discrepancies or noncompliances with the standard. Formal audits, which
result in certification according to a standard, are carried out by independent, third-
party organisations. The result of an audit is a simple ‘yes/no’ or ‘pass/fail’ with
minimal information concerning the noncompliances, usually in the form of a simple
reference to the relevant section in the standard.

An assessment: During an assessment, an organisation has its processes compared to
those of an established process model, usually a standard. An assessment starts with
a blank sheet of paper and whatever processes are executed (whether defined and
documented, or even assumed) are assessed. Assessments may be carried out inde-
pendently or in-house, providing that the assessor is qualified in process assessment.
The result of an assessment is a ‘capability profile’, wherein each profile that has
been assessed is rated according to a predefined scale, which provides an indication
of how ‘mature’ each process is.

In order to demonstrate compliance with a standard, there are a few basic requirements
that must be met:

• A defined process must exist. Without a defined process, it is impossible to meet
any type of standard with any degree of satisfaction as this is usually the thing
being assessed in an audit, for example. By ‘defined’, it means that the process
must be documented in some way, such as a formal document or electronic copy
that is available to staff (such as an Intranet or Internet-based definition).
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• Use of the process must be demonstrated. It is not good enough simply to have a
defined process if nobody follows it. It is important to be able to show examples of
the processes in action or, to put it another way, projects. The things that are eval-
uated in order to demonstrate the use of the process are the process deliverables,
or artefacts. These deliverables may be documents, code, hardware, reports, etc.

• The process must be improvable. A defined and implemented process is just a first
step. It must be shown that the process works effectively and that mechanisms
are in place to continuously improve the process as time goes on.

One approach to demonstrating continuous compliance with a standard is to represent
both the process and the standard using a common language, which will overcome
many of the communication problems. Once both the process and the standard are rep-
resented in a common language, it is possible to compare them directly. This approach
is also applicable to the case where more than one standard is required for
compliance.

1.3.10 Processes

In very simple terms, a process describes an approach to doing something. It is
something that transforms inputs into outputs and has responsibility associated
with it.

Everybody actually follows a process whenever they do anything, even if they
fail to realise it and it does not even have to be written down. When people do
things in a ‘certain way’, they are actually following a process, albeit an informal
one. Thus, if we want to demonstrate the quality of the way in which we work, it
is important to be able to identify the different areas of activity that relate to work.
It is necessary, therefore, that key processes in an organisation can be identified
and defined in a way that everyone can understand. This relates directly back to the
point made previously concerning people having a greater understanding of the way
in which a company works. In real terms, this equates to staff having a high-level
knowledge of the types of process (describing an approach to work) that exist within
their organisation. Typical processes within an organisation include:

• Customer supplier processes, which include protocols and a defined way of
dealing with customers and for customers to deal with suppliers.

• Support services, which represent services such as change control, configuration
management, etc.

• Management, which includes processes such as project management and project
planning, which apply on a project-by-project basis rather than across the whole
organisation.

• Organisational processes, which will be applied across the whole enterprise, such
as prescribing standards, health and safety recommendations, etc.

• Engineering, which covers the development of a product from requirements to
retirement.

It is important that these processes are identified and categorised in order to make
understanding them as simple as possible. The categories introduced here are based
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on the ISO definitions of processes, but are by no means carved in stone. In fact,
Chapter 6 shows several other categorisations of processes according to different
standards.

1.3.11 Summary

In summary, therefore, the following points are raised in this section:

• There is a need for quality in everything that we, as systems professionals, do and
produce.

• Quality is most often demonstrated by compliance with a standard. However,
many problems exist in understanding such standards, either individually or across
more than one standard.

• In order to demonstrate compliance with a standard, a well-defined process is
essential.

Processes are discussed in more detail in Chapter 6, where an approach to solving
the problems raised here is suggested. Several real-life examples of modelling stan-
dards are given, together with an example process that is defined according to these
standards.

1.4 Conclusions

This chapter raises several of the main issues that affect systems engineering in today’s
world. In summary, the key points are:

• Project failures and disasters are commonplace in today’s technology-driven
society. The result of such failures and disasters can range from loss of money,
to loss of life and damage to the environment.

• Some of the common themes behind many such failures and disasters are the
three evils of systems engineering: complexity, communications and a lack of
understanding.

• In order to control and minimise these problems, it is essential that the way
we work is of the highest quality and that this quality can be demonstrated to
other people. As quality is defined as ‘fitness for purpose’ and ‘conformance to
requirements’, it is these two definitions that must be demonstrated. In practical
terms, this translates to having a well-defined process.

Finally, two definitions of systems engineering are suggested:

• ‘Systems engineering is concerned with defining and implementing an approach
to solving problems, while managing complexity and communicating effectively
over the entire lifetime of a project.’

• ‘Systems engineering is the implementation of common sense.’

The information in this chapter forms the basis for the remainder of the book.
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1.5 Further discussion

1. Think of the following terms and see if you can associate a car manufacturer with
the term: ‘expensive’, ‘safety’, ‘reliability’, ‘expensive to maintain’, etc.

2. Is ISO correct in its definition of the five main categories for processes within
an organisation? Do these adequately represent the way that you or your
organisation work?

3. Look out for quality symbols on products and services that you encounter. Find
out which standard they comply with and check this standard to see what it
actually means to you as a customer.
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Chapter 2

Modelling

better to understand a little, than to misunderstand a lot

Homer Simpson

2.1 Introduction to modelling

This section introduces the concept of modelling and includes a discussion on why
modelling is so important and why we need to model. It also contains information
that forms the basis for the remainder of this part of the book and introduces a number
of basic concepts that will be referred to constantly throughout the rest of the book.

2.1.1 The importance of modelling

It is vital to understand the reasons why we must model things. In order to justify the
need for models, it is probably easiest to look at a number of simple examples, based
on real-world systems, to which people can relate.

Note that here we are justifying modelling in general terms and not simply
with regard to software systems, which demonstrates the need for flexibility when
modelling – indeed, the three examples used here are nonsoftware systems. Many
examples are used in different books, but the examples used here are based on those
defined by the master of modelling, Grady Booch [1]. There seems little point in
contriving a new modelling example when there is a perfect set of examples that has
already been defined and is widely accepted as the norm. Therefore, the examples
chosen here are based on Booch and his doghouse, house and office block.

2.1.1.1 The kennel (doghouse)

For the first example of modelling, consider the example of building a kennel.
A kennel is a small house where pets, usually dogs, can spend some time outside
without being exposed to the elements. The basic requirement for a kennel is to
keep the dog happy. This will include building a structure that is waterproof and
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large enough for the dog to fit inside. In order for it to get inside, there must be an
entrance in the kennel that is, preferably, larger than the dog itself. The inside should
also be large enough for the dog to be able to turn around in order to leave. Dogs are
particularly bad at walking backwards, which makes this last point crucial. Finally,
the dog should be comfortable enough to sleep in the kennel and thus some bedding
or cushions may be in order.

If you were about to build this kennel, then consider for a moment the basic skills
and resources that you would require. You would be wise to have:

• Basic materials such as timber, nails, etc. The quality is not really that important
as it is only for a dog. This might involve looking for any old pieces of wood
around the house or even making a trip to a hardware store.

• The money needed to pay for the kennel would be your own, but is unlikely to be
a large outlay. In terms of your personal income, it would be a fraction of a week’s
salary – perhaps the cost of a social evening out.

• Some basic tools, such as a hammer, a saw, a tape measure etc. Again, the quality
of the tools need not be wonderful, providing they get the job done.

• Some basic building skills. You need not be a skilled craftsman, but basic hand
to eye co-ordination would be an advantage.

At the end of the day (or weekend), you will probably wind up with a kennel that is
functional and in which the dog would be happy to shelter from the rain.

If the kennel was somewhat less than functional and the dog was not very happy
with its new accommodation, you could always start again (after destroying the first
attempt) and try a bit harder, learning from past mistakes. It would also be possible
to destroy the doghouse and then to deny all knowledge of ever having built one in
the first place, thus avoiding embarrassment later. Alternatively, you could get rid of
the dog and buy a less demanding pet such as a tortoise, as there is no need to build
a kennel for an animal that carries its own accommodation on its back. After all, the
dog is in no position to argue or complain.

This is Booch’s first example of modelling: the kennel or doghouse.

2.1.1.2 The house

Consider now, maybe based on the resounding success of your kennel, that you
were planning to build a house for your family. This time the requirements would
be somewhat different. There would need to be adequate space for the whole family
in which to sit and relax. In addition, there would have to be adequate sleeping
arrangements in the number of bedrooms that are chosen. There would need to be a
kitchen, maybe a dining room and one or more bathrooms and toilets. As there will
be more than one room, some thought should be given to the layout of the rooms in
terms of where they are in the house and where they are in relation to one another.

If you were to build a house for your family, you would (hopefully) approach the
whole exercise differently from that of the kennel:

• You would have to start with some basic materials and tools, but the quality of
these resources would no doubt be of a higher concern than those used for the
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kennel. It would not be good enough to simply drive down to a local hardware
store and pick up some materials as the quantity would need to be far greater and
it would not be possible to guess, with any degree of accuracy, the amount of
materials required.

• Your family would also be far more demanding and vocal than the dog. Rather
than simply guessing your family’s requirements, it would be more appropriate
to ask them their opinions and perhaps get a professional architect in to listen to
and discuss their needs.

• Unless you have built many houses before, it would be a good idea to draw up
some plans. If you were hiring skilled craftsmen to do the job, you would certainly
have to draw up plans in order to communicate your requirements to the builders.
These plans may require some input from an architect in order that they achieve
a standard that may be used effectively by the people who will be building the
house.

• The house would also have to meet building regulations and require planning
permission. This may involve contacting the local council or government repre-
sentative and possibly applying for permission to build. This in turn would almost
certainly involve submitting plans for approval before any work could be started.

• The money for the house would probably be yours, and thus you would have
to monitor the work and ensure that people stick to the plans in order to get the
job done in time, within budget and to meet your family’s original requirements.
The scale of the financial outlay is likely to be in the order of several years’ salary
and would probably be borrowed from a bank or building society and would thus
have to be paid back, regardless of the outcome of the project.

If the house turns out not to suit the requirements, the consequences would be more
serious than in the case of the kennel. The house cannot be knocked down and
started again as the kennel could, because considerably more time and money would
have gone into the house building. Similarly, you cannot simply get a less demand-
ing family (in most cases) and living with the consequences of failure is not worth
thinking about!

This is Booch’s second example: the house.

2.1.1.3 The office block

Taking the two building projects that have been discussed so far even further, imagine
that your ambition knows no bounds and that you decide to build an entire office block.

Consider once more the resources that would be required for this, the third and
final building project.

• It would be infinitely stupid to attempt to build an office block by yourself.
• The materials required for building an office block would be in significantly larger

quantities that the house (and most definitely the kennel). The materials would
be bought direct from source and may even need to be brought in from specialist
suppliers, perhaps even in different counties or countries.
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• You will probably be using other people’s money and thus the requirements for
the building will probably be their requirements. In addition, their requirements
will no doubt change once you have started building the tower block.

• More permissions are required to build an office block than a house and many more
regulations must be considered. Consider, for example, environmental conditions
that the office building may have to meet – the building must not block anyone’s
light, it will be required to blend in with its surroundings, or it may be deemed
too ugly for a particular area.

• You will have to carry out extensive planning and be part of a larger group who are
responsible for the building. Many teams will be involved from different areas
of work (builders, plumbers, electricians, architects, etc.), all of whom must
intercommunicate.

If you get the right teams involved and enjoy a degree of luck, you will produce the
desired building.

If the project does not meet the investor’s requirements, you would face severe
repercussions, including the potential of no further work and the loss of reputation.

This is Booch’s third example: the office block.

2.1.1.4 The point

These three examples from Booch may seem a little strange and somewhat trivial at
first glance; however, there is a very serious and fundamental point behind all of this.

Nobody in their right mind would attempt to build an office block with basic DIY
skills. In addition, there is the question of resources, and not only in terms of the
materials needed. In order to build an office block, you would need the knowledge to
access the necessary human resources (including people such as architects, builders,
crane operators, etc.), plenty of time and plenty of money.

The strange thing is that many people will approach building a complex system
with the skills and resources of a kennel-builder, without actually knowing if it is
a kennel, house or office block. When contemplating any complex system, you should
assume that it will be, or has the potential to turn into, an office block building.
Do not approach any project with a ‘kennel’ mentality. If you approach a project as
if it were an office block and it turns out to be a kennel, you will end up with a very
well-made kennel that is the envy of all canines. If, however, you approach a project
as if it were a kennel and it turns out to be an office block, the result will be pure
disaster!

One of the reasons why it is so easy to misjudge the size and complexity of
a project is that, in many cases, many elements of the system will not be tangible
or comprehensible. Consider integrated circuits: who can say, simply by looking at
an IC, how many transistors are inside it? Is it a processor or a simple logic gate?
Consider software: simply by looking at a CD-ROM it is impossible to judge the size
or complexity of the information contained on it. In terms of size, this could range
anywhere from a single kilobyte to several gigabytes (if the information is compressed
or ‘zipped’). Even if you have an idea of the type of application that is on the CD-
ROM, it is still difficult to judge the size of the software. Take for example, software
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that may help people write letters: this may be a simple line editor program that may
be a few kilobytes of information or it could be a full-blown office application that
may not fit on to a single CD-ROM. The fact is that all projects that involve complex
systems will have an intangible element about them, whether it is a control system, a
process, or whatever.

The important term that is used here is ‘complexity’ rather than size, as size is
not necessarily a reflection of the complexity of a system.

2.1.2 Why projects fail

Projects fail for many different reasons. However, there are several underlying
reasons, or themes, that tend to emerge when looking at project failures and disasters
in general. There are three main themes, which have already been discussed in some
detail in Chapter 1:

Complexity: Complexity is a huge problem. Some complexity is due to poor engi-
neering or the second and third reasons on this list, which is known as ‘accidental
complexity’. Accidental complexity can be avoided or, at the very least, should
be minimised. Unfortunately, there is a second type of complexity, ‘essential’
complexity, which is unavoidable as it is in the essence of the system.

Lack of understanding: The lack of understanding could concern almost any aspect
of the development life cycle. For example, not understanding what the system should
do (the requirements) can lead to disaster in later stages. Not understanding the tech-
nology that is being used to implement a solution can also lead to disaster, particularly
when people get carried away with the latest techniques and buzzwords and use tech-
nology for technology’s sake. Another common area of misunderstanding is the nature
of the problem itself – often brought on by inadequate analysis.

Communication: Communication, or rather a lack of it, is a problem that occurs in
all aspects of life. People may not be able to communicate effectively because they
speak different languages, they have different areas of expertise, they have different
definitions for the same term, or they cannot describe their thoughts effectively.

However, many projects do succeed. One reason is that they avoid, or minimise, the
aforementioned problems by effective and appropriate modelling.

2.1.3 Modelling

Are there any other reasons why we model?
The three points that were raised in the previous section have already been

discussed and form some of the basic requirements for modelling. After all, if these
are the three biggest problems with systems and modelling is one of the reasons why
projects succeed, it is not unreasonable to relate the two together.

Other requirements for modelling emerge from the three themes mentioned
previously. There is a need, for example, to visualise systems as they will appear
as a final product. Reconsider, for a moment, the three examples already intro-
duced in this chapter: the kennel, the house and the office block. Almost anybody
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should be able to distinguish between the three types of building, even if they
are shown different representations of the same type of building. This is because
when we hear a term, such as house or office block, we can immediately visualise
what the system will look like. However, when we hear other terms, such as auto-
mated control system or ecosystem, it is unlikely that any two people would come
up with a similar image of what the final system would look like as they are not
physical systems. It is therefore important that we can visualise the final system at
the outset to give some idea of the usability and functionality of the system. This
may include building a small physical model of a building, drawing a diagram of
what something should look like, and so on. This helps potential users identify with
what they will be receiving. It would, after all, be very foolish to pay for an office
block when you had not seen any plans or models of what the final building would
look like!

These plans and models may also be used for another purpose – that of analysing
a final product before it is built. This may be something very simple, such as getting
the colour or size right, or it may be something far more complex, such as stress
analysis, wind-tunnel testing, performance loading, and so forth.

Models may also be used as a template for creating or constructing the final
system. This is simple to understand within the context of building a house as the
house is based directly on the plans that are drawn up by the architect. The same is
true for circuit designs, which are simply models, albeit in an abstract form, of the
circuit that is to be built.

In order to understand one final use for models, it is necessary to take a step back
and consider what happens in a project when something does go wrong. Typically,
what will happen is that someone will ask why a particular design had been adopted.
By modelling throughout a project it is possible to model not only a single solu-
tion, but also a set of candidate solutions that may be assessed and a final solution
can then be chosen that best meets the original requirements of the system. These
models of the complete set of candidate solutions may then be used as a basis for
documenting decisions and if the models are retained so is the decision-making
process. This is helpful in justifying why a particular approach or solution was selected
over any other choices, which is particularly useful when people are trying to ‘pass
the buck’.

After all these discussions concerning the rationale for modelling, it is now time
to define exactly what a model is.

2.1.4 Defining a ‘model’

It is now possible, bearing in mind the previous discussion, to come up with
a definition for a model, which will be taken once more from Booch.

A model is defined as a simplification of reality that is created in order to better understand
the system under development, as we cannot comprehend complex systems.

We return to this definition throughout this chapter and the rest of the book and thus
it should be kept at the forefront of your mind while reading.
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In summary, therefore, we use modelling in four explicit ways:

• To visualise a system. To quite literally get a mental picture of what the final
system will look like from the user or operator’s point of view.

• To specify a system. By specify, we mean to state specific needs or requirements
concerning the system.

• As a template for creation, for example, of a plan from which to build the final
system.

• In order to document decisions made throughout the project. Quite often,
especially when things start to go wrong, people will look to lay blame or to
try to establish why particular decisions were made at key points in the project.
By effective modelling it is possible to capture thought processes throughout the
life cycle of the project, which can be enormously powerful later on.

These four aims of modelling are used to help to reduce complexity, improve
communications and enhance your understanding of a system.

2.1.5 Principles of modelling

Booch identifies four principles of modelling that are deemed crucial for successful
and consistent modelling: the choice of model, the level of abstraction, connection to
reality and independent views of the same system.

2.1.5.1 The choice of model

The choice of model will have a profound influence on how a problem is approached.
Approaching a problem the right way can make a job much simpler and will be quicker
than adapting the wrong approach.

Consider for example other subjects that are taught in a school or college. Many
subjects are taught by advocating a particular approach to analysis or problem solving
but an inherent part of the approach will be to choose the right way to solve the
problem. As an example of this, consider a simple mathematical operation, such as
finding the slope of a line. This may be done in many ways, depending on the type
of line. If it is a straight line, a simple ‘height over length’ equation will solve the
problem. However, if, on the other hand, the line is a curve, this simple formula will
not work, as the slope of the line will change depending on the point in the line at
which the slope is measured. In order to solve this problem, calculus and in particular,
differentiation, should be applied. Applying this retrospectively, differentiation can be
applied to a straight line with the same result as the simple formula, but not vice versa.

Everybody must have sat in an examination and started out answering a question,
only to find that, halfway through, the wrong approach has been taken and the problem
must be restarted. This could have a big influence on your life, particularly if you
do not finish the exam or if you get the answers wrong. Also, remember, as some
people are so fond of saying: you get more marks for your approach than for the
actual answer! It is the same with all engineering, a well-defined approach is vital,
which involves choosing the appropriate model.

This is a topic that will be raised many times once the UML has been introduced.
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2.1.5.2 Abstraction of the model

For the purposes of this book, ‘abstraction’ refers to the level of detail of a model.
Imagine the office block problem. You may need to create a model to show the
size of the whole building, or how a single storey is constructed or a single light
switch operates. Each of these requires a different level of abstraction for a successful
model.

The point to be made here is that any model will require different levels of
abstraction to be represented, otherwise it will have little chance of being correct.
Imagine the scenario in which a single model was drawn up to represent the office
block. Although useful for the financial backers to see a high-level view of the
building, it would be next to useless for an electrician, plumber or ventilation
engineer.

2.1.5.3 Connection to reality

One problem with modelling is that, according to our definition, models simplify
reality. This means that some information must be lost somewhere along the line,
which can cause problems. Therefore, it is vital to know both how the model relates
to real life and how far it is divorced from real life.

From a practical point of view, initial models tend to have quite a loose connec-
tion to reality and, as these models evolve, they get closer and closer to reality. The
final connection to reality will be at the point when the model actually becomes
reality, which is when the project is implemented or constructed based on the
model.

From a conceptual point of view, it is important that whoever is looking at a
model can make a connection to reality, otherwise the model becomes meaningless.
Consider again the example of differentiation. School children often find differenti-
ation difficult to understand as they cannot ‘see the point’ of it. Only when practical
examples can be shown for using differentiation, such as working out speed and
acceleration, can people truly understand the concept.

2.1.5.4 Independent views of the same system

It has already been stated that a good model requires views that represent different
levels of abstraction, but it is also true that a good model requires views made from
different vantage points.

Consider again the office block building where many different views will be
required to completely model the system. The different people who work on the
project will require different views of the same model. For example, electricians
should really have wiring diagrams, while painters will require colour charts. There
is no point giving the colour chart to the electrician, nor the wiring diagram to the
painter, as they are simply not relevant.

One crucial point that must be made here, however, is that each of these indepen-
dent views must be consistent with one another, or, to put it another way, they must
integrate correctly.
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2.2 The UML

2.2.1 Introduction

The previous sections have identified many requirements for modelling and justified
why modelling is so important. In order to model successfully, a common language
is required and that common language is, quite unsurprisingly, the Unified Modelling
Language (UML).

The UML is a general-purpose modelling language that is intended for software-
intensive systems. This definition is far too restricting, however. The UML is
a language and can thus be used to communicate any form of information and should
not be limited to software. The main aim of this book, therefore, is to take the UML
and apply it to systems engineering, rather than simply to software engineering. There
are many excellent books that relate the UML to software, so this is kept to a minimum
in this book.

2.2.2 Aspects of the model

There are 13 diagrams in the UML that may be grouped into two broad categories,
each of which represents a particular aspect of the model. These two aspects of the
model are the ‘structural’ (often referred to as static) and ‘behavioural’ (often referred
to as dynamic, or timing) aspects of the model. It is vital that both of these aspects
exist for any system, otherwise the system is not fully defined.

Each of the 13 diagrams belongs to one of these categories. Each of them has
strong relationships with other types of diagrams and both aspects of the model have
strong relationships with each another. These strong relationships between the types of
diagrams and aspects of the model are what allow consistency checks to be performed
on UML models, and give confidence in the model itself.

The structural aspect of the model shows the ‘things’ or entities in a system and
the relationships between them. It is crucial to remember that the structural aspect
of the model shows ‘what’ the system looks like and ‘what’ it does, but not ‘how’.
A structural aspect of the model may be thought of as a snapshot in time of any
system.

Figure 2.1 shows the UML diagrams that relate to structural modelling. The struc-
tural aspect of the model may be realised by six UML diagrams: class diagrams, object
diagrams, package diagrams, composite structure diagrams, deployment diagrams
and component diagrams. Structural modelling is the topic of Chapter 3, while each
of the types of structural diagram is discussed in more detail in Chapter 5.

The structural aspect of the model shows the ‘what’ of the system, while the
behavioural aspect of the model shows the ‘how’. The behavioural aspect of the
model demonstrates how a system behaves over time by showing the order in which
things happen, the conditions under which they happen and the interactions between
things.

The behavioural aspect of the model may be realised using seven UML diagrams:
state machine diagrams, use cases, interaction diagrams (sequence, communication,
interaction overview and timing diagrams) and activity diagrams (Figure 2.2).
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Figure 2.2 Diagrams that realise the behavioural aspect of the model in the UML

Behavioural modelling is the subject of Chapter 4, while each of the behavioural
diagrams is discussed in more detail in Chapter 5.

2.2.3 Views versus models

Many books refer to the different types of ‘view’ of a system that must exist
throughout the life cycle of the project. This term is often used interchangeably
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with the term types of ‘model’, but for the purposes of this book it is important to
distinguish between them. A view refers to a collection of UML diagrams that are
created for a specific purpose and that are often related to different phases of the
project life cycle. The two aspects of the model that exist are still applicable to all
types of view that may be defined. The reason why these views are not discussed
in much detail here is that they often constrain development to a particular process
or design approach, while this book introduces the UML purely as a language and
nothing more. Where appropriate, as for particular applications, these views are
described, for example: process views, requirement views, logical views, and so on.

The UML should not change the way in which you approach your work – instead,
it should complement it and make it more efficient.

2.2.4 Extending the UML

Despite what others may say, the UML is not some sort of panacea that will cure
all your problems. After all, there is no silver bullet and the UML should not be
considered as such.

The main shortfall of the UML is seen when it comes to formal, mathematical
specification. This criticism is that the UML is not a truly formal approach. Again,
this is true, but the UML is intended to be a general-purpose modelling language
with a scope that is as wide as possible. In addition, there is nothing to stop the UML
being used in conjunction with more formal techniques, such as VDM or Z (formal
specification languages), in order to formally specify crucial parts of a system.

The UML was designed to be as flexible as possible and, as such, has a number
of built-in extension mechanisms that may be used to extend the functionality and
scope of the language itself. These basic mechanisms are stereotypes, constraints and
tagged values, which are discussed in detail in Chapter 10.

2.2.5 Background of the UML

This section gives a very brief overview of the background of the UML and discusses
where it came from and why.

The UML is a general-purpose visual modelling language that is used to specify,
visualise, construct and document the artefacts of any system. These terms have
already been defined, but will be mentioned again here:

• To specify means to refer to or state specific needs, requirements or instructions
concerned with a complex system.

• To visualise means to realise in a visual fashion or, in other words, to represent
information using diagrams.

• To construct means to create a system based on specified components of that
system.

• To document means to record the knowledge and experience of the software in
order to show how the software was conceived, designed, developed, verified and
validated.
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The UML is very flexible and has a wide scope that reflects this. The UML may
be used for:

Any development environment: The UML is not restricted to any particular
development environment or language. Although some people claim that the UML
is more suited to object-oriented environments, it should be remembered that object
orientation is, in one sense, a frame of mind, and that the UML is simply a language.
Therefore you should not constrain yourself by thinking that the UML may only be
used for object-oriented software systems, as it can be used for any system with any
implementation in mind.

Any process model: The UML is a language that, unlike its predecessors, does not
have an inherent process. There is a defined process that is recommended by the
authors of the UML, which is known as the Rational Unified Process (RUP). The
RUP is an excellent, well-proven approach to software design, but there is no reason
to suggest that this approach must be adopted in order to use the UML successfully.
Indeed, Chapter 6 examines process modelling and makes the point that the UML
can be applied to any process. Remember, the UML should not change the way that
you work, but should make you work more efficiently.

All life cycle phases: The UML should not only be considered for analysis and design,
but may also be used effectively, at all life cycle phases, from requirements through to
operations (or inception to transition, if you are an RUP person). The more that you use
the UML, the more benefits will be derived from using the language. It makes sense
that if you are using a particular language for requirements, the same language should
be used for analysis and design. Apart from anything else, it aids traceability enor-
mously, which from a systems engineering quality point of view is absolutely crucial
to the success of a project. The UML should also be utilised after the implementation-
related phase, when it can be used to plan and document the installation and transfer
of a system and can even be used for user manuals and other documentation.

Any application domain: The UML may be used for any application area, even
those areas that do not include software development. Historically, many modelling
techniques have emerged from a particular industry, which is fine if you happen to
work in that industry, but if you move careers or if two separate industries have to
talk to each other, problems can arise – the increasingly widespread use of the UML
overcomes this.

The UML represents a unification of past experience and methodologies in a single,
cohesive language that can be applied to any sort of modelling.

2.2.5.1 History of the UML

The UML is relatively new, having only been fully defined since 1997. Modelling
languages, however, have existed for many years in many different forms. There
were, though, simply too many modelling languages, methods and methodologies.
One of the main reasons for modelling – that of communicating effectively – was
being destroyed as, in a bizarre Babel-like scenario, everyone ended up speaking



Modelling 37

different languages when they were actually trying to solve this problem. There
was thus a huge industrial need to consolidate all these techniques into a single,
usable, flexible language. In addition, by making the UML a language rather than
a methodology (with an inherent process), it became more generally acceptable and
far more powerful than its predecessors.

The UML, therefore, was developed in order to simplify and consolidate the many
existing methods that may be grouped into the two main categories of traditional
techniques and object-oriented techniques.

2.2.5.2 Traditional modelling techniques

Many traditional development methods exist. The term ‘traditional’ here refers to the
non-object-oriented techniques sometimes referred to as ‘classic’ techniques.

Some traditional techniques include:

• Structure Analysis and Structured Design (SASD) created by Edward Yourdon
and Larry Constantine in 1977. This was considered the ‘father’ of all other
techniques as it was the original visual modelling technique [2].

• Structured Analysis for Real-time Systems, by P T Ward and S Mellor. This
approach was based on function-decomposition but with added diagrams to take
into account timing relationships in a system [3].

Many other techniques exist which are based mainly on the data flow diagram
approach. These techniques were widely accepted from the 1980s onwards and
remain in widespread use today. For a discussion of these and other techniques,
see Reference 4.

2.2.5.3 Object-oriented modelling techniques

The late 1980s saw the advent of object-oriented (OO) techniques. Although object-
oriented languages have been around since the late 1960s (Simula-67), it took 20 years
for their associated modelling techniques to be developed.

These techniques include:

• Object-oriented systems analysis, by Shlaer and Mellor in 1988. This was an
early analysis approach that made use of a particular type of object diagram, state
transition diagrams, tables and domain models [5].

• Object-oriented analysis, by Peter Coad and Edward Yourdon in 1991. This
approach used structural diagrams that represented subjects and objects [6].

• The Booch method, by Grady Booch in 1991. One of the most widely adopted
approaches and, of course, of the three main authors of the UML, the Booch
approach used: class diagrams, object diagrams, module diagrams, process
diagrams, state transition diagrams and timing diagrams [7].

• The object modelling technique (OMT) by James Rumbaugh, Michael Blaha,
William Lorensen, et al. also in 1991. Again, one of the most widely adopted
techniques that made use of three main types of diagrams: class diagrams, state
machine diagrams and data flow diagrams. The class diagrams from OMT are
very similar indeed to those in the UML using much of the same notation [8].
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• Object-oriented software engineering (OOSE) by Ivar Jacobson in 1992.
Jacobson’s main contribution to the world of OO has been the use of use case
diagrams that dictated much of the OOSE approach. The use cases that are part
of the UML are derived directly from Jacobson’s work [9].

• CRC-cards by Rebecca Wirfs-Brock. CRC-cards represent a very pragmatic
approach to applying OO techniques and are still widely used today. Indeed,
some people still like to use them in conjunction with the UML [10].

Many other techniques also exist and, if you are interested in them, see [11, 12] for a
detailed description and comparison of the different techniques.

Anyone familiar with any of the techniques mentioned here or other OO
techniques will no doubt recognise elements of them in the UML. This is because
the UML is a unification of all these techniques.

2.2.5.4 Unification of different modelling techniques

There were a number of early attempts to unify concepts among the various modelling
techniques. Perhaps the most widely known (apart from the UML, that is) was Fusion,
by Coleman et al. The Fusion method combined elements of Booch, OMT and CRC.
However, as none of the original authors was involved, it is judged to be a new method
rather than a unification effort.

The first real unification effort came from Rumbaugh and Booch from Rational
software corporation in 1994, known as the Unified Method. The following year, they
were joined by Ivar Jacobson. This work was then renamed the Unified Modelling
Language – the UML.

In 1996, the Object Management Group (OMG) issued a request for proposals for
a standard approach to object-oriented modelling. As it turned out, the UML was the
sole submission to the OMG as it had been agreed upon by methodologists, industry
and CASE (computer aided/assisted software engineering) tool vendors.

As stated previously, Rumbaugh, Booch and Jacobson worked with many other
methodologists, including those responsible for the Fusion method, the result of which
was a single submission to the OMG in the form of the UML. The UML was accepted
as a standard by the OMG in 1997 and responsibility for the UML is now assumed
by the OMG [1].

As the UML is now a standard, the information is nonproprietary and thus there
is little risk of being tied to a single vendor or supplier when adopting the UML. With
the announcement of the acceptance of the UML by the OMG there came a flood of
textbooks and CASE tools on the market, of very mixed and variable standards.

The list of backers for the UML is as impressive as it is long. The core team
included Hewlett-Packard, I-Logix, IBM, ICON Computing, Intellicorps and James
Martin and Company, MCI Systemhouse, Object Time, Oracle, Platinum Technology,
Rational Software, Taskon, Texas Instruments and Unisys.

The current version of the UML is UML version 2.0. Despite the fact that UML 2.0
is viewed by many as a radical change from version 1.x, it is not. UML 2.0 is simply
a natural evolution of UML 1.x and, yes, there are many changes to the syntax, but
the concepts remain the same.
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There are many textbooks on the market and many CASE tools. All of these
resources vary enormously in quality and cost and it is important to be able to make
an informed decision as to where to go next with regard to the UML.

2.2.6 A nonproprietary language

Perhaps one of the most crucial requirements for the UML was to make it nonpro-
prietary so that it is not owned by a single organisation. Although the UML was
developed by Rational software, it is the OMG who retain ownership and responsi-
bility for the UML standard itself and, as such, it is in the public domain. This means
that you can use any UML-compliant CASE tool to aid modelling, any company (with
UML knowledge, obviously) for consultancy and training and choose any textbook
from which to learn the UML. If there are any inconsistencies with the resources
being used, or any queries with the UML, there is a single source of reference, which
is the standard itself.

Another important aspect of the nonproprietary nature of the UML is that there is
far less risk of being locked into a single vendor for tools and support. One massive
risk to any project is that a single vendor is used to supply all tools and support
(training, consultancy, etc.) and this company either goes bust and hence, all support
is gone, or doubles its training and consultancy fees overnight, leaving the customer
in a very precarious situation.

2.3 Conclusions

In summary, therefore, there are many reasons why the UML is truly unified. The
UML provides unification:

Across historical methods and notations: The UML combines notation and concepts
from many modelling techniques. The UML can represent most existing models as
well as, if not better than, their existing techniques. Anyone familiar with an existing
technique will no doubt recognise some elements of the UML.

Across development life cycles: The UML may be used at all phases of the software
development life cycle and thus the transition between phases is seamless. As the
UML is used more often, the advantages associated with its use will increase.

Across application domains: Many existing techniques were focused in a single
industry and thus had limited scope. The UML, however, is designed to be applicable
to any aspect of complex software-intensive systems.

Across implementation languages: The UML is language-independent and thus may
be used for any form of implementation. This may relate to a particular software
language or may not even apply to software at all.

Across development processes: The UML may be used for any development pro-
cess and, as will be seen in due course, may even be used to define such
a process. Although there is a recommended process (the RUP) that is promoted
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by the designers of the UML, there is no obligation whatsoever to follow such an
approach, as the UML is a language rather than a methodology.

It is established, therefore, that the UML is truly unified. Moreover, it also has the
following advantages over all of its predecessors:

Widely accepted: The list of industrial supporters is very long (the list provided here
being only a subset of full supporters) and is growing all the time. The UML is
industry driven and satisfies a real industrial need.

Nonproprietary: This is crucial from a project risk point of view as the risk of being
tied to a single supplier or vendor is minimised.

Commercially supported: There are many tools and textbooks on the market to
support UML efforts.

Extendable: Although the UML is no ‘silver bullet’, it is designed to be as flexible as
possible and to be extendable for specific applications. Chapter 10 discusses extending
the UML in more detail.

All of these points contribute towards making the UML the most flexible and widely
used modelling language today, which has superseded all previous techniques and
notations.

The UML is the industry standard for software engineering and is being increas-
ingly used for systems engineering. Knowledge of the UML is becoming more
important, to the point of becoming essential for all systems engineers.

2.4 Further discussion

1. Think of some examples of the three types of model that were discussed: the
kennel, the house and the office block.

2. Consider the office block and try to think of different types of model that would
be required to construct the building. What different teams of people would be
involved?

3. What levels of abstraction would be required for the house? Who would require
these different levels of abstraction?

4. Consider the mathematical operations of differentiation and integration. What can
they actually be used for in real life? How would you compare their connection
to reality?

5. Consider visual modelling and formal mathematical modelling. Which would be
the most appropriate for representing the architecture of a system and which for
representing a numerical simulation of the same system?
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Chapter 3

Structural modelling

(Camelot!) It’s only a model

Patsy

3.1 Introduction

Previously we have discussed the point that each system must be modelled in two
different aspects. This chapter examines one of these aspects: the structural aspect of
the model.

Figure 3.1 shows the six types of diagrams that can be used to realise structural
models: class diagrams, package diagrams, object diagrams, composite structure
diagrams, component diagrams and deployment diagrams.
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Obj1 : Class 1

«component»
Component 2

Figure 3.1 Types of structural model
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In order to illustrate the concepts behind structural modelling, one of the six
structural diagrams will be used to show some simple examples. The diagram chosen
is the class diagram as this forms the backbone of the Unified Modelling Language
(UML). In addition, the structural modelling principles shown in this section with
reference to class diagrams can be applied when using any type of structural model.
For more in-depth discussion concerning class diagrams and structural modelling,
see References 1–3.

3.2 Structural modelling using class diagrams

3.2.1 Modelling classes and relationships

The class diagram is, arguably, the most widely used diagram in the UML. Class
diagrams have a long history and are present in some shape or form in all of the other
methodologies that were mentioned previously in this part of the book. The class
diagram is also the richest diagram in terms of the amount of syntax available to the
modeller. As with all UML diagrams, it is not necessary to use every piece of syntax,
as experience has shown that 80 per cent of any modelling task can be achieved by
using approximately 20 per cent of class diagram syntax. The simplest (and wisest)
approach is to learn the bare minimum syntax and then to learn more as and when
circumstances dictate.

3.2.2 Basic modelling

There are two basic elements that make up a class diagram, which are the ‘class’ and
the ‘relationship’ and, at a very simple level, that is it! Clearly, there are many ways
to expand on these basic elements, but providing that they are understood clearly and
simply, the rest of the syntax follows on naturally and is very intuitive.

A ‘class’ represents a type of ‘thing’ that exists in the real world and, hence, should
have a very close connection to reality. Classes are almost always given names that
are nouns, as nouns are ‘things’ and so are classes. This may seem a trivial point, but
it can form a very powerful heuristic when assessing and analysing systems as it can
be an indicator of whether something may appear as a class on a model.

The second element in a class diagram is a relationship that relates together one
or more classes. Relationships should have names that form sentences when read
together with their associated classes. Remember that the UML is a language and
should thus be able to be ‘read’ as one would read any language. If a diagram is
difficult to read, it is a fairly safe bet that it is not a very clear diagram and should
perhaps be ‘rewritten’ so that it can be read more clearly. Reading a good UML
diagram should not involve effort or trying, in the same way that any sentence should
not be difficult to read.

Now that the basics have been covered, it is time to look at example class diagrams.
It should be pointed out that from this point, all diagrams that are shown will be UML
diagrams. In addition, although some of the diagrams may seem trivial, they are all
legitimate and correct diagrams and convey some meaning – which is the whole point
of the UML!
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Class 1 Class 2

Figure 3.2 Representing classes

Figure 3.2 shows two very simple classes. Classes are represented graphically
by rectangles in the UML and each must have a name, which is written inside the
rectangle. In order to understand the diagram, it is important to read the symbols.
The diagram here shows that two classes exist: ‘Class 1’ and ‘Class 2’. This is the
first UML diagram in the book and, if you can read this, then you are well on the way
to understanding the UML.

Class 1 Class 2
associates

Figure 3.3 Representing a relationship

Figure 3.3 shows how to represent a relationship between two classes. This
particular relationship is known as an ‘association’ and is simply a general type of
relationship that relates together one or more classes. The association is represented
by a line that joins two classes, with the association name written somewhere on the
line. This diagram reads: two classes exist: ‘Class 1’ and ‘Class 2’ and ‘Class 1’
associates ‘Class 2’.

Dog Cat
chases

Cat Mouse
eats

Figure 3.4 Examples of classes and associations

Figure 3.4 shows two more examples that are based on real life. The top part
of the diagram reads: there are two classes: ‘Dog’ and ‘Cat’ where ‘Dog’ chases
‘Cat’. Likewise, the lower part of the diagram reads: there are two classes: ‘Cat’ and
‘Mouse’ where ‘Cat’ eats ‘Mouse’.

This illustrates a very important point concerning classes, as classes are abstract
and do not actually exist in the real world. There is no such thing as ‘Cat’, but there do
exist many examples of ‘Cat’. A class represents a grouping of things that look and
behave in the same way, as, at one level, all examples of ‘Cat’ will have a common
set of features and behaviours that may be represented by the class ‘Cat’. What this
class is really representing is the blueprint of ‘Cat’, or the essence of ‘Cat’.

Another important point illustrated here is that every diagram, no matter how
simple, has the potential to contain a degree of ambiguity. Figure 3.4 is actually
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ambiguous as it could be read in one of two ways, depending on the direction in
which the association is read. Take, for example, the top part of the diagram: who is
to say that the diagram is to be read ‘Dog’ chases ‘Cat’ rather than ‘Cat’ chases ‘Dog’,
as it is possible for both cases to be true. It should be pointed out that for this particular
example the world that is being modelled is a stereotypical world where dogs always
chase cats, and not the other way around. Therefore, there is some ambiguity as the
diagram must only be read in one direction for it to be true; thus, a mechanism is
required to indicate direction.

The simplest way to show direction is to place a direction marker on the association
that will dictate which way the line should be read, as shown in the top part of
Figure 3.5. The diagram now reads ‘Dog’ chases ‘Cat’ and definitely not ‘Cat’ chases
‘Dog’ and is thus less ambiguous than Figure 3.4.

Dog Cat

Dog Cat
chases

chaser chasee

Dog Cat
dislikes

chases

Figure 3.5 Showing direction

The second way to show direction is to define a ‘role’ on each end of the associ-
ation, as shown in the middle part of Figure 3.5. In this case, the two roles that have
been defined are ‘chaser’ and ‘chasee’, which again eliminates the ambiguity that
existed in Figure 3.4.

The lower part of Figure 3.5 introduces a new association called ‘dislikes’. This
time, however, the lack of direction is intentional as both statements of ‘Dog’ dislikes
‘Cat’ and ‘Cat’ dislikes ‘Dog’ are equally true. Therefore, when no direction is
indicated, it is assumed that the association can be read in both directions or, to put it
another way, the association is said to be ‘bi-directional’.

Another reason why the diagram may be misunderstood is because there is no
concept of the number of cats and dogs involved in the chasing of the previous dia-
grams. Expressing this numbering is known as ‘multiplicity’, which is illustrated in
Figure 3.6.

Dog Cat

Dog Cat

1..*

1..*1..*

chases

chases

Figure 3.6 Showing numbers using multiplicity
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The top part of Figure 3.6 shows that each ‘Dog’ chases one or more ‘Cat’.
If no number is indicated, as in the case of the ‘Dog’ end of the association, it is
assumed that the number is ‘one’. Although the number is one, it does not necessarily
indicate that there is only one dog, but rather that the association applies for each
dog. The multiplicity at the other end of the ‘chases’ association states ‘1..*’, which
means ‘one or more’ or somewhere between one and many. Therefore, the association
shows that each ‘Dog’ chases one or more ‘Cat’.

The lower part of the diagram shows a case where the multiplicity has been
changed, which changes the entire meaning of the model. In this case, the diagram is
read as: one or more ‘Dog’ chases one or more ‘Cat’. This could mean that a single
dog chases a single cat, a single dog chases any number or a herd of cats, or that an
entire pack of dogs is chasing a herd of cats.

Which of the two examples of multiplicity is correct? The answer will depend on
the application that is being modelled and it is up to the modeller to decide which is
the more accurate of the two.

3.2.3 Adding more detail to classes

So far, classes and relationships have been introduced, but the amount of detailed
information for each class is very low. After all, it was said that the class ‘Cat’ repre-
sented all cats that looked and behaved in the same way, but it is not defined anywhere
how a cat looks or behaves. This section examines how to add this information to
a class by using ‘attributes’ and ‘operations’.

Consider again the class of ‘Cat’, but now think about what general properties
the cat possesses. It is very important to limit the number of general properties that
are identified to only those that are relevant, as it is very easy to get carried away and
over-define the amount of detail for a class.

For this example, suppose that we wish to represent the features ‘age’, ‘weight’,
‘colour’ and ‘favourite food’ on the class ‘Cat’. These features are represented on the
class as ‘attributes’ – one for each feature (Figure 3.7).

age
weight
colour
favourite food

Cat

Figure 3.7 Attributes of the class ‘Cat’

Attributes are written in a box below the class name box. When modelling
software, it is possible to add more detail at this point, such as the visibility of
the attribute, type, default values, and so forth. As attributes represent features of a
class, they are usually represented by nouns and they must also be able to take on
different values. For example, ‘colour’ is a valid attribute, whereas ‘red’ would not
be in most cases, as ‘red’ would represent an actual value of an attribute rather than
an attribute itself. It is possible for ‘red’ to be an attribute, but this would mean that
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the attribute would have a Boolean type (true or false) to describe a situation where
we would only be interested in red cats and not any other type.

Attributes thus describe how to represent features of a class, or to show what it
looks like, but they do not describe what the class does, which is represented using
‘operations’. Operations show what a class does, rather than what it looks like, and
are thus usually represented by verbs. Verbs, as any schoolchild will be able to tell
you, represent ‘doing’ words, and operations describe what a class ‘does’. In the case
of the class ‘Cat’ we have identified three things that the cat does, which are ‘eat’,
‘sleep’ and ‘run’ (Figure 3.8).

age
weight
colour
favourite food
eat()
sleep()
run()

Cat

Figure 3.8 Operations of the class ‘Cat’

Operations are represented in the UML by adding another rectangle below
the attribute rectangle and writing the operation names within it. When modelling
software, operations may be defined further by adding extra detail – for example,
arguments, return values, visibility and so forth.

The class ‘Cat’ is now fully defined for our purposes and the same exercise may be
carried out on any other classes in the diagram in order to fully populate the model.
It should also be pointed out that the classes may be left at a high level with no
attributes or operations. As with everything in the UML, only use as much detail as
is necessary, rather than as much as is possible.

3.2.4 Adding more detail to relationships

Section 3.1.2.1 showed how to add more detail to classes, while this section shows
how to add more detail to relationships, by defining some special types that are
commonly encountered in modelling. There are four types of relationships that will
be discussed here: ‘association’, ‘aggregation’, ‘specialisation’ and ‘instantiation’.
Many types of relationships exist, but these four represent the majority of the most
common uses of relationships.

Associations have already been introduced and shown to be a very general type
of relationship that relate together one or more class. Therefore, they will not be
discussed in any further detail, so the next three sections cover each of the other
special types of relationships.

3.2.4.1 Aggregation and composition

The second type of relationship is a special type of association that allows assemblies
and structures to be modelled and is known as ‘aggregation’.
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Cat Collar

Bell Belt

Clasp

Buckle

Sphere

Donger

wears

is on is on

Figure 3.9 Example of aggregation

Figure 3.9 provides an example of aggregation. Aggregation is shown graphically
in the UML by a diamond or rhombus shape and when reading the diagram, is read
by saying ‘is made up of’. Starting from the top of the diagram, the model is read
as: ‘Cat’ wears ‘Collar’. The direction is indicated with the small arrow and there is
a one on one relationship between the two classes. The multiplicity here is implied
to be one to one as there is no indication otherwise. This makes sense as it is very
unlikely that one cat would wear one or more collar and almost impossible to imagine
that more than one cat would wear a single collar!

The ‘Collar’ is made up of (the aggregation symbol) a ‘Bell’, a ‘Belt’ and
a ‘Buckle’. The ‘Bell’ is on the ‘Belt’ and the ‘Buckle’ is on the ‘Belt’.

The ‘Bell’ is made up of (the aggregation symbol) a ‘Clasp’, a ‘Donger’ and
a ‘Sphere’.

This is the basic structure of the bell and allows levels of abstraction of detail to
be shown on a model.

There is also a second special type of association that shows an aggregation-style
style of relationship, known as ‘composition’. The difference between composition

Weapon

Sabre

Guard

Handle

Pommel

EpeeFoil

Blade

Foible

Forté Tang

Figure 3.10 Example of the difference between composition and aggregation
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and aggregation is subtle but very important and can convey much meaning. The sim-
plest way to show this difference is to consider an example, as shown in Figure 3.10.

This model represents the structural aspect of the types of weapon that may
be used in the sport of fencing (as opposed to putting up fences or selling stolen
goods). From the model, there are three types of ‘Weapon’: ‘Foil’, ‘Epée’ and ‘Sabre’
(this is a ‘type of’, or ‘specialisation’ relationship that will be discussed in a subse-
quent section). Each weapon is made up of a ‘Handle’, a ‘Pommel’, a ‘Blade’ and
a ‘Guard’. The ‘Blade’ is made up of a ‘Forté’, a ‘Foible’ and a ‘Tang’. There is
a clear visual difference here as the aggregation symbol under ‘Blade’ is filled in,
rather than empty as in the case of the aggregation under ‘Weapon’. The semantic
difference, however, is that an aggregation is made up of component parts that may
exist in their own right. It is possible to buy or make any of the components under the
class ‘Weapon’ as they are assembled into the completed class ‘Weapon’. The class
‘Blade’, however, has three components that cannot exist independently of the class
‘Blade’. This is because a fencing blade is a single piece of steel that is composed
of three distinct sections. For example, there is no such thing as a ‘Foible’ as it is an
inherent part of the ‘Blade’ rather than being an independent part in its own right.

3.2.4.2 Specialisation and generalisation

The third special type of relationship is known as ‘specialisation and generalisation’,
depending on which way the relationship is read. ‘Specialisation’ refers to the case
when a class is being made more special or is being refined in some way. Specialisation
may be read as ‘has types’ whenever its symbol, a small triangle, is encountered on
a model. If the relationship is read the other way around, then the triangle symbol is
read as ‘is a type of’, which is a generalisation. Therefore, read one way the class
becomes more special (specialisation) and read the other way, the class becomes more
general (generalisation).

Specialisation is used to show ‘child’ classes, sometimes referred to as subclasses,
of a ‘parent’ class. Child classes inherit their appearance and behaviour from their
parent classes, but will be different in some way in order to make them special.
In UML terms, this means that a child class will inherit any attributes and operations
that its parent class has, but may have additional attributes or operations that make
the child class special.

Life form

Vegetable Mineral

Mammal Insect

Animal

Fish

Figure 3.11 Life form hierarchy
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As an example of this, consider Figure 3.11, which shows different types of life
known to man. The top class is called ‘Life form’ and has three child classes: ‘Animal’,
‘Vegetable’ and ‘Mineral’, which makes ‘Life form’ the parent class. Going down
one level, it can be seen that ‘Animal’ has three child classes: ‘Mammal’, ‘Fish’ and
‘Insect’. Notice now how ‘Animal’ is the parent class to its three child classes, while
still being a child class of ‘Life form’.

The diagram may be read in two ways:

• From the bottom up: ‘Mammal’, ‘Fish’ and ‘Insect’ are types of ‘Animal’.
‘Animal’, ‘Vegetable’ and ‘Mineral’ are all types of ‘Life form’.

• From the top down: ‘Life form’ has three types: ‘Animal’, ‘Vegetable’ and
‘Mineral’. The class ‘Animal’ has three types: ‘Mammal’, ‘Fish’ and ‘Insect’.

This explains how to read the diagrams, but does not cover one of the most important
concepts associated with generalisation and specialisation, which is the concept of
inheritance, best illustrated by considering the diagram in Figure 3.12.

age
gender
number of legs

Animal

scale type

Fish

suckle young()
breathe air()

Mammal

number of legs

Insect

{number of 
legs = 6}

Figure 3.12 Example of inheritance

This figure shows an expanded version of Figure 3.11 by adding some attributes
and operations to the classes. It can be seen that the class ‘Animal’ has three iden-
tifiable attributes: ‘age’, ‘gender’ and ‘number of legs’. These attributes will apply
to all types of animals and will therefore be inherited by their child classes. That
is to say, any of the child classes will automatically have the same three attributes.
This inheritance also applies to the behaviour of the parent class; therefore, if some
operations had been defined for the class ‘Animal’, these would also be inherited by
each of the child classes. What makes the child class different or special and therefore
an independent class in its own right, is the addition of extra attributes and opera-
tions or constraints on existing attributes. Let us consider an example of each one of
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these cases:

• The class ‘Mammal’ has inherited the three attributes from its parent class. Inher-
ited properties (attributes and operations) are not usually shown on child classes.
In addition, it has had an extra two operations identified, which the parent class
does not possess: ‘breathe air’ and ‘suckle young’. This is behaviour that all
mammals possess, whereas not all animals do, or to put it another way, the reason
why mammals are special compared to animals generally.

• The class ‘Fish’ has inherited the three attributes from its parent class (which
are not shown), but has had an extra attribute added that its parent class will not
possess: ‘scale type’. This makes the child class more specialised than the parent
class.

• The class ‘Insect’ has no extra attributes or operations but has a constraint on one
of its attribute values. The attribute ‘number of legs’ is always equal to six, as
this is in the nature of insects. The same could be applied to ‘Mammal’ to some
extent as ‘number of legs’ would always be between zero (in the case of whales
and dolphins) and four, while ‘number of legs’ for ‘Fish’ would always be zero.
Such a limitation is known in the UML as a ‘constraint’, which is one of the
standard extension mechanisms for the UML and which is covered in some detail
in Chapter 10.

From a modelling point of view, it may be argued that the attribute ‘number of legs’
should not be present in the class ‘Animal’ as it is not applicable to fish. This is fine
and there is nothing inherently wrong with either model, however, it is important to
pick the most suitable model for the application at hand. Remember that there are
many correct solutions to any problem, and thus people’s interpretation of information
may differ. By the same token, it would also be possible to define two child classes
of ‘Animal’ called ‘Male’ and ‘Female’, which would do away with the need for the
attribute ‘gender’ as shown in Figure 3.13.

Animal

Male Female

Figure 3.13 Another way to model gender

The model in Figure 3.13 shows another approach to modelling the gender of an
animal. Which approach is the better of the two, the one shown in Figure 3.12 or
the one shown in Figure 3.13? Again, it is necessary to pick the most appropriate
visual representation of the information and one that you, as the modeller, are
comfortable with.

As a final example, let us revisit our old friend the cat who is undeniably a life
form, an animal and also a mammal. This gives three layers of inheritance, so that
the class ‘Cat’ may now be represented as in Figure 3.14.
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suckle young() 
breathe air()

Mammal

Cat
suckle young() 
breathe air()

number of legs 
gender
age

Cat

Figure 3.14 A cat’s inheritance

The model in Figure 3.14 shows an example of the cat that is now applied to the
life form hierarchy. Here, it can be seen that ‘Cat’ is a type of ‘Mammal’ and therefore
inherits all its features and behaviour from its parent class. The class ‘Cat’ shown on
the right-hand side of the diagram shows all the inherited attributes and operations
from its parent classes. Note the inclusion of the three attributes that were inherited
from ‘Animal’, which, although the class is not included on this particular diagram,
still influences the child classes, no matter how far removed.

3.2.4.3 Instantiation

The final type of relationship that will be defined in this book is known as ‘instan-
tiation’, which is a way of showing real-life examples of a particular class. These
examples are known as ‘instances’ and an instance of a class is also known as an
‘object’.

Strictly speaking, the instantiation relationship is actually a special type of rela-
tionship that is known as a ‘dependency’. A dependency, as the name implies, relates
two classes together but indicates that if one class changes in any way, so will its
dependent class. A dependency relationship is shown graphically by using a dashed
directed line, which indicates the direction of the dependency. Several other types of
dependency exist, but they are not covered in this book. Clearly, an instantiation is
a dependency relationship since an object is entirely dependent on its class to define
its features and behaviour.

Instances are represented in the UML by underlining the class name and showing
the instance name next to the class name, separated by a colon, as shown in Figure 3.15.
It is also possible to use shorthand to represent some instances.

From the model, it can be seen that the class ‘Cat’ has six instances: ‘TC’, ‘Brains’,
‘Choo-Choo’, ‘Benny-the-Ball’, ‘Fancy’ and an extra instance with no name. These
instances are represented in three ways:

• The full representation of the instance: instance name, a colon and the class name
all underlined. This is shown by “TC : Cat” and “Brains : Cat”.
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Cat

TC : Cat

Brains : Cat

Choo-Choo

Benny the Ball

Fancy : Cat

 : Cat

Figure 3.15 Example of instantiation

• An abbreviated instance, where only the instance name is shown, as in ‘Choo-
Choo’ and ‘Benny-the-Ball’. This leaves room for ambiguity, however, as it
is assumed that whoever is reading the diagram has knowledge concerning the
classes of these instances. This is useful if all the instances on a particular model
are of the same class and serves as a type of shorthand.

• The final example of the class ‘Cat’ is an anonymous instance, which means
that although there is definitely a real-life example of the class ‘Cat’, there is no
specific name to differentiate it from other examples of the class ‘Cat’.

One point that should be borne in mind here is that the instance name is a unique
identifier, rather than the actual name of the cat. There should only be one instance for
each different identifier, as these identifiers need to be unique. What would happen,
however, if an instance were named after the actual cat’s name (TC for example) and
the other cat appeared with the same name? It is impossible to have two objects, or
instances, that are both called TC, so how can this be resolved? The answer would
be to add another attribute called ‘name’ and then fill it in for each object, making
the word chosen for the unique identifier irrelevant.

Instantiation completes the list of types of relationship that are introduced in
this book, but remember that there are many other types that are used for specific
applications or under particular conditions. References to these can be found in any
other UML book, and a number of them are provided at the end of this chapter.

3.3 Other structural diagrams

This chapter is intended to introduce structural modelling as a concept, but has so far
only considered one of the six structural diagrams: the class diagram. However, the
concepts introduced here, that of things and the relationships between them, apply
to each of the structural diagrams. Therefore, if you can understand the concepts
used here, then it is simply a matter of learning some syntax and some example
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applications for the other types of diagrams. Indeed, this is achieved in Chapter 5
where each of the nine UML diagrams is described in terms of its syntax and its
typical uses. The important thing to realise about all six types of structural diagram
is that they all represent the ‘what’ of a system. These other five diagrams are the
object diagram, package diagram, composite structure diagram, component diagram
and the deployment diagram.

3.4 Conclusion

In order to conclude this section and to see if structural modelling really works, a
summary of this section is presented in the class diagram (Figure 3.16).

UML

Diagram Model

Aspect

Structural Behavioural

1..*1..*

2

ha
s

6,7

 r
ea

lis
es

Figure 3.16 Summary of UML models and their associated diagrams

Figure 3.16 shows a summary of the UML models and how they may be realised
using the various types of diagram. The UML is made up of one or more ‘Diagram’
and one or more ‘Model’. Each ‘Model’ has two ‘Aspect’ whereas six or seven
‘Diagram’ realise each ‘Aspect’. There are two types of ‘Aspect’ – ‘Structural’ and
‘Behavioural’.

Class diagram Composite structure 
diagram

Object diagram Package diagram Component diagram

Deployment diagram

Structural diagrams

Figure 3.17 Package of the types of structural model
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The actual types of diagrams are not shown here, but are shown in Figure 3.17,
which introduces a package that groups together the various types of structural models.

This figure shows the various types of structural diagrams. It can be seen from
the model that the package ‘Structural’ (a simple grouping) contains ‘Class diagram’,
‘Object diagram’, ‘Package diagram’, ‘Composite structure diagram’, ‘Deployment
diagram’ and ‘Component diagram’.

The actual elements that made up the class diagram can also be modelled using
a class diagram. This is a concept known as the ‘meta-model’, which will be used
extensively in Chapter 5.

Remember that the UML is a language and, therefore, should be capable of being
read and understood just like any other language. Therefore, the model in Figure 3.18
may be read by reading class name, then any association that is joined to it, and then
another class name.

«diagram»
Class diagram

«graphic node»
Class

«graphic node»
Interface

«graphic path»
Relationship

«graphic path»
Association

«graphic path»
Dependency

«graphic path»
Aggregation

«graphic path»
Composition

1..* 0..*

1..*

relates together

0..*

«graphic path»
Generalisation

Attribute Operation

0..*0..*

Figure 3.18 Meta-model for a class diagram

Therefore, reading the diagram: a ‘Class diagram’ is made up of one or more
‘Class’, zero or more ‘Interface’ and zero or more ‘Relationship’. It is possible for a
class diagram to be made up of just a single class with no relationships at all; however,
it is not possible to have a class diagram that is made up of just a relationship with no
classes. Therefore, the multiplicity on ‘Class’ is one or more, whereas the multiplicity
on ‘Relationship’ is zero or more.

Each ‘Relationship’ relates together one or more ‘Class’. Notice that the word
‘each’ is used here, which means that for every single ‘Relationship’ there are one or
more ‘Class’. It is also interesting to note that the multiplicity on the ‘Class’ side of
the association is one or more, as it is possible for a ‘Relationship’ to relate together
one ‘Class’ – that is to say that a ‘Class’ may be related to itself.
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Each ‘Class’ is made up of zero or more ‘Attribute’ and zero or more ‘Operation’.
This shows how classes may be further described using attributes and operations, or
that they may be left with neither.

There are three main types of ‘Relationship’:

• ‘Association’ that defines a simple association between one or more ‘Class’.
There are also two specialisations of ‘Association’: a special type of ‘Association’
known as ‘Aggregation’ and one known as ‘Composition’, which show ‘is made
up of’ and ‘is composed of’ associations respectively.

• ‘Generalisation’ that shows a ‘has types’ relationship used to show parent and
child classes.

• ‘Dependency’ that has only one type (of many) shown, called ‘Instantiation’,
which describes an ‘is an example of’ relationship.

This meta-model concept may be extended to include all the other types of structural
diagrams and, indeed, this is exactly the approach adopted in Chapter 5 to introduce
all the other UML diagram types.

3.5 Further discussion

1. Create a new class based on an everyday object and model its components. Should
the relationships be aggregation or composition?

2. Define a new type of ‘Mammal’ and represent it as a specialisation. Define some
new attributes and operations that will make it special when compared to its
parent class.

3. Define a completely new hierarchy of animals, but rather than defining types
based on genetics, create new types based on the way that they move around.
For example, land-based, air-based and water-based. How do the types of animal
already defined fit in here? Indeed, do they still fit in?

4. Define some new instances of the new types of ‘Mammal’. Show the attributes
on each object and fill in the values of each attribute.
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Chapter 4

Behavioural modelling

Oh, behave

Austin Powers

4.1 Introduction

Chapter 3 introduced structural modelling, one of the two basic aspects of modelling
using the Unified Modelling Language (UML), by choosing one type of structural
diagram and using it to explain basic principles that may then be applied to any sort
of structural modelling. This chapter takes the same approach, but with behavioural
modelling.

Behavioural models may be realised using seven types of UML diagram, which
are: use case diagrams, state machine diagrams, activity diagrams and interac-
tion diagrams, of which there are four types – communication, timing, interaction
overview and sequence diagrams, as shown in Figure 4.1.
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Figure 4.1 The seven diagrams for realising the behavioural aspect of the model
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It is stated in Chapter 3 that structural modelling defines the ‘what’ of a system:
what it looks like, what it does and what the relationships are. If structural modelling
tells us ‘what’, then behavioural modelling tells us ‘how’. This ‘how’ is described
by modelling interactions within a system. These interactions may be modelled at
many levels of abstraction; different types of behavioural diagrams allow the system
to be modelled at different levels of abstraction. These levels of abstraction may be
categorised as follows:

• Interactions may be modelled between objects or between subsystems. Such
models are realised using the four types of interaction diagram: communication,
timing, interaction overview or sequence diagram.

• Interactions may also be modelled at a slightly lower level of abstraction by
considering the interactions within a class or its associated objects. Modelling
the behaviour over the lifetime of a class, or an object, is achieved by using state
machine type of diagrams. State machine diagrams are concerned with one, and
only one, class and its objects, although it is possible to create more than one state
machine diagram per class.

• The lowest level of abstraction for modelling interactions is concerned with the
interactions within an operation or, in computer terms, at the algorithmic level.
Interactions at the algorithmic level are modelled using activity diagrams. Activity
diagrams may also be used to model interactions at a higher level of abstraction,
which will be discussed in greater detail in Chapter 5.

• The remaining level of abstraction is at the highest possible level, which is the
context level of the project, where high-level functionality of the system and its
interaction with the outside world is modelled. These high-level interactions are
realised using use case diagrams.

The diagram chosen to illustrate behavioural modelling is the state machine diagram.
There are a number of reasons for choosing this behavioural diagram over the
other four.

• State machine diagrams are one of the most widely used diagrams in previous
modelling languages and, as such, people tend to have seen something similar to
state machine diagrams, if not an actual state machine diagram. This makes the
process of learning the syntax easier.

• State machine diagrams have a very strong relationship with class diagrams, which
were discussed in Chapter 3.

It will be seen later in this chapter that behavioural modelling using state machine
diagrams leads directly into other types of behavioural modelling diagrams. For more
in-depth discussion concerning state machine diagrams and behavioural modelling,
see References 1–3.

4.1.1 Behavioural modelling using state machine diagrams

4.1.1.1 Introduction

State machine diagrams are used to model behaviour over the lifetime of a class, or
to put it another way, they describe the behaviour of objects. Both of these statements
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are true and are used interchangeably in many books. Remember that objects are
instances of classes and thus use the class as a template for the creation of its objects,
which includes any behaviour.

The most obvious question to put forward at this point is ‘does every class need
to have an associated state machine diagram?’ The simple answer is ‘no’, as only
classes that exhibit some form of behaviour can possibly have their behaviour defined.
Some classes will not exhibit any sort of behaviour, such as data structures or database
structures. The simple way to spot whether a class exhibits any behaviour is to see
whether it has any operations; if a class has operations, it does something, if it does
not have any operations, it does nothing. If a class does nothing, it is impossible to
model the behaviour of it. Therefore, a simple rule of thumb is that any class that has
one or more operations must have its behaviour defined using, for example, a state
machine diagram.

4.1.1.2 Basic modelling

The basic modelling elements in a state machine diagram are states, transitions
and events. States describe what is happening within a system at any given point
in time, transitions show how to change between such states and events dictate
which messages are passed on these transitions. Each of these elements will now
be looked at in more detail, starting with the state, an example of which is shown in
Figure 4.2.

State 1

Figure 4.2 A UML representation of a state

This figure shows a very simple state, which is shown in the UML by a box
with rounded corners. This particular state has the name ‘State 1’ and this diagram
should be read as: ‘there is a single state, called “State 1” ’. This shows what a state
looks like, but what exactly is a state? The following four points discuss the basics of
a state:

• A state may describe situations in which the system satisfies a particular condition,
in terms of its attribute values or events that have occurred. This may, for example,
be ‘loaded’ or ‘saved’, so that it gives an indication as to something that has
already happened. States that satisfy a particular condition tend to be used when
an action-based approach is taken to creating state machine diagrams. This will
be discussed in more detail in due course.

• A state may describe a situation in which the system performs a particular activity
or set of actions, or to put it another way, is actually doing something. States are
assumed to take a finite amount of time, whereas transitions are assumed to take
no time. There are two things that can be happening during such a state: one or
more activities and/or one or more actions. An activity is nonatomic and, as such,
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can be interrupted, hence, it takes up a certain amount of logical time. Actions,
on the other hand, are atomic and, as such, cannot be interrupted and, hence,
take up zero logical time. Therefore, activities can only appear ‘inside’ a state,
whereas an action can exist either within a state or on a transition. Activities can
be differentiated from actions inside states by the presence of the keyword ‘do/’,
whereas action will have other keywords, including: ‘entry/’ and ‘exit/’.

• A state may also describe a situation in which a system does nothing or is waiting
for an event to occur. This is often the case with event-driven systems, such as
windows-style software where, in fact, most of the time the system is sitting idle
and waiting for an event to occur.

• There are different types of states in the UML; however, the states used in state
machine diagrams are known as normal states. This implies that complexity may
exist within a state, such as: a number of things that may happen, certain actions
that may take place on the entry or exit of the state, and so forth.

In order for the object to move from one state to another, a transition must be crossed.
In order to cross a transition, some sort of event must occur. Figure 4.3 shows a simple
example of how states and transitions are represented using the UML.

State 1

State 2

Figure 4.3 States and transitions

From the model in Figure 4.3 it can be seen that two states exist: ‘State 1’ and
‘State 2’, represented by rounded boxes. There is a single transition that goes from
‘State 1’ to ‘State 2’, which is represented by a directed line showing the direction
of the transition. These transitions are unidirectional and, in the event of another
transition being required going in the other direction, an entirely new transition is
required – the original transition cannot be made bi-directional.

In order to cross a transition, which will make the object exit one state and
enter another, an event must occur. This event may be something simple, such as
the termination of an activity in a state (the state has finished what it is doing), at
which point it leaves its present state, or may be more complex and involve receiving
messages from another object in another part of the system. Event names are written
on the transition lines.

State machine diagrams will now be taken one step further by considering a simple
example.
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4.1.2 Behavioural modelling – a simple example

4.1.2.1 Introduction

In order to illustrate the use of state machine diagrams, a simple example will be used
that will not only show all basic concepts associated with state machine diagrams,
but will also provide a basis for further modelling and provide a consistent example
that will be used throughout this section.

The simple example chosen is that of a game of chess as it is a game with which
most people are at least vaguely familiar, and thus will have some understanding of
what the game is all about. In addition, chess is, on one level, very simple, which
means that it can be modelled very simply, yet, on the other hand, it possesses a great
deal of hidden complexity that should emerge as the example is taken further.

Chess match

move()

status
result

Player

2

Figure 4.4 A simple class diagram for a game of chess

Figure 4.4 shows a class diagram that represents, at a very simple level, a game
of chess. From the model, a ‘Chess game’ is made up of two ‘Player’. Each ‘Player’
has attributes – ‘result’ and ‘status’ – and a single operation ‘move’. The attribute
‘result’ reflects the result of the game and may have values: ‘this player win’, ‘other
player win’, ‘draw’ or ‘undecided’. The attribute ‘status’ reflects the current status of
the game and may take the values ‘checkmate’, ‘stalemate’ and ‘game in progress’.

4.1.2.2 Simple behaviour

It was stated previously that any class that exhibits behaviour must have an associated
state machine diagram. Applying this rule reveals that, of the two classes present in
the class diagram, only the class ‘Player’ needs to have a state machine diagram.
A very simple state machine diagram for a game of chess is shown in Figure 4.5,
by defining the behaviour of the class ‘Player’.

From the model, the object may be in one of two states: ‘waiting’ or ‘moving’.
In order to cross from ‘waiting’ to ‘moving’, the event ‘player 2 moved’ must have
occurred. In order to cross from ‘moving’ to ‘waiting’, the event ‘player 1 moved’
must have occurred.

The two pentagons, one convex and one concave represent ‘send events’ and
‘receive events’, respectively. A send event is an event that is broadcast outside the
boundary of the state machine diagram or, to put it another way, is broadcast to other
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player 2 
 moved

player 1
moved

moving

Waitingwaiting

Figure 4.5 A simple state machine diagram for a game of chess

objects. A receive event is a complement of the send event in that it is accepted from
outside the boundary of the state machine diagram.

At a very simple level, this is ‘how’ a game of chess is played, by modelling the
behaviour of each player. However, the model is by no means complete as the chess
game described here has no beginning or end and will thus go on forever. Despite the
fact that chess games may seem to go on forever, there is an actual distinct start and
end point for the game. This is modelled in the UML by introducing ‘start states’ and
‘end states’.

The next step, therefore, is to add more detail to this state machine diagram. It is
interesting to note that this is actually how a state machine diagram (or any other
UML diagram, for that matter) is created. The diagram almost always starts off as a
simple collection of states and then evolves over time and, as more detail is added, so
the model starts to get closer and closer to the reality that it is intended to represent.

4.1.2.3 Adding more detail

The next step, as stated in Section 4.1.2.2, is to add a beginning and an end for
the state machine diagram, using start and end states. A start state describes what
has happened before the object is created and is shown visually by a filled-in circle.
An end state, by comparison, shows the state of the object once the object has been
destroyed and is represented visually by a bull’s-eye symbol.

Start and end states are treated just like other states in that they require transitions
to take the object into another state, which will require appropriate events. The event
would typically be creation- and destruction-type events that are responsible for the
birth and subsequent demise of the object.

Figure 4.6 shows the expanded state machine diagram that has start and end states
along with appropriate events.

It can be seen from the model that there are two possible start states, depending
on which player goes first, and three different end states, depending on which player,
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Figure 4.6 Expanded state machine diagram showing start and end states

if either, wins, or whether the game is a draw. The model is now becoming more
realistic; its connection to reality is getting closer, but there is still room for ambiguity.

Notice also in this diagram that some conditions have been introduced, that are
defined on the outputs of the decision symbol (the diamond). These conditions should
relate directly back to attributes from its parent class hence providing some basic
consistency between a class and its associated state machine diagram.

We know from the class diagram that the class ‘Player’ does one thing, ‘move’, but
we do not know in which state of the state machine diagram this operation is executed.
As it happens, it is fairly obvious which state the operation, occurs in: ‘moving’. Oper-
ations on a state machine diagram may appear as either ‘activities’ or ‘actions’, which
will be discussed in more detail in due course. This may now be shown by adding
the activity to its appropriate state by writing ‘do/’ in the state box and then adding
the activity (operation from the class diagram) name, which is shown in Figure 4.7.

[status = stalemate]

[status = stalemate]

/result = draw
player 2 
 moved

player 1
moved

player 1 
begins

/result =
player 2 win

do/move

moving

Waiting
player 2
begins

/result =
player 1 win

waiting
[status = checkmate]

[status = checkmate]

Figure 4.7 Expanded state machine diagram showing activity
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The model is now getting even closer to reality; in fact, the model is evolving,
which it always does! It is almost impossible to get models right the first time as
they are living entities and will continue to evolve for as long as they exist. However,
there is yet another problem with the state machine diagram, as, although it seems
to work well for any situation in a chess game, it is impossible for the game to run!
To illustrate this, consider what happens when we begin a game of chess.

4.1.2.4 Ensuring consistency

The first thing that will happen is that two instances of the class ‘Player’ need to
be created so that we have the correct number of players. The behaviour of each
player is described by the state machine diagram for the class ‘Player’. For argu-
ments sake, we shall name the two players ‘Player 1’ and ‘Player 2’ and see if the
state machine diagram will hold up to the full game of chess. Figure 4.8 shows two
identical state machine diagrams, one for each object, that are positioned side by side
to make comparisons easier.
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[status = stalemate]

/result = draw
player 2 
 moved
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/result = draw
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player 2 win
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Waiting
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/result =
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waiting
[status = checkmate]

[status = checkmate]

Figure 4.8 Side by side comparison of two state machine diagrams
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In order to begin a game of chess, an instance of the class ‘Chess match’ would
be created, which would in turn create two instances of the class ‘Player’. In this
example, the object names ‘Player 1’ and ‘Player 2’ have been chosen. Let us now
imagine that a game of chess has been started and that ‘Player 1’ is to begin. The event
that will occur is ‘player 1 begins’, which is present on both state machine diagrams.
However, this will put both players straight into the ‘moving’ state, which will make
the game of chess impossible to play, despite being slightly more entertaining. This
is because the events were named with reference to one player, rather than being
generic so that they are applicable to any player. In order to make the game work,
it is necessary to rename the events so that they are player independent.

It is important to run through (by simulation or animation, if a suitable tool is
available) a state machine diagram to check for consistency. In this case, the error
was a simple, almost trivial, misnaming of an event. However, this trivial mistake
will lead to the system actually failing!

This serves to illustrate a very important point that relates back to the section about
modelling: the different levels of abstraction of the same model. The chess game was
modelled only at the object level in terms of its behaviour, which, it is entirely possible,
would have resulted in the class being implemented and even tested successfully if
treated in isolation and under test conditions. It would only be at the final system test
level that this error would have come to light. It would be useful, therefore, if it were
possible to model behaviour at a higher level, where the interactions between objects
could be shown, as in Figure 4.9.

moved

moved

Player 1 : Player

Player 2 : Player

Figure 4.9 Wouldn’t it be nice model

This figure shows the two objects from the original class diagram, but this time the
events from the state machine diagrams have been shown. It is clear from this model
that there would be a problem with the event names at a higher level of abstraction,
which could lead to the problem being sorted out far earlier than in the previous
case. It would have been nice if we had drawn this model as part of our behavioural
modelling of the game of chess. Luckily, such a model does exist and is known as
a communication diagram, which is covered in detail in Chapter 5.

4.1.3 Solving the inconsistency

There are many ways to solve the inconsistency problems that were highlighted in
the previous section, two of which are presented here. The first solution is to make
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the generic state machine diagram correct, while the second is to change the class
diagram to make the state machine diagrams correct.

4.1.3.1 Changing the state machine diagram

The first solution to the inconsistency problem that is presented here is to make the
state machine diagram more generic, so that the events now match up. The state
machine diagram for this solution is shown in Figure 4.10.

[status = stalemate]

[status = stalemate]

/result = draw moved moved

this player
begins

/result = other 
 win

do/move

moving

Waiting
other player 

begins
/result = this 

win
waiting

[status = checkmate]

[status = checkmate]

Figure 4.10 New state machine diagram with correct event names

This figure represents a correct solution to the chess model. Note that in this model
the event names have been changed to make them more generic. The first events are
the event on the transitions from the two start states. Note that this time the names
have been changed so that they are no longer specific to either player one or player
two. The names are now relative to each instance, rather than specific, so the event
names have changed from ‘player 1 begins’ to ‘this player begins’ and from ‘player
2 begins’ to ‘other player begins’.

The other event names that have been changed are on the transitions between the
two normal states. Previously, the names were object specific, being as they were,
‘player 1 moved’ and ‘player 2 moved’. These names have now changed to a more
generic ‘moved’ event, which will apply equally to both objects.

This is by no means the only solution to the problem and another possible solution
is presented in Section 4.1.4, where the class diagram is changed to make the state
machine diagram correct, rather than changing the state machine diagram.

4.1.3.2 Changing the class diagram

The second solution to the consistency problem is to change the class diagram rather
than the state machine diagram, as shown in Figure 4.11.
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Chess match

Player

2

Player 1 Player 2

Figure 4.11 A modified class diagram

This figure shows a modified class diagram in which two new subclasses of
‘Player’ have been added. This would mean that, rather than the class ‘Player’ being
instantiated, one instance of each class ‘Player 1’ and ‘Player 2’ would be created.
This has implications on the state machine diagrams as the class diagram shown here
would require a state machine diagram for both ‘Player 1’ and ‘Player 2’, rather than
a single state machine diagram for ‘Player’. This would also mean that the initial state
machine diagram shown in Figure 4.7 would now be correct for ‘Player 1’, but that
a new state machine diagram would have to be created for the class ‘Player 2’.

Taking this idea a step further, it is also possible to make the two subclasses more
specific as, in the game of chess, one player always controls white pieces and the other
player only controls black pieces. This would have an impact on the class diagram
again, as each subclass could now be named according to its colour. This is shown in
Figure 4.12.

2

White player Black player

Chess match

Player

Figure 4.12 Further modification of the chess class diagram

This figure shows a class diagram where the classes have been named according
to colour, rather than simply ‘Player 1’ and ‘Player 2’. This has even more effect on
the state machine diagram as, in the standard rules of chess, the white player always
moves first.
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4.2 Alternative state machine modelling

4.2.1 Actions and activities

The state machine diagrams presented so far have had an emphasis on the activities in
the system where the main state in the state machine diagram had an explicit activity
associated with it. This is slightly different from another approach that is often used
in many texts, which is referred to here as an action-based approach. In order to
appreciate the difference between the action-based and activity-based approaches,
it is important to distinguish between actions and activities.

• An activity describes an ongoing, nonatomic execution within a system. In simple
terms, this means that an activity takes time and can be interrupted. An activity
is also directly related to the operations on a class.

• An action is an atomic execution within the system that results in either a change
in state or the return of a value. In simple terms, this means that an action takes
no time and cannot be interrupted.

Activities may be differentiated from actions as they will always appear inside a
state (as what is known as an ‘internal transition’) and will use the keyword ‘do/’ as
a prefix. Any other keyword used as a prefix (for example, ‘entry/’, ‘exit’ etc.) is
assumed to be an action.

These two types of execution may change the way that a state machine diagram
is created and the type of names that are chosen to define its state machine diagram.

4.2.1.1 Activity-based state machine diagrams

Activity-based state machine diagrams are created with an emphasis on the activities
within states. Activities must be directly related back to the class that the state machine
diagram is describing and must provide the basis for a very simple, yet effective,
consistency check between the class diagram and state machine diagram. As they
take time to execute, activities may only be present on a state machine diagram
within a state, as states are the only element on the state machine diagram that take
time – transitions are always assumed to take zero time.

The state names, when using the activity-based approach, tend to be verbs that
describe what is going on during the state and thus tend to end with ‘ing’, such as the
two states seen so far in this chapter: ‘moving’ and ‘waiting’.

4.2.1.2 Action-based state machine diagrams

Action-based state machine diagrams are created with an emphasis on actions rather
than activities. Actions are often not related directly back to classes, although they
should be, in order to ensure that consistency checks are performed between the two
types of diagram. Actions are assumed to take zero time to execute and thus may be
present either inside states or on transitions – transitions also take zero time. With an
action-based approach, the actions tend to be written on transitions rather than inside
states, which leads to a number of empty states. These states have names that reflect
the values of the system at that point in time.
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/move /move

not moved

moved

Figure 4.13 Action-based state machine diagram

The simplest way to demonstrate the difference is to create an action-based state
machine diagram for the chess example and then to compare the two different styles
of state machine diagram.

Figure 4.13 shows an action-based state machine diagram where the emphasis is
on the action ‘/move’ rather than on activities. Notice that the state names here reflect
what has happened in the system, implying that the system is doing nothing while
waiting for events.

4.2.2 Comparing the approaches

Each of the two approaches shown here is valid and useful; however, there are
a number of observations that can be made concerning the use of both approaches:

• The activity-based approach may lead to a more rigorous approach to modelling
as the consistency checks with its associated class are far more obvious.

• The activity-based approach makes use of executions that take time and may be
interrupted for whatever reason.

• The action-based approach is more applicable to event-based systems such as
windows-based software, where for much of the time the system is idle while
waiting for things to happen.

• In terms of real-time systems, the action-based approach is less suitable than the
activity-based approach, as the basic assumption of executions taking zero time
goes against much real-time thinking.

• Action-based diagrams tend to be less complex than activity-based, as they tend
to have fewer states.

So which approach is the better of the two? The answer is whichever is most
appropriate for the application at hand.
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4.3 Other behavioural models

This chapter concentrates mainly on state machine diagrams, but the principles
that apply to state machine diagrams apply to the other types of behavioural models.
These can be seen in Figure 4.14.

Behavioural diagrams

Use case diagramInteraction diagram

Timing diagram Interaction overview 
diagram

Sequence diagram Communication diagram

State machine diagram

Activity diagram

Figure 4.14 Types of behavioural diagram

If you can have a good grasp of the models shown here and, just as impor-
tantly, understand how they must be checked to ensure consistency between different
diagrams (and models), the other diagrams are relatively straightforward.

• State machine diagrams are used to describe the behaviour of a class and, hence,
its associated objects. They represent a medium level of abstraction.

• Activity diagrams emphasise the actions within a system and are generally used at
a very low level, or algorithmic level, of abstraction. Activity diagrams may also
be used at a medium level of abstraction, but with an emphasis on actions within
a system, rather than states. The main difference between an activity diagram and
a state machine diagram is that a state machine diagram contains normal states
(that may be complex) whereas an activity diagram will only contain activation
instances. This is elaborated upon in Chapter 5.

• All four types of interaction diagram – communication diagrams, timing diagrams,
interaction overview diagrams and sequence diagrams – model interactions at
a high level of abstraction and can be used, among other purposes, to ensure that
events passed between state machine diagrams are consistent.

• Use case diagrams represent the highest level of abstraction and show the interac-
tions between the system and its external actors. These are strongly related to both
types of interaction diagram, which may be used to model scenarios as instances
of use cases.

All of the points raised above are examined in Chapter 5, where every diagram
is looked at in turn; however, one point that should emerge here is that there is
a relationship between each type of behavioural diagram and they share a number
of common features.
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4.4 Conclusions

This chapter introduces behavioural modelling. Behavioural modelling shows
the ‘how’ of a system, whereas structural modelling shows the ‘what’. Behavioural
modelling was illustrated by looking at a single diagram – the state machine
diagram – where a simple example was taken and described in some detail.

It is shown that state machine diagrams describe the behaviour within a class, but
that modelling at one level of abstraction only could lead to mistakes, despite the fact
that the diagram itself may appear to be correct. The solution to this problem is to
model the system at more than one level of abstraction by using other behavioural
diagrams.

4.5 Further discussion

1. Take the chess example and add a new operation called ‘think’ to its class
diagram, shown in Figure 4.4. The idea behind this is that the ‘move’ opera-
tion will represent the actual physical moving of the chess piece, whereas the
‘think’ operation represents the planning and strategy involved before the piece
is actually moved. Modify the state machine diagram in Figure 4.5 to take into
account the new operation.

2. Create two state machine diagrams for the classes ‘White player’ and ‘Black
player’ shown in Figure 4.12, bearing in mind the rule stating that white always
moves first. What effect does this have on the state machine diagrams, particularly
with regard to the start states?

3. Apply question 1 to question 2, so that now each of the two diagrams must be
modified to take into account the ‘think’ operation. Is this more convenient than
having a single generic state machine diagram for ‘Player’, or is it more effort?

4. Taking the results of question 1, which, if any, of the two operations may be
represented using actions rather than activities? Why is this?

5. Imagine that you are creating a chess computer game and create two new classes
of ‘Player’ called ‘Human player’ and ‘Computer player’. Can a single state
machine diagram still be used by both types of player, or do they need individual
state machine diagrams?

6. Would it have been beneficial to model the game at the higher level (the commu-
nication diagram from Figure 4.9) before modelling at the state machine diagram
level? Revisit this point after you have read Chapter 5.
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Chapter 5

The UML diagrams

try not. Do. Or do not. There is no try

Yoda

5.1 Introduction

5.1.1 Overview

This chapter introduces the 13 types of diagrams that may be used in the Unified
Modelling Language (UML). The information in this chapter is kept, very deliberately,
at a very high level. There are several reasons for this:

• The main focus of this book is to provide practical guidelines and examples of
how to use the UML efficiently and successfully. It is, therefore, a deliberate
move to show only a small subset of the UML language in this chapter. In reality,
it is possible to model 80 per cent of any problem with less than 20 per cent of
the UML language.

• Experience has shown that the most efficient way to learn, and hence master, the
UML is to learn just enough to get going and then to simply try out some models
of your own. This chapter aims to give just enough information to allow you to
get your hands dirty.

• There are a great many UML books published that are devoted entirely to the UML
and its very rich syntax, see References 1–14 for examples of books concerning
UML version 1.x and References 15–17 for examples of books concerning UML
version 2.0. This book should be used in conjunction with such books – for
example, with the UML reference manual [1].

This raises the immediate issue of the differences between the two major versions
of the UML, version 1.x and version 2.0. The UML itself is a living entity and
evolves over time to reflect its customers’ needs as well as new technologies and
modelling concepts. As such, the notation itself has undergone several minor revisions
to improve its usability and applicability to different disciplines. The latest evolution
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of the standard, UML version 2.0, represents the most significant change to date and
has prompted much discussion, hence the existence of this section of the book.

5.1.2 Conceptual changes between UML 1.x and UML 2.0

There are no conceptual changes to the UML whatsoever. The concepts of structural
and behavioural modelling are exactly the same. It is still essential to have both
aspects of the model but now there are 13, rather than 9, diagrams available to realise
these 2 aspects.

The concepts of choosing the right model, levels of abstraction, connection to
reality and independent views of the same system remain the same as they are basic
modelling concepts, rather than UML-specific concepts.

Therefore, anyone with a full and proper understanding of the concepts of the
UML, should find the changes logical and easy to understand – the changes are all
syntactical.

5.1.3 Terminology

Figure 5.1 summarises the basic terminology used for UML 2.0.
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Figure 5.1 UML 2.0 terminology

It can be seen from the diagram in Figure 5.1 that one or more ‘Model’ abstracts a
‘System’. Remember that a model is defined as a simplification of reality, therefore,
there is a level of abstraction removed between the model and the system. The system
itself can represent any sort of system, be it a technical, social, political, financial or
any other sort of system.

Each ‘Model’ is made up of a number of ‘View’, each of which is a projection of
a ‘Model’. A view is simply the model itself looked at from a particular context or
from a particular stakeholder’s point of view. Examples of view include, but are not
limited to: logical views, implementation views and contextual views. Therefore, it
is possible (and usually very likely) that a model will have a number of views that
will differ depending on the stage of the development life cycle or the reader’s view
point of the system.



The UML diagrams 77

Each ‘Model’ is made up of a number of ‘Model element’ and, in turn, each ‘View’
is made up a number of ‘View element’. There is a direct comparison between these
two types of elements as a ‘View element’ represents one or more ‘Model element’.
Model elements, in UML 2.0, represent the abstract concepts of each element, whereas
the view elements represent whatever is drawn on the page and can be physically
‘seen’ by the reader.

The basic ‘unit’ of any model is the ‘Diagram’ that represents graphically
a number of ‘Model element’ and that collects together a number of ‘View element’.
It is the diagram that is created and presented as the real-world manifestation of the
model.

5.1.4 The structure of UML 2.0 diagrams

Each diagram in the UML 2.0 has the same structure, which is intended to provide
a similar appearance for each, as well as making cross referencing between diagrams
simpler. The structure of each diagram is shown in Figure 5.2.
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Diagram
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«stereotype»
graphic path

relates together

Figure 5.2 Structure of each UML 2.0 diagram

The diagram in Figure 5.2 shows that each diagram is made up of one or more
‘graphic node’ and one or more ‘graphic path’. Each ‘graphic path’ relates together one
or more ‘graphic node’. Examples of graphic nodes include: classes on class diagrams,
objects on object diagrams, etc. Examples of graphic paths include: relationships on
class diagrams and links on object diagrams.

Any UML diagram may have an optional graphic node known as a ‘Frame’
that encapsulates the diagram and that has a unique identifier, in order to make
identification of, and navigation between, diagrams simpler. An example of a frame
is shown in Figure 5.3.

< type > < name >

Figure 5.3 Example of a frame in UML 2.0
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The diagram in Figure 5.3 shows the symbol for a frame, which is, quite simply,
a large rectangle that will contain all the view elements in a particular diagram.
The pentagon in the upper left-hand corner contains two references – one to the type
of diagram (for example: ‘cd’ for class diagram, ‘od’ for object diagram, etc.) and
then one to the name, or identifier for the diagram.

5.1.5 Comparison of the types of diagram

The most immediately-apparent differences between UML 2.0 and UML 1.x are the
number of diagrams – UML 1.x has 9 diagrams, whilst UML 2.0 has 13 diagrams –
and the significant changes in terminology for diagram elements. A common ini-
tial reaction to this increase in the number of diagrams is one of horror, but, when
considered in the cold light of day, the increase in the number of diagrams does not
necessarily indicate an increase in the complexity of the language but, rather, an
increase in the flexibility and usability of the language. Indeed, all the new mecha-
nisms are intended to make modelling easier compared to UML 1.x where, in some
instances, small tricks and rules of thumb were often applied to modelling in order to
make diagrams easier to understand.

In order to understand the new diagrams and some of the term changes, UML 2.0
and UML 1.x will be compared at a diagrammatical level, first considering the
structural diagram and then the behavioural diagrams. Figure 5.4 shows a comparison
of the structural diagrams.

UML 2.0 UML 1.x

Class diagram

Object diagram

Package diagram

Composite structure 
diagram

Component diagram

Deployment diagram

Class diagram

Object diagram

Component diagram

Deployment diagram

Figure 5.4 Comparison of structural diagrams – UML 2.0 versus UML 1.x
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The diagram in Figure 5.4 shows how the structural diagrams relate between
UML 2.0 and UML 1.x. The main differences are as follows:

• ‘Object diagram’ to ‘Object diagram’ – no significant changes.
• ‘Package diagram’ to ‘Class diagram’ – although the package diagram is a new

type of diagram, it is simply the concept of a package from UML 1.x, but this
time it is given its own diagram. These are useful for defining profiles, showing
ownership of model elements and relating models together using their ‘merges’
and ‘uses’ relationships.

• ‘Class diagram’ to ‘Class diagram’ – no significant changes, although more
emphasis is now put on identifying interfaces in class diagrams.

• ‘Composite structure diagram’ to ‘Class diagram’ – again, a new type of diagram,
but this time there are two distinct uses: defining logical structure within a com-
posite or aggregation and identifying collaborations. In UML 1.x it was possible
for class diagrams to be created where the emphasis was on identifying the
elements in a composite structure (aggregations and compositions) rather than
on the logical relationships between these lower-level elements. The composite
structure diagram allows an aggregation or composition to be replaced by a ‘Part’
that contains a number of structural elements, such as classes. This was only
achievable in UML 1.x by ‘cheating’ by using a package to show the contents of
a class. This usage is particularly good for modelling architectures of systems.
The second usage is to identify static collaborations within a model that represent
two diagram elements that will interact with each other in some way. There is
then a clear, and obvious, connection to all interaction diagrams that then go on
to explore the behaviour of such collaborations. In summary, therefore, it is a
completely new diagram which, unlike the new package diagram, has many new
symbols and notations.

• ‘Deployment diagram’ to ‘Deployment diagram’ – these diagrams are very
similar, but now it is objects and artefacts that are deployed in UML 2.0, rather
than objects and components in UML 1.x. Components are now abstract specifi-
cations whereas an artefact (note the American spelling of this word is ‘artifact’)
represent the actual implementation of a component.

• ‘Component diagram’ to ‘Component diagram’ – significant improvements to
interfaces that can now be output (required) or input (provided) and can have parts.
The internal structure of a component can now be specified using parts and the
symbol has been made far simpler to draw by abandoning the cumbersome ‘single
plus double rectangle’ notation with a stereotyped class called «component».

Each of these diagrams is discussed in more detail later in this chapter.
Figure 5.5 shows a high-level comparison of the behavioural diagrams in

UML 2.0, compared with UML 1.x.
The diagram in Figure 5.5 shows how the behavioural diagrams relate between

UML 2.0 and UML 1.x. The main differences are as follows:

• ‘Use case diagram’ to ‘Use case diagram’ – no significant differences – unfortu-
nately the dreaded stick person is still there, although there are recommendations
to stereotype the symbol.
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UML 2.0 UML 1.x

State machine diagram

Timing diagram

Activity diagram

Communication diagram

Interaction overview
diagram

Sequence diagram

Use case diagram Use case diagram

Statechart diagram

Activity diagram

Collaboration diagram

Sequence diagram

Figure 5.5 Comparison of behavioural diagrams – UML 2.0 versus UML 1.x

• ‘State machine diagram’ to ‘Statechart diagram’ – apart from the name change,
optional graphical notation has been introduced for conditions, events and actions
(the same as the optional notation in activity diagrams). Otherwise it is the same
in UML 2.0 as in UML 1.x.

• ‘Activity diagram’ to ‘Activity diagram’ – enhanced regions (swimlanes and
interruptible regions) and the concept of ‘token flow’ has now been introduced
that has been taken from Petri nets. The main behavioural unit is now an ‘activity
activation’ that replaces the ‘action state’ and ‘activity state’. Graphically, they
look very similar.

• ‘Communication diagram’ to ‘Collaboration diagram’ – the name has changed
to make the distinction between a collaboration (structural) and interaction
(behavioural) more apparent. Rather than objects, the main element in all inter-
action diagrams is now the ‘Life line’ (not the same as the UML 1.x life line,
rather confusingly) that represents instances of classifiers (objects are instances
of classes). This enables greater flexibility as it is now possible to model inter-
actions between instances of any classifiers, such as components, classes, actors,
and so on. Interactions are now bundled up into frames so that they can be reused.
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• ‘Timing diagram’ to ‘Collaboration diagram’ and ‘Sequence diagram’ – a new dia-
gram that looks at the timing involved with life lines and their states. Two graphical
styles – one is a traditional time line, as seen on graphs (known as a ‘state condition
time line’) whereas the other concentrates on the duration of each state (known as
‘general value time line’) and looks more like timing shown on communication
protocols. The timing diagram has very strong relations with all other interaction
diagrams and state machine diagrams.

• ‘Interaction overview diagram’ to ‘Collaboration diagram’ and ‘Sequence
diagram’ – a new diagram that represents interactions at a high level. Effectively,
individual scenarios can be connected together using activity diagram notation
(with interactions replacing the nodes) to form complex behaviour, such as
complete system behaviours.

• ‘Sequence diagram’ to ‘Sequence diagram’ – like the communication diagram,
the new sequence diagrams now use life lines and enable scenarios to be bundled
up using frames. This allows scenarios to be referenced from within scenarios.
Also, the introduction of conditions allows several options to be explored on
a single scenario.

Each of these diagrams is discussed in more detail later in this chapter.

5.1.6 The UML meta-model

This chapter also introduces the concept of the UML meta-model. The UML meta-
model is a UML model of the UML, or to put it another way, the UML may be
completely modelled using the UML. The UML meta-model itself is concerned with
the modelling elements within the UML, how they are constructed and how they
relate to one another. The full UML meta-model is highly complex and, to some-
one without much UML experience, can be quite impenetrable. The meta-models
presented in this book show highly-simplified versions of the actual meta-model in
order to aid communication and group different aspects of the model according to
each diagram – something that is not done in the actual meta-model.

So far, we have looked at two of the diagrams in some detail when class
diagrams and state machine diagrams were used to illustrate structural and behavioural
modelling; these diagrams are shown again in this chapter for the sake of completeness
and also to introduce the meta-model using diagrams that are already well known.

The order in which the diagrams are introduced in this chapter has no real
rhyme nor reason, except that they are individually categorised into structural and
behavioural diagrams. They are simply presented in, what is from the author’s point
of view, a logical order. Therefore, the various parts of this chapter may be read in
any order.

This chapter also uses a worked example, which is a game of chess. There are
several reasons for choosing this as the subject of the example:

• Most people have a good understanding of the game of chess, yet very few people
can actually agree on what this understanding is.
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• Chess is a game that can be realised in a number of different ways, such as: in
software, in hardware, as an off-the-shelf board game, or by using helicopters and
a field (apparently). Thus, it is interesting to see how a high-level model may be
common to all, but, as time goes on and the model approaches reality, the models
start to differ.

• There are many aspects that can be modelled in the game of chess, from the
board and pieces, to the rules of the game, and to strategies and skills in playing
the game.

Now that the scene has been set, it is time to plunge straight in and look at the UML
diagrams themselves.

5.2 Class diagrams (structural)

5.2.1 Overview

This section introduces the first of the 13 UML diagrams: the class diagram. The
class diagram was introduced in Chapter 3 in order to illustrate structural modelling,
so this section should really only serve as a recap. It is useful to examine class
diagrams again, however, as they are the diagrams that are used in order to realise
the meta-model.

Class diagrams realise a structural aspect of the model of a system and show
what conceptual ‘things’ exist in a system and what relationships exist between
them. The ‘things’ in a system are represented by classes and their relationships
are represented, unsurprisingly, by relationships.

Class diagrams are used to visualise conceptual, rather than actual, aspects of
a system. Classes themselves represent abstractions of real-life entities. The actual
real-life entities are represented by objects and, therefore, any object must have an
associated class that defines what it looks like and what it does.

5.2.2 Diagram elements

Class diagrams are made up of two basic elements: classes and relationships. Both
classes and relationships may have various types and have more detailed syntax that
may be used to add more information about them. However, at the highest level of
abstraction, there are just the two very simple elements that must exist in the diagram.

Classes describe the types of ‘things’ that exist in a system, whereas relationships
describe what the relationships are between various classes.

Figure 5.6 shows a high-level meta-model of class diagrams. Ironically, the meta-
model for class diagrams is created using a class diagram, which makes it a class
diagram of a class diagram. All future meta-models in this book will also be realised
using class diagrams.

Remember that the UML is a language and, therefore, should be capable of being
read and understood just like any other language. Therefore, the model in Figure 5.6
may be read by reading a class name, then any association that is joined to it, and
then another class name.
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1..* 0..*

1..*

relates together

0..*

0..*0..*

«diagram»
Class diagram

«graphic node»
Interface

«graphic node»
Class

«graphic path»
Relationship

OperationAttribute «graphic path»
Association

«graphic path»
Dependency

«graphic path»
Generalisation

«graphic path»
Composition

«graphic path»
Aggregation

Figure 5.6 Partial meta-model for class diagrams

Therefore, reading the diagram: a ‘Class diagram’ is made up of one or more
‘Class’, zero or more ‘Interface’ and zero or more ‘Relationship’. It is possible for a
class diagram to be made up of just a single class with no relationships at all; however,
it is not possible to have a class diagram that is made up of just a relationship with no
classes. Therefore, the multiplicity on ‘Class’ is one or more, whereas the multiplicity
on ‘Relationship’ is zero or more.

Each ‘Relationship’ relates together one or more ‘Class’. Notice that the word
‘each’ is used here, which means that for every single ‘Relationship’ there are one or
more ‘Class’. It is also interesting to note that the multiplicity on the ‘Class’ side of
the association is one or more, as it is possible for a ‘Relationship’ to relate together
one ‘Class’ – that is to say that a ‘Class’ may be related to itself.

Each ‘Class’ is made up of zero or more ‘Attribute’ and zero or more ‘Operation’.
This shows how classes may be further described using attributes and operations, or
that they may be left with neither.

There are three main types of ‘Relationship’:

• ‘Association’ that defines a simple relationship between one or more ‘Class’.
There are also two specialisations of ‘Association’: a special type of ‘Association’
known as ‘Aggregation’ and one known as ‘Composition’, which show ‘is made
up of’ and ‘is composed of’ associations respectively.

• ‘Generalisation’ that shows a ‘has types’ relationship used to show parent and
child classes.

• ‘Dependency’ that has only one type (of many) shown, called ‘Instantiation’,
which describes an ‘is an example of’ relationship.
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That, in a nutshell, is the meta-model for class diagrams. Notice how the meta-model,
even at this very high level, describes all the concepts that were introduced in Chapter
3. Imagine how this model may be expanded upon to show that, for example, each
attribute has a type, default value, etc.

Each of these diagram elements may be realised by either graphical nodes
or graphical paths, as indicated by their stereotypes and are illustrated in
Figure 5.7.

Class name

Class name

operation 1()
operation 2()

attribute 1
attribute 2

association name

Class

Composition

Specialisation

Dependency

Association

Aggregation

Class with attributes & operations

Figure 5.7 Graphical symbols for elements in a class diagram

The diagram in Figure 5.7 shows the graphical symbols used to represent elements
in a class diagram. The basic symbol is the class that is represented by a rectangle.
Rectangles are also used to show other types of element in the UML, so it is important
to be able to differentiate between a class rectangle and any other sort of rectangle.
A class rectangle will simply contain a single name, with no colons nor underlining.
When attributes and operations are present, classes are easy to identify as they have
two additional rectangles, drawn underneath the class name, with the names of the
attributes and operations contained within. Relationships are shown by a simple line,
with slight variations depending on the type of relationship. For example, a specialisa-
tion has a distinctive triangle symbol shown next to the parent class whereas a simple
association has no such additional symbol.

5.2.3 Example diagrams and modelling – class diagrams

Class diagrams may be used to model just about anything, including:

Modelling physical systems: Many examples of modelling physical systems are used
throughout this book, ranging from modelling cats and swords to modelling board
games!
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Process modelling: Understanding processes, whether they be in standards proce-
dures or someone’s head, is very important in the world of systems engineering.
The UML is amazingly powerful for modelling such processes and is the topic of
Chapter 6.

Teaching and training: The UML is a very good tool for teaching and training.
The fact that you are reading this book and (hopefully) understanding the concept
associated with class diagrams means that the UML is a good and effective training
tool. Remember, more than anything, that the UML is a means to communicate
effectively, which is what training and teaching are all about.

Software: The UML is also very useful for modelling software, which is covered in
enormous detail in just about every other UML book that exists and therefore will
not be covered in much detail in this one!

Figure 5.8 shows that a ‘Chess game’ is made up of two ‘Player’ and that each player
has attributes – ‘result’ and ‘status’ – and is able to perform an action called ‘move’.

move()

result
status

2

Chess game

Player

Figure 5.8 High-level class diagram for the chess game example

This was the example chosen to illustrate structural and behavioural modelling,
which was covered in previous chapters, so let us now consider another aspect of chess
that has been completely omitted from the model shown here, but without which the
game cannot be played: the board. The next section, therefore, considers the board
itself and how this may be modelled. It has been mentioned before that there are
many correct solutions to a single problem, which will be illustrated over the next
few diagrams.

Figure 5.9 shows a very simple representation of a chessboard. It can be seen
that ‘Board’ is made up of 64 ‘Square’. Each ‘Square’ has a single attribute called
‘colour’, the value of which will dictate which colour the square will be on the board.
This is a very simple model and is correct. It is may not be the best representation
and does not contain much detail, but it is nonetheless correct.

It is interesting to see how more detail could be added, such as, is it possible to state
that there are two, and only two, possible values for the attribute ‘colour’, being black
or white. Also, is the aggregation symbol correct, or would a composition symbol
be more accurate? This will depend on the nature of the board and it is necessary to
ask the question of whether each square can actually exist by itself or whether it is,
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colour

Square

64

Board

Figure 5.9 Model of a chessboard

inherently, part of the board. In a typical shop-bought chess set, the symbol is more
appropriate if it is a composition symbol, rather than aggregation. However, what
about if each square were actually a field and the pieces helicopters? This may seem
slightly ridiculous, but it serves to illustrate the point that almost every model can be
represented slightly differently and these are the types of questions that all modellers
must begin to ask themselves.

The previous points were slight modifications of the existing model, but it is
also possible to have a very different-looking model that still represents the same
information, as shown in Figure 5.10.

BlackWhite

64

Board

Square

Figure 5.10 Alternative chessboard model

Figure 5.10 presents an alternative interpretation of the chessboard. This time,
the ‘Board’ is still made up of 64 ‘Square’ (aggregation or composition?) but the
class ‘Square’ has no attribute to represent colour. By changing the model, it is
possible to show that the concept of colour still exists, but this time by defining
two specialisations of ‘Square’: ‘Black’ and ‘White’. More information is added
by showing that there is an association between ‘Black’ and ‘White’, but note the
multiplicity on the association. As there is no multiplicity defined, one assumes that
it is a one to one relationship. This implies that, not only are there 64 ‘Square’, but
there is a one to one relationship between the two types of ‘Square’: ‘Black’ and
‘White’. Or to put it another way, there must be 32 ‘Black’ and 32 ‘White’ in order
for the association to be true.
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The model was changed by adding more classes, but more information was added
by doing this. The model has become more complex as there are more classes and
associations on it.

The final example of the chessboard is shown in Figure 5.11, illustrating a more
radical change of model.

Board

Row Column

Square

88

8
8

Figure 5.11 Final example of the chessboard model

Figure 5.11 shows the chessboard again, but this time the whole pattern has
changed, as the basic structure of the aggregation has changed. This time, ‘Board’ is
made up of eight ‘Column’ and eight ‘Row’. Each ‘Column’ and each ‘Row’ is made
up of eight ‘Square’. There is no concept of colour here, but this could be addressed
in both approaches shown previously: attributes or subclasses. In addition, there is
the same issue of aggregation versus composition here.

All this information may be brought together on a single diagram, as shown in
Figure 5.12.

Player

plays against

2

Board

x co-ord
y co-ord

Square

64

colour
name

Piece

32

is placed in

Chess game

Figure 5.12 Bringing it all together in a single class diagram

The diagram in Figure 5.12 shows how some of the previous diagrams may be
brought together into a single view. Note here that the composition relationship has
been used, rather than the aggregation relationship, to show the breakdown of the
chessboard. This is because, in the context of a game of chess, a ‘Square’ does not
exist by itself, but is an inherent part of the whole ‘Board’. Also notice how more
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detail is being added to the diagram by adding new relationships, so now there is a
relationship between ‘Piece’ and ‘Board’.

The question that most people ask at this point is, ‘which is the best model?’
The question that should be asked, however, is ‘which is the most appropriate model
for the problem at hand?’ Depending on the criteria for defining what ‘best’ means,
the most appropriate model will change. Imagine if the problem called for the simplest
(least complex) of models, the most appropriate would be Figure 5.9. If the criteria
were more concerned with the layout of the squares on the board, then perhaps
Figure 5.10 or Figure 5.11 would be more appropriate.

All the models shown previously in this section have described the same piece
of information and this was very simple information. Imagine trying to represent a
slightly more complex problem, such as the chess pieces, where there are still two
colours but also six different types of pieces, some of which exist singularly, some in
pairs and some in sets of eight. This is still a relatively simple problem. Now imagine
scaling the problem right up to represent an automated chess machine that can also
teach chess, tell the time and make coffee – imagine how many different possible
models would exist there!

The main point that has to be made here comes back, once more, to communi-
cation. It does not matter how many or few models are generated, because if they
cannot be communicated effectively to other people, then how is it possible to make an
informed and intelligent decision as to which one is the most appropriate for the prob-
lem at hand? The UML offers this method of communication that can iron out many of
the ambiguities in the form of a group decision, rather than a single person deciding.

5.2.4 Using class diagrams

Class diagrams are used to model just about anything and form the backbone of
any UML model. Class diagrams are perhaps the richest in terms of the amount of
syntax available and, because of this, the meta-model for class diagrams is the most
incomplete. Other features of class diagrams include, but are not limited to:

• Extra types of classes, such as association classes and interface classes.
• Extra types of relationships, such as other types of dependencies and extra detail

that can be added to relationships, such as role names and qualifiers.

The main aim of the class diagram, as with all UML models, is clarity and simplicity.
Class diagrams should be able to be read as any sentence and they should make sense.
Diagrams that are difficult to read probably represent complex information and, as
such, should be simplified or, if this is not possible, then lessons should be learned
from them.

5.3 Object diagrams

5.3.1 Overview

This section introduces the second of the 13 UML diagrams: the object diagram.
Object diagrams realise a structural aspect of the model and are heavily related to
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class diagrams. In fact, many people confuse the terms ‘object diagram’ and ‘class
diagram’ and use them interchangeably, but they are in fact two separate diagrams.
Indeed, many CASE tools that are available do not make any distinction between the
two diagrams, often combining them into something known as a ‘structural diagram’
or ‘object model’ or something similar.

The definition of an object is that it is an instance of a class; therefore, it seems
logical that object diagrams will represent instances of class diagrams, which is
exactly what they do. Objects represent real-life examples of the abstract classes
found in class diagrams and relate very closely to real life. Object diagrams also
have strong relationships with component and deployment diagrams (both structural)
as well as all types of interaction diagrams (communication, sequence, interaction
overview and timing diagrams).

5.3.2 Diagram elements

Object diagrams are made up of two main elements: objects and links. Objects are
defined as an instance, or many instances, of a class. In the same way, links are
instances of associations.

0..*1..*

2 relates together

«diagram»
Object diagram

«graphic path»
Link

«graphic node»
Instance

Figure 5.13 Partial meta-model for object diagrams

It can be seen from the diagram in Figure 5.13 that an ‘Object diagram’ is made up
of one or more ‘Instance’ and zero or more ‘Link’. Also, each ‘Link’ relates together
two ‘Instance’. When instances are identified, it is usual to assign a value to each
attribute as each instance represents a real-life example of a class and, hence, must
have values completed.

Each of these diagram elements may be realised by either graphical nodes or
graphical paths, as indicated by their stereotypes and are illustrated in Figure 5.14.

The basic symbol for an instance is a rectangle that has the instance identifier
(often referred to, incorrectly, as the ‘instance’ name) with the class that it is an
instance of next to it, separated by a colon. Most importantly, all text is underlined
in the top rectangle. This is crucial as, by omitting the underlining, it means that the
symbol represents a part or even a class.

Object diagrams are very heavily dependent on class diagrams, as each object
requires an associated class from which its appearance and behaviour can be taken.
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Instance name : Class name

attribute 1 = value 1
attribute 2 = value 2

Instance name : Class name

Instance (of a class)

Link (instance of an association)

Instance with attribute values

Figure 5.14 Graphical symbols for elements in an object diagram

This is illustrated in Figure 5.15, which shows a meta-model of how classes and
objects are related.
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Figure 5.15 Relationships between object diagram elements and the rest of the UML

Reading the diagram, it can be seen that a ‘Link’ relates together two ‘Instance’.
One or more ‘Instance’ is an instance of a ‘Class’ and one or more ‘Link’ is an instance
of an ‘Association’.

Notice how the top and bottom half of Figure 5.15 have both been seen before
in Figure 5.6 and Figure 5.13. This is an example of seeing patterns emerge from
different models that can give a whole new view of a particular piece of information
when shown together and with the addition of a few extra relationships [7].

5.3.3 Example diagrams and modelling – object diagrams

Object diagrams are perhaps the least used of all the 13 UML diagrams and, indeed,
many of the tools on the market do not support the creation of object diagrams.
However, like all aspects of life, it is difficult to see how some things can be used
effectively until a particularly awkward situation arises that cannot be modelled using
any other diagram. The main aim of an object diagram is to enforce the connection
to reality between the abstract class diagram and the real-life system that it is rep-
resenting. Quite often, classes can be a little too abstract for people to understand,
particularly when representing complex data structures or hierarchies. In a real-life
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situation, if a concept is too abstract, it is natural for people to ask ‘can you give me
an example’ or ‘can you give me a for instance’. Thinking about these words, they
are exactly the terminology used in the UML. Therefore, when someone asks ‘can
you give me an example’, think immediately of instances, whether it is a structural
aspect of the model using object diagrams, or a behavioural aspect of the model using
interaction diagrams.

This section, therefore, aims to point out some real-life examples of how object
diagrams can be very useful, if only to illustrate how a very abstract class diagram
relates to reality. In other words, object diagrams are very good at making that
all-important connection to reality that all good models should have. This will be
illustrated by looking at two real-life examples of how useful an object diagram can
be, before relating object diagrams back to the chess example.

Consider the example of a taught course and how different types of persons may
exist who are involved with the course. Each of these people may have attributes that
make them unique and that may be useful to administration staff who run the course.
This may be modelled by the class diagram shown in Figure 5.16.

name
company
email
phone
fax

Person

impart()

Tutor

listen()
learn()

Attendee

1..15

imparts knowledge to

Figure 5.16 Class diagram of a taught course

It can be seen from Figure 5.16 that there is a class called ‘Person’ that has five
attributes to describe that person: ‘name’, ‘company’, ‘phone’, ‘email’ and ‘fax’.
There are two types of ‘Person’ – ‘Tutor’ and ‘Attendee’ – each of whom inherits the
attributes of their parent class. ‘Tutor’ is specialised by having the operation ‘impart’,
while ‘Attendee’ has operations ‘listen’ and ‘learn’.

It is now possible to show an example of some people who may have their records
stored on a very simple database. Although the class diagram shown here is a far cry
from a database design, it clearly illustrates the point that sometimes it is useful to
see an example of how such structural information may be stored.

Figure 5.17 shows examples of three of the records that may exist: one for ‘Tutor’
and two for ‘Attendee’. The visual clue that these three elements represent objects,
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name = Joe Blob
company = Rubber Monkey Ltd
email = joe@rubber-monkey.co.uk
phone = 0207 1234567
fax = 0207 1234568

 : Attendee

name = Wanda Panker
company = Rubber Monkey Ltd
email = wanda@rubber-monkey.co.uk
phone = 01792 417227
fax = 01792 533035

 : Attendee

name = Jon Holt
company = Brass Bullet Ltd
email = jon.holt@brass-bullet.co.uk
phone = 01792 417227
fax = 01792 533035

 : Tutor

Figure 5.17 Example of an object diagram

rather than classes or parts, is the fact that the names are underlined – as soon as
something is underlined, it is an object. Notice how the objects here are anonymous
instances as they do not have unique object identifiers. It is assumed that each will
actually have a unique identifier, but for whatever reason they are not shown here.
The three objects are clearly instances of their associated classes, but the original
association from Figure 5.16 has now been instantiated as a link that shows the
relationship between the three objects. Notice how the multiplicity of the link is
different from that of the association as the association is abstract, showing a 1 to
1 . . . 15 multiplicity. The link, however, shows a 1 to 1 multiplicity, which is still
correct as the original multiplicity means between 1 and 15. If the diagram were
completed, there would be between 1 and 15 instances of ‘Attendee’ each with a 1 to
1 relationship with the instance of ‘Tutor’.

Object diagrams, it has been stated, represent real-life examples of their associated
classes and thus have their attribute values filled in. These may never change once
set, such as the malignly-monickered ‘Joe Blob’, or they may change over time, as
in the chess example later in this section.

Another example of the use of object diagrams is when the class diagram is a little
too abstract to get a clear handle on what is happening. This is often the case when
massive amounts of data and information are abstracted into a very simple hierarchy,
as often happens in databases. The following example is based on a system that must
describe how different components stored in a database are configured to make a
whole assembly.

Figure 5.18 shows a combined class and object diagram, which should usually be
avoided. However, in this case, it shows the link relationship between a very abstract
class diagram and a real-life object diagram quite nicely.
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Door : Assembly

Handle : Subassembly Hinge : Subassembly

Bracket : Component

LeftScrew : Component

RightScrew : Component

1..*

1..*

Assembly

Subassembly

Component

Figure 5.18 Combined class and object diagram for a parts database

The classes on the left of the model show a simple hierarchy that represents
the way that parts in a database are classified before they are configured to make up
a complete system. The highest level in the hierarchy is ‘Assembly’, which represents
a completed unit that may be sent out of a warehouse to be used in the manufacture of
vehicles, for example. It can be seen that each ‘Assembly’ is made up of one or more
‘Subassembly’, each of which is made up of one or more ‘Component’. This class
hierarchy is very easy to understand in terms of the class diagram syntax itself, but is
very difficult to relate to a real-life situation. It does not matter how accurate the class
hierarchy is if the person paying the bill cannot make head or tail of it; therefore, the
obvious solution would be to show an example of the real-life situation in which it
would appear. This is where the object diagram comes in.

Consider the right-hand side of the diagram now, which makes up the object
diagram. It can be seen that an instance of ‘Assembly’ called ‘Door’ is made up of
two instances of ‘Subassembly’: ‘Handle’ and ‘Hinge’. ‘Hinge’ is further decomposed
into three instances of ‘Component’: ‘LeftScrew’, ‘RightScrew’ and ‘Bracket’.

Although very simple, it was necessary to show an example hierarchy to the
customer otherwise there is no way that they could agree that the class diagram was
correct as it was too abstract for the customer to understand. To explain this another
way, the connection to reality was too far removed and thus the customer had problems
understanding it. Obviously it is simply not feasible for the object diagram to show
every instance of the class as it would be far too large to contemplate.

The model in Figure 5.19 continues the chess example that was introduced
previously, but this time the object diagram is used.

result = draw
status = stalemate

Player1 : Player

result = draw
status = stalemate

Player2 : Player

plays against

Figure 5.19 Object diagram for the chess game
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Figure 5.19 shows one possible object model for the chess game. Notice how each
object holds true to the original classes that were introduced in Figure 5.8. This time,
however, as we are considering actual objects, the attribute values are filled in. This
may change throughout the lifetime of the object: as the object changes state so might
the value of the attributes.

In addition, note that a link has been included that is an instance of the association
from the class diagram. Also, note that the multiplicity here is one to one, which is
the same as in the original class diagram.

There is a strong link between object diagrams and state machine diagrams, as state
machine diagrams describe the behaviour over the lifetime of a class, which is the
same as saying an object. Therefore, any state in an object’s state machine should be
representable by an object diagram that reflects the object’s attribute values while it
is in that state.

5.3.4 Using object diagrams

There are a few hints to bear in mind when using object diagrams:

• Each object must be an instance of a class and there may be more than one object
(instance) for every class. If an object needs to be represented on a diagram and
a class does not already exist, it is necessary to revisit the class diagrams in the
model and create an appropriate class.

• Objects exist in the real world as specific examples (instances) of things (classes).
As a consequence of this, each object is unique and has a unique identifier. In many
cases, this identifier need not be shown on the model but it should be remembered
that it does exist.

• Each link is an instance of an association and one association may have more than
one link as its instances. Again, this can provide a good consistency check with
the associated class diagram.

• Attributes in an object have their values filled in, to reflect their ‘real’ nature.
An object with its attributes’ values filled in should correspond to at least one
state in that object’s statechart.

• Objects can also be seen on interaction diagrams (all four types) and deployment
diagrams. An interaction diagram is basically a behavioural view of the object
diagram, which will show messages on links and ordering information.

Object diagrams are one of the least used of all the UML diagrams and they are not
supported by many CASE tools. Despite this, however, they do still have their uses,
as described in this chapter.

5.4 Composite structure diagrams (structural)

5.4.1 Overview

This section introduces a diagram that is completely new to UML version 2.0 and
is known as the ‘composite structure diagram’. The composite structure diagram
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realises a structural aspect of the model and has two distinct purposes:

• Compositions and aggregations may be represented within the boundaries of
a ‘Part’ without the need to show the aggregation or composition relationships
explicitly. This means that an emphasis may be put on the logical relationships
between elements of the composition, rather than the structural breakdown itself.
This adds a great deal of value, as it forces the modeller to think about the logical
relationship between elements, rather than simply which classes are part of which
other classes.

• Collaborations may be identified in the composite structure diagram. Collabora-
tions in UML version 2.0 are static structures that simply identify that there is
some sort of communication between one or more elements within the model.
This idea is slightly different from the concept of a collaboration in UML
version 1.x. In the previous incarnations of the UML, there was a diagram known
as the ‘collaboration diagram’ (now known as the ‘communication diagram’) that
realised a behavioural aspect of the model, so this slight change in the usage
of the term collaboration can lead to a degree of confusion. In summary, there-
fore, collaborations are structural elements that simply identify elements that
will interact in some way – they identify ‘what’. The definition of ‘how’ these
collaborations behave is stated using ‘interaction diagrams’ so there is a clear
link between the two concepts of collaboration (structural, ‘what’) and interaction
(behavioural, ‘how’).

The composite structure diagram uses a number of new elements in UML version 2.0,
which are introduced and discussed in the following sections.

5.4.2 Diagram elements

The basic element within a composite structure diagram is the ‘Part’. A part is
a new UML element that describes a collection of UML elements, such as classes
or instances of classes. The concept of the part is utilised in both usages of the
composite structure diagram, as is described later in this section. A composite struc-
ture diagram identifies parts and their internal structures and also parts and their
associated collaborations.

The diagram in Figure 5.20 shows the partial meta-model for the composite struc-
ture diagram. It can be seen that a ‘Composite structure diagram’ is made up of
one or more ‘Part’, zero or more ‘Port’, one or more ‘Collaboration’, zero or more
‘Collaboration occurrence’, one or more ‘Connector’ and zero or more ‘Role bind-
ing’. It can also be seen that a ‘Collaboration occurrence’ defines the occurrence of
a ‘Collaboration’.

Each of these diagram elements may be realised by either graphical nodes or
graphical paths, as indicated by their stereotypes and illustrated in Figure 5.21.

The diagram in Figure 5.21 shows the symbols for each of the elements in a com-
posite structure diagram. Several new symbols have been introduced here, compared
to UML version 1.x. The symbol for a part looks similar to that of an instance, the
difference being that the part has no underlining present, that is the graphical clue that
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«graphic path»
Connector

1..*

0..*

1..*

0..*

1..*

0..*

defines occurence of

«diagram»
Composite structure

«graphic node»
Part

«graphic node»
Collaboration

«graphic node»
Port

«graphic node»
Collaboration occurrence

«graphic node»
Role binding

Figure 5.20 Meta-model of the composite structure diagram

PartName:ClassName

PartName:ClassName

PortName:ClassName

CollaborationName

Part

Collaboration

Part with port

Role binding

Connector

Collaboration occurence
OccurenceName:

CollaborationName

Figure 5.21 Graphical symbols for the composite structure diagram elements

identifies an instance. Note also that ports may be added onto a part by using a small
rectangle and then naming it. The symbol for the collaboration and the collaboration
occurrence is a dotted ellipse that contains the name.

1..*

is an instance of

1..*

represents a set of

Class Instance

Part

Figure 5.22 Relationships between composite structure diagrams and other parts
of the UML

The diagram in Figure 5.22 shows the relationship between elements in a com-
posite structure diagram and the rest of the UML. The main relationship here is that
between the ‘Part’ and a set of ‘Instance’ which, in turn is related back to a ‘Class’.
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5.4.3 Examples and modelling – composite structure diagrams

In order to illustrate the power of the composite structure diagram, it is first necessary
to revisit an example class diagram. Consider the chess example that has been used
so far in this section and the class diagram representation of it. An expanded view of
the game of chess is shown in Figure 5.23, that brings together some of the concepts
already introduced in this chapter.

Player

plays against

2

Board

x co-ord
y co-ord

Square

64

colour
name

Piece

32

is placed in

Chess game

Figure 5.23 Class diagram representation of the game of chess

The diagram in Figure 5.23 shows the class diagram representation of the game
of chess. This is identical to the class diagram described previously. Notice how there
are three aggregations shown here below ‘Chess game’ and a single composition
below ‘Board’. However, the nature of the interpretation of these relationships differs
somewhat between ‘Chess game’, ‘Piece’ and ‘Board’ and between ‘Chess game’ and
two ‘Player’. It is these two slightly different types of relationship that the composite
structure diagram can help to clarify.

:Square[64] :Piece[32]
peg hole

Chess game

Figure 5.24 The composite structure of a chess game at an abstract level
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The diagram in Figure 5.24 shows the composite structure of the ‘Chess game’
where, as can be seen, the main aggregations have been removed and the focus is now
on the logical relationship between the two major elements in the diagram: ‘Square’
and ‘Piece’. The class ‘Chess game’ is now represented by the large rectangle and the
composition of this class is shown inside the larger, lower rectangle. One side effect
of the aggregations no longer being present is that the multiplicity is no longer clear,
but this is overcome by representing the set classes as a part, and then indicating the
number of instances in square brackets after the part name. It is easy, at this stage
to confuse a part with an instance. The visual clue that should be looked for is the
underlining as only an instance has an underlining whereas the part does not. The part
represents a set of instances, hence there is a similar notation to the instance by using
the colon, but now the number of instances is indicated in square brackets after the
part name.

This diagram is still quite abstract, but it is also possible to show the actual instance
within the class ‘Chess game’ by instantiating all elements within the diagram, as
shown in Figure 5.25.

x co-ord = 1
y co-ord = 1

 : Square

x co-ord = 1
y co-ord = 2

: Square

x co-ord = 1
y co-ord = 3

 : Square

x co-ord = 1
y co-ord = 4

 : Square

colour = Black
name = KingCastle

 : Piece

colour = Black
name = KingBishop

 : Piece

colour = Black
name = KingKnight

 : Piece

colour = Black
name = King

 : Piece

Game1Round1:Chess game

Figure 5.25 The composite structure of a chess game at a specific, or instance level

The diagram in Figure 5.25 shows the same information as the diagram in
Figure 5.24 but, this time, the diagram is showing the actual instances (as the names
are underlined), rather than a collection of instances as a part. Note how the attribute
values are completed and there is a distinct usage of instances both at the main classes
and within the structure of that instance.

The second usage of the composite structure diagram is to identify collaborations
within a model. A collaboration, in UML 2.0, is simply a statement that a number of
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elements in a diagram will interact in some way. The collaboration itself is structural
but is strongly related to interactions, which describe the behaviour of a collaboration.

Therefore, considering the game of chess again, the main interaction is between
the two players, so the collaboration will identify that there is some sort of communi-
cation between two instances of ‘Player’. This is shown in Figure 5.26, which shows
two slightly different notations for identifying collaborations. The upper represen-
tation shows a dotted ellipse that represents the collaboration, with its name inside
a segment of the ellipse. The contents of the collaboration can be seen inside the
ellipse, therefore this diagram reads: ‘there is a collaboration that contains two parts:
‘White:Player’ and ‘Black:Player’ that move against one another’.

White:Player Black:Player

Playing

moves against

moves against

Playing

White:Player Black:Player

Figure 5.26 Identifying collaborations (two notations) at an abstract level

Exactly the same information is shown in the lower half of the diagram except,
this time, the contents of the collaboration are shown outside of the dotted ellipse,
with role bindings shown between the ellipse and its contents. A role binding,
represented graphically by an undirected dotted line allows parts to be associated
with collaborations without them being physically inside the collaboration symbol.

Either notation may be used, depending on the preference of the modeller. For
example, simple collaborations may be easier to draw using the lower notation,
whereas a more complex collaboration may be easier to show actually inside the
ellipse. Also, depending on the tool being used to draw the diagram, it may be easier
to show a uniformly-sized ellipse on all diagrams, rather than resizing it.

The two notations shown so far are concerned with abstract parts interacting in
a collaboration, but it is also possible to show specific instances interacting in the
collaboration. This is quite simple to achieve, as it merely involves instantiating each
element within the diagram to show a specific example, in this case, a game of chess.
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Game1Round1:Chess game

Bertie : Player Wanda : Player

Figure 5.27 Identifying a collaboration of the chess game at a specific, or instance
level

The diagram in Figure 5.27 shows an instance of the collaboration identified in
Figure 5.26. It is clear that the diagram is dealing with instances as, this time, the
names are underlined.

5.4.4 Using composite structure diagrams

The composite structure diagram is a diagram that is completely new to the UML,
but very strongly related to the class and object diagrams. The main new element
introduced here is the ‘Part’ that represents a collection of instances of a class and is
often thought of as a ‘halfway house’ between abstract classes and specific instances
of classes.

There are two main uses for a composite structure diagram:

• To show the structure of a complex class by, effectively, representing the whole
class as its own diagram. This allows the emphasis of the diagram to be placed
more on the logical relationships between elements of the class, rather than
identifying that they are actually elements of a particular chess game (such as
aggregation and composition). This is particularly useful for showing elements
within an architecture of a system.

• To identify collaborations between different elements of a system. It may be
argued that the activity of identifying the structural collaborations is superfluous
and that they are identified inherently within scenarios, which is true. However, by
looking at the collaborations from the structural view, it is possible to ensure that
appropriate coverage of the model is achieved before considering that coverage
using scenarios. Again, remember that the use of any UML diagram is optional
so it is very much up to the modeller’s discretion where to use each type of
diagram.
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Composite structure diagrams have very strong relationships to class and object dia-
grams, which is only to be expected with a diagram that emphasises structure. Also,
it has very strong relationships with all four types of interaction diagram, as the sce-
narios that are realised by interaction diagrams will be based on the collaborations
identified in the composite structure diagrams.

5.5 Package diagrams (structural)

Package diagrams are new to UML 2.0, however, there is nothing new at all about
the contents of a package diagram. Package diagrams, as the name implies, simply
identify and relate together packages. The concept of the package is exactly the
same as when used on other diagrams – each package shows a collection of diagram
elements and implies some sort of ownership. The syntax for the package diagram is
very simple and can be seen in Figure 5.28.

0..*1..*

1..*

shows relationship between«graphic node»
Package

«graphic path»
Dependency

«graphic path»
Package import

«graphic path»
Package merge

«graphic path»
Public

«graphic path»
Private

«diagram»
Package diagram

Figure 5.28 Partial meta-model for package diagrams

The diagram in Figure 5.28 shows the partial meta-model for the package diagram.
It can be seen that there are two main elements in the diagram – the ‘Package’ that hap-
pens to be a graphical node and the ‘Dependency’ that happens to be a graphical path.
There are two main types of ‘Dependency’ defined – ‘Package import’ and ‘Package
merge’. The ‘Package import’ also has two types that are ‘Public’ and ‘Private’.

The graphical notation for the package diagram is shown here and, as is quite
clear, this is identical to the graphical notation in UML 1.x.

The diagram in Figure 5.29 shows that there are really only two symbols on
the diagram. The graphical node is the same as the original package symbol – the
rectangle with a smaller tag rectangle on the top left-hand edge. This is similar to
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«import»

«merge»

Package

Package merge

Package import

Dependency

Package name

Figure 5.29 Graphical symbols for elements in a package diagram

the folder icon that can be seen in Windows systems and, indeed, has a very similar
conceptual meaning. The name of the package can either be shown in the tag (as seen
here) or, in the case of long names, will often be shown inside the main rectangle.
The main graphical path in the package diagram is a dependency that has two basic
stereotypes defined – «import» and «merge». The «merge» stereotype means that the
package being pointed to (target) becomes part of the other package (source), with
any elements with the same name being taken as specialisations of the source package
elements. An «import», on the other hand, implies that the target package still remains
its own package as part of the source package. Any element name clashes are resolved
with the source package taking precedence over the target package. Other stereotypes
will often be defined for the dependencies on a package diagram.

As the basic concept of the package is unchanged from UML 1.x, then so is the
relationship between a package and the rest of the UML language.

Component

1..*

defines contents of

{incomplete}

Package

Packageable element

Class

Figure 5.30 Relationships between package diagram elements and the rest of
the UML
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The diagram in Figure 5.30 shows that a ‘Package’ is made up of a number of
‘Packageable element’. In the UML, almost any element can be enclosed within
a package, so only a few examples are shown here. (Note that this is indicated
by the {incomplete} constraint.) One of the main uses for a package is to define
the contents of a component, which can be seen on this diagram by the pattern
that shows each ‘Package’ defines the contents of zero or one ‘Component’. The
multiplicity here indicates that each component must have an associated package, but
that the reverse is not true – it is possible to have a package without an associated
component.

5.5.1 Examples of package diagrams

Package diagrams are typically used to show relationships within a model at a very
high level. For example, it is possible to define a particular pattern in a model and
then to reuse this either in the same model or in other models.

Game pieces

Pieces

Black pieces

:Piece[16]

Piece

Castle

Bishop

Knight

Pawn

King

Queen

«import» «merge»

«import» «merge»

White pieces

:Piece[16]

Figure 5.31 Packages and their relationships for a chess game

The diagram in Figure 5.31 shows a package named ‘Pieces’ that contains a
pattern defining types of piece for the chess game model. This same pattern is
used for both white and black pieces, which is shown by the «imports» relation-
ship here. The packages ‘White pieces’ and ‘Black pieces’ both import the contents
of the ‘Pieces’ package. Also, both the ‘White pieces’ and ‘Black pieces’ may be
combined, shown by the «merges» relationship, to create the entire set of ‘Game
pieces’.
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«profile»
Process implementation

«profile»
Process

«profile»
Process model

«import»

«import»

Figure 5.32 Example of a package diagram used to represent various profiles

The diagram in Figure 5.32 shows another package diagram being used to show
which profiles are being used for a particular project (profiles are discussed in more
detail in Chapter 10). It can be seen that there is a package named ‘Process model’
that «imports» a package called ‘Process’ that happens to be a profile. In turn, this
package imports another package named ‘Process implementation’ that happens to
be a profile.

5.5.2 Using package diagrams

Package diagrams are new to UML 2.0 but there is nothing new, conceptually or
syntactically, about the diagram elements. The only new aspect is that packages now
have their own diagram, whereas in UML 1.x, they existed on other diagrams.

The main use for package diagrams is to show high-level relationships between
groups of things in a model – particularly powerful for reuse of patterns and declaring
profiles.

5.6 State machine diagrams (behavioural)

5.6.1 Overview

This section introduces the first of the 13 diagrams that realise a behavioural aspect of
the model: the state machine diagram. State machine diagrams are discussed in some
detail in Chapter 4 and thus some of this section will serve as a recap. The focus here,
however, is on the actual state machine diagram, whereas the emphasis previously
has been on general behavioural modelling.
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State machine diagrams realise a behavioural aspect of the model and are some-
times referred to as ‘timing models’, which may, depending on your background,
be a misnomer. In UML 1.x, the term ‘timing’ referred purely to logical time, rather
than real time. ‘Logical time’ here means the order in which things occur and the
logical conditions under which they occur. There was no inherent mechanism for
representing real time in state machine diagrams in UML 1.x.

This lack of real-time capability is often heralded as one of the shortfalls of
the UML but, technically speaking, this was not actually true. The UML has never
claimed to be a real-time modelling technique and thus these criticisms fall outside
the scope of the UML. Up until now, that is! UML version 2.0 has been expanded
to include mechanisms for representing timing information on certain diagrams –
one of which is the state machine diagram, where timing attributes may be added to
states. There are several extension mechanisms for the UML that claim full real-time
capabilities, such as determinism and full temporal modelling. See Douglass’ work
for more details of real-time modelling using the UML [4, 5].

State machine diagrams model the behaviour of an object or, as it is sometimes
written, they model the behaviour during the lifetime of a class, which is the same
thing. It has already been stated that state machine diagrams model the order in which
things occur and the conditions under which they occur. The ‘things’ in this context
are, broadly speaking, activities and actions. Activities should be derived from class
diagrams as they are equivalent to operations on classes. Indeed, one of the basic
consistency checks that can be carried out is to ensure that any operations on a class
are represented somewhere on its associated state machine as activities or actions.

5.6.2 Diagram elements

State machine diagrams are made up of two basic elements: states and transitions.
These states and transitions describe the behaviour of an instance of a class over
logical time. States show what is happening at any particular instance in time when
an object is active. States may show when an activity is being carried out or when
the attributes of an object are equal to a particular set of values. They may even show
that nothing is happening at all – that is to say that the object is waiting for something
to happen.

Figure 5.33 shows the partial meta-model for state machine diagrams. State
machine diagrams have a very rich syntax and thus the meta-model shown here omits
some detail – for example, there are different types of action that are not shown.

From the model, it can be seen that a ‘State machine diagram’ is made up of one
or more ‘State’ and zero or more ‘Transition’. A Transition shows how to change
between zero or two states. Remember that it is possible for a transition to exit a state
and then enter the same state, which makes the multiplicity one or two rather than
two, as would seem more logical.

There are four types of ‘State’: ‘Final state’, ‘Simple state’, ‘Composite state’
and ‘Initial state’. Each ‘Transition’ may have zero or more ‘Guard condition’, which
explains how a transition may be crossed. A condition is a Boolean condition that
will usually relate to the value of an attribute.
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«graphic node»
State

«graphic path»
Transition

Activity Event
«graphic node»

Final state

«graphic node»
Composite state

«graphic node»
Simple state

«graphic node»
Initial state

1..* 0..*

0..*

0..*

0..*

0..*
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1..*

Action Guard condition

0..1

«diagram»
State machine diagram

Figure 5.33 Partial meta-model for state machine diagrams

A ‘Transition’ may also have zero or more ‘Action’. An action is defined as an
activity that takes no time, and one that, depending on one’s viewpoint, could be
perceived as impossible. In software terms, this may be a very quick activity, such as
opening a window.

Finally, a ‘Transition’ may have zero or more ‘Event’. An event is, basically, the
passing of a message, usually from one object to another, or to put it another way,
from one state machine to another.

There are two main types of ‘Event’: ‘send’ and ‘receive’. A ‘send’ event rep-
resents the origin of a message being sent from one state machine to another. It is
generally assumed that a send event is broadcast to all objects in the system and thus
each of the other objects has the potential to receive and react upon receiving the mes-
sage. Obviously, for each send event there must be at least one corresponding receive
event in another statechart. This is one of the basic consistency checks that may be
applied to different state machine diagrams to ensure that they are consistent. This is
analogous with component and integration testing, as it is possible to (and, in some
cases, difficult not to) completely verify the functional operation of an object, yet
when it comes to integrating the objects into a system, they do not interact correctly
together. Indeed, this is the case in the chess example used in Chapter 4.

Each of these diagram elements may be realised by either graphical nodes or
graphical paths, as indicated by their stereotypes and illustrated in Figure 5.34.

Perhaps the simplest and most common source of errors can be avoided by apply-
ing a simple consistency check between the state machine and its associated class.
This relationship can be seen in Figure 5.35.

Figure 5.35 shows the relationship between a state machine and its associated
class.

Each ‘Activity’ in a ‘State’ maps to zero or one ‘Activity diagram’ as any activity
may be decomposed into its own diagram. Each ‘Transition’ in a ‘State’ maps to one
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event [guard] / action

action name

event name

event name

Initial state

Receive event – graphical notation

Send event – graphical notation

Decision

Transition with  event, guard and
action – text format

Composite state with substate

Final state

Simple state

Action – graphical notation

Transition

State name

name

Substate

Figure 5.34 Graphical representation of elements in a state machine diagram
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Figure 5.35 Meta-model relationship between classes and state machine diagrams
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or more ‘Message’. Both an ‘Activity’ or an ‘Action’ may map to an ‘Operation’ from
a class, and an ‘Attribute’ from a ‘Class’ maps to zero or more ‘Guard conditions’.

Therefore, the state machine diagram has consistency relationships and, hence,
checks to: class diagrams, activity diagrams and all types of interaction diagrams.

5.6.3 Examples and modelling – state machine diagrams

This section looks at some practical examples of modelling and revisits the chess
game state machine that was used previously. This time, however, the emphasis is on
the actual mechanics of using state machine diagrams, rather than on the behavioural
concepts that were covered previously.

waiting

do/ move

moving

other player begins [status = checkmate] / result = this win

[status = stalemate] / result = draw

[status = stalemate] / result = draw

[status = checkmate] / result = other winthis player begins

moved send moved

Figure 5.36 State machine for the ‘Player’ class using basic graphical notation

Figure 5.36 shows the state machine for the class ‘Player’ from the chess example
using the basic graphical notation, as seen in UML 1.x.

Three types of state are shown here:

• A ‘Start’ state, realised by a filled-in circle that indicates the creation of an instance
of the class.

• An ‘End’ state, realised by two concentric circles that indicates the destruction of
the instance of the class.

• Normal states, indicated by rounded boxes, show what is happening in the object
at any particular point in time. It is important to ensure that the rounded boxes
actually have vertical straight sides so that it is just the corners that are rounded.
The reason for this is that activity diagrams (which are actually a special type of
statechart) have a different type of symbol and the only visual difference between
this and a normal state is that states in an activity diagram have no straight verticals
whereas normal states do. Mixing these types of state can lead to a great deal of
confusion, even in state machine diagrams!
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Normal states may or may not have activities or actions associated with them that
should correspond directly to operations from the class diagram. Each operation
from a class must exist as an activity on its associated state machine and, likewise,
any activities that exist on the state machine must be present as operations on the
governing class. Examples of both are shown here, where the ‘moving’ state has the
‘move’ activity, while the ‘waiting’ state has no activity.

The only way to go from one state to another is to cross a transition. Transitions are
realised by directed lines that may have events and conditions on them. Transitions are
uni-directional and if a return path of control is required, so too is another transition.

Reading the diagram, the object can begin its life in one of two ways: by the event
‘this player begins’ or ‘other player begins’. If ‘other player begins’, the first state is
‘waiting’. When the ‘moved’ event occurs, the object enters the moving state when
‘move’ is executed.

If ‘this player begins’, the first state is ‘moving’ where ‘move’ is executed. When
the send event ‘send moved’ occurs, the object enters the ‘waiting’ state. The ‘send’
before the event ‘moved’ indicates, rather cunningly, that it is indeed a send event
rather than a receive event.

There are three possible ends to the game, represented by the three end states:

• If ‘status = checkmate’ while the object is ‘waiting’, the attribute ‘result’ is set
to ‘this win’.

• If ‘status = checkmate’ while the object is ‘moving’, the attribute ‘result’ is set
to ‘other win’.

• If ‘status = stalemate’ from either ‘moving’ or ‘waiting’, ‘result’ is set to ‘draw’.

Conditions are used to describe the difference between each transition as a state
cannot have two identical conditions associated with it. The condition is a Boolean
expression and, in this case, the left-hand side of the condition relates directly to an
attribute. This provides rather a nice consistency check back to the state machine
diagram’s governing class.

Note the use of actions here to set the attribute value to one of its predetermined
values. Actions actually have many types in the full UML meta-model, such as:
assignments, call, clear, create, destroy, and so on. Actions may be related to opera-
tions in a class diagram or may even refer to a simple assignment, or very low-level
aspect of a design or specification. Remember again the link back to object diagrams
and imagine an object with its attribute values filled in, which would correspond to
this state.

In the UML 2.0, a new graphical notation has been introduced to the state machine
diagram to make the diagrams easier to read. One criticism of statecharts (as they
were known in UML 1.x) was that they can get extremely confused very quickly and,
hence, were difficult to read. In order to overcome this, a full graphical notation for
events, conditions and actions has been introduced in UML 2.0. Figure 5.37 shows
exactly the same information as in Figure 5.36 except, this time, the full graphical
notation has been used.

The state machine diagrams used so far have had an emphasis on using states
where something happens over a period of time that is represented as an activity.
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waiting

do/ move

moving

movedmoved

/result = this 

win

/result = draw

/result = 

other win

[status = checkmate]

[status = checkmate]

[status = checkmate]

[status = checkmate]

this player 

begins

other player 

begins

Figure 5.37 State machine for chess example using extended graphical notation

There is another approach to creating state machine diagrams that is more event driven
and that uses far more actions than activities. Indeed, in many such state machine
diagrams there are no activities at all, only actions. An example of an event-driven
state machine can be seen in Figure 5.38.

active

inactive

/create

/destroy

/deactivate/activate

Figure 5.38 Event-based state machine representing the lifetime of an object using
basic graphical notation

Figure 5.38 shows the state machine that represents the lifetime of an object.
It can be seen here that the state name does not have the ‘ing’ ending as, this time,
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it is representing the state when particular conditions are met, rather than when
something is actually happening. The things that happen here are shown as actions
on the transitions between states.

There is a fine line between whether something that happens should be an action
or an activity, but the following guidelines should give some pointers as to which are
which:

• Actions are assumed to be noninterruptible – that is, that they are atomic in nature
and once they have been fired, they must complete their execution. Activities,
on the other hand, may be interrupted once they are running.

• As a consequence of the first point, actions are assumed to take zero time! This,
however, refers to logical time rather than real time, which reflects the atomic
nature of the action. Activities, on the other hand, take time to execute.

• Activities may be described using activity diagrams, whereas an action, generally
speaking, may not.

It is important to differentiate between these activities and actions as they can have a
large impact on the way in which the system models will evolve.

Note how the state machine diagram uses the basic graphical notation and, clearly,
this can also be shown using the enhanced graphical notation, as shown in Figure 5.39.

active

inactive

/destroy

/activate /deactivate

/create

Figure 5.39 Event-based state machine using enhanced graphical notation

The diagram in Figure 5.39 shows the same state machine diagram as shown in
Figure 5.38 except, this time, the enhanced graphical notation has been used.
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5.6.4 Using state machine diagrams

There are a few rules of thumb to apply when creating state machine diagrams:

• All classes that exhibit behaviour (have operations) must have an associated
statechart, otherwise the system is not fully defined. This reflects the fact that
there must always be the two views of the system and forms a fundamental
consistency check for any model.

• All operations in a particular class must appear on its associated statechart. States
may be empty and have no activities, which may represent, for example, an idle
state where the system is waiting for an event to occur. Messages are sent to and
received from other objects, or state machine diagrams.

One question that is often asked concerns which of the two approaches to state machine
diagrams is the better: the activity approach or the event-driven approach? There is not
much difference between them as it really is a matter of personal preference. However,
having said this, the consistency checks for an activity-driven state machine are far
stronger that the activity-driven statechart, as the activities are related directly back
to the governing class. Many books only use examples where activity-driven state
machine diagrams are considered, rather than both types. It should also be borne in
mind that it is easier to transform an activity into an action, than it is to transform
an action into an activity. Therefore, when creating state machine diagrams, it is
suggested that activities are used on the first iteration of the model.

5.7 Interaction diagrams

5.7.1 Introduction

This section takes a bit of a departure from the other sections in this chapter, as four
diagrams are being discussed rather than one. This is because an interaction diagram
can be illustrated using four different types of diagrams: communication diagrams,
sequence diagrams, timing diagrams and interaction overview diagrams. All diagrams
show the same information, but from slightly different viewpoints. This relationship
can be seen in the simple meta-model shown in Figure 5.40.

Sequence diagram Communication diagram

Interaction diagram

Interaction overview 
diagram

Timing diagram

Figure 5.40 Meta-model showing types of interaction diagram
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Each of the four types of diagrams shows the same information – how a collab-
oration behaves. The main aim of any interaction diagram is to show a particular
example of operation of a system, in the same way as movie makers may draw up a
storyboard. A storyboard shows the sequence of events in a film before it is made.
Such storyboards in the UML are known as ‘scenarios’. Scenarios highlight pertinent
aspects of a particular situation and ignore all others. Each of these aspects is repre-
sented as an element known as a ‘Life line’. This is rather confusing as UML 1.x had
an element known as a ‘Life line’ with a slightly different use. Therefore, to make
the difference explicit, each will be discussed below:

• A ‘Life line’ in UML 1.x represents time going down a page underneath an object,
as seen in sequence diagrams.

• A ‘Life line’ in UML 2.0 represents an individual participant in an interaction,
that will refer to an element from another aspect of the model, such as an instance
of a class or a part. Where the life line refers to an element with a multiplicity of
more than one, and the exact element needs to be explicitly identified, then it is
possible to show which element is being referred to using a selector (shown in
square brackets). Where the life line refers to an element with a multiplicity of
more than one, and the exact element does not need to be explicitly identified,
then no selector is shown.

Each of the four interaction diagrams is discussed in detail here.

5.7.2 Overview – communication diagrams

This section introduces and discusses communication diagrams. Communication
diagrams realise a behavioural aspect of the model of a system. A communication
diagram models interactions between life lines in a system. The emphasis of a com-
munication diagram is on the organisational layout of the diagram elements on the
page. This can be very powerful as, quite often, people will like to assign conceptual
meaning to where a particular diagram element lies on a page. For example, some
people like to show the flow of control going from left to right, whereas others prefer
top to bottom. Another possibility is to keep geographically located similar elements
on the same part of the page, which can aid comprehension of a problem.

5.7.3 Diagram elements – communication diagrams

Each of the four interaction diagrams will be shown with its own partial meta-model.
The partial meta-model for the communication diagram is shown in Figure 5.41.

It can be seen that the ‘Communication diagram’ is made up of a single ‘Frame’,
one or more ‘Life line’ and one or more ‘Message’. Each ‘Message’ describes commu-
nication between one or two ‘Life line’. Also, one or more ‘Communication diagram’
represents an ‘Interaction’.

The ‘Frame’ element is particularly important when using interaction diagrams,
as it allows individual scenarios to be put together to form complex behaviour within
other diagrams.
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«graphic node»
Frame

«graphic node»
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Figure 5.41 Partial meta-model for communication diagrams

Each of these diagram elements may be realised by either graphical nodes or
graphical paths, as indicated by their stereotypes and illustrated in Figure 5.42.
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Figure 5.42 Graphical representation of elements in a communication diagram
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Figure 5.43 Meta-model showing relationship between communication diagrams
and other UML elements
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Figure 5.43 shows the relationships between communication diagrams and how
their elements relate to other UML elements. The diagram in the figure shows the
relationships between elements of the communication diagram and other aspects of the
UML. It can be seen that one or more ‘Communication diagram’ describes an instance
of a ‘Use case’, which is the same for all interaction diagrams. It can also be seen that
each ‘Communication diagram’ describes an ‘Iteration’ which in turn is identified
by a ‘Collaboration’. Each ‘Message’ maps to an ‘Object node’ or ‘Transition’ and
describes the behaviour between one or two ‘Life line’. Also, each ‘Life line’ maps
to each a ‘Part’ or an ‘Instance’.

5.7.4 Examples and modelling – communication diagrams

Communication diagrams are very useful for demonstrating the consistency of a set
of models. In particular, they are crucial for ensuring that the behaviour of the system,
at a high level, is correct. State machine diagrams are used to define the behaviour
within objects and it is stated that it is very important to ensure that the events that
are passed between state machine diagrams (objects) are consistent. One use for
communication diagrams is to do exactly this.

Let us revisit the chess example and see how communication diagrams may be
used to model that particular system. It may be argued that the chess example is so
simple that there is little point in modelling the interaction between two such ordinary
objects. However, as will be seen when the models are created, there has been an
omission from all our previous chess game models, which only comes to light when
the behaviour of a system is modelled at a higher level.

The class diagram for the game of chess indicated that each ‘Chess game’ was
made up of two ‘Player’. As the multiplicity is explicit, two instances of ‘Player’
are created and the behaviour of each instance is dictated by the state machine for
‘Player’. The game begins with the creation of two objects – let us call them ‘Player 1’
and ‘Player 2’. There is clearly going to be an interaction between the two objects that
will be shown as a link. The message that is passed along this link will be the same

*2:moved()

*1:moved()

sd fool’s mate

Player1:Player

Player2:Player

Figure 5.44 Communication diagram for the chess game example
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as the events passed between the state machine diagrams. From this information,
the model in Figure 5.44 can be drawn up.

Figure 5.44 shows the interactions between two life lines, each of which refer to
a particular instance of ‘Player’, in this case shown as ‘Player 1’ and ‘Player 2’. Let
us now perform a few simple consistency checks on the model so far to ensure that
everything is correct and consistent.

Each life line refers to an object and objects were defined as being instances of
classes, therefore each object must have a class from which it takes its appearance
and behaviour. A quick look at the class diagram in Figure 5.8 proves that this aspect
of the model is consistent.

The message that is passed along the link has already been defined in the state
machine for the two objects, so this may be verified as being consistent and correct.

Links were defined as being instances of association, therefore each link must
have an association upon which it is based. Another quick look at Figure 5.8 shows
that no such association exists. This means that the model is incorrect, as there is an
association missing from the original class diagram. The class diagram, therefore,
must be modified in order to bring it in line with the rest of the model. This modified
class diagram is shown in Figure 5.45.

move()

result
status

Player

2

m
ov

es
 a

ga
in

st

Chess game

Figure 5.45 Updated class diagram for the chess game

Figure 5.45 shows the class diagram from Figure 5.8 but with an additional asso-
ciation. The association is called ‘moves against’ and provides the template required
for all its instances, one of which is represented by the link that can be seen in the
communication diagram. Note that the association is bi-directional as no direction
is explicitly stated, which will translate into two uni-directional links when realised
in the communication diagram. Note also, that as no multiplicity is indicated, it is
assumed to be a ‘one to one’ relationship.

This has highlighted an essential feature of modelling that was first touched upon
in the previous chapter, that of levels of abstraction of models. Both state machine
diagrams and communication diagrams are types of behavioural models, but they
represent different levels of abstraction of the model. It was only when the behavioural
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model was looked at from both levels that an error was thrown up. Communication
diagrams represent a high level of abstraction of any model, whereas a state machine
shows a lower level of behaviour. It is vital to ensure that consistency checks are
performed on, and between, models of the system.

This has also highlighted another crucial feature of the UML, which is that no
matter how simple the model, it is almost impossible to get it right on the first attempt.
Achieving a good, consistent model requires a great deal of iteration between various
types of diagrams and the more modelling that takes place, the more consistent the
model will become and the closer the connection to reality will be.

5.7.5 Using communication diagrams

There are several rules of thumb that should be borne in mind when creating
communication diagrams:

• Life lines in a communication diagram will always refer to another element in
the model, such as instances of classes. This is true whether the other elements
have been defined or not. If the elements have been defined, all is well and good.
If, however, elements have not been defined, it is a good approach to identifying
elements such as classes and parts based on example scenarios (perhaps created
from particular use cases).

• In the same way, links always refer back to associations. This can prove to be a
good consistency check back to the class diagram.

• Messages may be derived from state machine diagrams – if they already exist.
If not, each message may show which send and receive events may be required
for state machine diagrams.

• One final point that should be borne in mind is that communication diagrams
model behaviour according to organisation or, to put it another way, the layout
on the page becomes important.

Communication diagrams are typically used to model scenarios; however, there is
another use that is rarely mentioned in the literature, which is that of a consis-
tency check for lower-level behavioural diagrams, such as activity diagrams and
state machine diagrams. This point was raised in Chapter 4 when the state machine
for the class ‘Player’ was verified as working at one level, but it took a higher-
level view to reveal that the messages defined on the state machine were incorrect.
This also relates to Chapter 2 where it was stated that models should be looked at
from more than one level of abstraction to ensure that the overall model is correct.
Communication diagrams (and all the other interaction diagrams) are very powerful
when used as a consistency check between various interacting life lines that already
have their internal behaviour defined with state machine diagrams.

5.7.6 Overview – sequence diagrams

This section introduces and discusses sequence diagrams, which realise a behavioural
aspect of the model. Sequence diagrams are one of the types of interaction diagram
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and, as such, behave very much like communication diagrams. Indeed, the informa-
tion shown by both these types of interaction diagram is actually the same, but from
a slightly different point of view. As such, sequence diagrams show life lines and the
messages passed between them but with an emphasis on logical time or the sequence
of messages.

The main difference between a communication diagram and a sequence diagram
is that communication diagrams show the high-level behaviour of a system from
an organisational point of view, whereas sequence diagrams show the high-level
behaviour of a system from the logical timing point of view.

5.7.7 Diagram elements – sequence diagrams

Sequence diagrams, are composed of the same basic elements as the communication
diagram except, this time, there are more elements present which provide the sequence
diagram with a very rich syntax.

Figure 5.46 shows that a ‘Sequence diagram’ is made up of a single ‘Frame’,
zero or more ‘Gate’, one or more ‘Message’, one or more ‘Life line’ and zero or
more ‘Interaction occurrence’. Each life line in a sequence diagram has a dotted
line underneath that indicates the order in which things happen (such as messages
and execution occurrences) and shows when the life line is alive. The death, or
termination of a life line is indicated by a ‘Stop’. An interesting extra piece of syntax
included here is the ‘Interaction occurrence’ that allows, effectively, another scenario
to be inserted into a sequence diagram. This means that scenarios showing repeated
behaviour can be bundled into a scenario on a separate interaction diagram and then
inserted at the relevant point in time into the life line sequence.

Another new element here is the ‘Gate’ that allows a message to enter into
a sequence diagram from somewhere outside the diagram. This is useful for show-
ing the message that invokes, or kicks off a particular interaction without specifying
exactly where it has come from (although this must be specified at some point in the
model).

The final new element shown here is the ‘Event occurrence’ that shows when
a message occurs on the life line.

Each of these diagram elements may be realised by either graphical nodes or
graphical paths, as indicated by their stereotypes and are illustrated in Figure 5.47.

The diagram in Figure 5.47 shows the graphical notation used in sequence
diagrams. The main symbol here is the life line with the dotted line underneath it
that represents the life of the life line. It is from such life lines that all the behaviour
of the interaction is shown.

5.7.8 Examples and modelling – sequence diagrams

In order to show the differences between the various types of interaction diagram,
the same example will be used for each – the chess example. Figure 5.48 shows
the sequence diagram for the chess game, which gives the same information as the
communication diagram in Figure 5.44. The life lines in the system are realised in the
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asynchronous()

call()

reply()

interaction nameref

sd name
Interaction / frame

Message reply (from a call)

Message call

Asynchronous message

Life line with...

Life line

Interaction occurrence

stop

activation and ...

Life line

Life line

Figure 5.47 Graphical representation of elements in a sequence diagram

usual way: life line name, colon, class name, all underlined. Two objects are shown
here: ‘Player 1’ and ‘Player 2’. These will both be created at the same time – when
the game of chess begins – and, as such, both life lines appear at the same height on
the sequence diagram.

The diagram in Figure 5.48 shows the sequence diagram for the chess example
and, before the actual behaviour of the diagram is discussed, it is worth looking at
the graphical notation being used. First of all, note that the message that starts off the
whole game comes from the edge of the frame, rather than from another life line –
this an example of a gate. The boxes shown on each of the life lines indicate when the
life line is executing something or, to put it another way, is busy. Each time a message
is sent, there is an event occurrence at the point where the message joins the dotted
life line. The life line is terminated using the stop symbol, represented by the large
‘X’ on the dotted line.

In terms of how the game is played, it can be seen that ‘Player 1’ begins the
game and, hence, the first execution occurrence is with ‘Player 1’. All the time that
‘Player 1’ has an active life line (shown visually by the focus of control), ‘Player 2’
has an inactive life line (no execution occurrence present). The execution occur-
rence may now be related back to the original state machine to see if the models are
consistent – remember that both models show behaviour but at different levels of
abstraction. When ‘Player 1’ has an active life line, this relates to the ‘Player 1’ state
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sd fool’s mate seq

player 1 begins()

Player 1:Player Player 2:Player

moved()

moved()

moved()

Figure 5.48 Sequence diagram for the chess example

machine being in the ‘moving’ state. Likewise, when ‘Player 1’ has an inactive life
line, this relates to when the ‘Player 1’ state machine is in the ‘waiting’ state.

The execution occurrence for the game of chess passes from ‘Player 1’ to ‘Player 2’
once ‘Player 1’ has moved. This is indicated by the message ‘moved’ that is sent via
the first link to ‘Player 2’. ‘Player 2’ behaves in exactly the same way as ‘Player 1’
as they have the same statechart, hence the execution occurrence passes between
‘Player 1’ and ‘Player 2’ as the game progresses, until one player wins and the game
is over. The end of the game and the end of both object’s lives occur when one player
wins or there is a draw. The end of the life line is indicated by a large ‘X’ life line,
which terminates it. This is directly comparable with the end state from the original
statechart.

The second example is that of the system life cycle model that was discussed in
the communication diagram.

Figure 5.49 shows the sequence diagram for a life cycle model. This model shows
the system life cycle without emphasis is on the sequence of the interactions.

From the model, the first thing that happens is that an instance of ‘User require-
ments’, called ‘UR’, is created, which has its own execution occurrence. When the
execution occurrence shifts to the next object, the message will actually cause the
creation of the second object, ‘System spec’, which is shown across from ‘User
requirements’ but lower down the diagram, which indicates that it is created some
time after the first object was created.
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UR : User reqs phase

SS : System spec phase

SD : System design phase

Message1()

Message2()

Message3()

Message4()

sd life cycle #1

Figure 5.49 Sequence diagram for a life cycle model

The next thing that happens is that the execution occurrence is passed back to
the first object, ‘UR’, indicating that, for some reason, the phase had to be revisited.
In reality, this would relate to an iteration of the system life cycle. When the execution
occurrence passes back to ‘SS’, the life line becomes active once more. The focus
then shifts to the third object, ‘SD’, which is created for the first time, and so forth.

5.7.9 Using sequence diagrams

The rules of thumb for the sequence diagrams are very similar to those for the
communication diagram.

Both types of interaction diagram are semantically equivalent, in that they are
based on the same information in the system. Indeed, it is a relatively simple matter
to convert between them and this task may be performed automatically by some tools.

The main difference is that the emphasis is on logical timing, or sequence, in the
sequence diagram. Communication diagrams give a better indication of how two life
lines are linked together but have weak logical ordering capabilities, as they are based
on a simple numbering of events. Sequence diagrams, on the other hand, are weak at
showing how life lines are linked but stronger in showing the order in which things
happen, including return paths of control.

An analogy that is often quoted for the two types of diagrams is to think of Gantt
charts and Pert charts in project management. A communication diagram is analogous
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to a Pert chart and a sequence diagram is analogous to a Gantt chart. Indeed, one use
for sequence diagrams is to use them to plan Gantt charts as they show behaviour
over logical time, which is a good basis for a Gantt chart.

5.7.10 Overview – interaction overview diagrams

The third type of interaction diagram to be discussed is a completely new diagram to
the UML, which is the interaction overview diagram. Interaction overview diagrams
are used to assemble complex behaviours from simple (or simpler) scenarios.
For example, it may be that one scenario covers the initialisation of a system whereas
there are three main modes of operation. Although this is easy to model in the UML
by creating four different scenarios, it is often difficult to get an idea of the ‘bigger
picture’ of the overall operation of the system. In fact, quite often people will use
an activity diagram incorrectly to explain the high-level operation of a system as the
paths in an activity diagram (decisions, control forks, joins etc.) lend themselves to
showing an overall behaviour. The interaction overview provides the functionality of
the paths of an activity diagram but at a high level, where the nodes represent entire
interactions presenting a high-level, complex operation of the system. In fact, it is
possible to include an iteration that is realised by any of the four interaction diagrams
as an interaction – even an interaction overview diagram.

5.7.11 Diagram elements – interaction overview diagrams

The interaction overview diagram is quite unusual as it looks, at first appearance,
rather like an activity diagram. Indeed, it has similar syntax to an activity diagram
with regard to the graphical paths and some graphical nodes but instead of states, the
basic graphical node in the interaction overview diagram is the interaction occurrence.

«graphic node»

Interaction occurrence

0..* 1..* 1..*

1..*

describes
occurrence of

«diagram»

Interaction overview diagram

«graphic node»

Frame

«graphic node»

Interaction

«graphic node»

Control node

«graphic path»

Activity edge

«graphic path»

Object flow

«graphic path»

Control flow

Figure 5.50 Partial meta-model for the interaction overview diagram

The diagram in Figure 5.50 shows the partial meta-model for the interaction
overview diagram. Note the similarities to the other two types of interaction diagram
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that have been discussed so far – the communication and sequence diagrams. Like the
other two diagrams, the ‘Interaction overview diagram’ is made up of a single ‘Frame’
and number of ‘Interaction’ and a number of ‘Interaction occurrence’. However, this
time the elements that happen to be graphical paths have been borrowed from the
activity diagram – one or more ‘Control node’ (of which there are many types not
shown here) and one or more ‘Activity edge’ that has two types: ‘Control flow’ and
‘Object flow’. The symbols for these elements are shown in Figure 5.51.

Decision or merge

Interaction nameref

iod name
Interaction / frame

Interaction occurrence

Activity final node

Activity initial node

Control fork or join

Figure 5.51 Graphical representation of elements in an interaction overview
diagram

The diagram in Figure 5.51 shows the graphical representation of elements in
an interaction diagram. Note how the symbols for the interaction and interaction
occurrence are the same as the other types of interaction diagrams introduced so far,
whereas the rest of the symbols look like the activity diagram symbols.

5.7.12 Examples and modelling – interaction overview diagrams

Consider, once again, the chess example and imagine how many possible scenarios
there are that could model the full potential functionality of the system. There are
rather a lot! In fact, it is impossible to visualise every possible scenario in one view so
the obvious thing to do is to break the behaviour down into a number of lower level,
easier to understand scenarios. For the purposes of this example, let us consider four
main scenarios:

• ‘game set up’, that describes a scenario that must happen at the beginning of every
game, when the board is set up, the pieces are placed on the board and the opening
player is decided upon.
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• ‘normal play’, that describes the routine playing of the game – each player moving
in turn, etc.

• ‘player 1 wins’, where player 1 wins the game.
• ‘player 2 wins’, where player 2 wins the game.

It should be clear by now that each of these scenarios could be modelled using either
sequence or communication diagrams. In fact, the scenario ‘normal play’ could be
represented by the diagrams shown in either Figure 5.44 or Figure 5.48. Each of
these diagrams, according to their partial meta-models, should have a frame with
a diagram identifier and a unique name. However, how do these four scenarios relate
to one another? What is the overall behaviour of the system in this case? Consider
the interaction overview diagram (Figure 5.52).

ref
game set up

ref
normal play

ref
player 1 wins

ref
player 2 wins

[player 2 wins][player 1 wins]

iod chess complete

game

Figure 5.52 Example of interaction overview diagram for a number of interactions

The diagram in Figure 5.52 shows an interaction overview diagram for the chess
game, using the four scenarios, or interactions that have just been defined. Notice how
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much this diagram looks like an activity diagram but, this time, the main graphical
nodes are interactions and, in fact, the whole diagram itself is a single interaction also!

The interaction shown in this diagram shows an occurrence of an interaction
named ‘game set up’. It is clear that the graphical node is representing a predefined
occurrence of an interaction since the keyword ‘ref’ appears in the name box of the
graphical node, whereas the body of the graphical node contains the unique name of
the interaction diagram that specifies the interaction. Notice that it is the interaction
name that is referenced, rather than a specific diagram name (there is no diagram
identifier before the unique interaction name). This is because it may be that there
are several different types of interaction diagram used to model a single interaction
and it is this interaction that is important here, rather than any specific diagram.

Once the first scenario has been executed, the flow moves onto the ‘normal play’
scenario which continues until a decision point is reached regarding who the winner
of the game is, represented by the decision branch. A single path is then chosen which
will lead to either the ‘player 1 wins’ scenario or the ‘player 2 wins’ scenario and
then onto the final state of the diagram.

5.7.13 Using interaction overview diagrams

Interaction diagrams should be used to represent high-level system behaviour by
combining a number of simple scenarios into complex behaviour. This does not
mean, however, that the scenarios must preexist in order to use an interaction overview
diagram, as they can be used at early points in the modelling cycle as a way to identify
interactions that must exist within the system. This then has a clear effect on other
aspects of the model, for example, interactions are related directly to collaborations,
hence a strong link back to composite structure diagrams and, hence, class diagrams.

Interaction overview diagrams can also be a very good way to ensure consistency
between different interactions from a system validation point of view. If one considers
that scenarios are a very good way to validate individual requirements, then interaction
overview diagrams are an excellent way to validate high-level requirements that have
complex behaviours associated with their validation.

5.7.14 Overview – timing diagrams

Timing diagrams are one of the new diagrams that have been introduced into
UML 2.0 and they are intended to bridge the gap between UML and the several real-
time approaches that exist in the modelling world. The world of real-time systems
modelling is a large one and has been the subject of many debates for several years.
In fact, one of the main criticisms aimed at UML 1.x was its lack of support for any
type of real-time analysis. The original response from the authors was one of stating
that UML was not intended to be a real-time modelling language. However, as time
has gone on, more and more people have been tailoring the UML to allow real-time
modelling capabilities so the UML 2.0 has introduced several mechanisms to allow
this. Several diagrams now allow the inclusion of real-time information, such as the
state machine diagram and the sequence diagram, but there is now a single diagram
that is dedicated to realising timing aspects of interaction – the timing diagram.
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The timing diagram allows timing information to be added to interactions and
allows two main visual views of the timing behaviour – one based on general timing
values and one based on states and condition on a time line. It should be pointed out
at this juncture that there is no process nor methodology for real-time modelling in
UML 2.0, just the mechanisms to allow timing to be associated with the model. This
means that any real-time modelling methodology should be applicable to a UML 2.0
without having to tailor the diagram elements. For information regarding real-time
modelling techniques, see Reference 4.

5.7.15 Diagram elements – timing diagrams

The timing diagram allows timing information to be included as part of the UML
model at the scenario or interaction level. The basic elements of the interaction
diagram are still present but, this time, new elements have been introduced to allow
real-time modelling. The graphical notation for timing diagrams is shown in the partial
meta-model in Figure 5.53.

1..*

0..*

0..*

describes timing for

{OR}

1..*

1..*

Timing constraint Duration constraint

Constraint

«graphic node»
Life line

«graphic path»
Message

«graphic node»
State/condition

time line

«graphic node»
General value time line

«graphic node»
Frame

«graphic node»
Interaction

«diagram»
Timing diagram

Figure 5.53 Partial meta-model for timing diagrams

The diagram in Figure 5.53 shows the partial meta-model for the timing diagram.
It can be seen that the basic elements are still there – a ‘Timing diagram’ is made
up of one or more ‘Life line’, one or more ‘Message’ and a single ‘Frame’. Several
new elements, however, have been introduced. Two types of graphical node have
now been introduced that form the basis for the timing diagram and either one can
be chosen as the main focus of the diagram. The ‘State/condition time line’ allows
an emphasis to be put on the timing of the states of the system, whereas the ‘General
value time line’ allows the emphasis to be put on the actual timing values. Time can
be shown in two ways by the inclusion of a ‘Constraint’ that can be either a ‘Timing
constraint’ or a ‘Duration constraint’.

One of the key points of the timing diagram is how timing information is
visualised, hence, the graphical notation associated with the timing diagram elements
holds more visual information than most UML diagram elements.
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td name

{t = t + 3}

Instance:class

{d...d*3}

Life line

State / condition time line

Life line indicator (may be flipped at 
90 degrees)

Duration constraint

Timing constraint

General value time line

and with state names shownState 1
State 2

Figure 5.54 Graphical representation of elements in a timing diagram

The diagram in Figure 5.54 shows the graphical notation of elements in the timing
diagram. The basic element of the standard ‘Frame’ is the same as other interaction
diagrams. The ‘State/condition time line’ shows what most people associate with a
generic timing diagram – a line that goes from left to right representing time and that
changes level according to value. In this case, the values refer to states (check for
consistency with state machine diagrams) which may or may not have state names
shown.

Another way to show the same information visually is by using the ‘General
value time line’ that shows, again, time going from left to right, however, this time
there are no separate levels to indicate state, but blocks of time that may or may not
have the state name written inside. This sort of visualisation may be more familiar to
people who have worked in logic circuit simulations, where time is often represented
in this format.

Time itself may be represented on the diagram by showing basic timing constraints
associated with the length of the time line. This may either be in explicit time using
the ‘Timing constraint’ or in terms of durations using the ‘Duration constraint’.

On timing diagrams, several life lines may be shown on a single diagram, so
individual life lines are simply referenced using text on the left-hand side of each
time line and which may be flipped by 90 degrees to make the diagram more compact.

5.7.16 Examples and modelling – timing diagrams

The timing diagram is a type of interaction diagram and, hence, should show the
same sort of information as the other diagram but with an emphasis on visualising
time. Figure 5.55 represents exactly the same information as the diagrams shown in
Figure 5.44 and Figure 5.8 but visualises time.
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Figure 5.55 Example of timing diagram with an emphasis on state/condition

The diagram in Figure 5.55 shows the timing diagram for the chess example but
highlights the timing of only one of the life lines. The life line is indicated on the left
of the diagram with the words ‘Player 1:Player’ at 90 degrees to the page – the same
text notation as shown previously to indicate a life line. Along the bottom of the
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Figure 5.56 Timing diagram showing more than one life line
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diagram there are several tick marks that represent the granularity of time. This can
be any sort of time, for example explicit time, relative time, cyclic time, and so on.
The states that the life line can be are shown on the left-hand side of the main time line
and should be traceable directly back to their appropriate state machine diagrams. The
main time line flows from left to right and changes level according to the state that
the life line is in at any point in time.

It is possible to show more than one life line on a single timing diagram that can be
very important when it comes to resolving synchronisation issues between different
elements in the system. An example of a timing diagram with more than one life line
can be seen in Figure 5.56.

The diagram in Figure 5.56 shows the same system but, this time, there are two
life lines. The two life lines are separated by the dotted-line separator yet both share
the same time scale at the bottom of the diagram.

The other main approach to visualising the timing aspect of a model is to view
time as generic values, rather than by state and this can be seen in Figure 5.57.

{t = t + 3}

td chess timing

player 1:player moving movingwaitingstart

Figure 5.57 Example timing diagram with an emphasis on general timing values

The diagram in Figure 5.57 shows the same information as the previous two
diagrams except that this time the main graphical element used is the ‘General value
time line’ rather than the ‘State/condition time line’. This view emphasises the timing
values more than the state of the life line at any point in time, although the state names
can still be shown on the diagram.

5.7.17 Using timing diagrams

Timing diagrams should be used where real time is an issue. When modelling any sort
of real-time system, particularly when wanting to carry out any sort of timing analysis,
it is important to have some sort of process or methodology behind the timing. With
the vanilla UML, there is no inherent process nor methodology but there are many
approaches well documented in the public domain.

In fact, many commercial CASE tools have in-built real-time modelling
capabilities that have provided one of the main inputs to the development of the
timing diagrams in UML 2.0.
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5.8 Activity diagrams

5.8.1 Overview

This section looks at another behavioural model of a system: the activity diagram.
Activity diagrams, generally, allow very low-level modelling to be performed
compared to the behavioural models seen so far. Where interaction diagrams show the
behaviour between objects, and state machine diagrams show the behaviour within
objects, activity diagrams may be used to model the behaviour within an operation,
which is about as low as it is possible to go.

The other main use for activity diagrams and certainly the most commonly seen
usage of activity diagrams in other texts is to model ‘workflows’. This will be dis-
cussed in some detail later in this chapter as the level of abstraction of a workflow
can vary.

Activity diagrams are actually special types of state machine diagrams and, as will
be seen, the constructs are very similar between the two types of diagram. Activity
diagrams are also similar to traditional flow charts (from which they were derived),
which is often a cause for comment or even criticism of the UML.

5.8.2 Diagram elements

Activity diagrams have changed considerably in UML 2.0 and, indeed, some of the
fundamental terms used in UML 1.x have now been replaced. Perhaps the largest
difference is the basic type of graphical node – in UML 1.x there were states (action
states and activity states) whereas in UML 2.0 these have been replaced by activity
invocations. Figure 5.58 shows this and all the other main elements in an activity
diagram.

1..* 1..*

1..*

1..*

interrupts

1..*

contains

«graphic node»
Activity invocation

«graphic node»
Object

«graphic node»
Control node

«graphic path»
Control flow

«graphic path»
Object flow

«graphic path»
Activity edge

«graphic node»
Activity node

«graphic node»
Interruptible

activity region

«graphic node»
Activity partition

«graphic node»
Region

«diagram»
Activity diagram

Figure 5.58 Partial meta-model for activity diagrams
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Activity diagrams are made up of three basic elements: one or more ‘Activity
node’, one or more ‘Activity edge’ and one or more ‘Region’. There are three main
types of ‘Activity node’ which are the ‘Activity invocation’ and the ‘Object’ and
‘Control node’ both of which will be discussed in more detail later in this section.
The ‘Activity invocation’ is where the main emphasis lies in these diagrams and it is
through activity invocations that it is possible to establish traceability to the rest of
the model via operations, activities and actions.

The ‘Activity edge’ element has two main types – ‘Control flow’ and ‘Object
flow’ – both of which are the same as in UML 1.x and whose meaning is self
explanatory.

The other major element in an activity diagram is the ‘Region’ that has two
main types: ‘Interruptible activity region’ and ‘Activity partition’. An ‘Interruptible
activity region’ allows a boundary to be put into a diagram that encloses any activ-
ity invocations that may be interrupted. This is particularly powerful for software
applications where it may be necessary to model different areas of the model that can
be interrupted, for example, by a direct user interaction or some sort of emergency
event. The ‘Activity partition’ is the mechanism that is used to visualise swim lanes
that allow different activity invocations to be grouped together for some reason – in
the case of swim lanes for responsibility allocation.

It is worth, at this point, going into more detail with regard to control nodes and
objects as there are several types of each. It should also be borne in mind that these
types of control nodes are also applicable to the interaction overview diagram, so it
is worth spending a little more time discussing the finer points of the syntax.

The diagram in Figure 5.59 shows an expanded view of the types of ‘Control
node’ that exist in UML 2.0. Most of these go together in twos or threes and therefore
will be discussed together.
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Activity

final node

«graphic node»
Flow

final node

«graphic node»
Final node

«graphic node»
Join node

«graphic node»
Merge node

«graphic node»
Decision node

«graphic node»
Control node

«graphic node»
Fork node

«graphic node»
Initial node

Figure 5.59 Expanded partial meta-model, focusing on ‘Control node’
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• The ‘Initial node’ shows where the activity diagram starts, and kicks off the
diagram. Conversely, the end of the activity diagram is indicated by the ‘Activity
final node’. These are all the same as in activity diagrams in UML 1.x, but there is
also a new type of ‘Final node’ which is the ‘Flow final node’. A ‘Flow final node’
allows a particular flow to be terminated without actually closing the diagram.
For example, imagine a situation where there are two parallel control flows in
a diagram and one needs to be halted whereas the other continues. In this case,
a final flow node would be used as it terminates a single flow but allows the rest
of the diagram to continue.

• The ‘Join node’ and ‘Fork node’ allow the flow in a diagram to be split into several
parallel paths and then rejoined at a later point in the diagram. Forks and joins use
the concept of ‘token passing’ that was used in Petri-net systems modelling, which
basically means that whenever a flow is split into parallel flows by a fork, imagine
that each flow has been given a token. These flows can only be joined together
again when all tokens are present on the join flow. It is also possible to specify a
Boolean condition on the join to create more complex rules for rejoining the flows.

• The ‘Decision’ and ‘Merge’ nodes also complement one another nicely.
A ‘Decision’ node allows a flow to branch off down a particular route according
to a condition, whereas a ‘Merge’ node allows several flows to be merged back
into a single flow.

Each of these diagram elements may be realised by either graphical nodes or graphical
paths, as indicated by their stereotypes and are illustrated in Figure 5.60.
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Figure 5.60 Graphical representation of elements in an activity diagram

The diagram in Figure 5.60 shows the graphical notation for all the elements
mentioned so far. One point to note is that the activity invocation element symbol is
not the same as the state symbol used in state machine diagrams – the state symbol is



134 UML for systems engineering

a rounded box (it has four distinct sides) whereas the activity invocation is a ‘sausage’
shape (two straight edges and two rounded ends).

The object node symbol is the same as any other object symbol, but there are
now two special types of objects that are defined – the ‘Signal’ and ‘Time signal’.
The ‘Signal’ symbol is used to show signals passed in and out of the activity
diagram – the same as in a state machine diagram, whereas the ‘Time signal’ allows
the visualisation of explicit timing events.

Partitions can be shown in one of two ways – the traditional swim lane way
by drawing a box or two parallel lines enclosing the relevant region, or by simply
writing the partition name in brackets above the activity name in the activity invocation
symbol. Interruptible regions are shown by a dashed line with an arrow coming out
of it to show where the flow goes in the event of an interruption.

5.8.3 Examples and modelling

The two main uses for activity diagrams are to model workflows and operations.
Conceptually, modelling operations is far simpler to understand than modelling work-
flows. The first example, therefore, shows how to model the behaviour of an operation.
This would be a procedure when applied to software or a general algorithm when
applied to general systems (perhaps a thought process or hardware design).

The first example shows how to model a simple software algorithm that has been
taken directly out of a programming algorithms book [17].

index = min

array(index) = val?

print index

index = index + 1

index = max?

print “not found”

[no]

[yes]

[yes]

[no]

Figure 5.61 Activity diagram describing the behaviour of an operation
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Figure 5.61 shows how a standard-defined algorithm for searching an array for a
particular value may be modelled. The algorithm has been taken straight from a book
on structured programming, which basically describes a library of useful algorithms
that may be implemented in any programming language.

From the model, the first thing that happens is that ‘index = min’ where the
attribute value (from an associated class diagram) is set to a predefined value of
‘min’. Next, the array value indicated by ‘index’ is compared with ‘val’. If the result
of this comparison is ‘yes’ then ‘print index’ occurs, otherwise ‘index = index + 1’
occurs, where the ‘index’ attribute is incremented by one. Next ‘index’ is compared
to a predefined value called ‘max’ to see if the end of the array has been reached.
If not, the model reverts back to comparison state, otherwise the ‘print ‘not found”
state is entered.

Activity diagrams are very useful for modelling complex algorithms with much
iteration, but may be ‘overkill’ for modelling very simple operations, particularly if
many exist within the design. Indeed, some sort of simple functional descriptions,
such as informal pseudocodes may be more appropriate for very simple operation
definitions.

The activity diagram can also be used to model any low-level conceptual operation
that need not be software, as shown in Figure 5.62.

plan move

check next move options

assess situation

give up

[bad]

[dead loss]

[redeemable]

[good]

Figure 5.62 Activity diagram showing behaviour of a thought process of how to
play chess (badly)

Figure 5.62 shows the ‘move’ operation from the original chess example. It can
be seen that the first thing that happens is ‘plan move’. The next is ‘check next move
options’, which is then followed by a decision branch. There are two outcomes: ‘bad’,
which leads to ‘assess situation’, and ‘good’, which leads to the end of the activity
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diagram. Immediately following ‘assess situation’ is another decision branch where
‘redeemable’ leads back to ‘plan move’ and ‘dead loss’ leads to a ‘give up’ activity
invocation.

The most widely used application (certainly from most other literature’s point of
view) for activity diagrams is concerned with modelling workflows. This can cause
some confusion as the term ‘workflow’ is very-much associated with the Rational
Unified Process (RUP) [3, 16], which has its own distinct terminology that can be
different from other terminology such as the one adopted by ISO. Two examples of
modelling workflows will be considered, one of an ISO-type interpretation of the
term ‘workflow’ and one of the RUP interpretation of the term ‘workflow’.

The first example will show a model of an ISO work practice, which is the lowest
level of the ISO process structure and which is discussed in-depth in Chapter 6.

develop tests

review

update/issue
:System design

:Test spec

[Design not complete]

[tests not complete]

Design doc’s

Design docs’

baselined

[review complete]

Project managerReviewerTester

:System spec

Designer

architectural design

design interfaces

detailed design

establish traceability

Figure 5.63 Activity diagram for an ISO work practice

Figure 5.63 shows how a design process behaves and is taken from Chapter 7.
Note how this diagram uses partitions as swim lanes to show responsibility in the
process. Also, note the cunning use of a package to indicate where one of the objects
has been baselined.

The second example of modelling workflows is one that is taken from the
definition of the RUP, which can be found in almost every UML textbook in existence
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today. For a more in-depth discussion of this concept of workflows, see Refer-
ences 2 and 16. For now, however, it is enough to know that the activity diagram is
recommended by the RUP to be the diagram that is used to model workflows.

prepare environment
for project

prepare guidelines
for iteration

prepare environment
for iteration

support environment
for iteration

[noninception iterations]

[inception iterations]

Figure 5.64 Activity diagram showing workflow from the RUP

Figure 5.64 shows an activity diagram that describes the behaviour of, or how to
execute, a particular workflow. One point worth considering here is the use of the fork
and join nodes. There are two activity invocations that are happening in parallel flows,
but this does not necessarily indicate that the actual activities are being executed in
parallel. What the diagram actually shows is that the flow is split into two flows and
that both activities must complete before the flows can be joined. It could be the case
that both activities do execute in parallel or it could be that one is executed before the
other, or any other permutation. The main point to remember here is that both flows
must complete before they can be joined.

5.8.4 Using activity diagrams

Activity diagrams are one of the least used of the UML diagrams, which is reflected in
the fact that many tools do not support activity diagrams! Perhaps one of the reasons
why they are not used is because they are useful at the algorithm level. Unfortunately,
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in many cases and especially for particularly simple algorithms, creating activity
diagrams is often perceived as a waste of time. Another reason why activity diagrams
are underused is that there is some confusion about the exact nature and structure of
the RUP, mainly due to the fact that the RUP is an evolving (yet well-proven) process.

Activity diagrams are actually defined as a special type of state machine diagram,
but it is sometimes difficult to see why two types of diagrams are required when,
it may be argued, they are very similar indeed. The most fundamental conceptual
difference between activity diagrams and state machine diagrams is that activity dia-
grams concentrate on activity flow and may thus show behaviour from more than one
type of object, whereas a state machine only shows the behaviour from a single type
of object. As a consequence, state machine diagrams may show wait, or idle, states,
whereas an activity diagram may not. The states in a state machine are normal states,
which means that they may be complex and contain more than one internal transition,
represented by a number of actions or activities, whereas activity invocations may
only contain one. Activity diagrams may also use advanced syntax such as ‘swim
lanes’ and ‘object flow’, which will be discussed briefly in Chapter 6. Swim lanes
allow particular states to be grouped together and associated with a particular class or
object, which is useful for assigning responsibility. Object flows allow the creation
and destruction of objects or classes to be associated with states, which may be used
to show data flow.

5.9 Use case diagrams

5.9.1 Overview

This section introduces use case diagrams, which realise a behavioural aspect of the
model. The behavioural view has an emphasis on functionality, rather than the control
and logical timing of the system. The use case diagram represents the highest level
of abstraction of a view that is available in the UML and it is used, primarily, to
model requirements and contexts of a system. Use cases are covered in greater depth
in Chapter 7 and thus this section is kept deliberately short, emphasising, as it does,
the structure of the diagrams.

Use case diagrams are arguably the easiest diagram to get wrong in the UML.
There are a number of reasons for this:

• The diagrams themselves look very simple, so simple in fact that they are often
viewed as being a waste of time.

• It is very easy to go into too much detail on a use case model and to accidentally
start analysis or design, rather than very high-level requirements and context
modelling.

• Use case diagrams are very easy to confuse with data flow diagrams as they are
often perceived as being similar. This is because the symbols look the same since
both use cases (in use case diagrams) and processes (in a data flow diagram)
are represented by ellipses. In addition, both use cases and processes can be
decomposed into lower-level elements.
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• Information on the practical use of use cases is surprisingly sparse, bearing in
mind that many approaches that are advocated using the UML are use case driven.
In addition, much of the literature concerning use case diagrams is either incorrect
or has major parts of the diagrams missing!

With these points in mind, the remainder of this section will describe the mechanics
of use case diagrams. For an in-depth discussion concerning the actual use of use case
diagrams, see Chapter 6.

5.9.2 Diagram elements

Use case diagrams are composed of four basic elements: use cases, actors, associations
and a system boundary. Each use case describes a requirement that exists in the system.
These requirements may be related to other requirements or actors using associations.
An association describes a very high-level relationship between two diagram elements
that represents some sort of communication between them.

An actor represents the role of somebody or something that somehow interacts
with the system.

The system boundary is used when describing the context of a system. Many texts
and tools ignore the use of the system boundary or say that it is optional without really
explaining why. Think of the system boundary as the context of the system and its use
becomes quite clear and very useful. System boundaries and contexts are discussed
in more detail in Chapter 6.
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Use case diagram

«graphic node»
Actor

«graphic node»
Use case

Extension Point
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System boundary
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0..10..*

1..*
0..*

0..*
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defines condition for

1..*

crosses

Figure 5.65 Partial meta-model for use case diagrams

Figure 5.65 shows that a ‘Use case diagram’ is made up of zero or more ‘Actor’,
one or more ‘Use case’, one or more ‘Relationship’ and zero or one ‘System
boundary’. A ‘Use case’ yields an observable result to an ‘Actor’.
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There are three basic types of ‘Relationship’ which are ‘Extends’, ‘Includes’
and ‘Association’. An ‘Association’ crosses a ‘System boundary’ and, wherever this
happens, it means that an interface must exist. The ‘Extends’ relationship allows
atypical characteristics of a use case to be defined via an ‘Extension point’ that will
actually define these conditions explicitly.

Each of these diagram elements may be realised by either graphical nodes or
graphical paths, as indicated by their stereotypes and are illustrated in Figure 5.66.

Name

«includes»

«extends»

«extends»

condition: {condition details} 
extension point: name

Name

Use case

Extends relationship ...

Includes relationship

Association

Actor

and with defined extension point

Figure 5.66 Graphical representation of elements of a use case diagram

One of the problems that many people have with using use case diagrams is how
to tie them into the rest of the system model. It is not uncommon to be presented
with a beautiful set of use case diagrams and then to be presented with a wonderful
system model with no relationships whatsoever between the two! The diagram in
Figure 5.67, therefore, seeks to define this more clearly.

The diagram in Figure 5.67 shows the relationship between use case diagram
elements and the rest of the UML. Perhaps the most important relationship here is
the one between ‘Interaction diagram’ and ‘Use case’ that states that one or more
‘Interaction diagram’ describes an instance of a ‘Use case’. Each use case will have
a number of interaction diagrams associated with it or, to put it another way, each
requirement will have a number of scenarios associated with it.
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1..*
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Relationship
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Interface

1..*
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Interaction diagram

Figure 5.67 Meta-model showing relationships between use cases and other UML
elements

On a related note, each time an ‘Association’ crosses the ‘System boundary’ then
an interface has been defined. This becomes important as each interface will become
the basis for message passing between different life lines in the interactions.

Once the interaction relationships have been established, it is then possible to
navigate to any other diagram in the UML and, hence, any other part of the system
model.

5.9.3 Examples and modelling

Use case diagrams have two main uses: modelling contexts and modelling require-
ments. Although these two types of use should be related, they are distinctly different.
For a full description of using use case diagrams, see Chapter 7. This section will
concentrate purely on the mechanics and practical use of use case diagrams.

In addition, there are two types of context that can be modelled with regard
to systems engineering: the system context and the business context. The first two
example models show a business context and a system context for the ongoing chess
game example.

Figure 5.68 shows the business context for the chess game. The business
context shows the business requirements of the organisation and identifies actors
(see the discussion on stakeholders in Chapter 7) that are associated with the
business requirements. The business requirements that have been identified are as
follows:

• ‘make money’, which is a business requirement that will be present on almost
all business contexts in the world. This may seem obvious, but when asking
for funding for a project the response from management is, invariably, ‘make
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Business context

make money

make games

make chess

make draughts

Developer

Sponsor

Public

Shareholder

Chess master

ensure quality

Figure 5.68 Use case diagram showing the business context for the chess game

a business case and then we’ll look at it’. By identifying the business require-
ments of your organisation, it is possible to start justifying expenditure for future
projects.

• ‘ensure quality’ is a nonfunctional requirement that will impact on everything
that the organisation does. This is particularly true when organisations are trying
to obtain, or have already obtained, some form of standard accreditation.

• ‘make games’ is basically what the organisation does, which has two subtypes:
‘make chess’ and ‘make draughts’.

• ‘make chess’ is the main business requirement that the system used so far in this
book has been concerned with. We can now see, however, how the requirement
‘make chess’ will help the organisation ‘make money’, which is very important.

• ‘make draughts’ is shown simply to indicate that the company may make more
than one type of game.

The actors that have been identified for the system must each have some sort of
association with at least one use case. If an actor exists that does not have an association
with a use case, there is something seriously wrong with the model.
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Make chess: system 
context

play chess

teach chess
Public

Player

Learner

Figure 5.69 Use case diagram showing system context for the chess game

Figure 5.69 shows the system context, rather than the business context. It is
important that these two contexts can be related in order to justify why a particular
project should exist.

Figure 5.69 shows the system context for the chess game. The use cases that
have been identified are, at this level, very simple and very high level. The use case
‘play chess’ represents the main use of the chess system that is being developed. The
second use case, ‘teach chess’, shows the secondary function of the chess system,
which is to teach a ‘Learner’ how to play chess. One argument that is often levelled
at use case diagrams is that they are too simple and fail to add anything to a project.
However, no matter how simple, a good use case diagram can contribute to a project
in several ways:

• They can be traced back to a business context to help justify a project. Quite often
it is the case that a simple one-sentence description is required to sum up a whole
project and a good system context will show exactly that.

• They can give a very simple overview of exactly what the project is intended to
achieve and for whom.

• They can form the basis of lower-level, decomposed use case diagrams that add
more detail.

It is also worth remembering that just because a use case diagram looks simple, it does
not mean that it took somebody two minutes to create and did not involve much effort.
This is only true when it comes to realising the model using a CASE tool, but even
the most simple of diagrams may take many hours, days or even months of work.
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Remember that what is being visualised here is the result of requirements capture,
rather than the actual work itself.

teach chess

Indicate move

show thinking

read set up

indicate error

«includes»

«includes»

«includes»

«extends»

Figure 5.70 Use case diagram showing modelling requirements

Figure 5.70 shows how a single requirement may be taken and modelled in more
detail, by decomposing the requirement into lower-level requirements. It shows the
‘teach chess’ requirement that has been decomposed into three lower-level require-
ments: ‘read set up’, ‘indicate move’ and ‘show thinking’. Each of these requirements
is a component requirement of the higher-level requirement that is indicated by
the special type of association ‘«includes»’, which shows an aggregation-style
relationship.

The second special type of association is also shown here and is represented
by the stereotype ‘«extends»’. The ‘«extends»’ relationship implies that the associated
use case somehow changes the functionality of what goes on inside the higher-level
use case. In the example here, the extending use case is ‘indicate error’, that extends
the functionality of ‘indicate move’ in the event that something untoward happens
and forces ‘indicate move’ to behave in a different way.

Figure 5.71 shows what a use case diagram should not look like, which is a mistake
that is very easy to make.

The model in Figure 5.71 shows how a model should not be created as it defies
the objectives of use case diagrams. There are several points to consider here:

• The definition of a use case is that it must yield some observable result to an actor.
In the example shown here, the decomposed use cases do not yield any observable
result to the actors – they are modelled at too low a level.

• Remember that the aim of modelling requirements is to state a user’s needs at
a high level and not to constrain the user with proposed solutions. The example
shown here has done exactly that and has started down the design road – which
is inappropriate at this level.
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Figure 5.71 Use case diagram showing a poor example of modelling

• The diagram is turning into a dataflow diagram by starting at the highest level and
decomposing until the problem is solved. Use cases are not the same as dataflow
diagrams, despite appearances, and should not be used as such.

These points are discussed in more detail in Chapter 7.

5.9.4 Using use case diagrams

Use case diagrams are, visually, one of the simplest diagrams in the UML, but they are
also the most difficult to get right. Part of their downfall is this simplicity, which makes
them easy to dismiss and easy to get wrong. Another problem with use case diagrams
is that they look like dataflow diagrams and thus people tend to overdecompose
them and start carrying out analysis and design rather than just simple requirements
modelling.

One of the strengths of use case diagrams only comes out when they are compared
with contexts. It is important to be able to trace any requirement back to the business
context to justify a business case for the project. It is also important to be able to trace
it to the system context as this provides the starting point for the project.

The meta-model shown here represents all of the basic UML elements of use case
diagrams, which indicates the simplicity of the diagram.

5.10 Component diagrams

5.10.1 Overview

This section introduces component diagrams that realise a structural view of a system.
Component diagrams are often perceived as being used, in the main, at later stages of
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system development when it comes to packaging up the final product and delivering
to the customer. However, they are also very useful for modelling legacy systems
which will usually happen towards the beginning of a project. Component diagrams
show real-life aspects of a system and have strong relationships to both class and
object diagrams.

The simplest way to summarise why a component diagram is used is to imagine
buying any product that is packaged in a box. The component diagram, basically,
shows ‘what’s in the box’ using both components and artefacts.

5.10.2 Diagram elements

Component diagrams in UML 2.0 are far more powerful (and useful) than those
presented in UML 1.x. Several new elements are introduced and the definition of
a component is tightened up to provide a far more precise definition of what a
component actually is. The elements that make up a component diagram are shown
in Figure 5.72.
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Figure 5.72 Partial meta-model for component diagrams

The diagram in Figure 5.72 shows the partial meta-model for component diagrams.
There are three main elements that make up a component diagram that are: one or more
‘Component’, zero or more ‘Interface’ and zero or more ‘Artefact’. Each of these is
discussed in more detail since the meaning of components has changed compared to
the one provided in UML 1.x:

• A component is the ‘specification’ of a replaceable module in a system that is
defined in terms of its interfaces. A component, therefore, is not the actual physical
entity that exists in real life, but the specification of that entity.

• An artefact is the actual physical entity existing in real life that meets the
specification defined by the component.
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• An interface describes the set of services provided by and required by a particular
component.

From the diagram, it can be seen that a ‘Component’ is made up of zero or more ‘Port’,
zero or more ‘Part’ and zero or more ‘Connector’. There are two types of ‘Connector’
in a component diagram, an ‘Assembly’ connecting required and provided interfaces,
and a ‘Delegation’ connecting parts and ports.

All these elements may be realised by graphic paths or nodes using the symbols
shown in Figure 5.73.

«component»
component name component name

«component»
component name

interface name

«component»
component name

interface name

«interface»
interface name

Interface1

«delegate»

port name

component (two forms)

component with interface

component with interface and port

interface shown as a class

provided interface

required interface

connecting required to provided 
interface - 1

connecting required to provided 
interfaces - 2

delegate connection (port to part)

Figure 5.73 Graphical representation of the elements in a component diagram

The diagram in Figure 5.73 shows the graphical notation for the elements in
a component diagram. Perhaps the most awkward symbol to draw in UML 1.x is
the component symbol which is a rectangle with two smaller rectangles on the side
of it. Not only is it awkward to draw, but the two smaller rectangles often take up
space on the diagram that would be better served showing interfaces. In a very wise
move, this symbol has been changed to the far more drawing-friendly rectangle with
a simple stereotype of «component» shown at the top of the box. Alternatively, it is
also possible to use the new graphical notation and then to draw a tiny version of the
old symbol in one corner, which defeats the object of replacing the old symbol!
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Artefacts are shown in the same way – a rectangle with a stereotype of «artefact»
shown in the top of the box.

System

Subsystem

Module

Component

Package

UML entity

1..*

1..* 1..*

may represent

may represent

m
ay

re
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Figure 5.74 Systems and components

Figure 5.74 shows how components relate to a system. Any generic system may
be thought of as being made up of one or more subsystems, each of which is made up
of one or more modules. This may be related to UML constructs, such as a ‘Package’
being made up of one or more ‘UML entity’, as seen in Chapter 3. A ‘UML entity’
may represent a ‘Module’ and a ‘Package’ may represent a ‘Subsystem’. Think of the
‘Component’ as a formal representation of a ‘Package’. By tracing this relationship
one step further, it tells us that a ‘Component’ is strongly related to a collection of
UML entities, or a subsystem.

5.10.3 Examples and modelling

One of the main uses for component diagrams is to show components and their
interfaces. In UML 1.x, interfaces were drastically underused which was due, in
the main, to the fact that they were too simple and lacked much functionality. With
UML 2.0, all this has changed. Interfaces are far better defined (two types of interface),
the concept of the port has been introduced and the internal working of a component
can now also be shown. In order to illustrate these new concepts, consider the diagram
in Figure 5.75.

The diagram in Figure 5.75 shows a component diagram for a computer games
console. Notice that there are a lot of ports and interfaces shown here. It can be
seen that there are two main components shown in the diagram: ‘Game engine’ that
happens to be a component and ‘game disc’ that also happens to be a component. The
small rectangles shown on the edges of the component represent the ports – notice
that the naming of ports is optional, whereas it is usual to name all interfaces. Starting
at the top of the component, it can be seen that there are two ports named ‘Memory
card 1’ and ‘Memory card 2’ that share a common interface, named ‘Memory card’.
This is a good example of several ports sharing the same interface – there is no point
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serial input parallel input

«component»
game disk

«component»
Game engine

Memory card

memory card 1 memory card 2

mains serial output parallel output

Controller

controller port 1

controller port 2

controller port 3

controller port 4

Serial port Parallel port

provide AV()

Left
Right
Video

«interface»
Analogue AV output

Analogue AV output

Digital AV output

disk tray

Figure 5.75 Example of component and interfaces

in defining an interface more than once, so a single definition of an interface is used
twice. The same logic can be applied to the four controller points shown on the right-
hand edge of the component. Note that these interfaces are provided interfaces into
which must be plugged another component – in this case game controllers. It may
be thought of as a provided interface allowing input to, whilst a required interface
provides output from a component.

Moving around the component, the bottom edge of the component shows three
ports, two of which have more than one interface. This is similar to the concept
discussed previously concerning a single interface having several ports. In this
case, however, there is a single port that has two distinctly different interfacing
elements – one of input and one of output.

Therefore, the relationship between ports and interface can be one to one, many
to one, one to many or many to many.

The diagram also shows more detail concerning an interface – in this case the
‘Analogue AV output’ – which is represented by a class that is stereotyped to show
that it happens to be an interface. When defining an interface in this way, it is usual
to use the attributes of the class to represent any data and the operations to represent
any functionality. Although not shown here, an interface class should be defined for
each of the interfaces identified on the diagram.
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The component shown in this diagram represents the specification of the games
console component, rather than the implementation of it. To understand this, consider
the scenario where a console is produced by a particular manufacturer, but then is
licensed out to third-party suppliers. For example, consider that the console manu-
facturer produces only the games console, whereas a third-party vendor may wish
to integrate the games console with a DVD player and video system and sell it as
a single package. The same will apply to any components that are plugged into the
games console – every games console on the market has open specifications for its
peripherals so that third-party suppliers can manufacture their own game controllers
and memory cards and the only way to ensure that they will work is to have a common
specification for the interfaces.

The actual implementation of a component is represented by an ‘«artefact»’.

«component»
Calculator

«artefact»
Math.h

«artefact»
Main.h

«artefact»
Calculate.cpp

«artefact»
Main.cpp

Value

Result
GUI

Calculator

Figure 5.76 Component diagram showing the use of artefacts

The diagram in Figure 5.76 shows an example of several artefacts that are used
to realise a component. It can be seen that there is a component called ‘Calculator’,
that has a single port, named ‘GUI’ (graphical user interface) and two interfaces –
a provided interface named ‘Value’ and a required interface named ‘Result’. This
component is realised (indicated by the dependency) by a package named ‘Calcula-
tor’ that contains four artefacts – represented by stereotyped classes again that will
implement the component. It is simple to imagine, in the case of software, a situation
where the same component may be realised by a number of different languages, hence
each having its own artefact.
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Another issue to consider is actually how these components are put together – this
now gives some indication as to why the circle and semicircle notation was chosen for
the interfaces as it is now possible to connect these interfaces to configure a system.
An example of this is shown in Figure 5.77.

insert piece()
remove piece()

x co-ordinate
y co-ordinate

«interface»
peg hole

«component»
Board

«component»
Pieces

peg hole

peg hole

Chess

Figure 5.77 Component diagram showing how to model a physical system

The model in Figure 5.77 shows two components – ‘Board’ and ‘Pieces’, each of
which has a single interface named ‘peg hole’. Note that only interfaces with the same
name and, hence, same interface specification, can be connected and only then if they
are complementary types (required and provided). The definition of the interface is
also shown here as an interface class.

In some diagrams, it may not be possible to show the interfaces joined up like in
this diagram, or it may just make the diagram unreadable. In this sort of situation,
it is possible to show a dependency relationship between two interfaces that implies
that they are connected together.

5.10.4 Using component diagrams

Component diagrams are used to show ‘what’s in the box’ when dealing with a real
system. The components represent the specifications of removable modules, whereas
artefacts show the actual realisations of these interfaces.

Component diagrams are often hailed as being always used in later life cycle
phases, towards the end of a project when delivering the final system. This is certainly
true when talking about clean-sheet projects but is not true when dealing with legacy
systems. When dealing with legacy systems, it is often the case that the component
diagrams for legacy aspects of the system are modelled at the beginning of a project,
maybe as part of a requirements or analysis exercise.

Component diagrams in UML 2.0 have changed significantly from UML 1.x and
now have far more functionality, are easier to draw and are far more powerful.
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5.11 Deployment diagrams

5.11.1 Overview

This section introduces deployment diagrams, which realise a structural aspect of
the model of the system. Like component diagrams, deployment diagrams are often
hailed as being used towards the end of a project life cycle when the system has
been packaged up, although this is often not the case. If a component diagram shows
‘what’s in the box’, it is the deployment diagram that shows ‘where to put the pieces’.

5.11.2 Diagram elements

Deployment diagrams are made up of two main elements: nodes and relationships.
Nodes represent real-world aspects of a system and show where artefacts from the
component diagram are housed. Nodes are represented graphically by a 3-D box, on
which instances or artefacts are shown.

«diagram»
Deployment diagram

«graphic node»
Artefact1..*
1..*

realises
1..*1..*

0..*

«graphic node»
Node

«graphic path»
Relationship

«graphic path»
Generalisation

«graphic path»
Association

«graphic path»
Dependency «graphic node»

Deployment spec

describes

is deployed on

«graphic path»
Manifestation

«graphic path»
Deployment

«graphic node»
Component

Figure 5.78 Partial meta-model for deployment diagrams

Figure 5.78 shows the partial meta-model for deployment diagrams in the UML.
It can be seen from the diagram that a ‘Deployment diagram’ is made up of one or
more ‘Node’, one or more ‘Relationship’ and zero or more ‘Deployment spec’. There
are three types of ‘relationship’: ‘Association’, ‘Generalisation’ and ‘Dependency’.
The ‘Association’ and ‘Generalisation’ relationships are the same as for all structural
modelling but the ‘Dependency’ relationship has two specialisations defined –
‘Manifestation’ and ‘Deployment’. The ‘Manifestation’ relationship describes the
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relationship between a component and its associated artefacts so it may be thought
of as a type of realisation. The ‘Deployment’ relationship describes an artefact
being deployed onto a particular node. Such a deployment may have a ‘Deployment
specification’ associated with it that describes features of the deployment.

Each of these diagram elements may be realised by either graphical nodes or
graphical paths, as indicated by their stereotypes and illustrated in Figure 5.79.

Node name

«artefact»
Artefact name

«deployment spec»
Specification name

«manifests»

«deploys»

Node

Deployment

Manifestation

Association

Deployment specification

Artefact

Figure 5.79 Graphical representation of elements in a deployment diagram

The graphical notation for a deployment diagram is straightforward, with the
only element that has not been seen so far in other diagrams being the node, that
is represented by a cube. The concept of a node is quite a strange one and is one
of those situations where a concept in software engineering is far simpler than the
same concept in systems engineering. When developing software, code is ultimately
produced that may either be stored or converted in some way to executable code
that may be run on some software or hardware platform. Therefore, there are only
three types of node that may exist in the world of software engineering: some sort
of storage medium (optical disc, memory, etc.), a hardware platform or some other
piece of software. This is quite neat and makes deployment diagrams for software
pretty much more straightforward. Consider now, however, the world of systems
engineering. In systems engineering, we are talking about deploying actual systems
and subsystems and, therefore, more often than not, a node in a systems project
will represent some sort of location. This may be a geographical location, such as a
country, or may be a location within another system, or whatever. The key point here
is that a node in systems engineering has an infinite number of possible permutations
for realisation, whereas in the world of software engineering, there are only three.
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Artefact

Class

Instance

is an instance of

Node
1..*

is deployed on

0..*is deployed on

Figure 5.80 Relationship between deployment diagram elements and the rest of
the UML

People often have a problem seeing how the deployment diagram ties in with the
rest of the UML model, which can be seen in Figure 5.80.

The diagram in Figure 5.80 shows the relationship between the node from
a deployment diagram and the rest of the UML model. It can be seen that there
are two elements that may be deployed on a ‘Node’ – a number of ‘Artefact’ or a
number of ‘Instance’. This then leads to the rest of UML through relationships to
other UML elements, such as the ‘Instance’ to ‘Class’ relationship shown here.

5.11.3 Examples and modelling

There are several uses for deployment diagrams which include modelling embedded
systems, modelling distributed systems, modelling client–server systems and mod-
elling physical systems. An example diagram for each of these uses is discussed in
this section.

«processor»
controller

«motor»
wrist

«motor»
elbow

«motor»
shoulder

«keypad»
manual
controlcontroller.exe

Figure 5.81 Deployment diagram showing embedded systems

Figure 5.81 shows an embedded system that represents a robot arm controller
system. The actual part of the system that has been the subject of the project is the
controller software, which is represented here as the ‘controller.exe’ component that
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lives on the node ‘controller’ and that happens to be a ‘«processor»’. Other elements
in the diagram include ‘shoulder’, ‘elbow’ and ‘wrist’, each of which happens to
be a ‘«motor»’. The final element is the ‘manual control’, which happens to be a
‘«keypad»’.

Note the extensive use of stereotypes, which is typical for deployment diagrams.
Stereotypes are discussed in more detail in Chapter 8 and caution must be exercised
when using them.

Figure 5.81 shows how an embedded system may be modelled using a deployment
diagram. The example chosen here is used as part of the user manual for a website in
order to show the customer where the original website files must end up before the
website will work and be accessible from the Internet.

«network»
Internet

«CD ROM»
customer copy

«artefact»
WebsiteBuildA1

«PC»
customer PC

«artefact»
WebsiteBuildA1

«server»
ISP

«artefact»
WebsiteBuildA1

must be copied to

must be ftp’d to

is viewed via

Figure 5.82 Deployment diagram showing distributed systems

Figure 5.82 shows a distributed system that has been modelled using a deployment
diagram. The node on the left is called ‘customer copy’, which happens to be a
‘«CD-ROM»’ representing the actual disc that is delivered to the customer. The next
node is called ‘customer PC’, which happens to be a ‘«PC»’. This represents the
customer’s computer onto which the information on the CD-ROM must be copied.
This is apparent from the diagram since the directory that must be copied across to it
is represented by the artefact ‘WebsiteBuildA1’ and the association between the two
nodes describes the nature and direction of the relationship.

The third node, called ‘ISP’ and which happens to be a ‘«server»’, represents the
customer’s Internet service provider (ISP) to which the ‘WebsiteBuildA1’ files must
be ftp’d.
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Note again the extensive use of stereotypes and remember that this diagram would
lose a great deal of meaning without some sort of legend to explain what the stereo-
types mean. Such a legend is often called the ‘assumption model’ and is defined as
part of a UML profile, which is discussed in detail in Chapter 8.

«CD ROM»
customer copy

«artefact»
WebsiteBuildA1

«deploys»

«component»
Website

«manifests»

DeployLocation: c:\www\main
ExecuteLocation: c:\ProgramFiles\www

«deployment spec»
Website deployment

Figure 5.83 Alternate representation of the chess example, using ‘manifests’
relationship

The diagram in Figure 5.83 shows an alternate way of showing the same infor-
mation. This time, the artefact ‘WebsiteBuildA1’ is shown outside the node, but the
deployment is indicated by the «deploys» dependency. Also shown here, is the actual
component that is being realised, that is indicated by the «manifests» dependency.
Just to include the rest of the notation, a deployment specification is also shown here
that shows the features of the deployment, in this case there are two attributes to
represent the deployment location (indicated by the ‘DeployLocation’ attribute) and
the execution location (indicated by the ‘ExecuteLocation’ location).

The next example of the use of a deployment diagram shows a client–server
system that makes use of packages.

The final example of the use of deployment diagrams pays another visit to the
game of chess. This time, as we know ‘what’s in the box’ from the component
diagram, we need to know where to put the things that are in the box. This may seem
like stating the obvious, but it wraps up the chess example neatly and goes to show
that it is possible to model just about anything with the UML, including where to sit
during a game of chess!

The components that were defined in Figure 5.77 lead to two artefacts being
identified: ‘pieces’ and ‘board’. We also know from the object diagram in Figure 5.19
and the interaction diagrams in Figure 5.44 and Figure 5.48 that two instances exist:
‘Player 1’ and ‘Player 2’. The deployment diagram relates all these elements together
to show where they are deployed.
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«table»
kitchen table

«artefact»
Standard pieces

«artefact»
Standard board

«chair»
your chair

Bertie : Player

«chair»
my chair

Wanda : Player

Figure 5.84 Deployment diagram showing physical systems layout for the chess
example

Figure 5.84 shows how the components and objects defined in a chess game box
set and the associated players are deployed in the real physical world.

There are two nodes that happen to be ‘«chair»’, which are ‘my chair’ and ‘your
chair’, where the instances ‘Wanda’ and ‘Bertie’ are deployed, or sit. The ‘standard
board’ and ‘standard pieces’ are artefacts from a component diagram that are deployed
on the ‘kitchen table’, which happens to be a ‘«table»’.

5.11.4 Using deployment diagrams

Deployment diagrams have a very limited syntax and thus the meta-model shown here
is almost complete. Advanced concepts that may be used for deployment diagrams
include different types of nodes to represent processing nodes and nonprocessing
nodes in the case of software engineering. This may be extended to the world of
systems engineering by defining a set of locations specific to a particular project or
system that may be defined as stereotypes and reused.

Deployment diagrams are also one of the more little-used UML diagrams, which
is reinforced by the lack of CASE tool support for the diagram.

An interesting point about deployment diagrams is that, in most cases, they are
hailed as being used towards the end of a project when the final product is being
packaged up; however, in some cases, they are the first diagrams to be used. In the
same way that component diagrams are very powerful when it comes to projects with
a legacy element, so are deployment diagrams. Also, in examples where the system
may have to be installed into a particular environment, deployment diagrams may be
used to model that environment.



158 UML for systems engineering

5.12 Summary

This chapter introduces each of the 13 UML diagrams in turn and provides examples
of their use. Each diagram is discussed at a very high level, often missing out much of
the diagram syntax, so that the modelling aspects of each diagram could be focused
on, rather than being bogged down by all the syntax of each diagram.

The following models serve as a recap for everything said in this chapter, which
should be readable by anyone who has read (and understood) this book so far. Even
with the limited amount of syntax that has been introduced, it is still possible to model
many aspects of a system.

Figure 5.85 shows the 13 types of UML diagram that have been introduced in this
chapter. Note how the ‘Sequence diagram’, ‘Timing diagram’ , ‘Interaction overview
diagram’ and ‘Communication diagram’ are grouped into a generalised class called
‘Interaction diagram’, which reflects that fact each of the two diagrams shows the
same sort of information. Note also how the ‘Activity diagram’ is a specialised type
of ‘State machine diagram’.

These 13 diagrams are often grouped into categories to represent different views
of the system. Rather than be prescriptive with these groupings, the diagrams
in this book are grouped into two very broad types of model: behavioural and
structural.

Figure 5.86 shows how the nine types of UML diagram are grouped into the
two types of models. Many other texts on the market will show different ‘views’
of a system, such as logical view, physical view, use case view, and so on, and
this is fine but it will not fit every application. These views are also consistent with
the two types of models shown here; each type of view that is defined may consist
of a structural and behavioural element. Treat the two models here as the absolute
highest levels of types of model and use the views introduced in other books as
necessary.

5.13 Conclusions

In order to conclude this chapter, there are a few pieces of practical advice that should
be borne in mind when modelling using the UML. These rules are not carved in
stone, but experience has shown that they will be applicable to 99 per cent of all
modelling.

• Use whatever diagrams are appropriate. There is nothing to say that all 13 dia-
grams should be used in order to have a fully defined system – just use whatever
diagrams are the most appropriate.

• Use whatever syntax is appropriate. The syntax introduced in this book repre-
sents only a fraction of the very rich UML language. It is possible to model most
aspects of a system using the limited syntax introduced here. As you encounter
situations that your known syntax cannot cope with, it is time to learn some more.
There is a very good chance that there is a mechanism there somewhere that will.
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Structural diagrams

Behavioural diagrams

Use case diagramInteraction diagram

Timing diagram Interaction overview 
diagram

Sequence diagram Communication diagram

Statechart diagram

Activity diagram

Component diagramPackage diagram

Deployment diagram
Composite structure

diagram
Class diagram

Object diagram

Figure 5.86 The types of diagram grouped into types of models

• Ensure consistency between models. One of the most powerful aspects of the
UML is the ability to check the consistency between diagrams which is often
glossed over. Certainly, in order to give a good level of confidence in your models,
these consistency checks are essential.

• Iterate. Nobody ever gets a model right the first time, so iterate! A model is a
living entity that will evolve over time and, as the model becomes more refined,
the connection to reality will draw closer.

• Keep all models. Never throw away a model, even if it is deemed incorrect, since
it will help you to document decisions made as the design evolved.

• Ensure that the system is modelled in both views. In order to meet most of these
criteria, it is essential that the system is modelled in both views, otherwise the
model is, quite simply, incomplete.

• Ensure that the system is modelled at several levels of abstraction. This is one
of the fundamental aspects of modelling and will help to maintain consistency
checks, as demonstrated in the chess example.

Finally, modelling using the UML should not change the way that you work, but
should aid communication and help to avoid ambiguities. Model as many things as
possible, as often as possible, because the more you use the UML, the more benefits
you will discover.
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5.14 Further discussion

1. Take one of the partial meta-models shown in this chapter and then select any
other UML textbook – see the references at the end of this chapter for a list
of alternatives. Based on the detailed information in the textbook, populate the
meta-model further to gain a greater understanding of the type of diagram chosen
for this example.

2. Model a set of chess pieces using a class diagram. How will the different types
of pieces be represented – by colour or by movement?

3. Expand on the chess game example by adding a new operation called ‘think’ to
the class diagram introduced in Figure 5.8. Which other diagrams will this affect?

4. Expand on the chess example in Figure 5.8 by defining two types of ‘Player’:
‘Human’ and ‘Computer’. What impact will this have on the model and which
models will need to be redefined or created from scratch?

5. Take any prerecorded CD-ROM and model the contents, based on what can be
seen, for example, from a typical Windows-style browser.

6. Now model the steps that you took in order to put the CD into the computer
and read the contents of the CD-ROM. Think about deployment and component
diagrams for the structural view and interaction diagrams and state machine
diagrams to model how this is achieved.
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Chapter 6

Modelling standards, processes and procedures

process and procedure are the last hiding place of people without the wit and
wisdom to do their job properly

David Brent

6.1 Introduction

6.1.1 Introduction

In this chapter, standards, processes and procedures are modelled using the Unified
Modelling Language (UML). The importance of having a defined process has been
discussed previously in Chapter I. This chapter looks at how the UML may be used
to effectively model processes in a correct and unambiguous fashion in order to
minimise complexity of the process and to maximise the effective communication
involved with implementing the process.

This section is split into six main sections:

• Introduction, where the rationale for modelling standards, processes and
procedures is discussed.

• Analysing standards, where the UML is used to model and help to understand
standards.

• Defining the procedure, where the analysis models from the previous sections are
used as a reference for defining a new procedure.

• Life cycles, where life cycles and life cycle models will be modelled and then
related to the new process defined in the previous section. In addition, the process
will be tailored to allow for projects with unique requirements.

• Implementing the process, where the structures of the output from the newly
defined process are modelled. Practical issues for implementing the procedure
will be addressed, which will form the basis for using a systems engineering tool.

• Finally, conclusions are drawn about the whole issue of modelling standards.

For other examples of process modelling, see Reference 1.
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6.2 Standards

The importance of having a well-defined process was discussed in Chapter 1.
However, it is not good enough simply to have a defined process, as it is also nec-
essary to demonstrate compliance with a norm, demonstrate usage of the process on
projects and demonstrate that the process is effective. It is possible to use the UML
in order to achieve these aims, and this chapter sets out to do exactly that.

The first of the points raised here, demonstrating that the process is compliant with
an existing norm, is crucial to allow the process to be audited or assessed according
to such a norm. In real terms, these norms are standards, procedures, best practice
guides, textbooks [2], etc.

This may seem perfectly reasonable and might fit in with our definition of systems
engineering being the implementation of common sense, but it is far easier said than
done. In order to demonstrate compliance with a standard it is important to have
a good understanding of that standard. In addition, it is necessary to be able to map
between the relevant part of the chosen standard and the process under assessment.

6.2.1 Standards, standards, standards

Unfortunately, there are many problems associated with standards that hinder their
understanding, or lead to incorrect implementation of standards, and that were
introduced briefly previously in this book.

One problem with standards is that there are so many of them – in fact, in some
ways there are too many standards, which may lead to all sorts of problems. Here
is a list of some of the more popular standards in use today in the world of systems
engineering:

EIA 632 Processes for engineering a system: This is a popular standard that has seen
a lot of implementation in the defence and aerospace industries.

EIA 731 Systems engineering capability model: This is a widely adopted standard
that is concerned with capability determination and uses the processes defined in EIA
632 Processes for engineering a system.

ISO 9001 Model for quality assurance in design, development, production,
installation and servicing: This is arguably the most widely used standard in the
world as it provides the international benchmark for system quality. This includes all
aspects of systems except for software-based systems! This has led to the develop-
ment of a set of guidelines specifically for software systems, which is described in
the next point.

ISO 9000-3 Guidelines for the application of 9001 to the development supply and
maintenance of software: This is not a standard but a set of guidelines that describe
how to apply ISO 9001 to software systems. This has also led to the definition of
formal accreditation guidelines under the TickIt scheme.

IEC 61508 Functional safety of electrical/electronic/programmable electronic
safety-related systems: This standard is aimed very much at programmable devices,
such as PLCs, and is used heavily in the signalling world.
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ISO 15288 Life cycle management – system life cycle processes: The latest attempt
by ISO to make sense of the standards maze that has been generated in conjunction
with major industry, which promises a large uptake in many industries [3].

ISO 12207 Software life cycle processes: This standard provides an input to many of
the other standards mentioned here and is one of the most widely accepted standards.
In fact, most standards will make explicit reference to ISO 12207 and cite it as a basis
for life cycle definition.

ISO 15504 Software process improvement and capability determination (SPICE):
This very long and well-written standard defines a complete set of processes within
an organisation that can be used as the basis for process improvement and/or capability
determination.

IEEE 1220 Application and management of the systems engineering process: This
US standard is a widely used international standard that has a strong track record for
systems development.

These are just a small selection of standards that exist in the world of systems and do
not include any industry-specific standards. Anybody familiar with standards should
recognise at least one of those in the list above. Anyone who has ever tried to read
and understand any of these standards (or any standard, for that matter) may have
encountered some difficulty in understanding them, which may be due to a number
of reasons:

• Standards are often very difficult to understand individually and, it may be
argued, some are not terribly well written. As will be demonstrated later in this
chapter, some standards are inconsistent with themselves and contain many errors
and much ambiguity. This does not help when trying to read and understand stan-
dards (a lack of understanding), which puts us on the rocky road to complexity and
communications problems. If a standard is not fully understood, other processes
may be affected, such as training and assurance, and so on.

• If standards are difficult to understand individually, they are almost impossible to
understand when they are read in groups. It is often the case that an organisation
wants to comply with a generic standard, such as ISO 9001, but also wants to com-
ply with a more industry-specific standard (e.g. EN 50128 Railway applications,
software for railway control and protection systems) or even a more field-specific
standard (e.g. ISO 15288 Life cycle management – system life cycle processes).

• Understanding the information may also be hindered by the fact that some
standards are too long (some in excess of 300 pages), which can seem insurmount-
able when first encountered. Length is not necessarily an indication of complexity
but in many cases will lead to such. Indeed, some of the longer standards are actu-
ally less complex than those with a far lower page count. For example, ISO 15504
is far less open to ambiguity that ISO 9001, despite having a page count that is
over ten times higher.

• Some standards are too short and written at such a high level that they bear little or
no resemblance to what actually occurs in real life. Take, for example, ISO 9001,
which, it can be argued, is the most widely used standard in the world today. It is



166 UML for systems engineering

perhaps because it is applicable to so many different areas that the standard is
so generic. However, there is an inherent danger in this, as the more generic the
standard, the more open to ambiguity it becomes. These ambiguities occur here
as two different people reading the same paragraph of the standard may come up
with two completely different interpretations.

• Standards are often written by committees and thus tend to end up somewhat less
than comprehensible. They frequently take years to prepare and trying to keep all
of the people happy all of the time can often lead to the production of a camel
rather than a horse!

Assuming then, for one moment, that the standards can be understood, the next issue
is that of demonstrating compliance. Compliance is demonstrated through audits or
assessments. Audits are performed by an external, registered organisation and yield
a straight pass or fail result. Assessments, on the other hand, may be carried out
internally or externally, but usually yield more useful results, such as a capability
profile. As a simple example of this, ISO 9001 requires a formal audit, which yields a
‘yes or no’ outcome. ISO 15504, on the other hand, requires an assessment (as opposed
to an audit) that yields a potentially more useful capability profile that can be used to
improve existing processes.

Compliance is actually achieved through having a defined process that is then the
subject of an audit or assessment. In almost all cases, standards explicitly state that a
defined process is essential to demonstrate compliance.

Most audits and assessments will call for some sort of mapping to be established
between the process and the standard that is being used as a basis for the assessment
or audits. In order to map between two of anything, it is important that they are
both represented in a language or format that may be directly compared – otherwise
mapping is impossible.

This then means that if any of these standards are to be met, they must be capable
of being related to a defined process. In addition, if more than a single standard is read,
they must be comparable and should be contrasted so that a common understanding
may be achieved.

6.2.2 Requirements for using standards

In summary, therefore, it is possible to draw up a set of requirements that are needed
in order to use standards in a practical and effective manner:

• There is a need to be able to understand standards. This means that any problem
areas such as ambiguities or inconsistencies can be sorted out and that everyone
who reads the standard has a common understanding.

• It is vital to be able to compare standards with a defined process. It is no use at all
if both the standard and the process can be understood individually, if they cannot
be compared in an effective manner.

• It is also necessary to be able to compare different standards with one another.
Again, standards often refer to other standards, or are required to be met in
conjunction with some other standard.
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It is essential, therefore, that all standards and processes can be represented in a
common format or language. The UML represents such a common language and,
as will be demonstrated, is the most effective at modelling processes and standards.
This all boils down to being able to analyse effectively any standard or process by
modelling them using the UML.

6.3 Analysing standards

Analysing may be thought of as understanding the problem at hand. In this case,
the problem at hand is the actual standard, or standards, that need to be modelled.

Analysis may be performed practically by modelling information contained within
a standard, or to put it another way, to model the actual content of a standard using
the UML. Once models have been created in the UML, they may be compared and
contrasted in order to gain a greater understanding. It is then possible to use these
models as a basis for modelling a new standard that may be completely modelled and
designed before it is actually written.

Another benefit of modelling is that potential areas of complexity may be
highlighted and either eliminated or addressed in some other way. All these points
will be demonstrated in this chapter.

6.3.1 Aspects of modelling using the UML

It has been stated many times that the UML may be used to model standards, but which
of the 13 diagrams that are available are suitable and what aspects of the standards
may be modelled? The simple answer to this question is to use whatever diagrams
seem appropriate, but this answer does not help us much in a practical way. Therefore,
some UML diagrams and their usage are suggested here, but these are by no means
carved in stone:

• Class diagrams, which form the backbone of the UML, may be used to model
almost all structural aspects of a standard or process. This includes modelling
the initial high-level views of a standard that define the way in which the whole
process will be laid out. Class diagrams may also be used to show the types of
process, task, activity, or whatever nomenclature is being adopted. This may also
be taken a step further by modelling actual deliverables associated with particular
processes. This will not only show the deliverable and which process it may be
associated with, but will also show the actual structure of the deliverable, which
may be used as the basis for a template. Implementing a process may also be made
easier by defining an information model and implementation model that can then
be the basis for implementation using an automated tool.

• The behavioural aspects of processes – that is to say in what order things must be
done and under what conditions – may be shown by using statecharts or activity
diagrams that are associated with classes that represent processes. This can be
particularly useful from a project management point of view and also for training
staff in how they should be carrying out a particular process.
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• At a higher level, interaction diagrams may be used to model life cycle models that
show both how the project is to be carried out (using communication diagrams)
and how the project is actually carried out (using sequence diagrams).

• At a very low level, activity diagrams may be used to state explicitly how particular
process steps are to be executed for a very rigidly defined process.

All of these techniques have been shown to be very effective for process modelling
for both analysis and design of processes. The first step that is covered here, however,
is how to analyse two standards.

6.3.2 Modelling example

Imagine a situation where it was required to produce a new process for an organisation
that needed to meet a particular systems engineering standard and also generic ISO
processes. In the example here, the systems engineering standard that has been chosen
is EIA 632 – Processes for engineering a system, and the ISO processes are to be
based on those defined in ISO 15504 – Software process improvement and capability
determination (SPICE).

This is not such an unusual combination as it may first appear, as ISO 15504
is a very well-specified standard and is fully compliant with ISO 9001. One of the
advantages of ISO 15504 over ISO 9001, however, is that it is far more rigorously
defined and is thus less open to ambiguity than ISO 9001. Showing any preworked
example in a book can have its own danger. The danger with using such an example,
however, is that it can appear to be like the work of a magician, where words and
diagrams may be pulled, like rabbits, from a hat, yet nothing much will be said or
learned – but it certainly looks good! To avoid such a display of sleight of hand,
several other international standards and processes are presented towards the end
of this section along with a discussion on how they could be related to the specific
standard models shown here.

Having established the groundwork, it is time to dive straight in and start to model
the standards.

6.3.3 EIA 632 Processes for engineering a system

The first model that is drawn up is what will be referred to as the high-level structural
model. There is no rule saying that this must always be the first model, but experience
has shown that it is a useful one to get out of the way early on in the modelling.

The high-level structural model really sets the scene for the remainder of the
modelling and contains the most fundamental concepts of the standard itself. It is
crucial that this model can be clearly and unambiguously defined, otherwise the rest
of the standard is rendered meaningless. The idea is to try to extract the actual structure,
or hierarchy, of the processes that are defined in the standard. This is achieved by
looking for UML-friendly words in the process descriptions in the standard, such as:
‘is a type of’, ‘is made up of’, and the like.

Figure 6.1 shows the high-level structure of EIA 632 and is read as follows.
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Figure 6.1 High-level structure of EIA 632

‘EIA 632’ is made up of five ‘Process’. This is the highest-level piece of infor-
mation that could be extracted and states the whole structure of the standard itself.
This information is quite easy to extract as the five processes form the major sections
in the standard.

The next item of information is the structure of ‘Process’, which is made up of
one or more ‘Activity’, each of which is made up of one or more ‘Task’. Each ‘Task’
has one or more ‘Work product’ associated with it. One or more ‘Metric’ measures
one or more ‘Work product’. This information was also quite easy to extract from the
standard and is stated explicitly in the standard itself.

In a nutshell, this model describes the whole structure of the standard. All
subsequent models go into greater detail, but will have to be consistent with this
model.

The next step is to concentrate on one of the classes – in this case, ‘Process’.
It was stated in the previous model that there are five processes. Remember that the
term ‘is a type of’ is a term used in the UML, which provides the basis of the model
shown in Figure 6.2. Therefore, the diagram reads: there are five types of ‘Process’,
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Figure 6.2 Types of process in EIA 632
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which are ‘Acquirer supplier agreement’, ‘Planning’, ‘System design’, ‘Control’
and ‘System V&V’. Several other relationships also exist in the model, which are:
‘Control’ controls, ‘Planning’, ‘System design’ and ‘System V&V’.

As an interesting aside, note how ‘Control’ does not control ‘Acquirer supplier
agreement’. Is this correct, or is it an oversight by the authors? Already, even at
this high level, it is possible to throw up potential inconsistencies or problems with
the standard. This is an issue that may have to be addressed before the modelling
can be taken any further and the full implications of the lack of ‘Control’ must be
investigated.

The next step is to focus on one of the five processes, in this case ‘Systems design’,
which is shown in Figure 6.3. Note how the original relationship from the high-level
structural model in Figure 6.1 holds true here, in that ‘System design’ (a type of
process) is made up of four (more than one) ‘Activity’. Now there are four types of
‘Activity’: ‘Requirements definition’, ‘Design Verification’, ‘Assessment and trade-
off studies’ and ‘Design definition’. It can also be seen that ‘Requirements definition’
has types ‘Stakeholder requirements’, ‘System technical requirements’ and ‘Detailed
technical requirements’.

Requirements
definition

Design verification Design definition

6

System technical 
requiremnts

Detailed technical 
specifications

Stakeholder
requirements

System design

Activity

Assessment & trade- 
off studies

Figure 6.3 Focus on system design

This modelling can also be carried out on the other four types of ‘Process’ that
were shown in Figure 6.2. This would result in a separate diagram each for ‘Acquirer
supplier agreement’, ‘Planning’, ‘Control’ and ‘System V&V’, all of which must be
consistent with Figure 6.1.

At this point, we leave EIA 632 and move on to the second standard to be modelled,
ISO 15504, and carry out the same level of modelling on it.
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6.3.4 ISO 15504 Software process improvement and capability
determination (SPICE)

This section looks at modelling ISO 15504, or SPICE as it is more commonly known,
which will then be compared to EIA 632.

SPICE is the ISO standard that defines a set of ISO processes (that are completely
compatible with ISO 9001) and relates them to a capability maturity model, similar
to the CMM. The actual SPICE standard is monstrous in size, weighing in as it does
at over 300 pages. This may seem fairly daunting to begin with, but SPICE itself is
very well specified and is thus straightforward to model.

The first step in the model is to try to establish a high-level static view of the
standard, as shown in Figure 6.4.

Capability dimension

5

1..*

1..*

Process dimension

Process category

Practice

Process

ISO 15504

Figure 6.4 High-level structure of ISO 15504

It can be seen in Figure 6.4 that ‘ISO 15504’ is made up of a ‘Process dimension’
and a ‘Capability dimension’. This is the highest possible level view of SPICE and the
focus here will be on the ‘Process dimension’ rather than on the ‘Capability dimen-
sion’, as it is this part of SPICE that defines the process structure. The ‘Capability
dimension’ describes the capability levels that are defined for SPICE and how they
relate to practices. As this lies outside the scope of this book, the detail has been
omitted from Figure 6.4.

Figure 6.4 shows that there exists a ‘Process dimension’ that is made up of five
‘Process category’. Each ‘Process category’ is made up of one or more ‘Process’,
each of which is made up of one or more ‘Practice’.

The next question that needs to be asked is on which part of the model can we
focus to show more detail? Note that there is an explicit multiplicity number on the
association going from ‘Process dimension’ into ‘Process category’. Therefore, it is
likely that because there is an explicit number, it may be possible to look at what
these process categories are. This is shown in Figure 6.5.
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Figure 6.5 Types of process category in ISO 15504

Figure 6.5 shows types of ‘Process category’, bearing in mind that it was already
stated in the previous model that there were five types of process category. From
the model, there are three main types of ‘Process category’: ‘Primary process’,
‘Organisational process’ and ‘Supporting process’. These are then further refined:
‘Customer supplier’ and ‘Engineering’ are types of ‘Primary process’; ‘Management’
and ‘Organisational process’ are types of ‘Organisational process’; and ‘Support’ is
a type of ‘Supporting process’. This brings the total number of actual process cat-
egories (or ‘leaf’ process categories) to five, as in the previous model. Note that
these middle-level process categories (‘Primary process’, ‘Supporting process’ and
‘Organisational process’) are conceptual groupings of processes, rather than actual
categories. In UML terms, these would be described as ‘abstract classes’, which is
to say that they are not instantiated. In UML notation, this can be represented by
showing the class name in italics to indicate that it is an abstract class.

The next step is to focus in on one of these categories and examine whether the
model can be taken any further.

Figure 6.6 focuses on one of the process categories defined in the previous model –
in this case, ‘Engineering’.

‘Engineering’ is made up of eight ‘Process’, which is still consistent with the
original high-level structural model that stated that each ‘Process category’ was made
up of one or more ‘Process’. There are two types of ‘Process’: ‘Development’ and
‘Maintenance’. ‘Development’ has types ‘System requirements’, ‘Software require-
ments’, ‘Software design’, ‘Software construction’, ‘Software integration’, ‘Software
testing’ and ‘System integration and test’. The process named ‘Development’ may
be thought of as being abstract and could be indicated as such on the model.

The model for ISO 15504 (SPICE) has now be modelled to approximately the
same level as the EIA 632 and, at this point, the models will be compared.
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Figure 6.6 Focus on engineering

6.3.5 Comparing models

The next step is to compare the two sets of models that have been created. This
is simply a matter of placing the diagrams adjacent to each other and looking for
similarities in terms of names and patterns.
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Figure 6.7 High-level structure comparison

Figure 6.7 gives both high-level models side by side, ready for comparison, and
shows that the structure of the two standards is very similar. Both have similar-looking
classes, aggregations and, indeed, even some of the terms are the same.

The most important thing to establish before the full comparison can be drawn is
a common point between the two standards, from which all other relationships can
be derived. The interesting thing here is that the common point occurs at the level of
‘Task’ (in EIA 632) and ‘Practice’ (in ISO 15504 (SPICE)), rather than at the common
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term ‘Process’. This was established by looking at the definitions of the terms and
also by applying common sense with regard to how they are used in the standard.
Even though both standards have been modelled, it is still necessary to apply a healthy
dose of common sense to make sense of, and add value to, the models.

This now throws up something very interesting since the next level up in the
aggregation hierarchy shows that ‘Activity’ (in EIA 632) is equivalent to ‘Process’
(ISO 15504 (SPICE)) and that the term ‘Process’ (in EIA 632) is equivalent to ‘Process
category’ (in ISO 15504 (SPICE)). Note that the common term ‘Process’ actually has
a completely different meaning in both standards! This means that perhaps the most
fundamental term in each standard (and one that was discussed previously as being
crucial to standards), means two different things in two different standards. This has
the potential to lead to a massive amount of misunderstanding and ambiguity that
could prove very harmful indeed to the project.

The next step is to compare the next level of diagrams and see if any more parallels
or inconsistencies can be thrown up.

It is now possible to compare the types of processes with one another, as shown
in Figure 6.8, with EIA 632 being on the left and ISO 15504 (SPICE) on the right.

There is a comparison between both types of process, which can be verified by
looking at the standards. In this case, the comparison is as follows:

• ‘Acquirer supplier agreement’ in EIA 632 is equivalent to ‘Customer supplier’ in
ISO 15504 (SPICE).

• ‘Planning’ in EIA 632 is equivalent to ‘Management’ in ISO 15504 (SPICE).
• ‘Control’ in EIA 632 is equivalent to both ‘Organisational’ and ‘Support’ in ISO

15504 (SPICE).
• Both ‘System design’ and ‘System V&V’ in EIA 632 are equivalent to

‘Engineering’ in ISO 15504 (SPICE).

In this way, the common elements of both standards may be highlighted in addition
to those that exist in one and not the other.

Note that the mapping is not a simple one on one mapping as it might first appear,
but is a slightly more complex relationship. ‘Control’ in EIA 632 maps to two process
categories in ISO 15504 (SPICE), rather than one. In the same way, ‘System design’
in ISO 15504 (SPICE) relates to two processes in EIA 632.

Each of the two standards may be modelled in even more detail by adding lower-
level process information. For example, it is possible to model each ‘Practice’ that
is associated with each ‘Process’ in ISO 15504 (SPICE) and each ‘Task’ for each
‘Activity’ in EIA 632.

6.3.5.1 Highlighting complexity

Another use for the models that are generated is to help to highlight areas of potential
complexity within the standards. Although all of the models generated so far have been
class diagrams and, hence, structural models, it is also possible to model behavioural
aspects of standards using, for example, state machine diagrams or activity diagrams.
The following example shows a state machine diagrams that was generated based on
the description of the acquirer supplier processes. Note that this is a statechart because
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Figure 6.9 Highlighting complexity

each state is a normal state, as opposed to an activity or action state. This also implies
that any or all of these states may contain more than one action or activity and, hence,
be complex.

The first thing that springs to mind when looking at Figure 6.9 is that the model
is messy. Look at the model and try to estimate the number of possible paths through
this process. What this means in systems engineering terms is that the diagram is
exhibiting complexity, which may be identified in a number of ways:

• If the information that is being modelled is difficult to model, it is quite likely that
complexity exists in the original information. It may be that the information is
ambiguous, underdefined or overdefined. Remember that the UML is, at the end
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of the day, a language, and should therefore be easy to read. By the same token,
if anything is difficult to model, the original source information is probably not
very clear.

• If the model looks messy, complexity almost certainly exists in the model. This
is a rather basic heuristic but one that tends to work. There are more formal ways
to highlight complexity, such as applying metrics to the models that can actually
give a quantitative result.

It may turn out that this complexity is inherent in the system (essential complexity)
and, as such, nothing can be done about it. It is still important, however, to know
about this complexity so that any interactions with this part of the system may be
minimised. If, on the other hand, the complexity has been introduced by human error
(accidental complexity), it should be possible to address this, such as redesigning or
rewriting the original information.

6.3.5.2 Continued analysis

The models shown so far have been concerned with the high-level views of the
standards. How much detail is included in the model is dependent on what level of
understanding is required by the reader. It is possible to model every single aspect of
a standard but there is a danger that the model would become larger than the original
standard.

The analysis that has been started here may be continued by creating more state-
charts that describe the behaviour of processes, but, interestingly enough, this is not
always possible. Many standards are only defined at the level where they state what
must be done rather than how to do it, as they tend to avoid being overprescriptive.
The fact that sometimes enough information is included in the standard to allow the
behaviour or process to be modelled actually tells us something, as does the fact that
sometimes a process cannot be modelled behaviourally. There is much information to
be gained from modelling, even if modelling is not actually possible. When defining
company procedures that may be compliant with these international standards, for
example, it is often desirable to go down another level of detail and describe the
behaviour of each process. Indeed, this topic is discussed later in this chapter when
defining new procedures is discussed.

It is also possible to model life cycles and life cycle models, inputs and outputs
for each process and the actual structure of deliverables, which is covered later in this
chapter.

6.3.6 Other standards and processes

6.3.6.1 Introduction

This section looks at a number of high-level models of other standards and processes
and discusses how each one may be compared to the previous models shown in this
chapter. It should be quite clear from the models that there are similarities between
each of the standards as patterns begin to emerge [4]. These patterns are exactly what
they say and may be identified and reused for defining in-house procedures. These
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are the same as design patterns that may be reused frequently and that will help to
deliver a more robust design.

6.3.6.2 ISO 15288 Life cycle management – system life cycle processes

This standard has been developed by taking into account the experiences of the use
of many other standards. Inputs to this standard include: EIA 632, IEEE 1220, ISO
15504 (SPICE) and ISO 12207. As these standards have formed an input, it is not
surprising that some common patterns emerge.

Enterprise process

Agreement process

Project process

Technical process

4

System life cycle

Process

Figure 6.10 High-level model of ISO 15288 Life cycle management – system life
cycle processes

Figure 6.10 shows that ISO 15288 Life cycle management – system life cycle
processes is made up of four ‘Process’, with types ‘Enterprise process’, ‘Agreement
process’, ‘Project process’ and ‘Technical process’.

There is a clear mapping between this model and the two previous standards that
were modelled, but note that this standard has only four main processes, whereas
the previous two had five each. This means that there must be a degree of overlap
between some of the types of process defined in this standard and in the others.

In addition, look at the use of the term ‘Process’ and try to decide exactly where
this would map on to the previous two models. Would it map directly to SPICE or
EIA 632, or does it have an entirely different meaning in this standard? This is exactly
the type of information that we are trying to find out by modelling and it increases
our understanding of the standard the more it is modelled.

6.3.6.3 IEC 61508 Functional safety of electrical/electronic/programmable
electronic safety-related systems

This standard has no direct relation to any of the other standards mentioned in this
section, which becomes apparent when the model is considered.

From Figure 6.11 it can be seen that IEC 61508 Functional safety of electrical/
electronic/programmable electronic safety-related systems is made up of 17 phases.

Although at first glance this looks messy, perhaps it would look cleaner if the
phases were grouped into categories. This grouping into categories is a level of
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Figure 6.11 High-level model of IEC 61508 Functional safety of electrical/
electronic/programmable electronic safety-related systems

organisation that exists in other standards but not in this one; this highlights that
complexity exists at the highest level of the standard, whereas the lower-level models
turn out to be quite concise and well defined.

It is interesting to see the term ‘phase’ used here, which has not been mentioned
so far in this chapter, but which occurs later.

6.3.6.4 IEEE 1220 Application and management of the systems engineering
process

This standard has a unique pattern that stresses iteration and has been used successfully
for many years, particularly in the United States. It has been superseded by the new
ISO 15288 Life cycle management – system life cycle processes.

Figure 6.12 shows IEEE 1220 Application and management of the systems engi-
neering process, which shows that a ‘System life cycle’ is made up of one or more
‘Life cycle stage’. Each ‘Life cycle stage’ is carried out according to one or more ‘Sys
eng process’ and one or more ‘Sys eng process’ is applied to a ‘System life cycle’.
One or more ‘Sys eng req’ plan and implement a ‘Sys eng process’. In addition, there
are eight types of ‘Sys eng process’.

Again, although there are more processes than in some standards, it may be due
to the grouping (or lack of it) or the processes.

An interesting point here that has been raised on numerous occasions is that there
is no concept of design mentioned anywhere in the model. Does this mean that the
standard is not at all concerned with design, or is it an oversight, or does design go
under the auspices of some other term? The reality of this is that elements of design
exist within ‘Functional analysis’ and ‘Synthesis’.
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Figure 6.12 High-level model of IEEE 1220 Application and management of the
systems engineering process

6.3.6.5 The Rational Unified Process (RUP)

The Rational Unified Process (RUP) is a natural evolution of many existing processes
that is the recommended process from the originators of the UML [5, 6]. The RUP
has had a large uptake in the United States and is being adopted rapidly in the rest of
the world, especially Europe. One of the initial problems that some people have with
the RUP is that the terminology used is ‘Americanised’. This can be quite confusing
for people with an ISO background, but once the mapping between terms has been
established, this should not be a problem.

Iteration

Core workflow

4

1..*

1..9

take place overInception

Elaboration

Construction

Transition

Cycle

Phase

Figure 6.13 High-level model of the Rational Unified Process (RUP)

Figure 6.13 shows the RUP, which is recommended by the developers of the UML
and which has been included here for completeness sake. It can be seen that a ‘Cycle’
is made up of four ‘Phase’, of which there are four types: ‘Inception’, ‘Elaboration’,
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‘Construction’ and ‘Transition’. Each ‘Phase’ is made up of one or more ‘Iteration’
and between one and nine ‘Workflow’ take place over each ‘Iteration’.

If this is mapped on to the previous model, it can be seen that there is no actual
term ‘process’, so where does the comparison start? The actual equivalent term on
this model is ‘Core workflow’.

6.3.6.6 EIA 731 Systems engineering capability model

This standard is intended to be a standard for systems engineering capability in the
same way that ISO 15504 (SPICE) is the standard for software engineering capability
determination. It claims to complement both IEEE 1220 and EIA 632, as well as being
consistent with ISO 9001.

Like ISO 15504 (SPICE), the standard itself is huge, weighing in at several
hundred pages but, also like SPICE, it is very well written and surprisingly easy to
model. The high-level structure model for EIA 731 can be seen in Figure 6.14.

This standard is widely used by the defence and aerospace industries, which have
used it to great effect.

Figure 6.14 shows the high-level structure of EIA 731 Systems engineering
capability model. It can be seen that ‘Sys eng capability model’ is made up of a
‘Sys eng domain’ and a ‘Capability domain’. This pattern is very similar to the
pattern in ISO 15504 and, like that standard, it is the process side of the model that
we are interested in, rather than the capability side. The ‘Sys eng domain’ is made
up of three ‘Category’, each of which is made up of one or more ‘Focus area’. Each

3

1..*

1..*

1..*

Sys eng domain

Category

Focus area

Theme

Specific practice

Sys eng capability model

Capability domain

Figure 6.14 High-level structure of EIA 731
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‘Focus area’ is made up of one or more ‘Theme’, each of which is made up of one or
more ‘Specific practice’.

6.3.7 Summary

In summary, therefore, the following points were raised concerning the use of the
UML for modelling standards and processes:

• The UML is suitable for modelling standards and their associated processes.
Several standards were looked at and their processes modelled, and carried out at
a high level.

• By modelling in this way, it is possible to highlight potential inconsistencies
within a standard. Any internal inconsistencies, such as badly defined terms or
inputs and outputs that do not match, would come to light when modelled visually.

• It is also possible to compare and contrast these standards once they have been
modelled in order to throw up inconsistencies between standards. In the exam-
ples used here, it was quite clear from comparing the models that EIA 632 and
ISO 15504 had a completely different meaning for the basic term ‘process’,
which, if not spotted at this point, may have led to all sorts of trouble and
misunderstanding later in the project.

• It is also possible to highlight areas of potential complexity within a standard.
Indeed, one of the standards that was considered, EIA 632, had complexity in
one of the processes, which was identified by creating a behavioural model of the
process.

Now that some standards have been modelled, the next step is to use this information
further to help us to define our own processes and procedures that are compatible
with these standards.

6.4 Defining new processes using the UML

This section uses the information from the previous section to show how new
processes can be defined that are compatible with, and fully traceable to, interna-
tional standards. At the heart of this technique is, of course, modelling using the
UML. The analysis models generated so far may be used in order to define a new
process that may be used for in-house standards and procedures.

When more than one standard has been modelled, ‘patterns’ begin to emerge
that are common throughout all the standards. These patterns are often the basis
for defining new processes. In addition, particular patterns may be crucial for a
process – such as real-time or safety-critical patterns.

6.4.1 A new procedure

Imagine the scenario now where a new procedure must be defined that is compatible
with a number of international standards. This new procedure is to be used by all
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design teams in a systems engineering company and, therefore, it must be understood
by everyone in the company and must be communicable effectively for training
purposes.

The two standards that have been modelled so far (EIA 632 Processes for
engineering a system and ISO 15504 Software process improvement and capability
determination (SPICE)) will be used as a basis for international standards compliance.

The first few steps are the same as for analysing standards, in that the high-level
models are created, but then the modelling is taken further. The first step in the
analysis was the high-level structure model, so this is the first model that is created
for process definition.

5

1..*

1..*

Procedure

Process group

Process

Practice

Figure 6.15 High-level process structure model for the defined process

Figure 6.15 shows the high-level process structure for a new procedure that is
going to be defined. It can be seen that the ‘Procedure’ is defined as being made up
of five ‘Process group’, each of which is made up of one or more ‘Process’, each of
which is made up of one or more ‘Practice’.

It can be seen that the terms used here are similar to the ones in the international
standards that were modelled previously. This is intentional as it is intended to adopt
an ISO-style terminology. Therefore, where inconsistencies do occur, the ISO term,
rather than the EIA term, is opted for. The exception to this is the term ‘Process group’,
which was decided upon as it was an established term used within the organisation.
However, these areas of potential misunderstanding are now known and each term
can be defined explicitly at the beginning of the procedure.

Also at this point, the information in the new procedure can be mapped on to the
analysis models for the standards, ensuring traceability and compliance with them.
It should be quite clear how the high-level structure model in Figure 6.15 can be
mapped directly on to both EIA 632 (Figure 6.1) and ISO 15504 (SPICE) (Figure 6.4).
The next step is to define the types of ‘Process group’ that can be defined, which are
shown in Figure 6.16.
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5

Process group

Procedure

SUP ENG

CUS ORG MAN

Figure 6.16 Types of process group for the defined procedure

Figure 6.16 shows the five process groups that were stated on the previous model
and expands upon them.

There are five types of ‘Process group’ and these are ‘CUS’ (Customer/supplier
relationship), ‘SUP’ (support services), ‘ORG’ (organisational), ‘ENG’ (engineering)
and ‘MAN’ (management). Again, it is worth stressing that the language here is
tending towards ISO rather than EIA, which is purely a matter of preference.

It is clear to see where these process groups have come from as both of the
standards that were modelled have a similar structure, or pattern.

Note also, that new terms are being defined as the models evolve, but, once more,
they are fully traceable back to the original terms in the original standards.

The next step is to focus in on one ‘Process group’ from the previous model.
The one chosen for this example is ‘ENG’, or engineering. The process group ‘ENG’
is made up of one or more processes, which holds true from the previous models.
There are seven processes: ‘User requirements’, ‘System specification’, ‘Design’,
‘Implementation’, ‘Integration’, ‘Installation’ and ‘Maintenance’ (Figure 6.17).

1..*

MaintenanceImplementationDesignUser requirements

InstallationIntegrationSystem specification

ENG

Process

Figure 6.17 Focus on the ‘Engineering’ process group
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Once again, it is a simple matter, at this level, to map these processes on to their
corresponding elements from the two standards, simply by comparing the model in
Figure 6.17 with their counterparts in Figures 6.3 and 6.6.

The modelling process definition is now at the same level as the two standards
that were analysed previously. However, as this is a procedure, we want to go into
more detail and explicitly define which ‘Practice’ makes up each ‘Process’.

The next step is to define some practices for each process, as the previous models
stated that each ‘Process’ was made up of one or more ‘Practice’. In order to make
the model more manageable, these practices will be represented by operations on the
class – even though they were previously shown as component classes. All that has
been done here was to abstract the information to a higher level to make the models
simpler.

A similar abstraction was carried out to show what documents were needed as
outputs, or deliverables, for each process. This time, however, the deliverables are
shown as attributes.

Design

design interfaces() 
architectural design() 
detailed design() 
develop tests() 
review()
update / issue() 
establish traceability()

Integration test spec 
System design 
System test spec 
Design review report

Figure 6.18 Focus on a single process – ‘Design’

Figure 6.18 shows an expansion of a single process, that of ‘Design’. It can be seen
that seven practices have been defined and are shown on the model as the operations
‘design interfaces’, ‘architectural design’, ‘detailed design’, ‘develop tests’, ‘review’,
‘update/issue’ and ‘establish traceability’. The deliverables that are associated with
the ‘Design’ process are shown as attributes and are ‘Integration test spec’, ‘System
design’, ‘System test spec’ and ‘Design review report’. This provides us with rather
a neat representation of a single process that may be shown visually by a simple class.
Note that the class exhibits behaviour, or to put it another way, it has operations, and
therefore it is possible to describe this behaviour using a statechart.

The technique in Figure 6.18 used a single class to show structural aspect of
a process, or what it should look like. Referring back to the UML, it was previously
stated that in order to model a system fully, any class with behaviour (operations)
must have an associated state machine diagram. The process is now described in
terms of its behaviour, which shows how things are done, in what order and under
what conditions, by creating a state machine diagram for it.
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Figure 6.19 Behavioural model for the ‘Design’ process

Figure 6.19 shows that the ‘Design’ process begins by a ‘start design’ event, which
passes the deliverable ‘SS’, which refers to the system specification. The first state is
called ‘designing high level’ where three of the operations, or practices, are executed
in sequence: ‘architectural design’, ‘design interface’ and ‘establish traceability’.
After this, a ‘reviewing’ state is entered where ‘review’ is executed and can continue
in one of four ways:

• ‘[lo-level design incomplete]’ that leads to ‘designing low level’ and executes
‘detailed design’ and ‘establish traceability’. After this, control returns to the
‘reviewing’ state.

• ‘[tests incomplete]’ that leads to ‘developing tests’ where ‘develop tests’ is
executed. After this, control returns to the ‘reviewing’ state.

• ‘[hi-level design incomplete]’ that leads back to the ‘designing high-level’ state.
• Finally, ‘[complete]’, which leads to ‘communicating’ where ‘update/issue’

is executed, which then leads to the final state and a ‘start integration’ send event.

The model shown here has complex states by placing more than one activity in some
of the states. This is perfectly acceptable from a UML point of view, but some people
prefer to separate them out into a ‘one-activity-per-state’ diagram. Although there is
nothing implicitly wrong with using a single activity per state, it may be worth asking
if the use of activity diagrams may be more appropriate at this point. Activity diagrams
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are often used to model processes or, as they are known in the RUP, workflows, so it
seems appropriate to discuss them at this point. Suppose that it is possible to represent a
single activity per state for the new procedure (which should be possible if it is being
designed, rather than analysing what already exists), then it is possible to use an
activity diagram, rather than a state machine diagram, but are there any advantages to
this approach? The answer is ‘yes’, as there are two previously unmentioned activity
diagram elements that may be brought into use here: ‘swimlanes’ and ‘object flow’.
Swimlanes may be used to group together states and then associate them with a
particular class or object. This is useful when modelling processes and workflows
as it allows responsibility to be modelled on the activity diagram by relating each
swimlane to a class from the stakeholder model. This also fits in with the definition
of a process where responsibility must be associated with all practices.

Object flows may then be used to show the flow of deliverables around the process,
by showing the object name (that will relate directly back to a deliverable) and a depen-
dency to and from its associated states. Figure 6.20 illustrates these two new activity
diagram concepts.

Figure 6.20 shows the enhanced activity diagram that represents the same pro-
cess as the model shown in Figure 6.19, with a number of notable differences.
Responsibility may be shown in the activity diagram by using swimlanes, which
are not available for use in standard state machine diagram. Information flow may
be shown more explicitly using the activity diagram compared to the state machine
diagrams, as deliverables may be shown as objects, rather than as arguments on the

Project managerReviewerTesterDesigner

review update/issue

develop tests

System spec

System design

System design

Test spec

Test spec

establish traceability

architectural design

detailed design

establish traceability

design interfaces

Review report

Figure 6.20 Activity diagram with swimlanes and object flow
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state machine diagrams. There is a disadvantage, however, as it is assumed that all
states are activity invocations, rather than normal states, as used in statecharts.

Returning to the new procedure, it should be noted that this level of behavioural
modelling is usually one step further than the information contained in most standards
(although there are exceptions to this, the ‘Acquirer supplier agreement’ of EIA 632
being one of them). Standards will normally dictate what must be done in order to
comply with the standard, rather than how to actually do it. This is done in order to
avoid being prescriptive. With a procedure, however, it is normally desirable to be
more prescriptive and to describe ‘how’ things must be done. If you relate this to basic
UML concepts, then it fits with the definitions of structural and behavioural mod-
elling, where structural modelling describes the ‘what’ of a system and behavioural
modelling describes the ‘how’ of a system.

This level of behavioural modelling is also very useful from a project management
point of view, as at any point within a project it is possible to see exactly what is being
done by relating current work activities to the statechart associated with a particular
process.

The model may be taken one step further by modelling the structure of an individ-
ual operation that represents a basic practice within the procedure. These are modelled
using activity diagrams and an example of such a model is shown in Figure 6.21.

integrate

baseline

document

assess

release for review

[OK]

[not OK]

[OK]

[not OK]

create UML design

assess

Figure 6.21 Low-level description of the ‘Architectural design’ practice



Modelling standards, processes and procedures 189

Figure 6.21 shows a low-level activity diagram that models the ‘architectural
design’ practice from Figure 6.19.

From the model, therefore, it can be seen that the first step is to ‘create UML
design’ and then ‘assess’ it. If the result of the assessment is ‘OK’, the next step is to
‘integrate’. If the result of the assessment is ‘not OK’, the ‘create UML design’ state
must be revisited.

After integration, there is another ‘assess’ state that leads to another decision
block. If the assessment is ‘not OK’ then ‘integrate’ is revisited, whereas when the
assessment is ‘OK’ the process enters the ‘baseline’ state, which represents baselin-
ing the actual designs themselves. After this baselining, the designs are written up
formally in a ‘document’ state. The final state is ‘release for review’, which basi-
cally makes the document available for the next state from Figure 6.19, which is the
‘reviewing state’.

This model may be enhanced by adding swimlanes and object flow, in the same
way that they were shown on Figure 6.20, which may add more value to the diagram.

It may be argued that modelling individual practices is going a step too far and is
too much effort for the amount of work that will go into defining the models at such
a low level of detail. This is, of course, true, but like most aspects of UML modelling
it is entirely up to the modeller how far they go. For many situations, it may indeed
be the case that this level of modelling is too detailed, but there are a number of
circumstances where it may be useful:

• Imagine the situation where the design was supposed to be applied to a safety-
critical application. It may be essential that the design is carried out exactly
according to a set of standards or guidelines. In this situation, this low level of
modelling would be useful.

• Another situation where low-level modelling is useful is where new people may
be coming into a project at a late stage. In such a case, it may be a good idea to
have a set of guidelines that can be made available to the newcomers to bring them
up to speed on the project. Although these guidelines may not be enforceable,
they are useful as a learning aid.

This is the lowest level of modelling that will be performed for process definition.

6.4.2 Completing the model

In order to complete the model, the steps that have been followed for the single
process should be carried out on all the other processes. To recap, these steps are as
follows:

• Define a high-level model that encapsulates the whole process structure in a single
diagram. This is a good basis for comparison with other standards and processes
and can form the basis of traceability for demonstrating compliance with such
a standard. This model was shown in Figure 6.15 for the example of process
definition.

• Categorise processes into groups that summarise the basic conceptual groupings
of the processes. This can help to avoid complexity at a high level, as exists in
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IEC 61508, and as shown in Figure 6.11. This model was shown in Figure 6.16
for the example of process definition.

• Define practices for each process as operations on the process class. This models
the basic high-level allocation of practices to individual processes. In some cir-
cumstances, such as an organisation-wide procedure, it may be desirable to cease
modelling at this point. An example of this was shown in Figure 6.18 for the
example of process definition.

• Define deliverables for each process as attributes on the process class. These may
be derived from a class diagram that identifies deliverables per process or may
simply be stated and added to the class. An example of this was also shown in
Figure 6.18 for the example of process definition.

• Define a state machine diagram or activity diagram for each process to describe
the behaviour of the practices (the order in which they are carried out and the
logical conditions under which the practices are executed). This will help people
who need to be trained in using the procedure, or project managers who may need
to know exactly what is happening (which state the system is in) at any point in
time of the project. Examples of this were shown in Figures 6.19 and 6.20 for the
example of process definition.

• Where called for, define activity diagrams for any complex practices. This may
be desirable for safety-critical applications or by way of training new staff on
a project. An example of this was shown in Figure 6.21 for the example of process
definition.

These steps may be repeated (or ignored) as necessary until the procedure is fully
modelled. It should be quite clear by now that there is a great deal of effort involved
with process definition, which is absolutely true. However, defining processes and
procedures is a very complex business and it is very easy to get it wrong. By modelling
such processes visually, we can have more of an understanding of the process and
have more confidence in the final deliverable process or procedure.

The process models that are produced should be reviewed before any part of the
actual procedure is written. Think of this as a design review for the procedure.

6.4.3 Summary

In conclusion, therefore, this section shows how a new procedure may be modelled
that makes use of the models generated when the standards were analysed.

This modelling was carried out in order to visualise the concepts involved in
standards or procedures and has several benefits over using an English text description
of a procedure:

• Traceability to the original standards may be established at the modelling stage,
which is enormously useful in the event of an audit or assessment of the process.
This also has the advantage that if traceability needs to be established to a new
standard (since they are emerging all the time), it can be established to the process
model and the procedure itself need not change.
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• Early review. When creating a new procedure, it is possible to review the process
at the modelling stage in order to ensure correctness of models and consistency
between processes before the process is written up as a process or procedure.

• The process knowledge is stored in the process, rather than in the documented
procedure itself. Imagine the written procedure as a small window through which
the model may be viewed. This is useful because the procedure may be split
across several documents, each one perhaps having a different audience in mind.
For example, one procedure may be applicable to engineers and one to man-
agers, one procedure may be used by subcontractors and one by in-house staff,
or a different procedure may be appropriate for different types of systems, such
as bespoke, niche or COTS (commercial off the shelf) systems.

• The modelling does not stop here, as it is possible to model other information
that may be useful in a procedure or standard such as life cycles and deliverables,
both of which will be discussed in more detail later in this chapter.

This section has defined the processes and the behaviour within each, but how are
theses processes executed during a real project? This is the subject of Section 6.5.

6.5 Tailoring the process

One common criticism that is levelled at any sort of process model or standard is its
connection to reality. How is it possible to fully define a process yet make it flexible
enough to be useable? This is often covered in standards by stating that a process
must be ‘tailorable’, which is far easier said than done.

Depending on the type of project that a process is being used on, any or all of the
processes being used may need to be specialised in some way to make them more
suitable for the project at hand. This specialisation is also known as ‘tailoring’. This
is a useful definition of tailoring as there is a mechanism for showing special cases
of classes in the UML, which is specialisation. An example of such a process is the
case of a project that is concerned with safety-critical systems or real-time systems.

One practical problem that is associated with tailoring processes is that this tai-
loring knowledge is often lost after a project has run its course, partiularly if the
tailored process was not defined well enough within the project. By using the UML
it is not only possible to define how a process has been tailored, but also to retain this
knowledge in the organisation by building up a process library.

In order to illustrate the tailoring process, an example is used that has already been
seen: the ‘Design’ process from the ‘ENG’ process group, as shown in Figure 6.22.

The process had its deliverables defined (as attributes) and it practices defined
(as operations). This is a generic engineering process that is intended to be used for
generic applications. However, in some cases, this simple process may not be directly
applicable to the application domain. For example, think about real-time systems or
safety-critical systems where a more rigorous approach may be required. This is
achieved by tailoring the process to the specific application domain.

In order to tailor a process, the class is simply specialised using the specialisation,
or ‘is a type of’ relationship.
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design interfaces() 
architectural design() 
detailed design() 
develop tests() 
review()
update / issue() 
establish traceability()

Integration test spec 
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System test spec 
Design review report
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Figure 6.22 A single process revisited
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safety analysis report

Safety-critical design

Figure 6.23 Tailoring processes using a specialisation

Figure 6.23 shows two specialised types or tailored processes: ‘Real-time’ and
‘Safety-critical’.

Following the rules of UML, the ‘Real-time’ process will inherit all the attributes
and operations (deliverables and practices) from its parent class. In addition to the
deliverables and operations defined in the basic process, the ‘Real-time’ process also
has two extra deliverables (‘timing model’ and ‘timing verification report’) and two
new operations (‘create timing model’ and ‘verify timing’). The same holds true for
the ‘Safety-critical’ process, where two new deliverables have been introduced (‘risk
assessment report’ and ‘safety analysis report’) and two new practices (‘assess risk’
and ‘analyse safety reqs’).

As a consequence of changing the behaviour of the process by adding new
operations, a new state machine diagram or activity diagram will have to be created.

By changing the process model by adding specialisations for each tailored process,
it is possible to build up a library of tailored processes. In addition, by changing the
model and keeping the specialisation in the model, the new knowledge for each
tailored process is retained and may be reused.

Figure 6.24 shows the whole class for ‘Real-time design’, including all its inher-
ited attributes and operations. One point to note, however, is that the number of
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Figure 6.24 The fully tailored process for ‘Real-time design’

attributes and operations is increasing. There is a danger that, as more tailored pro-
cesses are defined, the processes will become unwieldy and overly complex. If this
does occur, it is worth taking a step back and thinking about redefining the basic
process to make it simpler. In some cases, it is even necessary to remove all attributes
and operations from the basic process (which would make it non-instantiable) and to
make all other processes capable of being tailored from this blank process.

6.5.1.1 Creating a life cycle

Once the tailored processes have been defined, it is possible to use them when select-
ing a life cycle. The procedure for this is exactly the same as before, in that a life cycle
is ‘assembled’ from a number of predefined processes. However, this time there may
be a choice of processes where previously there was only one option. For example,
a life cycle is chosen, but this time there are three choices of process that may be imple-
mented during the design phase: ‘Design’ for normal projects, ‘Real-time design’ for
real-time projects and ‘Safety-critical design’ for safety-critical applications.

Any special types of project will have their application-specific knowledge
retained in the ‘library’ of processes. This ensures that in the future, these tailored
processes may be reused and the knowledge concerning the tailoring retained in the
organisation. It is often useful to attach UML notes to tailored processes to record
any comments about the use of the process. This is important as practical details con-
cerning the implementation of the process may be retained and learned from in the
future. An important aspect of many standards is that lessons must be learned from
each project that is carried out and they must be demonstrated. By attaching notes to
processes that have been used, it is possible to demonstrate to a third party (such as
an auditor) that lessons are indeed being learned from past projects.

In relation to lessons learned, consider the case where a tailored process was
implemented and found to be an absolute disaster and it was decided that on no
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account was that particular process to be used again. One initial reaction to this is to
delete it from the process library, but this is potentially hazardous for future projects.
If the process is left in the process library and a note is attached to it stating never
to use it, then no one will use it again. If the process is deleted, however, there is
a danger that someone may redefine it at a future date, add it back to the process
library and reuse it with, once again, disastrous results. When the process is deleted,
lessons are not learned from past mistakes and it is possible for history to repeat itself.
By keeping the process in the library and recording negative experiences about the
process, it is possible to learn from past mistakes and not make them all over again.

6.5.1.2 Summary

In summary, therefore, the following points are illustrated:

• Tailoring a process means creating a special case of the process for a specific
application or project.

• Processes are represented by classes, and thus tailoring may be represented by
the specialisation UML relationship.

• Lessons learned from previous projects can be retained by saving these specialised
classes in some sort of process library.

Tailoring of processes covers the penultimate aspect of process modelling before the
project can take place. The next step is to define deliverables, which is covered in
Section 6.6.

6.6 Defining deliverables

This section looks at implementing the process by, among other things, modelling
deliverables that are outputs (or work products) from a process. These may be
documents, diagrams, code, physical system components, and so on.

Deliverables are modelled in the same way as the rest of the standards. They may
be modelled by type, process or structure.

When defining deliverables for a new process, it is possible to base them on
existing analysis models from the standards, in exactly the same way as processes
were treated previously in this chapter.

6.6.1 Deliverables by type

The first thing to look at is the types of deliverables that may exist within a project.
This may be represented using a class diagram.

Figure 6.25 shows that the highest level of class in the diagram is ‘Deliverable’.
For this example, we are defining two types of ‘Deliverable’, which are ‘System’ and
‘Document’. This model is by no means complete and may include concepts such as
models, modelling elements, code, subsystems, and the like. From the model, there
are three types of ‘Document’ which are ‘Technical’ ‘Plan’ and ‘Report’.
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Deliverable

Document

PlanTechnical Report

System

Figure 6.25 Defining types of deliverable

Test spec

System test spec Component test spec

Integration test specAcceptance test specSystem spec

System designUser reqs spec

Technical

Figure 6.26 Defining types of technical document

The previous model may be further refined by defining types of ‘Technical’ doc-
ument as shown in Figure 6.26. In this case, these types of technical documents are
‘User reqs spec’, ‘System spec’, ‘System design’ and ‘Test spec’; ‘Test spec’ is further
refined by the types ‘Component test spec’, ‘System test spec’, ‘Integration test spec’
and ‘Acceptance test spec’.

This model may be expanded to include all types of document that will exist for
a project. The models here have grouped the documents by type, but it is also useful
to associate these with each process, which is, effectively, looking at them from a
slightly different point of view.

6.6.2 Deliverables by process

Deliverables may also be modelled by process. In fact, this has already been demon-
strated once by the process descriptions, where deliverables were shown as attributes
on the process class. This time, however, we shall show deliverables as classes and
relate them directly to each process.

Figure 6.27 shows that ‘Deliverable’ has two types: ‘Input’ and ‘Output’. There
is one type of ‘Input’ defined as ‘System spec’ and four ‘Output’ defined as ‘System
design’, ‘System design review report’, ‘Integration test spec’ and ‘System test spec’.
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Design Deliverable

Input Output

System spec System design Integration test spec

1..*

produces

System design review report System test spec

Figure 6.27 Defining deliverables by process

Note how these deliverables also appeared on the previous model but by creating
this model we are adding information to the overall model. It is now known that not
only is ‘System design’ an output deliverable, but also that it is a technical document.

It is possible to go into even more detail by modelling the structure of deliverables
and this is discussed in Section 6.6.3.

6.6.3 Deliverables by structure

So far, the types of deliverables have been modelled along with how these relate to
each of the processes that have been defined. The actual structure, or contents, of
each deliverable, however, has not been discussed. It is essential that a number of
guidelines are given as to the layout of each deliverable so that they can be compared
and traced in a constructive fashion.

Deliverable

purpose
scope
definitions
references
overview

Introduction

product perspective
general capabilities
general constraints
user characteristics
operational environment
assumptions

General description

capability requirements
constraint requirements

Specific requirements

Figure 6.28 Defining the structure of a deliverable

Figure 6.28 shows the actual structure of a deliverable – in this case, the ‘User
requirement specification’ – which is made up of ‘Introduction’, ‘General description’
and ‘Specific requirements’. It is quite clear that these refer to sections of a document
with the attributes representing subsections. This model becomes the template for the
user requirements specification.
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Modelling deliverables in this way may seem trivial, but patterns emerge when
models are compared that allow such models to be used to define new deliverables.
This particular pattern for the user requirements specification deliverable will be
revisited in Chapter 7 when it is used in a practical way during the user requirements
phase.

6.7 Implementing the systems engineering process using a tool

So far, the theoretical aspects of defining the process have been discussed, and the
next step is to implement the processes in a real-life application. There is a great deal
of information contained within a process model and implementation can be very
tricky. Therefore, it should be possible to implement the process using a systems
engineering tool since, frankly, we can all agree that tools exist in order to make life
easier.

Before the requirements of tools are discussed, it is worth considering the nature of
tools, if only for a moment. A tool is exactly that, a tool. A tool will not automatically
make everything right and may not even make things more efficient. It is important
to look at tools with your eyes wide open and to take a really serious look at what
you want out of a tool before meeting with any vendors. Many tools will be hailed as
a silver bullet, or panacea, to all your problems, but this is seldom, if ever, the case.
However, as long as you know what tools can do and, sometimes more importantly,
what they cannot do, they can be very powerful, save much time and effort, make life
easier and make you work in a more efficient manner.

It is essential to choose a tool that will let you use your own defined processes and
not just assume that the same process that the vendor uses or recommends is being
used. One huge danger with many tools on the market is that they come with their
own process that the tool follows. This is dangerous for a number of reasons:

• The tool is driving the process rather than the process driving the tool. Once
the in-house process has been defined to reflect the way in which a particular
organisation works, it is essential that this is followed, rather than some other,
undefined and potentially unsuitable process that comes as part of a tool.

• By following a vendor’s process, it means that the project or organisation is
restricting itself to a single vendor, which is potentially expensive and, if the
vendor goes bust, may pose a serious threat to the project.

• By tying in to a single vendor, it is not only the tool that will cost money, but also
training and consultancy that will also be tied to a single vendor. Once you are
committed to a single supplier, there is nothing to prevent the price of services
from increasing dramatically.

Again, it is worth stressing that tools can be very good when used properly and for
the right purpose. Anyone who has tried to hammer in a nail with anything other
than a hammer (such as a pair of pliers, shoe, old house-brick or child’s toy) will
know that it often makes life far more difficult than walking to the tool box and
getting the appropriate tool from the word go. In the same way, the tool for inserting
nails is probably not appropriate for inserting windows. It is the same with systems
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engineering tools. A systems engineering tool that claims to perform modelling,
project management and life cycle definition may end up being a jack of all trades,
yet a master of none. In addition, there is nothing wrong with using more than one
tool from more than one vendor to carry out different tasks. Of course, it is helpful
if they work together in some way, but with the convergence of computer styles and
operating systems, this is becoming increasingly practical. For a more in-depth look
at tool evaluation, see Chapter 11.

6.7.1 Uses for a tool

There are many reasons for using a systems tool and the following list is a generic
set of points that should apply to almost all projects:

• The tool will be used to implement the process that has been defined so far.
• The tool will be used to aid communication throughout a project by holding all

project information in one place where it may be accessed by all project personnel.
• The tool will not only be used to store, but also to manage all project information

in a controlled fashion.
• The tool will need traceability functions within it to ensure that all relationships

between deliverables are maintained.
• The tool should be set up to hold templates for deliverables, according to the

UML models, to make implementing the process as simple as possible.
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Formal module Link module Description module
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Link

Linkset
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Figure 6.29 Model of a popular systems engineering tool
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One way to assess a tool’s performance at a high level and to ensure that the tool will
work seamlessly with a defined process, is to model the actual tool using the UML.
This may seem like a strange and useless thing to do, but it helps understand the tool
and the model will provide the basis for the mapping between the theoretical process
and the real-life implementation of the process on a project.

Figure 6.29 is a representation of a commercial tool that is in widespread use in
today’s industry. Although this is by no means a complete model of the functionality of
the tool, this one diagram gives an excellent overview of the tool (useful for training)
and provides vital information that is used later in this section to create the ‘profile
definition’ and the ‘implementation’ model.

Figure 6.29 shows the UML diagram for a popular systems engineering tool. From
the model, it can be seen that the ‘Tool’ is made up of one or more ‘Project’, each
of which is made up of one or more ‘Module’. There are three types of ‘Module’:
‘Formal module’, ‘Link module’ and ‘Description module’.

Each ‘Link module’ is made up of one or more ‘Linkset’, each of which is made
up of one or more ‘Link’.

Each ‘Formal module’ is made up of one or more ‘Object’. Two ‘Object’ are
related together by one ‘Link’.

This model does not show the complete functionality of the tool – in fact, it does
not show any functionality of the tool! The model is, however, very useful for a
number of reasons:

• It provides a very simple snapshot of the tool and shows the structure of the
information in the tool.

• It is useful as a training aid to give a high-level view of the tool.
• It provides the basis for successful implementation of the process. If the process

is represented using the UML and the tool is represented using the UML, it is
possible to map between them and create something useful.

The key to successful implementation on the tool lies in defining the ‘information
model’ and the ‘implementation model’.

6.7.2 The information model

The model that will actually be implemented on the tool is known as the
‘implementation model’. This implementation model is based on a theoretical
‘information model’ that can be derived directly from the process models. The infor-
mation model shows the deliverables from the process model and the relationships
between them. These associations will, typically, represent traceability paths between
the various deliverables, bearing in mind that traceability is a basic requirement of
almost all processes and standards.

The relationships are very important here as they will determine how the different
deliverables will be linked on the tool. For example, this will determine the traceability
throughout the whole project, if the tool has traceability functions in it.

Figure 6.30 shows part of the information model for the process that has been
defined so far. The information model shows that the ‘User reqs spec’ is traceable to
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PRD System spec

Acceptance test report

Acceptance test plan

records results of

plans
Acceptance test spec

User reqs spec

va
lid

at
es

is traceable to is traceable to

Figure 6.30 Partial information model, based on the process that has been defined

the ‘PRD’ (project requirements definition) and the ‘System spec’ is traceable to the
‘User reqs spec’. The ‘Acceptance test spec’ validates the ‘User reqs spec’ and the
‘Acceptance test plan’ plans the ‘Acceptance test spec’, while the ‘Acceptance test
report’ records the results of the ‘Acceptance test spec’.

Note the use of association names that will relate to relationships within the tool
such as ‘is traceable to’, ‘plans’, ‘tests’ and ‘records results of’.

This model is taken from the deliverable models that were introduced in
Figures 6.25 and 6.27. It provides a good consistency check between the information
model and the defined process.

The model here is only a small section of the entire information model. The actual
information model for the ‘ENG’ category alone consists of over 35 deliverables and
40 associations between them. The sheer size and complexity of the information model
can potentially lead to many mistakes and errors, and thus it is important that it can be
translated well and effectively to the tool in order to enable the tool to manage the data.

It is essential to understand that although this model is very useful, it is still
very much theoretical and does not provide all the information required to navigate a
real-life project. For example, there are no explicit references to modules in the tool
that has been chosen, nor is there any way to differentiate between different versions
of the same deliverable. This information will be contained in the ‘implementation
model’; however, the implementation model will be almost useless with no way to
map to the model of the tool. This is achieved through the ‘profile definition’.

6.7.3 The profile definition

The ‘profile definition’ contains the key, or legend, as to how the information model
will be implemented in real life using the implementation model. The profile definition
provides a mapping between theory and real life: the information and implementation
models.

In UML terms, the profile definition is a definition of stereotypes (or any other
extensions – including constraints and tagged definitions) that will be used to make the
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diagram more specific to a particular application – in this case, relating the implemen-
tation of the project to the process using the UML. Stereotypes and profile definitions
are discussed in more detail in Chapter 8.

«profile»
process

implementation

Link

«stereotype»
Link module

Object

«stereotype»
Formal module

Figure 6.31 Process implementation profile

From Figure 6.31, it can be seen that two special types of class have been defined
that will actually affect the UML meta-model, by defining special types (stereotypes)
of basic UML entities. In this case, a stereotype of ‘Object’ has been defined that is
called ‘Formal module’. In addition, a stereotype of ‘Link’ has been defined, which
is called ‘Link module’. Note that the two terms chosen for the stereotypes are the
same terms used in the tool model, which is to say that we are now using the tool’s
vocabulary and introducing it into the UML using stereotypes.

This profile definition will now allow us to make sense of the ‘implementation’
model that will reflect real life on the project.

6.7.4 The implementation model

The implementation model is the model that shows how the theory of the process,
in the form of the information model, is represented in real life using the systems

«Link module»
ATS - URS

«Formal module»
URS : User reqs spec

«Formal module»
SS : System spec

«Formal module»
ATS : Acceptance test spec

«Formal module»
ATR01 : Acceptance test report

«Formal module»
ATR02 : Acceptance test report

«Link module»
SS - URS

«Link module»
ATR01 - URS

«Link module»
ATR02 - URS

Figure 6.32 Implementation model
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engineering tool. The implementation model uses an object diagram to show how
real life actually exists, while still relating directly back to the defined process and
using the tool’s terminology.

Figure 6.32 shows the implementation model for the information model that was
shown in Figure 6.31. Each object has the following features:

• An object name. This is exactly the same as the module names used on the tool.
This gives a direct relation to the names of the files or modules used by the tool.

• An associated class name for each object. This is taken directly from the infor-
mation model, to show the relationship to the process that has been defined using
the UML.

• A stereotype name. This shows how the object is implemented on the tool – in
this case, it shows whether the module is a formal module or a link module. This is
taken directly from the profile definition.

The links in Figure 6.32 show the instances of the associations from the information
model in Figure 6.31 and are described in the following way:

• A link name. This is the name of the instance of the association from the infor-
mation model. The actual instance name is the same as the name of the module
in the tool.

• A stereotype name. This shows how the link is implemented on the tool – in this
case, the link happens to be a link module.

This implementation model may be used as a navigation aid to trace between the
process definition and its actual implementation on the tool.

6.7.5 Summary

This section has looked at how the process that has been defined so far in this chapter
may be implemented using a basic off the shelf systems engineering tool.

We have now brought together the original theoretical model in the form of the
information model (Figure 6.30), the model that bridges the theory and the tool in the
form of the profile definition (Figure 6.31) and the actual model that is on the tool in
the form of the implementation model (Figure 6.32).

6.8 Conclusions

In conclusion, therefore, this chapter covers the following points:

• Process analysis. The UML is used to analyse and understand existing processes
in the form of international standards. By modelling in this way it is possible to
see any inconsistencies both within a standard and between different standards.

• Modelling new processes. The same approach is applied to creating a new process
in the form of a procedure that can be traced back to the international standards
upon which it was based.
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• A common approach. Note the diagrams that were used for both analysis and
defining a new process. Structural models are realised by class diagrams and
behavioural models realised by state machine diagrams, communication diagrams
and activity diagrams. These are by no means the only diagrams that may be used
because, as with all applications of the UML, any diagrams are accurate and
appropriate.

• Deliverables. These are modelled by type, process and their structure to form
templates.

• The process that is defined can be implemented using a basic systems engineering
tool, which could also be modelled.

Finally, a point that cannot be stressed enough: the process must drive the tool, not
the other way around. By following the approach suggested here, this is achievable.

6.9 Further discussion

1. Take the high-level process structure models from Figures 6.1 and 6.4 and map
them on to Figure 6.15.

2. Map between the high-level process model from Figure 6.15 and those in
Figures 6.10–6.14. Is it possible to map between all of them? If not, why not?
What could be changed to make this mapping possible?

3. Take any process from the ‘ENG’ process and define a number of practices in
the form of operations and deliverables in the form of attributes.

4. Define the statechart or activity diagram to describe the behaviour of this new
process.

5. Define deliverables for this process by their type and structure.
6. Try to model a systems engineering tool with which you have experience. If you

do not use one, try to model one based on any publicly available documentation.
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Chapter 7

Modelling requirements

what you want and what you get are two different things

Christine Holt

7.1 Introduction

This chapter is concerned with modelling requirements. The diagram that is most
frequently used for modelling requirements in the Unified Modelling Language
(UML) is the use case diagram, although, technically speaking, any diagram may be
used. In this section of the book, we will be concentrating on modelling requirements
using use case diagrams. See References 1 to 3 for more discussion on use case models.

Use case diagrams, it may be argued, are perhaps one of the simplest of all
diagrams, at least on the surface. However, they are perhaps the most misunderstood
of all the UML diagrams. This is due in part to their inherent simplicity. Because
the diagrams look so simple people often assume that very little effort is involved in
generating the diagrams. This could not be further from the truth!

Requirements engineering is the discipline of engineering that is concerned with
capturing, analysing and modelling requirements. In this book we are looking purely
at modelling requirements with some degree of analysis. How these requirements
are arrived at in the first place is entirely up to the engineer. Indeed, many different
techniques for requirements capture will be mentioned, but will not be covered in any
detail, as this is beyond the scope the book.

Before the UML can be related to requirements, it is important to understand
some of the basic concepts behind requirements engineering. These concepts will
be introduced at a high level before any mention of the UML is made. In this way,
it is possible to set a common starting point from which to work with the UML.
Newcomers to the field of requirements engineering should use this section of the book
as an introduction and should consult some of the books referred to at the end of the
chapter for more in-depth discussion about the whys and wherefores of requirements
engineering. Experienced requirements engineers should treat this section as a brief
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refresher, but it should be read at least once purely to determine the common starting
point for the UML work.

7.2 Requirements engineering basics

7.2.1 Introduction

This section introduces some fundamentals of requirements engineering.
The emphasis in this chapter is on how to use the UML to visualise requirements
rather than to preach about requirements engineering itself; this section is therefore
kept as brief as possible, while covering the basics. The basic concepts that are covered
here are all addressed practically in subsequent sections with respect to the UML.

Getting the user requirements right is crucial for any project for a number of
reasons:

• The user requirements will drive the rest of the project, and all other models
and information in the project should, therefore, be traceable back to its original
requirement. If you look at a typical information model, such as the one discussed
in Chapter 6, this can turn out to be a large amount of documentation, all of which
will be driven by the requirements.

• The user requirements are the baseline against which all acceptance tests are
defined and executed. Leading on from the previous point, the success of the
project will be based on the project passing the acceptance tests, which rely entirely
on the project meeting the original user requirements. It follows, therefore, that
the success of the project is directly based on the user requirements.

• One of the definitions of quality that ISO uses is: ‘conformance to
requirements’. Therefore, requirements are absolutely crucial to achieving and
then demonstrating quality.

One point that will emerge from this chapter is that much of the art of analysing
requirements is about organising existing requirements so that they can be understood
in a simple and efficient manner.

For a more in-depth discussion of requirements engineering in general, see
References 4 to 6.

7.2.2 The requirements phase

The requirements phase is, typically, the first phase of the systems engineering life
cycle model, depending on the processes that are included in the life cycle. For
example, it may be that some of the customer–supplier relationship processes are
implemented in a phase before requirements, but, for argument’s sake, let us assume
that requirements is indeed the first phase of the life cycle. According to what is
said in Chapter 6, the requirements phase should implement a defined process. The
process that will be used in this section is taken directly from the worked examples
used previously and the process is shown in Figure 7.1.

Figure 7.1 shows a class that is called ‘Stakeholder requirements’ and that
represents a requirements process. This process is taken directly from the STUMPI
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elicit requirements() 
analyse requirements() 
review()
define acceptance criteria() 
identify stakeholders()

Stakeholder model 
Requirements model 
Acceptance criteria definition 
Requirements architecture 
Review results

Stakeholder requirements

Figure 7.1 The stakeholder requirements process

process model as discussed in Chapter 9 and uses the generic term ‘stakeholder’
to qualify the term ‘requirements’. Very often, the term ‘user requirements’ is used
here, but the term ‘stakeholder’ is more accurate as a user is simply a special type of
stakeholder.

Adopting the notation used in Chapter 6, it can be seen from the diagram that there
are five artefacts associated with process (represented as attributes): ‘Stakeholder
model’, ‘Requirements model’, ‘Acceptance criteria definition’, ‘Requirements
architecture’ and ‘Review results’. Also, it can be seen that there are five main
activities associated with the process (represented by operations), which are: ‘elicit
requirements’, ‘analyse requirements’, ‘review’, ‘define acceptance criteria’ and
‘identity stakeholders’.

Now that the ‘what’ of the process has been defined, a logical next step is to define
the ‘how’ of the process or, to put it another way, the behaviour of the process. The
diagram chosen to represent the behaviour of the process is the activity diagram, which
can be seen here.

The diagram in Figure 7.2 shows the behaviour of the stakeholder requirements
process in the form of an activity diagram. Each of the activity executions represents
an activity from the process and is the equivalent of an operation from the parent
class being executed. The main flow of control can be seen here by looking at the
activity executions (represented by the ‘sausage’ shape), their order and the conditions
between them.

The flow of information around this process is shown by the object flow on
the diagram, which provides an indication of which activity execution produces
and/or consumes which objects. These objects show the process artefacts, which
are represented on the parent class as attributes.

The swim lanes represent the roles, or stakeholders, which are responsible for
various activities in the process. Any activity execution that falls within the boundary
of a swim lane is the responsibility of the stakeholder named above the swim lane.

It should be stressed that the process shown here is simply an example and should
be treated as such. The process itself is fully traceable back to ISO IEC 15288,
which provides the model of best practice for this example. As an example of how
this process may be tailored, many people will collect all the information shown
here as attributes into a single ‘user requirements specification’ or something similar,
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containing all the knowledge concerning the requirements of the system. Clearly,
if this were the case, another attribute would be added.

7.2.3 Capturing requirements

There are many ways to capture requirements, both formal and informal, and there is
still much debate about which of the approaches yields the best requirements. Rather
than enter into this debate, this following list will simply give an overview of the
types of technique that may be adopted when capturing requirements.

Interviews, both formal and informal: Formal interviews follow a predefined format
and have predefined questions that yield comparable results. Predefined forms may
be used that define a set of questions and indeed even typical answers from which
requirements may be drawn up. Informal interviews, on the other hand, start with a
blank sheet of paper that is used to record information and comments during an infor-
mal discussion. These results are then analysed and from these, a set of requirements
may be drawn up. Each of these has its own set of advantages and disadvantages. For
example, formal interviews may be conducted in such a way that the questions given
are quantifiable so that they may be directly compared or may be analysed statisti-
cally. On the other hand, although not so easily quantifiable, informal interviews may
pick up requirements that may have been missed out by the formal questionnaire-style
approach.

Business requirements: User requirements may be derived from business
requirements. A business requirement is a very high-level requirement that drives the
business rather than the product, yet may drive particular aspects of the project or set
up some constraints. Business requirements are discussed in more detail in due course.

Comparable systems: Other systems with similar features may be looked at in order to
capture their functionality, which may be transformed into user requirements. These
other systems may be similar systems within the same organisation, legacy systems
that may need to be updated or they may even be a competitor’s product.

Maintenance feedback: The maintenance phase of a project should allow for cus-
tomer feedback associated with a product. This is particularly important where the
project is concerned with updating or replacing an existing system. The actual feed-
back may be in the form of error reports, customer wish-lists or periodic surveys of
customers’ opinions of a product.

Working in the target environment: Spending some time in the target environment
can be invaluable when it comes to generating requirements. It may be that users of
a system simply assume some functionality that may be overlooked when it comes
to stating the system requirements. A fresh viewpoint from a nonspecialist may be
exactly what is needed to draw out some obvious, yet crucial, system requirements.

User groups: Many companies with a large customer base set up special user groups
and conferences where users can get together and exchange viewpoints and ideas.
Although expensive, these meetings can prove invaluable for obtaining customers’
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requirements. These meetings also demonstrate to the customer that the supplier
actually cares about what customers think and has put some effort and investment
into constantly improving the product that they already use.

Formal studies: Relevant studies such as journal and conference publications can
often show up ‘gaps’ in products or provide a good comparison with other similar
products. It is important, however, to assess how much detail the studies go into
as some can be superficial. It is also important to find out the driving force behind
studies, as any study carried out or financed by a product vendor may lead to distorted
facts and, hence, any derived requirements may be suspect.

Prototypes: Prototypes give the customer some idea of what the final product will
look like and hence can be useful to provide valuable early life cycle feedback.
Indeed, this approach is so well promoted by some that it has led to the definition of
a very popular life cycle model: the rapid prototype model. The use of prototypes is
particularly tempting for systems with a large software content, or those that use a
computer-based interface to control or operate a system. User interface packages are
very simple (and cheap to come by) and can give potential users a perfect picture of
what they will be getting at the end of a project. Non-software prototypes are also
very useful but can be very expensive if physical models have to be constructed.

User modifications: These are not applicable to many systems, but some systems are
designed so that they can be extended or modified by the customer. In order to relate
this to a real-life example, think of a drawing or CAD package on a computer. Many of
these packages allow the user to specify bespoke templates or drawing elements that
may make the life of the user far simpler. Indeed, some UML tools currently on the
market are basically drawing packages with predefined UML templates, and if getting
the drawings looking good is a main requirement, this can often be the most econom-
ical solution to buying a CASE (computer aided/assisted software engineering) tool
(see Chapter 11 for more information on selecting CASE tools). Whenever a modi-
fication is made, either by user or supplier, there is generally a good reason why it
has been done. This reason will almost invariably lead to a new requirement for the
system, which can be incorporated into subsequent releases of the system.

These are by no means a complete set of requirements capture techniques, but they
give a good idea of the sheer diversity of techniques that have been adopted in the
past. It may be that a completely different technique is more appropriate for your
system – in which case use it!

Capturing requirements is all very well, but what in fact are requirements and
what properties should they possess? The next section seeks to address some of these
issues generally, before the UML is used to realise them.

7.2.4 Requirements

7.2.4.1 Overview

The previous section has introduced a number of techniques for capturing
requirements, but there is more to requirements than meets the eye. For example,
requirements are often oversimplified and one of the main reasons for this is because
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there are actually three types of requirements. It has already been stated that much of
the skill involved in modelling requirements is involved with organising requirements
into logical and sensible categories. These three categories are dictated by the types
of requirement that are shown in Figure 7.3.

Requirement

Business

Functional

Nonfunctional

1..*

1..*

drives

1..*

1..*constrains

Figure 7.3 Types of requirement

Figure 7.3 shows that there are three types of ‘Requirement’: ‘Business’,
‘Functional’ and ‘Nonfunctional’. One or more ‘Business’ requirement drives one
or more ‘Functional’ requirement, and one or more ‘Nonfunctional’ requirement
constrains one or more ‘Functional’ requirement.

‘Functional’ requirements are what are thought of as traditional user requirements
and ‘Nonfunctional’ requirements are often referred to as ‘constraints’ or
‘implementation requirements’. Each of these types of requirement is discussed in
more detail in the following sections.

7.2.4.2 Business requirements

The first type of requirement to be discussed is the business requirement. Business
requirements, as the name implies, relate to the fundamental business of the
organisation. Business requirements tend to be oriented more towards high-level
business concerns, such as schedule and cost, rather than towards development itself
and, as such, often fall outside the context of the system.

Business requirements and user requirements are often confused, but are not quite
the same thing. Business requirements will relate to things that drive the business,
such as ‘keep the customer happy’, ‘improve product quality’, etc. Because of this,
business requirements are often implied, but rarely stated explicitly.

Business requirements will be aired from a point of view that ties it in to business
processes. Chapter 6 introduces the subject of process modelling and shows that there
were other concerns apart from engineering and, indeed, business requirements relate
heavily to the ‘Organisational’ category, rather than ‘Engineering’.

Figure 7.4 shows a set of business requirements that have been generated for a
systems engineering organisation, which may help to clear up some of these points.

Figure 7.4 is actually a use case diagram that is being used to describe the busi-
ness context (discussed in more detail later) for a real-life systems engineering
organisation. All the use cases on this model are actually representing business
requirements, rather than functional requirements. Look at the nature of these
requirements and it can be seen that they exist at a very high level conceptually. For
example, ‘Promote excellence’ just happens to come directly from this organisation’s
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Figure 7.4 Business requirements for a systems engineering organisation

mission statement, which must be a business requirement for the organisation, other-
wise they are not fulfilling their mission. The second high-level business requirement
is to ‘make money’, which must be an underlying factor associated with almost every
business in the world.

The ‘make money’ requirement has an association with four other requirements:
‘obtain funding’, ‘provide services’, ‘provide consultancy’ and ‘provide training’.
This relationship is an ‘includes’ relationship, which will be discussed in more detail
later in this chapter, although its meaning is self-explanatory.

The ‘promote excellence’ requirement also has an association with several other
requirements: ‘assist local community’, ‘carry out research’, ‘provide services’,
‘provide consultancy’ and ‘provide training’.

The ‘obtain funding’ requirement ‘extends’ both ‘carry out research’ and ‘assist
local community’, which is discussed in more detail later in this chapter.

The actors in this model, which are shown graphically by stick people, actually
represent project stakeholders. Stakeholders represent any role, or set of roles, that
has an interest in the project, and will be discussed in more detail later in this chapter.

The model that is used here is used throughout this chapter and will drive the
functional requirements for projects within the organisation. Therefore, any projects
that are used as examples from this organisation must be traceable back to the
company’s original business requirements.
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7.2.4.3 Functional requirements

Functional requirements are the typical user requirements for a system, in that they
define the desired functionality of a system. User requirements should have some
observable effect on a particular user of a system, otherwise they are possibly being
defined at too low a level.

One of the relationships established in Figure 7.3 is that ‘Business requirements’
drives ‘Functional requirements’. This means that all functional requirements should,
in some way, be traceable back to the organisation’s business requirements. If this is
not the case, perhaps it should be questioned why this requirement is necessary.

7.2.4.4 Nonfunctional requirements

The third and final type of requirement introduced in Figure 7.3 is the ‘Nonfunctional’
type of requirement, which is also sometimes referred to as ‘Implementation require-
ment’ or ‘Constraint’. These ‘Nonfunctional’ requirements constrain functional
requirements, which means that they may limit functional requirements in some
way. Examples of nonfunctional requirements include:

Quality issues: A common nonfunctional requirement is ‘comply with standard’,
where the word ‘standard’ may refer to some sort of established norm, such as
an international standard or process. This is particularly relevant when read with
Chapter 6, which discusses the importance of standards compliance. This may be
a fundamental requirement of the system and may make all the difference between
meeting acceptance tests and failing them.

Implementation issues: It may be desirable to use a particular technique or language
to implement the final system. As an example of this, imagine a system whose target
environment may contain other systems and which will require a particular platform
or protocol to be used.

Life cycle issues: This may include the way in which a project is carried out. It may
be that a particular project management technique should be used. An example of this
is the PRINCE system, which is often cited in government projects as an essential
part of the project. This may also include other constraints, such as design techniques
and methodologies and even the modelling language (such as the UML!).

It is essential that these nonfunctional requirements are treated in the same way as
both functional and business requirements, and that they exist on the requirements
models.

7.2.4.5 Properties of requirements

Once requirements have been identified, it is important that they are classified in
some way so that their status may be assessed at any point in the project and they may
be organised and manipulated properly. In order to classify requirements, they often
have their features, or attributes, defined [7–9]. This may be represented graphically
by adding, unsurprisingly, attributes to a class that represents a requirement. Figure 7.5
shows such a class with some example attributes added.
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source
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V&V criteria
ownership
absolute ref
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Figure 7.5 Properties or a requirement shown as attributes

Figure 7.5 shows a class that represents a requirement with several defined
attributes describing the properties of a generic requirement. These requirements
would be inherited by each of the three types of requirement and are particularly
useful when it comes to implementing a project using a tool, which is discussed in
more detail in Chapter 6.

The attributes chosen here represent typical properties that may be useful during
a project; however, the list is by no means exhaustive. The attributes currently
shown are:

• ‘source’, which represents where the requirement was originated. This is
particularly useful when there are many source documents that the requirements
have been drawn from, as it may reference the role of the person who asked for it.

• ‘priority’, which will give an indication of the order in which the requirements
should be addressed. A typical selection of values for this attribute may be
‘essential’, ‘desirable’ and ‘optional’. This is similar to the concept of ‘enumerated
types’ in software, where the possible values for an attribute are predefined, rather
than allowing a user to enter any text whatsoever. This is important, as in many
cases it is simply not possible to meet all requirements in a project, and thus they
are prioritised in terms of which are essential for the delivery of the system. This
also takes into account the fact that many user requirements are user wishes that
are no more than ‘bells and whistles’ and do not affect the core functionality of
the system. There is often quite a large difference between what the customer
wants and what the customer needs. Although both are valid requirements, it
is important that the customer’s needs are addressed before their wants so that
a minimum working system can be delivered.

• ‘verification/validation criteria’, which gives a brief idea of how compliance
with the requirement may be demonstrated. This may be split into two different
attributes or may be represented as one, as shown here. It is crucial that there
is some clear way to establish whether a requirement may be verified (it works
properly) and validated (that it has been met) as the validation will form the
basis for the customer accepting the system once it has been delivered. This is
high-level information and not a test specification, for example.

• ‘ownership’, which will be related directly to the responsible stakeholder in the
system. If the requirement is not owned by one of the defined stakeholders, there is
something wrong with the stakeholder model. The stakeholder model is discussed
later in this chapter.
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• ‘absolute reference’, which represents a unique identifier by which the
requirement may be identified and located at any point during the project. This
also forms the basis for any traceability that may be established during the project
to show, for example, how any part of any deliverable during any phase of the
project may be traced back to its driving requirement from the user requirement
specification.

Many other attributes may be defined depending on the type of project that is being
undertaken. Examples of other requirement attributes include: urgency, performance
and stability.

It is important that requirements are written in a concise and coherent way in order
to avoid:

Irrelevancies: It is very easy to put in too much background information with each
requirement description, so that the focus is lost amidst irrelevant issues.

Duplication: It is important that each requirement is only stated once. This
is particularly important when requirements affect other requirements, such as
constraints, which are ripe for duplication.

Overdescription: Verbosity should be avoided wherever possible.

One of the keys to successful requirements engineering is the way in which the
requirements are organised. Much of this chapter will deal with organising the models
of requirements into a coherent set of usable requirements.

7.2.5 Stakeholders

7.2.5.1 Overview

This section examines another fundamental aspect of requirements modelling, which
is that of stakeholders. A stakeholder represents the role, or set of roles, anyone
or anything that has a vested interest in the project, ranging from an end user to
shareholders in an organisation, or the government of a particular nation.

It is very important to identify stakeholders early on in the project as they can be
used to relate to any type of requirement and can also be used to define consistent
responsibilities.

7.2.5.2 Types of stakeholder

One of the practices that was identified in the requirements process was that of
‘identify stakeholders’. This is often written as ‘identify users’ or ‘identify roles’
depending on which source is used for reference. The reason why these terms are
often used interchangeably is that a ‘user’ is actually a type of stakeholder. A user
will actually use the output of the project, the product, and may be thought of as having
an interest in the project. Figure 7.6 shows this relationship from a UML point of view.

The relationship between stakeholders, users and the project are shown in
Figure 7.6.
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Figure 7.6 Relationship between users and stakeholders

From the model, ‘User’ is a type of ‘Stakeholder’. One or more ‘User’ uses the
‘System’, while one or more ‘Stakeholder’ have an interest in a ‘Project’. In addition,
the ‘Project’ delivers one or more ‘System’.

Although it is impossible to list all possible stakeholders in an organisation, it
is possible to draw up a generic model that is very useful as a starting point for a
stakeholder model. Figure 7.7 shows such a generic model that will not fit all projects
or organisations, but is very useful as a starting point for identifying any potential
stakeholders.

Operator
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Manager Engineer

Stakeholder

Figure 7.7 Types of stakeholder

It can be seen that there are two main types of ‘Stakeholder’: ‘Customer’ and
‘Supplier’. These are chosen as the highest-level stakeholders as almost every project
will have both a supplier and a customer. It should be pointed out that the name of the
class that represents each stakeholder represents a role that is being performed, rather
than the name of an individual or particular organisation. It may be that the ‘Customer’
and ‘Supplier’ stakeholders are actually within the same organisation, or may even
be the same person in the case of one person creating a system for personal use.

The ‘Customer’ stakeholder has three main types: ‘User’, ‘Operator’ and
‘Acquirer’. The ‘User’ will be the role that represents the end user of the system – for
example, in the case of a transport system such as rail or air, the ‘User’ role would
be fulfilled by the actual passengers. The role of the ‘Operator’ in the same exam-
ple would be taken by the staff who actually work at the stations or ports where the
transport is taking place and the people who drive or fly the vehicles. The ‘Acquirer’
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role represents whoever is responsible for paying for the project, which may be a large
organisation such as an airline or rail company in the example.

The second main type of ‘Stakeholder’ is the ‘Supplier’, which has two main
types: ‘Manager’ and ‘Engineer’. Again, these are generic roles that should be used
as a starting point for the real stakeholder model.

In order to take the concept of stakeholders further, let us consider an example that
fits in with the business requirements that were shown in Figure 7.4, with regard to the
‘provide training’ business requirement. The idea here is to identify the stakeholders
for this requirement by using the model shown in Figure 7.4 as a starting point for
the reasoning.

Imagine a situation where a client organisation has asked the organisation whose
business requirements have been defined to provide a training course at the client’s
premises. Therefore, a project is started that, for the sake of this example, will be
referred to as the ‘provide training course’ project. The stakeholder model has been
identified as shown in Figure 7.8.

Stakeholder

Customer Supplier

Attendee

Organiser

Sponsor Tutor Demonstrator

Figure 7.8 Example of stakeholder model for ‘provide training requirement’

The model in Figure 7.8 shows some stakeholders who have been identified for
the ‘provide training’ business requirement. The two main types of ‘Stakeholder’
remain the same as ‘Customer’ and ‘Supplier’, because in order to deliver a training
course there must be someone who wants the course, the ‘Customer’, and someone
who can supply it, the ‘Supplier’.

The ‘Customer’ stakeholder has been split into three types in this example:

• The ‘Organiser’, whose role it is to set up the logistics of the course and ensure
that there are enough attendees to justify the expense of the course.

• The ‘Attendee’ represents the people who will be attending the course.
• The ‘Sponsor’ represents the role that actually pays for the course.

In the same way, the ‘Supplier’ stakeholder has two types that differ from the original
generic model. These two types are:

• The ‘Tutor’, who is the person or team of people who teach the course.
• The ‘Demonstrator’, who is the person or team of people that provide practical

demonstrations that complement the tutor’s teaching efforts.
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It is useful to remember that the stakeholders represent the roles, rather than
individuals, involved in the project. There are a number of main reasons for this:

• There is nothing to say that each role has to be a separate individual or entity, as
it is possible for one person to take on more than one role. It is important that the
roles are considered rather than the individual, as it may be that the system is split
up with regard to the functionality attached to each role, rather than to a person.

• If an individual leaves a project and has a number of roles, it may be that more
than one person can replace the initial individual. It may also occur that somebody
moves position within a project, maybe up the management hierarchy, so it is
absolutely crucial that the roles associated with that person are not confused with
any new roles. If all associations are with an individual, rather than a role, this
will become confusing, to the possible detriment of the project.

• One person may take on two roles. For example, the role of the ‘Tutor’ and the
‘Demonstrator’ may be taken on by one person for one instance of the course and
this may change for another instance of the course. It is important, therefore, to
know the skills and specialist knowledge required by the role so that if a person
who takes on both roles needs to be replaced, it can be ensured that the replacement
can fulfil both roles.

This model was based on the information in Figure 7.4, but it was tailored for this
particular project.

7.2.6 Summary

The information that has been introduced and discussed so far in this chapter may be
summarised by the UML model shown in Figure 7.9.
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Figure 7.9 Summary so far
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In summary, therefore:
One or more ‘Requirement’ are generated during ‘User requirements’, which is a

type of ‘Phase’. One or more ‘Stakeholder’ are identified during ‘User requirements’
and one or more ‘Stakeholder’ own one or more ‘Requirement’. Each ‘Requirement’
has the attributes ‘source’, ‘priority’, ‘V&V criteria’, ‘ownership’ and ‘absolute ref’.

There are three types of ‘Requirement’: ‘Business’, ‘Functional’ and
‘Nonfunctional’. One or more ‘Nonfunctional’ requirements constrain one or more
‘Functional’ requirements. One or more ‘Business’ requirements drive one or more
‘Functional’ requirements.

This covers the basic concepts associated with requirements engineering. These
concepts will now be related to UML issues in section 7.3.

7.3 Using use case diagrams (usefully)

Now that the basics of requirements engineering have been introduced, albeit briefly,
it is useful to now take another look at the UML diagram that will be used for most of
the requirements engineering models: the use case diagram. By way of a recap, the
meta-model for use case diagrams is shown in Figure 7.10.

Use case diagram

System boundaryUse case

Actor

Includes
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Extends

1..*

1..*

1..*

0..1

1..*

yields an observable result to

Figure 7.10 Partial meta-model for use case diagrams

Figure 7.10 shows the partial meta-model for use case diagrams, which is first
introduced in Chapter 5. It can be seen that a ‘Use case diagram’ is made up of one
or more ‘Use case’, one or more ‘Actor’, one or more ‘Association’ and zero or
one ‘System boundary’. There are two special types of ‘Association’: ‘Extends’ and
‘Includes’. A ‘Use case’ yields an observable result to one or more ‘Actor’.

7.4 Context modelling

7.4.1 Types of context

Several types of requirements have been introduced and the relationship between
them defined. However, in reality, it is useful to separate these types of requirements



220 UML for systems engineering

and relate them to different types of stakeholder. This organisation of requirements
results in defining the ‘context’ of a system.

The context of a system represents what the system is and its boundaries from
a particular viewpoint. This is absolutely critical, as it is possible to have many
contexts that relate to a single system, but that exist from different points of view. For
example, the system context for a customer may be different from the system context
of an operator. Something that is perceived as lying outside the context of one system
may be included when looked at from a slightly different angle. Examples of this will
be given in due course.

The context of the system shows the system boundary and any people or
peripherals that communicate with the system. This may include ‘who’ interacts with
the system and also ‘what’ interacts with the system. It should be noted that users
are not necessarily people and may be peripherals, such as computers, hardware,
databases, and so on, or, indeed, another system. In terms of what has been shown
so far, these entities that interact with the system are equivalent to stakeholders. This
means that if all stakeholders have already been identified correctly, they can be used
to help model the context of the project.

Two types of context exist: the ‘business context’ and the ‘system context’. Each
context is defined by the system boundary, which is one of the basic elements of the
use case diagram. The system boundary is actually a very interesting piece of syntax
for the UML as it is either massively misused or underused. Many UML texts,
tools and references ignore the system boundary altogether or simply state that it
is optional. If the system boundary was optional, with no guidelines issued for when
it should and should not be used, what would be the point of it in the first place?
An excellent use for the system boundary element in the UML is to define a context
in a system. In a nutshell, if a use case diagram has a system boundary, it is a context
diagram. If it does not have a system boundary, it is simply showing the breakdown of
requirements.

Each of the two types of context will now be looked at in some detail and the
example used so far will be taken further and, in some cases, revisited with a new
reflection on matters.

7.4.1.1 Business context

The business context shows the business requirements of an organisation or a
particular project. The business requirements that are shown in Figure 7.4 are really
a very high-level business context that sets the context for the whole organisation.
It may be that new, additional business contexts are generated for each project, but it is
absolutely crucial that these are consistent with the high-level business requirements,
or context, otherwise the company will be straying from its original mission.

As a general rule of thumb, business requirements will exist within a business
context, rather than nonfunctional or functional requirements. In the same vein, the
roles that exist outside the context of the system are generally high-level stakeholders,
rather than actual users of the system. The use case diagram shows a generic business
context that highlights these points.
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Figure 7.11 Generic business context

It can be seen from the model in Figure 7.11 that the various stakeholders –
‘Customer’, ‘Manager’ and ‘Acquirer’ – are associated with various business
requirements: ‘Business requirement 1’, ‘Business requirement 2’ and ‘Business
requirement 3’.

If this is related back to the original business requirements for the systems
engineering organisation in Figure 7.11, it can be seen that these rules of thumb
hold true. All the actors in the diagram are stakeholders rather than users and all the
use cases are business requirements.

Note the explicit use of the UML entity, the system boundary, which shows
that this model is a context model rather than a straight requirements model. The
system boundary is represented very simply by a rectangular box that goes around
the requirements (shown as use cases) in the context and keeps out the stakeholders
(shown as actors).

The second type of context is the ‘system context’, which is discussed in
section 7.4.1.2, before a full example is worked through, showing how to differ-
entiate between the two types of contexts and offering advice on how to practically
create both.

7.4.1.2 System context

The system context relates directly to the project at hand and is concerned with the
user requirements and constraints on them, rather than with the high-level business
requirements. The stakeholders that exist as actors on the use case diagram are
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typically the users and lower-level stakeholders, such as people who will be involved
directly with the day to day running of the project – in other words, managers and
engineers.

As a general rule of thumb, therefore, the actors on the system context will be
users and low-level stakeholders and the use cases will be functional and nonfunc-
tional requirements. Figure 7.12 shows a generic system context that represents these
rules of thumb.

Operator User

System context

Functional
requirement 1

Functional
requirement 2

Non-functional
requirement

1

Non-functional
requirement

2

Figure 7.12 Generic system context

Figure 7.12 shows that the system context diagram consists of various
types of functional requirement – ‘Functional requirement 1’ and ‘Functional
requirement 2’ – and various types of nonfunctional requirement – ‘Nonfunctional
requirement 1’ and ‘Nonfunctional requirement 2’.

Now that the basic rules of thumb have been established, it is possible to apply
these to the example that is used earlier in this chapter.

7.4.2 Practical context modelling

Consider now an example where the systems engineering organisation modelled
previously in Figure 7.4 wants to start up a project to run training courses. This was
introduced previously and, indeed, a set of stakeholders was identified. This example
will now be taken one step further and the business and system contexts will be created
for the ‘provide training course’ project. The first question that should be asked is
whether or not the project is consistent with the organisation’s mission. In this case
there is an obvious connection, as one of the business requirements for the organisation
is to ‘provide training’. If there is no clear connection to the business requirements
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of the organisation then one of two things must be done:

• The business requirements of the organisation must be changed to reflect the new
project. If this is not done, the project does not fit in within the defined scope of
the company’s activities.

• If it is the case where the project is outside the scope of the company’s
current activities and the company is not willing to add it to its list of business
requirements, the answer is quite clear: the project should not be taken on in the
first place!

The first step is to ensure that the project can be proven to be consistent with the
organisation’s business requirements and then the next step is to identify the require-
ments for the project and the stakeholders. This will, in reality, be an iterative process
and will take several iterations to get right.

As a first pass, let us try to identify some general requirements, regardless of
type. These requirements were generated by simply asking a group of stakeholders
what they perceived the requirements to be. At this stage, the requirements were not
categorised, but were simply written down as a list. The list below shows a typical
set of requirements that is generated when this example is used to illustrate context
modelling:

• ‘ensure quality’, which refers to the work that is carried out by the supplier
organisation.

• ‘promote supplier organisation’, in terms of advertising what other services the
organisation can offer and hope for some repeat business or future business.

• ‘improve course’, which means that any lessons learned from delivering the course
should be fed back into the organisation in order to constantly improve courses
as time goes on.

• ‘teach new skills’, from the point of view of the supplier organisation.
• ‘provide value’, so that the clients will keep coming back for more business.
• ‘organise course’, which involves setting up, advertising etc.
• ‘deliver course’, which consists of the delivery of the course, in terms of teaching

and practical demonstrations.

The next step, once the initial set of requirements has been identified, is to categorise
each requirement by deciding whether it is a business requirement, a functional
requirement or a nonfunctional requirement. The list of business requirements is:

• ‘promote supplier organisation’, which is clearly aimed at the business level and
will relate directly back to the original business requirements of the organisation.

• ‘provide value’, which relates directly back to the supplier’s business
requirements.

The list of functional requirements is:

• ‘teach new skills’, which is what is expected to come out of the course.
• ‘deliver course’, which involves somebody turning up and teaching the course

and providing course materials.
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• ‘organise course’, which involves publicising the course, setting up the course
and providing support for the course.

The list of nonfunctional requirements is:

• ‘ensure quality’, which means that the quality of the course must be maintained.
In reality, this may equate to giving out course assessment forms and feeding
them back into the system.

• ‘improve quality’, which relates to how the course may be improved constantly in
order to meet one of the original business requirements of ‘promote excellence’.

It may be argued that these two nonfunctional requirements are one and the same and,
hence, would be condensed into a single requirement. It may also be argued that they
are separate, distinct requirements, and that they should remain as two requirements.
The problem is, which of the two is correct? As there is no simple answer to this,
there is a particular rule of thumb that should be applied under such circumstances.
If the answer to whether to split up or condense requirements is unclear, keep them
as two. This is because experience has shown that it is far easier to condense two
requirements at a later time than it is to split a single requirement in two.

Now that a number of requirements have been identified, what about the stake-
holders? The list of stakeholders has already been identified in a previous section
and can thus be reused here. First of all, consider the business context and apply
the rules of thumb discussed previously. The resulting business context is shown in
Figure 7.13.

Customer Supplier

Business context

promote supplier
organisation

provide value

Figure 7.13 Business context for the training courses example

Figure 7.13 shows the business context for organising training courses. Note
that the actors here are high-level stakeholders and that the use cases are business
requirements. This model should be traceable directly back to the organisation’s
business requirements model. It could be argued that both use cases relate directly
to both the ‘provide value’ and ‘promote excellence’ business requirements. Note
also that the actors in this model are high-level stakeholders from the stakeholder
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model that was defined in Figure 7.8, which maintains the rule concerning high-level
stakeholders and business contexts.

The next step is to create the system context, which should, hopefully, make use
of the remaining requirements (both functional and nonfunctional) and the remaining
stakeholders (user-level stakeholders). The resulting system context is shown in
Figure 7.14.

System context

Attendee

Organiser

Sponsor

Tutor

Demonstrator

teach new skills

improve quality

deliver course

organise course

ensure quality

Figure 7.14 System context for the training courses example

Figure 7.14 shows the system context for the training courses project. This should
be concerned with the nuts and bolts activities of actually running the course, rather
than the high-level business requirements that appear on the business context.

The actors included on this model are actually the same as the stakeholders that
were identified back in Figure 7.1. By using the use case diagrams in conjunction
with the original stakeholder model (realised by the class diagram) it is possible to
build up some consistency between the models, even at this early point in analysing
the project. One of the problems with using use case diagrams very early in the project
is that there is very little to relate them to. By relating the use cases to an associated
class diagram, all diagrams become more consistent and the connection to reality
gets stronger. Relationships between actors and use cases have been omitted from
this model as they are discussed in more detail in due course.

So far, it has been possible to generate both the business context and the system
context for a new project. The system context for the project is also traceable to the
business context for the project. Note that both of these contexts are related back to
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the business requirements of the organisation, which is very important when it comes
to establishing a business case for the new project.

7.4.3 Summary

The work covered so far in this chapter may be summarised in Figure 7.15 UML
diagram.

Stakeholder

User

System

1..*

us
es

Context

1..*

defines boundary for

1..*

relate to

1..*

relate to

Business context System context

Figure 7.15 Relationship between context and system

In summary, Figure 7.15 can be shown to state that one or more ‘Stakeholder’
relate to a ‘Business context’ and one or more ‘User’ relate to a ‘System context’.
The ‘Context’ (of which there are two types) defines the boundaries of the ‘System’
and one or more ‘Stakeholder’ are identified for the ‘System’.

7.5 Requirements modelling

7.5.1 Introduction

Section 7.4 was concerned with modelling the business and system contexts of the
system. These contexts actually represent requirements but at a very high level. For
any project, the next step would be to look at these requirements in more detail and see
if they can be broken down, or decomposed, into more detailed requirements. It should
be pointed out that there is nothing to say that use case diagrams have to be used for
requirements modelling. Indeed, in the days before UML when people used other
techniques, such as Rumbaugh’s object modelling technique (OMT), class diagrams
were used to model requirements. As with all aspects of the UML, you should use
whatever diagrams you feel most comfortable with. It just so happens that use case
diagrams were created specifically to model requirements and, therefore, tend to
be the preferred technique. In addition, this is the approach that was advocated by the
old Objectory process that has since evolved into the Rational Unified Process (RUP).
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7.5.2 Modelling requirements

The starting point for modelling the requirements of a system is to take the system
context and use the high-level requirements contained therein. This gives an indication
of what the overall functionality of the system should be. The most natural thing to
do is to take each requirement and to decompose it, or break it down into smaller or
lower-level requirements.

System context

Attendee

Organiser

Sponsor

Tutor

Demonstrator

deliver course

organise course

ensure quality

teach new skills

improve quality

Figure 7.16 The system context with initial relationships

Figure 7.16 shows the systems context as generated in the previous section, except
that the relationships have now been added in. Types of relationship are discussed
in some detail later in this chapter and this model is revisited as part of the further
discussions.

The first point discussed, however, is that of decomposing high-level requirements
into lower-level requirements.

The use case that will be taken and used for this example is that of ‘organise
course’. When thinking about how to decompose this requirement, it is very tempt-
ing to overdecompose. This can lead to all sorts of problems as it is quite easy to
accidentally go too far and to end up taking a dataflow diagram approach where the
system is decomposed to such a level as to solve the problem, rather than state the
requirements. This is compounded even further as use cases actually look a little like
processes from dataflow diagrams. Indeed, dataflow diagrams are also used to define
the context of a system, as are use case diagrams!
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It is important, therefore, to know when to stop decomposing use cases. In order
to understand when to stop, it is worth revisiting the definition of a use case, which
states that a use case must have an observable effect on an actor. Therefore, consider
each use case and then ask whether it actually has an effect on an associated actor.
If it does not, it is probably not appropriate as a use case.

Another good way to assess whether the use case is at an appropriate level of
functionality is to assess whether or not scenarios may apply directly to the use case.
Remember again that a scenario is an instance of a use case and thus look to see if any
scenarios are directly applicable to that use case. If no clear scenarios are apparent,
it may be that the use case is too high level and needs to be decomposed somewhat.
If there is only one scenario per use case, perhaps each one is too specific and the
use case needs to be more generic. Scenarios will be discussed in more detail in due
course.

organise course

set up

support

publicise

Figure 7.17 Simple decomposition of an ‘organise course’ requirement

Taking the example one step further, Figure 7.17 shows how the ‘organise course’
use case can be decomposed into lower-level use cases.

The model here is derived from the model in Figure 7.16, by selecting a single
use case and decomposing its functionality. It can be seen now that the ‘organise
course’ use case has been decomposed into three use cases: ‘set up’, ‘support’ and
‘publicise’.

When this model is considered, imagine that one of the team also comes up
with a few new use cases that are also applicable to the decomposed model, but
that have slightly different relationships compared with the ‘decomposed into’ style
relationship that is shown in this model. The three new use cases are ‘cancel course’,
‘organise in-house course’ and ‘organise external course’, as shown in Figure 7.18,
with their relationships to other use cases indicated by simple associations.

Figure 7.18 shows the updated use case model that has been populated with some
new requirements. The new use cases are:

• ‘organise in-house course’ and ‘organise external course’. These represent two
different ways in which the course may be organised as sometimes the clients will
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organise course

set up

publicise

support

cancel course

organise in-house 
course

organise external 
course

Figure 7.18 A more populated use case model

come to the organisation, while on other occasions the organisation will go to the
client. Although the courses will still be set up in similar ways, it is important to
distinguish between the two types of course. These two requirements are directly
associated with the original ‘organise course’ requirement.

• ‘cancel course’. It is highly possible that the publicity will not be successful for
the course and that too few people register, thus making the course economically
unviable for the organisation. In such an event, the course must be cancelled. This
new requirement is related directly to the ‘publicise course’ use case.

Therefore, when added to the basic decomposition-style relationship, there are two
more ways in which a relationship may be defined. Clearly, these are different types
of relationships and there is no way to differentiate between them, as seen in this
model. This is all clearly leading somewhere and there just happen to be three types
of relationship that are defined as part of the regular UML (although two of these are
in-built stereotypes). These types of relationship are shown in Figure 7.19.

Figure 7.19 illustrates the three basic types of relationship that may be used to
add more detail to use case diagrams, which are part of the standard UML.

The ‘«includes»’ association is used when a piece of functionality may be split
from the main use case, for example, to be used by another use case. A simple way
to think about this is to think of it as an aggregation-style association. This is used to
try to spot common functionality within a use case. It is highly possible that one or
more of the decomposed use cases may be used by another part of the system. The
direction of the arrow should make sense when the model is read aloud. This part of
the model is read as ‘organise course’ and includes ‘set up’.
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«includes»

«extends»

organise course organise in-house
course

organise course set up

publicise cancel course

Figure 7.19 Types of relationship

The ‘«extends»’ association is used when the functionality of the base use case is
being extended in some way. This means that sometimes the functionality of a use case
may change, depending on what happens when the system is running. An example
of this is when the ‘cancel course’ use case is implemented. Most of the time, or at
least so the organisation hopes, this use case is not required. However, there may be
an eventuality when it is required. This is represented by the ‘«extends»’ stereotype,
but it is important to get the direction of the relationship correct, as it is different from
the ‘«includes»’ direction. Always remember to read the diagram and the direction
of the relationship makes perfect sense. In addition, note that both ‘«includes»’ and
‘«extends»’ are types of dependency rather than a standard association.

The final type of relationship is the generalisation relationship that is exactly the
same as when used for class diagrams. In the example shown here, there are two
types of ‘organise course’, which have been defined as ‘organise in-house course’
and ‘organise external course’.

These new constructs may now be applied to the requirements diagram to add
more value to the model, as shown in Figure 7.20.

Figure 7.20 shows that the main use case ‘organise course’ has two types:
‘organise in-house course’ and ‘organise external course’. The ‘organise course’
use case includes three lower-level use cases: ‘set up’, ‘publicise’ and ‘support’. The
‘publicise’ use case may be extended by the ‘cancel course’ use case.

There is nothing to stop new types of relationship being defined – indeed, there
are mechanisms within the UML that allow for this and these are discussed in greater
detail in Chapter 10. However, let us consider a simple relationship that may be useful
for requirements modelling and see how it may be applied to the example model.

It was stated previously that it is very important to distinguish between the different
types of requirement that exist, whether they be ‘Functional’, ‘Nonfunctional’ or
‘Business’ requirements. However, it is unclear which of the requirements are which
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Figure 7.20 Complete use case model for ‘organise course’ use case

in some respects. We already know that anything on a business context will exclude
the type ‘Functional’ and that any requirement in a system context will exclude
‘Business’ requirements, but what about ‘Nonfunctional’ requirements that may exist
in both contexts? In order to help to understand this, the original definition of what
exactly a ‘Nonfunctional’ requirement is must be revisited. The original definition,
according to Figure 7.3, was that ‘Nonfunctional’ requirements constrain ‘Functional’
requirements. This will form the basis for the new type of relationship between use
cases. In order to define a new UML element, the concept of a stereotype is introduced.
The use of stereotypes is explained in detail in Chapter 8, but for the purposes of this
example it is enough to assume that it is possible to define a new type of UML element
and then, whenever it is encountered, an assumption is made about its semantic
meaning. This assumed meaning is conveyed using an ‘assumption model’ as shown
in Figure 7.21.

Dependency

«stereotype»
extends

«stereotype»
includes

«stereotype»
constrains

Figure 7.21 Defining new stereotypes for use case relationships

Figure 7.21 shows not only the existing stereotypes of relationships, but a new
one called ‘constrains’. Whenever the term ‘«constrains»’ is encountered in a model,
it is assumed that we are using a new type of UML element whose definition must be
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«constra
ins»

«constrains»

deliver course

improve quality

ensure quality

Figure 7.22 Making ‘Nonfunctional’ requirements explicit using the ‘constrains’
stereotype

explicitly recorded somewhere, ideally with the assumption model. This new type of
relationship stereotypes the ‘dependency’ element from the UML meta-model and is
shown in Figure 7.22.

Figure 7.22 shows how the new UML element has been used to show that ‘improve
quality’ and ‘ensure quality’ constrain the requirement ‘deliver course’. Based on the
previous definitions in this chapter, it is now quite clear that both ‘improve quality’
and ‘ensure quality’ are ‘Nonfunctional’ requirements.

7.5.3 Describing use cases

7.5.3.1 Overview

One possible next step is to describe what happens within each use case. This may
be done in one of two ways: either by writing a text description or by modelling the
use case visually.

A text description is exactly what it says it is. The text description should take
the form of structured English text, much like pseudocode descriptions from the
software world. These descriptions should describe the typical sequence of events
for the use case, including any extension points that may lead to unusual behaviour
(relating to the ‘«extends»’ relationships). The text should be kept as simple as pos-
sible with each describing a single aspect of functionality. Many textbooks advocate
the use of text descriptions, which is fine, but it may be argued that this is going
slightly against the UML ethos, which is all about visualisation. For people who pre-
fer visualisation, there are, of course, UML diagrams that allow the internal behaviour
of a use case to be described.

The two diagrams that are used to describe what occurs inside a use case are the
statechart diagram and the activity diagram, each of which shows a slightly different
view of the internal workings of a use case. This, however, can lead to a certain
amount of confusion when it comes to scenarios (described in more detail later in
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this chapter), as scenarios show an instance of a use case and they are modelled using
either, or both, of the interaction diagrams (collaboration or sequence).

7.5.3.2 Confusion with visual use case descriptions

In order to illustrate the confusion that can arise from describing use cases visually,
consider the following meta-model description of the relationships between types of
diagram.
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Figure 7.23 Meta-model showing relationships between use cases and types of
diagram

It has already been stated that a scenario is an instance of a use case, and that
an interaction diagram describes a scenario. Therefore, the relationship shown at the
top of Figure 7.23 holds true, where one or more ‘interaction diagram’ describes an
instance of a use case. In addition, remember that interaction diagrams are said to be
used to show how societies of objects interact at a high level of abstraction, which
is shown on the model as an ‘Interaction diagram’ showing interactions between one
or more ‘Object’.

Now, consider the relationship between statecharts and use cases. From the
model, a ‘Statechart’ shows the internal operation of a ‘Use case’. However,
a ‘Statechart’ also describes the behaviour of one or more ‘Object’. Bear in mind the
previous point about interaction diagrams describing the interactions between objects,
that describe an instance of a use case, which may be described by a statechart, and
try not to get a headache!

The solution to this circular definition is to conceptualise the slightly different
views that the different diagrams represent.

• The interaction diagram describes a scenario that focuses on the interactions
between objects by defining the messages that are passed between them. The
key to scenarios is to show interactions between the system and anything that
interacts with it. In UML terms, this will equate to the system as defined by the
system boundary and its external actors.

• The statechart describes what goes on inside a use case and, hence, within the
system itself.
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• Activity diagrams, in one sense, can be used to describe the order of execution of
activities, regardless of which object they live in.

What this leads to is the fact that a single use case can be described by a statechart
to show its internal operation or by an activity diagram to show how its activi-
ties are executed alongside activities from other objects. An example of a use case
(an instance) is known as a scenario, which is modelled using an interaction diagram
that describes the messages passed between the system and its actors.

Maybe this is why most sources of reference for the UML advocate the use of
text descriptions for use cases!

7.5.3.3 Text descriptions of use cases

The first approach to describe the internal operation of a use case is to write a simple
text description of the sequence of steps that must be carried out in order for the
use case to function. The example in Figure 7.24 shows a simple text description for
the use case ‘publicise’.

5.3.3.1  Publicise:

Receive suggested dates for course
Send out fliers for the course
Wait for a predetermined length of time
When time is up, assess the response
If the response is sufficient, send details to attendees
If response is insufficient, cancel the course

Figure 7.24 Use case description using text description

It should be quite obvious to anyone looking at this description how the use
case is intended to function. The advantage to using text descriptions is that they
are very simple and, when written with care, are easy to understand. On the down
side, however, a slightly more complex use case may be very difficult to represent
in text terms. In addition, the formal tie in to the rest of the UML model is almost
nonexistent, whereas a visual approach would have stronger ties.

The next way to describe a use case is to model it using a statechart.

7.5.3.4 Statechart description of a use case

The second approach to describe the internal operation of a use case is to model
visually using a statechart or activity diagram. The model in Figure 7.25 shows
a statechart representation of the ‘publicise’ use case that is equivalent to the text
description defined in Figure 7.24.

Figure 7.25 shows a visual description for the ‘publicise’ use case. One thing that
is much clearer using the visual approach is that loops and iterations are far easier
to spot. These can often be obscured, lost or misconstrued using an informal text
description, but are immediately apparent when they can actually be seen. From a
UML point of view, note that ‘receive date suggestions’ is an action whereas ‘send
fliers’ is an activity. The keyword ‘entry’ applies to an action that takes zero time and
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Figure 7.25 Use case description using a state machine diagram

is noninterruptible and so is correct for receiving a date. The keyword ‘do’, however,
applies to an activity that indicates that the ‘send fliers’ will take time and may be
interrupted.

7.5.3.5 The better approach

The immediate question that most people ask at this point is ‘which is the better
of the two approaches?’ This can be answered with the standard UML response of
‘whichever is the more suitable for the application at hand’.

Text descriptions are often preferred as they are easier to create and, it may be
argued, can be very simple for anyone to understand. They also have the advantage
of being in a text form which will fit directly into a user requirements document,
for example. However, anything written in plain English is more prone to error and
misinterpretation, simply because any spoken language is so expressive and almost
all words have more than one meaning.

A visual description of a use case may be preferred for someone wanting a more
formal approach to describing use cases. In addition, it is easier to reference one model
to another model than it is to relate a text description to another part of the model.

Some people may not even want to describe the use cases in any way, as perhaps
they do not have enough information about the requirements. One way to derive more
information about requirements is to consider a scenario that interacts with the outside
world, from a single aspect of functionality. Defining scenarios will be covered in
more detail in Section 7.6.
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7.6 Modelling scenarios

Once a set of user requirements has been generated and they have been organised
and analysed using use case diagrams, it is possible to go one step further and look at
‘scenarios’. A scenario shows a particular aspect of a system’s operational
functionality with a specific goal in mind. The definition of a scenario from the
UML point of view is that it is an instance of a use case. This then gives good, strong
traceability back to the original requirements since scenarios are often generated as
part of the analysis during the specification phase. This is not always the case as it
will depend upon the process that is being followed – indeed, it is not unheard of to
have a set of scenarios defined during the requirements phase. However, as we are
following the process defined in Chapter 6, it is assumed that we have now satis-
fied all the criteria to exit the requirements phase and have moved into the system
specification phase.

Scenarios have many uses, can be a crucial part of the analysis of the user
requirements and will help to identify the intended functionality of the system. This
has a number of practical uses:

• It is important to identify how the user will use, and interact with, the system. Bear
in mind that the actual design will take its starting point as the system specification,
and thus it is important to understand how the system will be used.

• Scenarios are a good source for system and acceptance tests for a system.
A scenario represents a particular aspect of a system’s functionality and models the
interaction between the system and the outside world, thus they are an excellent
source for defining acceptance tests.

When scenarios have been created as part of the analysis or specification phase, they
will form the basis for the actual system design. Therefore, as they are traceable back
to individual use cases and forward to the design, they enable a traceability path to
be set up from the design right back to the requirements.

7.6.1 Scenarios in the UML

A scenario models how the system interacts with the outside world. The outside
world, in the case of our system, is actually a subset of the stakeholders that have
already been defined during the requirements phase and exist both on the stakeholder
model as classes and also on the business and system contexts as actors. Potential
paths for communication between a stakeholder and a user requirement are clearly
indicated on the UML diagrams as associations that cross the system boundary.

The diagram that is used in the UML to realise scenarios is the interaction diagram,
of which there are two types: collaboration and sequence. Collaboration diagrams
show the interaction between objects in a system from an organisational point of
view, while sequence diagrams show the interactions between objects from a logical
timing point of view.

When considering scenarios, we think about actual objects in the system, rather
than classes, as we are looking at a real example of operation. This gives a strong link
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to class diagrams as all objects must have an associated class. This is one approach
to identifying classes for the analysis and design of the system.

7.6.2 Example scenarios

The first step when defining scenarios is to choose a use case from the original
requirements model, which, for the purposes of this example, is shown in Figure 7.20.
The use case that will be chosen for the initial example is ‘publicise’, which describes
a requirement for the system to help the organiser publicise a training course. This
is the same use case that was described previously using both a statechart and a text
description.

With the use case described, it is now time to look at some possible scenarios from
that use case. Two spring immediately to mind: one where publicity is successful and
the course goes ahead and one where the publicity is unsuccessful and the course does
not go ahead. Each is modelled using two types of interaction diagrams, which also
helps to highlight the differences between the two types of diagram.

 : Organiser  : System  : Attendee

suggest()

call for participation()

respond()

respond()

respond()

timeup [sufficient]()

send details()

Figure 7.26 Scenario #1 – successful publicity, sequence diagram

Figure 7.26 shows a sequence diagram that represents a scenario where the
publicity is successful.

The first thing to notice about the model is that the main components are
instances that are real-life instances of classes. Sometimes, these instances may be
shown using the actor symbol if they represent stakeholders from the system context.
It is usual to show the system as a single instance that will allow us to identify the
interactions that must occur with the outside world in order for the system to meet its
original requirements.

Remember that the dotted line, shows logical time going down the page. There-
fore, as time goes on, we would expect certain interactions to occur. These have
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already been defined to a certain extent since the use case has already been described
using a statechart.

The first thing to happen is that the ‘Organiser’ suggests some details to
the ‘System’. These details may include the suggested time, date and location.
The ‘System’ then sends out a call for participation to a number of ‘Attendee’.
In this scenario, a number of attendees respond to the call for participation by sending
messages back to the ‘System’. Eventually, the time allowed for people to respond
expires and the system has to make a decision about whether to progress with the
course or not. In this scenario, there is sufficient demand for the course and thus the
system sends out details of the course to the attendees who have applied to attend
the course. That is the end of that particular scenario.

The diagram used here was the sequence diagram (a type of interaction diagram)
but there is no reason why the same information could not be shown using a
collaboration diagram. To this end, Figure 7.27 shows exactly the same scenario,
but modelled using a communication diagram rather than the sequence diagram.

 : Organiser

1: suggest()

6: timeup [sufficient]()

2: call for participation()

7: send details()

3, 4, 5 respond()

 : System

 : Attendee

Figure 7.27 Scenario #1 – successful publicity, communication diagram

The same scenario is now modelled using the other type of interaction diagram:
the communication diagram.

The sequence of events and the messages that are passed between two instances
can still be seen, but on the communication diagram the emphasis is on the organisa-
tion of the instances, rather than the sequence. The actual order of events is indicated
by sequence numbers that are represented by simple integers. It is possible to nest
numbers by showing integers separated by points – for example, 1.1, 2.3.2 etc. It is
quite clear to see that these numbers will become complicated and difficult to follow
before too long.

Now consider a different scenario, one where the publicity is unsuccessful due to
an insufficient number of responses. Although not frequent, this is certainly a scenario
that must be taken into account when thinking about the system.

Figure 7.28 shows the second scenario. Note how the sequence of messages begins
in exactly the same way as before, right up to the point when the call for participation is



Modelling requirements 239

 : System  : Attendee

suggest()

call for participation()

respond()

timeup [insufficient]()

cancel()

 : Organiser

Figure 7.28 Scenario #2 – unsuccessful publicity, sequence diagram

broadcast. The differences occur because there are not many responses this time – in
fact, there is only a single response in this scenario. The same ‘timeup’ event occurs,
but in this scenario the condition has changed. Rather than there being a ‘sufficient’
number of responses, there is an ‘insufficient’ number. The consequence of this is that
the course must be cancelled, hence the ‘cancel’ message is sent out to any ‘Attendee’
who may have responded to the original call for participation.

 : Organiser

 : System

 : Attendee

1: suggest()

2: call for participation()

3: respond()

4: timeup [insufficient]()

5: cancel()

Figure 7.29 Scenario #2 – unsuccessful publicity, communication diagram

The second scenario is shown again in Figure 7.29, but with a communication
diagram rather than a sequence diagram. As with the sequence diagrams for both sce-
narios, there are similar patterns between the two communication diagrams. Spotting
these patterns can be quite beneficial to the design process as they help to identify
common areas of functionality of the system.

The scenarios considered so far have been deliberately simple. It is often a good
idea to start off with simple scenarios that are well defined before complex scenarios
are considered.
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 : Organiser  : System  : Supplier  : Attendee

set up()

set details()

provide notes()

print notes()

define resources()

confirm()

confirm arrangements()

greet()

greet()

deliver course()

provide invoice()

pay invoice()

Figure 7.30 A more complex scenario

Figure 7.30 shows a new scenario that exhibits far more complexity than
the previous two scenarios. This scenario relates to the ‘set up’ use case and describes
the normal sequence of operations. Note that this sequence diagram contains a
message that is passed from, and then back to, a single instance. Although these
are not strictly necessary, they sometimes help the person reading the model to under-
stand more about what is going on. The message in question here is the ‘print notes’
message. Although this message does not describe an interaction between objects,
it was deemed as being useful to include it to make explicit the fact that there is part
of the scenario where printing takes place.

7.6.3 Communication versus sequence diagrams

The two types of interaction diagram have been discussed and example scenarios
shown. The question that is asked most frequently at this point is ‘what is the point of
having two diagrams that show the same information?’. This is a legitimate question
and one that requires some discussion in order to fully appreciate the subtle difference
between the two types of diagrams.

Scenarios that are realised by communication diagrams are more generalised than
sequence diagrams, particularly when there are many iterative interactions. These
may be shown as a single interaction on a communication diagram, but may be
many interactions on an equivalent sequence diagram. Iteration may be indicated on
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a collaboration by using an ‘*’ symbol before the sequence number, but the paths are
not shown explicitly.

The structure of the communication diagram stresses the organisation of the
instances, rather than their relative timing relationships.

Scenarios that are realised by sequence diagrams are more specific and less
generalised than in communication diagrams. Iterations are shown very clearly on
sequence diagrams and may show return paths and more types of message. The
emphasis in sequence diagrams is on the logical timing rather than the organisational
structure of the system. By logical timing, we mean the order in which things happen,
rather than in real time.

7.6.4 Wrapping up scenarios

In summary, therefore:

• Scenarios are defined as instances of use cases and, as use cases represent user
requirements, the scenarios relate directly back to the original requirements for
the system.

• Scenarios are realised by interaction diagrams, of which there are two types
used here: communication and sequence. Communication diagrams stress the
organisation of the instances in a system and their interactions, while sequence
diagrams stress the logical timing relationships between instances.

• Several scenarios may be modelled for each use case. In fact, enough scenarios
would be modelled in order to show a good representation of the overall system
operation.

One question that is often asked about scenarios is ‘how many should be produced?’.
Like most of the questions that people tend to ask most often, there is a simple
answer, but it is one that most people do not seem too happy with. The simple answer
is ‘just enough’, which is very difficult to quantify. It is important to consider enough
scenarios so that you have covered all typical operations of the system and several
atypical operations. A good analogy here is to think about testing a system. It is
impossible to fully test any complex system, but this does not mean that there is no
point in testing it. In fact, it is important to test the system to establish a level of
confidence on the final system. Indeed, this analogy is appropriate in another way,
as scenarios form a very good basis for acceptance and system testing for just this
reason.

7.7 Documenting requirements

7.7.1 Overview

This section looks at the practical issue of documenting requirements. The way
in which requirements are documented will depend upon the process that is being
adopted by the organisation.
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Some processes do not rely on documentation as such – for example, the RUP.
In the RUP, each of the models that are created and in many cases some of the com-
ponents that make up the models, are stored as artefacts. These artefacts are roughly
equivalent to the deliverables in a more traditional approach and form the core of the
project repository. In such an approach, each use case is classed as an artefact and
the models themselves are also treated as artefacts. Therefore, when it comes to doc-
umenting such use cases or models, all information is stored in the model, which can
then be automatically drawn out into a report as and when necessary. This approach
relies heavily on tools that are compatible with the approach and that are intended to
make life simple, and such documentation is a matter of pressing a single key, rather
than assembling documents by hand. There are advantages and disadvantages with
such an approach, but these are beyond the scope of this book.

For the sake of consistency, the example used here will follow on from the
ISO-type process defined previously.

The actual structure of the requirements documentation used for this example is
based on a model of the user requirements specification (URS) derived from existing
standards and best practices using the approach introduced in Chapter 6. Let us
suppose that, in order to define the contents of a URS, a source of information was
looked for. In this case, the content of the URS is based on the one defined by the
European Space Agency [10]. It is modelled according to the guidelines laid out in
Chapter 6 and results in the model shown in Figure 7.31.

Figure 7.31 shows the structure for the URS, as derived from the process mod-
elling exercise discussed previously. The model shows the various sections of the
document as classes, and the various subheadings are shown as attributes on each
class. Of course, depending on how many levels of nested headings exist in the
document, there would be an associated hierarchy of classes in the document model.

1.1 Purpose
1.2 Scope
1.3 Definitions
1.4 References
1.5 Overview

1. Introduction

2.1 Introduction
2.2 General requirements
2.3 General constraints
2.4 Users
2.5 Operational environment
2.6 Assumptions & dependencies

2. General

3.1 Functional requirements
3.2 Constraint requirements

3. Specific requirements

source
priority
V&V criteria 
ownership
absolute ref

Requirement

1..*

User requirements specification

Figure 7.31 Typical contents of a user requirements document
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It can be seen that the ‘User requirements specification’ is made up of
‘1. Introduction’, ‘2. General’ and ‘3. Specific requirements’. ‘1. Introduction’ has
the subsections ‘1.1 Purpose’, ‘1.2 Scope’, ‘1.3 Definitions’, ‘1.4 References’ and
‘1.5 Overview’. ‘2. General’ has six subsections and ‘3. Specific requirements’ has
two subsections. In addition, ‘3. Specific requirements’ is made up of one or more
‘Requirement’. These requirements are described according to the model defined in
Figure 7.5, which is actually included in this model.

This document may then be populated by making use of all the models that have
been created so far, such as the contexts, stakeholder models, requirements models
and scenarios.

7.7.2 Populating the document

Each part of the document that has been identified in Figure 7.31 will now be discussed
and appropriate diagrams are suggested for each section.

7.7.2.1 Section 1 – introduction

The introductory section is mainly concerned with setting the scene for the project
and perhaps justifying why it is being carried out:

• The business context and parts of the system context may be used to illustrate the
first two subsections of ‘1.1 Purpose’ and ‘1.2 Scope’.

• Definitions in ‘1.3 Definition’ may be defined according to the terms used as
UML elements.

• The information in ‘1.4 References’ must be generated manually.
• Finally, ‘1.5 Overview’ may again make use of the parts of the business context

and system context information.

As can be seen, most of the information for the first part of the document can be
derived directly from the UML models created so far.

7.7.2.2 Section 2 – general

The second section of the document may be populated as follows:

• Section ‘2.2 General requirements’ and section ‘2.3 General constraints’ may be
obtained from high-level use cases. This will include the use case models for the
high-level requirements and the business context use case model. This is because,
as stated previously, many user requirements and constraints will be derived from
business requirements.

• Section ‘2.4 Users’ may be defined directly from the user models and stakeholder
models, which were represented previously using class diagrams.

• Section ‘2.5 Operational environment’ may be described by the information in
the system context model, which was realised by using a use case diagram.

Again, the UML diagrams can be used to populate most of this section of the
document.
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7.7.2.3 Section 3 – requirements

The third section of the document may be populated as follows:

• Section ‘3.1 Functional requirements’ and section ‘3.2 Constraint requirements’
will form the bulk of the document. This information may be extracted from low-
level requirement use case diagrams, requirements descriptions that were realised
using text descriptions and statecharts, and, finally, scenarios. Scenarios were
realised by interaction diagrams: sequence diagrams and collaboration diagrams.

The third section can be populated almost entirely using the UML models. This is not
surprising, as the idea behind this chapter is to model requirements and this section
is concerned purely with requirements.

7.7.3 Finishing the document

In order to finish off the document, the following points should be borne in mind:

• Include the actual models, where appropriate, in the document itself. This is not
always possible but can prove to be very useful. As an interesting aside, non-UML
experts will be able to understand most simple UML models with a minimum of
explanation, providing that the readers do not realise that they are UML diagrams.
This may sound strange, but many people will mentally ‘switch off’ if they think
that the diagrams are in a language that they do not understand and will make no
attempt to understand them.

• Add text to help the reader understand the diagrams. By basing the text directly
on the diagrams, there is less room for ambiguity through misinterpretation and
it also ensures that the terms used in the document and the models are consistent.
It is important to remember that the knowledge concerning the project exists in
the models, rather than the documents. Think of the documents as a window into
the model, not the other way around. Always remember to change the model first,
rather than the document, to retain consistent project knowledge.

• Structure the actual requirement descriptions according to the structure of the
requirements shown in the original requirement model, showing attributes
associated with each requirement. Again, this leaves less room for ambiguity
and, if the modelling has been performed well, should be a good way to structure
things anyway.

• The document will then drive the rest of the project and be a formal view of the
models. Any changes that are to be made to the system should be made in the
model and then reflected into the user requirements document.

Above all, remember to make as much use as possible of the UML models. Every
model will have been created for a reason, so bear them all in mind when writing
the document. Modelling should be an essential, useful and time-saving part of the
project, not just an academic exercise to produce nice pictures.
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7.8 Summary and conclusions

In summary, therefore, this chapter has introduced and discussed the points covered
by the following model.

Figure 7.32 shows the following points:

• Each ‘Project’ is made up of a number of one or more ‘Phase’. One type of ‘Phase’
is ‘User requirements’. No other phases were shown at this point as it was beyond
the scope of the chapter.

• One or more ‘Requirement’ is generated during the ‘User requirements’ phase
and each ‘Requirement’ must be one of three types: ‘Business’, ‘Functional’ or
‘Nonfunctional’.

• One or more ‘Business’ requirement drives one or more ‘Functional’ requirement
and one or more ‘Nonfunctional’ requirement constrains one or more ‘Functional’
requirement.

• One or more ‘Stakeholder’ is identified during the ‘User requirements’ phase
and each owns one or more ‘Requirement’. There were two main types of
‘Stakeholder’ identified: the ‘Customer’ and the ‘Supplier’.

• There are two types of ‘Context’: the ‘Business context’ and the ‘System context’.
These types of ‘Context’ define the boundaries for the ‘System’, which is delivered
by the ‘Project’.

This basically summarises the concepts of requirements modelling, but this chapter
relates all these concepts to UML modelling, which may be summarised by the
following model.

The relationships between requirements engineering concepts and UML elements
are summarised in Figure 7.33. From the model, it can be seen that:

• Class diagrams are used to create a stakeholder model, which is useful when
trying to identify stakeholders, which is an essential part of the user requirements
phase.

• Each stakeholder, once identified, could be represented as a UML actor on a use
case diagram. This becomes particularly important when it comes to modelling
the business and system contexts for a particular project.

• The context for the project, whether it is the system context or business context, is
indicated by using a UML system boundary element. This element is underused
by most modellers and there is a general lack of support for system boundaries
on current CASE tools.

• Use cases are used to represent the three different types of requirement. Each
use case is used to represent either a single requirement or a grouping of like
requirements, which could then be decomposed into further requirements.

• Interaction diagrams are used to model specific scenarios, in order to understand
the operation of the system. Each scenario is an instance of a use case that gives
a good, strong traceability path back to the original requirements model.

• Use cases and thus requirements could be further described using either a text
description or a statechart or activity diagram. It is important that these are
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Context

Requirement

Stakeholder

Use case

1..*

helps to identify

1..*

describes an instance of

1..*

describes

Concepts UML elements

represents

represents

represents

Interaction diagram

Statechart

Activity diagram

Actor

System boundary

Class diagram

Figure 7.33 Summary of relationships between concepts and UML elements

differentiated from interaction diagrams that show scenarios, or instances, of
a use case.

The best way to learn these concepts in more detail, like all aspects of the UML, is to
take an example and model it for yourself. Section 7.9 gives some ideas about how
these ideas may be taken further.

7.9 Further discussion

1. Consider a project that you are familiar with and try to identify a stakeholder
model, using a class diagram. Does the generic model shown in Figure 7.7 work
for your example, or does it need to be changed considerably? In either case,
why is this? Which context will each stakeholder appear in: the system context,
the business context, or both?

2. Take another look at the model shown in Figure 7.16 and select a different require-
ment. Try to decompose this requirement into lower-level requirements so that it
still makes sense. Also, bear in mind that whatever requirements are generated
must be kept in line with the original business requirements that were shown in
Figure 7.4.

3. Look at the requirements shown in Figure 7.20 and select a different use case
from the one chosen for the example. This time, try to create some scenarios
that would represent typical system operation. Use both the sequence diagrams
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and collaboration diagrams and compare and contrast them. Can you think of a
situation where the collaboration diagram would be more useful than the sequence
diagram and vice versa?

4. Choose any requirement that has been discussed in this chapter (whether
functional, nonfunctional or business requirement) and document it as if it were
part of a user requirements specification. Which part of the document would it
be most applicable to?

5. Model the business requirements for another organisation (maybe your own) and
see if they make sense to someone else. Choose a few existing projects or other
pieces of work and see if they fit in with your business requirements model. Is the
organisation’s mission statement included as part of this model? Is it possible to
demonstrate to a third party that the organisation is meeting its mission statement,
or not?

6. Consider the system context shown in Figure 7.16. How would this be differ-
ent if it were the system context from the customer’s point of view, rather than
the supplier’s? Are there any new requirements that need to be added, or any
existing ones that need to go? Are the stakeholders the same for both contexts
and, if not, then why not? Does the new system context still meet the busi-
ness requirements in the business context? Does it need to meet these business
requirements?

7. Take one of the business requirements shown in the business context in Figure 7.4
and try to think of the type of project that may be associated with some of the
other business requirements. Can you come up with a quick system context for
such a model? Which stakeholders, if any, are relevant to the new system context
and the business context? Are there any new stakeholders to be identified?

8. Complete the model in Figure 7.14 using the three basic and one stereotyped
relationship introduced in this chapter.
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Chapter 8

Life cycle management

life is what happens to you whilst you’re busy making other plans

John Lennon

8.1 Life cycles and life cycle models

Life cycles and life cycle models are very widely misunderstood concepts. Despite the
fact that they are fundamental to almost every project, life cycles and life cycle models
are often confused and the terms used (incorrectly) interchangeably. There is also a
great deal of misunderstanding about how processes relate to both of these concepts
and, once more, people often use the term ‘process’ interchangeably with both life
cycle and life cycle model [7].

A life cycle describes the evolution of a system from conception to its ultimate
demise. The most obvious analogy to this is a human life where the life cycle starts
at the actual conception, rather than birth, and continues on until death.

A life cycle is made up of a number of phases, each of which will implement one
or more processes. It follows, therefore, that in order to define a life cycle, its phases
must be defined. In order to define a phase, its associated process, or processes, must
also be defined. Bearing in mind that a set of processes has been defined in Chapter 6,
it is possible to define a life cycle using these processes.

A life cycle model describes the configuration of a life cycle for a particular
project, or to put it another way, a life cycle model defines the order in which the
processes are carried out and is defined on a project by project basis. In UML terms,
a life cycle states ‘what’ (a structural view), while the life cycle model states ‘how’.

Figure 8.1 shows these definitions using the UML. From the model, the ‘Life
cycle’ is made up of one or more ‘Phase’, each of which implements one or more
‘Process’. Each ‘Process’, as before, is made up of one or more ‘Practice’.

The ‘Life cycle model’ shows the implementation of the ‘Life cycle’ and the
configuration of one or more ‘Phase’. This is consistent with the process definitions
that were stated previously.
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1..*

1..*

1..*
implements  

1..*
shows implementation of

1..*
shows configuration of

Life cycle

Phase

Practice

Process

Life cycle model

Figure 8.1 Definition of life cycle

Figure 8.2 shows a ‘Life cycle’ that is made up of one or more ‘Phase’. The types of
‘Phase’ have been defined as ‘User requirements’, ‘System specification’, ‘Planning’,
‘Design’, ‘Integration’, ‘Implementation’, ‘Installation’ and ‘Maintenance’.

User requirements

DesignSystem specification

Planning Implementation

Integration

Installation

Maintenance

8

Life cycle

Phase

Figure 8.2 A typical life cycle

There is no single life cycle that will apply to all projects, as it will depend on
the nature of the project and its application. Phases should be chosen depending
on the type of project and the processes that are available to be implemented in each
phase. For example, a project that is concerned with specifying a bespoke system may
include a user requirements phase, a system specification phase and an installation
phase only. Another example, however, would be a project to be developed in-house
that would include all the phases shown in Figure 8.2.

The phases have been named, in this case, according to the processes that they
implement. This can lead to some confusion as people often assume that ‘phase’ and
‘process’ are the same thing, which is not always the case. Consider, for example,
the RUP, where each phase is made up of a number of iterations, each of which may
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implement between one and nine core workflows. A core workflow in the RUP is
equivalent to a process in ISO terms.

Note the inclusion of the phase ‘Planning’ here. This comes from the ‘MAN’
process group from Chapter 6, which demonstrates the ‘pick ‘n’ mix’ aspect of the
life cycle construction.

As this is a structural view of the life cycle, the model shows what the life cycle
looks like, but not how it behaves. The behaviour of the life cycle is shown by its
‘Life cycle model’, which may be realised in the UML using an interaction diagram.

8.2 Different life cycle models

8.2.1 Introduction

Choosing a life cycle model is a very important step in any project and there are two
main questions that must be asked when deciding – when to choose and which model
to choose.

In terms of ‘when to choose’, this will depend on the type of project and the
process being followed on the project, whereas ‘which to choose’ will depend on
the nature of the project. Each of these points will be covered in more detail in this
chapter.

8.2.2 When to choose

In terms of when to choose the life cycle model, this is not as easy a question as it first
appears since it will depend on the type of project being undertaken. For example,
consider an organisation that develops a single product but, once or twice a year, they
release a new version of the product. The nature of the project, in this example, is
very well understood, therefore, it is possible and appropriate to make the decision
of ‘which life cycle?’ right at the beginning of each project as each project is a
new iteration of a well-understood cycle. Consider, on the other hand, a project
that is completely new to an organisation in terms of its deliverables and the type
of deliverables, then this introduces an element of doubt as to how the project will
progress. In this example, the choice of the life cycle model will be left until later in
the project.

8.2.3 Linear versus iterative models

There are two main camps in the world of life cycle models – the linear and the iterative
life cycle models. Linear life cycle models have evolved from the original ‘Waterfall’
model into a variety of shapes and sizes, whereas the iterative models represent the
latest thinking in life cycle models. Despite claims from various sources, there is
nothing really new about the iterative model, it does not represent a quantum leap in
project management theory, it is simply a natural evolution of the linear techniques
that involves a slightly higher level of thinking.

Choosing a life cycle model is relatively straightforward providing that the
processes have been well defined. Bear in mind that a life cycle model defines
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the behaviour of a life cycle which is made up of phases, each of which implements
one or more process. Therefore, the first step is to identify which processes will be
adopted for the project. These processes should then be collected into phases and then
how the phases will be executed should be determined, which is the life cycle model.

8.2.4 The linear approach

Depending on the type of project, a particular life cycle model may be selected.
Many established life cycle models exist, such as ‘Waterfall’, ‘Spiral’, ‘Incremental’
and ‘Iterative’, or it may be a bespoke model. Any book on software or systems
engineering will show these basic models and the way in which they are structured.

Whichever life cycle model is chosen, the phases defined in Figure 8.2
are executed. In real terms, this means executing or instantiating processes within
the phase.

 : Installation

 : Integration

 : Maintenance

 : User requirements

 : System specification

 : Planning

 : Design

 : Implementation

Figure 8.3 The ‘Waterfall’ model

Figure 8.3 here shows an example of a life cycle model known as the ‘Waterfall’
model. The Waterfall model allows a project to progress from one phase to the next
or back to the previous phase. This sums up the life cycle model. This is perhaps the
oldest of the established life cycle models and is one that has been used successfully
for many years on many projects. However, the Waterfall model has also been used
unsuccessfully on many projects as, like most things in real life, it has its own limi-
tations. To summarise, the Waterfall model is regarded as very useful when project
requirements are well defined, or for small projects.

Each phase is shown as an instance of a process defined previously in this chapter.
It is interesting to note that one instance of a process is ‘Planning’, which was not
defined as part of the ‘ENG’ process group, but is part of the ‘MAN’ process group
from Chapter 6.
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Any type of life cycle model whatsoever may be modelled in this way using
interaction diagrams (in this case, a communication diagram). This will dictate the
permissible navigation of phases throughout a project but will not necessarily show
actual project progress without introducing sequence numbers and making the model
far more complex. One way to show the actual progress on a project is to show the same
information, but to use the other type of interaction diagram: the sequence diagram.

start sys spec()

re-start user reqs()

start sys spec()

start design()

 : User requirements

 : System specification

 : Design

Figure 8.4 Sequence diagram view of the Waterfall model

Figure 8.4 shows a sequence diagram view of the Waterfall model. This model is
more useful from a project monitoring point of view as it shows individual iterations
of the life cycle far more clearly than the collaboration diagram model. It can be
seen here that there has been an iteration in this life cycle where the progress has
gone back from ‘System specification’ to ‘User requirements’, returning to ‘System
specification’ before going on to ‘Design’.

This linear approach reflects a common-sense approach to project development.
However, there are a number of problems associated with the implementation of such
linear approaches:

• Scalability: Linear approaches work very well for small, well-understood
projects but tend not to scale up to be workable in large projects. For example, it is
quite simple to imagine where an approach like the one shown in the previous dia-
gram would be applicable to a small project with a single team of workers involved.
However, imagine the same approach being applied to a large project involving
many teams of people. The model simply will not work for such a project.
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• Frozen phases: It is confidently assumed that once the requirements have been
drawn up they are frozen for the remainder of the project and will not change.
In real life, this is far from the truth as requirements tend to ‘creep’ or change
altogether. It is also possible for new requirements to emerge from an existing
requirements set, particularly for large projects.

• One process for each phase: In many cases, a single process will be implemented
during each phase, which leads to a great deal of confusion regarding the two terms
as well as making for a very rigid, inflexible life cycle model.

These are just a few of the problems that are often associated with linear approaches –
for more detailed discussions, see References 1 to 4.

Rather than being completely negative about linear approaches, it should be
remembered that they are good for small projects. Why then is it not possible to
break up a large project into a number of small, well-understood mini-projects and
then apply the same principles? The answer is that this is possible, and forms the
basis for the concepts behind the iterative approach to project development.

8.2.5 The iterative approach

Contrary to many opinions concerning iterative life cycle modelling, there is really
nothing new or revolutionary about it. Rather, the iterative approach is simply an
evolution of the existing linear approaches that is intended to make a simple yet
flexible approach to system development. There are some key differences between
the iterative and linear approaches:

• Fewer phases: Iterative life cycles tend to have fewer phases, each of which
represents a more generic concept with particular aims and goals, rather than
identifying which processes should be executed in it. For example, rather than
saying ‘the concept phase implements the requirements process’ it would be more
apt to say ‘the concept phase aims to produce a complete set of requirements’.

• Each phase implements a number of iterations: Leading on from the previous
point, each phase is made up of a number of iterations. A good analogy to con-
sider when trying to understand an iteration conceptually is to consider a number
of teams working on a single project, each of which may have to work in a parallel
with one another. Imagine that each team represents an iteration within the phase
and the analogy starts to work. Imagine now that each conceptual team could
actually be a single person or a number of people, and that these iterations may
be executed in sequence or parallel and a more complete picture starts to emerge.
For example, consider a project where an initial investigation of the requirements
shows that more information needs to be understood about the problem domain
and the solution domain. It could be the case where there are three iterations
here: iteration #1 would involve the initial requirements investigation and
must precede the other two. Iteration #2 and iteration #3 are both conducted
in parallel – one investigates the problem domain and the other the solution.
All iterations are working towards the common goal of producing a single coherent
set of requirements, but in a number of iterations rather than a single process.
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• Each iteration implements a number of processes: Each of these iterations may
execute any number of processes to produce mini-linear models. For instance,
taking the example used in the previous point, the first iteration (concerning
requirements) may execute a requirements process only. Iteration #1 and
iteration #2, however, may execute some analysis and design processes
respectively.

This iterative approach is advocated in a number of process models, including: the
Rational Unified Process (RUP – see References 5 and 6 for more information) and
both ISO/IEC 15288 and STUMPI which will be discussed later in this chapter.

8.2.5.1 Introduction

This section briefly discusses some other iterative models that are in widespread use
today. Both are based on standards – the Rational Unified Process, which is a software-
based industry standard and ISO/IEC 15288, which is an international systems-based
standard. Both standards use very different terminology but, as will be seen from the
models, the patterns for both are very similar.

8.2.5.2 ISO 15288

The standard ISO/IEC 15288 is entitled ‘Systems engineering – system life cycle
processes’ and was released in its final version at the end of 2002. The standard
itself has taken many other standards into account when being written, including:
ISO 15504, IEEE 1220 and EIA 632 amongst others. One of the aims of the standard
is to consolidate the existing systems-based standard into a single coherent source for
systems engineering processes.

The standard advocates an iterative approach to systems life cycle processes, and
a high-level view of this can be seen in Figure 8.5.
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Figure 8.5 High-level view of ISO 15288
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Life cycle

Stage Decision gate

6 1..*

Development RetirementUtilisation

Concept Production Support

Figure 8.6 Focus on the stages of ISO 15288

The diagram in Figure 8.5 shows that the basic unit in ISO/IEC 15288 is the ‘Life
cycle’, which is made up of a number of ‘Stage’. Each ‘Stage’ is made up of a number
of ‘Process’, each of which has a number of ‘Outcome’ and a number of ‘Activity’.
The life cycle is also described by four ‘Process group’, each of which describes a
number of ‘Process’.

It is now possible to focus on one part of this diagram, in this case the different
types of ‘Stage’ involved in a life cycle.

The diagram in Figure 8.6 shows that there are six types of ‘Stage’: ‘Concept’,
‘Development’, ‘Production’, ‘Utilisation’, ‘Support’ and ‘Retirement’. Each of
these ‘Stage’ is made up of a ‘Decision gate’ that, basically, describes the test that
must be made at the end of each stage to ascertain whether or not to proceed with
the project and, if so, how. These decision gates are described in more detail in
Figure 8.7.
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6 1..*
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Figure 8.7 Focus on the decision gates in ISO/IEC 15288
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The diagram in Figure 8.7 shows that each ‘Decision gate’ is made up of five
possible ‘Decision option’:

• ‘Execute next stage’ that represents the scenario where all the stage goals have
been met.

• ‘Continue this stage’ that represents the scenario where the stage goals are
incomplete and the stage cannot yet be exited.

• ‘Go to previous stage’ that represents a scenario where something has been
discovered that means that the previous stage must be revisited. For example,
it may be that new requirements emerge during the development stage to such
an extent that the concept stage must be revisited to adapt the requirements
model.

• ‘Hold project activity’ that represents the scenario where something has happened
that completely throws out the project schedule. For example, it may be that
a major requirement has been omitted, or maybe legislation or technology changes
in such a way as to have a large impact on the project.

• ‘Terminate project’ that represents the worst-case scenario where things have
either gone so badly or have changed so much that there is more benefit in
stopping the project than in continuing with it.

The decision gates represent the options that must be considered when transiting from
one stage to another.

The actual work practices that are executed during particular stages are repre-
sented by the basic processes in ISO/IEC 15288 that are categorised according to
four different process groups.

Process group

Enterprise Technical Project Agreement

Figure 8.8 Types of ‘Process group’ in ISO/IEC 15288

The diagram in Figure 8.8 shows that there are four types of ‘Process group’
defined in the standard, which are:

• ‘Enterprise’ that represents the set of processes applying across the whole
organisation, such as environment management, resource management and
quality issues.

• ‘Technical’ that represents the set of processes traditionally associated
with engineering activities, such as: stakeholder requirements, design,
implementation, etc.
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• ‘Project’ that represents the set of processes associated with project management
on a project by project basis and also the support services required by other
processes, such as risk management, version control, and so on.

• ‘Agreement’ that represents the set of processes representing the nature of the
agreement between the customers and suppliers involved in the project.

Each of these process groups is made up of a number of processes and, just to get
a feel for the level of information in the standard, Figure 8.9 shows the processes
defined for the ‘Enterprise’ process group.

This figure shows a detailed view of the processes that exist in the ‘Enter-
prise’ process group. Each process is represented as a class and the activities are
represented by operations on each class, whereas the outcomes are represented as
attributes.

8.2.5.3 The Rational Unified Process (RUP)

The RUP – Rational Unified Process – is a proprietary process that is owned by
the Rational Software Corporation and is often sold alongside the UML. The RUP
is the proprietary incarnation of the UP – Unified Process – that was developed by
Ivar Jacobson as a best-practice software engineering process model.

The RUP process model is intended for use with software development projects
and has an emphasis on the technical activities of the development.

The diagram in Figure 8.10 shows a high-level view of the RUP. It can be seen
from the diagram that the basic construct in the RUP is the ‘Cycle’ that is made up of
four ‘Phase’, of which there are four types: ‘Inception’, ‘Elaboration’, ‘Construction’
and ‘Transition’. Each ‘Phase’ is made up of a number of ‘Iteration’ and between one
and nine ‘Core workflow’ take place over each ‘Iteration’.

The term ‘Core workflow’ is equivalent to a process in most other process
models and, hence, it is the core workflows that form the basis of the process
model. An expansion of the types of core workflow (or process) can be seen in
Figure 8.11.

This figure shows that there are two types of ‘Core workflow’: ‘Engineering’ and
‘Support’. There are six types of ‘Engineering’ core workflow, which are: ‘Busi-
ness modelling’, ‘Requirements’, ‘Analysis & design’, ‘Implementation’, ‘Test’
and ‘Deployment’. Three types of ‘Support’ core workflow: ‘Project management’,
‘Environment’ and ‘Config & change man’.

It can be demonstrated from this diagram that the RUP is strong where technical
activities are concerned, as illustrated by the six ‘Engineering’ core workflows, but
that it is quite weak when it comes to any of the other activities, represented here
by ‘Support’. For example, compare this process structure to that of ISO 15288
in Figure 8.8 and it is clear that the three ‘Management’ core workflows from the
RUP cannot hope to have the coverage of the three types of process (each containing
a number of processes – as seen in Figure 8.9) contained within ISO 15288. However,
it should be stressed that the RUP is intended to be focused on development rather than
management, so that it can be easily integrated into existing management systems.
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Figure 8.10 High-level view of the RUP
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Figure 8.11 Types of ‘Core workflow’ in the RUP

Workflow

Artefact

Worker

1..*1..*

1..* 1..*

Workflow detail

Activity

Figure 8.12 Breakdown of a ‘Core workflow’ in the RUP

The diagram in Figure 8.12 shows the breakdown of a single core workflow from
the RUP. It can be seen that the ‘Core workflow’ is made up of a number of ‘Artefact’,
a number of ‘Worker’ and a number of ‘Workflow detail’ – each of which is made up
of a number of ‘Activity’. There is a clear mapping here between the structure of a
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core workflow from the RUP and a process from ISO/IEC 15288 – compare diagrams
Figure 8.5 and Figure 8.12.

architectural analysis()
use case analysis()

Def candidate arch

use case analysis()
id design elements()
review design()

Analyse behaviour

id design mechanisms()
id design elements()
incorporate existing designs()
descr run-time arch()
descr distribution()
review arch()

Refine arch

use case design()
class design()
subsystem design()
review design()
Capsule design()

Design real-time components

use case design()
class design()
subsystem design()
review design()

Design components

database design()
class design()
review design()

Design the database

6

Analysis and design

Workflow detail

Figure 8.13 Detailed view of an individual core workflow

The diagram in Figure 8.13 shows a detailed view of the ‘Analysis and design’
core workflow. It can be seen that the ‘Analysis and design’ core workflow is
made up of six ‘Workflow detail’, which are: ‘Def (define) candidate architecture’,
‘Analyse behaviour’, ‘Refine architecture’, ‘Design components’, ‘Design real-time
components’ and ‘Design the database’.

8.3 STUMPI – an example of life cycle management

8.3.1 Introduction

This section introduces an example of a life cycle and process model that is based on
an iterative approach and is fully traceable back to an international standard – in this
case ISO/IEC 15288.

One of the challenges facing anyone involved in running a successful project is
that of managing the project effectively and efficiently. There are many approaches
to project management in existence at the moment, many of which are very effective.
The aim of this chapter is to consider where and how the use of modelling can help with
this management. Therefore, the process model that is being followed is irrelevant it
is rather the relationship between the life cycle, life cycle model, process model and
project schedule that is being emphasised here.

The model used in this section is known as STUMPI – Students Managing Pro-
cesses Intelligently. The STUMPI model is intended to be applied to student projects
for higher education. Such projects present a number of problems, which give rise to
a number of specific requirements for any sort of management model, including:

• Student projects have a varied time frame. Many only last a few weeks, whereas
others may last up to three years, therefore it is essential that the model reflects this.
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• On the whole, there are not many people involved directly in student projects.
In many cases, it may be a single individual doing all the work and taking on all
the roles.

• Most students would not have been exposed to any sort of project management
or process modelling, so it is essential that the model is easy to understand and,
hence, use.

• Students are often a fickle bunch, therefore it is crucial that they can see immediate
benefits in applying the model.

• There should be a minimum overhead involved with any sort of approach taken by
students. For example, in terms of deliverables, most students simply have a log
book used to record all project information that then forms an essential input to
the formal report-writing at the end of the project. It is crucial, therefore, that all
deliverables are recordable in such a fashion whilst still maintaining the current
best-practice approach as advocated by the source standard.

• The application areas of the projects will vary wildly and, therefore, the model
should be flexible enough to allow the project to run in any application domain.

• From an academic point of view, the students must be able to learn about partic-
ular concepts by applying the model. In this case, STUMPI forms the basis for
an entire academic module and introduces students to key systems engineering
concepts, such as: life cycles and life cycle models, processes and standards,
project schedules, stakeholders and people, and so on.

Now that the requirements have been established, it is possible to take a look at the
STUMPI model itself and see how it may be applied to life cycle management.

8.3.2 The STUMPI life cycle

The STUMPI model defines a structural life cycle that can be used as a basis for
projects.

Conception Construction

Development Operations

Retirement

5

Project

Phase

Figure 8.14 The STUMPI life cycle

The diagram in Figure 8.14 shows the life cycle defined as part of the STUMPI
model. It can be seen that each ‘Project’ is made up of five ‘Phase’, which are:
‘Conception’, ‘Development’, ‘Construction’, ‘Operations’ and ‘Retirement’. It is



Life cycle management 265

interesting to note that many student projects never actually implement all of these
phases. For example, many projects are mainly concerned with the conception and
development phases where the end result of the project is a deliverable. It may also
be that a project is a feasibility study, in which case the life cycle may only have
a single conception phase. Of course, some projects do have a complete life cycle – it
depends on the nature of the project and this forces people to think about the nature of
the project at the outset and ask a few important questions, such as ‘how far through
the life cycle are we going with this project?’ and ‘will we be doing all the work?’.

The life cycle shows the ‘what’ of the project, but it is also vital to show the ‘how’
of the project using a behavioural view. This behavioural view is known as the life
cycle model and will be discussed in the next section.

8.3.3 The STUMPI life cycle model

The life cycle model shows how the life cycle is executed over the course of a
project. It shows which phases are executed and in what order. The actual order of the
execution of these phases will vary depending on the type of project being run, which
goes to show that it is possible to have many different life cycle models relating to a
single life cycle.

next phase()

next phase()

next phase()

next phase()

 : Conception  : Development  : Construction  : Operations  : Retirement

Figure 8.15 An example STUMPI life cycle model

The diagram in Figure 8.15 shows an example of a STUMPI life cycle model
in the form of a sequence diagram. This could easily have been realised using other
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types of interaction diagrams but the sequence diagram has been chosen because of
its relationship to project management diagrams, shown later in this chapter.

It can be seen in this example that the life cycle model is following a simple linear
execution of phases with no examples of iteration between phases. Iteration can be
shown easily on such a diagram by adding more messages between phase instances.

It is important here not to confuse this sort of life cycle model with a more
traditional linear life cycle model, as each phase here will be made up of a number of
iterations that is not necessarily true for linear models. This can be seen more clearly
in Figure 8.16.

Iteration

5

1..*

1..*
is executed over

Project

Phase

Conception Construction Retirement

OperationsDevelopment

Process

Figure 8.16 Relating phases to iterations and processes

This figure shows how phases are related to other STUMPI concepts – the iter-
ation and the process. This diagram is an extended version of the diagram shown in
Figure 8.14 but, this time, it can be seen that each ‘Phase’ is made up of one or more
‘Iteration’, each of which has of a number of ‘Process’ executed over it. This is a
crucial relationship to identify as it defines the conceptual link between the phases
and the processes that will be executed on a project – something that is very often
confused.

These processes will now be defined in the next section.

8.3.4 The STUMPI process model

The structure of the processes is key to understanding the nature of life cycle
management so it is important that this structure is defined and well understood by
all people involved in the project. The process structure for STUMPI is based on that
for ISO/IEC 15288 but has been quite severely cut down to enable its use for student
projects.

The diagram in Figure 8.17 shows the process structure for the STUMPI model.
This is based directly on ISO/IEC 15288 and it can be seen that the ‘STUMPI process
model’ is made up of two ‘Process group’, each of which is made up of a num-
ber of ‘Process’. Each ‘Process’ is made up of a number of ‘Outcome’, a number
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2

1..*

Outcome

Activity

Role

1..*

1..*

produces/consumes

1..*

is responsible for

Process

Process group

STUMPI process model

1..*1..*

Figure 8.17 The STUMPI process structure

of ‘Activity’ and a number of ‘Role’. Note how the pattern here is the same as
the pattern introduced in Chapter 6 on process modelling, even though the termi-
nology is slightly different. When the patterns are the same, it often means that
both diagrams are trying to describe the same concepts – hence the same or similar
pattern.

The source standard, ISO/IEC 15288, identifies four different process groups,
which are ‘Technical’, ‘Enterprise’, ‘Project’ and ‘Agreement’. The STUMPI model,
on the other hand, only has two process groups identified, which can be seen in
Figure 8.18.

Engineering Management

Process group

Figure 8.18 Types of process group

This figure shows that there are two types of ‘Process group’ – ‘Engineering’
and ‘Management’. The STUMPI ‘Engineering’ process group maps directly onto
the ‘Technical’ process group from ISO 15288, whereas the STUMPI ‘Management’
process group maps to the ‘Project’ process group in ISO 15288.

The processes for each of these process groups have been defined using the
approach described in Chapter 6.
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Engineering

Process

6
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review()
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analyse requirements model()
review()
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Assumption list

Analysis

design system()
review()
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Design architecture
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Design
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Unit
System module
System

Implementation
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execute test()
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produce user documentation()
install()
review()

Review results
User documentation

Transition

Figure 8.19 The ‘Engineering’ processes

This figure shows the processes that have been identified for the ‘Engineering’
process group. Each class that represents a process has three things defined:

• The process name, shown by the class name.
• The process outcomes, shown as attributes on the process class. These repre-

sent the sort of information that must be recorded in a log book to demonstrate
that the activities associated with this process have been executed.

• The process activities, shown as operations on the process class. These represent
the things that must be done in order to successfully execute this process.

It can be seen that six processes have been identified here: ‘Stakeholder require-
ments’, ‘Analysis’, ‘Design’, ‘Implementation’, Verification & validation’ and
‘Transition’.

These processes are based directly on those in ISO/IEC 15288 but each one has
been simplified in order to make it more usable on small-scale projects. Some of
the names have been changed to maintain consistency with concepts that are taught
within other subject areas, such as ‘Analysis’ and ‘Design’.

The diagram in Figure 8.20 shows the processes associated with the ‘Management’
process group, which are: ‘Project planning’, ‘Project monitoring’, ‘Project write-
up’ and ‘Literature review’. These processes are also based on the source standard
but, in this case, two processes have been explicitly introduced since they relate
specifically to students. These processes are; ‘Project write-up’ where a thesis or
dissertation is produced at the end of a project and ‘Literature review’ where all
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Figure 8.20 The ‘Management’ processes

current literature in the project application domain is reviewed to demonstrate expert
knowledge. Although these two processes do not explicitly exist with ISO/IEC 15288,
it is still possible to trace individual activities back to activities from various processes
within ISO 15288.

It should be stressed that the processes identified here are intended to be used as
a starting point for identifying processes for a particular process. Clearly, in the event
that a particular project requires a specific process, it must be defined in the same
way as those shown here.

The only area that has not yet been covered by the process model, is that of the
stakeholder diagram, which can be seen here.

The diagram in Figure 8.21 shows the stakeholders who have been identified
within the STUMPI model. There are three main types of ‘Stakeholder’.

• The ‘Customer’ stakeholder who represents the roles that want something from the
project and includes: ‘User’, ‘Operator’, ‘University’ and ‘Industry’. Again, there
may be no industrial involvement, in which case there will be one less stakeholder
shown here. Conversely, it may be the case that several more stakeholders are
identified here.
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Author
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Figure 8.21 Stakeholder diagram for STUMPI

• The ‘Supervisor’ role representing the roles taken on by a supervisor of the project.
In this case, there are two roles identified: ‘Reviewer’ and ‘Advisor’. It may be
the case that both of these roles are taken by a single individual or, in another case,
it may be that there are several supervisors (perhaps both academic and industrial)
involved in the project.

• The ‘Student’ role representing the various roles that the student, or group of
students, will take on the project. Again, consider a project with a single student,
in which case all roles will have one name associated with them or, on the other
hand, it could be a group project where the roles can be ‘shared out’ amongst the
project team.

This stakeholder diagram should be tailored for a particular project and then the
responsibility for each role considered. It is known from the process structure in
Figure 8.17 that each ‘Role’ is responsible for a number of ‘Activity’ and this is shown
using an activity diagram to describe the behaviour of each process, as shown here.

The diagram in Figure 8.22 shows the behaviour for a single process from the
STUMPI process model, in this case the ‘Stakeholder requirements’ process. This
diagram ties together the role responsible for each activity using swim lanes and also
shows the information flow, as well as the ordering of the activity execution.

Now that the life cycle has been identified and the process model has been defined,
it is possible to go back to the life cycle model and consider how each one behaves
when it is executed. This is done by considering ‘iterations’ within each phase and
their associated process execution.

8.3.5 Phase iterations

Each phase is made up of a number of iterations, as specified in Figure 8.16. Each of
these iterations consists of the execution of a sequence of processes, as can be seen
in Figure 8.23, which shows an iteration taking place in the conception phase.
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Analyser Self-reviewer

 : Acceptance criteria

 : Requirements model

 : Requirements definition

 : Requirements architecture

elicit requirements

analyse requirements

define acceptance criteria

review

 : Review results

Figure 8.22 Behaviour of the ‘Stakeholder requirements’ process

 : Stakeholder requirements  : Analysis  : Project planning

Figure 8.23 An example of an iteration

The diagram in Figure 8.23 shows an example of a typical iteration taking place
inside a phase – in this case the conception phase. The diagram shows that three
processes are being executed: ‘Stakeholder requirements’, ‘Analysis’ and ‘Project
planning’. In this scenario, each process is being executed in a simple sequential
manner, but there is no reason why there would not be more iterations between the
process execution or, indeed, more processes. In the case shown here, a simple itera-
tion is represented at the beginning of a project when some requirement engineering
takes place, followed by analysis of the requirements model. This then enables some
project management to take place based on the requirements and analysis models.
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 : Analysis  : Design : Project monitoring

Figure 8.24 Another example of an iteration

Another example of an iteration is shown in Figure 8.24, but this time, there is
more of an emphasis on analysis and design.

The diagram in Figure 8.24 shows another iteration that has come, this time
once again, from the conception phase. Note how, in both examples, there is
a mixture of processes from both the ‘Management’ and ‘Engineering’ which is
typical of an everyday project. Seeing these two iterations, however, raises quite
a fundamental point associated with iterations, which is ‘why do we need iter-
ations’? If these two iterations were being executed in a sequential order, then
why bother showing them as separate iterations, rather than just a larger, single
iteration? There are several answers to this but, to start with, if the iterations
were considered as being executed in parallel, rather than in sequence, then this
would make perfect sense. It may very well be that two teams are working on
the project at the same time in which case the iterations must be considered sep-
arately rather than as a single iteration. In fact, thinking about the way that projects
run in real life, it would be unusual if everyone involved in the project works on
exactly the same process at all times and these processes are operated in a sequen-
tial manner. This, actually, is one of the reasons that the iterative approach has
evolved from the linear approach of life cycle modelling. Therefore, a good way
to think about iterations is to consider different groups of people having their own
iterations that can be executed sequentially or in parallel. To relate this back to the
sort of project that STUMPI is designed for, it is easy to imagine how an indi-
vidual project with a single worker would have a number of sequential iterations,
whereas a project with a team of people working on it would suit a set of parallel
iterations.
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8.3.6 Process behaviour

So far, the behaviour of the life cycle (the life cycle model) has been discussed along
with phases and their associated iterations. It is now time to look at a lower level
behavioural view of an individual process by defining an activity diagram for each
process, as introduced in Chapter 6.

Analyser Self-reviewer

 : Acceptance criteria

 : Requirements model

 : Requirements definition

 : Requirements architecture

elicit requirements

analyse requirements

define acceptance criteria

review

 : Review results

Figure 8.25 Behavioural view of the ‘Stakeholder requirements’ process

The diagram in Figure 8.25 shows a behavioural view of one of the STUMPI
processes, in this case the ‘Stakeholder requirements’ process. The activity diagram
shows the order of execution of the activities that are carried out in the process,
along with the production and consumption of the outcomes for each activity. Also
shown here is the stakeholder responsibility for each activity by the use of swim
lanes.

An activity such as the one shown here should be created for each of the processes
in the STUMPI model which will lead to a fully-defined set of basic processes. Clearly,
these processes may be tailored to suit individual processes using the approach shown
in Chapter 6.

8.4 Project planning

8.4.1 Introduction

It is all very well modelling an effective set of processes and a life cycle, but how
does this tie into the actual project itself ? Let’s face it, the reality is that whoever
is running the project will only be interested in working with traditional project
management diagrams such as GANTT and PERT charts, rather than a UML-based
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model. Unfortunately, many project schedules that are produced could be filed under
the heading of ‘fiction’ as they are often based on discussions between teams and
customers, and dates frequently seem to be plucked from thin air. It is clear that these
project estimations should be based on past experiences and future predictions based
on actual work activities or, to put it another way, the processes that are executed on
a project.

Schedules are, therefore, concerned with a few key estimates:

• What needs to be done, that are indicated on GANTT charts as tasks, sub tasks,
sub-subtasks, etc.

• What needs to be produced, in terms of key deliverables and milestones.
• The responsibility for each of the tasks.
• Time estimates for each of the tasks.
• The order of execution for each task.

These concepts can be seen illustrated in Figure 8.26, which shows a typical
GANTT chart that is split into two main sections. The main section on the left
contains the names of the tasks, milestones, responsibilities and dates. The right-
hand section, which is often very long, shows the order of execution of these
tasks along with their durations in a graphical form. Time flows from left to
right on the time line and the granularity of time is shown along the top of the
time line.

The UML life cycle and process models can be used as bases for most of this
information, as follows:

• The highest-level tasks map directly to the phases in the life cycle. Therefore,
the information needed to start populating the GANTT chart exists within the life
cycle model that shows the behaviour of the life cycle.

• The next-level tasks map directly to iterations within each phase. Therefore, the
subtasks within each task can be identified and their order known.

• The next-level tasks map directly onto processes within each iteration. Therefore,
the sub-subtasks can be identified and their order known from the iteration
behavioural model.

• The lowest-level tasks map directly onto the activities that exist within each
process. Again, the order of execution is known, which provides the basis for the
sub-sub-subtasks.

• A number of milestones are identified for the project that are based on key
deliverables already identified within the UML process model. The outcomes
in the process model identify what needs to be produced and when (according to
the activity diagrams for each process) and also the relationships between them
(shown on the information model for the process model).

• The responsibilities for each task, subtask and the like need to be identified which,
again, can come directly from the model. All roles on the project have been
identified in the stakeholder model and their individual responsibilities have been
identified in the activity diagrams for each process. The stakeholder model can
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also be used as a basis for resource allocation for each task, as well as a basis for
identifying key skills required for each team member.

All this information is shown on the GANTT chart in Figure 8.27, which shows the
same GANTT chart as in Figure 8.26 except this time, instead of using GANTT
chart terminology, the terms from the STUMPI process model have been included.
Therefore, the relationship between the process model and the GANTT chart is
clearly seen.

There is, however, some crucial information missing from this diagram, which
is the timing information, and this is often where producing realistic estimates can
prove to be difficult. Consider the different levels of detail of behaviour where timing
durations need to be estimated – each phase, iteration, process and activity – and then
consider the likelihood of being able to estimate, or predict these accurately.

• The time frame for the overall project will typically be known, which provides
an overall deterministic time for the entire project. Although it is difficult to
accurately predict the timings for each phase, these are often imposed at this
stage as key points in the project. It is not unusual, therefore, to specify that
the conception phase, for example, should be complete within two months, the
development phase within another three months, and so on. In fact, such timings
are constraints rather than predictions and it is important that all project activities
can be completed within these time limits.

• The time frames for each iteration will typically be unknown and it is very difficult
to put any sort of accurate figure.

• The time frames for individual processes may be more possible to estimate but
still without much accuracy.

• The time frames for the individual activities, however, should be quite possible
to guess accurately, particularly if they are from mature processes that have been
executed before. Therefore, this is the most realistic level to start entering timing
values into the GANTT chart.

Once the times have been estimated for each activity it is then possible to aggregate
these into a duration for each process and hence for each iteration and, finally, for
each phase. In many cases, there will be a degree of changing the order of execution
of iterations and processes to ensure that the estimated timings will meet the overall
timing constraints from the overall project.

It is possible, therefore, to use the process model as a basis for accurate project
timings for the project schedule. Clearly, there is still a lot of work involved with
getting the timing estimates and the project time constraints to match up, but then
by using the process model, there is a realistic basis for predicting the schedule for
projects, rather than generating a work of fiction based on, at best, vague empirical
knowledge.
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8.5 Summary

To summarise life cycles and life cycle models, the following points should be
remembered:

• A life cycle is a static representation of a collection of phases that describe the
execution of a project from its initial conception to its ultimate demise.

• A phase implements one or more process. In many life cycles, this will be a one
to one relationship, while in others, such as iterative life cycles, this is a many
to one relationship using iterations to group processes. It should be stressed that
a process and phase are not the same thing.

• A life cycle model describes the behaviour of a life cycle over the course of
a specific project.

• Each phase has a number of iterations within it and each of these iterations is
made up of a number process executions.

• Each process can be defined in terms of its own behaviour using activity diagrams.
• All the information from the UML model can be used as a basis for the project

schedule, which will result in a realistic estimation of the project timings.

Using the UML to represent life cycles and life cycle models is a natural progression
from the process modelling that was carried out previously and is a very powerful
tool for project management.

8.6 Exercise

1. Create a mapping between the concepts in ISO/IEC 15288 and those in the RUP.
Are there any differences between the two and, if so, what are they? How does the
software-based standard hold up to comparison with the systems-based standard?
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Chapter 9

System architectures

I never knew what my house was like, until I took a walk outside

Jools Holland

9.1 Introduction

9.1.1 Introduction to architectures

The term ‘architecture’ to most people conjures up images of fine buildings and
drawings and plans of houses but, as systems engineers, we also use the same term.
The term itself may be applied to any system that we develop but, the question is,
exactly what is meant by an architecture? Also, once we have a clear understanding of
what an architecture actually is, then at what phase of the system life cycle should it
be produced and how should it be produced? This chapter looks at several definitions
of the term ‘architecture’ and observes how this has evolved over time to be more
encompassing than most people would think. Standards for architectures are also
considered and, throughout, the use of the UML is discussed to see how it may help
us to define, understand and validate our systems.

9.1.2 Architecture – definitions

There are many definitions of the term architecture. For the purposes of this book,
those from two different disciplines – software engineering and systems engineering –
are compared and contrasted. The term is used widely throughout each discipline but,
as with the scope of the two disciplines, an architecture in systems engineering is
wider than one in software engineering.

First of all, consider the following definitions of ‘architecture’ taken from the
world of software engineering:

• ‘modules and how they are interconnected’ [1].
• ‘relationships among major components of the program’ [2].
• ‘a hierarchy of components according to a partitioning method’ [3].
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• ‘the set of significant decisions about the organisation of a software system, the
selection of the structural elements and their interfaces by which the system
is composed, together with their behaviour, as specified in the collaboration
among the elements, the composition of these structural and behavioural elements
into progressively larger subsystems and the architectural style that guides this
organisation’ [4].

Each of these definitions is primarily concerned with the major elements in a system
and their interrelationships and interactions. In fact, the first two definitions are
very similar, the only real difference being that the second one explicitly mentions
a program, hence relating it directly to the software world, whereas the first one could
apply equally to software or systems.

The third definition starts to introduce the concept of a ‘method’ – in this case
a partitioning method, which indicates the need for partitions, assuming that the
method here refers to the rationale and approach according to which the partitions
are defined.

The fourth, and by far the longest, definition starts to introduce the concept
of evolution, by mentioning ‘progressively larger subsystems’ which implies some
sort of natural progression, or evolution, over time. This definition also introduces
the concept of ‘architectural style’ or, to put it another way, the way in which the
architecture is developed.

The next question that is addressed is that of how the UML relates to these
concepts. Clearly, the first three definitions refer to a structural representation of
the software. In this case, ‘modules’ may be represented as classes or components
and the term ‘major element’ may refer to just about any structural element within
the UML. It could be argued here that the concept of a ‘method’ implies some
sort of behaviour according to which the architecture is defined, but this is by no
means clear.

The fourth, and last, definition, however, is the first to explicitly mention
behaviour and identifies the need for collaborations (upon which, in the UML, all
interactions are based) and interfaces (and associated behaviours).

Consider now, two more definitions of ‘architecture’ this time, however, taken
from the world of systems engineering:

• ‘the structure of components, their relationships, and the principles and guidelines
governing their design & evolution over time’ [5].

• ‘the fundamental organisation of a system, embodied in its components, their
relationships to each other and the environment, and the principles governing its
design and evolution’ [6].

These two definitions have much in common with those identified for software
engineering – both talk about the ‘components’ in a system and their ‘relationships’
and both explicitly mention ‘evolution’, however, the scope of the definition here
is far wider. There is explicit mention, in both definitions, of ‘principles’ governing
how the architecture is developed. This means that the systems definition of architec-
ture is also concerned not just with what is produced, but also how the architecture
is produced, something that was only really hinted at in the software engineering
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definition. In fact, if one considers each of these definitions in order, they represent
an evolution of the term ‘architecture’ from a simple, narrow definition, to a more
complete and wider definition of the term.

9.1.3 Not an architecture

As well as being able to understand what an architecture is, it is very important to
be able to recognise what an architecture isn’t. Too many people just see an archi-
tecture as a simple block diagram with a few lines on it but, in many cases, there is
simply not enough information there to justify the use of the word architecture.

One of the main problems with these ‘block diagrams’ is that there is no actual
definitive interpretation for each block. For example, consider the case of any simple
block diagram and ask yourself the following questions:

• What do the blocks represent? They represent almost anything, ranging from
runtime components to abstract concepts associated with the solution. Also,
at which point in the life cycle does this diagram become relevant?

• What do the lines mean? Again, they could represent almost anything, from
control flow, to data flow to logical relationships between concepts.

• Is the layout on the page relevant? Some diagrams attribute no relevance to the
location of different blocks on a page, whereas some do. Consider, for example,
the communication diagram in the UML, where the actual layout of the graphical
nodes on the page has quite an impact on the meaning of the diagram.

• Is the diagram representing a structural or behavioural aspect of the model? Or,
even worse, is it combining the two aspects of the model on a single diagram?
Quite often people mix up both aspects of the model and this can lead to a massive
degree of lack of understanding and communication when trying to read the
diagram.

• Should the diagram be read from left to right or vice versa? Or, is there an
obvious flow throughout the diagram that will enable the model to be read and
easily understood.

• What level of abstraction is the diagram at? Is this a system-level view, modules-
level view or unit-level view? Again, there is simply not enough information on
the diagram to make it easily understood.

Many, if not all, of these arguments could be countered by saying ‘but I put a key, or
legend, on each of my diagrams so that they can be understood by anyone’. This is,
of course a valid argument but is also one of the fundamental driving forces behind
the creation of the UML. Why create a new graphical language for each model or
project when one already exists that has taken many thousands of man years to create
and is being constantly evolved to match current technology?

In fact, many of these questions actually relate to basic modelling concepts and
just happen to apply to architectures as well. If one takes the latest definitions of the
term ‘architecture’ as taken from current standards, then there is a clear relationship
between the architecture of the system and the model of the system.
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Of course, by using an established graphical notation such as the UML it is possible
to immediately recognise what many of the symbols represent. The UML has a finite
set of graphical nodes and graphical paths, each of which has its own distinct meaning
and, perhaps just as importantly, they each have established relationships with other
elements in the language, hence the basis for consistency exists.

9.1.4 Architecture versus model

There are three underlying reasons why an architecture must exist, which are:

To aid understanding: To enable whoever is looking at the system, at whatever point
in the life cycle, to understand the what and how of the system.

To highlight and manage complexity: Complexity, as has been established already,
cannot be eliminated altogether, therefore it is important to be able to spot complexity
and, hence, attempt to control it.

To communicate ideas and data: Quite often, the architecture is viewed as a way to
communicate ideas to other members of the project team, or any other stakeholders
and will be used as a basis for any sort of review.

These three ideas do not just apply to architectures, but also are the same three reasons
why we want to model in the first place. Therefore, there is a clear link between the
architecture and the model as the architecture may be viewed as a special type of
model, though with an emphasis on the major aspects of the system.

9.1.5 Architectural views

An architecture may be modelled from any number of perspectives, or ‘views’. It is
important to be able to understand what viewpoint is being taken when any modelling
is being performed as the models for different views can vary dramatically. Just to
confuse matters even further, there are also two dimensions to the categorisation of
views, as a view may be based on a process or based on a frame of mind. Before a full
discussion can take place, consider the following two lists of typical views, bearing
in mind that these lists are nonexhaustive and also that some of the terms for each
view may differ depending on the reader’s background (or viewpoint!). Process-based
views include, but are not limited to:

An analysis or design: An analysis view shows a model of the problem whereas the
design view will show the solution to that problem. The analysis view has a far wider
scope than the design, as the analysis view includes elements that are outside the
scope of the system, such as stakeholders and their interactions. Indeed, it may be
necessary to model interactions that are completely outside the scope of a system
in order to understand the behaviour of the system under analysis. The design view,
however, has a narrower scope as its boundaries stop at the system interfaces and it
is solely concerned with what goes on inside the system.

An operational view: An operational view shows the ‘how to’ of a system and is
used as part of the user documentation or instructions for a system. In such a view,
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a system will typically be represented at a very abstract level, with only the major
components and interfaces of the system represented, as the emphasis will usually be
on the user interactions with the system.

Verification and validation views: These views are used to check that the system
works (verification) and also to ensure that the system does what it is supposed
to do (validation). The emphasis for a validation view is focused on a high-level
representation of the system and is traceable back to the source requirements of the
system. The emphasis for a verification view depends on the type of verification,
or test, being carried out. For example, unit-level tests require detailed views of the
systems, whereas integration and system tests will require higher-level models.

The other dimension for views concerns the conceptual frame of mind of the
stakeholder that requires the view and may include, but is not restricted to:

A conceptual view: A conceptual view may be used for helping to gain an under-
standing of a system. A conceptual view may differ enormously from any other view
and may be greatly simplified compared to other views. Conceptual views are partic-
ularly useful in the early phases of a project and also when presenting information to
third parties.

A process view: The process view of a system ties together the systems themselves
with their underlying processes. This helps in terms of schedules and resources.
For example, the human and physical resources required to implement a particular
part of an architecture, along with any timing, or scheduling, requirements of the
view (including human resources).

A physical view: A physical view will be an accurate representation of the real life,
physical components of a systems. This is useful for later life cycle stages and pro-
cesses that involve delivery, transition, installation, acceptance, and so on. Such views
show a high-level representation of the system and typically focus on a structural
aspect of the model.

It is possible for a view to combine two of these views, for example, consider the
case where a legacy system exists that needs to be built into a new project archi-
tecture. It would be possible here to generate an operational (process) view of the
system, but this view could be represented physically or conceptually, leading to a
variety of diagrams being used to represent the view. It is important to be able to
differentiate between different views as, otherwise, looking at several views can lead
to a great deal of lack of understanding, hence complexity and hence communication
problems.

A key issue here, with regard to applying the UML, is which diagrams to use
where? This is discussed in more detail in Section 9.6 where a general appreciation
for the types of diagram and their application is provided.

There are many ideas and theories concerning what should be contained within an
architecture. Indeed, just by looking at the definitions discussed so far in this chapter,
it can be seen that there are many viewpoints on exactly ‘what’ an architecture is,
before even looking at how it should be represented. This section takes a look at
two different architectures that have been defined in different standards. These two
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standards are not included to provide any sort of recommendation as to how to model
an architecture, but are included for discussion only and are here to make the reader
think about what should be within and without an architecture.

9.2 Example of architecture – Department of Defense Architectural
Framework (DoDAF)

The first standard to be considered is DoDAF, which is ‘a framework for command,
control, communication, computers, intelligence, surveillance and reconnaissance
(C4ISR) architecture development’ within the US military and is being increasingly
used as reference for military organisations in other countries.

This standard defines an architecture as ‘the structure of components, their rela-
tionships, and the principles and guidelines governing their design & evolution over
time’ as was previously mentioned. It is not, however, until we actually look at the
standard itself that we can gain an appreciation of what exactly is meant by this
statement. The actual standard is a hefty beast, weighing in at over 100 pages, which
at first impression can be slightly daunting. In order to understand this standard, it is
necessary to simplify it and, by definition, in order to simplify something, it should
be modelled.

Architecture

View

Guideline

Facilitator

Process

Product

Operational System Technical Essential Support

1..*

1..* 1..*
categorises

Figure 9.1 Overview of the framework of an architecture

The diagram shown in Figure 9.1 shows that an ‘Architecture’ is composed of
a number of ‘View’, a number of ‘Guideline’, a number of ‘Facilitator’, a number of
‘Process’ and a number of ‘Product’.

Some key points to note here are the explicit inclusion of ‘Guideline’ and ‘Process’
which ties in with the definition of the architecture provided previously. Also, note
the term ‘Facilitator’, a direct parallel to the term stakeholder as used in this book.
The next important issue here is the concept of the ‘View’ which has three types:
‘Operational’, ‘System’ and ‘Technical’. Views have already been introduced in this
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chapter and are discussed in more detail later. The main point in identifying the various
views is so that each ‘product’ is categorised, which will be revisited in Figure 9.3.

The standard then goes on to discuss different types of architecture that exist
within the standard, as illustrated in Figure 9.2.

Architecture

Description Implementation

Figure 9.2 Types of architecture in DoDAF

The diagram in Figure 9.2 shows that there are two types of ‘Architecture’ –
‘Description’ and ‘Implementation’. This standard is mainly concerned with the
‘Description’ architecture that refers to the architecture used during the system
development, which is the main focus of this chapter.

As an interesting point concerning specialisation, the entire structure below
the class ‘Architecture’ from Figure 9.1 is inherited by both types of architecture
shown here.

The next class to focus on from Figure 9.1 is the one concerning the ‘Product’
that had two types: ‘Essential’ and ‘Support’.

Product

Essential

Support

«operational view»
OV4: Command relationships chart

AV1: Overview and 
summary information

OV1: High-level operational 
concept graphic OV3: Operational information 

exchange matrix

OV2: Operational node 
connectivity description

AV2: Integrated dictionary

TV1: Technical 
architecture profile

SV1: System 
interface description

Figure 9.3 Types of product identified in DoDAF

The diagram in Figure 9.3 shows the various types of products that have been
identified in the standard. Remember from Figure 9.1 that each product was cate-
gorised by a particular ‘View’ that manifests itself in this diagram by the numbering
convention adopted at the beginning of each product name. Therefore, products



286 UML for systems engineering

starting with ‘OV’ refer to operational views, products starting with ‘SV’ refer to
system views and products starting with ‘TV’ refer to technical views. So far, so good,
but what about the products that start with ‘AV’, as this is not obviously covered by
the three types of view? The answer to this lies in the text – as products starting with
‘AV’ refer to all views!

The products themselves are:

• ‘AV1 Overview and summary information’ that applies to all views and provides
general information concerning the entire architecture.

• ‘AV2 Integrated dictionary’ that defines all the terms and nomenclature used in
the standard and, again, applies to all views.

• ‘OV1 High-level operational graphic’ that refers to a high-level model of the
system architecture from an operational point of view.

• ‘OV2 Operational node connectivity description’ that describes major elements
within the system and their interrelationships.

• ‘OV3 Operational information exchange matrix’.
• ‘SV1 System interface description’ that describes all the interfaces to the outside

world in terms of their structure and behaviour.
• ‘TV1 Technical architecture profile’ that provides the architecture for the solution

to be implemented.
• ‘OV4 Command relationship chart’ that describes all stakeholders and their

relationships in terms of command structure.

Note how many of the terms and concepts introduced in this standard have been
discussed frequently in this book – interfaces, elements and their relationships,
stakeholders, and so on.

The model, quite obviously for a relatively large standard, goes into far more detail
and consists of many more diagrams covering different levels of abstraction, but the
key concepts have been introduced and this is enough to start to draw comparisons
between this standard and others.

9.3 Example architecture – IEEE 1471

The next standard concerning architectures to be investigated is ‘IEEE 1471
Recommended Practice for Architectural Description of Software-Intensive
Systems’. Although the standard is concerned with ‘software-intensive systems’ the
principle can be applied to almost any system. In fact, the term ‘software-intensive
systems’ is very often used to describe the context of UML which, it has already
been established, can be used to model any sort of system and is not just limited to
software systems. This also leads to another question, since the same term is being
used, does that mean that there will be UML elements within this standard, or is it
a coincidence. The answer to this will become all too clear in the following section.

The definition of an architecture in IEEE 1471 is ‘the fundamental organisation
of a system, embodied in its components, their relationships to each other and the
environment, and the principles governing its design and evolution’. Here the term
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‘fundamental organisation’ can be taken to refer to the elements in the system and their
interrelationships. This definition also alludes to processes through the term ‘guide-
lines governing its design’. Although limiting the guidelines to design is a somewhat
blinkered view – this would have been better written as ‘development’ rather than
‘design’. Also, this definition includes mention of ‘evolution’ implying the growth
and change of the architecture over the life cycle of the development of the project.

9.3.1 Conceptual model of architectural description

The standard itself contains a UML description of the conceptual model of the
architecture. However, the model itself contains a few fundamental UML errors and,
hence, has been redrawn correctly. These errors are mainly concerned with the way
that relationships are expressed and the use of role names. The diagram presented in
Figure 9.4 is, therefore, a slightly modified version of the original, but at least it is
correct.

The standard should be applauded despite the minor technical niggles with the
diagram, as being brave enough to use a UML diagram within itself. This is certainly
an encouraging occurrence and proves, once again, that the UML is not just used for
software development but, as in this case, can be used to help to model standards and
architectures.

The diagram in Figure 9.4 shows a high-level conceptual model of the standard.
It can be seen that a ‘System’ fulfils one or more ‘Mission’ and that the ‘System’ also
inhabits an ‘Environment’, which, in turn influences the ‘System’. Each ‘System
has an ‘Architecture’ and has one or more ‘Stakeholder’. Each ‘Stakeholder’ has

Mission

SystemEnvironment Architecture

Stakeholder Architectural
description Rationale

Concern Viewpoint View

Library
viewpoint

Model

1..*
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Figure 9.4 Correct version of the conceptual model
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a number of ‘Concern’, each of which is important to one or more ‘Stakeholder’.
Each ‘Architecture’ has an ‘Architectural description’ that is made up of number of
‘Model’ and one or more ‘View’, each of which confirms to a ‘Viewpoint’. Each
‘View’ is also composed of a number of ‘Model’ that participate in a ‘View’.

This diagram sums up, rather neatly, all the major elements within the standard
itself. Note the use of some of the terms that have been used earlier both in the UML
and in DoDAF. One interesting definition here is that of views and models as it is
the complete opposite of how they are defined within the UML itself ! In the UML,
a model is made up of a number of views, whilst here it is the views that are made
up of models. This is not necessarily a problem, providing that we know about the
difference in terminology. If this difference is not known, then it has the potential to
lead to an absolute disaster on the project!

When comparing the terminology with the DoDAF standard, some other parallels
emerge. Common terms are used, such as view, whereas in other places, different
terms are used, such as ‘stakeholder’ here and ‘facilitator’ in DoDAF.

When looking at the standard further, another term emerges, that is not mentioned
on this conceptual model (although it is fairly straightforward to see where it fits in)
which is the term ‘intended user’. This is expanded upon in Figure 9.5.

Intended user

System user

System operator

System acquirer

Client

Architect

DesignerProgrammer

Maintainer Tester

Domain engineer QA

CM

Supplier

Project manager

Chief information 
officer

Auditor Assessor

IEEE 1471

*

is for

Project manager

System
developer

Figure 9.5 Intended users for IEEE 1471

The diagram in Figure 9.5 has taken rather the brave step of trying to define all
the intended users of this standard. Although theoretically not a bad idea, in practice
it is very unlikely that all intended users will be covered. Also, just by looking at the
diagram it can be seen that there is a massive imbalance in the model. Notice how
one term ‘System Developer’ sits at the same level as all the other intended users, yet
has a further 11 types defined for it. It would be more readable and consistent if more
levels of abstraction were introduced for the other intended users – similar to when
defining a stakeholder view using a class diagram – by adding more structure. It will
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also be seen that, when compared with other diagrams in the standard, this diagram
will lead to further inconsistencies.

Figure 9.6 focuses on the ‘Architectural description’ from Figure 9.4 and examines
what information is required according to the standard.

Architectural
description

IEEE 1471 
conformant
architectural
description

AD Identification

Stakeholder and 
concerns identification

Viewpoint
specification

View

Inconsistency
record

Rationale

1..*

1..*

1..*

1..*

Figure 9.6 Architectural description for IEEE 1471

The diagram in Figure 9.6 shows an ‘IEEE Conformant Architectural Description’
composed of an ‘AD identification’, one or more ‘Stakeholder and concerns identi-
fication’, one or more ‘Viewpoint specification’, one or more ‘View’, one or more
‘Inconsistency record’ and a single ‘Rationale’.

In the standard itself, each of these elements is described in more detail but,
for the sake of this example, one of these elements will be expanded upon and
the resultant diagram discussed. The element to be investigated is ‘Stakeholder and
concerns identification’, which is shown in Figure 9.7.

The diagram in Figure 9.7 shows that there are two main elements that make up the
‘Stakeholder and concerns identification’ which, quite unsurprisingly are: ‘Minimum
stakeholder identification’ and ‘Minimum concern identification’. If one considers
the ‘Minimum stakeholder identification’ in more detail, it can be seen that it is
made up of a number of elements that relate directly back to the ‘Intended users’
diagram shown in Figure 9.5. However, now there are problems. Note how this
diagram looks simple to understand and quite well balanced, but caution must be
exercised due to the element ‘System developer’. Bear in mind that there are 11 types
of ‘System developer’ as defined in Figure 9.5, so now the diagram becomes far more
complex. Also, and more worryingly, one of the elements here refers to ‘Maintainer’,



290 UML for systems engineering

St
ak

eh
ol

de
r 

an
d 

co
nc

er
ns

 id
en

tif
ic

at
io

n

M
in

im
um

st
ak

eh
ol

de
r

id
en

tif
ic

at
io

n

M
in

im
um

co
nc

er
n

id
en

tif
ic

at
io

n

Sy
st

em
 u

se
r

Sy
st

em
 a

cq
ui

re
r

Sy
st

em
de

ve
lo

pe
r

M
ai

nt
ai

ne
r

1.
.*

1.
.*

1.
.*

1.
.*

Sy
st

em
 m

is
si

on A
pp

ro
pr

ia
te

ne
ss

C
on

st
ru

ct
io

n
fe

as
ib

ili
ty Sy

st
em

 d
ev

el
op

m
en

t 
&

 o
pe

ra
tio

n 
ri

sk
sSy

st
em

m
ai

nt
ai

na
bi

lit
y

Sy
st

em
de

pl
oy

ab
ili

ty

Sy
st

em
ev

ol
va

bi
lit

y

1.
.*

1.
.*

1.
.*

1.
.*

as
 a

pp
lie

d 
tosatisfies

F
ig

ur
e

9.
7

St
ak

eh
ol

de
r

an
d

co
nc

er
ns

id
en

tif
ic

at
io

n



System architectures 291

which has been defined previously as a ‘System developer’. Does this mean that
the ‘Maintainer’ is more important than all the other system developer users, or has
someone misunderstood the term ‘System developer’. These are problems that are
not very easy to pick up from the text, but that are relatively easy to visualise through
use of appropriate UML modelling.

9.4 Common themes

Having looked at the two standards, albeit at a very high level, the question that comes
up is how do the two relate? Clearly they are both aimed at similar audiences and,
indeed, situations have arisen where it is necessary to meet both standards, so what
is the relationship between them?

There are some common terms, such as ‘View’. There are also some differ-
ent terms for the same concept, such as ‘Facilitator’ in DoDAF and ‘Stakeholder’
in IEEE 1471. Any of these common themes that occur lead to a rather sensible
assumption that there must be some relevance to these terms, as they are being used
in the same context (architectures) in two separate documents. Consider now the
scenario where an organisation exists that has its own standard for architectures and
also needs to meet both of the standards introduced here, how is one to demonstrate
compliance between them all? The answer to this problem lies in the modelling. It
has already been shown that modelling, even at a very high level, can throw up incon-
sistencies within a single standard and that it can also be used as a basis for mapping
between several standards, the techniques introduced in Chapter 7 are applied here
to demonstrate this.

Standard is really just a guideline and will need to be tailored to meet the individual
needs of a particular organisation but, by appropriate modelling, it is possible to draw
out common themes and concepts that can be used a basis for an organisation’s
architectural process or standard.

Bearing in mind the concepts introduced by these two standards, it is now time
to discuss how it is possible to use an architecture to add more value to a project by
considering project validation.

9.5 Validation with architectures

9.5.1 Introduction

In this section the concept of using architectures as part of a validation process is
discussed. Validation is concerned with ensuring that the system meets the original
requirements or, to put it another way, that the system does what it is supposed to do.
Clearly, if this validation is borne in mind throughout the life cycle of the project, then
success is far more likely. Whenever the architecture is generated during the life cycle
it can be used as part of the validation effort. In order to illustrate this, let us consider
an example project and see where the architecture fits in. Before this, however, it is
worth considering when, exactly, the architecture should be generated.
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9.5.2 Generating the architecture

One issue that is a hot topic of debate is that of when to generate the architecture, or at
which point in the development life cycle. There is no simple answer to this question
as, like many other hot topics of debate, the answer depends on the specific project
or system that is being work on.

It is possible to start to generate the architecture during the requirements stage
of the project. In fact, some processes, such as the RUP, actually state this as part of
the process model. Other people say that it is best to start to think about the archi-
tecture during specification, or analysis of the project. After all, until the problem is
understood, so the argument goes, how is it possible to start to define the architecture.

Another school of thought recommends waiting until the problem has been fully
understood and is ready to be solved, or as part of the design, before an architecture
is generated. In this way, the architecture will be solely concerned with the solution
and, hence, provide an optimum solution to the problem.

Unfortunately, there is no clear answer to this and, to illustrate this further,
consider the following examples:

• A clean-sheet project that is left entirely up to the project team to define the
requirements, perform the analysis and design the solution. In such a case it
maybe that the team are looking at cutting-edge, unproven technology to solve
the problem, hence it may be that not enough information is available to start to
generate the project until the design is being performed.

• A clean-sheet project, but in a domain that is very well understood. It may be that
there have been similar projects in the past and a particular approach has proven
to be very successful, therefore, it may be that the architecture is started during
earlier stages of the project, such as during requirements or analysis activities in
a conception phase.

• A project where the actual architecture is specified in the requirements as
a constraint. Whether this is right or wrong is not the issue here, but this sort
of thing does go on. It may be the scenario where the customer has read about
certain best-practice solutions to a problem and has decided to minimise risk by
applying a well-proven architecture. Of course, it may also be the case that the
customer has ‘buzzword fever’ and has come across a term that is difficult to fully
understand and decides to include it in the requirements. In the case of the latter
scenario, this can be quite dangerous to the project by constraining the solution
very early on in the project without proper justification.

• A project with a large element of legacy systems, where it may be necessary to
abstract the architecture of the legacy components of the system and ensure that
the new system integrates properly. In such a case, it may be that the original
system actually limits the way that the new system may be developed.

It can be seen, therefore, that there is no strict right or wrong answer to the question
of when the architecture should be generated, but there are a few pros and cons
associated with the choice. The earlier the architecture is generated the more likely it
is that the solution will be influenced by the early definition of this architecture. This
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can be a good or bad thing depending on the project. Also, if the architecture is left
until too late in the development cycle then there is a danger that it may not be easily
traceable back to the project requirements. An early definition, on the other hand, can
be ever useful for traceability and, hence, validation of the project.

Validation is key to the success of the project as it is the validation that ensures
that all requirements have been met. The architecture of a system can fulfil a very
useful role in the project validation activity, which is discussed in detail in the
following section.

9.5.3 Using an architecture for project validation

For the purposes of this example, consider a development project that is being carried
out according to a particular process and particular life cycle model. The actual
process and life cycle model being followed are not too important for this example
as the emphasis will be on the artefacts of the project and the relationships between
them. It is crucial, however, that the artefacts have been identified and defined in an
information model that can be represented as a class diagram.

Initial project definition Requirements model Analysis model Design model

traces to traces to traces to

Figure 9.8 High-level view of a simple information model

Consider Figure 9.8, which shows four main classes and three relationships
between them to represent a partial information model for the project. Each class
represents an artefact for the project, in this example they are:

• The ‘Initial project definition’ that is the rough and ready source of the require-
ments and is the output of one of the customer–supplier processes. This is not
a formal requirements document and is more like a set of statements concerning
the project.

• The ‘Requirements model’ that is the formal statement of requirements for the
project and is one of the outcomes of some sort of requirements process. The
‘Requirements model’ must be traceable back to the ‘Initial project definition’.

• The ‘Analysis model’ that is the formal definition of the analysis, or specification,
of the project and describes the problem, based on the requirements. This artefact
is the outcome of some sort of analysis or specification process and the ‘Analysis
model’ must be traceable back to the ‘Requirements model’.

• The ‘Design model’ that is the formal definition of the design, based on the
analysis and describes the solution to the problem, based on the requirements.
This ‘Design model’ must be traceable back to the ‘Analysis model’.

The traceability paths between each artefact are shown as simple association on the
diagram.

This diagram may now be looked at in more detail, by looking at each of the
artefacts in turn and looking at the lower-level relationships between different parts
of each artefact. It has already been established that there is a high-level relationship



294 UML for systems engineering

between each artefact, but now it is time to look at a lower level and explore exactly
what the nature of the relationships is.

Initial project definition Requirements model Analysis model Design model

traces to traces to traces to

Statement

1..*

Figure 9.9 Lower-level view of the ‘Initial project definition’

The diagram in Figure 9.9 is very similar to that shown in Figure 9.8 except, this
time, it can be seen that the ‘Initial requirements definition’ is made up of a number
of ‘Statement’. Each statement will be analysed and, eventually, will evolve into
the full, formal ‘Requirements model’. However, there is more to the ‘Requirements
model’ than a fuller description of each statement, so this can now be looked at in
more detail and is shown in Figure 9.10.

Initial project definition Requirements modeltraces to Analysis model Design model

Statement

1..*

Requirement Stakeholder Architecture

Functional

Nonfunctional

Business Static model

Hi-level Legacy component

own

0..*1..*1..*

traces to

1..*

1..*
is based on

traces to traces to

Figure 9.10 Lower-level view showing the structure of the ‘Requirements model’

Figure 9.10 shows the same diagram as the previous two, but this time the
‘Requirements model’ has been broken down to provide a lower-level description.
This is not intended to be a definitive model of what constitutes a requirements model,
but is based on good practice and is shown here for illustration purposes only.

The ‘Requirements model’ is made up of a number of ‘Requirement’ which,
as described elsewhere in this book, has three types: ‘Functional’, ‘Nonfunctional’
and ‘Business’ and a number of ‘Stakeholder’, each of which owns a number of
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‘Requirement’. The focus here, however, is on the ‘Architecture’ which has appeared
as part of the ‘Requirements model’. The argument concerning whether the architec-
ture should be present at this early stage of the development process has already been
discussed and is addressed in this diagram by indicating a multiplicity of ‘0..*’ which
shows that the architecture may, or may not, be present.

At this early stage, the architecture itself is relatively simple and consists of
a ‘Structural model’ that has two types: ‘High-level’ and ‘Legacy component’.
The ‘Structural model’ itself is based on a number of requirements. For example,
it may be that the system is an evolution of a preexisting system, therefore there will
be legacy parts of the system that must exist in the new version. Also, it may be
that a certain amount of partitioning can be carried at this point, maybe in terms of
functionality, which may lead to major components of the system being identified.

The important aspect of this diagram, with regard to validation, is the relationship
between the architecture and the source information for the project – the ‘Initial
requirements definition’ – that can be traced via the requirements. Clearly, it is crucial
that the architecture is related directly back the requirements of the system at this stage
to ensure that the elements within the architecture are valid. One common mistake that
is often made on projects is to introduce too much information into the architecture
that cannot be traced back to requirements – very often because this is how work has
been carried out before or maybe people start to think about solutions far too early in
the project. A crucial part of any process, therefore, is to validate each element in the
architecture at this point.

The architecture will evolve as the project progresses and it is also important to
capture this evolution through effective configuration control of the models. This
point can be seen more clearly in Figure 9.11, as another evolution of the architecture
is introduced that must be traceable back to the previous architecture.

Figure 9.11 shows the breakdown of the ‘Analysis model’ that can be seen to
be made up of one or more ‘Scenario’ and one or more ‘Analysis architecture’ that
in turn is made up of a number of ‘View’. It can also be seen here that each ‘Scenario’
validates a number of ‘Requirement’ and also the ‘Analysis architecture’. Again, the
architecture is a key part of the validation process and is being validated consistently
throughout the development life cycle.

The final diagram, Figure 9.12, shown here for completeness takes the architecture
through to the ‘Design model’ and, again shows traceability back to other artefacts.

It shows that the ‘Design architecture’ is made up of a number of ‘View’ that has
three types, ‘Physical’, ‘Process’ and ‘Operational’. The ‘{incomplete}’ constraint
here shows that there are more views that this – bearing in mind that this is a simple
example.

It is important to bear in mind that there may be any number of views to represent
different aspects or contexts of an architecture.

9.5.4 Conclusion

To conclude, therefore, it should be made clear that the architecture of a system
can be a very important factor when considering the validation of the system. As the
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validation of a system is inexorably linked to the quality of a system (see Chapter 7 for
more details) it follows on that the architecture is an important part of system quality.
Although having a system architecture does not necessarily guarantee the quality of
a project, it is significantly more difficult to demonstrate quality without one.

It should also be remembered that when the architecture is generated, is very
much dependent on the type of project, but caution must be exercised, otherwise the
architecture may constrain the actual solution to the problem.

9.6 Applying the UML

9.6.1 Introduction

The concepts discussed so far are concerned very much with the essence of an archi-
tecture and very little has been said about how exactly to apply the UML to generating
a system architecture. This section looks at the different aspects of the architecture
that have been discussed so far and suggests some diagrams that may be appropriate
for representing the architecture. As with all applications of the UML, there are very
few hard and fast rules regarding which diagrams to use under which circumstances,
so the following information should be used as a guide.

The breakdown of the architecture is based on the typical information associated
with architectures discussed in the previous section concerning project validation.
As such, the following headings are based on the various types of architecture that
have already been discussed. It should be stressed, once again, that these are guidelines
only and are not carved in stone.

9.6.2 The requirements model architecture

The requirements model architecture is generated based on the requirements and
stakeholders of the project. The requirements and stakeholders may be represented
by use case diagrams, with use cases to represent requirements and actors to rep-
resent stakeholders and class diagrams and with a hierarchy of classes to represent
stakeholders.

Alongside the requirements model sits the requirements architecture model. In the
example shown here, two elements have been identified; the high-level structural
model and the legacy components, which may be realised in the UML as follows:

High-level structural model: This will typically contain the high-level elements of
the architecture. As the name implies, we are very much looking at structural, or
static, diagrams for this part of the model. Regarding structural diagrams, almost any
could be used. The class diagram is a main contender and forms the heart of most
UML models. The class diagram represents the system as a whole and then some
of the subsystems as classes, with an emphasis on the composition of each class.
Alongside this class structure may sit a composite structure diagram. Remember that
a composite structure diagram is very much like a class diagram but with an emphasis
on the logical relationships between different elements in the hierarchy, whereas the
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class diagram emphasised composition. The composite structure diagram is also used
to identify the major collaborations at this point, which will be used as a basis for the
scenarios later on. It is also possible that a package diagram may be used at this point
with each package representing a subsystem of the main system. This is one approach
that is favoured by some people, but not others. An object diagram, although possible,
is not very likely to be used at this point. Component diagrams may be utilised, espe-
cially when used in conjunction with package diagrams. Caution must be observed
when starting with component diagrams on a clean-sheet project as it is easy to
slip into a functional-decomposition style approach. Several methodologies advocate
this component-based approach, including Cheeseman [7]. Deployment diagrams
are far more likely to be used for legacy components, rather than the high-level
structure.

Legacy component: Many real-life systems projects will not start with a clean sheet
of paper and will have to integrate with an existing environment in some way. In
the case of a system upgrade or a new subsystem being developed, then the project
will include some legacy components. It is important to have an understanding of the
workings of any legacy components within the system, even if it is only at a high
level. In many cases, it may only be necessary to have an understanding of what the
legacy elements are and what they do in terms of inputs and outputs, often referred
to as the terminal conditions of a legacy element. In such cases, component diagrams
make ideal candidates for the modelling. Also, particularly when the environment
is important, it is useful to look at deployment diagrams to model how the system
fits into its target environment.

It should be stressed that the example shown here has only included structural elements
of the architecture and, as has been stated many times in this book, it is essential to
have both structural and behavioural aspects of the model considered if one is to get
anything that approaches a correct model. There are two answers to this – one is that
these diagrams could be traced back to the requirements model, represented as use
case diagrams hence providing a behavioural aspect to the model. The other answer
is, of course, that there may be some high-level behaviour defined at this point. This
is completely feasible but it should be remembered that the more ‘how’ included in a
model (behavioural aspects) then the more constrained the architecture will become.
It is often desirable to know ‘what’ needs to be done, with the ‘how’ left until later
in the development.

9.6.3 The analysis model architecture

The main aim behind any sort of analysis is to understand and in the context of system
development, the analysis, or specification, is all about understanding the problem.
It is almost impossible (without relying on luck) to solve a problem properly and
elegantly if it is not understood in the first place. The following information was
identified in the example shown in this chapter:

High-level scenarios: A high-level scenario will basically consist of a lifeline that
represents the system along with several other lifelines that represent stakeholders in
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the system. Before we even start thinking about the scenario itself here, we should
be thinking about consistency with the rest of the model. How should the players
(stakeholders, lifelines, etc.) in each scenario be identified and how does this relate
to the rest of the model? If composite structure diagrams have been used effectively,
the several collaborations will already have been identified in the structural aspect
of the model that can be used as a basis for the scenarios. If this is not the case,
then the stakeholders should be consistent with both the stakeholder view (realised
by a class diagram) and the actors in the use case diagrams. The main emphasis of a
high-level scenario is on the behaviour between the system, treated as a single entity
and the outside world, represented by actors. Another consistency check that can be
performed relates back to the context of the system (realised by a use case diagram with
a system boundary) where a number of interfaces will already have been identified by
associations crossing the system boundary. Each of these interfaces will be realised by
a set of interactions that describe the behaviour of each interface. The diagram that can
be used to realise these scenarios will be any, or any combination, of the interaction
diagrams – sequence, collaboration, timing and interaction overview diagrams. Each
scenario should then be traceable back to a use case, as each scenario is an instance of
a use case.

Low-level scenarios: Low-level scenarios obey the same rules as the high-level sce-
narios in terms of consistency and their usage, except that this time the emphasis is on
what goes on inside the system. Rather than a lifeline representing the entire system,
this time each lifeline will represent a component or lower-level element within the
system. Of course, it is essential that the low-level scenarios are consistent with the
high-level scenarios which will help towards the entire traceability of the project.

Analysis architecture: The analysis architecture will show a high-level represen-
tation of not only the system, but also any thing else that is contained with the
problem domain. For example, it may be that some system behaviours need to be
modelled for legacy systems, to see exactly how they interact with the current sys-
tem. It may also be, and is often the case, that some of the human stakeholders’
behaviours also need to be modelled. This modelling of stakeholders, whether they
are legacy systems or people, will typically use lower-level behaviour modelling
techniques, such as state machine diagrams and activity diagrams. Once each has
been modelled, it is then possible to ensure that their behaviours are consistent
with the high-level behaviour of the system, as described in the high- and low-level
scenarios.

Views: Various views will be discussed in more detail in the next section.

The main aim of the analysis is to understand the nature of the problem before it can
be solved. Any or all of the above techniques may be used to realise this, including
any from the requirements architecture model. Remember that the architecture should
evolve over time and there is no strict order to the way that this evolution will progress.
Some systems will have more of an emphasis on behaviour, such as communication
systems, whereas others will have more of an emphasis on static aspects of the model.
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9.6.4 The design model architecture

The main aim of the design architecture is to solve the problem based on the analysis
model. The solution domain, or the context of the solution, is actually far smaller than
the problem domain, as its context stops at the system boundary and is only interested
in the interfaces, rather than what is on the other side of the interfaces. The design
model architecture may use any or all of the techniques mentioned previously in
this section but, in the example shown previously, the design architecture model is
focussed on the various views of the system. There are many views that may exist
and the following is just a selection of some possible options.

Conceptual view: The conceptual view is very important to understanding the nature
of the whole problem and is, therefore, fundamental to the analysis architecture.
It is also important in the design architecture as it may be that the design view is
more concerned with concepts of various aspects of the solution, rather than the
general appreciation of the problem. When modelling concepts, it is a good idea to
make the models as simple as possible. It is often the case that people represent the
entire system as just a few classes and then represent the behaviour of each class
as simple state machine diagrams or activity diagrams. It is almost always the case
that such simple conceptual diagrams actually evolve into a more complete set of
scenarios and structural diagrams, but if the simple view aids understanding of the
basics of the system, then it is valid. Remember, keep asking yourself if you are
adding value and, as long as the answer is yes, then the modelling is valid.

Physical view: The physical view is a real-life representation of the major elements in
the system. This is generally used for one of two purposes – to model what is delivered
to the customer in a ‘what’s in the box’ fashion and also to start to analyse legacy
systems by trying to model the major elements in a preexisting system. The main
types of diagram used here are the deployment, component and, where applicable,
object diagrams. If the behaviour needs to be modelled, then it will usually be a
higher-level behavioural diagram, such as any of the interaction diagrams.

Process view: The process view is concerned with how the system will operate within
the real world. How is the system operated, what resources are required, and so on. The
diagrams used here will be those used for any type of process modelling as described in
Chapter 6. Therefore, the relevant diagrams would be: class diagram (for structural
process views, information view and stakeholder view) and state machines and/or
activity diagram (behaviour of each process). These processes must then be consistent
with the overall system behaviour as defined in the various scenarios previously
generated.

Operational view: The operational view is concerned mainly with how the system
is operated from the point of view of users and operators of the system. Again,
the diagrams used here are the same as those used for process modelling, with the
addition of interaction diagrams to show the high-level behaviour of the system.
In terms of knowing if the operational view covers all aspects of user operation,
this can be validated quite simply. Refer back to the original use case diagram and
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identify all use cases that interact with stakeholders at the user/operator level, which
may be identified from the stakeholder model. Then, ensure that enough scenarios are
generated to ensure coverage of each of these particular use cases. Again, consistency
of the diagrams is being applied to add yet more value to the model and to increase
confidence that the model is correct.

Verification and validation view: These two views are crucial to the success of a sys-
tem and for demonstrating its quality. The verification views demonstrate that the
system works, whereas the validation views demonstrate that the system does what
it is supposed to do. As verification is more concerned with demonstrating that the
system works, the diagrams used will tend to be lower-level diagrams, such as state
machine/activity diagrams in conjunction with structural diagrams. The validation
view, on the other hand, is more concerned with meeting the original requirements,
therefore the diagrams used will be interaction diagrams that trace directly back to the
use cases (and, hence, requirements) of the system. Of course, now that we have the
lower-level view (verification) and higher-level view (validation) it is then possible to
ensure that the two are consistent.

The views shown for the design architecture are just examples and, naturally, many
more views may be used. It may also be possible that within the context of a particular
process or methodology, the same name will be used for views with completely
different aims and purposes. Again, it should be stressed that the information here is
for guidance only.

9.7 Conclusions

System architectures are about much more than just elements in a system and how
they relate to one another. The architecture is a living beast that will evolve over
the course of a development life cycle. Like all beasts, it must be understood and
controlled in some way, hence the application of the modelling. Also included in
the architecture is not just what is in the system, but also the approach or process to
how the system is developed. The process then ties together all the project artefacts,
or deliverables, and identifies their interrelationships and how they should be used.
The process is also key to establishing traceability, validation and hence, quality.

There are many sources of information for defining architectures, ranging from
traditional software architectures that tend to have quite a narrow scope towards
large, system-based architecture models that are intended to be applied to massive
projects. Two examples are looked at (DoDAF and IEEE 1471) and, although neither
is perfect, they each represent a good starting point for architectural modelling and
identify several key points and common issues between the two. Any other approach
may also be modelled in the same way as these two standards, simply by applying
the techniques discussed in Chapter 6 to any source standard or model. The resultant
UML models may then be used as a basis for quality checking back to the source and
may form the basis of an assessment or audit.
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One of the main aims of the chapter is to demonstrate how an architecture may
evolve over the course of a system development and to identify some possible elements
at various points of the project. This simple example was then discussed in more detail
in terms of which UML diagrams could be applied to what aspects of the architecture
model. The example shown here is just that – an example – and the information con-
cerning the diagrams is simply a guideline that should provide the basis for thinking
about which diagrams apply where.

Finally, an architectural model will not ensure quality, but quality will be
significantly more difficult to demonstrate without an architecture.
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Chapter 10

Extending the UML

there is nothing permanent, except change

Heraclitus

10.1 Introduction

This chapter looks at how the UML can be extended by defining a user-defined
‘profile’. In order to illustrate the use of profiles, an example will be considered that
continues the discussion concerning process modelling from Chapter 6.

The UML is intended to be a general-purpose modelling language and, as such,
it is inevitable that situations will occur where the UML does not suit the application
very well due to the fact that applications are specific, whereas the UML is generic.
In such situations, it is possible to tailor the UML language by defining a ‘profile’.
A profile is a declaration of a set of extensions to the UML language that will enable
the UML to become more application- or domain-specific. These profiles may be
defined by an individual or organisation, usually for a specific application, in what is
known as a user-defined profile, or it may be a well-accepted, widely-used profile for
a specific domain. These domain-specific profiles may be used on an international
level and, indeed, the OMG is currently working towards developing a standard set of
profiles for specific domains. Examples of domains that may be considered include:
real-time application, systems engineering (the so-called SysML – not yet developed
enough for inclusion here), process modelling etc.

The use of profiles is, however, a double-edged sword as the whole point of the
UML is to enable people to speak a common language. As soon as this language is
altered, or tailored, for a specific usage then it is assumed that whoever is reading
the model also knows about these extensions. Caution must be exercised otherwise
it is possible to end up with a language that bears no resemblance whatsoever to the
original UML – including the symbols!
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10.2 Creating a profile

10.2.1 Introduction

In order to create a profile, it is necessary to create a new package that will contain
all the tailored aspects of the UML, or extension mechanisms. There are three such
extension mechanisms:

Stereotypes: Stereotypes are, by far, the most widely-used of all the UML extension
mechanisms and represent a powerful way to define new UML elements by tailoring
the UML meta-model.

Constraints: Constraints allow new rules to be created as part of a model, that add
more precision to different modelling elements. There are three main types of con-
straint: invariants, preconditions and postconditions, each of which will be elaborated
upon later in this chapter.

Tagged values: Tagged values exist outside the actual model itself and allow extra
information, usually management information, to be defined for a model of its parts.

The example chosen here will continue the example of process modelling that has
been introduced previously in this book by defining a ‘process profile’.

10.2.2 Background to process modelling example

Imagine that the process model, as introduced in Chapter 6, is to be introduced into
an organisation. This is an excellent example of a potential use of a profile. What we
have here is a defined set of knowledge, in this case concerning processes, that it is
possible to embed into the UML language itself. The structure of the process model
is well defined and can be seen in the following diagram.

The diagram in Figure 10.1 shows the overall structure of the process model,
as defined previously. It can be seen that the ‘Process model’ is made up of five
‘Process group’ and that each is made up of a number of ‘Process’. Each ‘Process’ is

5

1..*

1..*

Process model

Process group

Process

Practice

Figure 10.1 Process model structure
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made up of a number of ‘Practice’, ‘Deliverable’ and ‘Role’. Each ‘Role’ is respon-
sible for a number of ‘Practice’ and each ‘Practice’ produces or consumes a number
of ‘Deliverable’.

The information that is modelled here is actually knowledge concerning the nature
of the process model and this will be relatively static and tend not to change as time
goes on. It is possible to embed this knowledge into the UML and make it part of
the language.

10.2.3 Identifying and reading stereotypes

In order to use stereotypes effectively, it is first necessary to be able to spot one within
a model. Visually, this is very simple, as stereotypes are indicated by enclosing the
name of the stereotype within a set of double chevrons. The name of the stereotype is
displayed either inside the symbol (in the case of the stereotype applying to a graphical
node) or above the symbol (in the case of the stereotype applying to a graphical path).

design interfaces() 
architectural design() 
detailed design() 
develop tests() 
review()
update/issue()
establish traceability()

Integration test spec 
System design 
System test spec 
Design review report

«process»
Design

Figure 10.2 Stereotyped class

The diagram in Figure 10.2 shows a UML class with a number of attributes and
operations. However, in this case the class shown here is ‘not’ a regular UML class,
but it is a stereotyped class. This fact can be established because there is a word
‘process’ inside the chevrons above the class name. The English phrase that should
be used when reading stereotypes is ‘that happens to be a’. Therefore, to read the
diagram in Figure 10.2, one would say ‘there is a class called design, that happens to
be a process’. Of course, we are assuming here that the person reading the diagram
actually understands what the term ‘process’ means in the context of this model.

A stereotype can be defined as a tailored version of any type of UML element that
exists within the UML meta-model. A stereotype ‘must’ be based on an existing UML
element and it is ‘not possible’ to define a brand new element from scratch, it must be
based on an existing element. Some stereotypes are already defined within the UML,
such as «includes», «extends» that are defined as special types of dependency and
«component» that is defined as a special type of class.
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10.2.4 Declaring and defining stereotypes

Stereotypes must be declared as part of a profile and this is done by creating a package
to represent the profile and putting all the profile declaration information within it.

The stereotypes are then defined by tailoring the UML meta-model. Elements
from the UML meta-model are taken and then special types among them are declared
that represent the stereotype, as seen in Figure 10.3.

«profile»
process model

Class

«stereotype»
Process

Figure 10.3 Declaring and defining a stereotype

The diagram in Figure 10.3 shows a declaration of a profile and the definition of
a stereotype. It can be seen from the diagram that there is a package called ‘Process
model’ that happens to be a ‘profile’. Note how the way that a profile is declared
actually involves using a stereotype called ‘profile’. Within this profile, there are two
classes, ‘Class’ and ‘Process’ that are related by a particular type of specialisation
known as an extension. An extension is used specifically when defining stereotypes.
An extension is represented graphically by a filled-in triangle – very similar to the
generalisation symbol.

The element that is being stereotyped, in this case, is ‘Class’. The most important
point to realise at this point is that ‘Class’ is taken ‘from the meta-model’. The element
‘Class’ here represents the abstract notion of a class that is found in the meta-model,
or to put it another way, it is the representation of class from the UML language itself.

The new UML element, in this case ‘Process’, is shown in exactly the same
way as a child class on a specialisation but, this time, it happens to be a stereotype,
as indicated by the chevrons.

Now, whenever we see a UML class that happens to be a process, as shown in
Figure 10.3, we know that it is not a regular UML class, but a special type of class,
as defined in a profile – in this case the ‘Process model’ profile.

Practically, we now have a short-hand way to show that a particular class is
actually a process, but it is possible to embed a lot more knowledge within the profile
itself and, hence, add far more value to the use of the profile.

10.2.5 Adding more knowledge

It has already been established, in Figure 10.1, that the ‘Process’ is in itself part of
a larger structure and this information can also be embedded into the UML language.
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«profile»
Process model

Class

Process model «stereotype»
Process category

«stereotype»
Process

Deliverable

1..*

Practice

1..*

1..*
produce/consume

Role

1..*

1..*

is responsible for

5 1..*

Figure 10.4 A more detailed profile

Figure 10.1 can now be used as the basis for the new ‘Process model’ profile, as
shown in Figure 10.4.

The diagram in Figure 10.4 shows that the stereotyped class named ‘Process’
now has a structure below it. This means that whenever a class that is stereotyped as
‘Process’ is encountered on a model, it also has that same structure below it. In the
same way, it is also possible to specify behaviour for any classes that have operations
(using, say, state machine diagrams or activity diagrams) and this behaviour will
also be embedded into the stereotype. The more information that is embedded into
a stereotype, on the one hand, the more powerful it becomes. On the other hand,
however, any such complex stereotype will require more expert interpretation and
runs the risk of becoming completely unreadable. This also reinforces the importance
of having a well-defined and well-declared profile.

10.2.6 Declaring a profile

When using any profile, it is important that the process is not only well defined, but
also that it is openly declared to any readers of the diagram. A profile is declared on
a project by treating the project as a package and then relating the stereotyped profile
package to it. It is also possible to relate more than one profile to a project or, indeed,
profiles may be related to one another.

The diagram in Figure 10.5 shows an example of profiles being declared for
a particular project. In the example seen here, the project itself is represented by
the package named ‘Process model’ and it can be seen that this project ‘applies’



310 UML for systems engineering

«profile»
Process

«import»

«import»

«profile»
Process implementation

«profile»
Process model

Figure 10.5 Declaring profiles

a package called ‘Process’ that happens to be a ‘profile’. This example also takes the
concept of profiles one step further by showing that the ‘Process’ package also applies
a package named ‘Process implementation’ that happens to be a profile. This diagram
actually represents not only the process structure to be used on all projects, but also
the way that the processes are to be implemented using a process implementation
profile. Such an implementation profile may be defined for a specific commercial
tool and, taking this further, profiles may be created that apply to a number of tools.
By taking this approach of defining a separate profile for each commercial tool,
it ensures that the process remains robust even in the event of having to change tools
between commercial vendors. Of course, this means that should any project require
the use of a different tool for its process implementation, the original process model
profile remains unchanged, hence ensuring a robust process model, regardless of the
tool that is being used to implement it.

10.2.7 Stereotyping symbols

It is possible to stereotype the actual symbols that represent UML elements to what-
ever icon is desired. The theory behind this is that some people will find the UML
element symbols too difficult to read and that stereotyping icons will make it easier
for everyone who reads this model. Although both of these points are true, there is
a massive danger when doing this as the assumed knowledge that is required in order
to read the diagram correctly increases dramatically. If this stereotyping of symbols
is taken to extremes, it is almost impossible to guess even the type of UML diagram
that the model is representing, let alone what the diagram actually means.

As an example of this, consider the model in Figure 10.6 and then try to answer
the questions posed below.
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Figure 10.6 Stereotyped icons

Figure 10.6 shows an extreme example of stereotyped symbols, but try to answer
the following questions:

• What type of UML diagram is it?
• Which UML element does each symbol represent? (Providing that you can answer

the first question correctly.)

The actual answer to both questions is that it could be any diagram! Each UML
diagram is made up of a number of symbols that are nodes with arcs drawn between
them. The model shown here also shows some symbols (although strange) with arcs
that join them. Therefore, it is almost impossible to read the diagram without some
serious assumptions being made to interpret the new symbols. This may seem like an
extreme example, but take a look at some examples shown in UML literature and it
will become clear that this model is not as extreme as it first appears.

Having said all this, stereotyping symbols can be very useful and add value to the
models; however, much caution must be exercised when using them, even more so
than with standard stereotypes.

10.2.8 Summary

In summary, therefore:

• Stereotypes refine existing UML elements from the UML meta-model. It is not
possible to define completely new elements.

• Stereotypes may be used to refine any UML element from the meta-model,
not just classes. For example, several stereotypes are already defined within
the UML language that apply to dependencies, such as «includes» and «extends».

• Whenever stereotypes are used, they must be defined in a profile. This acts like
a legend to a map.

• It is important to avoid over use of stereotypes, particularly when it comes to
icons, as stereotypes by their very nature assume that the reader has a certain
amount of knowledge.
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Stereotypes are the first of the three UML extension mechanisms that exist. The next
type is ‘constraints’.

10.2.9 Introduction to constraints

This section looks at the second of the UML extension mechanisms, that of constraints.
Constraints allow the creation of new rules in the UML that are a semantic restric-

tion represented by a text expression. The constraint itself is shown between two curly
brackets and may be represented either informally by simply enclosing text within
the curly brackets, or more formally using a specific language, such as a constraint
language or a programming language. These may include: OCL (object constraint
language), programming languages (such as C++ or Java), pseudocode or, in some
case, natural language.

Constraints are declarative in nature and appear on UML diagrams as restrictions
on one or more value of a UML element.

Constraints are limited to being added to only a few types of UML elements:

As an addition to certain UML elements: Although constraints may be associated
with any UML element, the use of the OCL limits their use to a subset of UML
elements (defined later).

Attached to a dependency: This is often used, for example, to express a binary
relationship between two UML entities, such as an ‘XOR’ function between two
classes.

Attached to a note: Constraints are often written in notes and associated with UML
elements using a dependency relationship.

Constraints are used to express aspects of the UML model that cannot ordinarily be
represented using the UML.

«frame»
Left

«frame»
TopRight

«frame»
BottomRight

«page»
Index

«link»
Option

«page»
Information
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{RightFrame.Src = Picture.gif}

Figure 10.7 Example of constraint

Figure 10.7 shows how a constraint has been applied to the class ‘TopRight’,
indicating that the ‘.Src’ value of ‘RightFrame’ is always set to the value ‘Picture.gif’.
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This ensures that the bottom right-hand frame is always set to a value that refers to
a picture page. The constraint itself is written inside a note and its relationship with
a class is indicated with a dependency, as defined previously.

10.2.10 Formal constraints – the object constraint language (OCL)

10.2.10.1 Overview

The structure and contents of a constraint can be relatively informal, providing that
it makes sense to the reader and adds value to the model. However, for more formal,
precise UML modelling there is a bespoke language that is defined as part of the
UML standard, known as the object constraint language, or OCL. The language itself
is fairly simple yet powerful and can be used to express aspects of a UML model
that are not covered by the basic UML syntax. An in-depth discussion concerning the
OCL is outside the scope of this book; however, this section gives a very high-level
view of the structure and syntax of the OCL. For a complete definition of the OCL
and its use, see Reference 4. This information is presented in the same way as the
UML is presented in previous chapters, by using the concept of a meta-model.

The OCL is used to represent constraints that are then attached to particular
elements of a UML model. There are three basic types of constraint, as shown in
Figure 10.8.

Constraint

Pre-condition

Post-conditionInvariant

Figure 10.8 Types of constraint

Figure 10.8 shows that there are three types of ‘Constraint’: ‘Invariant’,
‘precondition’ and ‘postcondition’. These will be described in more detail in due
course.

10.2.10.2 Invariants

An ‘Invariant’ describes something that cannot change, such as an attribute value.
This is often useful when describing class hierarchies using the specialisation and
generalisation relationships, where the difference between two child classes may be
the fact that one inherited attribute is always set to a certain value. In order to illustrate
this, consider the example shown in Figure 10.9.

Figure 10.9 shows a possible use for an invariant constraint. In this example, the
class ‘Mammal’ is shown as having three attributes – ‘number of legs’, ‘gender’ and
‘age’ – which will be inherited by its two subclasses ‘Dolphin’ and ‘Cat’. Obviously,
there are many differences between a dolphin and a cat, but for the purposes of this
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number of legs
gender
age

Mammal

Dolphin

number of legs

Cat

{number of legs = 0..4}{number of legs = 0}

number of legs

Figure 10.9 Possible use for a constraint

example we shall consider how we may differentiate between them based on the
information contained in the parent class. Consider the attribute ‘number of legs’,
which is applicable to both dolphins and cats. In each case, there is a value assigned
to this attribute that (in most cases) does not change. A ‘Cat’ will always have ‘number
of legs’ set to the value ‘4’ (unless it has been in some sort of accident, in which case
set it to between zero and four) whereas the ‘Dolphin’ will always have its ‘number
of legs’ attribute set to the value zero. This concept of a value never varying is the
‘invariant’ in the OCL.

10.2.10.3 preconditions and postconditions

The other two types of constraint are the ‘precondition’ and ‘postcondition’, which
are usually associated with operations. In order to understand why preconditions
and postconditions occur, one must consider the concept of ‘design by contract’.
A ‘contract’ is defined as an unequivocal agreement between two parties in which
both parties accept obligation. The two parties, in this case, are the consumer and
the supplier, which will be classes in a UML model. The services, or operations, that
are available to a consumer are defined by the interface to the class. This is shown
visually in Figure 10.10.

Figure 10.10 shows the concepts concerning preconditions and postconditions
related to the previous paragraph. It can be seen in the model, therefore, that:

• The ‘Interface’ defines the access available to the ‘Consumer’ of a particular
class. This ‘Interface’ is made up of one or more ‘Operation’ that will be made
publicly available to the outside world. Each ‘Operation’ is made up of zero or
more ‘precondition’ and zero or more ‘postcondition’.

• A ‘precondition’ states what must be made available to the ‘Supplier’ when an
operation is invoked. To put this another way, the ‘precondition’ describes the con-
ditions that must be met, including any information that must be made available,
in order for the operation to execute correctly.
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Party Contract

Consumer SupplierInterface

Pre-condition

Post-condition

enter into

accept

provide

defines access
available to

defines what must be
made available to

defines what must
be made availabe to

Figure 10.10 Concepts concerning preconditions and postconditions

• A ‘postcondition’ states what must be made available to the ‘Consumer’ once
an operation has been executed. To put this another way, the ‘postcondition’
describes what is expected as the outcome of the execution of the operation.

These three types of ‘Constraint’ are represented using OCL expressions. Each OCL
expression has the same structure, illustrated in Figure 10.11.

Predefined type

refers to

Result

UML element

defines a type
within

User-defined model type

OCL expression

Figure 10.11 Structure of an OCL expression

Figure 10.11 shows that an ‘OCL expression’ is made up of a ‘User-defined
model type’, a ‘Predefined model type’ that refers to the ‘User-defined model type’
and a ‘Result’. The ‘UML element’ defines a type within a ‘User-defined model type’
and may be further described using the model in Figure 10.12.
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Data typeUse case

Actor

UML element

Class

Figure 10.12 Types of UML element

Figure 10.12 shows the four basic types of ‘UML element’ that are used in
the OCL: ‘Class’, ‘Use case’, Data type’ and ‘Actor’. It is these UML elements that
define the ‘User-defined model type’. This relationship effectively allows a constraint
to be associated with a UML element by stating that the UML element defines the
type required in the OCL expression. Effectively, this means that the constraint can
only be associated with the UML element (and any other of their subelements, such
as attributes and operations).

The ‘Predefined types’ from Figure 10.11 may also be defined in more detail,
as shown in Figure 10.13.

Predefined type

Collection type

Real

Boolean

String

Collection

Set

Bag

Sequence

Integer

Basic type

Figure 10.13 Description of user-defined types

Figure 10.13 shows that ‘Predefined type’ has two subclasses: ‘Basic type’ and
‘Collection type’. ‘Basic type’ has types ‘Integer’, ‘Real’, ‘Boolean’ and ‘String’,
which are the same as their mathematical namesakes. ‘Collection type’ has four
subclasses, which require a little more description:

Collection: A ‘Collection’ is a generic name for ‘Set’, ‘Bag’ and ‘Sequence’, which
contains their common operations.

Set: A ‘Set’ is a type of ‘Collection’ that contains instances of OCL types. Each
instance can only be present once in the collection and the instances are not ordered.
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Bag: A ‘Bag’ is a type of ‘Collection’ that contains instances of OCL types.
Each instance can be present more than once in the collection and the instances
are not ordered.

Sequence: A ‘Sequence’ is a type of ‘Collection’ that contains instances of OCL
types. Each instance can be present more than once in the collection, but this time the
instances are ordered.

Each ‘Predefined type’ has a set of operations associated with it that have a name,
an expression and a result type. The model in Figure 10.14 shows the operations
associated with the type ‘String’.

concat()
size()
toLower()
toUpper()
substring()
equals()
notEquals()

String

Figure 10.14 Operations of ‘String’

Figure 10.14 shows that the ‘String’ type has seven operations: ‘concat’, ‘size’,
‘toLower’, ‘toUpper’, ‘substring’, ‘equals’ and ‘notEquals’.

Let us now consider some examples of OCL expressions. The constraint expressed
visually in Figure 10.9 may be shown in OCL as:

Cat
Number of legs = 4

Where ‘Cat’ is the class name and ‘number of legs’ the attribute to be constrained.
The attribute is of type integer, therefore it may use any of the operations defined on
the predefined type ‘Integer’. The equals sign ‘=’ is one such operation and its value
(‘Value’ from Figure 10.11) is assigned as ‘4’.

The ‘Collection’ type deals with single-valued or multi-valued attributes. As an
example of this, imagine that we have added a new attribute called ‘name’ and we
would like to define its value as a set of three names (all cats have three names):

Cat
name = Set {name}

Where ‘Cat’ is the class name and ‘name’ is the attribute to be constrained.
The attribute is of type set, therefore it may use any of operations defined on the
predefined type ‘Set’. The value (‘Value’ from Figure 10.11) of the set is assigned as
all values that can be found for ‘name’.

For a complete and far more detailed description of the OCL, see Warner’s
definitive book on the subject.
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10.2.11 Introduction to tagged values

This section looks at the third UML extension mechanism, that of tagged values.
Tagged values allow extra information to be added to any UML element and are
shown as tag-value pairs. This means that each tagged value is made up of a tag
string, a value string and an equals expression.

Tagged value pair

Tagged value

1..*
‘{’

Tag string ‘=’ Value string

‘}’

Figure 10.15 Tagged value syntax

Figure 10.15 shows that a ‘tagged value’ is made up of a ‘{’, one or more ‘Tagged
value pair’ and a ‘}’. Each ‘Tagged value pair’ is made up of a ‘Tag string’, a ‘=’
and a ‘Value string’.

Tagged values are typically used to show extra information, such as project
management information or configuration management information. Tagged values
are not part of UML semantics, but are information about the model itself.

«page»
Chickens

{Author = JDH, Date = 8.8.99}

«page»
Capons

{Author = JDH, Date = 9.9.99}

Figure 10.16 Example tagged value

It can be seen from the model in Figure 10.16 that extra information has
been added to two classes, in the form of a tagged value that contains two tagged
value pairs. The tag strings are ‘Author’ and ‘Date’ and the value strings that define
the value for each.

Sometimes it is desirable to define a set of tagged values that may be added to
a particular element. In such a case, they should be defined on an assumption model
by defining types of ‘tag string’ as defined in Figure 10.15
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10.3 Conclusions

This chapter introduces three basic extension mechanisms that exist in the UML:

• Stereotypes: These are used to define new UML elements based on existing ones.
Specialist knowledge is required to understand a model that uses stereotypes,
which must be represented on an assumption model.

• Constraints: There are three types of constraints: invariants that restrict the value
of a UML element, preconditions and postconditions, that define what happens
before and after the execution of an operation.

• Tagged values: The use of tagged values allows extra information such as project
management and configuration management details to be added to UML elements.

All these extension mechanisms should be used with caution, as it is very easy to
make a diagram more confusing than it might otherwise be. Remember, if you are
unsure about whether to use stereotypes or not, ask yourself whether it adds value to
the model or in fact detracts from it.

10.4 Further discussion

1. Revisit the new process that was modelled as part of the process modelling
exercise in Chapter 6. Consider the high-level structure model and apply stereo-
types to it. Where can stereotypes be used here? How will this affect other
models?

2. Define the assumption model for your stereotypes from question 1.
3. Find out more information about the OCL and model some of its predefined types

and their associated operations, as shown in Figure 10.14.
4. Why would you prefer to use OCL over informal constraint modelling, or vice

versa?
5. Create a set of tagged values that may be applicable to UML components from

any component diagram from Chapter 5. Are there any other UML elements to
which your tagged values may be applied?
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Chapter 11

Tools
hi, I’m Plenty

Plenty O’Toole

11.1 Introduction

This chapter discusses tools that may be used for UML modelling and, in some cases,
for general systems engineering tasks. The main aim of this chapter is to provide
information and guidelines that describe how to make an informed decision when
choosing a tool.

At the end of the day, if you are carrying out any form of UML modelling, you will
need to consider obtaining some sort of tool for assistance. Tools range from the very
basic, such as a simple PAPS (paper and pen system) tool, to a full-blown, interactive
‘environment’, but which sort of tool will be right for you? Tools can be expensive,
very expensive! It is therefore absolutely essential to know your requirements when
choosing a tool and to make sure that your requirements drive the choice of tool,
rather than the other way around.

No specific tools will be mentioned explicitly in this chapter as the tool market
fluctuates very quickly. The functionality of tools changes enormously from one
version to another, or from one configuration to another. The marketplace itself is
still quite unstable with larger companies swallowing up smaller ones in order to take
over their market share or, in a slightly more sinister way, to remove a competitor
from the market altogether.

Some companies are quick to dispel their competition with swift statements,
while others produce reports and comparison tables between their tools and their
competitors’. It is worth remembering where tool vendors actually make their
money – is it from the sale of the tools or from the maintenance costs that go along
with it? Is it in their interest to provide a tool that is simple and easy to learn when
they provide training courses and consultancy to help the way you work with the tool?
This may seem like a particularly cynical view, but when spending such potentially
large sums of money a healthy dose of cynicism can save a significant amount.
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This chapter is split into three main sections:

• The first section gives a brief overview of CASE (computer aided/assisted
software engineering) tools and discusses what a typical tool can do. Perhaps
even more important than this is to realise what a tool cannot do and to have a
good picture of what its limitations are.

• The lion’s share of this chapter is devoted to providing a number of requirements
to bear in mind when choosing a tool. The guidelines in this section are based
on many years’ personal experience dealing with both tools and their vendors
and also seeing the result of what making the wrong decision can have on an
organisation or project.

• Finally, this chapter winds up with some conclusions concerning tools.

All of these points are designed to be generic so that they may be applied to the
selection of any CASE tool whatsoever, rather than trying to compare specific tools
on the market. Clearly, the latter approach would render this chapter obsolete even
before the book was published, bearing in mind the speed at which tools change and
the rapid growth in the number of CASE tools on the market.

11.2 CASE tools

The tools that are discussed in this chapter may be split into two broad
categories – CASE tools and systems engineering tools – although generally speaking
the guidelines in this section are equally applicable to both.

The acronym CASE stands for either ‘Computer Aided Software Engineering
tools’ or ‘Computer Assisted Software Engineering tools’. Although both definitions
are correct, the true definition is lost in the mists of time and nobody is really sure
which of the two definitions is the true one. CASE tools are generally associated
with a particular modelling language, method or methodology. Obviously, the tools
this book is aimed at are the UML-based CASE tools, although the guidelines are
applicable to any type of CASE tool.

Systems engineering tools are often similar to CASE tools, but they do not
generally adhere to a particular approach. Their functionality tends to be aimed at a
higher level – dealing with process-oriented functions rather than modelling per se.

Some of today’s tools actually do both, or may be integrated into a ‘suite’ of
tools that are purported to make life far easier. Beware of words such as ‘seamless’,
‘transparent’ and ‘single-stop solution’ when considering any tool as they are concepts
that are much vaunted yet rarely exist in real life.

11.3 Selecting a tool

11.3.1 What tools can do

Before entering the world of CASE tools, it is very important to take a reality check
and to sum up what these tools are capable of. Generally, CASE tools can help
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a project in three ways:

• The main use of CASE tools is to help the people who want to model, to use the
language in a consistent and constructive way. The tool should aid a newcomer,
yet at the same time not hinder an experienced user. Most CASE tools will make
modelling easier in that: models will be quick and efficient to produce, models
will look good (hence aiding communication) and they will help to store the
diagrams in the model in a simple and efficient manner. As a basic rule of thumb,
imagine creating UML diagrams using a simple drawing package and then make
comparisons based on its usage compared to a CASE tool. This is the benchmark
that is used throughout this section.

• The second way that CASE tools can make life easier is, like all computer appli-
cations, to take the drudgery out of a particular task, in this case by helping with
checking and verification. This becomes very important with regard to syntax and
semantics and can, theoretically, be used as part of a quality control process as a
first step towards assessing models.

• The third major use of CASE tools is to help with documentation. In an ideal
world, documentation should be fully automated and a simple keystroke should
automatically produce any report that is required. The reality of this is somewhat
different, but this is discussed further in due course.

CASE tools do have many other functions but these may be grouped into the ‘bells and
whistles’ category from a systems engineering viewpoint. Code generation is covered
in this section but remains simply one of main capabilities that may be required by
an engineer, rather than being the main aim of the tool, as in a software engineering
context.

Systems engineering tools generally work at a higher level, being more concerned
with process activities than actual modelling. The typical functionality of a systems
engineering tool includes:

• Traceability throughout life cycle phases. Being able to trace individual require-
ments forward through the project life cycle is very important. The opposite is also
essential, for example, starting at one point in the design and trying to trace back
to its originating requirement. This is the main focus of many systems engineering
tools.

• Information management, where information pertaining to a project (that should
be based on a process) can be stored in a central repository across all phases of
the systems life cycle. This includes managing the implementation model if the
approach suggested in Chapter 6 is followed.

• Process definition and help. This is potentially the most useful aspect yet also
potentially the most dangerous aspect of tool functionality. It is stated (over and
over) in this book that the process must drive the tool and not the other way
around. By letting a tool effectively organise your process, it is relatively easy to
fall into this trap.

This chapter focuses on CASE tool functionality with regard to the UML, rather than
general systems engineering functionality. It should not be too difficult, however, to
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extract a few rules from the ones presented here that would be applicable to almost
any tool.

11.3.2 What tools cannot do

The previous section introduced some high-level features of what CASE tools
can do, and now this section looks at the opposite of this, which is, what CASE
tools cannot do. The nonfunctionality of CASE tools may be summarised as
follows:

Validation: Despite what people may say, there is no inherent mechanism for current
tools to validate designs. Designs may be verified using the mechanisms mentioned
previously, but there is no way to validate whether these designs actually meet their
original requirements or not.

Ensure correct models: There is no way that a model may be automatically checked
to ensure that it makes sense. Taking an example that has been used previ-
ously in this book, there is nothing to stop someone creating a model that reads
‘cat’ chases ‘dog’, which in our stereotypical world cannot happen. A tool can
check the syntax of the model, but cannot guarantee that the overall model is
correct.

Another function that CASE tools cannot perform is to implement a generic process:
Many tools implement a process, but this will probably not be the process that a given
organisation would want to implement. This can be very dangerous, as adopting a
proprietary process can lock an organisation into a single vendor’s product, which can
turn out to be very expensive. This is a situation that has been encountered all too often
in the past. The problem starts when an organisation buys a proprietary tool that imple-
ments a proprietary process. The organisation is then convinced that this process is an
appropriate approach for their particular set up, without any sort of analysis or assess-
ment by the organisation. Quite often, this buy-in will occur when the organisation is
shown a ream of case studies and an example of how the process works that has been
implemented using the tool. The next step is that the organisation, when it comes down
to implementing the process on a real project, does not have the practical knowledge
needed to use the process properly, and thus calls in consultants from the company that
produces the tool. The next step is that training courses are required in order to achieve
the full benefits of the tools and the process. A few months later, the price of all consul-
tancy and training goes up significantly, but the organisation is now locked into using
a particular tool and approach and has invested too much time and money to pull out
at this stage. Another eventuality is that the tool vendor then goes out of business or
is bought up by a larger company, effectively reducing the resources required for the
project.

This section may seem rather negative, but it is important to approach assessing any
tool with both eyes wide open.
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11.4 A requirements model for CASE tool evaluation

11.4.1 Requirements model overview

This section introduces a simple requirements model for tool selection. A number
of different high-level requirements have been created, each of which has several
lower-level requirements that are discussed in more detail in their relevant section
of text.

Tool evaluation context
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Figure 11.1 High-level view of the requirements for CASE tool evaluation

The diagram in Figure 11.1 shows that there is a single main requirement to
‘Provide CASE tool’ that includes five high-level requirements, that are:

• ‘Provide modelling capability’ that describes the drawing, management and
usability of a tool.

• ‘Provide system functionality’ that describes the actual system requirements
in terms of any hardware and software requirements along with networking
capabilities.

• ‘Provide interoperability capability’ that describes how a tool may be required to
operate with other tools, technologies or clients.
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• ‘Provide capability’ that describes the sort of tool capabilities that may be used by
a systems engineer, including: report generation, extension functions, and so on.

• ‘Provide application functionality’ that describes how the use that the tool may
be put to will generate requirements for the tool.

The main requirement of ‘Provide CASE tool’ also has several constraints that will
limit how the choice of tool can be made, as follows:

• ‘Ensure vendor’s quality of service’ that describes how to ensure that the vendors
can meet all of your requirements.

• ‘Be compatible with process model’ that describes how the tool may be required
to fit in with a particular approach to working, which may put additional
requirements on the tool.

• ‘Be compatible with UML’ that describes how to ascertain what your UML-related
compliance requirements are and how this may form an input to tool selection.

Each of these areas is covered in more detail later in this chapter.
Different tools offer different capabilities, but there is a core set of functionality

that is offered by many of the tools. Many specialist capabilities will not be dis-
cussed here, such as specific real-time extensions and language-specific constructs.
Remember that the model presented here is a set of requirements for tool selection,
not the actual process that must be followed. Of course, it is possible to generate a
set of processes meeting these requirements that can form the basis for a consistent
tool evaluation service.

11.4.2 Modelling capability provision

Perhaps the main reason to obtain a CASE tool is to actually help with the
modelling of a system. This is far more complex than it first seems and there are
several considerations to be borne in mind when considering this requirement, as
shown in Figure 11.2.

Perhaps the main reason to buy a CASE tool is to help with editing the actual
diagrams themselves, as indicated in Figure 11.2 (by the ‘Edit models’ requirement).
While it may be practical to create initial models using a paper and pencil or a white
board with sticky notes, there comes a point in every project where it becomes too
impractical to continue using a hard medium, due to the constant changes that must
be made to each model, particularly in the early stages of a project. These constant
changes are due, in part, to the iterative nature of UML development.

It may also be tempting to use a standard drawing package to create UML
diagrams – after all, one of the requirements that was used when creating the UML
itself was to make it simple to implement on an automated tool. Any drawing pack-
age, no matter how basic, is capable of creating any UML diagram, which must be
seriously borne in mind when looking at some of the more expensive CASE tools
that are around today. One of the problems that existed with the older modelling
techniques was that the symbols chosen were a little esoteric at times. Anyone who
has ever tried to draw a Booch class, represented by a ‘cloud’ shape, will know the
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Figure 11.2 Requirements for provision of modelling capability

problem. Anyone who has ever tried to draw a ‘dashed’ cloud either by hand or with
a tool will also know frustration!

Some sophisticated drawing packages allow the creation of special templates that
allow specific shapes to be created automatically, which means that it is possible to
completely configure a CASE tool out of a simple drawing package! This may seem
totally impractical, but almost all of the tools around at the moment do not meet the
UML 100 per cent when it comes to drawing the diagrams! It is important, therefore,
to ensure that you are getting more out of the CASE tool than just a bespoke drawing
package, especially bearing in mind the difference in cost between a simple drawing
package and a full-blown CASE tool.

Following from the basic editing requirement, comes the issue of how the model
is stored and how all aspects of the model are managed. Indeed, the ‘Manage models’
requirement may be the essential factor in choosing between two tools. It should be
borne in mind that different tools use different formats for storing the core data. Is the
tool using a data base, or a simple ASCII text file? Is the format a standard format,
such as HTML, or a bespoke format that can only be read by other copies of the
same tool? Can the source files be emailed, or do they rely on a particular instance of
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license in order to be read? These may seem like trivial questions, but are well worth
investigating since what use is a tool, if you are working in a distributor team and that
tool will not allow models to be emailed? This relates directly to another requirement,
that of ‘Provide access control’. If you are working within a team, then can different
members of the same team access the same information at the same time? If so, it needs
to be determined how the tool gives protection against two people changing the same
data simultaneously. Most tools allow the model to be partitioned in some way in
order to allow distributed working. This may then throw up security issues as some
information in the model may be classified and unavailable to all members of the team.

Another aspect of using a CASE tool that is worth considering is how the tool
navigates between the different diagrams, indicated in Figure 11.2 by the ‘Navigate
model’ requirement. Some tools may allow any diagram to be created outright, while
others may insist that one diagram exists before another is created. As an example
of this, consider the strong relationships between the nine diagrams that have been
discussed so far in this book. State machine diagrams, it has been stated, should be
associated with classes or use cases; therefore, some tools will only allow a statechart
to be created if it has a class or use case associated with it. Another example is where
a tool has adopted a particular process that insists on the diagrams being created in
a strict, predefined order such as: use cases first, interaction diagrams (collaboration
and/or sequence diagrams) and then class diagrams. Another tool may insist, for
example, that class diagrams should be the first diagrams to be created and all other
diagrams should relate back to this.

Another requirement is to be able to ‘Perform consistency checks’. Every CASE
tool on the market will offer some form of verification that can be automatically
performed on the UML models and this, in many cases, will add the most value to
the modelling process. Invariably, this turns out to be some sort of syntax checking
that can be carried out on diagrams, and consistency checks between diagrams. These
checking facilities may be automatic, where the syntax is checked as the model is
entered, or they may have to be invoked explicitly. The actual level of checking varies
enormously and the following list gives some indication of the range of the verification
facilities of tools, based on the relationships between all types of UML diagrams:

• One of the simplest checks is to ensure that there are no name clashes in a model.
A simple example of this may be to check that no two classes have the same name.
This is a feature that is often automatic and, in many cases, the tool may actually
forbid a name clash, rather than just providing a warning.

• Another popular check is to ensure that send and receive events are consistent
in some way. There are many ways to ensure that events are consistent, ranging
from simply checking that each existing send event has a related receive event on
the model, to ensuring that arguments passed between objects match up.

• Some tools ensure that any activities used on a statechart are chosen from a list of
operations from their associated class diagram. In fact, some tools actually add
any activities that do not exist as operations to their associated class diagram.

As can be seen from this list, the functionality of checking facilities varies, but there
is a more subtle danger with using a tool’s checking facilities and that is how the
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checks are actually performed. This may seem trivial, but if the checking facilities
are being used as part of a quality system, or as part of a defined process that will, in
some way, demonstrate the correctness of a model, it is absolutely essential that the
underlying rules of each check are explicitly defined. This is a problem that rears its
ugly head in two of the other aspects of the assessment criteria laid out in this chapter.

The final point to bear in mind with verification is what actually happens to the
results. Are they displayed on the screen or are they saved in a file somewhere? Will
they still exist once the display window has been closed down or will they be deleted,
never to be seen again? It may even be desirable to associate them with a particular
version of a model (which relates to one of the other points here: version control).

The following list summarises the basic assessment criteria for model verification
facilities in a tool:

• What verification facilities are offered by the tool?
• Are these verification facilities defined in some way, or are they nondeterministic?
• How are the results displayed and stored?

If the tool cannot offer adequate checking facilities, what exactly is it offering over
and above a standard drawing package?

One requirement that will relate to all aspects of using the tool is ‘Provide error
messages’ because, as when using any tool, there will be a learning curve where
mistakes are made or, as is often the case with any software package, things go
inexplicably wrong. Everyone must have, at some point in their lives, come across an
error message that goes along the lines of ‘error X07708’ which is of no use to man or
beast for any practical purpose. Error messages need to be intelligible to anyone using
the tool and it should also be immediately apparent whether the error message relates
to the tool itself or the underlying operating system. It is very frustrating to come
across an error message and contact the vendor, only to be told that the error has
nothing to do with their tool!

The final requirement, which is also the most difficult to quantify in any way, is
that of ‘Ensure usability’. There are obvious criteria here, such as the look and feel,
compared to, for example, a standard Windows environment, but other aspects are
not so easy to evaluate. It is always worth reminding oneself that a tool is supposed
to make life easier and quicker that doing the task by hand, so if you find that it takes
an hour to enter a single diagram, then maybe that tells you something about the
usability of the tool. Of course, there will be a learning curve involved, but all tools
should be intuitive to use and, after all, the basic functionality should be similar to
that of a drawing package which, it should be remembered, any primary-school child
can successfully operate. If a tool requires extensive training and consultancy to use,
it should be questioned whether it is usable or not.

11.4.3 Provision of interoperability capability

No project is an island and, as such, projects often work alongside other projects
or a disparate range of clients. Also, the project may be constrained by the other
tools that are already being used, so any tool may have to be compatible with other,
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Figure 11.3 Requirements for provision of interoperability capability

nonengineering related packages. This section addresses these issues and starts by
considering the requirements in Figure 11.3.

In many real-life scenarios, the CASE tool that is chosen will probably have
to integrate with an established working environment or, to put it another way, to
‘Provide interoperability capability with other applications’. This will entail the CASE
tool output being used by other tools that may be used, for example, for aspects of
project management. Some CASE tools vendors, sensing this, have geared their
product towards becoming a single component of a complete solution that means that
the actual UML CASE tool is part of an overall suite of tools that will perform every
single task that your organisation could possibly want, which is good.

Some tools will offer extra functionality bundled into the CASE tool itself. This is
all well and good, but will it fit into the existing working environment, or will it
actually force people to work in a way that the tool wants people to? Extreme caution
must be exercised here, as it is another example of the tool driving the process, rather
than the other way around.

Some of the functions that may be worth thinking about are listed below. Bear
in mind, however, that some of these may be included in the CASE tool or may be
available as part of the same suite, or may even (the most likely case) be tools that
are already being used within the organisation.

Project management tools: The CASE tool may interact with such tools in order to
make a link between life cycle phases and aspects of project management.

Configuration management and change control: This is essential for any type of real
project where the evolution of models must be recorded. This is achieved, in reality,
by baselining and version control.

Requirements management tools: With requirements driving the whole project and
defining the basic quality of a project, it is important that they are well defined and
well managed.



Tools 331

Life cycle support tools: Some tools help with the development process and thus
the life cycle of a project. Again, this may tie both project management and engi-
neering activities together, but the tool must be flexible enough to allow any process
to be adopted, rather than simply some proprietary process that is put forward by
the tool.

Animation tools: Some tools will animate different aspects of models. This may range
from highlighting states that are active when a system is being executed, to executing
‘what if ?’ situations in the form of scenarios.

Office suite packages: Some packages are now ‘fully integrated’ into a complete
office suite so that there is no need to ever look at another tool, as this one will do
absolutely everything that anyone could possibly want. Silver bullets, indeed!

Integration with your existing environment may well be the crucial factor when buying
a tool. It is important, therefore, to take stock of the current working environment
before choosing a tool.

The working environment may also include working ‘with other technologies’.
This may include requiring an XML or XMI language output capability. A partic-
ular project may use different CASE tools from different vendors, hence an XMI
output may be a prerequisite. Modern projects are increasingly using technologies
like HTML to provide a common, and easily accessible output medium for all project
deliverables, so this may be an issue.

One final requirement to bear in mind is that it may be necessary to work ‘with
other clients’ who may be using a particular set of tools or technologies, which may
have a massive impact on the final choice of tool.

11.4.4 Provision of other capabilities

Many tools offer capabilities that are over and above those of a simple drawing
package. This section looks at some of the more common capabilities that are offered
and is not intended to be an exhaustive list.

The diagram in Figure 11.4 shows the sort of requirements that should be
considered when looking into the provision of other tool capabilities. Two of the
requirements here relate directly to software engineering and provide capability ‘for
code generation’ and for ‘reverse engineering’. It must be remembered that the UML’s
background is primarily derived from software-based methods and methodologies,
rather than generic systems modelling; therefore, almost every CASE tool will come
with some type of code generation function.

Most major languages are supported by CASE tools and some offer support for
more than one language. The number of languages that are supported, however, will
often have quite an impact on the price paid for the tool. For example, some tools have
different editions, depending on what you want them to do. They have names such as
‘basic’, ‘modeller’, ‘professional’, ‘designer’ and ‘enterprise’. Some of these editions
will not allow any code generation, whereas others will allow a single language, or
full support for all languages that are available.
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It is also worth checking how the tool actually integrates with the target language’s
development environment – or, indeed, whether it does at all. Some tools inter-
act with a fourth-generation programming language by controlling it in some way,
whereas other tools simply create text files that need to be explicitly imported into a
development environment.

Perhaps the most fundamental aspect of code generation to be looked at is whether
it actually saves any time and effort. This may seem like a strange statement to
make, but many people use code generation once and never touch it again. It is
worth asking what code is actually created. In most cases, this will almost certainly
contain definitions of, for example, classes, attributes and operations, along with
stubs for each operation. Although useful, is it worth the extra money in licence costs
to have the ability to create code stubs? Which diagrams are actually used for the
code generation? The main contenders for this are those of the static model, as, by
their very nature, they represent a snapshot of the software that is relatively simple to
implement. Now think of the behavioural model and of what aspects of this model are
used, if any. Also, remember that any information that is generated in the code must
exist somewhere in the model. Imagine, for example, that the code that is generated
contains information to define attribute types, default value, visibility, and so on, and
this information must be entered (typed) into the model. At the end of the day, how
much time does this save, if the level of detail of the model is so low that the model
is almost a code itself ?

There is a more dangerous aspect to code generation, which is the same point that
was raised in the previous section concerning verification. How exactly is the code
generated? What are the rules followed when going from a class diagram to a piece
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of code? If this process of transforming a design into code is not fully defined, how
far can it be trusted? History and fiction have taught us that we simply cannot trust
any system that is not fully deterministic. In reality, this is impossible on all but the
most trivial of systems, but that does not mean that we can be complacent and allow
an unknown, undefined process to create (potentially) safety-critical applications.
Remember the disaster that occurred in the Hollywood movie Westworld, where
human-like android slaves turned into psychotic killing machines simply because
they had the capability to change their own programming, which put them out of
direct control of their human creators.

Code generation can be very useful and very productive, but, if not assessed and
understood properly, it can also be a complete waste of time, money and disk space.

The following criteria should be borne in mind when assessing code generation
facilities in a tool:

• Do you actually want code generation?
• What are the extra costs for code generation functions compared, for example,

to the basic modeller-only edition of the tool?
• Which languages are supported by the tool and which development environments?

In addition, which manufacturers and exact version numbers are supported?
• How much time and effort is actually being saved by using the code generation

functions? Put it to the test before spending any money.
• What code exactly is generated? Is it just code stubs? Which diagrams are used

to generate the code? Some tools claim 100 per cent code generation, which is
quite a bold claim, but what does this mean exactly? In some cases, this means
that 100 per cent of the model is used to generate the code rather than being able
to generate 100 per cent of the actual final code.

• How, exactly, (by what process) is the code generated? Are the rules defined
anywhere or are they nondeterministic?

These guidelines are applicable to forward engineering only and not reverse
engineering, which is covered in the remainder of this section.

Reverse engineering is, unsurprisingly, the opposite of forward engineering.
If forward engineering is going from designs to code, then reverse engineering is
taking existing code and generating designs from it. This may be a particularly attrac-
tive function, especially where a great deal of legacy code exists that is difficult to
make sense of.

Clearly, the output from such a function will be the models themselves, so it is
important to stop and think for a moment about what types of model are created.
First, take this literally and ask which of the nine diagrams are created from the code.
Perhaps the most obvious diagram is the class diagram, but what about the others?
It is only possible to reverse engineer between the implementation (code) phase and
the low-level design phase, then how much practical use will the tool be?

Much of the focus of this book is how to communicate effectively by creating
simple, clear and easy to understand models. Much of the art and skill of UML
modelling is getting these models at an appropriate level of abstraction and ensuring
that they have a clear connection to reality. The connection to reality should not really
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be a problem with regard to the reverse engineering tool, as it is taking the reality and
creating diagrams from it. But what about the level of abstraction of the models that
are created? What about similar views of the same system? How can an automated
tool possibly define, for example, sensible scenarios based on the code? The simple
answer is, of course, that a tool cannot! It is well worth having a look at the quality
of diagrams that are the output from the tool, as in some cases they contain very large
classes that are full of attributes and operations at a very low level of abstraction,
which, for all intents and purposes, are useless.

An obvious aspect of reverse engineering to look at is which languages, environ-
ments and versions of these are supported by the tool? Choosing an incorrect version
number or the right language from the wrong manufacturer can be very costly.

The final point is a recurring one, which is, how are the models generated and
what rules are followed to generate the models? Again, it is a question of having
a deterministic system or a nondeterministic one.

The assessment criteria for reverse engineering may, therefore, be summed up as
follows:

• Which of the 13 UML diagrams are generated from the code?
• How are the diagrams generated from the code – are the rules defined?
• Which languages, environments and their associated versions are supported?
• How useful is this function?

Above all, remember that reverse engineering will not be a feature that is wanted or
needed by everyone, and is it worth assessing exactly how much it would be used
before taking it as a basis for tool selection.

One of the potentially most useful functions offered by CASE tools is report
generation, indicated by ‘for report generation’ in the diagram. Report generation
is particularly attractive when demonstrations are shown where a complete phase is
deliverable, that is produced at the touch of a single key.

The first criterion is to look at the output of the report generation and ask whether
the tool produces its own files or whether it produces files that are compatible with
another product. Many tools will offer both facilities: a simple text-only output that
may be generated quickly and simply from the data dictionary of the tool, or a complex
file that may be used by a proprietary word-processing package. In the case of a simple
text output, any text editor will suffice, ranging from the most sophisticated office
product to the simplest of line editors. However, what most people will want to see is
a completely formatted, beautifully laid-out document that can be printed out directly
from a favourite word-processing tool. This is a great idea, but the format of the
document will be whatever the tool vendor thinks the format should be. This may be
avoided by some type of editing function that will allow templates to be devised to
create bespoke documents. The amount of effort involved in this may vary, however,
from a simple ‘tick the box’ approach, to having to have intimate knowledge of a
particular programming language or script language that may be required to create
such templates. This is particularly important when it comes to following, and thus
complying with, a process. It would be very useful and efficient to have document
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templates defined that are compatible with a defined process, which would be very
beneficial indeed to any project.

Another related note that is worth considering is which word-processing packages
is the tool compatible with and is another licence required? This is one of the ways that
extra costs can be sneaked on to the bill without anyone realising it. This is not much
of a problem with PC-type systems, where most word processors seem to be converg-
ing in terms of format and compatibility, or that are relatively inexpensive anyway.
However, consider, for example, Unix-based systems where the software (for dark
reasons known only to software companies) seems to cost orders of magnitude more
than their PC counterparts.

If the CASE tool is interacting with another package, it is worth considering how
efficient the interaction between the two is. In some cases, there is no interaction
whatsoever, as a file is created which must then be opened from the appropriate
word-processing package. Another option is that the word-processing package is
actually controlled directly from the CASE tool. This may have serious effects on
the efficiency of the system. In one example, a particular CASE tool took over ten
hours to generate a report from a model consisting of less than 50 classes! This turned
out to be because the tool was, quite literally, cutting and pasting each diagram to
a clipboard and, from there, copying it into the actual word-processing package.

The final point to bear in mind is the old chestnut of how the reports are generated.
One particularly ambitious CASE tool was able to not only put the diagrams from
the tool into the word-processing package, but also to generate English sentences
from the model elements that could be used to explain the model to readers of the
report. Unfortunately for the CASE tool company, the aggregation and specialisation
interpretations had been confused. Therefore, whenever the model said aggrega-
tion, the accompanying text read ‘has types’ and the specialisation relationship read
‘is made up of’. Of course, this could lead to considerable confusion especially if
this error is carried over into the code generation or reverse engineering functions of
the tool.

The assessment criteria for report generation may, therefore, be summarised in
the following list:

• Does the tool use text-only outputs or is the output compatible with a proprietary
word-processing tool?

• Are extra licences required to see the output of the report generation and, if so,
how much extra is this?

• How easy or difficult is it to create bespoke templates for special report formatting?
• How efficient is the report generation in terms of time?
• What are the rules for report generation and how are they defined?

Report generation can be a very quick and efficient solution to many problems and
may benefit a project enormously. However, as with all aspects of CASE tools, caution
must be exercised when assessing this aspect of the tool.

Another capability that is often offered is ‘for animation’ where the behaviour
of a model may be animated or simulated using, quite often very fancy, animation
techniques. The same sort of questions must be asked here in terms of whether or
not the animator is part of the standard tool package or part of another commercial
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product since there could be serious financial considerations. From a UML point
of view, the animation can only be applied to behavioural diagrams, so it is worth
looking at what behavioural diagrams are supported by the tool and then comparing
this set of diagrams to the ones supported by the animation tool. Common sense would
dictate that the animation tool would animate all of the behavioural diagrams but this
is often not the case. For example, some tools will only support the animation of state
machine diagrams whereas others concentrate on scenarios. Animation techniques
can be very powerful and very useful ‘for verification’ but, when used in this context,
we once again have the issue of how the animation is being carried out and whether or
not its level of determinism is good enough for forming part of a formal verification
procedure.

The final requirement dealt with in this section covers providing capability
‘for extensions’. This is a difficult area to classify as most tools allow a certain degree
of extension and custom capabilities. Things to look out for include: writing bespoke
consistency checking rules, tailoring the use of UML syntax, defining traceability,
defining templates, etc.

11.4.5 Provision of application capability

The UML is a general purpose modelling language, therefore it may be applied to
almost any type of application. Although there are no solid rules with regard to which
diagrams to use for a particular application, some diagrams do lend themselves more
to certain applications than others. It is important, therefore, to try to ascertain why
the tool is being bought and what use it will be put to. Figure 11.5 shows some of the
areas forming the requirements for this section.

Provide application 
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Figure 11.5 Requirements for provision of application functionality
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There are five main requirements that represent application areas shown here.
This is simply meant to give an indication of the sort of applications to consider and
is not intended to cover every eventuality. The diagram covers providing application
functionality:

For real-time applications: Clearly, some diagrams lend themselves more to real-
time applications than others. For a start, timing attributes will apply directly to the
behavioural aspect of the system and, with the new capability offered by UML 2.0,
there are now mechanisms to apply timing constraints to (unsurprisingly) timing
diagrams and sequence diagrams. Although the UML now supports the assignment
of timing information to a model, it does not show how this timing information is to be
used, as there is no inherent process in the UML. Many tools offer real-time support
and it is, therefore, important to look at which methodology, if any, is supported by
the tool. Some tools will support academically and industrially proven approaches,
whereas other tools make up their own approaches.

For software applications: This is where most tools should excel and will depend
on the process being followed by a particular organisation. For example, the RUP is
related directly to the UML and it is, therefore, a simple task to identify which of the
13 diagrams are used (all of them!). Some other processes may require a subset of
the diagrams, depending on the sort of information that is required to be delivered.

For systems applications: Again, what is required here in terms of the process deliv-
erables and how is the UML being used? The rest of this book should give an idea
about what sort of diagram may be used for different applications, but it is equally
important to look at the type of work being carried out. For example, the use of legacy
systems in a project will often show a use for component and deployment diagrams,
as well as interaction diagrams. A project that starts with a clean sheet of paper may
start with use cases, and so on.

For process applications: If the UML is going to be used exclusively for process
modelling, then it is important that the tool will support certain diagrams. For example
if the approach taken in this book is followed, then the minimum subset of diagrams
would be: class diagrams, activity diagrams and sequence diagrams.

For requirement applications: Once more, depending on the sort of process being
followed, different diagrams would be needed. If a similar approach is taken to the one
shown in this book, then the minimum set of diagrams would be: use case diagrams,
class diagrams and interaction diagrams.

It is worth restating at this point that there are no solid rules for which diagrams to
use for particular applications as the choice of diagram should be left to the modeller
and their knowledge and experience.

11.4.6 Ensuring process compatibility

It is important to ensure that a tool will support any processes that are being used on
a project and that the tool will not try to drive the process. Although it is difficult to
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discuss this in any detail, Figure 11.6 shows a simple breakdown of requirements for
ensuring process compatibility.

The diagram in Figure 11.6 shows that there are two main requirements to meet
in order to ‘Be compatible with process model’, which are ‘for internal process’ and
‘for external process’.

Ensuring compliance with an internal process will depend entirely upon the
approach being taken by the organisation for system development. The issue of
external process, however, covers wider constraints, such as any standards or guide-
lines that the organisation has no control over (for example, ISO standards, industry
best-practice guidelines, etc.) that may impact the project.

11.4.7 Provision of system functionality

This section covers the pragmatic issues of tools selection concerning existing
hardware and software requirements.

Provide system 
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for platforms

for networking

Figure 11.7 Requirements for provision of system functionality
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The diagram in Figure 11.7 shows that there are two main requirements to ‘Provide
system functionality’, which are: ‘for platforms’ and ‘for networking’.

The issue of platforms raises questions such as: what are the minimum hardware
requirements? What are the operating system requirements? Are there any other
software requirements? It is also important to establish whether or not the tool will run
on older operating systems since it is quite often the case with very large organisations,
that they are using operating systems several versions behind the current market
leaders.

It is also worth considering the networking requirements for the tool. This will
cover different aspects such as access and security (as previously discussed) but also
of licenses. Are floating licenses available, or do they require one per machine?

These very practical requirements can often mean that one tool that is suitable in
terms of the functionality offered may not be so ideal in terms of being able to run on
an existing network configuration.

11.4.8 Ensuring compatibility with the UML

This question of compliance with the UML is often overlooked as being too obvious
but can be quite a frightful, eye-opening experience at times! Although Figure 11.8
looks very simple, these two very simple requirements can often spell the doom of
a tool.

Be compatible 
with UML
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Figure 11.8 Requirements for UML compatibility

The diagram in Figure 11.8 shows that there are two main requirements associated
with the compatibility of the tool with regard to the UML ‘version number’ and the
‘syntax’.

The issue of the UML version number is quite straightforward – do you want
version 1.x or version 2.0? Do you care? Some people will prefer version 1.3 as this
is the version that will become the ISO standard, whereas other people will want to
use the latest, most flexible version that is UML 2.0. One important point to make is
you don’t really need to make a black and white decision at this point, as version 2.0
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is an evolution of 1.x and there is no reason why the two versions cannot be mixed
and matched.

The second main requirement refers to the syntax of the diagram produced by the
tool. When it comes to assessing the drawing capabilities of a CASE tool, the first
and most obvious question (indeed, so obvious that most people do not bother to find
it out) is to find out how many of the 13 diagrams the tool will allow to be created and
whether or not the diagrams actually match the UML standard itself ! Whenever this
question is raised in a group discussion, the initial reaction is usually one of scorn and
disbelief that anyone could produce a tool that does not match the UML. Some tools
have the capability to model as few as four of the 13 diagrams, while others offer a
facility to allow up to 17 different diagrams to be created – all of which are allegedly
UML diagrams.

Once it has been established which of the 13 diagrams can be created, the next step
is to see how each of the diagrams relates to the UML. Some diagrams follow the UML
precisely, while others only bear a passing resemblance to their UML counterparts.

It is quite bizarre that so many tools do not measure up to the UML, particularly
bearing in mind that the UML is very cleanly defined and has a single source document
as its reference. The following list suggests reasons why some CASE tools may not
be as UML-compliant as perhaps they should:

• Many CASE tools are an evolution of existing, or legacy, tools. The methodologies
behind these legacy tools often provided an input to the UML, and thus many
vendors may just assume that the diagrams used (for example, OMT) are the
same as the diagrams in the UML. Unfortunately, these diagrams tend to be
slightly different from their original language.

• Many companies are reluctant to throw away existing resources, so they may
deem that it makes more business sense to reuse an older tool, rather than to
redevelop it properly for a new market.

• It is also highly possible that some CASE tools are sometimes developed by people
who do not actually use the technique themselves. An outsider’s viewpoint of what
may be useful may be completely different to what a practising UML specialist
may deem as being useful.

• It is often the case that tool companies are looking for a market ‘edge’ and will
focus their tool towards a specific market, such as real-time systems or safety-
critical systems. In addition, the tools may be aimed purely at a single target, such
as a particular programming language. Sometimes, this specialisation of a tool
can be to the detriment of its compatibility with the UML.

On a more practical note, it is worth having a test model in mind that uses a few types
of diagram that can be used to test the compatibility of a tool with the UML. A good
example of this is the chess example used throughout Chapters 3 and 4 of this book
that is simple, yet uses all 13 of the UML diagrams. Another useful thing to do is to
enter the model yourself, rather than relying on a demonstrator to do it for you. This
approach will provide a better indication of how easy the tool is to use and may very
well throw up some quirks of the tool itself.
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In summary, therefore, the following points should be looked at when assessing
the drawing capabilities of a tool:

• Does the tool allow all 13 UML diagrams to be created and are the correct names
used for each diagram?

• Does each of the diagrams that may be created actually match the syntax that is
laid out in the UML standard?

• How does the tool allow navigation between different types of diagram?
• Have a sample model that may be input into the tool by way of a simple test.

Choose something simple that will not take long to input and put the tool through
its paces (such as the chess example in this book).

Remember that drawing is fundamental to UML and thus it is important that the tool
can perform well.

11.4.9 Ensuring vendor’s quality of service

It is important that the tool is not the only thing taken into consideration, but also the
vendor’s quality of service. Bear in mind that there is a potential long-term relationship
being started up between yourself and the vendor, so it is important that you are happy
with both the people and the services offered by the vendor.

The diagram in Figure 11.9 shows the requirements to be considered when consid-
ering the vendor’s quality of service. The first issue is that of the vendor’s pedigree.
It is worth considering how long the vendor has been in business and asking your-
self will he still be there in five years? Also, look at the list of existing clients.

«includes»

«constrains»

Ensure vendor’s
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Provide support

ensure vendor’s
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for engineering 
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Figure 11.9 Requirements for ensuring vendor’s quality of service
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These lists always look very impressive but it is worth ascertaining where these
clients are geographically. A list of clients may look very impressive to someone
in, for example, the United Kingdom, but if the list is composed of 90 per cent
of companies in other countries, then how good will the service be in the United
Kingdom? The coverage of industries is important, as well as trying to get a feel for
the types of applications that the tools are being used on. The quality of the vendor’s
service may also depend heavily on the individuals involved in the company. If a com-
pany is simply a reseller who only employs salespeople, then maybe their technical
support is weak. If the people making the sales are, or are supported by, experienced
engineers then this can be a great advantage in terms of the quality of responses to
queries.

Overall, it is very important to make an informed decision when selecting a CASE
tool for purchase. CASE tools can be very expensive and take up quite a percentage of
the total projects costs, so it is imperative that one is chosen wisely. The following list
contains a number of very high-level questions that you should ask when considering
buying a CASE tool:

• Will the tool be used on all projects, or just one? Can the cost, therefore,
be spread among the whole organisation? Will the organisation be adopting a
single tool across the whole organisation, or will the current market be assessed
and different tools chosen where appropriate? Clearly, there are pros and cons
with each approach, but ‘which is the most appropriate?’ should be the main
question.

• What will the total cost of the tool be in terms of the number of licences and the
maintenance costs? The maintenance costs for a CASE tool when viewed over
a five-year period can easily be as much as the tool cost in the first place. Bear this
in mind and consider the whole life of the project, rather than the initial outlay
for the tool.

• What other packages are required to use the tool effectively? This may include
simple, inexpensive packages, such as word processors, to extra licences for
a third-party database.

• What functionality will you actually use? If you have used the assessment criteria
outlined previously in this chapter, you may have come to the conclusion that
all that is required is the basic drawing functionality of the tool. In such a case,
there is little point spending extra money on code generators that will never be
used, when the basic package or a simple drawing package will suffice. If, on the
other hand, you feel that you would make extensive use of these extra functions,
it would be well worth spending extra money and buying a more complete tool
than a simple drawing package.

• What level of support do the vendor’s offer, in terms of upgrades to versions,
documentation and on-line or telephone support? This can be critical, as having
to bring in the vendor’s own consultants for the day can be very expensive indeed.

• Does your process drive the tool? (This may have been mentioned previously in
this book!)
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Above all, like any type of project, it is vital that you know your requirements for the
tool before talking to any vendors. Draw up a list of requirements and stick to it.

11.5 Conclusions

This chapter has introduced some generic criteria for assessing the suitability of a
CASE tool. Although the tone has generally been quite negative, this is not necessarily
the case. The right tool can save you time and effort and hence money, and it can
make life far easier. By the same token, however, the wrong tool will cost you time
and effort and hence money! The overall suggestion here is one of caution, rather
than a single negative view.

Therefore, to summarise the chapter, bear the following points in mind:

• Draw up a list of requirements for the tool. Bear in mind that the process that you
follow should drive the tool and not the other way around, as this can turn out to
be very expensive.

• Check how many of the 13 UML diagrams the tool can create and whether they
are correct or not. A great help in determining this is to have a simple model at
hand that can be quickly entered into the tool. An example of this is the chess
example introduced in Chapters 3 and 4 of this book. This will not only prove
which diagrams can be created and how accurate they are, but will also give an
idea about the use of tool and navigation between diagrams. Do not buy a tool on
the basis of an example, preentered model, but try it for yourself !

• Check the licensing agreements fully and read all the small print. It is essential to
buy the right edition of the tool and to be sure that you have an appropriate level
of support from the vendors.

• Shop around between different vendors and obtain independent advice from exist-
ing users, as any company that refuses to give you the contact details of an existing
user may have something to hide. Remember that you are the customer and should
rightly have the upper hand in any negotiations.

One final point to remember is that CASE tools are not magic, but they can help out,
and that the output of these tools is only as good as the engineer behind the tool.

11.6 Further discussion

1. Draw up a list of requirements for a CASE tool that would suit your exact needs.
Make this as fanciful as possible but always ensure that there is a need behind each
wish on the list. Now create a UML model that represents this list of requirements.
As a starting point, consider either a use case model (both business and system
contexts will be important) and also a class diagram that will represent the tool
itself.

2. Obtain demonstration copies of two or more different CASE tools and compare
them. What can either offer that the other does not? What do they both offer and,
hence, which is the better or best?
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3. Compare each tool with the model created in discussion point 1.
4. Take the chess example from this book and enter it into any CASE tool. Can it

model 100 per cent of the UML syntax used in the model? Remember that this
book only introduces approximately 15 per cent of the total UML syntax.

5. Perform a quick Internet search and see how many free CASE tools are available
for download. How do these relate to the commercial tools?
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