
http://www.cambridge.org/9780521525473

This page intentionally left blank

The Elements
of

UMLTM

Style

The Elements
of

UMLTM

Style
Scott W. Ambler
Ronin International, Inc.

  
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge  , United Kingdom

First published in print format

- ----

- ----

© Cambridge University Press 2003

2003

Information on this title: www.cambridge.org/9780521525473

This book is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

- ---

- ---

Cambridge University Press has no responsibility for the persistence or accuracy of
s for external or third-party internet websites referred to in this book, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

paperback

eBook (NetLibrary)
eBook (NetLibrary)

paperback

http://www.cambridge.org
http://www.cambridge.org/9780521525473

To Sensei Rick Willemsen and Sempai Rick Micucci

Thanks for everything that you have taught me
and continue to teach me.

Contents

Preface . xi
Purpose . xi
Features . xi
Audience . xii
Assumptions . xii
Acknowledgments . xiii

1. Introduction . 1
1.1 Organization of This Book . 2

2. General Diagramming Guidelines 3
2.1 Readability Guidelines . 3
2.2 Simplicity Guidelines . 6
2.3 Naming Guidelines . 9
2.4 General Guidelines . 10
2.5 Common UML Modeling Elements Guidelines 12

3. UML Use Case Diagrams . 14
3.1 Use Case Guidelines . 15
3.2 Actor Guidelines . 17
3.3 Relationship Guidelines . 19
3.4 System Boundary Box Guidelines . 25

4. UML Class Diagrams . 27
4.1 General Guidelines . 27
4.2 Class Style Guidelines . 31

vi i

vi i i CONTENTS

4.3 Interface Guidelines .38
4.4 Relationship Guidelines . 40
4.5 Association Guidelines . 45
4.6 Inheritance Guidelines . 48
4.7 Aggregation and Composition Guidelines 50

5. Package Diagrams . 53
5.1 Class Package Diagram Guidelines 53
5.2 Use Case Package Diagram Guidelines 56
5.3 Package Guidelines . 58

6. UML Sequence Diagrams . 60
6.1 General Guidelines . 61
6.2 Classifier Guidelines . 66
6.3 Message Guidelines . 69
6.4 Return Value Guidelines . 71

7. UML Collaboration Diagrams 74
7.1 General Guidelines . 74
7.2 Message Guidelines . 77
7.3 Link Guidelines . 79

8. UML State Chart Diagrams 82
8.1 General Guidelines . 82
8.2 State Guidelines . 84
8.3 Substate Modeling Guidelines . 85
8.4 Transition and Action Guidelines . 87
8.5 Guard Guidelines . 90

9. UML Activity Diagrams . 92
9.1 General Guidelines . 92
9.2 Activity Guidelines . 95
9.3 Decision-Point Guidelines . 95
9.4 Guard Guidelines . 96

CONTENTS ix

9.5 Parallel-Activity Guidelines . 97
9.6 Swimlane Guidelines . 100
9.7 Action-Object Guidelines . 102

10. UML Component Diagrams 104
10.1 Component Guidelines . 104
10.2 Interface Guidelines . 107
10.3 Dependency and Inheritance Guidelines110

11. UML Deployment Diagrams 112
11.1 General Guidelines . 114
11.2 Node and Component Guidelines 114
11.3 Dependency and Communication-Association

Guidelines .117

12. Agile Modeling . 119
12.1 Values . 119
12.2 Principles . 119
12.3 Practices . 121

Summary . 123

Bibliography . 135

Index . 139

Preface

M odels are used by professional developers to commu-
nicate their work to project stakeholders and to other

developers. The Unified Modeling Language (UML) has been
an important part of the software development landscape since
its introduction in 1997. We’ve seen the UML evolve over the
years, and it is now into its 2.x series of releases. Modeling
style, however, has remained constant, and will continue to
do so. By understanding and following these common model-
ing style guidelines, you can improve the effectiveness of your
models.

Purpose
This book describes a collection of standards, conventions,
and guidelines for creating effective UML diagrams. They are
based on sound, proven software engineering principles that
will lead to diagrams that are easier to understand and work
with.

These simple, concise guidelines, if applied consistently, will
be an important first step in increasing your productivity as a
modeler.

Features
This guide attempts to emulate Strunk and White’s (1979)
seminal text, The Elements of Style, which lists a set of rules

x i

x i i PREFACE

describing the proper application of grammatical and com-
positional forms in common use within the written English
language.

Using a similar style of presentation, this book defines a set
of rules for developing high-quality UML diagrams. In doing
so, this guide

■ employs existing standards defined by the Object Manage-
ment Group (OMG) whenever possible,

■ provides a justification for each rule, and
■ presents standards based on real-world experience and

proven software-engineering principles.

Audience
This guide targets professional software developers who are
interested in

■ creating effective UML diagrams,
■ increasing their productivity, and
■ working as productive members of an object-oriented de-

velopment team.

Assumptions
In this book I make several assumptions:

■ You understand the basics of the UML and modeling. If
not, then I suggest UML Distilled (Fowler and Scott 1999)
if you are looking for a brief overview of the UML or The
Object Primer 2/e (Ambler 2001) for a more comprehensive
discussion. UML Distilled is a great book but is limited to
the UML; The Object Primer 2/e, on the other hand, goes
beyond the UML where needed, for example, to include
user interface, Java, and database development issues.

PREFACE x i i i

■ You are looking for style guidelines, not design guidelines.
If not, then I suggest the book Object-Oriented Design
Heuristics (Riel 1996).

■ Your focus is on business application development. Al-
though these guidelines also apply to real-time develop-
ment, all of the examples are business application oriented,
simplifications of actual systems that I have built in the
past.

■ You belong to a Western culture. Many of the layout guide-
lines are based on the Western approach to reading—left
to right and top down. People in other cultures will need
to modify these guidelines as appropriate.

Acknowledgments
The following people have provided valuable input into the de-
velopment and improvement of this text: James Bielak, Lauren
Cowles, Caitlin Doggart, Scott Fleming, Alvery Grazebrook,
Kirk W. Knoernschild, Hubert Matthews, Les Munday, Sabine
Noack, Paul Oldfield, Leo Tohill, and Robert White.

1.

Introduction

One of Agile Modeling’s (AM) (Ambler 2002) practices is
Apply Modeling Standards, the modeling version of eXtreme
Programming (XP)’s Coding Standards (Beck 2000). Develop-
ers should agree to and follow a common set of standards and
guidelines on a software project, and some of those guidelines
should apply to modeling. Models depicted with a common
notation and that follow effective style guidelines are easier
to understand and to maintain. These models will improve
communication internally within your team and externally to
your partners and customers, thereby reducing the opportu-
nities for costly misunderstandings. Modeling guidelines will
also save you time by limiting the number of stylistic choices
you face, allowing you to focus on your actual job, which is
to develop software.

A lot of the communication value in a UML diagram
is still due to the layout skill of the modeler.

—Paul Evitts, A UML Pattern Language

When adopting modeling standards and guidelines within
your organization, your first goal is to settle on a common
notation. The Unified Modeling Language (UML) (Object
Management Group 2001, U2 Partners 2002) is a good start
because it defines the notation and semantics for common
object-oriented models. Some projects will require more types
of models than the UML describes, as I show in The Object
Primer 2/e (Ambler 2001), but the UML will form the core of
any modern modeling effort.

1

2 THE ELEMENTS OF UML STYLE

Your second step is to identify modeling style guidelines to help
you create consistent and clean-looking diagrams. What is the
difference between a standard and a style guideline? For source
code, a standard would, for example, involve naming the at-
tributes in the format attributeName, whereas a style guideline
would involve indenting your code within a control structure
by three spaces. For models, a standard would involve using a
squared rectangle to model a class on a class diagram, whereas
a style would involve placing subclasses on diagrams below
their superclass(es). This book describes the style guidelines
that are missing from many of the UML-based methodologies
that organizations have adopted, guidelines that are critical to
your success in the software development game.

The third step is to adopt your modeling standards and guide-
lines. To do this, you will need to train and mentor your staff in
the modeling techniques appropriate to the projects on which
they are working. You will also need to train and mentor them
in your adopted guidelines, and a good start is to provide them
with a copy of this book. I’ve been amazed at the success of The
Elements of Java Style (Vermeulen et al. 2000) with respect to
this—hundreds of organizations have adopted that book for
their internal Java coding standards because they recognized
that it was more cost-effective for them to buy a pocketbook
for each developer than to develop their own guidelines.

1.1 Organization of This Book
This book is organized in a straightforward manner. Chap-
ter 2 describes general diagramming principles that are ap-
plicable to all types of UML diagrams (and many non-UML
diagrams for that matter). Chapters 3 through 11 describe
techniques pertinent to each type of UML diagram, includ-
ing package diagrams. Chapter 12 provides an overview of the
values, principles, and practices of AM, with a quick reference
to this popular methodology. Finally, Chapter 13 lists all of
the guidelines presented in this book.

2.

General

Diagramming

Guidelines

The guidelines presented in this chapter are applicable to all
types of diagrams. The terms “symbols,” “lines,” and “labels”
are used throughout:

■ Symbols represent diagram elements such as class boxes,
object boxes, use cases, and actors.

■ Lines represent diagram elements such as associations, de-
pendencies, and transitions between states.

■ Labels represent diagram elements such as class names, as-
sociation roles, and constraints.

2.1 Readability Guidelines

1. Avoid Crossing Lines
When two lines cross on a diagram, such as two associations on
a UML class diagram, the potential for misreading a diagram
exists.

3

4 THE ELEMENTS OF UML STYLE

A

B

C D

A

B

C D

Figure 1. Depiction of crossing lines.

2. Depict Crossing Lines as a Jump
You can’t always avoid crossing lines; for example, you cannot
fully connect five symbols (try it and see). When you need to
have two lines cross, one of them should “hop” over the other
as in Figure 1.

3. Avoid Diagonal or Curved Lines
Straight lines, drawn either vertically or horizontally, are easier
for your eyes to follow than are diagonal or curved lines. A
good approach is to place symbols on diagrams as if they are
centered on the grid point of a graph, a built-in feature of many
CASE tools. This makes it easier to connect your symbols by
only using horizontal and vertical lines. Note how three lines
are improved in Figure 2 when this approach is taken. Also
note how the line between A and C has been depicted in “step
fashion” as a line with vertical and horizontal segments.

4. Apply Consistently Sized Symbols
The larger a symbol appears, the more important it seems to
be. In the first version of the diagram in Figure 2, the A symbol
is larger than the others, drawing attention to it. If that isn’t
the effect that you want, then strive to make your symbols of
uniform size. Because the size of some symbols is determined
by their contents—for example, a class will vary in size based

GENERAL DIAGRAMMING GUIDELINES 5

A

B

C

D

A B

CD

Figure 2. Improving the attractiveness of a diagram.

on its attributes and operations—this rule is not universally
applicable.

5. Arrange Symbols Symmetrically
Figure 3 presents a UML activity diagram (Chapter 9) depict-
ing a high-level approach to enterprise modeling. Organizing

Requirements Analyst Enterprise ArchitectStakeholder

Model
Enterprise

Requirements

Model
Enterprise
Business

Architecture

Model
Enterprise
Technical

Architecture

Support
Project Teams

Describe
Enterprise

Requirements

Prioritize
Enterprise

Requirements

Figure 3. UML activity diagram for a software process.

6 THE ELEMENTS OF UML STYLE

the symbols and lines in a symmetrical manner makes the
diagram easier to understand.

6. Include White Space in Diagrams
White space is the empty areas between modeling elements
on your diagrams. In the first version of Figure 2 the symbols
are crowding each other, whereas in the second version, the
symbols are spread out from one another, thus improving the
readability of the diagram. Observe that in the second version
there is adequate space to add labels to the lines.

7. Organize Diagrams Left to Right, Top to Bottom
In Western culture, people read left to right and top to bottom
and therefore this is how they will read your diagrams. If there
is a starting point for reading the diagram, such as the initial
state of a UML state chart diagram or the beginning of the flow
of logic on a UML sequence diagram, then place it toward the
top-left corner of your diagram and continue appropriately
from there.

2.2 Simplicity Guidelines

8. Show Only What You Have to Show
Diagrams showing too many details are difficult to read be-
cause they are too information dense. One of the practices of
Agile Modeling (Chapter 12) is to Depict Models Simply, to
include only critical information on your diagrams, and to ex-
clude anything extraneous. A simple model that shows the key
features that you are trying to depict—perhaps a UML Class
diagram depicting the primary responsibilities of classes and
the relationships between them—often proves to be sufficient.
Yes, you could model all of the scaffolding code that you will
need to implement, but what value would that add? Very little.

GENERAL DIAGRAMMING GUIDELINES 7

9. Prefer Well-Known Notation over Esoteric Notation
Diagrams that include esoteric notation, instead of just the
20 percent “core notation” that does 80 percent of the job,
can be difficult to read. An improvement in UML 2.x over
UML 1.x is the explicit definition of that core notation to
identify the primary notation that developers need to under-
stand. Of course, what is well known in one organization may
not be so well-known in another, and so, you may want to con-
sider supplying people with a brief summary of the notation
that you’re using.

10. Reorganize Large Diagrams into Several
Smaller Ones
It is often better to have several diagrams showing various
degrees of detail than one complex diagram that shows every-
thing. A good rule of thumb is that a diagram shouldn’t have
more than 9 symbols on it, based on the 7 +/− 2 rule (Miller
1957), because there is a limit on the amount of informa-
tion that someone can deal with at once. “Wallpaper” dia-
grams, particularly enterprise data models or enterprise object
models, may look interesting but they’re too information-
dense to be effective. When you are reorganizing a large dia-
gram into several smaller ones, you may choose to introduce
a high-level package diagram (Chapter 5).

11. Prefer Single-Page Diagrams
To reduce complexity, a diagram should be printable on a
single sheet of paper to help reduce its scope as well as to pre-
vent wasted time cutting and taping several pages together. Be
aware that you will reduce the usability of a diagram if you need
to reduce the font too much or crowd the symbols and lines.

12. Focus on Content First, Appearance Second
There is always the danger of adding hours onto your CASE
tool modeling efforts by rearranging the layout of your

8 THE ELEMENTS OF UML STYLE

SWA Online
Common Business
Components

Owner: H. Jordan

Figure 4. A summary note for a diagram.

symbols and lines to improve the diagram’s readability. The
best approach is to focus on the content of a diagram at first and
only try to get it looking good in a rough sort of way—it doesn’t
have to be perfect while you’re working on it. Once you’re satis-
fied that your diagram is accurate enough, and that you want to
keep it, then invest the appropriate time to make it look good.
An advantage of this approach is that you don’t invest signi-
ficant effort improving diagrams that you eventually discard.

13. Describe Diagrams with a Note
Ever look at a diagram and not know what it represents? A
simple solution is to include a UML Note on each diagram
that provides a simple and concise description. This is often
referred to as a “legend.” In Figure 4 you can see that the name
of the system, the purpose of the diagram, and its owner are
indicated. It is common also to indicate when the diagram
was last updated and the contact information for the owner.

14. Set a Convention for Placement of Diagram Legends
Placing diagram legends in the same place on all of your
diagrams increases their usability by making them easy to
find. Common spots are one of the corners or the bottom
center of a diagram.

15. Apply Consistent, Readable Fonts
Consistent, easy-to-read fonts improve the readability of your
diagrams. Good ideas include fonts in the Courier, Arial,

GENERAL DIAGRAMMING GUIDELINES 9

and Times families. Bad ideas include small fonts (less than
10 point), large fonts (greater than 18 point), and italics.

2.3 Naming Guidelines

16. Set and Follow Effective Naming Conventions
This is one of the easiest things that you can do to ensure
consistency within your models, and hence increase their
readability.

17. Apply Common Domain Terminology in Names
Apply consistent and recognizable domain terminology, such
as customer and order, whenever possible on your diagrams.
This is particularly true for requirements and analysis-oriented
diagrams with which your project stakeholders are likely to be
working.

18. Apply Language Naming Conventions
on Design Diagrams
Design diagrams should reflect implementation issues, in-
cluding language naming conventions, such as orderNumber
for an attribute and sendMessage() in Java. Requirements and
analysis-oriented diagrams should not reflect language issues
such as this.

19. Name Common Elements Consistently
Across Diagrams
A single modeling element, such as an actor or a class, will
appear on several of your diagrams. For example, the same
class will appear on several UML class diagrams, several UML
sequence diagrams, several UML collaboration diagrams, and
several UML activity diagrams. This class should have the same
name on each diagram, otherwise your readers will become
confused.

10 THE ELEMENTS OF UML STYLE

2.4 General Guidelines

20. Indicate Unknowns with a Question Mark
While you are modeling, you may discover that you do not
have complete information. This is particularly true when you
are analyzing the domain. You should always try to track down
a sufficient answer, but if you cannot do so immediately, then
make a good guess and indicate your uncertainty. Figure 5 de-
picts a common way to do so with its use of question marks.1

First, there is a note attached to the association between
Professor and Seminar questioning the multiplicity. Second,
there is a question mark above the constraint on the wait listed
association between Student and Seminar, likely an indication
that the modeler isn’t sure that it really is a first in, first out
(FIFO) list.

21. Consider Applying Color to Your Diagrams
Coad, Lefebvre, and DeLuca (1999) provide excellent advice
in their book, Java Modeling in Color with UML, for improving
the understandability of your diagrams by applying color to
them, in addition to UML stereotypes. Perhaps color could in-
dicate the implementation language of a class (e.g., blue for
Java and red for C++) on a UML Class diagram, the devel-
opment priority of a use case (e.g., red for phase 1, orange
for phase 2, and yellow for future phases) on a UML use case
diagram, or the target platform (e.g., blue for an application
server, green for a client machine, and pink for a database
server) for a software element on a UML deployment diagram.

22. Apply Color or Different Fonts Sparingly
Evitts (2000) suggests the use of different fonts, line styles,
colors, and shading to emphasize different aspects of your

1 Question marks are not official UML notation.

S
tu

d
en

t
n

am
e

ad
d

re
ss

p
h

o
n

eN
u

m
b

er
em

ai
lA

d
d

re
ss

st
u

d
en

tN
u

m
b

er
av

er
ag

eM
ar

k
is

E
lig

ib
le

 (
n

am
e,

st
u

d
en

tN
u

m
b

er
)

g
et

S
em

in
ar

sT
ak

en
()

S
em

in
ar

n
am

e
se

m
in

ar
N

u
m

b
er

fe
es

w
ai

ti
n

g
L

is
t

ad
d

S
tu

d
en

t(
st

u
d

en
t)

d
ro

p
S

tu
d

en
t(

st
u

d
en

t)

P
ro

fe
ss

o
r

n
am

e
ad

d
re

ss
p

h
o

n
eN

u
m

b
er

em
ai

lA
d

d
re

ss
sa

la
ry

g
et

In
fo

rm
at

io
n

()

0.
.*

0.
.*

1.
.*

0.
.*

0.
.*

0.
.1

?
S

o
m

e
se

m
in

ar
s

m
ay

n
o

t
h

av
e

an
in

st
ru

ct
o

r?

en
ro

lle
d

 in

w
ai

t
lis

te
d

in
st

ru
ct

s

{o
rd

er
ed

, F
IF

O
 }?

Fi
gu

re
5.

In
di

ca
ti

ng
un

ce
rt

ai
nt

y
on

a
di

ag
ra

m
.

11

12 THE ELEMENTS OF UML STYLE

diagrams. The secret is to do so sparingly, otherwise you run
the risk of creating noisy/gaudy diagrams. Sometimes less is
more.

2.5 Common UML Modeling
Elements Guidelines

23. Left-Justify Text in Notes
It is common practice to left-justify text in UML notes, as you
can see in Figure 4 and Figure 5.

24. Name Stereotypes in <<user interface>>
and <<UI>> Format
It is common UML convention to use lowercase for stereotypes
that are spelled out fully, such as <<include>> instead of
<<Include>>, and to use all uppercase for stereotypes that
are abbreviations, such as <<HTTP>> instead of <<Http>>.

25. Prefer Naming Conventions over Stereotypes
An effective alternative to applying a stereotype is to apply
a naming convention. For example, instead of applying the
stereotype <<getter>> on an operation, you could simply
start all getters with the text get, as you can see in Figure 5
with the getSeminarsTaken() operation. This simplifies your
diagrams and increases the consistency of your source code.

26. Introduce New Stereotypes Sparingly
A common mistake made by UML novices is to apply stereo-
types to everything, forcing them to introduce a plethora of
new stereotypes. The end result is that their diagrams are clut-
tered with stereotypes. Introduce a new stereotype to clarify
an aspect of a model, but don’t introduce one simply to “com-
plete” your models.

GENERAL DIAGRAMMING GUIDELINES 13

27. Apply Stereotypes Consistently
You will find that you need to document your common stereo-
types, above and beyond those defined by the UML stan-
dard, to ensure that they are applied consistently. For exam-
ple, you need to decide whether you are going to use <<user
interface>> or <<UI>> as your preferred stereotype. Both
are good choices; choose one and move forward.

28. Prefer Notes over OCL or ASL
to Indicate Constraints
Constraints can be modeled on any UML diagram. A con-
straint is a restriction on the degree of freedom you have in
providing a solution. In UML, constraints are modeled either
by a UML note using free-form text or with Object Constraint
Language (OCL) (Warmer and Kleppe 1999) in UML 1.x and
Action Semantic Language (ASL) in UML 2.x.

Figure 5 includes a very simple example of OCL, {ordered,
FIFO}, code that programmers may understand but few
project stakeholders are likely to. When the audience for a
diagram includes project stakeholders, you should write a free-
form note, perhaps using natural language, for your constraint.
Consider OCL or ASL for diagrams whose only audience
is developers, but recognize that this is only appropriate if
everyone involved understands OCL or ASL.

3.

UML Use Case

Diagrams

A UML use case diagram shows the relationships among actors
and use cases within a system. They are often used to

■ provide an overview of all or part of the usage require-
ments for a system or organization in the form of
an essential model (Constantine and Lockwood 1999;
Ambler 2001) or a business model (Rational Corporation
2002),

■ communicate the scope of a development project, and
■ model your analysis of your usage requirements in the

form of a system use case model (Cockburn 2001; Ambler
2001).

A use case model is comprised of one or more use case dia-
grams and any supporting documentation such as use case
specifications and actor definitions. Within most use case
models, the use case specifications tend to be the primary
artifact, with UML use case diagrams filling a supporting role
as the “glue” that keeps your requirements model together.
Use case models should be developed from the point of view
of your project stakeholders and not from the (often technical)
point of view of developers.

14

UML USE CASE DIAGRAMS 15

3.1 Use Case Guidelines
A use case describes a sequence of actions that provide a
measurable value to an actor. A use case is drawn as a hori-
zontal ellipse on a UML use case diagram, as you can see in
Figure 6.

29. Begin Use Case Names with a Strong Verb
Good use case names include Withdraw Funds, Register Stu-
dent in Seminar, and Deliver Shipment because it is clear
what each use case does. Use case names beginning with
weak verbs such as “process,” “perform,” and “do” are often
problematic. Such names often result in communication dif-
ficulties with your project stakeholders, people who are far
more likely to say that they withdraw funds from accounts
instead of process withdrawal transactions. These communi-
cation difficulties are likely to decrease your ability to under-
stand their requirements. Furthermore, names such as Process
Withdrawal Transaction or Perform Student Enrollment Request
often indicate that the use case was written with a technically

Customer

Open Account

Deposit Funds

Withdraw
Funds

Close Account

Figure 6. Implying timing considerations between use cases.

16 THE ELEMENTS OF UML STYLE

oriented view instead of a user-oriented view, and therefore
may be at risk of not reflecting the actual needs of your project
stakeholders.

30. Name Use Cases Using Domain Terminology
The name of a use case should immediately convey meaning
to your project stakeholders. For example, Convey Package Via
Vehicular Transportation is a generic name for a use case but
Deliver Shipment reflects common domain terminology and
therefore is more understandable.

31. Imply Timing Considerations by Stacking Use Cases
Although use case diagrams should not reflect timing consid-
erations, such as the need to work through use case A before
proceeding to use case B , the fact is that you can increase the
readability of your use case diagrams by arranging use cases to
imply timing. One such way is to stack them, as you can see
in Figure 6, so that the use cases that typically occur first are
shown above those that appear later. Note that the order in
which these use cases are invoked is only implied; throughout
most of the life of a bank account, you can deposit to it or
withdraw from it in any order that you like, assuming you
conform to the appropriate business rules when doing so.

You can define preconditions in your use cases to describe
timing considerations, such as the need for an online shopper
to define his or her default address information before being
allowed to place an order. You may want to consider drawing
an activity diagram representing the overall business process
instead of indicating timing considerations on your use case
diagrams.

Note that Figure 6 goes against the general guideline Avoid
Diagonal or Curved Lines—but it’s a small diagram, and so, the
diagonal lines are still easy to follow from one model element
to another.

UML USE CASE DIAGRAMS 17

3.2 Actor Guidelines
An actor is a person, organization, local process (e.g., sys-
tem clock), or external system that plays a role in one or
more interactions with your system (actors are drawn as stick
figures).

32. Place Your Primary Actor(s) in the Top-Left Corner
of the Diagram
In Western cultures, you start reading in the top-left corner. All
things being equal, this is the best location for your primary ac-
tors, who are often directly involved with your primary/critical
use cases.

For example, you can see in Figure 7 that Customer is placed
near the top-left corner of the diagram as opposed to the
Customer Support actor that is placed on the right-hand side.
Also notice how the two most-critical use cases, the ones sup-
porting the sale of items on the Web site, are also placed at
the top left, and the guideline Imply Timing Considerations By
Stacking Use Cases has also been applied to order Search for
Items and Place Order.

Customer

Search for
Items

Place Order

Obtain Help

Customer Support

Submit Taxes

Release 2

Release 3

<<system>>
Payment Processor

Time Tax Authority

Release 1

Figure 7. Online shopping.

18 THE ELEMENTS OF UML STYLE

33. Draw Actors on the Outside Edges of a Use
Case Diagram
By definition, actors are outside your scope of control, some-
thing that you can communicate by drawing them on the
outside edges of a use case diagram, as you can see in Figure 7.

34. Name Actors with Singular,
Domain-Relevant Nouns
An actor should have a name that accurately reflects its role
within your model. Actor names are usually singular nouns
such as Grade Administrator, Customer, and Payment Processor.

35. Associate Each Actor with One or More Use Cases
Every actor is involved with at least one use case, and every
use case is involved with at least one actor. Note that there
isn’t necessarily a one-to-one relationship between actors and
use cases. For example, in Figure 7 you can see that Customer
is involved with several use cases and that the use case Obtain
Help has two actors interacting with it.

36. Name Actors to Model Roles, Not Job Titles
A common mistake when naming actors is to use the names of
job titles that people hold instead of the roles that the people
fulfill. This results in actors with names such as Junior CSR,2

Lead CSR, and CSR Manager instead of Customer Support as
you can see in Figure 7. A good indication that you are model-
ing job titles instead of roles is a use case diagram depicting
several actors with similar names that have associations to the
same use case(s). Modeling roles instead of job titles will sim-
plify your diagrams and will avoid the problem of coupling
your use case diagram to the current position hierarchy within
your organization: you wouldn’t want to have to update your
models simply because your human resources department re-
placed the term CSR with Support Engineer. However, if you

2 CSR = Customer Service Representative.

UML USE CASE DIAGRAMS 19

are working in a politically charged environment where it is
advantageous for you to show certain positions on a use case
diagram, feel free to do so at your own discretion.

37. Use <<system>> to Indicate System Actors
In Figure 7, you immediately know that Payment Processor is a
system and not a person or organization because of the stereo-
type applied to it. The <<system>> stereotype is applicable
to system/concrete use case diagrams that reflect architectural
decisions made for your system as opposed to essential use case
diagrams (Constantine and Lockwood 1999) or business use
case diagrams (Rational Corporation 2002), that are technol-
ogy independent.

38. Don’t Allow Actors to Interact with One Another
The nature of the interaction between two actors will be cap-
tured in the text of the use case, not pictorially on your use
case diagram.

39. Introduce an Actor Called “Time” to Initiate
Scheduled Events
Certain events happen on a regular basis—payroll is fulfilled
every two weeks, bills are paid once a month, and staff evalua-
tions are held annually. In Figure 7, you can see that the Time
actor initiates the Submit Taxes use case because it is something
that occurs on a periodic basis (typically monthly).

3.3 Relationship Guidelines
There are several types of relationships that may appear on a
use case diagram:

■ an association between an actor and a use case,
■ an association between two use cases,
■ a generalization between two actors,
■ a generalization between two use cases.

20 THE ELEMENTS OF UML STYLE

Associations are depicted as lines connecting two modeling
elements with an optional open-headed arrowhead on one end
of the line, indicating the direction of the initial invocation
of the relationship. Generalizations are depicted as a close-
headed arrow with the arrow pointing toward the more general
modeling element.

40. Indicate an Association Between an Actor and a Use
Case if the Actor Appears Within the Use Case Logic
Your use case diagram should be consistent with your use
cases. If an actor supplies information, initiates the use case,
or receives any information as a result of the use case, then the
corresponding use case diagram should depict an association
between the two. As you can see in Figure 8, these types of
associations are depicted with solid lines. Note that if you
are taking an Agile Modeling (AM) approach to development
your artifacts don’t need to be perfectly in sync with each
other—they just need to be good enough.

41. Avoid Arrowheads on Actor-Use Case Relationships
The arrowheads on actor-use case associations indicate who
or what invokes the interaction. Indicate an arrowhead only

Student

Enroll Student

International
Student

Enroll
International

Student

Enroll in
Seminar

Enroll Family
Member

<<include>>

<<extend>>

Figure 8. Enrolling students in a university.

UML USE CASE DIAGRAMS 21

when doing so provides significant value, such as when it is
important to indicate that an actor is passive regarding its
interaction with your system, or when your audience for the
model understands the implications of the arrowhead.

In Figure 8, Student invokes the Enroll Student use case,
whereas in Figure 7 the Place Order use case initiates the in-
teraction with the Payment Processor actor. Although this is
perfectly fine, the problem is that many people think that
these arrowheads imply information or data flow, such as you
would see in a data flow diagram (Gane and Sarson 1979;
Ambler 1997), instead of initial invocation. Associations do
not represent information; they merely indicate that an actor
is somehow involved with a use case. Yes, there is information
flowing back and forth between the actor and the use case; for
example, students would need to indicate in which seminars
they wish to enroll and the system would need to indicate to
the student whether or not they have been enrolled.

42. Apply <<include>> When You Know Exactly
When to Invoke the Use Case
In Figure 8 the Enroll Student use case includes the use case
Enroll in Seminar. It is modeled like this because, at a specific
point in Enroll Student, the logic encapsulated by the included
use case is required. In this example, part of the task of en-
rolling a student in the university is also initially to enroll that
student in one or more seminars, something that is done at a
specific step in the use case.

The best way to think of an <<include>> association is as
the invocation of one use case by another one, just like call-
ing a function or invoking an operation within source code.
It is quite common to introduce a use case that encapsulates
common logic required by several use cases and to have that
use case included by the ones that require it. It is also com-
mon for one use case to include another when the logic of

22 THE ELEMENTS OF UML STYLE

the included use case is invoked in a synchronous manner. All
<<include>> associations, as well as <<extend>> associ-
ations, are modeled as dependencies between use cases and
therefore a dashed line is used, as you can see in Figure 8.

43. Apply <<extend>> When a Use Case May
Be Invoked Across Several Use Case Steps
In Figure 8, you can see that the Enroll International Student
use case extends the Enroll Student use case. It is modeled this
way because the extending use case defines logic that may be
required during a given set of steps in the parent use case. In
this example, international students are subject to additional
scrutiny during the enrollment task, something that will occur
sometime after their basic name and address information has
been taken but before they are given their student information
package—anywhere within a range of use case steps.

An <<extend>> association is a generalization relationship
where the extending use case continues the behavior of the
base use case by conceptually inserting additional action se-
quences into the base use case, steps that may work parallel
(asynchronously) to the existing use case steps. One way to
think of extension is to consider it the use case equivalent of a
hardware interrupt—you’re not sure when or if the interrupt
will occur. It is quite common to introduce an extending use
case whenever the logic for an alternate course of action is at a
complexity level similar to that of your basic course of action
or when you require an alternate course for an alternate course
(in this case the extending use case would encapsulate both
alternate courses).

44. Apply <<extend>> Associations Sparingly
Many use case modelers avoid the use of <<extend>> associ-
ations because they have a tendency to make use case diagrams
difficult to understand.

UML USE CASE DIAGRAMS 23

45. Generalize Use Cases When a Single Condition
Results in Significantly New Business Logic
In Figure 8, you can see that the Enroll Family Member use case
inherits from the Enroll Student use case. It is modeled this
way because the inheriting use case describes similar yet differ-
ent business logic than the base use case and therefore either
the basic course of action or one or more alternate courses of
action within the use case are completely rewritten. In this ex-
ample, you enroll family members of university professors in a
similar manner to that for “normal students,” the main differ-
ences being that several enrollment requirements are reduced
or removed completely and the university fees are calculated
differently (residence and seminar fees are charged at a reduced
rate and all incidental fees are waived).

Inheritance between use cases is not as common as either the
use of <<extend>> or <<include>> associations, but it is
still possible.

46. Do Not Apply <<uses>>, <<includes>>,
or <<extends>>

All three of these stereotypes were supported by earlier versions
of the UML but over time have been replaced—<<uses>>
and <<includes>> were both replaced by <<include>>,
and <<extends>> was reworked into <<extend>> and
generalization. You will likely find these stereotypes applied
on old use case diagrams because experienced use case mod-
elers may not yet have transitioned to the newer stereotypes
for use case associations.

47. Avoid More Than Two Levels of
Use Case Associations
Whenever your use case diagram shows that a use case includes
another use case, which includes another use case, which in
turn includes yet another use case, it is a very good indication

24 THE ELEMENTS OF UML STYLE

that you are taking a functional decomposition approach to
your usage requirements. Functional decomposition is a de-
sign activity, and you should avoid reflecting design decisions
within your requirements artifacts.

48. Place an Included Use Case to the Right
of the Invoking Use Case
It is common convention to draw <<include>> relation-
ships horizontally, with the included use case to the right of
the invoking use case, as you can see in Figure 8 with Enroll
Student and Enroll in Seminar.

49. Place an Extending Use Case Below the Parent
Use Case
It is common convention to draw <<extend>> relationships
vertically, with the extending use case placed lower on your
diagram than the base use case, as you can see in Figure 8 with
Enroll International Student and Enroll Student.

50. Apply the “Is Like” Rule to Use Case Generalization
The sentence “the [inheriting use case name] is like the [parent
use case name]” should make sense. In Figure 8, it makes sense
to say that enrolling a family member is like enrolling a stud-
ent; therefore, it’s a good indication that generalization makes
sense. It doesn’t make sense to say that enrolling a student
is like enrolling in a seminar. The logic for each activity is
different—although the two use cases may be related, it isn’t
by generalization.

51. Place an Inheriting Use Case Below the Base
Use Case
It is a common convention to draw generalization relation-
ships vertically, with the inheriting use case placed lower on
your diagram than the parent use case, as you can see in Fig-
ure 8 with Enroll Family Member and Enroll Student.

UML USE CASE DIAGRAMS 25

52. Apply the “Is Like” Rule to Actor Inheritance
The sentence “the [inheriting actor name] is like the [parent
actor name]” should make sense. In Figure 8, it makes sense to
say that an international student is like a student; therefore it’s
a good indication that generalization makes sense. It doesn’t
make sense in Figure 7 to say that customer support is like a
payment processor because the two roles are clearly different.

53. Place an Inheriting Actor Below the Parent Actor
It is a common convention to draw generalization relation-
ships vertically, with the inheriting actor placed lower on your
diagram than the parent actor, as you can see in Figure 8 with
International Student and Student.

3.4 System Boundary Box Guidelines
The rectangle around the use cases is called the system bound-
ary box and, as the name suggests, it indicates the scope of
your system—the use cases inside the rectangle represent the
functionality that you intend to implement.

54. Indicate Release Scope with a System Boundary Box
In Figure 7, you can see that three system boundary boxes are
included, each of which has a label indicating the release to
which the various use cases have been assigned. This project
team is taking an incremental approach to software develop-
ment and therefore needs to communicate to their project
stakeholders what will be delivered in each release, and they
have done so using system boundary boxes.

Notice how the nature of each release is indicated by the place-
ment of each system boundary box. You can see that release 2
includes release 1, whereas release 3 is separate. The team may
be trying to indicate that, during release 2, they expect to en-
hance the functionality initially provided by release 1, whereas

26 THE ELEMENTS OF UML STYLE

they don’t expect to do so during release 3. Or perhaps they
intend to develop release 3 parallel to release 1 and/or 2. The
exact details aren’t readily apparent from the diagram. You
could add a note, if appropriate, but the diagram would sup-
port information contained in another project artifact such as
your project plan.

Figure 7 should have included another system boundary box,
one encompassing all three releases to specify the exact bound-
ary of the overall system, but it doesn’t. I did this in accordance
with AM’s (Chapter 12) Depict Models Simply practice, mak-
ing the assumption that the readers of the diagram would read
between the lines.

55. Avoid Meaningless System Boundary Boxes
System boundary boxes are optional—neither Figure 6 nor
Figure 8 includes one because it wouldn’t add to the commu-
nication value of the diagram.

4.

UML Class

Diagrams

UML class diagrams show the classes of the system, their inter-
relationships, and the operations and attributes of the classes.
They are used to

■ explore domain concepts in the form of a domain model,
■ analyze requirements in the form of a conceptual/analysis

model, and
■ depict the detailed design of object-oriented or object-

based software.

A class model comprises one or more class diagrams, and the
supporting specifications that describe model elements includ-
ing classes, relationships between classes, and interfaces.

4.1 General Guidelines
Because UML class diagrams are used for a variety of
purposes—from understanding your requirements to describ-
ing your detailed design—you will need to apply a different
style in each circumstance. This section describes style guide-
lines pertaining to different types of class diagrams.

56. Identify Responsibilities on Domain Class Models
When creating a domain class diagram, often as part of
your requirements modeling efforts, focus on identifying

27

28 THE ELEMENTS OF UML STYLE

responsibilities for classes instead of on specific attributes or
operations. For example, the Invoice class is responsible for pro-
viding its total, but whether it maintains this as an attribute
or simply calculates it at request time is a design decision that
you’ll make later.

There is some disagreement about this guideline because it
implies that you should be taking a responsibility-driven
approach to development. Craig Larman (2002) suggests a
data-driven approach, where you start domain models by iden-
tifying only data attributes, resulting in a model that is little
different from a logical data model. If you need to create
a logical data model, then do so, following AM’s practice,
Apply the Right Artifact(s) (Chapter 12). However, if you want
to create a UML class diagram, then you should consider the
whole picture and identify responsibilities.

57. Indicate Visibility Only on Design Models
The visibility of an operation or attribute defines the level of
access that objects have to it, and the UML supports four types
of visibility that are summarized in Table 1.Visibility is an im-
portant design issue. On detailed design models, you should
always indicate the visibility of attributes and operations, an
issue that typically is not pertinent to domain or conceptual

Table 1. Visibility options on UML class diagrams.

Visibility Symbol Accessible to

Public + All objects within your system
Protected # Instances of the implementing class

and its subclasses
Private − Instances of the implementing class
Package ∼ Instances of classes within the

same package

UML CLASS DIAGRAMS 29

models. Visibility on an analysis or domain model will al-
ways be public (+), and so, there is little value in indicating
this.

58. Indicate Language-Dependent Visibility
with Property Strings
If your implementation language includes non-UML-
supported visibilities, such as C++’s implementation visibil-
ity, then a property string should be used, as you can see in
Figure 9.

59. Indicate Types on Analysis Models Only When
the Type Is an Actual Requirement
Sometimes the specific type of an attribute is a requirement.
For example, your organization may have a standard definition
for customer numbers that requires that they be a nine-digit
number. Perhaps existing systems, such as a legacy database
or a predefined data feed, constrain some data elements to a
specific type or size. If this is the case, you should indicate this
information on your domain class model(s).

Order

Placement Date
Delivery Date
Order Number

Calculate Total
Calculate Taxes

Order

- deliveryDate: Date
- orderNumber: int
- placementDate: Date
- taxes: Currency
- total: Currency

calculateTaxes(Country, State): Currency
calculateTotal(): Currency
getTaxEngine() {visibility=implementation}

Analysis Design

Figure 9. Analysis and design versions of a class.

30 THE ELEMENTS OF UML STYLE

Student Course

Enrollment

Enrollment Date

Enroll
Drop
Cancel

0..* 1..*

Name
Student #
...

Constraints
{must be 18 years
of age or older}

Figure 10. Modeling association classes.

60. Be Consistent with Attribute Names and Types
It would not be consistent for an attribute named customer-
Number to be a string, although it would make sense for it to
be an integer. However, it would be consistent for the name
customerID to be a string or an integer.

61. Model Association Classes on Analysis Diagrams
Association classes, also called link classes, are used to model as-
sociations that have methods and attributes. Figure 10 shows
that association classes are depicted as a class attached via a
dashed line to an association—the association line, the class,
and the dashed line are considered to be one symbol in the
UML. Association classes typically are modeled during ana-
lysis and then refactored during design (either by hand or
automatically by your CASE tool) because mainstream pro-
gramming languages do not (yet) have native support for this
concept.

62. Do Not Name Associations That Have
Association Classes
The name of the association class should adequately describe
it. Therefore, as you can see in Figure 10, the association does
not need an additional adornment indicating its name.

UML CLASS DIAGRAMS 31

63. Center the Dashed Line of an Association Class
The dashed line connecting the class to the association path
should be clearly connected to the path and not to either class
or to any adornments of the association so that your meaning is
clear. As you can see in Figure 10, the easiest way to accomplish
this is to center the dashed line on the association path.

4.2 Class Style Guidelines
A class is effectively a template from which objects are created
(instantiated). Classes define attributes, information that is
pertinent to their instances, and operations—functionality
that the objects support. Classes also realize interfaces (more
on this later). Note that you may need to soften some of these
naming guidelines to reflect your implementation language or
any purchased or adopted software.

64. Use Common Terminology for Class Names
Class names should be based on commonly accepted terminol-
ogy to make them easier to understand by others. For business
classes, this would include names based on domain terminol-
ogy such as Customer, OrderItem, and Shipment and, for tech-
nical classes, names based on technical terminology such as
MessageQueue, ErrorLogger, and PersistenceBroker.

65. Prefer Complete Singular Nouns for Class Names
Names such as Customer and PersistenceBroker are preferable
to Cust and PBroker, respectively, because they are more de-
scriptive and thus easier to understand. Furthermore, it is
common practice to name classes as singular nouns such as
Customer instead of Customers. Even if you have a class that
does represent several objects, such as an iterator (Gamma et
al. 1995) over a collection of customer objects, a name such
as CustomerIterator would be appropriate.

Ta
b

le
2.

Ex
a

m
p

le
n

a
m

e
s

fo
r o

p
e

ra
tio

n
s.

G
o

o
d

G
o

o
d

A
na

ly
si

s
D

e
si

g
n

In
iti

a
lN

a
m

e
N

a
m

e
N

a
m

e
Is

su
e

O
p

e
n

A
c

c
O

p
e

n
o

p
e

n
A

c
c

o
u

n
t(

)
A

n
a

b
b

re
vi

a
tio

n
w

a
s

re
p

la
c

e
d

w
ith

th
e

A
c

c
o

u
n

t
fu

ll
w

o
rd

to
m

a
ke

it
c

le
a

rw
h

a
ti

s
m

e
a

n
t.

M
a

ili
n

g
La

b
e

lP
rin

t
Pr

in
tM

a
ili

n
g

p
rin

tM
a

ili
n

g
La

b
e

l(
)

Th
e

ve
rb

w
a

s
m

o
ve

d
to

th
e

b
e

g
in

n
in

g
La

b
e

l
o

ft
h

e
n

a
m

e
to

m
a

ke
it

a
c

tiv
e

.
p

u
rc

h
a

se
p

a
rk

in
g

p
a

ss
()

Pu
rc

h
a

se
p

u
rc

h
a

se
Pa

rk
in

g
Pa

ss
()

M
ix

e
d

c
a

se
w

a
s

a
p

p
lie

d
to

in
c

re
a

se
th

e
Pa

rk
in

g
Pa

ss
re

a
d

a
b

ili
ty

o
ft

h
e

d
e

si
g

n
-le

ve
ln

a
m

e
.

Sa
ve

th
e

O
b

je
c

t
Sa

ve
sa

ve
()

Th
e

n
a

m
e

w
a

s
sh

o
rt

e
n

e
d

b
e

c
a

u
se

th
e

te
rm

“T
h

e
O

b
je

c
t”

d
id

n
o

ta
d

d
a

ny
va

lu
e

.

32

UML CLASS DIAGRAMS 33

66. Name Operations with a Strong Verb
Operations implement the functionality of an object; there-
fore, they should be named in a manner that effectively com-
municates that functionality. Table 2 lists operation names for
analysis class diagrams as well as for design class diagrams—the
assumption being that your implementation language follows
Java naming conventions (Vermeulen et al. 2000)—indicating
how the operation name has been improved in each case.

67. Name Attributes with a Domain-Based Noun
As with classes and operations, you should use full descriptions
to name your attribute so that it is obvious what the attribute
represents. Table 3 suggests a Java-based naming convention
for analysis names that are in the Attribute Name format, al-
though attribute name and Attribute name formats are also fine
if applied consistently. Table 3 also suggests design names that
take an attributeName format, although the attribute name
format is just as popular depending on your implementation
language.

68. Do Not Model Scaffolding Code
Scaffolding code includes the attributes and operations
required to implement basic functionality within your classes,
such as the code required to implement relationships with
other classes. Scaffolding code also includes getters and setters,
also known as accessors and mutators, such as getItem() and
setItem() in Figure 11, that get and set the value of attributes.
You can simplify your class diagrams by assuming that scaf-
folding code will be created (many CASE tools can generate it
for you automatically) and not model it. Figure 11 depicts the
difference between the OrderItem class without scaffolding
code and with it—including the constructor, the common
static operation findAllInstances() that all business classes im-
plement (in this system), and the attributes item and order

Ta
b

le
3.

Ex
a

m
p

le
n

a
m

e
s

fo
ra

ttr
ib

u
te

s.

G
o

o
d

G
o

o
d

In
iti

a
l N

a
m

e
A

na
ly

si
s

N
a

m
e

D
e

si
g

n
N

a
m

e
Is

su
e

fN
a

m
e

Fi
rs

t N
a

m
e

fir
st

N
a

m
e

D
o

n
o

tu
se

a
b

b
re

vi
a

tio
n

s
in

a
ttr

ib
u

te
n

a
m

e
s.

fir
st

n
a

m
e

Fi
rs

t N
a

m
e

fir
st

N
a

m
e

C
a

p
ita

liz
in

g
th

e
se

c
o

n
d

w
o

rd
o

f t
h

e
d

e
si

g
n

n
a

m
e

m
a

ke
s

th
e

a
ttr

ib
u

te
n

a
m

e
e

a
si

e
r t

o
re

a
d

.
p

e
rs

o
n

Fi
rs

tN
a

m
e

Fi
rs

t N
a

m
e

fir
st

N
a

m
e

Th
is

d
e

p
e

n
d

s
o

n
th

e
c

o
n

te
xt

o
f t

h
e

a
ttr

ib
u

te
,

b
u

ti
ft

h
is

is
a

n
a

ttr
ib

u
te

o
ft

h
e

“P
e

rs
o

n
”

c
la

ss
,t

h
e

n
in

c
lu

d
in

g
“p

e
rs

o
n

”
m

e
re

ly
le

n
g

th
e

n
s

th
e

n
a

m
e

w
ith

o
u

tp
ro

vi
d

in
g

a
ny

va
lu

e
.

n
a

m
e

La
st

La
st

N
a

m
e

la
st

N
a

m
e

Th
e

n
a

m
e

“n
a

m
e

La
st

”
w

a
s

n
o

tc
o

n
si

st
e

n
tw

ith
“fi

rs
tN

a
m

e
”

(a
n

d
it

so
u

n
d

e
d

st
ra

n
g

e
a

ny
w

a
y)

.
h

TT
PC

o
n

n
e

c
tio

n
H

TT
P

C
o

n
n

e
c

tio
n

h
ttp

C
o

n
n

e
c

tio
n

Th
e

a
b

b
re

vi
a

tio
n

fo
rt

h
e

d
e

si
g

n
n

a
m

e
sh

o
u

ld
b

e
in

a
ll

lo
w

e
rc

a
se

.
fir

st
N

a
m

e
St

rin
g

Fi
rs

tN
a

m
e

fir
st

N
a

m
e

In
d

ic
a

tin
g

th
e

ty
p

e
o

ft
h

e
a

ttr
ib

u
te

,i
n

th
is

c
a

se
“s

tri
n

g
,”

c
o

u
p

le
s

th
e

a
ttr

ib
u

te
n

a
m

e
to

its
ty

p
e

.I
ft

h
e

ty
p

e
c

h
a

n
g

e
s,

p
e

rh
a

p
s

b
e

c
a

u
se

yo
u

d
e

c
id

e
to

re
im

p
le

m
e

n
tt

h
is

a
ttr

ib
u

te
a

s
a

n
in

st
a

n
c

e
o

ft
h

e
c

la
ss

“N
a

m
e

St
rin

g
,”

th
e

n
yo

u
w

o
u

ld
n

e
e

d
to

re
n

a
m

e
th

e
a

ttr
ib

u
te

.
O

rd
e

rIt
e

m
C

o
lle

c
tio

n
O

rd
e

rI
te

m
s

o
rd

e
rIt

e
m

s
Th

e
se

c
o

n
d

ve
rs

io
n

o
ft

h
e

d
e

si
g

n
n

a
m

e
is

sh
o

rt
e

ra
n

d
e

a
si

e
rt

o
u

n
d

e
rs

ta
n

d
.

34

UML CLASS DIAGRAMS 35

OrderItem

numberOrdered: int

+ findForItem(Item) : Vector
+ findForOrder(Order) : Vector
calculateTaxes(): Currency
calculateTotal(): Currency
- getTaxEngine()

Without Scaffolding

OrderItem

numberOrdered: int
- item: Item
- order: Order

<<constructor>> + OrderItem(Order) : OrderItem
+ findAllInstances() : Vector
+ findForItem(Item) : Vector
+ findForOrder(Order) : Vector
+ getNumberOrdered(): int
+ getTotal(): Currency
+ setNumberOrdered(amount: int)
calculateTaxes(Country, State): Currency
calculateTotal(): Currency
getItem(): Item
getOrder(): Order
- getTaxEngine()
- setItem(Item)
- setOrder(Order)

With Scaffolding

Figure 11. OrderItem class with and without scaffolding code.

and their corresponding getters and setters to maintain its
relationships with the Order class and Item class, respectively.

69. Do Not Model Keys
A key is a unique identifier of a data entity or table. Unless
you are using a UML class diagram to model the logical or
physical schema of a database (Ambler 2001) you should not
model keys in your class. Keys are a data concept, not an
object-oriented concept. A particularly common mistake by
novice developers is to model foreign keys in classes, the data
attributes needed to identify other rows of data within the
database.

70. Never Show Classes with Just Two Compartments
It is allowable within the UML to have a class with one or
more compartments. Although compartments may appear in
any order, traditionally the top-most compartment indicates
the name of the class and any information pertinent to the
class as a whole (such as a stereotype); the second optional

36 THE ELEMENTS OF UML STYLE

compartment typically lists the attributes; and the third op-
tional compartment typically lists the operations. Other “non-
standard” compartments may be added to the class to provide
information such as lists of exceptions thrown or notes per-
taining to the class. Because naming conventions for attributes
and operations are similar, and because people new to object
development may confuse the two concepts, it isn’t advisable
to have classes with just two compartments (one for the class
name and one listing either attributes or operations). If neces-
sary, include a blank compartment as a placeholder, as you can
see with the Student class in Figure 10.

71. Label Uncommon Class Compartments
If you do intend to include a class compartment that isn’t one
of the standard three—class name, attribute list, operations
list—then include a descriptive label such as “Exceptions” or
“Constraints” centered at the top of the compartment as you
can see with the Student class in Figure 10.

72. Include an Ellipsis (. . .) at the End
of Incomplete Lists
You know that the list of attributes of the Student class of
Figure 10 is incomplete because of the ellipsis at the end of
the list. Without the ellipsis, there would be no indication that
there is more to the class than what is currently shown (Evitts
2000).

73. List Static Operations/Attributes Before Instance
Operations/Attributes
Static operations and attributes typically deal with early aspects
of a class’s life cycle, such as the creation of objects or finding
existing instances of the classes. In other words, when you are
working with a class you often start with statics. Therefore it
makes sense to list them first in their appropriate compart-
ments as you can see in Figure 11 (statics are underlined).

UML CLASS DIAGRAMS 37

74. List Operations/Attributes in Decreasing Visibility
The greater the visibility of an operation or attribute, the
greater the chance that someone else will be interested in it. For
example, because public operations are accessible to a greater
audience than protected operations, there is a greater likeli-
hood that greater interest exists in public operations. There-
fore, list your attributes and operations in order of decreasing
visibility so that they appear in order of importance. As you can
see in Figure 11, the operations and attributes of the OrderItem
class are then listed alphabetically for each level of visibility.

75. For Parameters That Are Objects, List Only
Their Type
As you can see in Figure 11, operation signatures can be-
come quite long, extending the size of the class symbol. To
save space, you can forgo listing the types of objects that are
passed as parameters to operations. For example, Figure 11 lists
calculateTaxes(Country, State) instead of calculateTaxes(country:
Country, state: State), thus saving space.

76. Develop Consistent Operation
and Attribute Signatures
Operation names should be consistent with one another. For
example, in Figure 11, all finder operations start with the text
find. Parameter names should also be consistent with one an-
other. For example, parameter names such as theFirstName,
firstName, and firstNm are not consistent with one another,
nor are firstName, aPhoneNumber, and theStudentNumber.
Pick one naming style for your parameters and stick to it.
Similarly, be consistent also in the order of parameters. For
example, the methods doSomething(securityToken, startDate)
and doSomethingElse(studentNumber, securityToken) could be
made more consistent by always passing securityToken as either
the first or the last parameter.

38 THE ELEMENTS OF UML STYLE

+ findAllInstances(): Vector
{exceptions=NetworkFailure, DatabaseError}

Figure 12. Indicating the exceptions thrown by an operation.

77. Avoid Stereotypes Implied by Language
Naming Conventions
The UML allows for stereotypes to be applied to operations.
In Figure 11. I, applied the stereotype <<constructor>>
to the operation OrderItem(Order), but that information is
redundant because the name of the operation implies that
it’s a constructor, at least if the implementation language is
Java or C++. Furthermore, you should avoid stereotypes such
as <<getter>> and <<setter>> for similar reasons—the
names getAttributeName() and setAttributeName() indicate the
type of operations you’re dealing with.

78. Indicate Exceptions in an Operation’s
Property String
Some languages, such as Java, allow operations to throw ex-
ceptions to indicate that an error condition has occurred. Ex-
ceptions can be indicated with a UML property string, an
example of which is shown in Figure 12.

4.3 Interface Guidelines
An interface is a collection of operation signatures and/or at-
tribute definitions that ideally defines a cohesive set of behav-
iors. Interfaces are implemented, “realized” in UML parlance,
by classes and components—to realize an interface, a class
or component must implement the operations and attributes
defined by the interface. Any given class or component may
implement zero or more interfaces, and one or more classes or
components can implement the same interface.

UML CLASS DIAGRAMS 39

Shipment

<<interface>>
PersistentObject

+ OID: ObjectID

+ find(Criteria): Array
+ save()
+ delete()
+ retrieve()

Serializable

- shipDate: Date

+ getShippingCost(): Currency

Figure 13. Interfaces on UML class diagrams.

79. Reflect Implementation Language Constraints
in Interface Definitions
In Figure 13, you can see that a standard class box has been
used to define the interface PersistentObject (note the use of
the <<interface>> stereotype). This interface includes a
public attribute named OID and several public operations.
Unfortunately, it could not be implemented in Java because
this language does not (yet) support instance attributes in the
definition of interfaces. Therefore, you need to rework this
interface definition if you wish to implement my model in
Java.

80. Name Interfaces According to Language
Naming Conventions
Interfaces are named in the same manner as classes: they have
fully described names in the format InterfaceName. In Java it
is common to have interface names such as Serializable that
end in able or ible or just descriptive nouns such as EJBObject.
In Microsoft environments, it is common practice to prefix
interface names with a capital I , resulting in names such as
IComponent.

40 THE ELEMENTS OF UML STYLE

81. Prefer “Lollipop” Notation to Indicate Realization
of an Interface
As you can see in Figure 13, there are two ways to indicate that
a class or component implements an interface: the lollipop no-
tation used with the Serializable interface and the realization
line (the dashed line with a closed arrowhead) used with the
PersistentObject interface. The lollipop notation is preferred
because it is visually compact; the class box and realization
line approach tend to clutter your diagrams.

82. Define Interfaces Separately from Your Classes
To reduce clutter, you can define interfaces separately from
classes, either in another diagram specifically for interface def-
initions or simply on one edge of your class diagram.

83. Do Not Model the Operations and Attributes
of Interfaces in Your Classes
In Figure 13, you’ll notice that the Shipment class does not in-
clude the attributes or operations defined by the two interfaces
that it realizes. That information would be redundant because
it is already contained within the interface definitions.

4.4 Relationship Guidelines
For ease of discussion the term relationships shall include
all UML concepts such as associations, aggregation, compo-
sition, dependencies, inheritance, and realizations. In other
words, if it’s a line on a UML class diagram, we’ll consider it
a relationship.

84. Model Relationships Horizontally
With the exception of inheritance, the common convention
is to depict relationships horizontally; the more consistent
you are in the manner in which you render your diagrams,

UML CLASS DIAGRAMS 41

Order
<<Controller>>

DeliveryScheduler

OIDGenerator
Delivery

<<instantiate>>

1

1..*
fulfilled via

+ newOID() : int

Figure 14. Shipping an order.

the easier it will be to read them. In Figure 14, you can see
that the dependencies are modeled horizontally, although the
fulfilled via association is not. This sometimes happens.

85. Model Collaboration Between Two Elements Only
When They Have a Relationship
You need to have some sort of relationship between two model
elements to enable them to collaborate. Furthermore, if two
model elements do not collaborate with one another, then
there is no need for a relationship between them.

86. Model a Dependency When the Relationship
Is Transitory
Transitory relationships—relationships that are not persis-
tent—occur when one or more of the items involved in a
relationship is either itself transitory or a class. In Figure 14,
you can see that there is a dependency between DeliverySched-
uler and Order. DeliveryScheduler is a transitory class, one that
does not need to persist in your database, and therefore, there
is no need for any relationship between the scheduler and the
order objects with which it interacts to persist. For the same
reason, the relationship between DeliveryScheduler and Deliv-
ery is also a dependency, even though DeliveryScheduler creates
Delivery objects.

42 THE ELEMENTS OF UML STYLE

In Figure 14, instances of Delivery interact with OIDGenera-
tor to obtain a new integer value that acts as an object iden-
tifier (OID) to be used as a primary key value in a relational
database (Ambler 2001). You know that Delivery objects are
interacting with OIDGenerator and are not an instance of it
because the operation is static. Therefore, there is no per-
manent relationship to be recorded, and so, a dependency is
sufficient.

87. Tree-Route Similar Relationships to a Common Class
In Figure 14, you can see that both Delivery and Order have a
dependency on OIDGenerator. Note how the two dependen-
cies are drawn in combination in “tree configuration,” instead
of as two separate lines, to reduce clutter in the diagram (Evitts
2000). You can take this approach with any type of relation-
ship. It is quite common with inheritance hierarchies (as you
can see in Figure 17), as long as the relationship ends that
you are combining are identical. For example, in Figure 15,
you can see that OrderItem is involved in two separate rela-
tionships. Unfortunately, the multiplicities are different for
each: one is 1..* and the other 0..*, and so, you can’t combine
the two into a tree structure. Had they been the same, you
could have combined them, even though one relationship is
aggregation and the other is association.

Order OrderItem Item
0..*

1

1

1..* describes

Customer

- shippingAddress: Address
...

1

1..*

places

Figure 15. Modeling an order.

UML CLASS DIAGRAMS 43

Table 4. UML multiplicity indicators.

Indicator Meaning

0..1 Zero or one
1 One only
0..* Zero or more
1..* One or more
n Only n (where n > 1)
* Many
0..n Zero to n (where n > 1)
1..n One to n (where n > 1)
n..m Where n & m both > 1
n..* n or more, where n > 1

Note that there is a danger that you may be motivated to retain
a relationship in order to preserve the tree arrangement when
you really should change it.

88. Always Indicate the Multiplicity
For each class involved in a relationship, there will always
be a multiplicity for it. When the multiplicity is one and one
only—for example, with aggregation and composition, it is of-
ten common for the part to be involved only with one whole—
many modelers will not model the “1” beside the diamond.
I believe that this is a mistake, and as you can see in Figure 15, I
indicate the multiplicity in this case. If the multiplicity is “1,”
then indicate it as such so that your readers know that you’ve
considered the multiplicity. Table 4 summarizes the multipli-
city indicators that you will see on UML class diagrams.

89. Avoid a Multiplicity of “*”
You should avoid the use of “*” to indicate multiplicity on a
UML class diagram because your reader can never be sure if
you really mean “0..*” or “1..*”.

44 THE ELEMENTS OF UML STYLE

90. Replace Relationship Lines with Attribute Types
In Figure 15, you can see that Customer has a shippingAd-
dress attribute of type Address—part of the scaffolding code
to maintain the association between customer objects and
address objects. This simplifies the diagram because it vis-
ually replaces a class box and association, although it con-
tradicts the Do Not Model Scaffolding Code guideline. You
will need to judge which guideline to follow, the critical issue
being which one will best improve your diagram given your
situation.

A good rule of thumb is that if your audience is familiar with
the class, then show it as a type. For example, if Address is a
new concept within your domain then show it as a class; if it’s
been around for awhile then showing it as a type should work
well.

91. Do Not Model Implied Relationships
In Figure 15 there is an implied association between Item
and Order; items appear on orders, but it was not modeled.
A mistake? No, the association is implied through OrderItem.
Orders are made up of order items, which in turn are described
by items. If you model this implied association, not only do
you clutter your diagram, you also run the risk that some-
body will develop the additional code to maintain it. If you
don’t intend to maintain the actual relationship—for exam-
ple, you aren’t going to write the scaffolding code—then don’t
model it.

92. Do Not Model Every Dependency
Model a dependency between classes only if doing so adds
to the communication value of your diagram. As always, you
should strive to follow AM’s (Chapter 12) practice, Depict
Models Simply.

UML CLASS DIAGRAMS 45

4.5 Association Guidelines

93. Center Names on Associations
It is common convention to center the name of an association
above an association path, as you can see in Figure 15 with the
describes association between Order and Item, or beside the
path as with the fulfilled via association between Order and
Delivery in Figure 14.

94. Write Concise Association Names in Active Voice
The name of an association, which is optional although highly
recommended, is typically one or two descriptive words. If you
find that an association name is wordy, think about it from
the other direction; for example, the places name of Figure 15
is concise when read from right to left but would be wordy if
written from the left-to-right perspective (e.g., “is placed by”).
Furthermore, places is written in active voice instead of passive
voice, making it clearer to the reader.

95. Indicate Directionality to Clarify
an Association Name
When it isn’t clear in which direction the name of an asso-
ciation should be read, you can indicate the direction with a
filled triangle as you can see in Figure 15 between OrderItem
and Item. This marker indicates that the association should be
read as “an item describes an order item” instead of “an order
item describes an item.” It is also quite common to indicate
the directionality on recursive associations, where the associ-
ation starts and ends on the same class, such as mentors in
Figure 16.

Better yet, when an association name isn’t clear, you
should consider rewording it or maybe even renaming the
classes.

46 THE ELEMENTS OF UML STYLE

Professor

name
phoneNumber
emailAddress
salary

getInformation() 0..*0..1

Seminar

seminarNumber
waitingList

addStudent(student)
dropStudent(student)

instructor

advisor

associate

0..1

0..*

assistant
0..*0..1

{NAND}

mentors

teaches

assists

Figure 16. Professors and seminars.

96. Name Unidirectional Associations
in the Same Direction
The reading direction of an association name should be the
same as that of the unidirectional association. This is basically
a consistency issue.

97. Word Association Names Left to Right
Because people in Western societies read from left to right, it
is common practice to word association names so that they
make sense when read from left to right. Had I followed this
guideline with the describes association of Figure 15, I likely
would not have needed to include the direction marker.

98. Indicate Role Names When Multiple Associations
Between Two Classes Exist
Role names are optionally indicated on association ends to
indicate how a class is involved in the association. Although the
name of an association should make the roles of the two classes
clear, it isn’t always obvious when several associations exist
between two classes. For example, in Figure 16, there are two
associations between Professor and Seminar: assists and teaches.
These two association names reflect common terminology at
the university and cannot be changed. Therefore we opt to
indicate the roles that professors play in each association to
clarify them.

UML CLASS DIAGRAMS 47

Person

Student

Address
0..1 1

Professor

lives at

Alumnus

lives at

0..1

1..2

Figure 17. Modeling people in a university.

99. Indicate Role Names on Recursive Associations
Role names can be used to clarify recursive associations, ones
that involve the same class on both ends, as you can see with the
mentors association in Figure 16. The diagram clearly depicts
the concept that an advisor mentors zero or more associate
professors.

100. Make Associations Bi-Directional Only When
Collaboration Occurs in Both Directions
The lives at association between Person and Address in Fig-
ure 17 is unidirectional. A person object knows its address,
but an address object does not know who lives at it. Within
this domain, there is no requirement to traverse the associ-
ation from Address to Person; therefore, the association does
not need to be bi-directional (two-way). This reduces the code
that needs to be written and tested within the address class
because the scaffolding to maintain the association to Person
isn’t required.

101. Redraw Inherited Associations Only When
Something Changes
An interesting aspect of Figure 17 is the association between
Person and Address. First, this association was pushed up to

48 THE ELEMENTS OF UML STYLE

Person because Professor, Student, and Alumnus all had a lives
at association with Address. Because associations are imple-
mented by the combination of attributes and operations, both
of which are inherited, the implication is that associations are
inherited. If the nature of the association doesn’t change—
for example, both students and professors live at only one
address—then we don’t have any reason to redraw the asso-
ciation. However, because the association between Alumnus
and Address is different, we have a requirement to track one
or two addresses, and so, we needed to redraw the association
to reflect this.

102. Question Multiplicities Involving
Minimums and Maximums
The problem with minimums and maximums is that they
change over time. For example, today you may have a busi-
ness rule that states an alumnus has either one or two addresses
that the university tracks, motivating you to model the mul-
tiplicity as 1..2, as depicted in Figure 17. However, if you
build your system to reflect this rule, then when the rule
changes you may find that you have significant rework to
perform. In most object languages, it is easier to implement a
1..* multiplicity or, better yet, a 0..* multiplicity, because you
don’t have to check the size of the collection maintaining the
association. Providing greater flexibility with less code seems
good to me.

4.6 Inheritance Guidelines
Inheritance models “is a” and “is like” relationships, enabling
you to easily reuse existing data and code. When A inherits
from B , we say that A is the subclass of B and that B is
the superclass of A. Furthermore, we say that we have “pure
inheritance” when A inherits all of the attributes and methods
of B . The UML modeling notation for inheritance is a line

UML CLASS DIAGRAMS 49

with a closed arrowhead pointing from the subclass to the
superclass.

103. Apply the Sentence Rule for Inheritance
One of the following sentences should make sense: “A subclass
IS A superclass” or “A subclass IS KIND OF A superclass.”
For example, it makes sense to say that a student is a person,
but it does not make sense to say that a student is an address
or is like an address, and so, the class Student likely should not
inherit from Address—association is likely a better option, as
you can see in Figure 17. If it does not make sense to say that
“the subclass is a superclass” or at least “the subclass is kind of
a superclass,” then you are likely misapplying inheritance.

104. Place Subclasses Below Superclasses
It is common convention to place a subclass, such as Student
in Figure 17, below its superclass—Person in this case. Evitts
(2000) says it well: Inheritance goes up.

105. Beware of Data-Based Inheritance
If the only reason why two classes inherit from each other is
because they share common data attributes, then this indicates
one of two things: you have either missed some common
behavior (this is likely if the sentence rule applies) or you
should have applied association instead.

106. A Subclass Should Inherit Everything
A subclass should inherit all of the attributes and operations of
its superclass, and therefore all of its relationships as well—a
concept called pure inheritance. The advantage of pure in-
heritance is that you only have to understand what a subclass
inherits, and not what it does not inherit. Although this sounds
trivial, in a deep class hierarchy it makes it a lot easier if you
only need to understand what each class adds, and not what
it takes away. Larman (2002) calls this the “100% rule.” Note

50 THE ELEMENTS OF UML STYLE

that this contradicts the Redraw Inherited Associations Only
When Something Changes guideline, and so, you’ll need to de-
cide accordingly.

4.7 Aggregation and Composition
Guidelines
Sometimes an object is made up of other objects. For example,
an airplane is made up of a fuselage, wings, engines, landing
gear, flaps, and so on. A delivery shipment contains one or
more packages. A team consists of two or more employees.
These are all examples of the concept of aggregation, which
represents “is part of” relationships. An engine is part of a
plane, a package is part of a shipment, and an employee is part
of a team. Aggregation is a specialization of association, speci-
fying a whole–part relationship between two objects. Compo-
sition is a stronger form of aggregation, where the whole and
the parts have coincident lifetimes, and it is very common for
the whole to manage the life cycle of its parts. From a stylistic
point of view, because aggregation and composition are both
specializations of association, the guidelines for associations
apply.

Airplane Component
1..*1

0..*

0..* sub-
assembly

assembly

EmployeeTeam
1..*0..*

builds

1..*

1

0..1

0..* sub-team

Figure 18. Examples of aggregation and composition.

UML CLASS DIAGRAMS 51

107. Apply the Sentence Rule for Aggregation
It should make sense to say “the part IS PART OF the whole.”
For example, in Figure 18, it makes sense to say that an em-
ployee is part of a team or that a component is part of an
airplane. However, it does not make sense to say that a team is
part of an airplane or an airplane is part of a team—but it does
make sense to say that a team builds airplanes, an indication
that association is applicable.

108. Be Interested in Both the Whole and the Part
For aggregation and composition, you should be interested
in both the whole and the part separately—both the whole
and the part should exhibit behavior that is of value to your
system. For example, you could model the fact that my watch
has hands on it, but if this fact isn’t pertinent to your system
(perhaps you sell watches but not watch parts), then there is
no value in modeling watch hands.

109. Place the Whole to the Left of the Part
It is common convention to draw the whole, such as Team
and Airplane, to the left of the part, Employee and Component,
respectively.

110. Apply Composition to Aggregates of Physical Items
Composition is usually applicable whenever aggregation is
AND when both classes represent physical items. For example,
in Figure 18 you can see that composition is used between
Airplane and Component, whereas aggregation is used be-
tween Team and Employee—airplanes and components are
both physical items, whereas teams are not.

111. Apply Composition When the Parts Share Their
Persistence Life Cycle with the Whole
If the persistence life cycle of the parts is the same as the whole,
if they’re read at the same time, if they’re saved at the same

52 THE ELEMENTS OF UML STYLE

time, if they’re deleted at the same time, then composition is
likely applicable.

112. Don’t Worry About the Diamonds
When deciding whether to use aggregation or composition
over association, Craig Larman (2002) says it best: “If in doubt,
leave it out.” The reality is that many modelers will agonize
over when to use aggregation when the reality is that there
is very little difference between association, aggregation, and
composition at the coding level.

5.

Package Diagrams

A “package diagram” is any UML diagram, commonly a UML
use case diagram or UML class diagram, composed only of
packages. A package is a UML construct that enables you
to organize model elements, such as use cases or classes, into
groups. Packages are depicted as file folders and can be applied
on any UML diagram. Although package diagrams are not
official UML diagrams, their creation is common enough in
practice to warrant discussion. Create a package diagram to

■ depict a high-level overview of your requirements,
■ depict a high-level overview of your design,
■ logically modularize a complex diagram,
■ organize source code, or
■ model a framework (Evitts 2000).

5.1 Class Package Diagram Guidelines

113. Create Class Package Diagrams to Logically
Organize Your Design
Figure 19 depicts a UML class diagram organized into pack-
ages. In addition to the package guidelines presented later in
this chapter, apply the following heuristics to organize UML
class diagrams into package diagrams:

■ Classes of a framework belong in the same package.
■ Classes in the same inheritance hierarchy typically belong

in the same package.

53

54 THE ELEMENTS OF UML STYLE

Security
<<infrastructure>>

Order
<<domain>>

Shipping
<<user interface>>

Customer
<<domain>>

Persistence
<<infrastructure>>

Corporate DB
<<database>>

Apache Struts
<<user interface

framework>>

Online Ordering
<<user interface>>

Figure 19. A class package diagram.

PACKAGE DIAGRAMS 55

■ Classes related to one another via aggregation or composi-
tion often belong in the same package.

■ Classes that collaborate with each other a lot often belong
in the same package.

114. Create UML Component Diagrams to Physically
Organize Your Design
If you have decided on a component-based approach to design,
such as that promoted by Enterprise Java Beans (EJB) (Roman
et al. 2002) or Visual Basic, you should prefer a UML compo-
nent diagram over a package diagram to depict your physical
design. A version of Figure 19 as a UML component diagram
is presented in Chapter 10 and, as you can see, that diagram
is better suited for a physical design. Always remember to fol-
low Agile Modeling’s (Chapter 12) Apply the Right Artifact(s)
practice.

115. Place Inheriting Packages Below
Base Packages
Inheritance between packages is depicted in Figure 19 and, as
you can see, the inheriting package is shown below the base
package. This approach is consistent with other inheritance
guidelines.

116. Vertically Layer Class Package Diagrams
Dependencies between packages indicate that the contents of
the dependent package depend on, or have structural knowl-
edge of, the contents of the other package. In Figure 19, the
packages are placed on the diagram to reflect the logical lay-
ering of your architecture. The user interface interacts with
domain classes, which in turn use infrastructure classes, some
of which access the database—which is traditionally depicted
in a top-down manner.

56 THE ELEMENTS OF UML STYLE

5.2 Use Case Package
Diagram Guidelines
Use cases are a primary requirement artifact in many object-
oriented development methodologies. This is particularly true
of instantiations of the Unified Process (Rational Corporation
2002; Ambler 2000). For larger projects, package diagrams are
often created to organize these usage requirements.

117. Create Use Case Package Diagrams to Organize
Your Requirements
In addition to the package guidelines presented below, apply
the following heuristics to organize UML use case diagrams
into package diagrams:

■ Keep associated use cases together: included, extending,
and inheriting use cases belong in the same package as the
base/parent use case.

■ Group use cases on the basis of needs of the main actors.
For example, in Figure 20, the Enrollment package contains
use cases pertinent to enrolling students in seminars, a vital
collection of services provided by the university.

118. Include Actors on Use Case Package Diagrams
Including actors on package diagrams helps to put the pack-
ages in context, making diagrams easier to understand.

119. Horizontally Arrange Use Case Package Diagrams
The primary audience of Use Case package diagrams is project
stakeholders; therefore, the organization of these diagrams
should reflect their needs. The packages in Figure 20 are ar-
ranged horizontally, with dependencies drawn from left to
right to reflect the direction that people in Western cultures
read.

F
in

an
ci

al
A

dm
in

is
tr

at
or

S
tu

de
nt

P
ro

fe
ss

or

M
an

ag
e

F
ee

s

M
an

ag
e

Lo
an

s
an

d
G

ra
nt

s

M
an

ag
e

S
em

in
ar

s
E

nr
ol

lm
en

t

U
ni

ve
rs

ity
 In

fo
rm

at
io

n
S

ys
te

m

H
ig

h-
Le

ve
l U

se
-C

as
e

D
ia

gr
am

S
ch

ed
ul

er

Fi
gu

re
20

.
A

U
M

L
us

e
ca

se
di

ag
ra

m
co

m
pr

is
in

g
m

os
tl

y
pa

ck
ag

es
.

57

58 THE ELEMENTS OF UML STYLE

5.3 Package Guildelines
The advice presented in this section is applicable to packages
on any UML diagram, not just package diagrams.

120. Give Packages Simple, Descriptive Names
In both Figure 19 and Figure 20, the packages have simple,
descriptive names, such as Shipping, Customer, Enrollment, and
Manage Loans, and Grants, which make it very clear what the
package encapsulates.

121. Make Packages Cohesive
Anything that you put into a package should make sense when
considered with the rest of the package contents. A good test
to determine whether a package is cohesive is whether you can
give your package a short, descriptive name. If you can’t, then
you likely have put several unrelated things into the package.

122. Indicate Architectural Layers with Stereotypes
on Packages
It is very common to organize your design into architectu-
ral layers such as user interface, business/domain, persistence/
data, and infrastructure/system. In Figure 19 you see that
stereotypes such as <<user interface>>, <<domain>>,
<<infrastructure>>, and <<database>> have been
applied to packages.

123. Avoid Cyclic Dependencies Between Packages
Knoernschild (2002) advises that you avoid the situation in
which package A is dependent on package B which is depen-
dent on package C which in turn is dependent on package
A—in this case, A → B → C → A forms a cycle. Because
these packages are coupled to one another, they will be harder
to test, maintain, and enhance over time. Cyclic dependencies
are a good indicator that you need to refactor one or more

PACKAGE DIAGRAMS 59

packages, removing the elements from them that are causing
the cyclic dependency.

124. Reflect Internal Relationships
in Package Dependencies
When one package depends on another, it implies that there
are one or more relationships between the contents of the two
packages. For example, if it’s a use case package diagram, then
there is likely an include, extend, or inheritance relationship
between a use case in one package and one in the other package.

6.

UML Sequence

Diagrams

UML sequence diagrams are a dynamic modeling technique,
as are UML collaboration diagrams. UML sequence diagrams
are typically used to

■ validate and flesh out the logic and completeness of a us-
age scenario. A usage scenario is exactly what its name
indicates—the description of a way that your system could
be used. The logic of a usage scenario may be part of a use
case, perhaps an alternate course; one entire pass through
a use case, such as the logic described by the basic course
of action or a portion of the basic course of action plus
one or more alternate scenarios; or a pass through the logic
contained in several use cases, for example, when a student
enrolls in the university and then immediately enrolls in
three seminars.

■ explore your design because they provide a way for you to
visually step through invocation of the operations defined
by your classes.

■ give you a feel for which classes in your application are
going to be complex, which in turn is an indication that
you may need to draw state chart diagrams for those classes.

■ detect bottlenecks within an object-oriented design. By
looking at what messages are being sent to an object, and
by looking at roughly how long it takes to run the invoked

60

UML SEQUENCE DIAGRAMS 61

method, you quickly get an understanding of where you
need to change your design to distribute the load within
your system. Naturally, you will still want to gather tele-
metry data from a profiling tool to detect the exact location
of your bottlenecks.

6.1 General Guidelines

125. Strive for Left-to-Right Ordering of Messages
You start the message flow of a sequence diagram in the top-
left corner; a message that appears lower in the diagram is sent
after one that appears above it. Because people in Western
cultures read from left to right, you should strive to arrange
the classifiers (actors, classes, objects, and use cases) across the
top of your diagram in such a way as to depict message flow
from left to right. In Figure 21, you can see that the classifiers
have been arranged exactly this way; had the Seminar object
been to the left of the controller, this would not have been the
case. Sometimes it isn’t possible for all messages to flow from
left to right; for example, it is common for pairs of objects to
invoke operations on each other.

126. Layer Classifiers
Layering is a common approach to object-oriented design. It is
quite common for systems to be organized into user interface,
process/controller, business, persistence, and system layers
(Ambler 2001). When systems are designed in this fashion,
classifiers within each layer usually collaborate closely with one
another and are relatively decoupled from the other layers. It
makes sense to layer your sequence diagrams in a similar man-
ner. One such layering approach is to start with the upper
layers, such as your user interface, on the left-hand side and
work through to the lower layers as you move to the right.
Layering your sequence diagrams in this manner will often

S
tu

de
nt

<
<

ac
to

r>
>

:S
ec

ur
ity

Lo
go

n
<

<
U

I>
>

th
eS

tu
de

nt
:S

tu
de

nt

S
em

in
ar

is
V

al
id

(n
am

e,
 n

um
be

r)

:E
nr

ol
lIn

S
em

in
ar

<
<

co
nt

ro
lle

r>
>

w
is

h
to

 e
nr

ol
l

<
<

cr
ea

te
>

>

th
eS

tu
de

ntpr
ov

id
es

 n
am

e

pr
ov

id
es

 s
tu

de
nt

 n
um

be
r X

<
<

de
st

ro
y>

>

ge
tA

va
ila

bl
eS

em
in

ar
s(

):
V

ec
to

r

ye
s

Fi
gu

re
21

.
E

nr
ol

lin
g

a
st

ud
en

t
in

a
se

m
in

ar
.

62

UML SEQUENCE DIAGRAMS 63

make them easier to read and will also make it easier to find
layering logic problems. Figure 21 takes such an approach.

127. Give an Actor the Same Name as a Class,
if Necessary
In Figure 21 you can see that there is an actor named Student
and a class named Student. This is perfectly fine because the
two classifiers represent two different concepts: the actor re-
presents the student in the real world whereas the class repre-
sents the student within the business application that you are
building.

128. Include a Prose Description of the Logic
Figure 21 can be hard to follow, particularly for people not
familiar with reading sequence diagrams, because it is very
close to actual source code. It is quite common to include a
business description of the logic you are modeling, particularly
when the sequence diagram depicts a usage scenario, in the
left-hand margin, as you can see in Figure 22. This increases
the understandability of your diagram, and as Rosenberg and
Scott (1999) point out this also provides valuable traceability
information between your use cases and sequence diagrams.

129. Place Proactive System Actors on the Left-Most
Side of Your Diagram
Proactive system actors—actors that initiate interaction with
yours—are often the focus of what you are modeling. For busi-
ness applications the primary actor for most usage scenarios
is a person or organization who initiates the scenario being
modeled.

130. Place Reactive System Actors on the Right-Most
Side of Your Diagram
Reactive system actors—systems that initiate interaction
with yours—should be placed on the right-most side of

*:
 g

et
To

ta
l()

ge
tP

ric
e(

)

ca
lc

ul
at

eT
ot

al
()

C
u

st
o

m
er

: I
te

m
<<

sy
st

em
>>

P
ay

m
en

t
P

ro
ce

ss
o

r

C
h

ec
ko

u
t

an
o

n
lin

e
o

rd
er

.

1.
 T

he
 c

us
to

m
er

 d
ec

id
es

to
 c

he
ck

ou
t.

: O
rd

er
: O

rd
er

Ite
m

: O
rd

er
C

he
ck

ou
t

: C
he

ck
ou

t
P

ag
e

<
<

cr
ea

te
>

>

... 5.
 T

he
 s

ys
te

m
 c

al
cu

la
te

s
th

e
or

de
r

to
ta

l.

ge
tT

ot
al

()

12
. T

he
 s

ys
te

m
 p

ro
ce

ss
es

th
e

cr
ed

it
ca

rd
 p

ay
m

en
t.

...

: C
re

di
tC

ar
d

P
ay

m
en

t

de
bi

t(
)

au
th

or
iz

at
io

nC
od

e
:=

 r
es

er
ve

()

co
m

m
it(

):
A

ut
ho

riz
at

io
nC

od
e

di
sp

la
y(

)

14
. T

he
 s

ys
te

m
 d

is
pl

ay
s

th
e

ch
ec

ko
ut

 s
um

m
ar

y
pa

ge
.

...

: O
rd

er
P

ag
e

or
de

r

Fi
gu

re
22

.
C

he
ck

in
g

ou
t

an
on

lin
e

or
de

r.

64

UML SEQUENCE DIAGRAMS 65

your diagram because, for many business applications, these
actors are treated as “back-end entities,” that is, things that
your system interacts with through access techniques such as
C APIs, CORBA IDL, message queues, or Web services. In
other words, put back-end systems at the back end of your
diagrams.

131. Avoid Modeling Object Destruction
Although memory management issues are important and, in
particular, the removal of an object from memory at the right
time, many modelers choose not to bother modeling object
destruction on sequence diagrams (via an X at the bottom of
an activation box or via a message with the <<destroy>>
stereotype). Compare Figure 21 with Figure 22. Notice how
object destruction introduces clutter into Figure 21 without
any apparent benefit, yet Figure 22 gets along without indicat-
ing object destruction. Remember to follow Agile Modeling’s
(AM) (Chapter 12) practice Depict Models Simply.

Note that, in real-time systems, memory management is often
such a critical issue that you may in fact decide to model object
destruction.

132. Don’t Sweat Activation Boxes
Activation boxes are the little rectangles on the dashed lines
hanging down from classifiers on UML sequence diagrams.
Activation boxes are optional and are used to indicate fo-
cus of control, implying where and how much processing oc-
curs. However, activation boxes are little better than visual
noise because memory management issues are better left in
the hands of programmers. Some modelers prefer the “con-
tinuous style” used in Figure 21, where the activation boxes
remain until processing ends. Others prefer the “broken style”
used in Figure 22. Both styles are fine. Choose one and move
forward.

66 THE ELEMENTS OF UML STYLE

6.2 Classifier Guidelines
Note that naming conventions for classifiers are described else-
where: in Chapter 3 for use cases, in Chapter 4 for classes and
interfaces, and in Chapter 10 for components.

133. Name Objects When You Reference Them
in Messages
Objects on sequence diagrams have labels in the standard
UML format “name: ClassName” where “name” is optional
(objects that have a name are called named objects, whereas
those without names are called anonymous objects). In Fig-
ure 21 the instance of Student was given the name theStudent
because it is referred to as a return value to a message, whereas
the instance of the SecurityLogon class did not need to be
referenced anywhere else in the diagram and thus could be
anonymous.

134. Name Objects When Several of the Same Type Exist
Whenever a sequence diagram includes several objects of the
same type—for example, in Figure 23, you can see that there
are two instances of the class Account—you should give all ob-
jects of that type a name to make your diagram unambiguous.

135. Apply Textual Stereotypes to Classifiers Consistently
Table 5 summarizes common stereotypes that you may want
to consider applying to classifiers on sequence diagrams.
Don’t invest a lot of time agonizing over which stereo-
types you should use—for example, <<JSP>> and <<java
server page>> are both fine—just choose one and apply
it consistently.

136. Apply Visual Stereotypes Sparingly
You can apply visual stereotypes on your sequence diagrams,
as in Figure 22 and Figure 23, but it is not a common prac-
tice and therefore may reduce the understandability of your

so
ur

ce
 :A

cc
ou

nt
:F

un
ds

Tr
an

sf
er

<
<

co
nt

ro
lle

r>
>

F
in

an
ci

al
Tr

an
sa

ct
io

n
M

an
ag

er
ta

rg
et

 :A
cc

ou
nt

st
ar

t(
U

se
rI

D
):

tr
an

sa
ct

io
nI

D

at
te

m
pt

D
ep

os
it(

am
ou

nt
, t

ra
ns

ac
tio

nI
D

):
V

ec
to

r

at
te

m
pt

W
ith

dr
aw

al
(a

m
ou

nt
, t

ra
ns

ac
tio

nI
D

)

ad
dW

ith
dr

aw
al

(a
m

ou
nt

, s
ou

rc
e,

 tr
an

sa
ct

io
nI

D
)

ad
dD

ep
os

it(
am

ou
nt

, t
ar

ge
t,

tr
an

sa
ct

io
nI

D
)

co
m

m
it(

tr
an

sa
ct

io
nI

D
)

co
m

m
it(

tr
an

sa
ct

io
nI

D
)

co
m

m
it(

tr
an

sa
ct

io
nI

D
)

R
ec

o
rd

Tr
an

sa
ct

io
n

<
<

in
cl

ud
e>

>

Fi
gu

re
23

.
Tr

an
sf

er
ri

ng
fu

nd
s

be
tw

ee
n

ac
co

un
ts

.

67

68 THE ELEMENTS OF UML STYLE

Table 5. Common Stereotypes.

Stereotype Usage

<<ASP>> During design to represent a Microsoft
Active Server Page.

<<component>> During design to indicate a component.
<<controller>> To indicate a controller class that

implements business logic pertaining
to a usage scenario and/or logic that
involves several business classes.

<<GUI>> During design to represent a graphical
user interface screen.

<<HTML>> During design to represent an HTML page.
<<interface>> During design to represent a Java interface.
<<JSP>> During design to represent a Java Server

Page.
<<report>> During design to represent a printed or

electronic report.
<<system>> To indicate system actors.
<<user For a generic user interface class, typically
interface>> used on an analysis-level diagram where

you haven’t yet decided on an
implementation platform.

diagrams. In Figure 22, Customer is an actor (using the same
notation as use case diagrams), OrderCheckout is a controller
class, CheckoutPage is a user interface class, and Order is a
business entity class.

Note that visual stereotypes are commonly used by teams
that develop robustness diagrams (Rosenberg and Scott 1999;
Ambler 2002) because these diagrams use the visual stereo-
types depicted in Figure 22 and therefore everyone involved
with your project is accustomed to this notation.

137. Focus on Critical Interactions
The AM practice Create Simple Content advises you to focus
on the critical aspects of your system when you are creating

UML SEQUENCE DIAGRAMS 69

a model and not to include extraneous details. Therefore, if
your sequence diagram is exploring business logic, then you
don’t need to include the detailed interactions that your ob-
jects have with your database. Messages such as save() and
delete() may be sufficient or, better yet, you could simply as-
sume that persistence will happen appropriately and not even
go to that level of detail. In Figure 22 there isn’t any logic for
reading orders and order items from the database or object
cache. Nor do you see logic for the CreditCardPayment class
to connect to the payment processor, but that surely must
be happening in the background. By focusing only on the
critical interactions—those that are pertinent to what you are
modeling—you keep your diagrams as simple as possible but
still get the job done, thus increasing your productivity as
a modeler and very likely increasing the readability of your
diagrams.

6.3 Message Guidelines
Note that naming conventions for operation signatures—
guidelines that are pertinent to naming messages, parameters,
and return values—are described in detail in Chapter 4.

138. Justify Message Names Beside the Arrowhead
Most modelers will justify message names, such as calculate
Total() in Figure 22, so that they are aligned with the ar-
rowhead. The general idea is that the receiver of the message
will implement the corresponding operation, and so, it makes
sense that the message name be close to that classifier.

Notice that in Figure 23 this guideline was not followed. All of
the message names are aligned so that they are beside the end
of the arrow, putting them close to the sender. The advantage
of this approach is that it is very easy to see the logic of the
scenario being modeled. The disadvantage is that it can be

70 THE ELEMENTS OF UML STYLE

difficult to determine which operation is being invoked on
the classifiers on the right-hand side of the diagram because
you need to follow the lines across to the invocation box. As
usual, pick one approach and apply it consistently.

139. Create Objects Directly
There are two common ways to indicate object creation on
a sequence diagram: send a message with the <<create>>
stereotype as shown in Figure 22 with OrderCheckout, or di-
rectly show creation by dropping the classifier down in your
diagram and invoking a message into its side, as you can see
with theStudent in Figure 21 and CreditCardPayment in Fig-
ure 22. The primary advantage of the direct approach is that it
visually communicates that the object doesn’t exist until part
way through the logic being modeled.

140. Apply Operation Signatures
for Software Messages
Whenever a message is sent to a software-based classifier—
such as a class, an interface, or a component—it is common
convention to depict the message name using the syntax of
your implementation language. For example, in Figure 23 the
message commit(transactionID) is sent to the source account
object.

141. Apply Prose for Messages Involving Human
and Organization Actors
Whenever the source or target of a message is an actor repre-
senting a person or organization, the message is labeled with
brief prose describing the information being communicated.
For example, in Figure 21 the “messages” sent by the student
actor are provides name and provides student number, descrip-
tions of what the actual person is doing.

UML SEQUENCE DIAGRAMS 71

142. Prefer Names Over Types for Parameters
Notice that, in Figure 23, for most message parameters the
names of parameters and not their types3 are shown, the
only exception being the UserID parameter being passed in
the start() message, which enables you to identify exactly
what value is being passed in the message; sometimes type
information is not enough. For example, the message addDe-
posit(amount, target, transactionID) conveys more information
than addDeposit(Currency, Account, int). Type information for
operations are better captured in UML class diagrams.

143. Indicate Types as Parameter Placeholders
Sometimes the exact information that is being passed as a
parameter isn’t pertinent to what you are modeling, although
the fact that something is being passed is pertinent. In this
case, indicate the type of the parameter, as you can see in
start(UserID) in Figure 23.

144. Apply the <<include>> Stereotype
for Use Case Invocations
Figure 23 shows how a use case may be invoked in a sequence
diagram, via a message with the <<include>> stereotype,
a handy trick when you’re modeling a usage scenario that
includes a step in which a use case is directly invoked.

6.4 Return Value Guidelines

145. Do Not Model Obvious Return Values
Return values are optionally indicated using a dashed ar-
row with a label indicating the return value. For example, in

3 This diagram follows Java naming conventions where the names of types (classes
and interfaces) start with an upper-case letter, whereas the names of parameters
start with a lower-case letter.

72 THE ELEMENTS OF UML STYLE

Figure 21 the return value theStudent is indicated coming back
from the SecurityLogon class as the result of invoking a mes-
sage, whereas in Figure 22 no return value is indicated as the
result of sending the message getTotal() to the order. In the first
case, it isn’t obvious that the act of creating a security logon
object will result in the generation of a student object, whereas
the return value of asking an order for its total is obvious.

146. Model a Return Value Only When You Need
to Refer to It Elsewhere on a Diagram
If you need to refer to a return value elsewhere in your sequence
diagram, often as a parameter passed in another message, indi-
cate the return value on your diagram to explicitly show where
it comes from.

147. Justify Return Values Beside the Arrowhead
Most modelers will justify return values, such as yes and
theStudent in Figure 21 so that they are aligned with the ar-
rowhead. The general idea is that the receiver of the return
value will use it for something, and so, it makes sense that the
return value be close to the receiver.

148. Model Return Values as Part
of a Method Invocation
Instead of cluttering your diagram with dashed lines, consider
indicating the return value in the message name instead, using
the notation returnValue := message(parameters) that you can
see applied in Figure 22 with the authorizationCode := reserve()
message. With this approach, you have only the single message
line instead of a message line and a return-value line.

149. Indicate Types as Return-Value Placeholders
Sometimes the exact information that is being returned isn’t
pertinent to what you are modeling, although the fact that
something is being returned is important. In this case, indicate

UML SEQUENCE DIAGRAMS 73

the type of the return value, as you can see in commit():
AuthorizationCode in Figure 22.

150. Indicate the Actual Value for Simple Return Values
In Figure 21 the value yes is returned in response to the
isValid() message, making it very clear that the student name
and number combination was valid. Had the return value been
named Boolean, thus indicating the type of answer, or eligibil-
ityIndicator, thus indicating the name of the return value, it
would not have been as clear.

7.

UML Collaboration

Diagrams

UML collaboration diagrams, like UML sequence diagrams,
are used to explore the dynamic nature of your software. Col-
laboration diagrams show the message flow between objects in
an object-oriented application, and also imply the basic associ-
ations (relationships) between classes. Collaboration diagrams
are often used to

■ provide a bird’s eye view of a collection of collaborating
objects, particularly within a real-time environment,

■ allocate functionality to classes by exploring the behavioral
aspects of a system,

■ model the logic of the implementation of a complex oper-
ation, particularly one that interacts with a large number
of other objects, or

■ explore the roles that objects take within a system, as well as
the different relationships in which they are involved when
in those roles.

7.1 General Guidelines

151. Create Instance-Level Diagrams to Explore Object
Design Issues
Instance-level UML collaboration diagrams, such as the one
shown in Figure 24, depict interactions between objects

74

: O
rd

er
C

h
ec

ko
u

t

C
u

st
o

m
er

: C
re

d
it

C
ar

d
P

ay
m

en
t

: C
h

ec
ko

u
t

P
ag

e

: O
rd

er
It

em
: O

rd
er

: I
te

m

cr
ea

te
()

1:
 g

et
To

ta
l(

)
1.

1
*:

 g
et

To
ta

l(
)

1.
1.

1:
 g

et
P

ri
ce

(n
u

m
b

er
O

rd
er

ed
)

1.
2:

o
rd

er
To

ta
l :

=
ca

lc
u

la
te

To
ta

l(
)

2:
 d

eb
it

()

3:
 d

is
p

la
y(

)

3.
1:

 g
et

In
fo

()

3.
1:

 g
et

In
fo

()

: P
ay

m
en

t
P

ro
ce

ss
o

r
<<

sy
st

em
>>

2.
1:

 r
es

er
ve

()

2.
2:

 c
o

m
m

it
()

3.
1.

1:
 g

et
In

fo
()

Fi
gu

re
24

.
A

n
in

st
an

ce
-l

ev
el

U
M

L
co

lla
bo

ra
ti

on
di

ag
ra

m
.

75

76 THE ELEMENTS OF UML STYLE

(instances). Instance-level diagrams are typically created to
explore the internal design of object-oriented software. This by
far is the most common style of UML collaboration diagram.

152. Create Specification-Level Diagrams
to Explore Roles
Specification-level UML collaboration diagrams, such as the
one shown in Figure 27 are used to analyze and explore the
roles taken by domain classes within a system. This style of
UML collaboration diagram is not common because most
modelers identify roles via UML class diagrams.

153. Do Not Use Collaboration Diagrams to Model
Process Flow
UML collaboration diagrams model interactions between ob-
jects, and objects interact by invoking messages on each other.
If you want to model process or data flow, then you should
consider drawing a UML activity diagram. In other words,
follow the Agile Modeling (AM) (Chapter 12) practice Apply
the Right Artifact(s).

154. Create a Sequence Diagram When Sequence
is Important
Although it is possible to indicate the sequence of message
sends on a collaboration diagram, as you can see in Figure 24,
the need to do this is a good indication that you should con-
sider creating a UML sequence diagram instead. Once again,
follow the AM practice Apply the Right Artifact(s).

155. Apply Sequence Diagram Guidelines
to Instance-Level Collaboration Diagrams
Because UML collaboration diagrams depict an alternate view
of the same information as UML sequence diagrams, much of
the same style advice applies. The following list of guidelines,

UML COLLABORATION DIAGRAMS 77

originally presented for UML sequence diagrams, are appli-
cable to collaboration diagrams:

■ Name Objects When You Reference Them in Messages.
■ Name Objects When Several of the Same Type Exist.
■ Apply Textual Stereotypes to Classifiers Consistently.
■ Apply Visual Stereotypes Sparingly.
■ Focus on Critical Interactions.
■ Prefer Names Over Types for Parameters.
■ Indicate Types as Parameter Placeholders.
■ Do Not Model Obvious Return Values.
■ Model a Return Value Only When You Need to Refer to

It Elsewhere on a Diagram.
■ Model Return Values as Part of a Method Invocation.
■ Indicate Types as Return-Value Placeholders.

7.2 Message Guidelines
Figure 25 presents the notation for invoking messages on
UML collaboration diagrams. For example, in Figure 24 the
message 1.2: orderTotal := calculateTotal() indicates a sequence
number of 1.2, there is no loop occurring, and there is a
return value of orderTotal and an invoked method named
calculateTotal().

156. Indicate Parameters Only When They Aren’t Clear
In Figure 24, you can see that the 1.1.1: getPrice (number
Ordered) message includes a parameter, whereas the 2: debit()
message does not, even though a CreditCard object is likely

sequenceNumber loopIndicator: returnValue :=
methodName(parameters)

Figure 25. Semantics for invoking a message on a collaboration
diagram.

78 THE ELEMENTS OF UML STYLE

being passed as a parameter. The first message would not have
been clear without the parameter, presumably because the item
price changes depending on the number ordered. The second
message, however, did not need the additional information for
you to understand what must be happening.

157. Depict an Arrow for Each Message
In Figure 24 two messages are sent to OrderItem objects—
getTotal() and getInfo()—and as you can see, two arrows are
modeled, one for each. This makes it easy to visually determine
the amount of message flow to a given object, and thus to
judge the potential coupling with which it is involved, often
an important consideration for refactoring (Fowler 1999) your
design.

158. Consolidate Getter Invocations
It is good design practice (Ambler 2001) to make your at-
tributes private and require other objects to obtain and mod-
ify their values by invoking getter and setter operations,
respectively—for example, getFirstName() and setFirstName()
on a person object. Showing these sorts of interactions on
a UML collaboration diagram can be tedious, and so, you
should do it only if it is absolutely necessary. When you have
to invoke several getters in a row, a good shortcut is to model a
single message, such as getInfo() in Figure 24, to act as a place-
holder. Similarly, you should consider doing the same for
setters with setInfo(). This guideline is appropriate when you
are hand sketching on a whiteboard, although if you are using a
CASE tool, you are likely to better model each interaction, but
not show it.

If you discover that it is very common to get or set several at-
tributes at once on an object, you may want to consider intro-
ducing a single operation to do so. These operations are called
“bulk getters” and “bulk setters.”

UML COLLABORATION DIAGRAMS 79

: Controller

Sensor

1: carArrival()
nsSignals:

WalkSignals

ewSignals:
WalkSignals

ewLights:
TrafficLights

nsLights:
TrafficLights

C3: cycle()

A2: cycle() B2: cycle()

D3: cycle()

D3.1: done()

C3.1: done()

Figure 26. UML collaboration diagram depicting concurrent message
invocations.

159. Indicate Concurrent Threads with Letters
Indicate concurrent threads of execution in a UML collabora-
tion diagram by having letters precede the sequence number
on messages (Douglass 1999). For example, in Figure 26 you
can see that some messages are preceded by the letters A, B ,
C , and D, indicating that those messages are being processed
concurrently. There are two concurrent threads depicted, the
AB thread and the CD thread. You know this because the A
and B messages share the sequence number 2 and the C and
D messages share the sequence number 3.

7.3 Link Guidelines
The lines between the classifiers depicted on a UML colla-
boration diagram represent instances of the relationships—
including associations, aggregations, compositions, and de-
pendencies—between classifiers.

160. Model “Bare” Links on Instance-Level
Collaboration Diagrams
As you can see in Figure 24, relationship details—such
as the multiplicities, the association roles, or the name of
the relationship—typically are not modeled on links within

80 THE ELEMENTS OF UML STYLE

: Person
/Borrower:

Person
: Loan

/LoanOfficer:
Person

*

manager

borrower * *

: Payment

*

payer

co-signer

Figure 27. A Specification-Level UML collaboration diagram.

instance-level UML collaboration diagrams. Instead, this in-
formation is depicted on UML class diagrams.

161. Show Role-Pertinent Information
on Specification-Level Diagrams
In Figure 27 you can see that the roles taken by classes as well
as the high-level multiplicities (either blank or an asterisk to
represent many) are depicted. This is the minimal informa-
tion required to explore the nature of the roles taken by the
domain objects; anything more, such as the exact details of
the multiplicities, is better modeled on a UML class diagram.
Follow the Agile Modeling practice Depict Models Simply.

162. Prefer Roles on Links Instead of Within Classes
In Figure 27, you can see that roles are indicated using two
styles, on links and within a class. The link-based approach
(e.g., payer on the Person class) is more common than the class-
based role notation (e.g., /Borrower on Person). Although you
will need to take both approaches—for example, the use of the
/LoanOfficer role on Person is a great way to provide traceability
to a use case diagram containing an actor of the same name—
your preference should be to model roles on links because
that is consistent with how roles are modeled on UML class
diagrams. There is little value in modeling it in both places,

UML COLLABORATION DIAGRAMS 81

as you can see with borrower and /Borrower and arguably with
manager and /LoanOfficer.

163. Indicate Navigability Sparingly
Although it is possible to model navigation, as you can see
between OrderItem and Item in Figure 24, it isn’t common
because it is too easily confused with message flow and it is
better depicted on UML class diagrams. Indicate navigability
on UML collaboration diagrams to help clarify what you are
modeling.

164. Use Links to Reflect Consistent Static Relationships
The links on a UML collaboration diagram must reflect the re-
lationships between classes within your UML class diagrams.
The only way for one object to collaborate with another is
for it to know about that other object. This implies that there
must be an association, aggregation, or composition relation-
ship between the two classes—a dependency relationship or
an implied relationship. Sometimes it is difficult to validate
the consistency between your diagrams, particularly if your
UML class diagrams do not model all of the dependencies or
implied relationships. For example, if an Item object is passed
as a parameter to a TaxCalculator object, then there is now a
dependency between these two classes, even though it might
not be explicitly modeled.

8.

UML State Chart

Diagrams

UML state chart diagrams depict the dynamic behavior of an
entity based on its response to events, showing how the entity
reacts to various events based on its current state. Create a
UML state chart diagram to

■ explore the complex behavior of a class, actor, subsystem,
or component, or

■ model real-time systems.

8.1 General Guidelines

165. Create a State Chart When Behavior Differs
Based on State
Agile Modeling’s (AM) (Chapter 12) principle of Maximize
Stakeholder Investment advises you to create a model only when
it provides positive value to your efforts. If an entity, such as
a class or a component, exhibits the same sort of behavior
regardless of its current state, then drawing a UML state chart
diagram will be of little use. For example, a SurfaceAddress
class is fairly simple, representing data that you will display
and manipulate in your system. Therefore, a UML state chart
diagram would not reveal anything of interest. On the other
hand, a Seminar object is fairly complex, reacting to events

82

P
ro

po
se

d
S

ch
ed

ul
ed

O
pe

n
F

or
 E

nr
ol

lm
en

t

en
tr

y/
 lo

gS
iz

e(
)

F
ul

l
en

ro
ll

st
ud

en
t /

ad
dT

oW
ai

tin
gL

is
t(

);
co

ns
id

er
S

pl
it(

)

se
at

 a
va

ila
bl

e

se
m

in
ar

 s
pl

it

ca
nc

el
le

d

ca
nc

el
le

d

ca
nc

el
le

d

sc
he

du
le

d
op

en

C
lo

se
d

to
 E

nr
ol

lm
en

t

en
tr

y/
 n

ot
ify

In
st

ru
ct

or
()

st
ud

en
t e

nr
ol

le
d

[n
o

se
at

 a
va

ila
bl

e]
 /

ad
dT

oW
ai

tin
gL

is
t(

)

cl
os

ed

cl
os

ed

st
ud

en
t e

nr
ol

le
d

[s
ea

t a
va

ila
bl

e]
/

ad
dS

tu
de

nt
()

ca
nc

el
le

d

ca
nc

el
le

d

st
ud

en
t d

ro
pp

ed
[n

o
se

at
 a

va
ila

bl
e]

st
ud

en
t d

ro
pp

ed
[s

ea
t a

va
ila

bl
e]

 /
en

ro
lF

ro
m

W
ai

tin
gL

is
t(

)

Fi
gu

re
28

.
A

U
M

L
st

at
e

ch
ar

t
di

ag
ra

m
fo

r
a

se
m

in
ar

du
ri

ng
en

ro
llm

en
t.

83

84 THE ELEMENTS OF UML STYLE

such as enrolling a student differently depending on its current
state, as you can see in Figure 28.

166. Place the Initial State in the Top-Left Corner
An initial state is modeled with a filled in circle, as you can
see in Figure 28. Placing an initial state in the top-left corner
reflects the way that people in Western cultures read.

167. Place the Final State in the Bottom-Right Corner
A final state is modeled with a filled in circle with a border
around it, as you can see in Figure 28. Placing the final state
in the bottom-right corner reflects the left-to-right, top-to-
bottom approach to reading within Western cultures.

8.2 State Guidelines
A state is a stage in the behavior pattern of an entity. States
are represented by the values of the attributes of an entity. For
example, in Figure 28 a seminar is in the Open For Enrollment
state when it has been flagged as open and there are seats
available to be filled.

168. State Names Should Be Simple but Descriptive
State names such as Open For Enrollment and Proposed are
easy to understand, thus increasing the communication value
of Figure 28. Ideally, state names should also be written in
present tense, although names such as Proposed (past tense)
are better than Is Proposed (present tense).

169. Question “Black-Hole” States
A black-hole state is one that has transitions into it but none
out of it, something that should be true only of final states.
This is an indication that you have missed one or more
transitions.

UML STATE CHART DIAGRAMS 85

170. Question “Miracle” States
A miracle state is one that has transitions out of it but none
into it, something that should be true only of start points.
This is also an indication that you have missed one or more
transitions.

8.3 Substate Modeling Guidelines

171. Model Substates for Targeted Complexity
The UML state chart diagram presented in Figure 28 is not
complete because it does not model any postenrollment states
of a Seminar. Figure 29 models the entire life cycle of a Seminar,
depicting Figure 28 as a collection of substates of a new Enroll-
ment composite state, also called a superstate. Normally, you
would include labels on the transitions, as they are modeled
in Figure 28, but they were omitted from Figure 29 for the
sake of simplicity. Modeling substates makes sense when an
existing state exhibits complex behavior, thereby motivating
you to explore its substates. Introducing a superstate makes
sense when several existing states share a common entry or
exit condition (Douglass 1999). In Figure 28 you can see that
all of the states share a common closed transition to the final
state.

172. Aggregate Common Substate Transitions
In Figure 29, you can see that the cancelled transition is de-
picted as leaving the Enrollment superstate, but to simplify the
diagram, not every single substate is depicted as in Figure 28.
Had the substates all shared an entry transition, or another
exit transition, the same approach would have been taken for
those transitions, too. The guards and actions, if any, on the
transitions being aggregated must be identical.

 E
nr

ol
lm

en
t

P
ro

po
se

d

S
ch

ed
ul

ed

O
pe

n
F

or
E

nr
ol

lm
en

t

F
ul

l
C

lo
se

d
to

E
nr

ol
lm

en
t

ca
nc

el
le

d

B
ei

ng
Ta

ug
ht

te
rm

st
ar

te
d

st
ud

en
t d

ro
pp

ed
[s

em
in

ar
 s

iz
e

>
 0

]

st
ud

en
t d

ro
pp

ed
[s

em
in

ar
 s

iz
e

=
 0

]

F
in

al
E

xa
m

s

cl
as

se
s

en
d

cl
os

ed

Fi
gu

re
29

.
C

om
pl

et
e

lif
e

cy
cl

e
of

a
se

m
in

ar
.

86

UML STATE CHART DIAGRAMS 87

Enrollment

cancelled

Being
Taught

term
started

student dropped

Final
Exams

classes
end

closed

[seminar size = 0]
[seminar size > 0]

Figure 30. Top-level state chart for seminar.

173. Create a Hierarchy of State Charts for Very
Complex Entities
Although showing substates in this manner works well, the
resulting diagrams can become quite complex—just imagine
what would happen to Figure 29 if the Being Taught state also
had substates. An alternative approach would be to create a
hierarchy of UML state chart diagrams; for example, Figure 30
represents the top-level view and Figure 28 depicts a more de-
tailed view. The advantage of this approach is that another de-
tailed diagram could be developed to explore the Being Taught
state as required.

174. Always Include Initial and Final States
on Top-Level State Charts
A top-level UML state chart, such as the one depicted in Fig-
ure 29, should represent the entire life cycle of an entity, in-
cluding its “birth” and eventual “death.” Lower-level diagrams
may not always include initial and final states, particularly di-
agrams that model the “middle states” of an entity’s life cycle.

8.4 Transition and Action Guidelines
A transition is a progression from one state to another and will
be triggered by an event that is either internal or external to

88 THE ELEMENTS OF UML STYLE

the entity being modeled. For a class, transitions are typically
the result of the invocation of an operation that causes an im-
portant change in state, although not all method invocations
will result in transitions. An action is something—in the case
of a class, it is an operation—that is invoked by/on the entity
being modeled.

175. Name Software Actions Using
Implementation-Language Naming Conventions
The actions in Figure 28 follow the Java naming convention
for operations (Vermeulen et al. 2000) because the intention
is to implement this system using Java. Had another language
been our target, we would have followed the appropriate nam-
ing conventions.

176. Name Actor Actions Using Prose
UML state chart diagrams can be used to model the life cycle
of nonsoftware entities, in particular, actors on UML use case
diagrams. For example, the Student actor likely has states such
as Accepted, Full Time, Part Time, Graduated, Masters, Doctoral,
and Postdoctoral, exhibiting different behaviors in each one.
When you are modeling the real-world actor, as opposed to
the software class Student, the transitions between these states
would be better worded using prose such as drop seminar and
pay fees instead of dropSeminar() and payFees(), because people
in the real world do things—they don’t execute operations.

177. Indicate Entry Actions Only When Applicable
for All Entry Transitions
In Figure 28, you can see that, upon entry into the Closed To
Enrollment state, the operation notifyInstructor() is invoked via
the entry/ action label. The implication is that this operation
will be invoked every single time that this state is entered. If you
don’t want this to occur, then associate actions with specific
entry transitions. For example, the addStudent() action is taken

UML STATE CHART DIAGRAMS 89

on the student enrolled transition to Open For Enrollment but
not to the opened transition. This is because you don’t always
add a student each time you enter this state.

178. Indicate Exit Actions Only When Applicable
for All Exit Transitions
Exit actions, indicated with the exit/ label, work in a manner
similar to entry actions.

179. Model Recursive Transitions Only When You Want
to Exit and Reenter the State
A recursive transition, also called a “mouse-ear” transition, is
one that has the same state for both of its end points. An
important implication is that the entity is exiting and then
reentering the state. Therefore, any operations that would be
invoked due to entry/ or exit/ action labels would be auto-
matically invoked. This would be the case with the recursive
transitions of the Open For Enrollment state of Figure 28,
where the current seminar size is logged on entry.

180. Name Transition Events in Past Tense
The transition events in Figure 28, such as seminar split and
cancelled, are written in past tense to reflect the fact that the
transitions are the results of events. That is, an event occurs
before a transition, and thus it should be referred to in past
tense.

181. Place Transition Labels Near the
Source State
Although Figure 28 is complex, wherever possible the tran-
sition labels, such as seminar split and student enrolled, were
placed as close to the source as possible. Furthermore, the
labels were justified (left and right, respectively) so that they
are visually close to the source state.

90 THE ELEMENTS OF UML STYLE

182. Place Transitions Labels on the Basis
of Transition Direction
To make it easier to identify which label goes with a transition,
place transition labels according to the following heuristics:

■ above-transition lines going left to right,
■ below-transition lines going right to left,
■ right-of-transition lines going down,
■ left-of-transition lines going up.

8.5 Guard Guidelines
A guard is a condition that must be true in order to traverse a
transition.

183. Do Not Overlap Guards
The guards on similar transitions leaving a state must be con-
sistent with one another. For example, guards such as x < 0,
x = 0, and x > 0 are consistent, whereas guards such as
x <= 0 and x >= 0 are not consistent because they overlap.
(It isn’t clear what should happen when x is 0.) In Figure 29,
the guards on the student dropped transitions from the Being
Taught state do not overlap.

184. Introduce Junctions to Visually Localize Guards
In Figure 29, there are two transitions from Being Taught as the
result of the student dropped event, whereas there is only one in
Figure 30—the transitions are combined into a single one that
leads to a junction point (the filled circle). The advantage of
this approach is that the two guards are now depicted close
to one another on the diagram, making it easier to determine
that the guards don’t overlap.

185. Use Guards Even if They Do Not Form
a Complete Set
It is possible that the guards on the transitions from a state
will not form a complete set. For example, a bank account

UML STATE CHART DIAGRAMS 91

object might transition from the Open state to the Needs
Authorization state when a large deposit is made to it. How-
ever, a deposit transition with a “small deposit” guard may not
be modeled—you’re following the AM Depict Models Simply
practice and only including pertinent information—although
it would be implied.

186. Never Place a Guard on an Initial Transition
Douglass (1999) says it best: What does the object do when
the guard evaluates to false?

187. Use Consistent Language Naming Guards
Figure 28 includes guards such as seat available and no seat
available, which are consistently worded. However, had the
various guards been worded seats left, no seat left, no seats left,
no seats available, seat unavailable, they would have been in-
consistent and harder to understand.

9.

UML Activity

Diagrams

UML activity diagrams are the object-oriented equivalent of
flow charts and data-flow diagrams from structured develop-
ment (Gane and Sarson 1979). In UML 1.x, UML activity
diagrams were a specialization of UML state chart diagrams,
although in UML 2.x they are full-fledged artifacts. UML
activity diagrams are used to explore the logic of

■ a complex operation,
■ a complex business rule,
■ a single use case,
■ several use cases,
■ a business process, and
■ software processes.

9.1 General Guidelines

188. Place the Start Point in the Top-Left Corner
A start point is modeled with a filled circle, using the same
notation that UML state chart diagrams use. Every UML ac-
tivity diagram should have a starting point, and placing it at
the top-left corner reflects the way that people in Western cul-
tures begin reading. Figure 31, depicting the business process
of enrolling in a university, takes this approach.

92

F
ill

 O
ut

 E
nr

ol
lm

en
t

F
or

m
s

E
nr

ol
l i

n
U

ni
ve

rs
ity

E
nr

ol
l I

n
S

em
in

ar
(s

)A
tte

nd
 U

ni
ve

rs
ity

O
ve

rv
ie

w
P

re
se

nt
at

io
n M

ak
e

In
iti

al
 T

ui
tio

n
P

ay
m

en
t

E
nr

ol
lin

g
in

 th
e

U
ni

ve
rs

ity
 fo

r
th

e
fir

st
tim

e

A
D

 #
: 0

07

[c
or

re
ct

]

O
bt

ai
n

H
el

p
to

 F
ill

O
ut

 F
or

m
s

[in
co

rr
ec

t]
[h

el
p

 a
va

ila
bl

e]

[o
th

er
w

is
e]

[tr
iv

ia
l

pr
ob

le
m

s]

Fi
gu

re
31

.
M

od
el

in
g

a
bu

si
ne

ss
pr

oc
es

s
w

it
h

a
U

M
L

ac
ti

vi
ty

di
ag

ra
m

.

93

94 THE ELEMENTS OF UML STYLE

Requirements Analyst Enterprise ArchitectStakeholder

Model
Enterprise

Requirements

Model
Enterprise
Business

Architecture

Model
Enterprise
Technical

Architecture

Support
Project Teams

Describe
Enterprise

Requirements

Prioritize
Enterprise

Requirements

Figure 32. UML activity diagram for the enterprise architectural mod-
eling (simplified).

189. Include an Ending Point
An ending point is modeled with a filled circle with a border
around it. Fowler and Scott’s (1999) style is to make ending
points optional—sometimes an activity is simply a dead end—
but if this is the case, then there is no harm in indicating that
the only transition is to an ending point. That way, when
someone else reads your diagram, they know that you have
considered how to exit these activities.

Sometimes, however, the guidelines don’t apply. Figure 32 does
not include an ending point because it describes a continuous
process.

190. Simplify Operations Requiring Flow Charts
If an operation is so complex that you need to develop a UML
activity diagram to understand it, then you should consider
refactoring it.

UML ACTIVITY DIAGRAMS 95

9.2 Activity Guidelines
An activity on a UML activity diagram typically represents the
invocation of an operation, a step in a business process, or an
entire business process.

191. Question “Black-Hole” Activities
A black-hole activity is one that has transitions into it but
none out of it, typically indicating that you have missed one
or more transitions.

192. Question “Miracle” Activities
A miracle activity is one that has transitions out of it but none
into it, something that should be true only of starting points.
Once again, this is an indication that you have missed one or
more transitions.

9.3 Decision-Point Guidelines
A decision point is modeled as a diamond on a UML activity
diagram.

193. Reflect the Previous Activity by Using
Decision Points
In Figure 31, you can see that there is no label on the decision
point, unlike traditional flow charts, which would include text
describing the actual decision being made. You need to imply
that the decision concerns whether the person was enrolled in
the university based on the activity that the decision point fol-
lows. The guards, depicted using the format [description], on
the transitions leaving the decision point also help to describe
the decision point.

194. Avoid Superfluous Decision Points
The Fill Out Enrollment Forms activity in Figure 31 includes
an implied decision point, a check to see that the forms are

96 THE ELEMENTS OF UML STYLE

filled out properly. This simplified the diagram by avoiding
an additional diamond.

9.4 Guard Guidelines
A guard is a condition that must be true in order to traverse a
transition.

195. Ensure That Each Transition Leaving a Decision
Point Has a Guard
This ensures that you have thought through all possibilities
for that decision point.

196. Do Not Overlap Guards
The guards on the transitions leaving a decision point, or an
activity, must be consistent with one another. For example,
guards such as x < 0, x = 0, and x > 0 are consistent, whereas
guards such as x <= 0 and x >= 0 are not consistent because
they overlap. (It isn’t clear what should happen when x is 0.) In
Figure 31, the guards on the exit transitions from the Fill Out
Enrollment Forms activity do not overlap, nor do the guards
on the decision point.

197. Ensure That Guards on Decision Points Form
a Complete Set
It must always be possible to leave a decision point. Therefore,
the guards on its exit transitions must be complete. For exam-
ple, guards such as x < 0 and x > 0 are not complete because
it isn’t clear what happens when x is 0.

198. Ensure That Exit Transition Guards and Activity
Invariants Form a Complete Set
An activity invariant is a condition that is always true when
your system is processing an activity. For example, in Figure 31

UML ACTIVITY DIAGRAMS 97

an invariant of the Enroll In University activity is that the per-
son is not yet officially a student. Clearly, the conditions that
are true while processing an activity must not overlap with
its exit conditions. Furthermore, the invariants and exit condi-
tions must form a complete set. In other words, the conditions
that define when you are in an activity plus the conditions
that define when you leave the activity must add up.

199. Apply an [Otherwise] Guard
for “Fall-Through” Logic
In Figure 31, you can see that one of the transitions on the
decision point is labeled Otherwise, a catchall condition for
the situation in which problems with the forms are not trivial
and help is not available. This avoided a very wordy guard,
thus simplifying the diagram.

200. Model Guards Only if They Add Value
A transition will not necessarily include a guard, even when an
activity includes several exit transitions. When a UML activity
diagram is used to model a software process (Figure 32) or a
business process (Figure 33), the transitions often represent
sharing or movement of information and objects between ac-
tivities, a situation in which guards often make less sense.
Follow Agile Modeling’s (AM) (Chapter 12) principle of
Depict Models Simply and only indicate a guard on a transition
if it adds value.

9.5 Parallel-Activity Guidelines
It is possible to show that activities can occur in parallel, de-
picted in Figure 31 by two parallel bars. The first bar is called
a fork: it has one transition entering it and two or more tran-
sitions leaving it. The second bar is a join, with two or more
transitions entering it and only one leaving it.

F
ill

 O
ut

 E
xp

en
se

F
or

m

C
on

su
lta

nt

A
cc

ou
nt

an
t

:E
xp

en
se

F
or

m
[In

iti
al

]

V
al

id
at

e
E

xp
en

se
s

E
nt

er
 E

xp
en

se
s

In
 P

ay
ro

ll
[v

al
id

]

P
ay

ro
ll

S
er

vi
ce

: P
ay

ro
ll

F
ile

:E
xp

en
se

F
or

m
[E

rr
or

]

[in
va

lid
]

P
ay

 E
m

pl
oy

ee
s

:E
xp

en
se

V
al

id
at

or

Fi
gu

re
33

.
Su

bm
it

ti
ng

ex
pe

ns
es

.

98

UML ACTIVITY DIAGRAMS 99

201. Ensure That Forks Have Corresponding Joins
In Figure 31, you can see that the business process forks into
two parallel streams, one where the person attends a presenta-
tion and another where he or she signs up and pays for courses.
The process forks—the person performs these activities—and
when both streams are complete, the process continues from
there (in this case it simply ends). In general, for every start
(fork), there is an end (join).

202. Ensure That a Fork Has Only One
Entry Transition
When you find that you want to have several transitions into
the same fork, you should first merge them by having them
enter a single diamond and then have a single transition from
the diamond into the fork. However, this situation is also a
good indication that you’ve either missed an activity, likely
where the merge occurs, or that you really don’t have parallel
activities at this point.

203. Ensure That a Join Has Only One Exit Transition
The desire to have several exit transitions is a good indication
that you still have parallel activities occurring; therefore, move
your join further along in the overall process.

204. Avoid Superfluous Forks
Figure 32 depicts a simplified description of the software pro-
cess of enterprise architectural modeling, a part of the Infra-
structure Management discipline of the Enterprise Unified Pro-
cess (EUP)4. There is a significant opportunity for parallelism
in this process. In fact, all of these activities could happen in
parallel, but forks were not introduced because they would
only have cluttered the diagram.

4 Visit www.ronin-intl.com/publications/unifiedProcess.html for details.

100 THE ELEMENTS OF UML STYLE

9.6 Swimlane Guidelines
A swimlane is a way to group activities performed by the same
actor on an activity diagram or to group activities in a single
thread (Douglass 1999).

205. Order Swimlanes in a Logical Manner
Although there are no semantics behind the ordering of swim-
lanes, there often is a natural ordering for them. For example,
in Figure 32 you can see that the swimlanes are listed left to
right in the relative order that the activities would occur in a
serial process (even though this one is iterative)—stakeholders
will start by identifying and prioritizing requirements, the an-
alyst will model them, then the architects will act on them.

206. Apply Swimlanes to Linear Processes
Swimlanes are best applied to linear processes, unlike the one
depicted in Figure 32, where the logic proceeds from one
activity to another. The steps that customers take to check an
order out of a grocery store are a perfect example of a relatively
linear process. A diagram for that activity would likely include
three swimlanes, one for the customer, one for the checkout
clerk, and one for the person who bags the groceries.

207. Have Less Than Five Swimlanes
A disadvantage of swimlanes is that they reduce your freedom
to arrange activities in a space-effective manner, often increas-
ing the size of your diagrams. When a diagram has a small
number of swimlanes, there is less chance that this problem
will occur.

208. Consider Swimareas for Complex Diagrams
When you need several swimlanes—for example, if Figure 32
were to include all of the activities of the Infrastructure Man-
agement discipline, it would include swimlanes for roles such

UML ACTIVITY DIAGRAMS 101

as Reuse Manager, Program Manager, Software Process Man-
ager, and Human Resource Manager—you would discover
that the swimlanes would force you to arrange the activities
in a non-optimal way (the transitions between some activ-
ities would cross the page). Another approach would be to
use swimareas, sections of related activities, instead of a for-
mal swimlane. Fowler and Scott (1999) call these swimareas
“nonlinear zones.”

209. Reorganize into Smaller Activity Diagrams When
Swimareas Include Several Activities
When a swimarea includes several activities, you may instead
decide to introduce a UML package, or simply a higher-level
activity, which is then described by a detailed UML activity
diagram. For example, Figure 32 may simply be the detailed
description of a Model the Enterprise activity on a high-level
diagram for that EUP discipline.

210. Consider Horizontal Swimlanes
for Business Processes
In Figure 33 the swimlanes are drawn horizontally, going
against common convention of drawing them vertically. Be-
cause project stakeholders in Western cultures typically read
from left to right, this helps to increase the understandability
of a UML activity diagram used to depict business processes.
Also notice how the outside borders of the swimlanes have
been dropped to simplify the diagram.

211. Model the Key Activities in the Primary Swimlane
The primary swimlane is the left-most swimlane on vertical ac-
tivity diagrams and the top swimlane on horizontal diagrams,
and this is where Evitts (2000) suggests that you put the key
activities of UML activity diagrams. For example, when us-
ing a UML activity diagram to model the logic of a use case,
an effective approach is to depict the basic course of action,

102 THE ELEMENTS OF UML STYLE

also known as the happy path (Ambler 2001), in the primary
swimlane.

9.7 Action-Object Guidelines
Activities act on objects. In the strict object-oriented sense of
the term, an action object is a system object, a software con-
struct. In the looser sense, and much more useful for business
application modeling, an action object is any sort of item. For
example, in Figure 33 the ExpenseForm action object is likely
a paper form.

212. Place Shared Action Objects
on Swimlane Separators
In Figure 33, you can see that the ExpenseForm action object
is placed on the line separator between the Consultant and Ac-
countant swimlanes. This was done because the ExpenseForm
is critical to both swimlanes and because it is manipulated in
both, very likely being something on which the two people
will work together (at least when there is a problem).

213. Apply State Names When an Object Appears
Several Times
The ExpenseForm object appears twice on the diagram—an
initial version of it and one with errors. To distinguish between
them, their state names—in this case Initial and Error—are in-
dicated using the same notation as for guards on transitions.
This notation may be applied to any object on any UML
diagram, including UML sequence diagrams and UML col-
laboration diagrams.

214. Reflect the Life-Cycle Stage of an Action Object
in Its State Name
You depict the same action object on a UML activity dia-
gram in several places because it is pertinent to what is being

UML ACTIVITY DIAGRAMS 103

modeled and because the object itself has changed (it has pro-
gressed through one or more stages of its life cycle).

215. Show Only Critical Inputs and Outputs
Although Figure 33 shows ExpenseForm as an output of the
Fill Out Expense Form activity, you know it’s an output be-
cause the transition is depicted using a dashed arrow. However,
there isn’t a lot of value in doing so because it’s clear that an
expense form would be the output of that activity. Remember
AM’s practice Depict Models Simply and only model something
if it adds value.

216. Depict Action Objects as Smaller Than Activities
The focus of a UML activity diagram is activities, not the
actions implementing or being produced by those activities.
Therefore, you can show this focus by having larger activity
symbols. To depict the fact that an activity is implemented
by an action object, you use a solid arrow. In Figure 33
the ExpenseValidator object implements the Validate Expenses
activity.

10.

UML Component

Diagrams

UML component diagrams show the dependencies among
software components, including the classifiers that specify
them, such as implementation classes; and the artifacts that
implement them; such as source-code files, binary-code files,
executable files, scripts, and tables. Create them to

■ model the low-level design configuration of your system,
■ model the technical infrastructure (Ambler 1998), or
■ model the business/domain architecture for your organiza-

tion (Ambler 1998).

10.1 Component Guidelines
In Figure 34, components are modeled as rectangles with two
smaller rectangles jutting out from the left-hand side. Compo-
nents realize one or more interfaces, modeled using the lollipop
notation in Figure 34, and may have dependencies on other
components or interfaces. As you can see, the Persistence com-
ponent has a dependency on the Corporate DB component.

217. Apply Descriptive Names
to Architectural Components
Architectural diagrams are often viewed by a wide range of
people who may not be familiar with your project. Therefore,

104

Sh
ip

pi
ng

<<
ap

pl
ic

at
io

n>
>

O
nl

in
e

O
rd

er
in

g
<<

ap
pl

ic
at

io
n>

>

O
rd

er

C
us

to
m

er

Se
cu

ri
ty

<<
in

fr
as

tr
uc

tu
re

>>

P
er

si
st

en
ce

<<
in

fr
as

tr
uc

tu
re

>>

X
M

L

IC
us

to
m

er

X
M

L

IO
rd

er

IP
er

si
st

en
ce

IE
nc

ry
pt

io
n

IA
cc

es
sC

on
tr

ol

C
or

po
ra

te
 D

B
<<

da
ta

ba
se

>>

JD
B

C

A
pa

ch
e

St
ru

ts
<<

fr
am

ew
or

k>
>

Fi
gu

re
34

.
U

M
L

co
m

po
ne

nt
di

ag
ra

m
re

pr
es

en
ti

ng
th

e
lo

gi
ca

la
rc

hi
te

ct
ur

e
of

a
si

m
pl

e
e-

co
m

m
er

ce
sy

st
em

.

105

106 THE ELEMENTS OF UML STYLE

component names need to be understandable. For example,
most of the components in Figure 34, with the exception of
Corporate DB, are named using full words such as Customer
and Persistence. The name Corporate DB was used over Cor-
porate Database because that is what it is known as within the
company—abbreviations are preferable only when they are in
common use.

218. Apply Environment-Specific Naming Conventions
to Detailed Design Components
When you are creating a detailed component model, per-
haps to understand the physical configuration of your sys-
tem, then name your components using environment-specific
names. For example, a Java source-code file would be named
Customer.java, a Windows library would be named auditLog-
ger.dll, and a document would be named User Manual.doc.

219. Apply Consistent Textual Stereotypes
Table 6 summarizes common stereotypes that you may want
to consider applying to components on UML component
diagrams.

220. Avoid Modeling Data and User
Interface Components
UML component diagrams can be used to model various
aspects of your detailed design. Because the UML does not yet
address user interface or database modeling, many developers
will often try to model these aspects of their system using
component diagrams. Don’t do this. Component diagrams re-
ally aren’t well suited for these tasks. I personally suggest using
modified collaboration diagrams for user interface modeling
(Ambler 2001), and other methodologists suggest modifi-
cations on state charts (Larman 2002) or activity diagrams
(Schneider and Winters 2001) and most prefer modified class
diagrams for data modeling. My advice is to follow AM’s

UML COMPONENT DIAGRAMS 107

Table 6. Common Stereotypes.

Stereotype Indicates

<<application>> A “front end” of your system, such as
the collection of HTML pages and
ASP/JSPs that work with them for a
browser-based system or the
collection of screens and controller
classes for a GUI-based system.

<<database>> A hierarchical, relational,
object-relational, network, or
object-oriented database.

<<document>> A printed or electronic document.
<<executable>> A software component that can be

executed on a node.
<<file>> A data file.
<<infrastructure>> A technical component within your

system, such as a persistence
service or an audit logger.

<<library>> An object or function library.
<<source code>> A source-code file, such as a *.java

file or a *.cpp file.
<<table>> A data table within a database.
<<web service>> One or more Web services.
<<XML DTD>> An XML DTD.

(Chapter 12) practice of Apply the Right Artifact(s) and pick
the right artifact for the job. In these cases, a UML compo-
nent diagram isn’t it.

10.2 Interface Guidelines
An interface is a collection of operation signatures and/or at-
tribute definitions that ideally defines a cohesive set of be-
haviors. Interfaces are implemented, “realized” in UML par-
lance, by classes and components; to realize an interface, a class
or component must implement the operations and attributes
defined by the interface. Any given class or component may

108 THE ELEMENTS OF UML STYLE

implement zero or more interfaces, and one or more classes or
components can implement the same interface.

221. Prefer Lollipop Notation to Depict Interfaces
Realized by Components
There are two ways to indicate that a class or component
implements an interface: the lollipop notation used in Fig-
ure 34 or a realization association (a dashed line with a closed
arrowhead) as in Figure 35 with the IStudent interface. The
lollipop notation is preferred because it is visually compact;
the class box and realization line approach tends to clutter
your diagrams.

222. Prefer the Left-Hand Side of a Component
for Interface Lollipops
Although you can put an interface lollipop on any side of a
component, the SQL interface is depicted on the right-hand
side of TStudent in Figure 35. The most common approach,
however, is to place them on the left to increase the consistency
within your component diagrams.

223. Show Only Relevant Interfaces
AM’s practice Depict Models Simply advises that you keep your
diagrams as simple as possible, and one way to do that is to
depict only the interfaces that are applicable to the goals of
your diagram. For example, in Figure 34 you can see that the
XML interface is modeled for the Order component but it is
not being used, indicating that you might not want to depict
it at this time. However, if one of the goals of your model is to
show that all of your business/domain components implement
this common interface, presumably so that every component
has a standard way to get at the data structures that they
support, then it makes sense to show it. In short, don’t clutter
your diagrams with extraneous information.

St
ud

en
t

R
eg

is
tr

at
io

n
<<

ap
pl

ic
at

io
n>

>

St
ud

en
t.

ja
va

<<
so

ur
ce

 c
od

e>
>

T
St

ud
en

t
<<

ta
bl

e>
>

S
Q

L

up
da

te
St

ud
en

t
<<

st
or

ed
pr

oc
ed

ur
e>

>

<<
in

te
rf

ac
e>

>
IS

tu
d

en
t

+
u

p
d

at
e(

X
M

L
)

+
g

et
S

ch
ed

u
le

()
: V

ec
to

r
+

g
ra

d
u

at
e(

)

Fi
gu

re
35

.
U

M
L

co
m

po
ne

nt
di

ag
ra

m
fo

r
so

m
e

st
ud

en
t

as
pe

ct
s

of
a

un
iv

er
si

ty
sy

st
em

.

109

110 THE ELEMENTS OF UML STYLE

10.3 Dependency and
Inheritance Guidelines
Components will have dependencies either on other compo-
nents or, better yet, on the interfaces of other components.
As you can see in Figure 34 and Figure 35, dependencies are
modeled using a dashed line with an open arrowhead.

224. Model Dependencies from Left to Right
You should strive to arrange your components so that you
can draw dependencies from left to right. This increases the
consistency of your diagrams and helps you to identify po-
tential circular dependencies in your design. For example, a
circular dependency exists in Figure 35: Student.Java depends
on updateStudent, which depends on TStudent, which in turn
depends on Student.Java. This was easy to detect because the
dependence from TStudent to Student.Java went from right to
left, whereas all others went in the opposite direction.

Note that if your diagram is layered vertically, then you will
want to model dependencies top to bottom.

225. Place Inheriting Components Below
Base Components
Inheritance between components is possible—in this case be-
tween Shipping and Apache Struts in Figure 34—and, as you
can see, the inheriting component is shown below the parent
component.

226. Make Components Dependent Only on Interfaces
By making components dependent on the interfaces of other
components instead of on the other components themselves,
you make it possible to replace the component without having
to rewrite the components that depend on it. For example, in
Figure 34 the Customer and Order components both depend
on the interface to the Persistence component to store them in

UML COMPONENT DIAGRAMS 111

the database. Perhaps the first implementation of this compo-
nent was developed in-house, but because you quickly found
out how complicated persistence could be (Ambler 2001), you
decided to purchase a persistence framework. To swap this per-
sistence framework into place, you merely need to implement
the same interface for it, in the case IPersistence. Had your do-
main components relied on the actual implementation of your
“Persistence” component, instead of its interface, you would
have needed to rewrite portions of your domain components
to use its new implementation.

227. Avoid Modeling Compilation Dependencies
Although it is possible to model compilation dependencies in
UML component diagrams, there are better ways to record
this information, such as in the build/compile scripts for your
application. A good rule of thumb is that if you’re showing
compilation dependencies on your component diagrams, then
you’ve likely overmodeled your system. Step back and ask
yourself if this information is actually adding value to your
diagram(s).

11.

UML Deployment

Diagrams

A UML deployment diagram depicts a static view of the run-
time configuration of hardware nodes and the software com-
ponents that run on those nodes. UML deployment diagrams
show the hardware for your system, the software that is in-
stalled on that hardware, and the middleware used to connect
the disparate machines to one another. You create a UML
deployment model to

■ explore the issues involved in installing your system into
production,

■ explore the dependencies that your system has with other
systems that are currently in, or planned for, your produc-
tion environment,

■ depict a major deployment configuration of a business
application,

■ design the hardware and software configuration of an em-
bedded system, or

■ depict the hardware/network infrastructure of an organ-
ization.

112

D
at

ab
as

e
Se

rv
er

A
pp

lic
at

io
n

Se
rv

er
cl

ie
nt

:
B

ro
w

se
r St

ud
en

t
A

dm
in

is
tr

at
io

n
<<

ap
pl

ic
at

io
n>

>
St

ud
en

t

Sc
he

du
le

Se
m

in
ar

P
er

si
st

en
ce

<<
in

fr
as

tr
uc

tu
re

>>

U
ni

ve
rs

it
y

D
B

<<
da

ta
ba

se
>>

JD
B

C

<
<

H
T

T
P

>
>

<
<

JD
B

C
>

>

M
ai

nf
ra

m
e

C
ou

rs
e

M
an

ag
em

en
t

<
<

le
ga

cy
 s

ys
te

m
>

>

<
<

w
eb

 s
er

vi
ce

s>
>

Fi
gu

re
36

.
Pr

oj
ec

t-
sp

ec
ifi

c
U

M
L

de
pl

oy
m

en
t

di
ag

ra
m

.

113

114 THE ELEMENTS OF UML STYLE

11.1 General Guidelines

228. Indicate Software Components
on Project-Specific Diagrams
Figure 36 depicts a UML deployment diagram for a university
administration system. This diagram depicts how the major
software components that comprise a single application are to
be deployed into the production environment, enabling the
project team to identify its deployment strategy.

229. Focus on Nodes and Communication Associations
on Enterprise-Level Diagrams
Figure 37 is an example of a style of UML deployment dia-
gram (applying visual stereotypes) often referred to as a net-
work diagram or technical architecture diagram, depicting the
technical infrastructure of a simple organization. Figure 37 is
a very simple example; many organizations would have tens if
not hundreds of nodes on such a diagram.

Although indicating the deployment of components can be
useful on diagrams of limited scope, such as Figure 36, it can
quickly become cumbersome. The focus of Figure 37 is high
level, that of the enterprise, and therefore, the minute details of
which software components are deployed to which hardware
nodes do not need to be shown. You may choose to capture
this information in your CASE tool, but that doesn’t imply
that you need to show it on your diagram.

230. Group Common Nodes
Evitts (2000) suggests that you group nodes that share com-
mon responsibilities, or that share a common location, to vis-
ually associate them.

11.2 Node and Component Guidelines
A node, depicted as a three-dimensional box, represents a com-
putational unit, typically a single piece of hardware, such as

D
at

a
G

en
er

al

F
ire

w
al

l

M
ob

ile
 P

C

P
D

A
 C

lie
nt

A
pp

lic
at

io
n

S
er

ve
r

F
ar

m

IB
M

M
V

S
M

ai
nf

ra
m

e

D
at

a
W

ar
eh

ou
se

O
pe

ra
tio

na
l

D
at

ab
as

e

D
es

kt
op

l
a

t
i

g
i

d

P
ay

m
en

t
P

ro
ce

ss
in

g
G

at
ew

ay

Fi
gu

re
37

.
U

M
L

de
pl

oy
m

en
t

di
ag

ra
m

fo
r

an
or

ga
ni

za
ti

on
.

115

116 THE ELEMENTS OF UML STYLE

a computer, network router, mainframe, sensor, or personal
digital assistant. Components, depicted as rectangles with two
smaller rectangles jutting out from the left-hand side (the same
notation used on UML component diagrams), represent soft-
ware artifacts such as files, frameworks, or reusable domain
functionality.

231. Use Descriptive Terms to Name Nodes
In Figure 36, you can see that the nodes have names such as
client, Application Server, Database Server, and Mainframe. All
of these terms would be instantly recognizable to the develop-
ers within this organization because those are the terms they
use on a daily basis. Keep it simple.

232. Model Only Vital Software Components
Although Figure 36 includes software components, it does
not depict every single one. For example, the client machine
very likely has other software components installed on it, such
as the operating system and application software, but those
components are not shown because they are not relevant. The
reality is that each node may have tens if not hundreds of
software components deployed to it. Your goal isn’t to depict
all of them; it is merely to depict those components that are
vital to the understanding of your system. If you need to
explore the relationships between software components, you
should create a UML component diagram instead, effectively
following the Agile Modeling’s (AM) (Chapter 12) practice of
Apply the Right Artifact(s).

233. Apply Consistent Stereotypes to Components
Apply the same stereotypes to components on UML deploy-
ment diagrams that you would apply on UML component
diagrams.

UML DEPLOYMENT DIAGRAMS 117

234. Apply Visual Stereotypes to Nodes
Figure 37 depicts nodes using visual stereotypes. For example,
the mobile PC is shown as a laptop and the databases are
shown using traditional database drum notation. There are few
standards for applying visual stereotypes on UML deployment
diagrams, but the general rule of thumb is to use the most
appropriate clip art that you can find. Figure 37 was drawn
using Microsoft Visio, a drawing package that comes with a
large selection of network diagramming stencils that are ideal
for UML deployment models.

11.3 Dependency and
Communication-Association Guidelines
Communication associations, often called connections, are
depicted as lines connecting nodes. Dependencies between

Table 7. Common Stereotypes for Communication
Associations.

Stereotype Implication

asynchronous An asynchronous connection, perhaps via
a message bus or message queue.

HTTP HyperText Transport Protocol, an Internet
protocol.

JDBC Java Database Connectivity, a Java API
for database access.

ODBC Open Database Connectivity, a Microsoft
API for database access.

RMI Remote Method Invocation, a Java
communication protocol.

RPC Communication via remote procedure calls.
synchronous A synchronous connect where the sender

waits for a response from the receiver.
web services Communication is via Web services

protocols such as SOAP and UDDI.

118 THE ELEMENTS OF UML STYLE

components are modeled as dashed arrows, the same notation
used on other UML diagrams.

235. Indicate Communication Protocols Via Stereotypes
Communication associations support one or more communi-
cation protocols, each of which should be indicated by a UML
stereotype. In Figure 36, you can see that the HTTP, JDBC,
and Web services protocols are indicated using this approach.
Table 7 provides a representative list of stereotypes for com-
munication associations, but your organization will want to
develop its own specific standards.

236. Model Only Critical Dependencies
Between Components
In Figure 36 the dependencies between the domain compo-
nents deployed to the application server are not modeled be-
cause they weren’t pertinent to the diagram (and they would
be better modeled in greater detail on a UML component
diagram). However, the dependency between the components
on the database server was modeled because it helped to show
that database access by domain components isn’t direct; they
instead need to go through the persistence framework—a
common architecture best practice (Ambler 2001). Follow the
AM practice Depict Models Simply and only model informa-
tion that is pertinent to the task at hand.

12.

Agile Modeling

Agile Modeling (AM) (Ambler 2002) is a chaordic (Hock
2000), practice-based methodology for effective modeling of
software-based systems. The AM methodology is a collection
of practices, guided by principles and values that can be applied
by software professionals on a day-to-day basis. AM is not a
prescriptive process. It does not define detailed procedures for
how to create a given type of model, but it does provide advice
for how to be effective as a modeler. It’s “touchy-feely,” not
hard and fast—think of AM as an art, not a science.

12.1 Values
The foundation of AM is its five values, the first four adopted
from eXtreme Programming (XP) (Beck 2000):

■ communication,
■ courage,
■ feedback,
■ simplicity, and
■ humility.

12.2 Principles
The principles of AM, which are based on its values, define
the basis for its practices. The principles are organized into
two collections: the core principles, which you must fully
adopt to be able to claim you are “agile modeling,” and the

119

120 THE ELEMENTS OF UML STYLE

Table 8. Principles of AM.

Core Supplementary

■ Assume Simplicity

■ Embrace Change

■ Enabling the Next Effort
Is Your Secondary Goal

■ Incremental Change

■ Maximize Stakeholder
Investment

■ Model with a Purpose

■ Multiple Models

■ Quality Work

■ Rapid Feedback

■ Software Is Your Primary Goal

■ Travel Light

■ Content Is More
Important Than
Representation

■ Everyone Can Learn from
Everyone Else

■ Know Your Models

■ Know Your Tools

■ Local Adaptation

■ Open and Honest
Communication

■ Work with People’s
Instincts

Table 9. Practices of AM.

Core Supplementary

■ Active Stakeholder
Participation

■ Apply the Right Artifact(s)

■ Collective Ownership

■ Consider Testability

■ Create Several Models
in Parallel

■ Create Simple Content

■ Depict Models Simply

■ Display Models Publicly

■ Iterate to Another Artifact

■ Model in Small Increments

■ Model with Others

■ Prove It with Code

■ Use the Simplest Tools

■ Apply Modeling Standards

■ Apply Patterns Gently

■ Discard Temporary Models

■ Formalize Contract Models

■ Model to Communicate

■ Model to Understand

■ Reuse Existing Resources

■ Update Only When It Hurts

AGILE MODELING 121

supplementary principles, which support the core. Table 8 lists
the principles of AM.

12.3 Practices
The practices of AM define effective techniques for modeling.
As with the principles, the practices are organized into two
groups, core and supplementary. Table 9 lists the practices
of AM.

Summary

General Guidelines
1. Avoid crossing lines.
2. Depict crossing lines as a jump.
3. Avoid diagonal or curved lines.
4. Apply consistently sized symbols.
5. Arrange symbols symmetrically.
6. Include white space in diagrams.
7. Organize diagrams left to right, top to bottom.
8. Show only what you have to show.
9. Prefer well-known notation over esoteric notation.

10. Reorganize large diagrams into several smaller ones.
11. Prefer single-page diagrams.
12. Focus on content first, appearance second.
13. Describe diagrams with a note.
14. Set a convention for placement of diagram legends.
15. Apply consistent, readable fonts.
16. Set and follow effective naming conventions.
17. Apply common domain terminology in names.
18. Apply language naming conventions on design

diagrams.
19. Name common elements consistently across diagrams.
20. Indicate unknowns with a question mark.

123

124 THE ELEMENTS OF UML STYLE

21. Consider applying color to your diagrams.
22. Apply color or different fonts sparingly.
23. Left-justify text in notes.
24. Name stereotypes in <<user interface>> and

<<UI>> format.
25. Prefer naming conventions over stereotypes.
26. Introduce new stereotypes sparingly.
27. Apply stereotypes consistently.
28. Prefer notes over OCL or ASL to indicate constraints.
29. Begin use case names with a strong verb.

UML Use Case Diagram Guidelines
30. Name use cases using domain terminology.
31. Imply timing considerations by stacking use cases.
32. Place your primary actor(s) in the top-left corner of the

diagram.
33. Draw actors on the outside edges of a use case diagram.
34. Name actors with singular, domain-relevant nouns.
35. Associate each actor with one or more use cases.
36. Name actors to model roles, not job titles.
37. Use <<system>> to indicate system actors.
38. Don’t allow actors to interact with one another.
39. Introduce an actor called “time” to initiate scheduled

events.
40. Indicate an association between an actor and a use case

if the actor appears within the use case logic.
41. Avoid arrowheads on actor-use case relationships.
42. Apply <<include>> when you know exactly when to

invoke the use case.

SUMMARY 125

43. Apply <<extend>> when a use case may be invoked
across several use case steps.

44. Apply <<extend>> associations sparingly.
45. Generalize use cases when a single condition results in

significantly new business logic.
46. Do not apply <<uses>>, <<includes>>, or

<<extends>>.
47. Avoid more than two levels of use case associations.
48. Place an included use case to the right of the invoking

use case.
49. Place an extending use case below the parent use case.
50. Apply the “is like” rule to use case generalization.
51. Place an inheriting use case below the base use case.
52. Apply the “is like” rule to actor inheritance.
53. Place an inheriting actor below the parent actor.
54. Indicate release scope with a system boundary box.
55. Avoid meaningless system boundary boxes.

UML Class Diagram Guidelines
56. Identify responsibilities on domain class models.
57. Indicate visibility only on design models.
58. Indicate language-dependent visibility with property

strings.
59. Indicate types on analysis models only when the type is

an actual requirement.
60. Be consistent with attribute names and types.
61. Model association classes on analysis diagrams.
62. Do not name associations that have association

classes.

126 THE ELEMENTS OF UML STYLE

63. Center the dashed line of an association class.
64. Use common terminology for class names.
65. Prefer complete singular nouns for class names.
66. Name operations with a strong verb.
67. Name attributes with a domain-based noun.
68. Do not model scaffolding code.
69. Do not model keys.
70. Never show classes with just two compartments.
71. Label uncommon class compartments.
72. Include an ellipsis (. . .) at the end of incomplete

lists.
73. List static operations/attributes before instance

operations/attributes.
74. List operations/attributes in decreasing visibility.
75. For parameters that are objects, list only their type.
76. Develop consistent operation and attribute signatures.
77. Avoid stereotypes implied by language naming

conventions.
78. Indicate exceptions in an operation’s property string.
79. Reflect implementation language constraints in

interface definitions.
80. Name interfaces according to language naming

conventions.
81. Prefer “lollipop” notation to indicate realization of an

interface.
82. Define interfaces separately from your classes.
83. Do not model the operations and attributes of

interfaces in your classes.
84. Model relationships horizontally.

SUMMARY 127

85. Model collaboration between two elements only when
they have a relationship.

86. Model a dependency when the relationship is
transitory.

87. Tree-rout similar relationships to a common class.
88. Always indicate the multiplicity.
89. Avoid a multiplicity of “*”.
90. Replace relationship lines with attribute types.
91. Do not model implied relationships.
92. Do not model every dependency.
93. Center names on associations.
94. Write concise association names in active voice.
95. Indicate directionality to clarify an association name.
96. Name unidirectional associations in the same direction.
97. Word association names left to right.
98. Indicate role names when multiple associations

between two classes exist.
99. Indicate role names on recursive associations.

100. Make associations bi-directional only when
collaboration occurs in both directions.

101. Redraw inherited associations only when something
changes.

102. Question multiplicities involving minimums and
maximums.

103. Apply the sentence rule for inheritance.
104. Place subclasses below superclasses.
105. Beware of data-based inheritance.
106. A subclass should inherit everything.
107. Apply the sentence rule for aggregation.

128 THE ELEMENTS OF UML STYLE

108. Be interested in both the whole and the part.
109. Place the whole to the left of the part.
110. Apply composition to aggregates of physical items.
111. Apply composition when the parts share their

persistence life cycle with the whole.
112. Don’t worry about the diamonds.

Package Diagram Guidelines
113. Create class package diagrams to logically organize

your design.
114. Create UML component diagrams to physically

organize your design.
115. Place inheriting packages below base packages.
116. Vertically layer class package diagrams.
117. Create use case package diagrams to organize your

requirements.
118. Include actors on use case package diagrams.
119. Horizontally arrange use case package diagrams.
120. Give packages simple, descriptive names.
121. Make packages cohesive.
122. Indicate architectural layers with stereotypes on

packages.
123. Avoid cyclic dependencies between packages.
124. Reflect internal relationships in package

dependencies.

UML Sequence Diagram Guidelines
125. Strive for left-to-right ordering of messages.
126. Layer classifiers.

SUMMARY 129

127. Give an actor the same name as a class, if necessary.
128. Include a prose description of the logic.
129. Place proactive system actors on the left-most side of

your diagram.
130. Place reactive system actors on the right-most side of

your diagram.
131. Avoid modeling object destruction.
132. Don’t sweat activation boxes.
133. Name objects when you reference them in messages.
134. Name objects when several of the same type exist.
135. Apply textual stereotypes to classifiers consistently.
136. Apply visual stereotypes sparingly.
137. Focus on critical interactions.
138. Justify message names beside the arrowhead.
139. Create objects directly.
140. Apply operation signatures for software messages.
141. Apply prose for messages involving human and

organization actors.
142. Prefer names over types for parameters.
143. Indicate types as parameter placeholders.
144. Apply the <<include>> stereotype for use case

invocations.
145. Do not model obvious return values.
146. Model a return value only when you need to refer to it

elsewhere on a diagram.
147. Justify return values beside the arrowhead.
148. Model return values as part of a method invocation.
149. Indicate types as return-value placeholders.
150. Indicate the actual value for simple return values.

130 THE ELEMENTS OF UML STYLE

UML Collaboration Diagram Guidelines
151. Create instance-level diagrams to explore object design

issues.
152. Create specification-level diagrams to explore roles.
153. Do not use collaboration diagrams to model process

flow.
154. Create a sequence diagram when sequence is

important.
155. Apply sequence diagram guidelines to instance-level

collaboration diagrams.
156. Indicate parameters only when they aren’t clear.
157. Depict an arrow for each message.
158. Consolidate getter invocations.
159. Indicate concurrent threads with letters.
160. Model “bare” links on instance-level collaboration

diagrams.
161. Show role-pertinent information on specification-level

diagrams.
162. Prefer roles on links instead of within classes.
163. Indicate navigability sparingly.
164. Use links to reflect consistent static relationships.

UML State Chart Guidelines
165. Create a state chart when behavior differs based on

state.
166. Place the initial state in the top-left corner.
167. Place the final state in the bottom-right corner.
168. State names should be simple but descriptive.
169. Question “black-hole” states.

SUMMARY 131

170. Question “miracle” states.
171. Model substates for targeted complexity.
172. Aggregate common substate transitions.
173. Create a hierarchy of state charts for very complex

entities.
174. Always include initial and final states on top-level state

charts.
175. Name software actions using implementation-language

naming conventions.
176. Name actor actions using prose.
177. Indicate entry actions only when applicable for all

entry transitions.
178. Indicate exit actions only when applicable for all exit

transitions.
179. Model recursive transitions only when you want to exit

and reenter the state.
180. Name transition events in past tense.
181. Place transition labels near the source state.
182. Place transition labels on the basis of transition

direction.
183. Do not overlap guards.
184. Introduce junctions to visually localize guards.
185. Use guards even if they do not form a complete set.
186. Never place a guard on an initial transition.
187. Use consistent language naming guards.

UML Activity Diagram Guidelines
188. Place the start point in the top-left corner.
189. Include an ending point.

132 THE ELEMENTS OF UML STYLE

190. Simplify operations requiring flow charts.
191. Question “black-hole” activities.
192. Question “miracle” activities.
193. Reflect the previous activity by using decision points.
194. Avoid superfluous decision points.
195. Ensure that each transition leaving a decision point

has a guard.
196. Do not overlap guards.
197. Ensure that guards on decision points form a complete

set.
198. Ensure that exit transition guards and activity

invariants form a complete set.
199. Apply an [otherwise] guard for “fall-through” logic.
200. Model guards only if they add value.
201. Ensure that forks have corresponding joins.
202. Ensure that a fork has only one entry transition.
203. Ensure that a join has only one exit transition.
204. Avoid superfluous forks.
205. Order swimlanes in a logical manner.
206. Apply swimlanes to linear processes.
207. Have less than five swimlanes.
208. Consider swimareas for complex diagrams.
209. Reorganize into smaller activity diagrams when

swimareas include several activities.
210. Consider horizontal swimlanes for business

processes.
211. Model the key activities in the primary swimlane.
212. Place shared action objects on swimlane separators.

SUMMARY 133

213. Apply state names when an object appears several
times.

214. Reflect the life-cycle stage of an action object in its state
name.

215. Show only critical inputs and outputs.
216. Depict action objects as smaller than activities.

UML Component Diagram Guidelines
217. Apply descriptive names to architectural components.
218. Apply environment-specific naming conventions to

detailed design components.
219. Apply consistent textual stereotypes.
220. Avoid modeling data and user interface components.
221. Prefer lollipop notation to depict interfaces realized by

components.
222. Prefer the left-hand side of a component for interface

lollipops.
223. Show only relevant interfaces.
224. Model dependencies from left to right.
225. Place inheriting components below base components.
226. Make components dependent only on interfaces.
227. Avoid modeling compilation dependencies.

UML Deployment Diagram Guidelines
228. Indicate software components on project-specific

diagrams.
229. Focus on nodes and communication associations on

enterprise-level diagrams.

134 THE ELEMENTS OF UML STYLE

230. Group common nodes.
231. Use descriptive terms to name nodes.
232. Model only vital software components.
233. Apply consistent stereotypes to components.
234. Apply visual stereotypes to nodes.
235. Indicate communication protocols via stereotypes.
236. Model only critical dependencies between components.

Bibliography

Ambler, S. W. (1997). Building Object Applications That Work:
Your Step-by-Step Handbook for Developing Robust Systems with
Object Technology. New York: Cambridge University Press.
www.ambysoft.com/buildingObjectApplications.html

Ambler, S. W. (1998). Process Patterns—Building Large-Scale Sys-
tems Using Object Technology. New York: Cambridge University
Press.
www.ambysoft.com/processPatterns.html

Ambler, S. W. (2000). The Enterprise Unified Process (EUP).
www.ronin-intl.com/publications/unifiedProcess.html

Ambler, S. W. (2001). The Object Primer, 2nd Edition: The
Application Developer’s Guide to Object Orientation. New York:
Cambridge University Press.
www.ambysoft.com/theObjectPrimer.html.

Ambler, S. W. (2002). Agile Modeling: Best Practices for the Uni-
fied Process and Extreme Programming. New York: John Wiley &
Sons.
www.ambysoft.com/agileModeling.html.

Beck, K. (2000). Extreme Programming Explained—Embrace
Change. Reading, MA: Addison-Wesley Longman.

Coad, P., Lefebvre, E., & DeLuca, J. (1999). Java Modeling
in Color with UML: Enterprise Components and Process. Upper
Saddle River, NJ: Prentice-Hall.

Cockburn, A. (2001). Writing Effective Use Cases. Boston:
Addison-Wesley.

135

136 THE ELEMENTS OF UML STYLE

Constantine, L. L., and Lockwood, L. A. D. (1999). Software for
Use: A Practical Guide to the Models and Methods of Usage-Centered
Design. New York: ACM Press.

Douglass, B. P. (1999). Doing Hard Time: Developing Real-Time
Systems with UML, Objects, Frameworks, and Patterns. Reading,
MA: Addison-Wesley Longman.

Evitts, P. (2000). A UML Pattern Language. Indianapolis:
Macmillan Technical Publishing USA.

Fowler, M. (1999). Refactoring: Improving the Design of Existing
Code. Menlo Park, CA: Addison-Wesley Longman.

Fowler, M., & Scott, K. (1999). UML Distilled, Second Edition: A
Brief Guide to the Standard Object Modeling Language. Reading,
MA: Addison-Wesley Longman.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design
Patterns: Elements of Reusable Object-Oriented Software. Reading,
MA: Addison-Wesley.

Gane, C., & Sarson, T. (1979). Structured Systems Analysis: Tools
and Techniques. Englewood Cliffs, NJ: Prentice-Hall.

Hock, D. W. (2000). Birth of the Chaordic Age. San Francisco:
Berrett-Koehler Publishers, Inc.

Knoernschild, K. (2002). Java Design: Objects, UML, and Process.
Boston: Addison-Wesley Longman.

Larman, C. (2002). Applying UML and Patterns: An Introduction
to Object-Oriented Analysis and Design and the Unified Process.
Upper Saddle River, NJ: Prentice-Hall.

Miller, G. A. (1957). The magical number seven, plus or minus
two: Some limits on our capacity for processing information.
Psychological Review, vol. 63, pp. 81–97.
www.well.com/user/smalin/miller.html

Object Management Group (2001). The Unified Modeling Lang-
uage (UML) Specification v1.4.
www.omg.org/technology/documents/formal/uml.htm

BIBL IOGRAPHY 137

Rational Corporation (2002). Rational Unified Process 2002.
www.rational.com/products/rup/index.jsp

Riel, A. J. (1996). Object-Oriented Design Heuristics. Reading,
MA: Addison-Wesley Longman.

Roman, E., Ambler, S. W., & Jewell, T. (2002). Mastering Enter-
prise Java Beans, 2/e. New York: John Wiley & Sons.

Rosenberg, D., & Scott, K. (1999). Use Case Driven Object Mod-
eling with UML: A Practical Approach. Reading, MA: Addison-
Wesley Longman.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The Unified
Modeling Language Reference Manual. Reading, MA: Addison-
Wesley Longman.

Schneider, G., & Winters, J. P. (2001). Applying Use Cases: A
Practical Guide 2/e. Reading, MA: Addison-Wesley Longman.

Strunk, W., Jr., & White, E. B. (1979). The Elements of Style.
New York: Macmillan.

U2 Partners (2002). The Unified Modeling Language 2.0 Proposal
v0.69 (draft).
cgi.omg.org/docs/ad/02-04-05.pdf

Vermeulen, A., Ambler, S. W., Bumgardner, G., Metz, E.,
Misfeldt, T., Shur, J., & Thompson, P. (2000). The Elements
of Java Style. New York: Cambridge University Press.

Warmer, J., & Kleppe, A. (1999). The Object Constraint Lang-
uage: Precise Modeling with UML. Reading, MA: Addison-Wesley
Longman.

Index

A

abbreviations 106
action objects 102–103
Action Semantic Language

(ASL) 13
actions 85, 88–89
activation boxes 65
activity diagrams

action objects 102–103
applications 76, 92–93
black-hole activities 95
decision points 95–96
ending point 94
flow charts 94, 95
forks and joins 93,

97, 99
guards 95, 96–97, 102
invariants 96–97
miracle activities 95
parallel activities 97–99
starting point 92–93
state names 102–103
swimlanes 100–102
symbols 5, 94, 95

actors 17–20, 25, 56,
63–64, 68, 70, 88

aggregation 42, 43, 50–52,
85

Agile Modeling 1, 6, 20, 26,
28, 44, 55, 65, 68, 76, 97,
103, 106–107, 108, 116,
118, 119–121

analysis models 29, 30, 32,
33, 34

architectural diagrams . . . 94, 99,
104–106, 114

architectural layers 58
arrowheads 20–21, 40,

69–70, 72, 108, 110
arrows 71, 78, 103, 118
association classes 30, 31
associations (see also

relationships)
actors 18
on class diagrams 30–31,

42, 45–48, 49, 50–52
communication . . . 117–118
on deployment

diagrams 117–118
directionality45–46, 47
<<extend>> 22, 23, 24
implied 44
<<include>> 21–22,

23, 24
inherited 47
levels of 23–24
multiple44

139

140 THE ELEMENTS OF UML STYLE

associations (continued)
naming 30, 45
placement45, 46
realization 108
recursive 45, 47
and role names 46–47

attributes
on analysis models . . . 29, 34
on class diagrams 29, 30,

33, 34, 36–37, 40, 44
instance 36
of interfaces 40
listing 37
naming 30, 33,

34, 37
relationship lines replaced

with 44
static 36
types 29–30

B

black-hole activities 95
black-hole states 84

C

circles . 94
class diagrams

aggregation 50–52
on analysis models 29,

32, 33, 34
applications 27,

79–80, 81, 106
associations 30–31,

45–48, 49, 50–52
attributes 29, 30, 33, 34,

36–37, 40, 44
collaborations 41, 47

compartments 35–36
composition 50–52
constraints 39
dashed lines 31
on design models 28–29,

32, 33, 34
directionality 45–46,

47, 81
on domain models . . .27–28,

29
exceptions 38
incomplete lists 36
inheritance 47–50
interfaces 38–40
keys 35
labels 36
lists 36–37
lollipop notation 40
multiplicities 43, 48
naming conventions30,

31–33, 34, 37–38, 39, 45,
46–47

objects as parameters 37
operations 32, 33,

36–37, 38, 40
packages 53–55
property strings 29, 38
relationships40–44
responsibilities on 27–28
role names 46–47
scaffolding code 33, 35
sentence rule 49, 51
stereotypes 38
style 31–38
type of attribute 29–30
visibility options 28–29,

37

INDEX 141

class models 27–28
classifiers 61–62, 66–69,

79, 104
collaboration diagrams

applications 106
instance-level 74–77,

79–80
links 79–81
messages 76, 77–79
process flow 76
specification-level 76, 80
state names 102

collaborations 41, 47, 61
color 10, 12
communication

associations 117–118
compartments 35–36
component diagrams

applications 55, 104,
116

architectural 104–106
dependencies 110–111
inheritance 110
interfaces in 107–109,

110–111
naming

conventions 104–106
stereotypes 106, 107
for user

interfaces 106–107
components 114–117,

118
composition 43, 50–52
constraints 13, 39
constructors 33
content of diagrams, 7–8
controller class 68

D

decision points 95–96
dependencies

class diagrams 41–43, 44
compilation 111
in component

diagrams 110–111
cyclic 58–59
in deployment

diagrams 117–118
packages 55, 56, 58–59
use-case 22, 56

deployment diagrams
applications 112
dependencies and

communication
associations 117–118

enterprise-level 114
nodes and

components . . . 114–117
project-specific 113–114
software components . . . 114,

116
stereotypes 116–117,

118
design diagrams 9, 28–29,

32, 33, 34
diamond 95
directionality, 45–46, 47, 90
domain class models 27–28,

29, 31, 55, 76
domain terminology 9, 16

E

elipsis . 36
enterprise data or

object models 7

142 THE ELEMENTS OF UML STYLE

Enterprise Java Beans 55
enterprise-level diagrams . . . 114
exceptions 38

F

flow charts 94, 95
fonts 8–9, 10, 12
forks 93, 97, 99
functional

decomposition. . . .23–24

G

getters (accessors) 33, 78
guards85, 90–91, 95,

96–97, 102

H

happy path 101–102

I

infrastructure classes 55
inheritance

actors 25
associations 47–48
on class diagrams 40, 42,

47–50
in component

diagrams 110
data-based 49
notation 48–49
packages 55
pure 48, 49–50
sentence rule for49
subclass placement.49
use case 23, 24, 25

instance operations/
attributes 36, 39

instance-level collaboration
diagrams 74–77,
79–80

interactions 19, 68–69,
74–76

interfaces 38–40, 107–109,
110–111

integers 30
“is like” rule 25

J

Java83, 88, 106
job titles 18–19
joins 93, 99, 97
junctions 90

K

keys . 35

L

labels 3, 25, 36, 66, 70, 71,
85, 89, 95

Larman, Craig 28, 52
layering 61–62
legends (see notes)
lines

crossing 3–4
curved 4, 15, 16
dashed 22, 30, 31, 40,

108, 110
defined 3
diagonal 4, 15, 16
realization 40

links 79–81

INDEX 143

lists 36–37
FIFO 10

logical data model 28
lollipop notation 40,

104, 108

M

messages 60, 61, 62, 65, 66,
69–71, 72, 76, 77–79

Microsoft environments 39
miracle activities 95
miracle states 85
multiplicities 43, 48, 80

N

naming conventions
actors 18–19, 63
associations 30
attributes 30, 33, 34, 37
classes 31
on class diagrams 30,

31–33, 34, 37–38, 39, 45,
46–47

in component
diagrams 104–106

consistency across
diagrams 9

on design diagrams . . . 9, 32,
33, 34

domain terminology 16
general guidelines9
language constraints 70
objects 66
operations 32, 33,

37, 69
package diagrams 58

programming language
constraints 33

sequence diagrams . . . 63, 66,
67, 69–70

state chart diagrams 84,
88, 91

stereotypes and 12, 38
use case diagrams 15–16

navigability 81
network diagram 114
nodes 114–117
notation 7, 8, 48–49, 77,

102, 104, 114–115
notes 8, 12, 13, 26

O

object
action 102–103
anonymous 66
creation 70
design 74–76
destruction 65
interactions 74–75
named 66
as parameters 37

Object Constraint Language
(OCL) 11, 13

100% rule 49
operations

on class diagrams 32, 33,
36–37, 38, 40

instance 36
of interfaces 40
listing 37
naming 32, 33, 37
static 36

144 THE ELEMENTS OF UML STYLE

P

package diagrams
applications 53
architectural layers 58
class 53–55
contents58
dependencies 55, 56,

58–59
naming conventions 58
use case 56–57

packages 53
parallel activities 97–99
parameters 37, 71, 72–73,

77–78
persistence life cycle 51–52
process flow 76
programming language

constraints . 9, 29, 33, 38,
39, 70, 88

project-specific
diagrams 113–114

property strings 29, 38
prose descriptions 63, 64,

70, 88

R

readability guidelines 3–6
realizations 107
relationships (see also aggrega-

tion; associations; depen-
dencies; inheritance;
realizations

actor interactions 19
with arrowheads 20–21
on class diagrams 40–44,

79

collaborations 41
generalizations 22, 23,

24, 25
“is like” rule 24, 25
“is part of” 50
multiplicities 42, 43
nested 23–24
placement 24, 40–41
static 81
transitory 41–42
tree configuration 42–43
types of 19–20
in use case

diagrams 19–25
<<uses>> 23

release scope 25–26
responsibilities 27–28, 114
return values 66, 71–73
robustness diagrams 68
role names/

information 18–19,
46–47, 80–81

S

scaffolding code 6, 33, 35
scheduled events 19
sentence rule 49, 51
sequence diagrams 6

activation boxes 65
actors 63–64, 68, 70
applications 60–61,

76–77
classifiers . 61–62, 66–69, 70
interactions 68–69
language constraints 70

INDEX 145

layering 61–62
messages 60, 61, 62,

65, 66, 69–71, 72
naming conventions63,

66, 67, 69–70, 102
object creation 70
object destruction 65
parameters 71, 72–73
prose descriptions 63,

64, 70
return values 66, 71–73
stereotypes 66, 68,

70, 71
use case in 71

setters (mutators) 33, 78
simplicity guidelines 6–9
size of diagrams 7
software components 114
specification-level

diagrams 76, 80
stacking 15, 16, 17
state chart diagrams

actions 85, 88–89
aggregations 85
applications 82–84,

106
black-hole states 84
in component

diagrams 106, 107
guards 85, 90–91
miracle states 85
naming conventions84,

88, 91, 102–103
placement of states 6, 84
substates 85–87
top-level 87

transitions 84, 85,
87–88, 89–90, 91

static operations/
attributes 33, 36

stereotypes
on class diagrams 38
for classifiers 66, 68,

70, 71
communications

protocols 118
consistency 13
<<constructor>> 38
<<create>> , 70
in deployment

diagrams 116–117,
118

<<destroy >>65
<<extend>> 22, 23, 24
<<extends>> 23
format 12
<<include>> 21–22,

23, 24, 71
<<includes>> 23
<<interface>> 39
on nodes 117
on packages 58
programming language

considerations 38
<<system>>. 19
textual 66
in use-case diagrams 71
use of 12–13,

19, 38
<<uses>> 23
visual 66, 68, 117

style guidelines 31–38

146 THE ELEMENTS OF UML STYLE

subclasses 48, 49–50
substates 85–87
superclasses 49
superstates 85
swimlanes and

swimareas 100–102
symbols, 3, 4–6, 7, 10,

17, 30, 94
system

actors 19, 63–64
boundary box 25–26
object102

T

threads . 79
Time actor 19
timing considerations 15,

16, 17
transitions 84, 85, 87–88,

89–90, 91, 95, 97, 99,
101, 102

tree configuration 42–43

U

Unified Process 56, 99
unknowns/

uncertainty10, 11

usage scenarios 60, 63
use case diagrams

actors 17–19, 20,
25, 56

applications 14
domain terminology 16
packages 56–57
relationships 19–25,

56
stacking in.15, 16,

17
stereotypes 71
system boundary

box 25–26
timing considerations . . . 15,

16, 17
writing names 15–16

use case model14, 101
user interfaces 55, 68,

106–107

V

visibility options 28–29, 37
Visual Basic 55

W

white space 6

