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Preface

At the dawn of the 21st century and the information age, communication and com-
puting power are becoming ever increasingly available, virtually pervading almost
every aspect of modern socio-economical interactions. Consequently, the potential
for realizing a significantly greater number of technology-mediated activities has
emerged. Indeed, many of our modern activity fields are heavily dependant upon
various underlying systems and software-intensive platforms. Such technologies are
commonly used in everyday activities such as commuting, traffic control and man-
agement, mobile computing, navigation, mobile communication. Thus, the correct
function of the forenamed computing systems becomes a major concern. This is all
the more important since, in spite of the numerous updates, patches and firmware
revisions being constantly issued, newly discovered logical bugs in a wide range of
modern software platforms (e.g., operating systems) and software-intensive systems
(e.g., embedded systems) are just as frequently being reported.

In addition, many of today’s products and services are presently being deployed
in a highly competitive environment wherein a product or service is succeeding
in most of the cases thanks to its quality to price ratio for a given set of features.
Accordingly, a number of critical aspects have to be considered, such as the abil-
ity to pack as many features as needed in a given product or service while con-
currently maintaining high quality, reasonable price, and short time -to- market.
Consequently, modeling is becoming a key activity in product development since it
enables a controlled design process that can allow for design reuse and easy feature
integration in a predictable timeline. Also, the economical globalization and multi-
national cooperation trends are active drivers pushing for standardized modeling and
engineering practices. Standardization could potentially facilitate the deployment
and adoption of cost-effective verification and validation methodologies that could,
in turn, be harmonized with current business goals.

The overall objective in modern product development for maximizing immedi-
ate economical gains can cause conflicts between business goals and engineering
practices. Consequently, many aspects such as ergonomics, various environmental
concerns, thorough verification and validation, or computational efficiency are fre-
quently ignored. This is especially the case in those areas where the effects are not
immediately apparent such as in software applications (e.g., operating systems, web
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browsers, office suites) or in software-intensive systems (e.g., computer and mobile
networking, portable/wearable electronics, and pervasive computing).

Although we can observe an ever-increasing awareness regarding ergonomics
and environmental issues, the same can hardly be said about the necessity for a thor-
ough verification and validation methodology for modern software and software-
intensive systems. Nowadays, most of the systems’ verification and validation is
usually performed through testing and simulation; these techniques although very
convenient for certain categories of systems do not provide necessarily for a com-
plete screening of the possible states of a system.

Thus, it becomes apparent that an appropriate science for conscience setting
should always accompany, to some extent, any development initiative. Furthermore,
in such a setting, it is not so difficult to acknowledge that the most precious resource
that human society benefits from is not any physical or material datum but rather
the human resources themselves. As such, one may argue that as human society
becomes increasingly technology dependant, the importance of assuring robust,
bug-free, and high-quality software and systems is also equally increasing.

Systems engineering has marked an impressive comeback in the wake of the new
challenges that emerged in this modern era of complex systems design and devel-
opment. As the main objective of systems engineers is to enable the realization of
successful systems, verification and validation represent an important process that
is used for the quality assessment of the engineered systems and their compliance
with the requirements established at the origin of the system development. Fur-
thermore, in order to cope with the growing complexity of modern software and
systems, systems engineering practices have undergone a fundamental transition
to a model-based approach. In these settings, systems engineering community and
standardization bodies developed interest in using and/or developing some specific
modeling language that supports the cooperative work and the exchange of infor-
mation among systems engineering practitioners.

This volume investigates the available means that can be employed in order to
provide a dedicated approach toward the automatic verification and validation of
systems engineering design models expressed in standardized modeling languages.
It also provides a bird’s eye view of the most prominent modeling languages for
software and systems engineering, namely the unified modeling language (UML)
and the more recent systems modeling language (SysML). Moreover, it innovates
with the elaboration of a number of quantitative and qualitative techniques that
synergistically combine automatic verification techniques, program analysis, and
software engineering quantitative methods, applicable to design models described
in modern modeling languages such as UML and SysML. Here is the way, the rest
of this book is organized: Chap. 1 presents an introduction to the verification and
validation problem, systems engineering, various related standards, and modeling
languages along with the model-driven architecture (MDA) concept. In Chap. 2, we
discuss the paradigm of architecture frameworks adopted and extended by defense
organizations but also employed in the commercial arena as enterprise architecture
frameworks. Moreover, in Chap. 3, we provide an overview of the UML 2.0 model-
ing language in the historical context leading to its emergence. Then, we present in
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Chap. 4 the more recent SysML modeling language, the chronological account of its
adoption and the commonalities and specific differences between SysML and UML.
Chapter 5 describes the verification, validation, and accreditation concepts. Therein,
we review noteworthy assessment methodologies based on software engineering
techniques, formal verification, and program analysis. Chapter 6 describes an effec-
tive and synergistic approach for the verification and validation of systems engineer-
ing design models expressed in standardized modeling languages such as UML and
SysML. Moreover, Chap. 7 demonstrates the relevance and usefulness of software
engineering metrics in assessing structural system aspects captured by UML class
and package diagrams. Chapter 8 details the automatic verification and validation of
UML behavioral diagrams. Computational models are derived from state machine,
sequence, or activity diagrams and are matched against logical properties that cap-
ture verification and validation requirements. The corresponding model-checking
verification methodology is also described. Chapter 9 discusses the mapping of
SysML activity diagrams annotated with probabilities to Markov decision processes
(MDP) that can be assessed by probabilistic model checking procedures. Further-
more, Chap. 10 details the performance analysis of SysML activity diagrams anno-
tated with time constraints and probability artifacts using a discrete-time Markov
chain model. Chapter 11 is dedicated to the semantic foundations of SysML activity
diagrams. We define a probabilistic calculus that we call activity calculus (AC).
The latter algebraically captures the formal semantics of the activity diagrams using
the operational semantics framework. In Chap. 12, we establish the soundness of the
translation of SysML activity diagrams into PRISM specifications. This ensures that
the code generated by our algorithm correctly captures the behavior intended by the
SysML activity diagram given as input. Finally, a discussion of the presented work
together with some concluding remarks are sketched as conclusion in Chap. 13.
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Chapter 1
Introduction

In this day and age, various forms of programming and computation are common-
place in our immediate urban surroundings, often embedded in sensors, traffic and
other driving-related assistance, public advertisements, hotspots, smart elevators,
and many other micro-controller or CPU-based systems. Moreover, wearable elec-
tronics, like mobile phones, PDAs, and the likes, are more popular than ever. Thus,
in modern engineering fields, especially those related to software-intensive systems,
the solution space available to the designers and engineers is significantly increased
due to the presence of the programmable aspect. In this context, mere intuition and
ingenuity, though still playing a significant role, can hardly ensure strong, flaw-free,
and cohesive designs, especially after reaching a high level of complexity. Moreover,
the programmable aspect allows for a broader specialization range of a given design,
inevitably inviting engineers to benefit from design reuse. Hence, various aspects
such as understandability, extensibility, and modularity are becoming increasingly
important in modern system design, along with general requirements such as those
of cost and performance. Consequently, there is a clear trend toward the systematiza-
tion and standardization of systems engineering design practices and methodologies.

Systems can depend on many components, including people, hardware, and/or
software, all working together in order to accomplish a set of common specific
objectives. The design and realization of successful systems, as well as the effec-
tive management of engineering projects, represent the prime concerns of systems
engineering (SE) [229]. Notably, the critical aspect in system development consists
in the difficulty to ensure specification compliant products. This is due to many
factors including, among others, the increased complexity of the engineered sys-
tems, the effectiveness of the applied methods, as well as the presence of budgeting
constraints.

Along with the increased system size and complexity, quality assurance methods
also need to be extended accordingly. Given this context, the usual methodologies,
based on testing and simulation, become tedious, lengthy, and, more importantly,
hardly thorough. Additionally, real-life systems may exhibit stochastic behavior,
where the notion of uncertainty is pervasive. Uncertainty can be viewed as a prob-
abilistic behavior that models, for instance, risks of failure or randomness. Well-
known examples include lossy communication channel systems [213] and dynamic
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2 1 Introduction

power management systems [16]. Consequently, taking into account this aspect
leads to more accurate models. The integration of probabilistic aspects in V&V
is relevant from many perspectives. For instance, many quality attributes such as
performance, reliability, and availability are probabilistic in nature. Thus, perfor-
mance can be expressed by means of expected probability. Also, reliability can be
defined by the probability of successful system operation. Availability is given by
the probability that a system operates satisfactorily when needed for a particular
mission or application [75]. Finally, performing quantitative assessment of systems
after successful integration is generally the industry norm. However, quantitative
system assessment performed early in the development life cycle may reveal impor-
tant information that qualitative assessment might miss.

As part of the SE, verification and validation (V&V) aims at providing a signif-
icant level of confidence in the reliability of a system. Thus, attention is focused
on applying an effective and timely V&V task at a reasonable cost. Obviously, the
anticipated evaluation and correction of potential errors during the early stages of
development produces many benefits, such as that of a higher return on investment,
since it allows for a decrease in maintenance time, effort, and cost.

That was confirmed by Bohem [25], stating that “fixing a defect after delivery can
be one hundred times more expensive than fixing it during the requirement and the
design phases.” Therefore, early V&V reduces the risk involved in the engineering
of complex systems. Furthermore, it improves the quality of systems and shortens
their time to market.

V&V spans over the life cycle of the system. In this respect, most of the efforts
are traditionally focused on testing, a technique that has been used extensively in
software engineering. Testing involves exercising various test scenarios, developed
by engineers on different testbeds ranging from simulators to actual hardware [171],
and comparing the results with the anticipated or expected ones. However, this
approach is usually prone to “late in the game” error discovery and some types
of errors may remain virtually transparent. Consequently, this technique exhibits a
specific limitation since it can only reveal the presence of faults but not guarantee
their absence [70], as much as it is limited to the specified testing scenarios.

In the following, we present the core concepts involved in the SE discipline and
an overview of the related standards and modeling languages.

1.1 Verification and Validation Problem Statement

Existing verification methodologies are rarely supported by formal foundations and
proofs of soundness. Ideally, an efficient V&V approach needs to comply with the
following guidelines:

• Enable automation as much as possible. This optimizes the V&V process and
prevents potential errors that may be introduced by manual intervention.

• Encompass formal and rigorous reasoning in order to minimize errors caused by
subjective human judgment.
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• Support the graphical representation provided by modeling languages, for the
sake of conserving the usability of the visual notation, and hide the intermediate
transformations underlying the mechanisms involved.

• Combine quantitative as well as qualitative assessment techniques.

In the field of verification of systems and software, we pinpoint three well-
established techniques recommended in order to build a comprehensive V&V
framework. On the one hand, automatic formal verification techniques, namely
model checking, is known to be a successful approach for verifying the behavior of
software and hardware applications. Many model checkers can generate counterex-
amples for failed qualitative properties in support of debugging activities. Also, in
the stochastic world, probabilistic model checkers are becoming widely applied to
quantitatively analyze specifications that encompass probabilistic information about
systems behavior [172]. On the other hand, static analysis, that is usually applied on
software programs [32], is used prior to testing [21] and model checking [232].
For example, static slicing [232] yields smaller programs, which are less expen-
sive to verify. Furthermore, empirical methods, specifically software engineering
metrics, have proved to be successful in quantitatively measuring quality attributes
of object-oriented design models. As the absence of measurement precludes any
relevant comparison [66], metrics provide valuable means to evaluate the quality of
proposed design solutions and can help in reviewing various design decisions.

1.2 Systems Engineering

Systems engineering (SE) is, as its name stands, the engineering discipline that is
concerned with systems through their entire life cycle, which encompasses their
conception, design, prototyping, implementation/realization, fielding, and disposal.
Throughout these phases, SE is seen as a multidisciplinary approach, focused on
the system as a whole. The most common definition used for a system is “a set of
interrelated components working together toward some common objective” [138].
Although SE has been applied for a long time [229], it is sometimes referred to as
an emerging discipline [62]. This can be understood in the sense that its importance
has been recognized in the context of the increased complexity of today’s problems.
Systems have changed significantly in the last few decades, becoming increasingly
large and complex, integrating various components such as software, electronics,
and mechanics. This has triggered new challenges for the design and development
of successful systems.

As many other engineering disciplines, SE is supported by a number of orga-
nizations and standardization bodies. One of the most active organizations is the
International Council on Systems Engineering (INCOSE) [50]. Its primary mission
is “to advance the state of the art and practice of systems engineering in industry,
academia, and government by promoting interdisciplinary, scalable approaches to
produce technologically appropriate solutions that meet societal needs” [120].
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INCOSE [50] describes SE as an “interdisciplinary approach that enables the
realization of successful systems” by using the “systems” approach in order to
design complex systems such as systems of systems (SoS). Ubiquitous systems
such as hi-tech portable electronics, mobile devices, ATMs, as well as many other
advanced technologies such as aerospace, defence, or telecommunication platforms
represent important application fields of systems engineering. The mission of SE is
summarized in this statement by IEEE [113]: “to derive, evolve, and verify a life
cycle balanced system solution that satisfies customer expectations and meets pub-
lic acceptability.” In other words, aside from deriving an effective system solution,
SE’s duty is to ensure that the engineered system meets its requirements and its
development objectives and performs successfully its intended operations [138]. To
this end, systems engineers attempt to anticipate and resolve potential problems as
early as possible in the development cycle.

The design aspect in systems engineering focuses on finding feasible solutions
to given problems in the context of a generic solution domain. This can involve
many tasks relating to the subsystem decomposition, the targeted hardware plat-
form, the data storage, and the like. As well as describing the proposed solution,
the design model usually details the required or existing structural and behavioral
aspects identified during a prerequisite analysis phase. It is often difficult to pinpoint
the exact boundary between analysis and design. In general terms, the analysis phase
is concerned with the description of the problem and the user requirements, whereas
the design phase concentrates on the construction of a solution that satisfies the
identified requirements.

Today, the critical aspect of system design is no longer found in conceptual dif-
ficulties or technical shortcomings but rather in the increasing difficulty to ensure
appropriate and bug-free designs. Currently, systems engineering is clearly shifting
away from traditional document-based one to model-based design and development,
thus enabling and promoting the use of tool-assisted design. One important advan-
tage of modeling is that it allows for various types of analysis. The analysis of a
model is helpful in providing a deeper understanding of the attributes and/or oper-
ations described by the model in the context of the required or existing structure
and behavior of the envisioned product (e.g., system or application). Furthermore,
the analysis of the model provides a base for assessment by analysts and experts
in the application domain that can, in turn, provide relevant information to the
stakeholders.

Modeling and simulation (M&S) is an approach widely used by systems engi-
neers to gain insight into the system structure and behavior prior to effectively
producing it. This allows for the management of failure risks to meet the system’s
mission and performance requirements [230]. Modeling is defined in [69] as “the
application of a standard, rigorous, structured methodology to create and validate
a physical, mathematical, or otherwise logical representation of a system, entity,
phenomenon, or process.” With respect to simulation, it is defined by Shannon [220]
as “the process of designing a model of a real system and conducting experiments
with this model for the purpose of understanding the behavior of the system and/or
evaluating various strategies for the operation of the system.” Generally, it is the
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subject matter experts that develop and validate the models, conduct the simulations,
and analyze the results [230].

A model may be used to represent the system, its environment, and its interac-
tions with other enabling and interfacing systems. M&S is an important tool for
decision making, giving the engineer the means of predicting a system’s character-
istics such as performance, reliability, and operations. The predictions are used to
guide decisions regarding the system design, construction, and operation and also to
verify its acceptability [230]. That said, simulation is experiencing ever-increasing
difficulties in keeping up with the rapidly growing complexity of modern system
design. Indeed, the number of simulation cycles required in the verification process
is continuously rising and simulation-based methodologies require time-consuming
test input creation.

In order to cope with the advancements in model-driven SE and fulfill related
requirements to correctly represent systems, standardized modeling languages and
graphical representations have emerged (e.g., UML 2.x [185, 186], SysML 1.0
[187]).

1.3 Systems Engineering Standards

Many software and systems engineering modeling languages have emerged in
response to the continuous advancements in the field. These languages, created for
an abstract, high-level description of a design and the components thereof, allow
the designers to successfully cope with increasing complexities. Systems engineers
have been using different documentation approaches to capture systems require-
ments and also various modeling techniques to express the complete design. Unfor-
tunately, this diversity of techniques and approaches limited both cooperative work
and information exchange. In order to ensure worldwide SE technologies com-
patibility and interoperability, international standards are needed. Hence, various
international standardization bodies are involved in SE, providing standard frame-
works and modeling languages for SE. The Object Management Group (OMG)1, the
INternational Council On Systems Engineering (INCOSE)2, and the International
Standard Organisation (ISO)3 are the main pertinent standardizing organizations.

OMG [183] is an international computer industry consortium founded in 1989
whose role is to develop and maintain computer industry specifications. The OMG
task force develops enterprise integration standards for a wide range of technologies
including real-time, embedded and specialized systems, analysis and design. Among
their standards, of note is the unified modeling language (UML) and the model-
driven architecture (MDA) [178] that provide capabilities such as powerful visual
design, execution, maintenance of software and other processes. Moreover, OMG

1 http://www.omg.org
2 http://www.incose.org
3 http://www.iso.org
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has developed UML profiles, which are specializations of UML designed to support
specific domains based on built-in extension mechanisms. It has also established a
number of widely used standards such as Meta-Object Facility (MOF) [175] and
XML Metadata Interchange (XMI) [176], to name just a few.

INCOSE [120] is an international organization formed in 1992 whose mission is
to “foster the definition, understanding, and practices of world-class SE in industry,
academia, and government” [148]. A collaborative effort between INCOSE and
OMG has resulted in a modeling language dedicated to SE, namely SysML. In
September 2007, the first specification document for SysML [187] was issued by
the OMG.

Finally, ISO [116] is the world’s largest developer of standards used by indus-
trial and business organizations of all types, from governments and other regulatory
bodies down to end users. One of the standards issued by ISO related to product
data representation and exchange is ISO 10303 [122], known as the STandard for
the Exchange of Product model data (STEP) [121]. It has been constructed as a
multipart standard, one of the most relevant parts of it being the AP233 (Applica-
tion Protocol 233 also known as ISO 10303-233) entitled Systems engineering data
representation. It is designed as a neutral information model for the exchange of
data between SE and related tools in order to ensure interoperability [244].

1.4 Model-Driven Architecture

Model-driven architecture (MDA) is an OMG architectural framework and standard
whose goal is to “lead the industry towards interoperable, reusable, portable soft-
ware components and data models based on standard models” [178]. MDA stemmed
from the concept of separating the specification of the operation of a given system
from the details related to the way the system uses the underlying capabilities of its
platform [178]. In essence, MDA’s approach is to use models in software develop-
ment, which includes both the specifications and the actual development of applica-
tions, independently of the platform supporting them. This enables the application
to be easily ported from one environment to another by first creating one or more
platform-independent models (PIM) and subsequently translating the PIM into one
or more platform-specific models (PSM). Thus, the three primary goals of MDA
are portability, interoperability, and reusability, these being attained through archi-
tectural separation of concerns [178]. The MDA paradigm is being developed in
order for it to be successfully applied to virtually all software development projects,
including such major fields as electronic commerce, financial services, health care,
aerospace, and transportation. It uses metamodeling, which encompasses the anal-
ysis, construction, and development of the frames, rules, constraints, models, and
theories applicable for modeling in a predefined class of problems.

As shown in Fig. 1.1, MDA is based on the four-layer metamodeling architec-
ture [180], as well as several complementary standards of the OMG. These stan-
dards are the meta-object facility (MOF) [175], unified modeling language (UML),
and XML metadata interchange (XMI). Specifically, the layers comprise (1) meta-
metamodel layer, (2) metamodel layer, (3) model layer, and (4) instance layer. The
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Fig. 1.1 MDA layers (source [71])

main objective of having four layers within a common meta-metamodel architecture
is to support and enable the extensibility and integration of multiple metamodels and
models.

In the context of SE, model-based systems engineering (MBSE) is defined by
INCOSE as “the formalized application of modeling to support system require-
ments, design, analysis, verification and validation.” It starts during the conceptual
design phase and continues throughout the development and later life cycle phases
[117]. MBSE for systems engineering is what MDA is for software engineering.
Both paradigms target the use of a model-based approach to development, where
the functionality and the behavior of the developed system are separated from the
implementation details. In MBSE, the principal artifact is a coherent model of the
system being developed. It is intended to support activities of systems engineering
that have traditionally been performed with a document-based approach. The goal
of MBSE is to enhance communications, specification and design precision, system
design integration, and reuse of system artifacts [85]. Among the benefits of MBSE,
the most relevant ones are the following [86]:

• Vendor/contractor-independent understanding of system requirements
• Requirements validation
• Common basis for analysis and design
• Enhanced risk identification
• Separation of concerns by using multiple views
• Traceability through hierarchical system models
• Support for impact analysis of requirements and design changes
• Support for incremental development
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• Improved design quality
• Support for early V&V
• Enhanced knowledge capture

Prominent visual modeling languages such as UML and SysML support MBSE
methodologies.

1.5 Systems Engineering Modeling Languages

Modeling languages are commonly used to specify, visualize, store, document,
and exchange design models. They are domain-specific, inherently containing all
the syntactic, semantic, and presentation information regarding a given application
domain. Various modeling languages have been defined by both organizations and
companies in order to target different domains such as web development (WebML)
[41], telecommunications (TeD) [169], hardware (HDL) [2], software, and, most
recently, systems (UML) [184]. Other languages such as IDEF [154] were designed
for a broad range of uses including functional modeling, data modeling, and network
design.

Although SE has been in existence for more than five decades, up until recently,
there has been no dedicated modeling language for this discipline [255]. Tradition-
ally, systems engineers have relied heavily on documentation to express systems
requirements and, in the absence of a specific standard language [177], have had
to use various modeling languages in order to express a complete design solution.
This diversity of techniques and approaches has limited cooperative work and infor-
mation exchange. Among existing modeling languages that have been used by sys-
tems engineers, one can cite HDL, IDEF, and EFFBD [106, 107, 147]. In order to
provide a remedy, OMG and INCOSE, along with a number of experts from the SE
field, have been collaborating toward building a standard modeling language for SE.
UML, being the modeling language par excellence for software engineering, was
the language of choice destined for customization with regard to systems engineers
needs. However, UML 1.x was found to be inadequate for such a use [73, 256] and
so the evolving revision of UML (i.e., UML 2.0) was issued, with features of special
interest to systems engineers. In April 2006, a proposal for a standard modeling
language for systems modeling, namely SysML, was submitted to the OMG, with
the goal of achieving a final standardization process.

In the subsequent sections, we provide a brief description of the core concepts
behind the UML 2.x [188], SysML 1.0 [187], and IDEF [154] modeling languages.
The UML 2.x [188] and SysML 1.0 [187] concepts are detailed in Chaps. 3 and 4,
respectively.

1.5.1 UML 2.x: Unified Modeling Language

The unified modeling language (UML) [198, 207] is a general-purpose visual mod-
eling language whose maintenance has been assumed by OMG since 1997. It is
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a result of the merging of three major notations: Grady Booch’s methodology
for describing a set of objects and their relationships, James Rumbaugh’s object-
modeling technique (OMT), and Ivar Jacobson’s use case methodology.

Although UML was originally designed for specifying, visualizing, and docu-
menting software systems, it can also be applied to various other areas such as com-
pany organization and business processes. UML has many advantages; it is widely
accepted by numerous industry leaders, is non-proprietary and extensible, and is
also commercially supported by many tools and textbooks. The UML standard has
been revised many times and many versions have been issued. In August 2003, a
major revision was issued (UML 2.0 [181]) to correct the shortcomings discovered
in UML 1.x [35, 184]. The recently released UML 2.1 [186] consists of specific
updates, the same number of diagrams having been preserved.

The OMG issues a set of four specifications [200] for UML features: the dia-
gram interchange specification, the UML infrastructure, the UML superstructure,
and the object constraint language (OCL). The diagram interchange specification
provides a way to share UML models between different modeling tools. The UML
infrastructure defines low-level concepts in UML and represents a metamodel. The
UML superstructure addresses the definition of UML elements. The superstructure
document contains the description of the UML syntax, including the diagrams’ spec-
ifications. It defines 13 diagrams that can be classified into two main categories:
structural diagrams and behavioral diagrams. In Chap. 3 dedicated to the detailed
presentation of UML, we further elaborate the UML diagrams and describe their
features and characteristics. Finally, the OCL specification defines a language for
writing constraints and expressions in UML models.

1.5.2 SysML: Systems Modeling Language

The SysML initiative can be traced back to a decision made at the Model Driven
Systems Design workgroup meeting with INCOSE, held in January 2001, to pursue
an extension of UML for systems engineering. This language is intended to pro-
vide core capability for modeling a broad spectrum of domains that may include
software-intensive, information-intensive, hardware-intensive, people-intensive, or
natural systems. The system modeling language (SysML) [187] is the SE-specific
language developed in response to the request for proposals (RFP) UML for SE
[177], issued by the OMG in 2003. The goal of designing SysML is to satisfy
basic requirements of the SE community. SysML is a joint effort between INCOSE
and OMG. Numerous industries are involved in the development process of SysML
including BAE Systems, Boeing, Deere & Company, EADS Astrium, and Motorola.
Some government institutions, such as NASA/Jet Propulsion Laboratory, National
Institute of Standards and Technology (NIST), and DoD/Office of the Secretary of
Defense (OSD), are also involved. In addition, tool vendors such as ARTISAN Ware
Tools, IBM, I-Logix, Telelogic, and Vitech are present in this project. In addition
to new diagrams, SysML [187] introduces the concept of allocation. The latter is
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defined by the standard as “. . . the term used by systems engineers to describe a
design decision that assigns responsibility . . . or implementing a behavior to struc-
tural elements of the system.” [187]. Allocations are used especially in the early
stages of a systems design in order to show, in an abstract or even tentative way, the
mapping of elements within the structures or hierarchies of a design model. Alloca-
tions can be used for assessing user model consistency or for directing future design
activity. Moreover, the allocation establishes cross-associations that can be used for
navigating the model and facilitate the integration of component parts of the model.
In Chap. 4 dedicated to the detailed presentation of SysML, we further elaborate on
the corresponding diagrams and describe their characteristics and features.

1.5.3 IDEF: Integration Definition Methods

IDEF [154, 242] is a compound acronym for ICAM DEFinition, where ICAM
stands for Integrated Computer-Aided Manufacturing. IDEF, also known as inte-
gration definition methods, provides techniques and standard languages of commu-
nication for the engineering discipline. The family of ICAM definition languages
was initiated during the 1970s and finalized in the 1980s. Its development was
prompted by the numerous, but mostly incompatible, methods for storing computer
data available at that time.

These “definition languages” were intended to be used as standard modeling
techniques and to cover a broad spectrum of uses ranging from function modeling
and simulation to object-oriented analysis and design and even knowledge acquisi-
tion.

The first generation of IDEF methods (IDEF0 Function Modeling Method,
the IDEF1 Information Modeling Method and the IDEF2 Simulation Modeling

Table 1.1 IDEF methodologies

IDEF methodology Description

IDEF0 Function modeling
IDEF1 Information modeling
IDEF1X Data modeling
IDEF2 Simulation model design
IDEF3 Process description
IDEF4 Object-oriented design
IDEF5 Ontology description
IDEF6 Design rationale
IDEF7 Information system auditing
IDEF8 User interface modeling
IDEF9 Business constraint discovery
IDEF10 Implementation architecture
IDEF11 Information artifact
IDEF12 Organizational design
IDEF13 Three schema mapping design
IDEF14 Network/distribution design
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Method) emerged from the U.S. Air Force’s Integrated Computer-Aided Manufac-
turing (ICAM) program in the late 1970s [153]. IDEF methods were designed for
tasks such as information requirements definition, process knowledge capture, and
object-oriented systems design. Each IDEF method addresses a unique aspect or
perspective of engineering.

IDEF can be used in many fields for performing need analysis, requirements
definition, functional analysis, systems design, as well as documentation for busi-
ness processes. It consists of a set of 16 methods from IDEF0 to IDEF14, includ-
ing IDEF1X. Table 1.1 lists the different methods along with the perspective they
provide. IDEF0 and IDEF1X (the successor to IDEF1) are the methods most exten-
sively used in various government and industry settings. The most significant benefit
in using the IDEF1 data modeling technique is its ability to represent data structures
independently from how they are to be stored. In contrast, IDEF2 is no longer used
to any significant extent [114].

1.6 Outline

The remainder of this book is organized as follows:

• In Chap. 2, we discuss the paradigm of architecture frameworks. Though initially
stemming from research conducted by industry leaders such as IBM, the con-
cept was adopted and extended by defense organizations, mainly the US Depart-
ment of Defense. The latter tailored the paradigm based on the specific needs
of defense systems’ procurement and capability engineering, providing guide-
lines for its major contractors toward interoperability achievement and a common
methodology usage. The concept of architecture framework is also present in
the commercial arena, where it is known as enterprise architecture framework.
The latter is generally used by large businesses and corporations that undertake
long-term projects involving many design and development teams who are often
spread over a large geographic area. This maintains a commonality of views and
promotes a homogeneous understanding of the design concepts, thus enabling
effective information sharing and communication. As a result, the emergence
of standardized systems engineering modeling languages like SysML demands
that they employ their features in the context of architecture frameworks. In this
respect, we will also detail the corresponding features of interest.

• In Chap. 3, we provide an overview of the UML 2.0 modeling language, describ-
ing the historical context that led to its emergence, followed by a presentation of
its corresponding structural and behavioral diagrams. Moreover, the UML profil-
ing mechanism is also introduced.

• In Chap. 4, we present the newly adopted SysML modeling language along with
a chronological account of its adoption process. The commonalities as well as
the specific differences between SysML and UML are then discussed followed
by a description of the features of SysML’s structural and behavioral diagrams.
We also detail the informal syntax and semantics of the most relevant UML 2.0
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behavioral models, namely, the state machine, sequence, and activity diagrams,
focusing on the control flow aspect.

• Chapter 5 describes the verification, validation, and accreditation concepts,
including a review of the most relevant V&V methodologies along with specific
verification techniques for object-oriented designs such as software engineering
techniques, formal verification, and program analysis. A number of useful tech-
niques and relevant research initiatives are also presented, such as the state of
the art in verification and validation research targeting UML and SysML design
models. Finally, we examine various tools for specific areas of the V&V process,
including formal verification environments and static program analyzers.

• Chapter 6 proposes an effective and synergistic approach for performing V&V
on systems engineering design models expressed in standardized modeling lan-
guages, mainly UML and SysML. Moreover, we submit a number of established
results that make the case for the proposed synergistic verification and validation
methodology, which can be applied on systems engineering design models in a
highly automated manner.

• Chapter 7 demonstrates the usefulness of software engineering metrics in the
assessment of structural aspects of a system captured by UML class and pack-
age diagrams. To that effect, a set of 15 metrics is discussed within a relevant
example.

• Chapter 8 presents the proposed verification methodology for the considered
behavioral diagrams. In this context, we detail the computable model con-
cept of the configuration transition system (CTS) and show how this model
can be used as a semantic interpretation of design models expressed as state
machine, sequence, or activity diagrams. We also describe the correspond-
ing model-checking verification methodology by using an appropriate model
checker, namely, NuSMV, that can be used for the assessment of the proposed
semantic model. We also show how model checking can have a great potential
for verifying systems engineering design models expressed in the considered
behavioral diagrams. In this respect, the temporal logic used by NuSMV, namely
CTL, is introduced along with an illustrative description of its temporal operators
and their corresponding expressiveness as well as a helpful CTL macro notation.
Then, a number of relevant case studies exemplifying the assessment of the state
machine, sequence, and activity diagrams are presented and discussed in the con-
text of the proposed methodology.

• Chapter 9 presents the probabilistic verification of SysML activity diagrams.
Therein, we explain the translation algorithm that maps these types of diagrams
into an asynchronous probabilistic model, namely MDP, which is based on the
input language of the probabilistic model checker PRISM. Next, we present a
case study that demonstrates the proof of concept of the V&V approach for the
performance analysis of asynchronous SysML activity diagram models.

• Chapter 10 details a transformation procedure of SysML activity diagram anno-
tated with time constraints and probability artifacts to a network of discrete-time
Markov chains. These can be analyzed by the PRISM probabilistic model checker
in order to assess various performance aspects such as time-bounded reachability.
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• Chapter 11 describes our probabilistic calculus, namely activity calculus (AC).
It is a dedicated heretofore unattempted calculus that captures the essence of
SysML activity diagrams. First, we present AC language syntactic definition and
summarize the mapping of activity diagram’s graphical notation into AC terms.
Afterward, we elaborate the definition of its corresponding operational seman-
tics. Finally, we illustrate the usefulness of such a formal semantics on a SysML
activity diagram case study.

• Chapter 12 examines essentially the soundness of the translation procedure
described in Chap. 9. To this end, we first explain the methodology that we
applied. Then, we present a formal description of the translation algorithm using
a functional core language. After that, we propose an operational semantics for
the specification language of the probabilistic model checker PRISM. Finally, we
present a simulation pre-order upon Markov decision processes that we use for
formulating and proving the correctness of the translation algorithm.

• Chapter 13 is dedicated to closing remarks and final conclusions.



Chapter 2
Architecture Frameworks, Model-Driven
Architecture, and Simulation

With the introduction and rapid success of the personal computer (PC) in the late
1970s, numerous computer applications were marketed to support the users in vari-
ous domains. In the SE domain particularly, along with these software applications,
several languages both formal and informal like VHDL [246], Petri Net family [4],
IDEF [154, 242], UML [184], and SysML [255] were created to support developers
in capturing essential aspects of the systems being engineered. The system proper-
ties usually reflect structural, temporal, or functional aspects and could be related to
various areas such as processes, information infrastructures, internal systems/com-
ponents, interoperability with other systems, and user interactions.

Along with the advent of design languages, the complexity of systems’ design
also increased. This was reflected in both the internal structure and the system’s
behavior as well as in the interaction with other, often very large, systems. In this
context, significant difficulties arose and impeded the development and life cycle of
large systems aggregations. Consequently, large organizations specifically needed a
systematic approach for the description of a system where all the information related
to the requirements, design, architecture, development, fielding, and disposal of the
system were captured. This had to be performed for all the systems at the enter-
prise level in a consistent and comprehensive manner. In return, the organizations
would benefit from such efforts since the results consist in well-documented and
structured common views of all the structures and systems the enterprise is dealing
with. Additionally, this would guarantee that all contracting parties would have a
common layout for the description of the delivered systems. This approach is often
described as an enterprise architecture framework (or architecture framework).

In this chapter, Sect. 2.1 presents the concept of architecture frameworks as well
as the most relevant initiatives in this field. Section 2.2 provides an overview of
the standard for data exchange, namely AP233. Section 2.3 discusses executable
architectures and their role in modeling and simulation. Finally, Sect. 2.4 relates
DoDAF[243] to SE field and SysML.
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2.1 Architecture Frameworks

The concept of architecture framework often supports and is applied within a
paradigm called enterprise architecture. Initially developed in the information tech-
nology (IT) domain, the enterprise architecture concept has evolved since to encom-
pass a much broader scope. Nowadays, it is employed within multiple industries
including automotive and IT or governments such as defense and accountability
domains. Although most of what enterprise architectures refers to is related only to
enterprise business structures and processes, current definitions incorporate a much
more general understanding as defined, for instance, by the General Accountability
Office (GAO) of the US federal government [104]: “An enterprise architecture is a
blueprint for organizational change defined in models that describe (in both business
and technology terms) how the entity operates today and how it intends to operate
in the future; it also includes a plan for transitioning to this future state.”

Thus, the concept of enterprise architecture appears to be exhaustive enough to
include both the enterprise structures and the operation blueprints for current and
future business, with respect to business, technology, and human beings and, in addi-
tion, the transformational roadmaps, the related execution plans, and the processes
and programs. Architecture frameworks are used within enterprise architectures to
capture, by way of graphical artifacts, domain-specific views. Such views can be
related to a specific system or platform and provide all the necessary architectural
information to its stakeholders, i.e., users, developers, sponsors, etc.

In the following, we present a chronological overview of the most relevant initia-
tives in the architecture frameworks field. A comparative study of the most relevant
architecture frameworks can be found in [42].

2.1.1 Zachman Framework

In 1987, J.A. Zachman published an article1 in the IBM Systems Journal entitled “A
framework for information systems architecture” [259]. Although the actual term
“enterprise architecture framework” is not literally mentioned in this paper, it is
commonly recognized that this work paved the ground for the development of the
architecture framework paradigm.

Zachman identified, often with a resulting description of step-by-step processes,
a deficiency in the information system modeling area where classic approaches
were applied. He introduced a more diverse approach toward the description of the
systems by borrowing commonly used architectural representations for design and
development from other engineering disciplines such as architecture, construction,
and manufacturing. He also clearly defined three potential users of these representa-
tions for a given system: namely, the owner, the designer, and the builder. In modern
architecture frameworks, these representations are now called views and correspond

1 This paper is one of the most highly cited papers ever published in the IBM journals.
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Table 2.1 Three different description types for the same product (source [259])

Description I Description II Description III

Orientation Material Function Location
Focus Structure Transform Flow
Description WHAT the thing is made of HOW the thing works WHERE the flows

(connections)
exist

Example Bill-of-materials Functional specifications Drawings
Descriptive model Part–relationship–part Input–process–output Site–link–site

Table 2.2 Information systems analogs for the different types of descriptions (source [259])

Description I (material) Description II (function)
Description III
(location)

Information systems
analog

Data model Process model Network model

I/S descriptive model Entity–relationship–entity Input–process–output Node–line–node

to the various perspectives that should be brought to the attention of each stakeholder
of a system.

With the notion of building different perspectives (i.e., architectural representa-
tions) for each stakeholder, Zachman also identified the need to provide different
representations to capture various aspects of a system. He proposed considering
three parameters of an object: the material, the function, and the location. These
are, respectively, mapped into a matrix in the “WHAT,” “HOW,” and “WHERE”
columns (see Table 2.1). Later, he extended his matrix by adding the “WHO,”
“WHEN,” and “WHY” descriptions (see Table 2.2). These elements provide for
the people and organizations involved, respectively, the events that trigger busi-
ness activities and the motivations and constraints that determine how the business
behaves.

2.1.2 Open Group Architecture Framework

Various organizations in the information technology domain have realized the
importance of an enterprise architecture framework. Consequently, a joint venture
was pursued under the Open Group Architecture Forum [194], with the objective of
developing an open industry standard for information systems architecture. This is
now called The Open Group Architecture Framework (TOGAF) [195]. The formal
user requirements for the framework were gathered in 1994 and the first version
of TOGAF, as a proof of concept, was revealed in 1995. The original underlying
concept was to develop a comprehensive architecture framework that would fit spe-
cific domains’ requirements. However, later on, TOGAF evolved as a methodology
for modeling and analyzing the overall business architecture of organizations. The
actual version of the framework is composed of three components:
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• The architecture development method (ADM) captures the TOGAF methodol-
ogy, which lies in the use of architecture views captured throughout the iterative
execution of the nine following phases:

1. Preliminary phase: Framework and principles. Stakeholders’ agreement with
the overall plan and principles

2. Phase A: Architecture vision. Define scope, focus, and requirements
3. Phase B: Business architecture. Determine current and future architectures

using business process models and specific diagrams
4. Phase C: Information system architectures. Develop target architectures (i.e.,

applications, data models)
5. Phase D: Technology architecture. Create the overall target architecture that

will be implemented in future phases (i.e., systems)
6. Phase E: Opportunities and solutions. Develop the overall strategy toward the

architecture described in step 5 (D) (i.e., implementation)
7. Phase F: Migration planning
8. Phase G: Implementation governance
9. Phase H: Architecture change management. Review current system(s) and

implement adjustments if necessary; iterate the process

• The enterprise continuum captures the output of the execution of the architecture
development method steps. It is essentially a virtual repository at the enterprise
level for architectural assets (data, models, patterns, architecture descriptions,
and other artifacts). It may also contain assets from external organizations.

• The resource base is a collection of resources in the form of examples, tech-
niques, templates, guidelines, and background information, whose main purpose
is to support the architects through the architecture development method.2

2.1.3 DoD Architecture Framework

The US Department of Defense (DoD) Architecture Framework (DoDAF) [243]
is the DoD Deputy Chief Information Officers (CIO) Enterprise Architecture &
Standards Directorate endorsed architecture framework. In 2003, DoDAF 1.0 super-
seded the former US Command, Control, Communications, Computers, Intelli-
gence, Surveillance and Reconnaissance (C4ISR) architecture framework that was
created in 1996, in response to the passage of the Clinger-Cohen Act. The latter
required the DoD CIOs to use established system architecture documentation-based
techniques for any new business process implementation, as well as for migrating
existing systems.

With multiple iterations, DoDAF [243] has evolved toward supporting the DoD
transformation for network-centric warfare (NCW) also known as network-centric
operations (NCO) [68]. The latter is a new combat paradigm that enables various

2 The resulting output architectures are used to populate the enterprise continuum.
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Operational View

System View Technical View

Identifies what needs to be
accomplished and who does it. 

Prescribes standards and
conventions. 

Relates capabilities and characteristics
to operational requirements. 

Fig. 2.1 DoDAF views and corresponding areas of concern (source [63])

geographically dispersed actors to engage in operations supported by the effective
use of data exchanges through robust network links. Additionally, in order to fully
achieve the compliance of the DoD systems with the NCO concept, the approach of
service-oriented architecture (SOA) [68] has also been adopted. The SOA approach
has influenced the development of DoDAF, by placing the data at the core of the
architectures thanks to the core architecture data model (CADM). The latter, like
several other architecture frameworks (TOGAF, MODAF, etc.), represents a shared
repository for holding products that are compliant with a standardized taxonomy in
the form of views that fall into four categories: operational view (OV), systems view
(SV), technical standards view (TV), and all views (AV). Each of the operational,
systems, and technical views correspond to a specific area of concern, as depicted
in Fig. 2.1. Each view encompasses a set of architecture data elements depicted in
graphical, tabular, or text-based products. The architectural aspects related to all the
three (OV, SV, TV) views, without representing a distinct view of the architecture,
are captured in the all views (AV) products.

An architecture view is different than an architecture product in that a view rep-
resents a perspective of a given architecture whereas a product is a specific repre-
sentation of a particular aspect of that perspective. It should be noted that a common
practice in DoDAF utilization is to generate only a subset of the full DoDAF views
to specify or describe a system’s architecture. Below we present a description of the
views in DoDAF 1.5 [243].

2.1.3.1 Operational View (OV)

The operational view (OV) products are intended to provide the description of the
performed tasks, activities, and the operational elements as well as the exchanged
information (e.g., type, frequency, nature) required in order to accomplish estab-
lished goals or missions. Table 2.3 presents a summary of the OVs that are described
as follows:

• The OV-1 provides a high-level perspective that graphically depicts the overall
concept of the architecture, usually describing a mission and highlighting the
main operational nodes related to OV-2. Moreover, it provides a description of
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Table 2.3 DoDAF 1.5 operational view (source [243])

Framework product Framework product name General description

OV-1 High Level Operational Concept
Graphic

High-level graphical and textual
description of operational concept

OV-2 Operational Node Connectivity
Description

Operational nodes, activities within
nodes, connectivity, and information
exchange between nodes

OV-3 Operational Information
Exchange Matrix

Information exchanged between nodes
and the relevant attributes of that
exchange

OV-4 Organizational Relationships
Chart

Organizational, role, or other
relationships among organizations

OV-5 Operational Activity Model Operational activities, relationships
among activities, inputs, and outputs;
overlays can show cost, performing
nodes, or other pertinent information

OV-6a Operational Rules Model One of three products used to describe
operational activity; identifies
business rules that constrain operation

OV-6b Operational State Transition
Description

One of three products used to describe
operational activity; identifies
business process responses to events

OV-6c Operational Event-Trace
Description

One of three products used to describe
operational activity; traces actions in a
scenario or sequence of events

OV-7 Logical Data Model Documentation of the system data
requirements and structural business
process rules of the operational view

the interactions between the subject architecture and its environment as well as
between the architecture and external systems.

• The OV-2 depicts the operational node dependencies associated with the infor-
mation flow. It describes the operational nodes, their connectivity, and the infor-
mation exchange needlines between them and represents an important tool in
translating concepts into capability gaps and linking organizations to activities.
According to the DoDAF specification, “a needline represents an aggregation of
information flows between two operational nodes, where the aggregated infor-
mation exchanges are of a similar information type or share some characteristic.”

• The OV-3 tracks and details the information exchanges and identifies “who
exchanges what information, with whom, why the information is necessary, and
how the information exchange must occur.” The construction of this product
requires significant knowledge capture effort. This can be effectively achieved
by conducting selected interviews during model construction, followed by vali-
dation.

• The OV-4 illustrates organizational relationships and various command and con-
trol characteristics among human roles, organizations, or organization types that
are the key players in a given architecture.
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• The OV-5 is used to describe functional activities and tasks and can be used to
relate tasks to capability areas and mission requirements and also to demarcate
lines of responsibility. It covers the capabilities, operational activities, relation-
ships among activities, inputs, and outputs. Moreover, annotations can be used to
show the cost, the performing nodes, and other pertinent information.

• The OV-6 series covers the business rules that govern operational activities. For
existing operational elements, the doctrine and standard operating procedures
(SOPs) can provide the basis for constructing the OV-6. The OV-5 operational
activities diagram provides the “sequencing” reference for developing OV-6s. In
sum these three products are describing how the current state of a process or
activity is changing over time in response to external and internal events and they
are as follows:

– The OV-6a specifies operational or business rules that represent constraints
on an enterprise, a mission, operation, or a business and can be used to map
scenario tasks to operational activities in order to indicate how operational
activities are driven by scenario tasks. Also, it extends the capture of business
requirements and concept of operations for the use cases of OV-5.

– The OV-6b represents a graphic depiction of event-driven state transition and it
is used for describing how an operational node or activity responds to various
events by changing its state.

– The OV-6c is one of three products used to describe operational activity. It
traces actions in a scenario or sequence of events and includes a time-ordered
examination of information exchanges.

• The OV-7 is relevant to modeling information systems that deal with storage,
retrieval, and updates of persistent data. It describes the structure of the data types
used in the architecture domain systems as well as structural business process
rules that govern the system data, the latter being defined in the corresponding
OV-6a product of the architecture. Moreover, it provides a definition of archi-
tecture domain data types along with their attributes or characteristics and their
interrelationships.

2.1.3.2 Systems View (SV)

The systems view (SV) products provide descriptions of the system, services, and
underpinning system/component interconnections that support the enterprise busi-
ness, knowledge, and infrastructure. The SV functions are aimed at directly support-
ing the operational activities. Thus, there is a direct link between the artifacts of the
SVs and those of the OVs. The SV views are summarized in Tables 2.4 and 2.5. A
description of each SV product and its relation with the OV products is provided in
the following:

• The SV-1 identifies system nodes and interfaces, relates these to the operational
nodes reflected in the OV-1 and OV-2, and depicts the systems resident nodes
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Table 2.4 DoDAF 1.5 systems and services – part 1 (source [243])

Framework product Framework product name General description

SV-1 Systems/Services Interface
Description

Identification of systems nodes, systems,
system items, services, and service
items and their interconnections,
within and between nodes

SV-2 Systems/Services
Communications Description

Systems nodes, systems, system items,
services, and service items and their
related communications lay-downs

SV-3 Systems-Systems/Services-
Systems/Services-Services
Matrices

Relationships among systems and
services in a given architecture; can be
designed to show relationships of
interest, e.g., system-type interfaces,
planned vs. existing interfaces.

SV-4a Systems Functionality Description Functions performed by systems and the
system data flows among system
functions

SV-4b Services Functionality
Description

Functions performed by services and the
service data flow among service
functions

SV-5a Operational Activity to Systems
Function Traceability Matrix

Mapping of system functions back to
operational activities

SV-5b Operational Activity to Systems
Traceability Matrix

Mapping of systems back to capabilities
or operational activities

SV-5c Operational Activity to Services
Traceability Matrix

Mapping of services back to operational
activities

SV-6 Systems Data Exchange/Services Data exchange matrices provide details
of system or service data elements
being exchanged between systems or
services and the attributes of that
exchange

SV-7 Systems Performance
Parameters/Services
Performance Parameters
Matrices

Performance characteristics of systems
and services view elements for the
appropriate time frame(s)

SV-8 Systems Evolution/Services
Evolution Description

Planned incremental steps toward
migrating a suite of systems or
services to a more efficient suite or
toward evolving a current system to a
future implementation

SV-9 Systems Technology/Services
Technology Forecast

Emerging technologies and
software/hardware products that are
expected to be available in a given set
of time frames and that will affect
future development of the architecture

that support organizations/human roles. It also identifies the interfaces between
collaborating or interacting systems.

• The SV-2 depicts pertinent information about communications systems, com-
munications links, and communications networks. SV-2 documents the kinds of
communications media that support the systems and implements their interfaces



2.1 Architecture Frameworks 23

Table 2.5 DoDAF 1.5 systems and services – part 2 (source [243])

Framework product Framework product name General description

SV-10a Systems/Services Rules Model One of three products used to describe
system and service functionality;
identifies constraints that are imposed
on systems/services functionality due
to some aspect of systems design or
implementation

SV-10b Systems/Services State Transition
Description

One of three products used to describe
system and service functionality;
identifies responses of a system/service
to events

SV-10c Systems/Services Event-Trace
Description

One of three products used to describe
system or service functionality;
identifies system/service-specific
refinements of critical sequences of
events described in the operational
view

SV-11 Physical Schema Physical implementation of the logical
data model entities, e.g., message
formats, file structures, physical
schema

as described in SV-1. Thus, SV-2 shows the communications details of SV-1 inter-
faces that automate aspects of the needlines represented in OV-2. Although SV-1
and SV-2 are strictly speaking two DoDAF products, there is a lot of cross-over
and, such as, they are often represented as one diagram. These products identify
systems, systems nodes, system items, and their interconnections.

• The SV-3 provides the architecture with a matrix representation detailing the
interface characteristics described in SV-1. In this context, it depicts the logical
interface properties.

• SV-4 describes the characteristics and the functions performed by systems and the
system data flows among system functions. It can be used during the capability
assessment to support analysis as system functions are mapped to operational
activities. Usually, system characteristics can be captured by conducting inter-
views with subject matter experts (SMEs).

• SV-5 specifies the relationships between the set of operational activities appli-
cable to an architecture and the set of system functions applicable to that archi-
tecture. The matrix can be produced from OV-5 and SV-4 diagram and element
annotations.

• SV-6 provides the details of system data elements being exchanged between sys-
tems along with the attributes of that exchange.

• SV-7 represents the system-level performance by specifying the quantitative
characteristics of systems and hardware or software items, their interfaces (sys-
tem data carried by the interface as well as communications link details that
implement the interface), and their functions. Performance parameters include
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all technical performance characteristics of systems for which requirements can
be developed and specification defined usually during an interaction with SMEs.

• SV-8 captures the evolution plans that describe how the system, or the archi-
tecture in which the system is developed, will evolve over a typically long-term
predictable time interval.

• SV-9 defines the underlying current and expected supporting technologies. The
expected supporting technologies include those categories that can be reasonably
forecast given the current state of technology and expected advancements. The
new technologies should be coupled to specific time periods which can be corre-
lated against the time periods considered in the SV-8 milestones.

• The SV-10 product suite is used for describing the system functionality and iden-
tifying the constraints that are imposed on the systems, including the response of
a system to events and system-specific refinements of critical sequences of events
described in the operational view:

– The SV-10a product describes the rules that govern the behavior of the archi-
tecture or its systems under specified conditions. At lower levels of granularity,
it may consist of rules that specify the pre- and post-conditions of system
functions.

– The SV-10b is a graphical method of describing the state change of the system
or the response of a system function to various events.

– The SV-10c provides a time-ordered examination of the system data elements
exchanged between participating systems (external and internal), system func-
tions, or human roles in the context of a given scenario.

• The SV-11 is the closest one to actual system design in the context of the architec-
ture framework. It defines the structure of the different kinds of persistent system
data utilized by the systems in the architecture.

2.1.3.3 Technical Standards View (TV)

The purpose of TV is to ensure that the architecture is well “governed” by provision-
ing a comprehensive set of technical systems implementation guidelines in the form
of technical standards, implementation conventions, standards options, and business
rules. The TV views are summarized in Table 2.6 and defined as follows:

Table 2.6 DoDAF 1.5 technical standards (source [243])

Framework product Framework product name General description

TV-1 Technical Standards Profile Listing of standards that apply to systems
and services view elements in a given
architecture

TV-2 Technical Standards Forecast Description of emerging standards and
potential impact on current systems and
services view elements within a set of time
frames
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• The TV-1 product collects the systems standards rules that implement – and pos-
sibly constrain – the possible choices in the design and implementation of an
architecture description.

• The TV-2 contains the expected changes in technology-related standards and
conventions documented in TV-1. The evolutionary changes forecast for the stan-
dards must be correlated to the time intervals mentioned in the SV-8 and SV-9
products.

2.1.3.4 All Views (AV)

The AV products provide overarching aspects of the architecture that can be related
to the OVs, SVs, and TVs, but not specific to any of them as such. These products
also define the scope (subject area and time frame) and context of the architecture.
The AVs are shown in Table 2.7 and they are defined as follows:

• AV-1 provides executive-level summary information in a consistent form and
allows for quick reference and comparison of architectures. It is concerned with
the assumptions, constraints, and limitations that might have an impact in the
high-level decision processes involving the architecture.

• The AV-2 consists of definitions of terms that are used in the described archi-
tecture. It contains textual definitions presented as a glossary corresponding to
a repository of architecture data along with the corresponding taxonomies and
metadata information of the architecture data associated with the architecture
products developed.

2.1.4 UK Ministry of Defence Architecture Framework

The UK Ministry of Defence (MOD) Architecture Framework (MODAF) [165] rep-
resents a variant of DoDAF adapted for the MOD. MODAF 1.2 primarily extends
DoDAF with the addition of three viewpoints: strategic, acquisition, and the service-
orientated aspect while adding the human dimension to the systems view.

2.1.5 UML Profile for DoDAF/MODAF

Although DoDAF does neither require nor advocate specific methodologies, nota-
tions, or semantic models, substantial efforts have been made in producing DoDAF

Table 2.7 DoDAF 1.5 all views (source [243])

Framework product Framework product name General description

AV-1 Overview and Summary
Information

Scope, purpose, intended users, environment
depicted, analytical findings

AV-2 Integrated Dictionary Architecture data repository with definitions of
all terms used in all products
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product views using UML and/or IDEF notations. In order to standardize these
efforts, a relatively recent initiative called the UML profile for DoDAF/MODAF or
UPDM [191] was launched within the OMG [183]. This effort is now undertaken by
the UPDM Group [241], a new standardization consortium that includes industrial
and governmental partners (e.g., DOD, MOD). The UPDM group is continuing the
past efforts of OMG, while also ensuring that all new developments are aligned with
the North Atlantic Treaty Organization (NATO) Architecture Framework (NAF).
The latter is based on MODAF but has specific extensions for service-oriented
architecture (SOA).
The objectives of UPDM are as follows:

• Provide an industry standard representation that fully supports DoDAF and
MODAF

• Build on UML, UML dialects such as SysML and other OMG standards
• Make use of the NAF architecture framework
• Ensure interoperability of architecture data among various tool vendors
• Facilitate reuse and maintainability of architecture data

2.2 AP233 Standard for Data Exchange

The relatively rapid proliferation of commercial off-the-shelf SE modeling applica-
tions and environments has gone ahead without an adequate development of accom-
panying standards. This led to a situation where very few development environments
achieved interoperability. The reason for this deficiency is twofold. First, there is a
lack of a common semantic of the derived architecture product data. Second, there is
a lack of a common data representation format. However, both aspects are required
for data exchange between different tools.

The AP233 [244] initiative was specifically initiated to address this deficiency
within the STEP’s System Engineering Project3; STEP, also known as the ISO
10303, is an international standard for computer-interpretable representations and
exchange of product data. AP233 development is aligned with other initiatives in the
computer-aided design (CAD), structural and electrical engineering, analysis and
support domains and is achieved through collaboration with the OMG and INCOSE.

2.3 Executable Architectures or from Design to Simulation

For a long time, engineers have entertained the idea of executing their architectures
and have indeed achieved this objective in some cases. For instance, several model-
ing tools can execute their models (TAU [127], Simulink [59], etc.). Alternatively,
appropriate code generation techniques (Simulink RTW [205], TAU [127], etc.) may

3 STEP is the STandard for the Exchange of Product.
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be used to produce the corresponding source code in specific target programming
languages (C, C++, Java, etc.). Thus, executable behavioral models are obtainable.
Using these techniques, a control model designed in a tool such as Simulink would
have its equivalent C program generated, built, and then directly embedded on the
target hardware to be controlled.

In some areas, particularly in the case where control theory is applied to dynamic
systems, this practice is very common. However, it has not reached all branches of
SE with a similar success. While several aspects (views) of a given design within an
architecture framework are static by nature (e.g., a vehicle CAD model), there are
often dynamic aspects (e.g., behavioral engine models) that could be executed over
time to produce an execution/simulation of some of the aspects of the architected
system. Furthermore, data from the static design is often embedded or provided
as input to the execution. For example, in order to accurately represent the target
model, a vehicle chassis structure should be taken into account during a simulation
of the vehicles motion.

2.3.1 Why Executable Architectures?

Engineers can draw several benefits from the paradigm that is now known as “exe-
cutable architecture.” First, an executable version of a model could be used for V&V
purposes. By running the model, one can detect unwanted behaviors that the dia-
grammatic models would not otherwise reveal. Moreover, one can use an executable
model to stress test the system or to explore “what if” situations. This is particularly
compelling nowadays due to the ever-growing complexity of systems whose com-
ponents are often designed individually and brought together subsequently. In this
respect, a means to observe the dynamics of the “whole” provides a much more
insightful capability than just a few individual static design views/diagrams.

Second, there are special circumstances encountered with other parallel devel-
opments in the SE field such as the AP233, the various architecture frameworks
(DoDAF, MODAF, etc.), UML 2.x [181], and SysML [187] and with the wide
acceptance of the extensible markup language (XML) [257]. The latter enables
the use of metalanguages containing rules for constructing specialized markup lan-
guages beyond the IT-related Web applications domain, and specifically aimed at
the SE field. This is particularly reflected by the model-driven architecture (MDA)
paradigm [178]. All these developments have the potential to further empower the
concept of executable architectures by providing the foundations on which commer-
cial tool vendors can build and articulate their applications as “executable architec-
tures” capable.

Third, frequent user intervention in the development of the system from the
architecture blueprints induces higher risk of errors. This is mostly caused by the
developer’s own interpretation in translating the architecture models,4 along with

4 Often times, the design and architecture team is different than the developers team.
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the addition of implementation details that were not provided in the architecture.
Therefore, automating or merely semi-automating the process of systems devel-
opment/production can alleviate such risks by putting human intervention out of
the loop or at least minimizing it. Also, generating an executable version of the
architectures (especially if it is coupled to a virtual simulation environment, nowa-
days commonly called synthetic environment) could provide the means by which
communication and exchange would be stimulated among the various project stake-
holders, for technical and non-technical purposes (e.g., early concept presentation,
visualization).

Finally, if the architecture models are to be used directly to generate the sys-
tems, more focus is required during the design and architecture phases. In return,
the benefit of minimizing the risks of design flaws during the development of real
systems – which undoubtedly involves more engineers and developer teams as well
as additional financial expenditure – is significant in this context, since the more
V&V is performed during the design and architecture phases, the less it is to be
performed after the system generation. This confirms again Bohem’s findings [25].

2.3.2 Modeling and Simulation as an Enabler for Executable
Architectures

Due to the diversity and multiplicity of the views related to a system’s architecture,
it is highly unlikely that the aggregation of all the views into a single executable
application will meaningfully represent the whole architecture. Nonetheless, it is
most probable that the whole architecture can be mapped to several applications that
may be networked into a single execution environment or federation. In the mod-
eling and simulation domain, the federation concept is often defined as: “A set of
interacting simulations (also called federates) participating to a common objective,
and interoperating through a predefined communication protocol.”

The federation concept is frequently adopted in ad hoc constructs. However, only
with the distributed interactive simulation (DIS) [118] protocol and the high level
architecture (HLA) [119] was this concept fully formalized and technically articu-
lated, in terms of the federation constituents, data exchanged,5 publish and subscribe
mechanisms, run-time infrastructure, and various services (e.g., time management,
objects managements). We will focus in the following on the high-level architecture
and explain how it can support the concept of executable architecture.

2.3.2.1 High-Level Architecture

The United States Department of Defense (DoD) high-level architecture (HLA) [60]
for modeling and simulation (M&S) was developed under the supervision of the
Defense Modeling and Simulation Office (DMSO). The main objectives of the HLA

5 Object models, derived from an object-oriented description approach.
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were to increase interoperability among simulations and to promote reuse of simu-
lations and their components. After going through several development iterations,
the HLA was defined by a series of documents that specified

• Basic concepts and a set of rules that defined general principles to be met
• The Federation Development and Execution Process (FEDEP), which is a six-

step process for developing distributed simulations (see Fig. 2.2)
• The federate interface specification, which specifies the interface between feder-

ates and a run-time infrastructure (RTI), the latter being the software that man-
ages data distribution between federates and provides various services to them,
such as simulation time management

• The HLA object model template (OMT) specification, which defines the format
for specifying a federation object model (FOM), and the federate (simulation –
related) object model (SOM). A FOM specifies the set of objects, attributes, and
interactions that are created and shared during a federation execution. A SOM
describes the federate in terms of the types of objects, attributes, and interactions
it will provide to future federations. It is not intended to be an internal description
of the federate (simulation), but rather a description of its capability in the form
of an interface.

Receiving broader recognition in 2000, the Institute of Electrical and Electronics
Engineers extended HLA, leading to the adoption of the following IEEE standards:
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Fig. 2.3 IEEE 1516.3 seven-step HLA FEDEP (source [237])

• IEEE 1516-2000: IEEE Standard for Modeling and Simulation (M&S) high-level
architecture (HLA) – Framework and Rules

• IEEE 1516.1-2000: IEEE Standard for Modeling and Simulation (M&S) high-
level architecture (HLA) – Federate Interface Specification

• IEEE 1516.2-2000: IEEE Standard for Modeling and Simulation (M&S) high-
level architecture (HLA) – object model template (OMT) specification

• IEEE 1516.3-2003: IEEE Recommended Practice for high-level architecture
(HLA) Federation Development and Execution Process (FEDEP) (see Fig. 2.3)

Thanks to the various rules and services along with the federation and federates
object descriptions and an RTI, one may envision a federation as a set of applications
(i.e., federate) running concurrently, providing own object updates and consuming
other federation objects (owned by other simulations/federates). All the interactions
are happening exclusively between the applications and the RTI; no communication
is allowed between the federates. Also, no constraint is imposed on the nature of
a federate, thus it can be a pure mathematical simulation, a simulator (e.g., a flight
simulator), or a real system (e.g., aircraft) interacting with the other virtual or real
assets in the federation. This is depicted in Fig. 2.4.
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Fig. 2.4 Conceptual view of
an HLA federation

Fed 2Fed 1 Fed 3

Run-time Infrastructure

Fed 4

2.3.2.2 Achieving Executable Architectures Through HLA

In order to realize an executable architecture, the following prerequisites should be
met by the architecture products (DoDAF, MODAF, etc.):

1. The architecture products to be executed should be described with an unambigu-
ous and consistent (formal) representation (language)

2. There should be a mechanism to translate these architecture products into time-
dependant executable software packages, usually through automatic code gener-
ation techniques or dedicated execution environments (TAU, Simulink, etc.)

3. The resulting software should be wrapped as HLA federates
4. Selection or development of specific federation FOM and federates SOM
5. Specification and development of a simulation scenario
6. Specification of starting states for all applications with initial states, inputs,

parameters, etc.

2.4 DoDAF in Relation to SE and SysML

The DoDAF views and products are useful when classifying and presenting the
operational and system descriptions along with the relations between them. This
is depicted in Fig. 2.5. In the context of SE, SysML can be used as the modeling
notation, backed by the semantics of its metamodel. Moreover, AP233 can provide

Fig. 2.5 DoDAF element
relations (source [63])
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Table 2.8 The AV products mapping

Framework
product UML AP233 SysML

AV-1 Diagram and element
annotations

Most of the elements are
covered by view definition
context, project, person,
and organization

Diagram and element
annotations on
applicable descriptions

AV-2 Diagram and element
annotations

Reference data libraries to
support standard terms and
product or property types

Diagram and element
annotations, and
associated model
repository

a neutral data exchange [192] format for the data presented within the architecture
framework.

DoDAF suggests products based on the intended use of the architecture and spec-
ifies that a minimum set is required for the architecture to qualify as an “integrated
architecture.” It largely aims at enhancing the user friendliness while better explain-
ing the applicability of the architectures. Moreover, given the increasing popularity
of the unified modeling language (UML), various types of UML representations can
be used for describing DoDAF architectural products. An “integrated architecture”
is realized when the data are properly shared across the operational, systems and
technical views. According to the DoDAF: “An architecture description is defined
to be an integrated architecture when products and their constituent architecture
data elements are developed such that architecture data elements defined in one
view are the same (i.e., same names, definitions, and values) as architecture data
elements referenced in another view.” [261]. SysML provides the capabilities of
UML and other models and representations that are required for DoDAF. In this
context, the SysML and DoDAF specifications are supported by metamodels that
define the meaning of the elements in the specification and provide relationships
between these elements. Since the contents of the metamodels are required to be
comparable with the AP233 specification, the metamodels represent key aspects
in the development of the AP233 standard, which is independent of any systems
modeling approach. Consequently, the AP233 format can be used as a bridge for
model exchange between tools that use different notations.

Thus, it is possible to use AP233 as a neutral format in order to convert data
from existing systems engineering tools into SysML models and use these in the
context of DoDAF architecture products. For example, an IDEF0 activity diagram
can be exported to AP233 and then imported into a UML-based tool as a SysML
activity diagram. This allows collaborating partners to use their own preferred nota-
tions while still being able to exchange information and prepare their DoD architec-
ture framework in one common notation such as SysML. Moreover, since DoDAF
acknowledges the suitability of UML for many of its products as per the UPDM
[191] initiative, the enhanced capabilities of SysML may help in reducing ambiguity
while adding an enriched semantics and expressiveness to many DoDAF products.
The mapping of DoDAF products into systems engineering field is presented in
Tables 2.8 (AV products), 2.9 (OV products), 2.10 and 2.11 (SV products), and 2.12
(TV products) [63].



2.4 DoDAF in Relation to SE and SysML 33

Table 2.9 The OV products mapping

Framework
product UML AP233 SysML

OV-1 No complete
equivalent but
covered by
use case
diagrams

No complete
equivalent, but
covered by view
definition context,
project, person, and
organization

Free form iconic class
diagrams or utilizing use
case diagrams describing
the usage of the system
(subject) by its actors
(operational nodes)

OV-2 Interaction
(collaboration)
diagrams

Person and
organization module;
needlines represented
by the organization
relationship entity

Operational nodes represented
as packages that group
operational activities;
needlines represented by
item flows showing the
information exchange along
a needline

OV-3 Not available Person and
organization module.
Needlines might be
represented using the
organization
relationship entity

No complete equivalent;
information exchange
attributes may be described
by decomposition and
specification of the item
flows identified in OV-2.
These item flows may also
correspond to object nodes
in OV-5

OV-4 Class diagram Person and
organization module.
The organization
relationship entity
might be used,
classified by the
appropriate reference
data

Block definition diagram.
Class relationships may be
used to show the relations
among organizations

OV-5 Use case and
activity
diagrams

Activity method and
scheme module

Use case diagrams, activity
diagrams, and activity
hierarchies

OV-6a Not available Activity method,
requirement
assignment,
requirement
identification, and
version

Requirements diagram and
parametric diagram to
specify constraints.
Parametric diagrams can
depict constraints among the
properties of the operational
use cases of OV-5

OV-6b Statechart (state
machine)
diagrams

State definition, state
observed, and state
characterized

State machine diagrams

OV-6c Sequence and
activity
diagrams

Activity, activity
method, scheme, and
person and
organization modules

Sequence and activity
diagrams

OV-7 Class diagram Not available Block definition diagram
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Table 2.10 The SV products mapping – part 1

Framework
product UML AP233 SysML

SV-1 Deployment and
component
diagrams

System breakdown and
interface modules

Packages represent grouping of
systems. Systems are represented
by block definition diagrams;
internal block (composite
structure) diagrams are used to
recursively decompose the system

SV-2 No exact
equivalent but
deployment
diagrams can
be used to
some extent

System breakdown and
interface modules.
Generic interfaces can
be used to represent
connections in SV-1 and
SV-2

Internal block diagrams and
allocation relationships that
maintain traceability between
logical and physical connectors.
Allocation relationships can be
used for traceability between
logical and physical connectors
(i.e., between SV-1 logical
connectors and SV-2 physical
connectors)

SV-3 Not available System breakdown and
interface modules

No exact equivalent. Attributes can
be specified for connectors while
reference data (e.g., project
status) can be added to item flows
or connectors in SV-1

SV-4 Use case, class,
and package
diagrams

System breakdown,
functional breakdown,
and interface modules

Activity diagrams with object nodes
to represent data flows

SV-5 Not available Covered in part by activity
method, method
assignment, system
breakdown, functional
breakdown, and
interface modules

No exact equivalent. The matrix can
be produced from diagram
and element annotations
corresponding to the OV-5 and
SV-4 products

SV-6 Not available System breakdown
interface modules. The
matrix representation is
out of the scope of
AP233, which seeks to
model just the
underlying semantics of
the system of systems

No exact equivalent. Systems data
exchange can be represented as
item flows over an interface
described in SV-1. It may also
correspond to object nodes in
SV-4

SV-7 Not available System breakdown and
property assignment
modules

Parametric diagrams that identify
critical performance parameters
and their relationships

SV-8 Not available Scheme, system
breakdown, product
version, date time
assignment

No exact equivalent. A timeline
construct may be defined in
SysML or UML 2.x to show use
case capabilities over time

SV-9 Not available Covered in part by system
breakdown and date time
assignment modules

No exact equivalent. One might use
a tabular form or a timeline with
the technology forecast showing
a property (technology standards
forecast) with respect to time
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Table 2.11 The SV products mapping – part 2

Framework product UML AP233 SysML

SV-10a Not available Requirement identification,
requirement assignment,
system breakdown, and
rules

Requirements diagram
depicting constraints
among the properties
of the systems

SV-10b Statechart (state
machine)
diagrams

State definition, state
observed, state
characterized

State machine diagrams

SV-10c Sequence
diagrams

State definition, state
observed, state
characterized, functional
behavior

Activity and sequence
diagrams

SV-11 Class diagram Not available Block definition diagram

Table 2.12 The TV products mapping

Framework product UML AP233 SysML

TV-1 Not available Document identification,
document assignment,
system breakdown

Requirements diagram

TV-2 Not available Document identification,
document assignment,
system breakdown,
date time assignment

No exact equivalent. May be
represented either in a tabular
form or as a timeline showing
property (technology forecast)
versus time

2.5 Conclusion

The wide availability of increased computing power, faster network connectivity,
and large data storage solutions facilitates the use of simulation in synthetic envi-
ronments exhibiting a high level of realism while allowing the interaction of real
and virtual systems. In this respect, systems engineering methodologies provide the
separation of design from implementation, thus promoting design reuse and allow-
ing the construction of synthetic environments and virtual systems based on systems
engineering designs of real entities.

In this setting, the topics presented in this chapter have addressed the gen-
eral paradigm encompassed by architecture frameworks and discussed the benefits
of executable architectures and the related concepts of modeling and simulation.
The DoD architecture framework (DoDAF) was emphasized along with its note-
worthy modeling features and capabilities in relation to architectures, synthetic
environments, and systems engineering modeling languages and methodologies.
Furthermore, a mapping of DoDAF products to corresponding SysML/UML design
diagrams was presented in the context of the AP233 neutral format.



Chapter 3
Unified Modeling Language

The unified modeling language (UML) [185, 186] is a standardized general-purpose
modeling language that lets one to specify, visualize, build, and document the
artifacts of software-intensive systems. The goal of such a language is to model
software systems prior to construction and concurrently automates the production,
improves the quality, reduces the inferred costs, and shortens time to market. The
resulting models represent systems at different levels of detail prior to their actual
implementation.

The UML notation, based on a set of diagrams, is very rich. Each diagram pro-
vides a view of the element being modeled in its specific context. Although models
and diagrams might appear to be similar, they are actually two different concepts.
A model uses UML (or some other notation) to describe a system at various levels
of abstraction. It often contains one or more diagrams representing graphically a
given aspect or a subset of the model’s elements. Diagrams, on the other hand,
describe visually quantifiable aspects such as relationships, behavior, structure, and
functionality. For example, a class diagram describes the structure of the system,
while a sequence diagram shows the interaction based on message sending between
objects over time. Thus, UML diagrams can be classified into two separate cate-
gories: structural and behavioral. This chapter provides an overview of the UML
modeling language to introduce the readers to its notation and meaning. Section 3.1
briefly presents the history of the definition of UML. Section 3.2 describes the syn-
tax of each UML diagram and its meaning according to the OMG specifications
[186]. Finally, Sect. 3.3 presents the UML profiling mechanisms.

3.1 UML History

In the early 1990s, several object-oriented modeling languages developed by the
software engineering community proved to be unsatisfactory for the software com-
munity at large. Hence, the need for a united solution was crucial. In late 1994,
Grady Booch [30] (Rational Software Corporation), seeking to create a rich mod-
eling language, introduced the idea behind UML. In the fall of 1995, a merg-
ing of Booch’s methodology for describing objects and their relationships and
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Rumbaugh’s object modeling technique (OMT) [182] resulted in a modeling lan-
guage designed specifically to represent object-oriented software: the unified model-
ing language (UML 0.8). In June 1996, UML 0.9 was released with the inclusion of
Ivar Jacobson’s object-oriented software engineering (OOSE) method [123], which
consisted of the use case methodology. Thereafter, the standard progressed through
versions 1.1, 1.3, and 1.4.

Although UML 1.x was widely accepted in the community, some shortcom-
ings were signaled, namely, the lack of support for diagram interchange [136], its
increased complexity, its limited customizability, and also its inadequate semantics
definition. Moreover, UML 1.x was not fully aligned with MOF [175] and MDA
[178]. Consequently, a major revision was required to address these problems [35]
and so OMG adopted officially a new major revision of UML: UML 2.0 [181]. Many
improvements to the language have since been applied to UML 2.0 in the form of
minor revisions [186].

3.2 UML Diagrams

UML diagrams are classified into two main categories: structural and behavioral.
The latter category includes a subset category called the interaction diagrams. The
diagram taxonomy is depicted in Fig. 3.1.

The structural diagrams model the static aspects and structural features of the sys-
tem, whereas the behavioral diagrams describe the dynamic behavior of the system.
Structural diagrams include the class, component, composite structure, deployment,
object, and package diagrams. Behavioral diagrams include the activity, use case,
and state machine diagrams. The interaction diagrams are part of the behavioral dia-
grams category since they emphasize the interaction between the modeled compo-
nents; they include the communication, interaction overview, sequence, and timing
diagrams. The new diagrams proposed in UML 2.x are composite structure, inter-
action overview, and timing. Also, other diagrams have been extended and modified
since UML 1.x, namely, the activity, state machine, sequence, and communication
diagrams.

Fig. 3.1 UML 2 diagram taxonomy (source [186])
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3.2.1 Class Diagram

The class diagram represents the principal building block in object-oriented mod-
eling. It depicts the static view of either a specific area of model or its entirety,
describing the structural elements and their relationships. It is mainly used to build a
system’s architecture. It captures and defines classes and interfaces and the relation-
ship between them. Moreover, classes are abstract templates from which the run-
time objects are instantiated. A class diagram describes the relationships between
classes rather than those between specific instantiated objects. Classes relate to each
other through different relationships such as association, aggregation, composition,
dependency, or inheritance.

As a basic building block, the class diagram defines the essential resources
needed for the proper operation of the system. Each resource is modeled in terms
of its structure, relations, and behaviors. In general, a class diagram consists of the
following features:

• Classes. Each class is composed of three compartments: the class name, the
attributes, and the methods. The attributes and methods can be public, private,
or protected. Abstract roles of the class in the system can also be indicated.

• Interfaces. Titled boxes represent interfaces in the system, providing information
about the name of the interface and its methods.

• Generalization relationships

– Inheritance is represented by a solid line with a solid arrowhead that points
from the child class (or interface) to its parent class (or interface).

– Implementation is represented by a dotted line with a solid arrowhead that
points from a class to its implemented interface.

• Association relationships represent a “has a” relationship. An association rela-
tionship is represented by a solid line and an open arrowhead. The arrow points
from the containing class to the contained one. Composition and aggregation,
two special types of association relationships, are defined as follows:

– Composition is represented by a solid line with a solid black diamond at its
tail end. Composition models a class “owning” another class, therefore being
responsible for the creation and destruction of objects of the other class.

– Aggregation is represented by a solid line with a hollow white diamond at
its tail end. Aggregation models a class “using” another class without being
responsible for the creation and destruction of the other class’ objects.

• Dependency is represented by a dotted line with an open arrowhead. It shows
that one class “entity” is dependent on the behavior of another entity. It is useful
for showing that a class is used to instantiate another or that it uses the other as
an input parameter.

Figure 3.2 shows a class diagram example for a residence rental system that
includes a reservation facility. It shows that the two types of residences that are
available are apartment and house. The Apartment and House classes are inher-
iting from the class Residence. A class customerProfile is contained in the class
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Fig. 3.2 Class diagram example

Customer via a composition relationship. The latter means that one class (Customer-
Profile) cannot exist without the other (Customer). The same composition relation-
ship exists between the ResidenceInventory and RentalLocation classes. There is
also an aggregation relationship between the Residence and ResidenceInventory
classes, as a residence inventory might be made up of several residence, but the
Residence class continues to exist even if the ResidenceInventory class is destroyed.
Moreover, when a reservation is made, both the Residence and Customer classes are
used.

3.2.2 Component Diagram

The component diagram describes software components and their dependencies
among each other. It shows the definition, internal structure, and dependencies
among the systems’ components. A component is a modular and deployable part
of the system. Components are depicted as boxes in the diagram and are generally
interrelated to each other through connectors. A component diagram has a higher
level of abstraction than a class diagram, it usually being implemented by one or
more classes (or objects) at runtime. A component diagram allows the capturing of
relationships among the major building blocks of the system without having to dig
into the functionality and/or implementation details.

The purpose of the component diagrams is to

• model the real software or system in the implementation environment;
• reveal the software or system configuration issues through dependency analysis;
• depict an accurate picture of the system prior to making changes or enhance-

ments;
• reveal bottlenecks in an implementation without having to examine the entire

system or code;
• define physical software modules and their relationships to one another.
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Fig. 3.3 Component diagram example

Figure 3.3 shows a component diagram example representing operating systems
and a subset of their applications. The diagram shows that an operating system is
able to run software applications such as Text Editor, Web Navigator, and File Man-
ager. Moreover, Windows, Unix, and Macintosh operating systems, in this example,
inherit the behavior of the Operating System component.

3.2.3 Composite Structure Diagram

A composite structure diagram is a static structure diagram that shows the internal
structure of a classifier such as a class, component, or collaboration. It can also
include internal parts such as ports through which the classifiers interact with each
other or with external entities and their underlying connectors. Moreover, it shows
the configuration and relationship of different parts of the system that perform, as a
whole, the behavior of the containing classifier. The elements of a composite struc-
ture diagram are as follows:

• Containing classifier is the class, component, or collaboration that represents
the composite structured element. As shown in Fig. 3.4, Car is the diagram’s
containing classifier.

• Part is an element that comprised a set of one or more instances owned by
the containing classifier. For example, Fig. 3.4 shows that Vehicule owns the
instances of the three parts, namely Engine, Axle, and Wheel.

• Port is an element that represents the visible parts of a containing classifier.
It defines the interaction between a classifier and its environment. Ports may
exist on the boundary of the contained classifier or on the boundary of the
composite structure itself. Moreover, ports may specify the services offered by
the containing classifier as well as those offered by the environment to the
classifier.
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Fig. 3.4 Composite structure
diagram example

• Interfaces are similar to classes but with some restrictions. Its attributes are all
constants and their operations are abstract. They can be represented in compos-
ite structure diagrams. When interfaces are owned by classes, they are referred
to as “exposed interfaces” and can be of type “provided” or “required.” In the
former, the containing classifier supplies the operations defined by the named
interface and is linked to the interface through a realization association. In the
latter, the classifier communicates with another classifier, which provides opera-
tions defined by the named interface.

Figure 3.4 is an example of a composite structure diagram describing the main
elements of a vehicle. More precisely, a vehicle should contain an engine, two or
more wheels, and an axle. A port is located on the boundary of the engine part
through which the engine powers the drive. In this context, powers represent a ser-
vice provided by the engine to the axle.

3.2.4 Deployment Diagram

UML deployment diagrams depict both the hardware architecture of a system and
the components that run on each piece of hardware. A deployment diagram is
needed for applications that run on several devices since it shows the hardware, the
software, and the middleware used to connect the hardware devices in the system.

Hardware components are depicted using boxes. Component diagrams may be
embedded into deployment diagrams. More precisely, the same boxes used to model
the UML component diagram are used inside the hardware boxes to represent the
software running on a specific piece of hardware. Moreover, nodes in the deploy-
ment diagram can be interconnected through lines (connectors) to represent interde-
pendencies.

Figure 3.5 depicts an example of a deployment diagram for a communication
network architecture. It describes the relationships between three different hard-
ware components connected through a TCP/IP network. An Application Server can
connect to one or more Web Servers. Each hardware component runs one or more
software applications. For example, the Web Server deploys Windows XP and other
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Fig. 3.5 Deployment diagram example

services such as Http, SSL, and Apache. In summary, a deployment diagram is used
to depict an abstract view of the hardware’s and software components’ architecture
in a designed system.

3.2.5 Object Diagram

The object diagram shows how specific instances of a class are related to each other
at run-time. It consists of the same elements as its corresponding class diagram.
While a class diagram defines the classes of the software with their attributes and
methods, an object diagram assigns values to the corresponding classes’ attributes
and methods’ parameters. Object diagrams support the study of requirements by
modeling examples from the problem domain. Moreover, they may be used to gen-
erate test cases that can later serve for the validation of class diagrams.

An object consists of two compartments: the first one has the name of the object
and its corresponding class in the class diagram, the second one shows the attributes
of the object and its values. Objects in the object diagram are linked using connec-
tors. These connectors are instances of the associations in the class diagram. Note
that these connectors are not labeled with multiplicity values as it is the case for
class diagrams.

Figure 3.6 shows an object diagram example along with the class diagram where-
from it was derived. The diagram shows that a faculty in a university may have more
than one student while a student can belong to one faculty only. The object diagram
shows that two instances of the class Student exist with only one instance of the
class Faculty.

3.2.6 Package Diagram

Package diagrams are used to organize different packages in the system’s model.
A package is used to group model elements and other diagrams in an aggrega-
tion. Since the number of use case and class diagrams tend to grow, making their
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Fig. 3.6 Class diagram (top) and object diagram (bottom)

management difficult, these diagrams are grouped. Thus, packages help structuring
a project into manageable parts. A package is depicted by a rectangle with a small
tab at the top showing the package’s name. A package diagram may contain several
packages organized into a hierarchy. Similar to classes in class diagram, packages
are related to each other using different types of connectors, such as association,
dependency, and generalization connectors.

An element in a package may depend on another element in another package
in different ways. For example, a class in one package may inherit the properties
of a class in another package; in this way a generalization relationship should be
established between the two containing packages. Figure 3.7 shows an example of
a package diagram subset of a travel service system.

Fig. 3.7 Package diagram
example

3.2.7 Activity Diagram

Activity diagrams are generally used to depict the flow of a given process by
emphasizing the input/output dependencies, sequencing, and other conditions (e.g.,
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synchronizations) required for coordinating the process behavior. Moreover, UML
activity diagrams [207] can capture the behavior of a process or system in a wide
variety of domains for use cases detailing computational, business, and other work-
flow processes as well as modeling in general. A number of activity diagrams might
be needed in order to describe a given system; each diagram may focus on a different
aspect of the system or show a specific aspect of the model.

An activity diagram is composed of a set of actions related by control flow paths
in a specific order of invocation (or execution). The input and the output dependen-
cies can be emphasized using dataflow paths.

An action represents the fundamental unit of a behavior specification and cannot
be further decomposed within the activity. An activity may be composed of a set of
actions coordinated sequentially and/or concurrently. Furthermore, the activity may
also involve synchronization and/or branching. These features can be enabled by
using control nodes including fork, join, decision, and merge. These nodes support
various forms of control routing. Additionally, one may specify hierarchy among
activities using call behavior action nodes, which may also reference another activ-
ity definition. In the following, we provide a detailed description of the activity
diagram’s modeling elements.

3.2.7.1 Activity Actions

Activity actions are used to specify the fine-grained behavior, similar to the kind of
behavior of executable instructions in ordinary programming languages. In essence,
an action can be understood as the value transformation of a set of inputs into a set
of outputs. For a given action, the inputs are specified by the set of incoming edges
and the outputs by the set of outgoing edges. Note that, in the case of elementary
action nodes, only one incoming and one outgoing edge are likely to be specified.
The run-time effect of a given action is described by the difference in the state of
the system from the pre-condition of the action versus its post-condition. The pre-
condition holds immediately before the action is executed and the post-condition
holds immediately after the execution of the action completes. In this context, the
UML specification does not make any restrictions on the duration of the actions.
Therefore, in accordance with the requirements and constraints, both instantaneous
(i.e., zero time) and timed execution semantic models can be employed.

3.2.7.2 Activity Flows

It is usually necessary to combine a number of transforming actions in order to
get an overall desired effect; this is accomplished by using activity flows. These
are used to combine actions that perform primitive (basic) state transformations.
Thus, it is with activity flows that actions and their effects are combined to produce
complex transformations and serve the conditions and execution order of the com-
bined actions. The UML standard supports both control flows and dataflows (object
flows). In this volume we are concentrating on control flows since they represent
one of the main targets of our verification and validation efforts. Control flows are
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the most conventional and natural way of combining actions. Indeed, a control flow
edge between two actions is understood as starting the execution of the action at
the target end of the edge, immediately after the executing action at the source of
the edge has completed its execution. In most cases, the processes that use activity
diagrams require various alterations of the execution flow done with, for example,
conditional branches and loops. In order to support the aforementioned constructs, a
number of specific control nodes, including standard control constructs such as fork
and join, are used in a similar manner to those used in the state machine diagrams.
Likewise, the control flow can be adjusted by specifying guards (in essence, side
effect-free boolean predicates) that label the flows, which are used for conditional
transfer of control.

3.2.7.3 Activity Building Blocks

An activity diagram might contain object nodes for capturing corresponding object
flows.1 However, since the control flow aspect represents the point of interest in the
behavioral assessment, in the following paragraphs we will discuss the correspond-
ing subset of control flow artifacts.

The building blocks of an activity diagram consist of the control flow elements
depicted in Fig. 3.8 and are described as follows:

• Initial node indicates the beginning (e.g., initial entry point) of the activity
diagram.

• Final node indicates when the execution of the whole diagram terminates.
• Flow final node is meant to stop the execution of a specific flow of actions.

Fig. 3.8 Activity control flow
artifacts

1 Dataflows connect actions in a different manner than control flows. They are used to connect
input and output pins on actions while allowing certain actions to be started before finishing the
activity wherefrom the dataflow stems. Consequently, dataflow dependencies tend to be highly
fine-grained compared to the control flow, as the actions might have multiple inputs and outputs
connected in sensitive and intricate ways.
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• Action nodes are processing nodes. Actions can be executed sequentially or con-
currently. Furthermore, an action represents an elementary execution step that
cannot be further decomposed into smaller actions.

• Fork node is a control node that triggers concurrent processing in parallel exe-
cution paths.

• Join node is a control node that synchronizes different concurrent execution
paths into one execution path.

• Activity edge (transition) is used to transfer the control flow in the diagram from
one activity node to another. If specified, a guard controls the firing of the edge.

• Decision node (branch node) is used to select between different execution flows
in the diagram by specifying an execution path depending on the truth value of a
guard.

• Merge node is a construct that merges (without synchronization) several alterna-
tive paths into a common activity flow.

An aggregation of action nodes and edges represents an executable block. An
executable block is usually conceived as a structured activity node which corre-
sponds, in general, to the concept of a block in some structured programming lan-
guages. They are useful for constructing arbitrarily complex activity node hierar-
chies.

3.2.8 Activity Diagram Execution

The execution semantics of the UML activity diagram is similar to Petri net token
flow. In this respect, according to the specification, each activity action is started
as soon it receives a control flow token. Once an action is completed, subsequent
actions receive a control flow token and are triggered immediately while the tokens
are consumed.

There are several basic control flow patterns defining elementary aspects of pro-
cess control as depicted in Fig. 3.9:

• Sequencing provides the ability to execute a series of activities in sequence
• Parallel split (fork connector) provides the ability to split a single thread of con-

trol into multiple threads of control, which execute in parallel
• Synchronization (join connector) allows the convergence of multiple parallel sub-

processes/activities into a single thread of control thus synchronizing multiple
threads

• Exclusive choice (branch connector) provides the ability to choose one of several
branches at a decision point

• Multiple choice provides the ability to split a thread of control into several paral-
lel threads on a selective basis

• Simple merge (merge connector) is a point in the workflow process where two or
more alternative branches merge together without synchronization
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Fig. 3.9 Activity control flow patterns

• Multiple merge (merge connector) allows the convergence of two or more dis-
tinct branches in an unsynchronized manner. If more than one branch is active,
the activity following the merge is started for every activation of each incoming
branch.

3.2.9 Use Case Diagram

A use case diagram describes a set of scenarios that expose the interaction between
the users and a system. A user can be either a person or another system. A use
case refers to the actions that the system can perform by interacting with its actors.
Therefore, the use case diagram shows a series of actions as well as the actors that
can perform those actions. Use cases are employed in the initial phase of the devel-
opment process. They are useful in eliciting the software and system’s requirements.
Most use cases are defined in the initial stages, while new ones might be necessary
during the development process. Moreover, use cases are employed to identify the
expectations of a system, its specific features, and the shared behavior among its
components.

In general, use case diagrams consist of the following three entities:

• Actor is the role that a user, subsystem, or device can play when interacting with
the system. Actors are drawn as stick figures.

• Use case provides actors with a sequence of actions that can be performed. Use
cases are drawn as horizontal ellipses.

• Association is a semantic relationship between two or more classifiers; they spec-
ify the connections that are allowed among their instances. They are drawn as
solid lines. When necessary, the lines can be arrows indicating the directions of
the connections.

Figure 3.10 shows an example of a use case diagram. It models an online cus-
tomer ordering system. A sales person is responsible for registering new customers.
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Fig. 3.10 Use case diagram
example

The user will log in to the system and check different items. He can place an order,
which will later be checked by the salesperson. The diagram shows the functions
that each actor can perform in the system.

3.2.10 State Machine Diagram

The primary motivation underlying the development of hierarchical state machines
in general and their UML formalism in particular was driven by the necessity to
overcome the limitations of the conventional state machines when describing large
and complex system behavior.

The UML state machines are hierarchical in nature and support orthogonal
regions (i.e., concurrency). They can be used in order to express the behavior of
a system or its components in a visual, intuitive, and compact manner. The state
machine evolves in response to a set of possible incoming events dispatched one at
a time from an event queue. These events can trigger the state machine transitions
which, in turn, are generally associated with a series of executed actions.

Some of the key features of UML state machines include the ability to cluster
states into composite (OR) super-states and to refine abstract states into substates,
thus providing a hierarchical structure. Moreover, concurrency can be described by
orthogonal (AND) composite concurrent states that contain two or more concur-
rently active regions, each of which is a further clustering of states, as depicted in
Fig. 3.11. Hence, when a system is in an “AND” state, then each of its regions will
contain at least one active state. Furthermore, as there can be more than one state
active at a time, the state machine dynamic is configuration based rather than state
based. A configuration denotes a set of active states and represents a stable point in
the state machine dynamics while proceeding from one step to the next. A number
of state machine diagrams are sometimes needed in order to describe the behavior
of a given entity and each diagram can focus on a different aspect of the entity’s
behavior.
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Fig. 3.11 State machine hierarchical clustering

Fig. 3.12 State machine
components

State machines are basically a structured aggregation of states and transitions as
well as a number of other pseudo-state components. The building blocks of a state
machine are depicted in Fig. 3.12. The states are either simple or composite (i.e.,
clustering a number of substates). Moreover, the states are nested in a containment
hierarchy so that the states contained inside a region of a composite state are denoted
as the substates of that composite state.

3.2.10.1 Regions

A region is a placeholder that contains the substates of a composite state. Composite
states may contain one or more regions, where the different regions are separated
by a dashed line and each region is said to be orthogonal to other(s) within the same
composite state. Hence, concurrency is present whenever a composite state contains
more than one region.

3.2.10.2 States

Each state has a unique name or label that represents either the source or target for
a transition. States may also have “entry,” “exit,” and “do” associated actions. Final
states can only be a target of transitions and have no substates or associated actions.
Once reached, the parent region needs to be completed.

Simple or basic states represent the leaves of the state hierarchy tree and, as such,
do not contain substates or regions. Conversely, the composite states are represented
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by all the other non-leaf nodes and, as such, have at least one region containing
substates. Moreover, whenever a composite state is active, all of its regions have
exactly one active nested substate. A single region composite state is called a non-
orthogonal composite state or sequential (OR) state, whereas a multi-region com-
posite state is called an orthogonal (AND) composite state.

3.2.10.3 Pseudo-states

The UML state machine formalism draws a distinction between states and pseudo-
states in that the latter are not included in configurations; their main function serves
to model various forms of compound transitions. Moreover, pseudo-states have no
names or associated actions and are used as an abstraction for various types of inter-
mediary vertices that are used to link different states in the state machine hierarchy
tree. The following itemized list presents the different types of pseudo-states:

• Initial is used to indicate the default active state of a particular region upon entry.
Moreover, only one initial vertex can be present in each region of a composite
state.

• Fork signifies that the incoming transition originates from a single state and has
multiple outgoing transitions occurring concurrently, requiring the targets to be
located in concurrent regions.

• Join combines two or more transitions emanating from multiple states located in
concurrent regions into a compound synchronized transition with a single target
state.

• ShallowHistory is used to represent the entry point to the most recently active
substate within the region of a composite state. This entry point corresponds to
the state configuration that was established when the composite state was last
exited. In the case where the composite state has never been visited before, a
single transition is allowed to indicate the default shallow history state.

• DeepHistory is an extension or generalization of a shallow history and is used
to represent the entry point to the most recently active configuration enclosed in
the region of a composite state. Consequently, the configuration is established by
descending recursively into the most recently active substate, activating at each
containment level the most recently active descendant(s).

3.2.10.4 Transitions

Transitions are relating pairs of states used to indicate that a dynamic element (e.g.,
an object) is changing state in response to a trigger (event) once some specified
condition (guard) is satisfied. The guard is evaluated after the event is dispatched,
but prior to the firing of the corresponding transition. If the guard is evaluated as
true, the transition is enabled; otherwise, it is disabled. Each transition allows for
an optional action (e.g., issuing a new event) to be specified and, if applied, results
in the effect of the transition.
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Transitions from composite states are called high-level or group transitions.
When triggered, all the substates of a given composite state are exited. Furthermore,
a compound transition is an acyclic chain of transitions linked by various pseudo-
states and represents a path from a set (possibly a singleton) of source states to a
set (possibly a singleton) of destination states. When the source and the destination
sets are both singletons, the transition is said to be basic or simple. Moreover, if
the intersection of the source states belonging to two or more enabled transitions
is not empty, the transitions are said to be “in conflict.” In this case, it is possible
that one has higher priority than the other(s). Thus, in the case of simple transitions,
the UML standard assigns higher priority to the transition having the most deeply
nested source state.

Furthermore, UML specifies a number of transition constraints:

• The set of source states of a transition involving a join pseudo-state is a set of at
least two orthogonal states.

• A join vertex must have at least two incoming transitions and exactly one outgo-
ing transition.

• All transitions incoming a join vertex must originate in different regions of an
orthogonal state.

• The transitions entering a join vertex cannot have guards or triggers.
• A fork vertex must have at least two outgoing transitions and exactly one incom-

ing transition.
• All target states of a fork vertex must belong to different regions of an orthogonal

state.
• Transitions from fork pseudo-states may not target pseudo-states
• Transitions outgoing pseudo-states may not have a trigger.
• Initial and history transitions are restricted to point only to their default target

state.
• Transitions from one region to another, in the same immediate enclosing com-

posite state, are not allowed and in fact require that the two regions be part of two
different composite states.

3.2.10.5 State Configurations

In the UML state machine, thanks to the containment hierarchy and concurrency,
more than one state can be active at a time. If a simple substate of a composite
state is active, then its parent and all the composite states that transitively contain
it are also active. Furthermore, some of the composite states in the hierarchy may
be orthogonal (AND) and hence potentially concurrently active. In that case, the
currently active states of the state machine are represented by a sub-tree of the state
machine hierarchy tree and, consequently, the states contained in such a sub-tree
denote a configuration of the state machine.

3.2.10.6 Run-to-Completion Step

The execution semantics of the UML state machine is described in the specification
as a sequence of run-to-completion steps. Each step represents a move from one
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active configuration to another in response to the dispatched events stored in an
event pool.

The UML specification is silent regarding the kind of order imposed on the event
pool, leaving it to the discretion of the modeler. However, the events are required
to be dispatched and processed one at a time. Consequently, the run to completion
means that an event can be popped from the event pool and dispatched only if the
processing of the previously selected event is completed. Thus, the processing of a
single event in a run-to-completion step is achieved by firing the maximal number
of enabled and non-conflicting transitions of the state machine. This results in a
consistent change in the currently active set of states along with the execution of
the corresponding actions, if any, and ensures that before and after each run-to-
completion step the state machine is in a stable active configuration.

Furthermore, multiple transitions can be fired in an arbitrary order provided that
they reside in mutually orthogonal regions. In the case where an event is not trigger-
ing any transitions in a particular configuration (i.e., there is an empty set of enabled
transitions), the run-to-completion step is immediately completed, though with no
configuration change. In this case the state machine is said to stutter and the event
is discarded.

3.2.11 Sequence Diagram

Sequence diagrams describe the interactions within a system using communicating
entities represented by a rectangle from which lifelines descend. An interaction is a
communication based on the exchange of messages in the form of operation calls or
signals arranged in a temporal order [255]. Objects assume the role of such commu-
nicating entities. The body of a lifeline represents the life cycle of its corresponding
object.

A message is used for passing information and it can be exchanged between
two lifelines in two possible modes: synchronous and asynchronous. There are four
types of messages: operation call, signal, reply, and object creation/destruction. This
is symbolized by a labeled arrow pointing from the sender to the receiver. Moreover,
the diagram may contain timing requirements, placed on the left of the diagram,
which allows specifying how much time an operation needs to complete its execu-
tion.

Aside from lifelines and messages, sequence diagrams can define other con-
structs in order to organize the modeled interactions. The abstraction of the most
general interaction unit is called “interaction fragment” [186], which represents a
generalization of a “combined fragment.” The latter defines an expression of the
former and consists of an interaction operator and interaction operands [186]. Com-
bined fragments allow for compact illustration of traces of exchanged messages.
They are represented by a rectangular frame with solid lines and a small pentagon in
the upper left corner showing the operator with dashed lines separating the operands
[255]. On the one hand, an interaction operand contains an ordered set of interaction
fragments. On the other hand, the interaction operators include, but are not limited
to, conditional execution operator (denoted by “alt”), looping operator (denoted
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Fig. 3.13 Syntax of sequence diagrams

by “loop”), and parallel execution operator (denoted by “par”). Finally, sequence
diagrams define interaction use constructs in order to reference other interactions.
This allows for a hierarchical organization of interactions and its decomposition into
manageable units. Figure 3.13 illustrates a subset of sequence diagrams syntax. The
primary interaction operators are as follows:

• Ref name is used to reference a sequence diagram fragment defined elsewhere
• opt [condition] contains a fragment that is executed based on a condition or state

value
• alt has two or more parts out of which only one executes, based on a condition or

state value. The complementary operand fragment labeled “[else]” can be used
in order to provide an execution path if no other condition is true

• par has two or more parts that execute concurrently. Concurrence in this context
does not require simultaneousness and can signify an undetermined order. On a
single execution unit the behavior could be either sequential or interleaving

• loop min..max [escape] represents an execution that has at least a minimum
number of iterations and at most an optional maximum number of executions.
Moreover, an optional escape condition can be used

• break [condition] has an optional guard condition. When evaluated to true, the
contents (if any) are executed while the remainder of the enclosing operator is
not executed

Figure 3.14 shows an example of a sequence diagram of an elevator. The example
shows the steps that are executed when a floor’s button in an elevator is pressed
by the passenger. The elevator button will illuminate until the requested floor is
reached. After reaching the floor, the Elevator_Controller will send a message to the
button to turn off its light. Afterward, the Elevator_Controller will send a message
to the Elevator to open its door. At the end, the Elevator_Controller will send a
message to the elevator to close its door in order to be able to serve another request.
The time needed for the elevator to wait after opening the door can be specified on
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Fig. 3.14 Sequence diagram example (source [72])

the sequence diagram by an appropriate annotation. In this respect, UML profile for
schedulability, performance, and time (SPT) [179] can be used for such annotation.

3.2.12 Communication Diagram

A communication diagram, previously called a collaboration diagram in UML 1.x,
represents another interaction diagram in UML 2.x. Similar to the sequence dia-
gram, in that it shows interactions between objects, it is also responsible for showing
the relationships among objects. Mainly, communication diagrams are used to

• identify the interface requirements of the participating classes
• identify the structural changes required to satisfy an interaction
• explicitly identify the data that are passed during interactions. This may help in

finding the source of the data and reveal new interactions
• reveal the structural requirements for completing a given task

In communication diagrams, objects are depicted as rectangles containing the
object name and its related class. Relationships among objects are shown using
association connectors. Numbered messages are added to the associations with an
arrow indicating the direction of the message flow.

An example of a communication diagram is shown in Fig. 3.15. It illustrates the
interaction between several objects that are part of an elevator system when serv-
ing an elevator button. The interaction is initiated by the passenger after pressing
a floor button. Then, the Elevator_Button interacts with the Elevator_Controller
by sending a request. Later, the Elevator_Controller sends the illuminate message
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Fig. 3.15 Communication diagram example (source [72])

to the specific Elevator_Button object. A move message is then sent to the Eleva-
tor to reach the requested floor. When the requested floor is reached, a stop mes-
sage is sent to the Elevator, which opens its door after a specific amount of time.
Finally, the Elevator_Controller sends a close message to the Elevator to close its
door.

3.2.13 Interaction Overview Diagram

The purpose of the interaction overview diagram is to provide a high-level view of
the logical progression of the execution of the system through a set of interactions.
UML 2 interaction overview diagrams are variants of UML activity diagrams. They
use the syntax and semantics of an activity diagram to model the flow of logic in
a series of interactions. They are mainly used to show interactions among systems
that are combined together to produce a specific function. While sequence, commu-
nication, or timing diagrams describe the details of an interaction, the interaction
overview diagram describes a high-level overview of how one or more interactions
can be performed to carry out a higher order task.

The nodes within the diagram are either interaction frames, depicting another
UML interaction diagram (such as sequence, communication, timing, or interaction
overview diagram), or interaction occurrence frames, indicating an activity or oper-
ation to invoke. The lines that connect the frames are control flows. Control nodes,
such as decision, merge, fork, and join, can be used to coordinate the flow between
frames.

Figure 3.16 shows an example of an interaction overview diagram of an elevator
system. The diagram starts at the initial state. After pressing the button, the system
will check whether or not the requested floor is in the opposite direction of the
movement. If it is, the controller will send a message to turn off the button, otherwise
the flow will continue to the next step.
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Fig. 3.16 Interaction overview diagram example

3.2.14 Timing Diagram

Timing diagrams are one of the new artifacts added to UML 2. They offer a different
way of presenting sequence diagrams, explicitly showing the behavior of one or
more elements of the system according to a timeline.

They display the change in state or value of one or more elements over time and
can also show the interaction between timed events and the corresponding time and
duration constraints. Moreover, they are used to document timing requirements that
control the changes in the state of the system. They can also be used with the state
machine diagram when the timing of events is considered critical for the proper
operation of the system.

A timing diagram contains state lifelines. A state lifeline displays the modifica-
tion of an element’s state over time. The X-axis displays the elapsed time, while the
Y-axis is labeled with a given list of states. At the bottom of the diagram, a timeline
shows how time goes by while element states change. Furthermore, messages can
be exchanged between different interacting elements in order to specify the triggers
of the changes in the states.

Figure 3.17 shows an example of a timing diagram for a door-locking
mechanism.
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Fig. 3.17 Timing diagram example

The example contains three different state lifelines. The scanner has three states:
“idle,” “waiting,” and “open.” The processor also has three states: “idle,” “verify-
ing,” and “enabled.” Finally, the door has only two states, namely “locked” and
“unlocked.” The last state lifeline is represented differently (value lifeline). Two
lines are shown to represent each state. When the door is in the unlocked state, the
unlocked term is written between the two lines. When the door changes its state,
the lines cross each other and continue to move in the timeline direction, while
presenting the new state (lock) in between the lines.

3.3 UML Profiling Mechanisms

UML defines a specific profile concept that provides a generic extension mechanism
for building UML models within a particular domain. UML profiling allows a refin-
ing of the semantics of standard UML elements in a strictly additive manner and
without introducing semantical contradictions.

The main UML profiling mechanisms are stereotypes and tagged values. These
mechanisms are applied to specific model elements such as classes, attributes, oper-
ations, and activities in order to adapt them for different purposes. The mechanisms
are defined as follows:

• UML stereotypes are used in order to extend the UML vocabulary by creating
new model elements derived from existing ones. Stereotypes add specific proper-
ties suitable for a specific problem domain and are used for classifying or marking
the UML building blocks.
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• The tagged values are used for specifying keyword values. They allow the extend-
ing of a UML building block’s properties and the creation of new information
in the specification of an element defined for existing model elements or for
individual stereotypes. Moreover, tagged values can be used in order to specify
properties that are relevant to code generation or configuration management.

Various UML profiles have been issued by the OMG in order to customize UML
for particular domains (e.g., aerospace, healthcare, financial, transportation, systems
engineering) or platforms (e.g., J2EE, .NET). Examples of UML profiles include
the OMG systems modeling language (OMG SysML) [187] for systems engineering
applications, the UML profile for schedulability, performance, and time (SPT) [176]
for modeling of time, schedulability, and performance-related aspects of real-time
systems, and its successor, namely the UML profile for modeling and analysis of
real-time and embedded systems (MARTE) [189].

3.4 Conclusion

UML strives to be a rich and expressive powerful language for specifying complete
systems across a broad spectrum of application domains. In many cases, models
require more than modeling software and computation. This is the case with many
designs of real-time and embedded systems, where it may be necessary to model
the behavior of diverse real-world physical entities, such as hardware devices or
human users. The physical components of a system certainly tend to be highly
heterogeneous and much more complex than most mathematical formalisms can
capture. Moreover, it is often the case that, for a given entity, different viewpoints or
perspectives related to various sets of concerns are required in the process of mod-
eling and design (e.g., dissimilar sets of concerns are considered in modeling the
performance of the system when compared to modeling the same system from the
viewpoint of human–machine interaction). This may be one of the reasons behind
the informal semantics of UML, as one of its primary objectives is to unify a set of
broadly applicable modeling mechanisms in one common conceptual framework – a
task that any specific concrete mathematical formalism would likely restrict. Indeed,
the commonality of UML is a characteristic that underpins the use of the same tools,
techniques, knowledge, and experience in various domains and situations. Notwith-
standing, the community generally acknowledges that there is a compelling need for
the formalization of many of the UML features [219].



Chapter 4
Systems Modeling Language

Systems modeling language (SysML) [187] is a modeling language dedicated to
systems engineering applications. It is a UML profile that not only reuses a subset
of UML 2.1.1 [186] but also provides additional extensions to better fit SE’s specific
needs. These extensions are mainly meant to address the requirements stated in the
UML for SE request for proposal (RFP) [177]. It is intended to help specify and
architect complex systems and their components and enable their analysis, design,
and verification and validation. These systems may consist of heterogeneous com-
ponents such as hardware, software, information, processes, personnel, and facilities
[187].

SysML encompasses modeling capabilities that allow representing systems and
their components using

• structural components composition, classification, and interconnection;
• behaviors including activity flows, interaction scenarios, and message passing as

well as state-dependent reactive behaviors;
• allocation of one model element to another, such as functions to components,

logical to physical components, and software to hardware;
• constraints on system property values such as performance, reliability, and phys-

ical properties;
• requirement hierarchies and derivations as well as their relations to other model

elements.

In this chapter, we first present the history of SysML in Sect. 4.1. Then we expose
the relationships between UML and SysML in Sect. 4.2. Finally, in Sect. 4.3, we
present the SysML diagram taxonomy and describe each diagram by using an illus-
trative example.

4.1 SysML History

The SysML initiative started in January 2001 with a decision made by the
Model-Driven Systems Design workgroup of the International Council on Systems
Engineering (INCOSE) in order to customize the UML for systems engineering
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applications. At that point, OMG [183] and INCOSE [120], with a number of
experts from the SE field, collaborated in order to build a standard modeling lan-
guage for SE. The OMG Systems Engineering Domain Special Interest Group (SE
DSIG),1 with the support of INCOSE and the ISO AP233 workgroup, developed the
requirements for the envisioned modeling language. These requirements were sub-
sequently issued by the OMG as part of the UML for systems engineering request
for proposal [177] in March 2003. Being the modeling language par excellence
for software engineering, UML has been selected to be customized for systems
engineers’ needs. However, the old UML 1.x version was found to be inadequate
for systems engineering use [73, 256]. Meanwhile, an evolving revision of UML
(i.e., UML 2.0) was issued with features of interest for systems engineers. In 2003,
the SysML Partners, an informal association of industry leaders and tool vendors,
initiated an open-source specification project to develop SysML in response to the
UML for SE RFP, submitted to the OMG for adoption. Later on, a proposal for
OMG SysML was submitted to the OMG and finally adopted. Consequently, the
OMG SysML 1.0 [187] specification was issued by the OMG as an Available Spec-
ification in September 2007. The current OMG SysML 1.1 [190] was issued by the
OMG in November 2008.

4.2 UML and SysML Relationships

SysML reuses a subset of UML 2.1 [186], called “UML4SysML,” which repre-
sents approximately half of the UML language. An important portion of the UML
concepts was discarded since they were not considered relevant for SE’s model-
ing needs. Some of the reused diagrams were included as is in UML 2.1.1 [186].
These include state machine, sequence, and use case diagrams. Other diagrams
were extended, such as activity diagrams, in order to tackle specific SE’s needs.
Additionally, SysML omitted some UML diagrams, namely object, component,
deployment, communication, timing, and interaction overview. Class and compos-
ite structure diagrams were fundamentally modified and replaced by block defi-
nition and internal block diagrams, respectively. These extensions are based on
the standard UML profiling mechanism, which include UML stereotypes, UML
diagram extensions, and model libraries. The profiling mechanism was chosen
over other extension mechanisms in order to leverage existing UML-based tools
for systems modeling. Furthermore, SysML adds two new diagrams, those being
requirements and parametric diagrams, and integrates new specification capabili-
ties such as allocation. The relationship between UML and SysML is illustrated in
Fig. 4.1.

The correspondence between SysML and UML diagrams is summarized in
Table 4.1.

1 Systems Engineering Domain Special Interest Group, http://syseng.omg.org/
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Fig. 4.1 UML and SysML
relationship

UML  
not required  
by SysML

UML 2.0 

UML  
reused by 

SysML 

SysML 

SysML  
extensions 

to UML 

Table 4.1 Correspondence between SysML and UML (source [227])

SysML diagram Purpose UML analog

Activity Shows system behavior as control flows and
dataflows. Useful for functional analysis

Activity

Block definition Shows system structure as components along
with their properties, operations, and
relationships

Class

Internal block Shows the internal structures of components,
including their parts and connectors

Composite structure

Package Shows how a model is organized into packages,
views, and viewpoints

Package

Parametric Shows parametric constraints between structural
elements

N/A

Requirement Shows system requirements and their
relationships with other elements

N/A

Sequence Shows system behavior as interactions between
system components

Sequence

State machine Shows system behavior in terms of states that a
component experiences in response to some
events

State machine

Use case Shows systems functions and the actors
performing them

Use case

4.3 SysML Diagrams

SysML diagrams define a concrete syntax that describes how SysML concepts are
visualized graphically or textually. In the SysML specification [187], this notation
is described in tables that show the mapping of the language concepts into graphical
symbols on diagrams.

SysML completely reuses some diagrams from UML 2.1:

• Use case
• Sequence
• State machine
• Package
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SysML
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Diagrams
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Fig. 4.2 SysML diagram taxonomy (source [187])

In addition, two new diagrams are added:

• Requirements
• Parametric

Furthermore, some other UML diagrams are reused in extended form:

• Activity (extends UML activity diagram)
• Block definition (extends UML class diagram)
• Internal block (extends UML composite structure diagram)

Figure 4.2 depicts the SysML diagram taxonomy.

4.3.1 Block Definition Diagram

SysML defines block definition diagrams (BDD), which contain UML 2.0 class
diagrams as their legacy. This diagram is used to define block characteristics in terms
of their structural and behavioral features, as well as the relationships between the
blocks. These relationships include associations, generalization, and dependencies.

A block in SysML is the fundamental modular unit of structure used to define
the type for a logical or conceptual entity. It can be a physical entity (e.g., a system
component), a hardware part, a software, or a data component, a person, a facility,
an item that flows through the system (e.g., water) or an entity in the natural envi-
ronment (e.g., the atmosphere or ocean) [85]. Blocks have defining features that can
be classified into structural features, behavioral interaction features, and constraints.
Properties are the primary structural feature of blocks and they are used to capture
the structural relationships and values of a block [85]. The three important categories
of properties are as follows:

• The part properties, which describe the decomposition hierarchy of a block.
• The reference properties, which describe the relationships between blocks that

are weaker than the previous ones.
• The value properties, which describe the quantifiable characteristics of a block.
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In addition to the aforementioned properties’ categories, ports are a special class
of property used to specify allowable types of interactions between blocks [187]. A
given port enables the behavior of a block (or part of it) to be accessed. A block
may have many ports, each specifying a different interaction point. Though ports
are defined on blocks, they can only be connected to one another by connectors on
internal block diagrams.

The behaviors associated with a block define how the block responds to stimuli
[85]. The three main behavioral formalisms that are used for specifying the behavior
of blocks are activity, state machine, and sequence diagrams:

• Activity diagrams transform inputs to outputs (e.g., energy, information).
• State machine diagrams are used to describe how a block reacts to events.
• Sequence diagrams describe how the parts of a block interact with each other via

message passing.

An example of a block definition diagram is provided in Fig. 4.3.

Fig. 4.3 Block definition diagram example (source [190])

4.3.2 Internal Block Diagram

The SysML internal block (IBD) diagram is similar to the UML 2.x composite
structure diagram. Its main purpose is to describe the internal structure of a block
in terms of interconnections between its parts. Connectors are used to bind different
parts or ports so they can interact. The interaction between the parts of a block is
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Fig. 4.4 Internal block diagram example (source [190])

specified by the behavior of each part. It may include input and output flow, services
invocation, messages sending and receiving, or constraints between properties of the
parts at either end. Figure 4.4 shows an example of an internal block diagram.

4.3.3 Package Diagram

The package diagram is reused by SysML and it is mainly designed for organizing
the model by grouping the model elements. Consequently, models can be organized
in various ways (e.g., by domain, by relationship). Figure 4.5 depicts an example of
a SysML package diagram [190].

4.3.4 Parametric Diagram

Parameters are very important concepts that need to be modeled in a system design.
A parameter (e.g., temperature, pressure) is essentially a measurable factor that can
vary in an experimental setup. Consequently, a parameter variation can alter the
system’s behavior.

In SysML, parametric diagrams are commonly used in order to model properties
along with their relationships. Moreover, this diagram is also used for representing
complex mathematical and logical expressions or constraints. Its purpose is to bring
more interaction capabilities, with various domain-specific modeling and analysis
tools (e.g., equation solvers), by defining a set of quantifiable characteristics and
relations that can be used and analyzed by such tools. Moreover, the parametric
diagram shows how changing a value of a property impacts the other properties in
the system. Therefore, this diagram can be used to perform simulations on models
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Fig. 4.5 SysML package diagram example (source [190])

by modifying parameter values and observing the resulting impact on the whole
system. Additionally, parametric diagrams are useful for analyzing the performance
and reliability of a system by identifying the conditions that might make the system
unreliable or malfunctioning.

A parametric constraint specifies the dependency between one structural prop-
erty of a system and another. Usually, such constraint properties show quantita-
tive characteristics of a system. However, parametric models may be used on non-
quantitative properties as well. Such constraint specifications can mainly be used
for defining dependencies between the system’s parameters and are typically used
in combination with block diagrams. Moreover, this information can also be used
when performing trade-off analysis.

An example of a parametric diagram for a power subsystem is depicted in
Fig. 4.6. It shows the constraints on the FuelFlow Rate, which depends on
FuelDemand and FuelPressure variables. This example involves aspects related
to causality and dependent/independent variables and provides the capability to
express parametric relations between different properties. Equation solvers can then
be used on the parameters in order to determine particular solutions when specific
variables are given values, the benefit being that one can use the set of equations
differently, depending on what the established known and unknown variables are.

4.3.5 Requirement Diagram

A requirement represents a feature, property, or behavior that a system has to pro-
vide or comply with. The task of defining and listing the requirements is done in the
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Fig. 4.6 Parametric diagram example (source [190])

very first steps of the system designing process. Requirements allow the designer
to explicitly state what is expected from the future system. Moreover, requirements
form a cornerstone of the verification and validation process, since they are the
key ingredient for stating exactly what the engineered system should do and how it
is supposed to do it. SysML introduced the requirement diagram, being absent in
UML. This new diagram provides the means to depict requirements and to relate
them to other specification, design, or verification models. The requirements can be
represented in graphical, tabular, or tree structure formats. The strength and useful-
ness of the requirement diagram consist in the fact that it allows one to easily under-
stand the relations between the requirements and their environment. The semantics
of these relationships and other diagram elements are explained in Table 4.2.

A requirement can be decomposed into sub-requirements in order to organize
multiple requirements as a tree of compound requirements. Moreover, a requirement
can be related to other requirements as well as to other elements, such as analysis,
implementation, and testing elements. Therefore, a requirement can be generated or
extracted from another requirement by using the derive relationship.

Furthermore, requirements can be fulfilled by certain model elements using the
satisfy relationship. The verify relationship is used to verify a requirement by apply-
ing different test cases. All of these stereotypes are actually specializations of the
UML trace relationship, which is used to trace requirements and changes across the
model.

Figure 4.7 shows a requirement diagram for the hybrid system vehicle and
focuses mainly on the Acceleration requirement with respect to other require-
ments and model elements. Therein, a refine relation shows how the accel-
eration requirement is refined by a use case named Accelerate. Moreover,
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Table 4.2 Requirement diagram syntax elements

Node name Concrete syntax Definition

Requirement
Includes properties to specify texts,
identifiers, and criticality

Rationale
Attached to any requirement or
relationship

Test case
Links requirements to a verification
procedure (TestCase)

Containment
relationship

Indicates that a requirement is a
composition of other sub-requirements

Satisfy dependency
Indicates that a requirement is fulfilled by
a model element

Verify dependency
Links a requirement to a verification
procedure

Trace dependency Links a requirement to other requirements

Derive dependency
Links two requirements in which a client
requirement can be derived from a
supplier requirement

Copy dependency

Links a supplier requirement to a client
requirement, specifying that the text of the
client requirement is a read-only copy of
the supplier requirement

Refine dependency
Links a requirement to another model
element for clarification

the diagram shows that the PowerSubsystem block has to satisfy the Power
requirement which is derived from the Acceleration requirement. Additionally, a
Max Acceleration test case verifies the Acceleration requirement.

4.3.6 Activity Diagram

The activity diagram illustrates the behavior of the system and can be conceived as
a process, a function, or a task occurring over time with known results. It helps one
understand the system behavior by clearly defining inputs, outputs, and coordina-
tions between behaviors or functions. Activity represents an important diagram for
systems modeling due to its suitability for functional flow modeling commonly used
by systems engineers [23]. Compared to other diagrams, its syntax and semantics
have been significantly extended and its expressive power has also been enhanced.
The major extensions that have been made are as follows:

• Control as data: The first major extension made by SysML to activity diagrams
is the support of disabling actions that are already executing within a given
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Fig. 4.7 Requirement diagram example (source [190])

activity diagram. In UML 2.1.1 activities, control can only enable actions to start.
This extension is accomplished using a type for control values that are treated
like data. Graphically, control operators, which are activities that accept and emit
control values, are called behavior actions extended with a stereotype “control
operator.” Control operator and control values are mostly relevant in the case
of streaming applications, where activities run until disabled by other activities;
otherwise, they might run forever or at an inappropriate time.

• Continuous systems: SysML activity diagrams added that extension to allow
continuous object flows. For this type of flows, the expected rate of flow is infi-
nite, which means that the time between token arrivals is zero. This is espe-
cially helpful in modeling systems that manipulate continuous data such as
energy, information, or physical material. SysML added two options to contin-
uous feature extension; one describes whether to replace values that are already
in the object nodes with newly arriving values (Overwrite), and the other one
states whether to discard values if they do not immediately flow downstream
(NoBuffer).

• Probability: SysML extends activity diagrams with probabilities in two ways:
on edges outgoing from a decision node and also on output parameter sets (the
set of outgoing edges holding data output from an action node). According to
SysML specification, probability on a given edge expresses the likelihood that a
token traverses this edge.

• Enhanced functional flow block diagrams (EFFBD): The activity diagram has
been updated in order to support mapping into EFFBD since the latter is a widely
used model in systems engineering.
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Fig. 4.8 SysML activity diagram example (source [190])

Section 3.2.7 is dedicated to a more detailed description of UML4SysML con-
cepts in activity diagrams. Figure 4.8 is an example of the usage of some new fea-
tures in activity diagrams. This example shows the model of an operating car, which
engine is turned on by a key and that runs until disabled by turning the key off. The
“interruptible region” shows that all the included activities will continue to occur
until the key is turned off. The diagram also shows that driving sends continuous
information to the braking subsystem.

4.3.7 State Machine Diagram

The UML 2 state machine diagram is reused as it is by SysML specification [187].
However, the UML concept of protocol state machines is excluded since it is

found to be unnecessary in the case of systems modeling. This significantly reduces
the complexity of the language. The only relevant new feature is related to the
behavior of the invoked activity while in a given state (specified as “do activities”),
which can be either continuous or discrete, thanks to the extension made by SysML
to UML activity diagrams.

Figure 4.9 shows the high-level states or modes of the HybridSUV including the
events that trigger states modifications.
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Fig. 4.9 SysML state machine example (source [190])

4.3.8 Use Case Diagram

SysML completely reuses the use case diagram, which describes the usage of a sys-
tem (subject) by its actors (environment) to achieve a goal [187]. Use case diagrams
include the use case and actors as well as the associated communications between
them. Interacting actors are generally external to the system and may correspond
to users, systems, or other environmental entities. They may interact directly or
in a mediated manner with the system. The association relation between the actors
and the use case represent the communications between the actors and the subject in
accomplishing the functionality associated with the use case. The use cases enclosed
in the system boundary represent functionality realized by behaviors such as activity,
sequence, and state machine diagrams. Figure 4.10 depicts an example of SysML
use case diagram corresponding to the “operating a vehicle” use case.

4.3.9 Sequence Diagram

Regarding interaction diagrams, SysML only includes sequence diagrams; both
the interaction overview and communication diagrams were excluded because of
their overlapping functionalities and also due to the fact that they do not offer
any additional capabilities compared to sequence diagrams for system modeling
applications. Furthermore, the timing diagram was also excluded due to its limited
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Fig. 4.10 SysML use case diagram example (source [187])

suitability for systems engineering needs [187]. Sequence diagrams can capture
highly complex interactions that are described along lifelines corresponding to inter-
acting actors in various usage scenarios. These actors may represent users, subsys-
tems, blocks, or parts of a system.

4.4 Conclusion

UML has been widely used in the world of software engineering and its utilization
in systems engineering was quite successful for many years. However, the need to
have a tailored version of UML that meets the emerging requirements of today’s
systems engineering professionals has emerged. Consequently, the SysML model-
ing language has been developed as a UML profile.

SysML is an essential enabler for model-based systems engineering as it allows
a system’s model to store design decisions at the center of the systems’ development
process. This offers an enhanced development paradigm that improves the develop-
ment speed, communication, and efficiency. Currently, SysML is gaining increased
popularity and many companies from various fields, such as defense, automotive,
aerospace, medical devices and telecoms industries, are either already using SysML
or are planning to switch to it in the near future [255]. This trend is catalyzed by
two important factors. First, SysML is aligned with the ISO AP233 data interchange
standard and it inherits the XMI interchange from its predecessor (UML). Second,
an increased number of tools already offer support for the still young modeling
language that is SysML.



Chapter 5
Verification, Validation, and Accreditation

There exist many definitions for the terms verification and validation, depending
on the group concerned or the domain of application. In the SE world, the most
widely used definitions of these terms are provided by the Defense Modeling and
Simulation Organization (DMSO) [67, 168]. On the one hand, verification is defined
as “the process of determining that a model implementation and its associated data
accurately represent the developer’s conceptual description and specifications” [67].
On the other hand, validation is defined as “the process of determining the degree to
which a model and its associated data provide an accurate representation of the real
world from the perspective of the model’s intended use” [67].

Because the absence of a consensual definition for V&V raises ambiguities lead-
ing to incorrect use and misunderstanding [52, 94], the following illustrative exam-
ple (inspired by Cook and Skinner [52]) strives to clarify exactly how we intend
to use the two terms in this book. For instance, if a developer designs a system that
complies with the specifications, but presents logical bugs, the system would fail the
verification but successfully pass the validation. Conversely, if the system design is
bug free but does not behave as expected, the model would fail the validation even
though it passes the verification. In more common terms, the main purpose of V&V
is to answer two key questions: (1) “Are we building the system right?” (verification)
and (2) “Are we building the right system?” (validation).

At the start of system life cycle, the end users and the developers have to iden-
tify the system’s needs then translate them into a set of specifications. Within this
process, a collection of functional and non-functional requirements are identified.
Functional requirements specify what functions the system must perform, whereas
the non-functional ones define how the system must behave, in which case they
might impose constraints upon the systems behavior such as performance, security,
or reliability.

The collection of requirements represents a highly iterative process that ends
when the requirements reach a level of maturity sufficient in order to initiate the
development phase. Then, throughout the system development phase, a series of
technical reviews and technical demonstrations are held in order to answer the ques-
tions related to V&V [254]. At the end of the V&V process, the results are inspected
in order to make an official decision on whether to accept the system or not for a
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specific usage. This is known as accreditation and it is commonly performed by
an accreditation authority. Accreditation (also known as certification) is defined as
“the official certification that a model, a simulation or a federation of models with
simulations, and the associated data, is acceptable for use for a specific purpose”
[67]. For example, a flight simulator to train pilots must be certified or accredited
prior to its actual production/deployment.

Generally, the V&V process spans over the system’s life cycle and its main
objective is the assessment of a given system done by identifying possible defects.
Moreover, it has to ensure that it conforms to the requirements predefined by the
stakeholders (i.e., the solution solves the right problem) [115]. This process can
be a major bottleneck in the development life cycle of any complex software or
systems engineering product, since it can represent about 50–80% of the total
design effort [116]. Additionally, many engineering solutions are required to meet a
very high level of reliability, security, and performance, especially in safety-critical
areas. The V&V techniques mainly include testing, simulation, model checking, and
theorem proving. Despite the efforts toward improving the development process,
CASE tools, testing and simulation techniques, significant systems, and software
failures are still occurring. Some examples of these shortcomings include Intel’s
PentiumTM microprocessor floating point division error in 1994 [124], the Ariane 5
crash in June 1996 [49], and the blackout in parts of the United States and Canada
in August 2003 [249]. This highlights the relevance and importance of researching
and developing more comprehensive and enhanced V&V approaches in the area
of SE.

Hereafter, we present an overview of relevant V&V techniques, including testing
and simulation, reference model equivalence, and theorem proving. Though broader
in scope, the noteworthy methodologies involving model checking and program
analysis are detailed as part of the presentation of the verification techniques V&V
technique for object oriented designs. This is because object orientation readily
allows for automating the procedure of generating the semantic model to be assessed
by model checking or, respectively, the related code to be subjected to program
analysis.

5.1 V&V Techniques Overview

According to the Recommended Practices Guide (RPG) [64] published by the
Defense Modeling and Simulation Office (DMSO) in the United States Department
of Defense, verification and validation techniques can be classified into the four
following categories:

• Informal: These techniques rely solely on human interpretation and subjectivity,
without any underlying mathematical formalism. Even though they are applied
with structure and guidelines, and by following standard policies and procedures,
these techniques are tedious and not always effective. Among this category, we
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can enumerate audit, desk checking (called also self-inspection), inspection, and
review.

• Static: These are applied to assess the static model design and the source code
(implementation), without executing the model with a machine. They aim at
checking the structure of the model, the dataflow and control flow, the syntactical
accuracy, and the consistency. Therefore, in order to provide a full V&V cov-
erage, they have to be applied in conjunction with dynamic techniques defined
in the next category. As examples, we can cite cause–effect graphing, control
flow analysis, dataflow analysis, fault/failure analysis, interface analysis, syntax
analysis, and traceability assessment.

• Dynamic: In contrast to the static techniques, dynamic ones are based on the
machine execution of the model in order to evaluate its behavior. They do not
simply examine the output of an execution but also watch the model as it is being
executed. Consequently, the insertion of additional code into the model is needed
to collect or monitor the behavior during its execution. Debugging, execution
testing, functional testing, and visualization/animation are examples of dynamic
techniques. Simulation turns out to be included in this category.

• Formal: These techniques are based on formal mathematical reasoning and
proofs. Among them are model checking and theorem proving.

5.1.1 Inspection

Inspection is a coordinated activity that includes a meeting or a series of meetings
directed by a moderator [22]. Therein, the design is reviewed and compared with
standards. It is based on human judgment and so the success of such an activity
depends on the depth of planning, organization, and data preparation preceding
the inspection [94]. Unfortunately, this technique is based on documented pro-
cedures and policies that are somewhat difficult to manage. It also requires the
training of the involved people. Furthermore, the increasing size and complex-
ity of the design models make this task more tedious and sometimes downright
impossible.

5.1.2 Testing

Testing consists of conducting specific actions in order to verify the operability,
supportability, or performance capability of an item when subjected to real or sim-
ulated controlled conditions [230]. The results obtained are then compared with the
anticipated or expected ones [171]. It often involves the use of special test equipment
or instrumentation in order to obtain accurate quantitative data for analysis. Even
though testing is well known and has been used extensively in software engineering,
it allows only the late discovery of errors, and some types of errors may actually
remain transparent.
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5.1.3 Simulation

Simulation is, to a large extent, the workhorse of today’s design verification and
validation techniques. However, despite the increases in simulation speed and
computer performance, simulation is hardly able to keep up with the rapidly increas-
ing complexity of system design witnessed during the last decade. For example, the
verification of the 64 bit Sun UltraSparcTM processor required a large server clus-
tering in order to simulate thousands of tests corresponding to a figure of 2 billion
instruction cycles [159]. Moreover, the future prospects of simulation are not very
encouraging since the number of simulation cycles required in the verification pro-
cess is growing at an alarming rate (e.g., hundreds of billions of cycles are required
for modern CPU-based systems, whereas only hundreds of million were needed a
mere decade ago). An additional issue with simulation-based methodologies is that
they require the time-consuming step of creating test inputs. The most commonly
used test generation method relies primarily on the manual generation of test vec-
tors. As the design size increases, the complexity and laborious nature of manual
test generation make it highly impractical.

5.1.3.1 Random Test Generation

The huge search spaces associated with large designs have led to the adoption of
random test generation. This approach has the typical undesired side effect of gener-
ating a very large number of inefficient test vectors, resulting in a very lengthy sim-
ulation even when directed or constraint-driven random test generation techniques
are used. For example, many months of simulation using large “computer farms”
consisting of hundreds of workstations are typically required to validate today’s
microprocessor designs.

Pure random test generation has severe limitations. Despite the large number of
patterns generated, the effectiveness in detecting design flaws is rather limited. This
is typically caused by a large percentage of the tests not being useful, especially
in the absence of appropriate constraints. This situation can even result in generat-
ing invalid test vectors. To address the problems associated with pure random test
generation, weighting or biasing is generally used to attempt to constrain the test
generator to interesting areas of the design space with the intention of attempting
to cover the “corner cases.” The problem with this technique is that the design
verification engineer may not always know or be able to determine the direction
in which to guide the test generator.

5.1.3.2 Monitoring Internal Nodes

Because of the very low ratio of system ports to internal nodes and interfaces, the
ability to observe the internal system logic is typically very low. It can usually be
increased by using monitors and assertions. Monitors inspect and log the state of
internal nodes or interface signals, while assertions are “self-checking” monitors
that assert the truth of certain properties and trigger warning or error messages
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if these properties are violated. The use of monitors and assertions may help in
boosting the coverage achieved during test generation. However, the construction of
assertion checkers and monitors is still generally done manually and is particularly
labor intensive. The emergence of libraries containing application-specific assertion
monitors is providing some hope in alleviating this problem.

5.1.4 Reference Model Equivalence Checking

A widely used verification technique is reference model equivalence checking,
which allows two behavioral models to be compared. In general, one of the two
is taken as the reference model and represents the so-called golden model. Model
equivalence checking can work well and is often used in the design process in order
to verify the results of employing various design techniques and/or applying differ-
ent optimization and tuning procedures. It verifies that the behavior of two models
is the same for the exercised scenarios. Note that it does not actually verify that
the design is bug free. Also, when a variance is encountered, the error diagnosis
capability of the model equivalence checking tools is in most cases rather limited,
making it difficult to determine the exact cause(s) of the difference.

5.1.5 Theorem Proving

Theorem proving involves verifying the truth of mathematical theorems that are
postulated or inferred throughout the design using a formal specification language
[214]. The procedure followed when proving such theorems usually involves two
main components, namely a proof checker and an inference engine. However, while
the former can be completely automated in most cases, the latter may require occa-
sional human guidance, thus impeding the automation of the whole process. More-
over, there may be rare cases where, due to the formalism involved (e.g., hidden
circular references leading to a logical paradox), a given theorem conjecture can-
not be neither proven nor disproven (refuted). The aforementioned issues represent
some of the main reasons why presently is not currently widely adopted for per-
forming verification and validation.

5.2 Verification Techniques for Object-Oriented Design

Object-oriented design is characterized by its corresponding structural and behav-
ioral perspectives. Thus, when analyzing a given design, both perspectives have
to be assessed with appropriate techniques. Moreover, object-oriented design mod-
els exhibit specific features, such as modularity, hierarchical structure, inheritance,
encapsulation. These features are reflected in various related attributes such as com-
plexity, understandability, reusability, maintainability. Consequently, based on the
evaluation of the aforementioned attributes, one can determine the quality of an
object-oriented system design.
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In this setting, empirical methodologies, such as those involving software met-
rics, can help assess the quality of the structural architecture of the design. In addi-
tion, complementary automatic verification techniques based on formal methods
such as model checking can achieve a comprehensive behavioral assessment of the
model (or the components thereof) against a set of specification properties. These
specifications capture the intended behavior of the system. However, such exhaus-
tive techniques are generally accompanied by corresponding scalability shortcom-
ings (e.g., state explosion).

In this context, techniques like program analysis, particularly dataflow and con-
trol flow analysis, have the potential to address, among other things, some of the
scalability issues. In turn, this renders the model-checking procedure more efficient.

5.2.1 Design Perspectives

The process of system modelling typically involves an analysis phase followed by a
subsequent design phase. In the analysis phase, the key aspects are represented by
questions such as “What is the problem space? What are the envisioned components
and how are they related to each other? What are the attributes and the operations
of the components and how are they interacting in order to accomplish the intended
result? etc.” In this context, the design of a system usually involves a structural
representation of the components and their relations, along with a behavioral speci-
fication that captures the system dynamics.

Consequently, when modeling a system using languages like UML, the design
can be viewed generally from two main design perspectives, namely the structural
description and the exhibited behavior. The structural perspective can be captured
in a visual, diagrammatic notation by specifying the distinctive attributes of the sys-
tem and its components. Alongside, we can specify their respective relations with
respect to each other. The behavioral perspective can be encoded by appropriate
diagrams that capture the dynamics of various state parameters in the system or
the underlying components. Furthermore, such diagrams must also reflect different
internal or external interactions of the system. Both perspectives have an accompa-
nying complexity degree that can be the subject of different analysis and assessment
processes. Moreover, structural analysis can be used in order to evaluate numerous
quality attributes and may be used as a feedback in many tuning and optimization
mechanisms. In contrast, the behavioral analysis is usually much more demanding
and involves intense rigor and preciseness. As point in fact, it is well known that a
relatively short encoding of a behavioral model may have a very complex associated
dynamics as is the case with some forms of automata (e.g., cellular automata).

5.2.2 Software Engineering Techniques

A significant number of metrics from the software engineering field [143, 167]
are suitable for assessing the quality attributes of various structural design models.
Certain literature supports the usefulness of metrics in systems engineering. For
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instance, Tugwell et al. [236] outline the importance of metrics in systems engi-
neering, especially in relation to complexity measurement. Therefore, a potential
synergy can be achieved by applying the metric concept to behavioral specifications.
Accordingly, in addition to applying metrics on the structural diagrams such as class
diagrams, they can also be applied on the semantic model derived from different
behavioral diagrams. For example, the cyclomatic complexity and the length of crit-
ical path can be applied on semantic models as various forms of automata. Thus,
the assessment of design’s quality can combine both the static and the dynamic
perspectives.

5.2.3 Formal Verification Techniques

Formal verification techniques, such as model checking, establish a solid confidence
in a reliable V&V process. Model checking is an automated and comprehensive
verification technique that can be used to verify whether the properties specified for
a given design or its components are satisfied for all legal design inputs. Temporal
logics allow the users to express the properties of the system over various trajectories
(state paths). Model checking is primarily useful in verifying the control parts of a
system, which are often the critical areas of concern. Model checking is generally
impractical for a thorough dataflow analysis, since it suffers from the well-known
state explosion problem. In a worst-case scenario, the state space of the design that
must be explored can grow exponentially with the number of state variables. Model
checking can also be performed on the design components, but in this case it requires
the specification of precise interfaces for those components in order for only legal
inputs to be considered. Note that a potential issue in this case consists in the fact
that, in practice, the interface specifications of the design component modules are
subject to change during the design process.

Model checking can be fully automated for design verification. In fact, it has been
successfully used in the verification of real applications, including digital circuits,
communication protocols and digital controllers. It yields results much more quickly
than theorem proving [139]. In order to use it, one first has to map the design to
a formal model that is accepted by the model checker (semantic model, which is
usually some sort of a transition system). Second, one needs to express, in temporal
logic formulas, the properties (derived from the requirements) that the design must
satisfy. Then, by providing these two ingredients, the model checker exhaustively
explores the state space of the transition system during the verification stage and
checks automatically whether or not the specifications hold. One of the benefits of
many model checkers (e.g., SPIN [109], SMV [157], and NuSMV [45]) is that, if a
specification is violated, a counterexample is produced.

In the absence of tools that can be used to simplify the specification of design
properties, model-checking technique is heavily dependent on experienced users
that are able to properly encode the properties of the design or its components into
temporal logic formulas. In this respect, the need to rely on experienced design
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engineers with strong background in temporal logics has restricted the adoption of
this technology. However, various forms of macro-notation can be used to simplify
the specification of properties.

An additional issue consists of the limited ability to find a well-suited metric that
can be used to evaluate the design property coverage and, thus, it is relatively diffi-
cult to determine if all design properties have been specified and verified. Notwith-
standing, this issue may be circumvented by performing appropriate requirements
analysis especially in the cases where it is possible to clearly express design model
requirements by using specific diagrams belonging to modelling languages like
UML or SysML.

5.2.4 Program Analysis Techniques

Program analysis techniques [170] are used to analyze software systems in order
to collect or infer specific information about them to evaluate and verify system
properties such as data dependencies, control dependencies, invariants, anoma-
lous behaviors, reliability, and compliance with certain specifications. The gathered
information is useful for various software engineering activities, such as testing,
fault localization, and program understanding. There are two approaches in pro-
gram analysis techniques, namely static and dynamic analysis. Static analysis is
performed before program execution, while dynamic analysis focuses on a specific
execution. The former is mainly used to determine the static aspects of a program
and it can be used to check whether the implementation complies with the specifica-
tions. The latter, although less reliable, can achieve greater precision in showing the
presence of errors by dynamically verifying the behavior of a program on a finite
set of possible executions selected from a possibly infinite domain. Static program
analysis techniques can also be used in order to slice (decompose) a program or a
transition system into independent parts that can be then analyzed separately.

The efficiency and accuracy of the analysis performed by static analyzers vary
from a limited scope, wherein only individual statements and declarations are
considered, to those that include the complete source code of a program in their
analysis. The resulting information obtained from the analysis may vary from high-
lighting possible coding errors to rigorous methods that prove properties about a
given program. In a broader sense, software metrics and reverse engineering can also
be considered in the field of static analysis. A static code analyzer tool automates the
code inspection process and offers all kinds of intrinsic quality information to the
developer. Automated code inspection enables the automation of many tasks that are
usually carried out during the code reading and reviewing sessions in order to check
the source code against a coding standard. The automation procedure implies that
certain parts of the inspections will be done by means of a tool as part of the software
development process. A direct result of this approach is that the time required to
perform the code reviewing is decreased. Furthermore, because of the automation,
all codes can be subjected to inspection. Such a level of coverage is practically
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never reached with manual inspections. For this purpose, an essential requirement
of the static analyzer is its ability to parse and “understand” the target source code.
In this respect, it is important to mention that the term “static analysis” is usually
applied to the analysis performed by an automated tool, while human analysis is
called “program understanding” or “program comprehension.”

5.3 V&V of Systems Engineering Design Models

In this section we review the V&V approaches targeting SE design models accord-
ing to their usability, reliability, automation, rigor, thoroughness, and scalability.

A large number of initiatives conducting research in the V&V of software engi-
neering design models are focusing on designs expressed in UML 1.x [29, 65,
80, 135, 155, 212]. Recently, there has been a greater interest in UML 2.x design
models, such as in [15, 79, 93, 98]. Aside from initiatives proposing monolithic
approaches (using a single technique), other research initiatives propose a cumula-
tive approach based on model checking and theorem proving [131] or model check-
ing and simulation [173, 174].

Kim and Carrington [131] propose a V&V framework for UML 1.0 that inte-
grates multiple formalisms such as the Symbolic Analysis Laboratory (SAL) [18],
CSP, and Higher Order Logic (HOL) [162] via the object-oriented specification lan-
guage Object-Z [221]. However, a developer’s intervention is required in order to
choose the formalism to be applied, and this constitutes a major inconvenience.
The initiatives [173, 174] emerged in the context of the IST Omega project.1 Ober
et al. [174] describe the application of model-checking and simulation techniques
in order to validate the design models expressed in the Omega UML profile. This
is achieved by mapping the design to a model of communicating extended timed
automata in IF [31] format (an intermediate representation for asynchronous timed
systems developed at Verimag). Properties to be verified are expressed in a formal-
ism called UML observers. In [173], Ober et al. present a case study related to the
validation of the control software of the Ariane-5 launcher. The experiment is done
on a representative subset of the system, in which both functional and architectural
aspects are modeled using Omega UML 1.x profile. The IFx, a toolset built on top of
the IF environment, is used for the V&V of both functional and scheduling-related
requirements using both simulation and model-checking functionalities.

SysML is relatively young and thus there are still very few initiatives concerned
with the V&V of SysML design models [39, 112, 125, 197, 250, 253]. Most of the
proposals on SysML are rather concerned with the use of simulation, either directly
or via Petri net formalism. As earlier on, when systems engineers adopted the UML
modeling language for describing and documenting their design models, UML 2.x
turns out to be a more adequate version than the previous ones [106]. However,

1 http://www-omega.imag.fr/
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along with more recent efforts on the V&V of design models targeting UML 2.x
and SysML, some relevant ones on UML 1.x are also worthy of mention.

A large body of research proposals target the analysis of UML-based design
models. Various research works focus on the analysis of UML diagrams from con-
sistency and data integrity viewpoints. The consistency issue is related to the fact
that various artifacts representing different aspects of the system should be prop-
erly related to each other in order to form a consistent description of the developed
system. Although these aspects are important, the present material focuses on an
equally important issue: the verification of the conformance of design models to
their stated requirements. Some of the initiatives propose V&V approaches that
jointly consider a set of diagrams, whereas the majority focus on a single diagram
and particularly on a subset of its semantics. For example, the state machine dia-
grams have gained significant attention. In addition, a single V&V technique is
generally proposed (e.g., automatic formal verification, theorem proving, or sim-
ulation). Furthermore, some initiatives propose a formalization of the semantics of
a considered diagram, which is subjected to formal verification. However, other
proposals prefer a direct mapping into the specification language of a particular
verification tool.

Some of the works [51, 54] propose the simulation of UML design models
for performance analysis while others [110, 133, 211] target model execution and
debugging. For instance, Hu and Shatz [110] propose to convert UML statecharts
into Colored Petri Nets (CPN). Collaboration diagrams are used for connecting
different model objects, so one obtains a single CPN of the whole system. The
design/CPN tool is then used to perform simulation. Sano et al. [211] propose
a mechanism where model simulation is performed on four behavioral diagrams,
namely statechart, activity, collaboration, and sequence diagrams.

Though the community interest is shifting toward UML 2.0, also worthy of
mention are other related works [135, 141, 161] that address UML 1.x statecharts
(renamed to state machines in UML 2.0). Latella et al. [141] as well as Mikk et al.
[161] propose a translation of subsets of UML statecharts into SPIN/PROMELA
[109] using an operational semantics as described in [142]. That approach consists
of translating the statechart into an extended hierarchical automaton (EHA). The
latter is then modeled into PROMELA and subjected to model checking. Some
proposals concentrate only on ascribing a formal semantics to the selected UML
diagram.

An extensive survey on the formal semantics of UML state machine can be found
in Crane and Dingel [57]. Of note, Fecher et al. [81] present an attempt to define a
structured operational semantics for UML 2.0 state machine. Similarly, Zhan and
Miao [260] propose a formalization of its semantics using the Z language. This
allows the transformation of the diagram into the corresponding flattened regular
expression (FREE) state model that is used to identify inconsistency and incom-
pleteness and also to generate test cases. However, pseudostates such as fork/join
and history are not considered. Gnesi and Mazzanti [93] provide an interpretation of
a set of communicating UML 2.0 state machine diagrams in terms of doubly labeled
transition system (L2TS). The state/event-based temporal logic μUCTL [91] is used
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for the description of the dynamic properties to be verified. A prototype environment
is developed around the UMC on-the-fly model checker [92].

Some researchers, such as van der Aalst [247] and Ellis and Nutt [76] propose
Petri nets as the formalism for capturing activity diagrams semantics. Thus, activity
diagrams for workflow systems are described using interval-timed colored Petri nets
[126], which are Petri nets [206] extended with colored tokens required to model
data and timing intervals for transitions. Eshuis [78] uses a mapping of activity dia-
grams to equivalent activity hypergraphs by flattening the structure of the former.
The activity hypergraph of a given diagram is then mapped to a clocked labeled
Kripke structure (CLKS), which is an extension of Kripke systems with real vari-
ables. Vitolins and Kalnins [251] consider a subset of the activity diagram that is
suitable for business process modeling. The semantics is based on the token flow
methodology that employs the concept of activity diagram virtual machine. In the
context of V&V, the authors consider the defined virtual machine as a basis for UML
activity diagram simulation engines.

Guelfi and Mammar [98] propose to verify UML activity diagrams extended
with timed characteristics. This is based on the translation of activity diagrams
into PROMELA code, the input language of the SPIN model checker [109]. Eshuis
[79] proposes two translations of UML activity diagrams into finite state machines
which are input to the NuSMV model checker [46]. Both translation approaches
are inspired by statechart semantics. The first is a requirement-level translation and
the second is an implementation-level translation. The latter is inspired by the OMG
statechart semantics. The resulting models are used in model-checking data integrity
constraints in activity diagrams and in a set of class diagrams specifying the manipu-
lated data. Activity diagrams are first transformed into activity hypergraphs through
transformation rules. The translation rules are then defined for activity hypergraphs
resulting in the NuSMV code. However, that activity semantics excludes multi-
ple instances of activity nodes. Beato et al. [15] propose the verification of UML
design models consisting of state machine and activity diagrams by means of for-
mal verification techniques using the symbolic model verifier (SMV) [158]. The
diagrams are encoded into the SMV specification language via the XML metadata
interchange (XMI) format. Mokhati et al. [166] propose the translation of UML
2.0 design models consisting of class, state machine, and communication diagrams
into Maude language [152]. Properties expressed using linear temporal logic (LTL)
[248] are verified on the resulting models using Maude’s integrated model checker.
Only basic state machine and communication diagrams with the most common fea-
tures are considered. Xu et al. [259] propose an operational semantics for UML 2.0
activity diagrams by transforming it into communicating sequential processes (CSP)
[105]. The resulting CSP model is then used for analysis with the model-checker
FDR. Kaliappan et al. [129] propose the conversion of UML state machines into
PROMELA code and mapping sequence diagrams into temporal properties for the
verification of communication protocols using SPIN model checker [109]. Engels
et al. [77] propose the dynamic meta modeling (DMM) technique, which uses graph
transformation techniques to define and analyze the semantics of UML activity
diagrams based on its metamodel. The considered activity diagrams are limited to
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workflow modeling, thus imposing some restrictions on their expressiveness and
their semantics. This is because workflows have to adhere to specific syntactic and
semantic requirements. DMM is used to generate the transition systems underlying
the semantic model of activity diagrams. The analysis is limited to the verification of
the soundness property of workflows. The latter is expressed using CTL [48] tempo-
ral logic and then inputs into the graphs for object-oriented verification (GROOVE)
tool [95] in order to apply model checking over the generated transition systems.

Concerning sequence diagrams, Grosu and Smolka [97] propose non-
deterministic finite automata as their semantic model. A given diagram is trans-
lated into a hierarchical automaton and both safety and liveness Büchi automata are
derived from it. These automata are subsequently used to define a compositional
notion of refinement of UML 2.0 sequence diagrams. Li et al. [145] define a static
semantics for UML interaction diagrams to support the well-formedness verification
of the interaction diagrams. The dynamic semantics is interpreted as a trace-based
terminated CSP process that is used to capture the finite sequence of message calls.
Cengarle and Knapp [40] propose a trace-based semantics for UML 2.0 interac-
tions. Störrle [223] presents a partial-order semantics for time-constrained inter-
action diagrams. Korenblat and Priami [137] present a formalization of sequence
diagrams based on the π -calculus [164]. The state machine diagrams of the inter-
acting objects are considered in order to identify feasible occurrence of sequences
of messages. Accordingly, objects in a sequence diagram are modeled as π -calculus
[164] processes and the exchanged messages as communications among these pro-
cesses. The semantics of sequence diagram is defined based on the structured opera-
tional semantics of π -calculus [164]. The corresponding semantic model is a labeled
transition system (LTS) that is used to generate the input of the model checker.

As far as SysML is concerned, Viehl et al. [250] present an approach based
on the analysis and simulation applied to a system-on-chip (SoC) design specified
using UML 2.0/SysML. Time-annotated sequence diagrams, together with UML
structured classes/SysML assemblies, are considered for describing the system
architecture. However, the SysML version considered therein differs from the one
standardized by the OMG. Huang et al. [112] propose to apply simulation based
on a mapping of SysML models into their corresponding simulation metamodels.
The latter is used to generate the simulation model. Similarly, Paredis and John-
son [197] propose to apply a graph transformation approach to map the structural
descriptions of a system into the corresponding simulation models. Wang and Dagli
[253] propose the translation of mainly SysML sequence diagrams and partly activ-
ity and block definition diagrams into colored Petri nets (CPNs). The resulting
CPNs represent executable models that are subjected to static and dynamic anal-
ysis (simulation). The behavior obtained by simulation is generated in the form of
message sequence Charts (MSC), which are compared to sequence diagrams. This
verification is based on the visual comparison of the simulated behavior against the
intended behavior. Moreover, the assessment of non-functional requirements is not
considered. Carneiro et al. [39] consider SysML state machine diagrams annotated
with MARTE profile [189], a UML profile for model-driven development of real-
time and embedded systems. This diagram is mapped manually into timed Petri nets
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with energy constraints (ETPN) to estimate energy consumption and execution time
for embedded real-time systems. The analysis is performed using a simulation tool
for timed Petri nets. Jarraya et al. [125] consider the mapping of a synchronous ver-
sion of time-annotated SysML activity diagrams into discrete-time Markov chains
(DTMC). The latter model is input to the probabilistic model-checker PRISM for
the assessment of functional and non-functional properties.

We focus hereafter on the works that address performance analysis of activity
diagrams. In the literature, there are three major performance analysis techniques:
analytical, simulative, and numerical [103]. Among various performance models,
we can distinguish four classes of performance models that can be distinguished:
queueing networks (QN) [26], stochastic Petri nets (SPN) [99], Markov chains (MC)
[26], and stochastic process algebras (SPA) [103].

Queueing networks (QN) are applied to model and analyze resource-sharing
systems. This model is generally analyzed using simulation and analytical meth-
ods. There are two classes within the family of queuing networks: deterministic
and probabilistic. Among the initiatives targeting the analysis of design models
(including UML/SysML) using deterministic models, Wandeler et al. [252] apply
modular performance analysis based on the real-time calculus and use annotated
sequence diagrams. In the context of probabilistic QN, Refs. [13, 53, 199] address
performance modeling and analysis of UML 1.x design models. Cortellessa and
Mirandola [53] propose extended queueing network (EQN) for UML 1.x sequence,
deployment and use case diagrams. Layered queueing network (LQN) is proposed
by Petriu and Shen [199] as the performance model for UML 1.3 activity and
deployment diagrams. The derivation is based on graph-grammar transformations
that are notoriously complex, requiring a large number of transformation rules. The
time annotations are based on the UML SPT profile [176]. Balsamo and Marzolla
[13] target UML 1.x use case, activity, and deployment diagrams annotated accord-
ing to the UML SPT profile. These diagrams are transformed into multi-chain and
multi-class QN models; these impose restrictions on the design. Specifically, activity
diagrams cannot contain forks and joins, otherwise the obtained QN can only have
an approximate solution [26].

Various research proposals such as [36, 132, 149, 160, 235] consider stochastic
Petri net (SPN) models for performance modeling and analysis. King and Pooley
[132] propose generalized stochastic Petri nets (GSPN) as performance model for
combined UML 1.x collaboration and statechart diagrams. Numerical evaluations
of the derived Petri net are performed in order to approximately evaluate the perfor-
mance. López-Grao et al. [149] present a prototype tool for performance analysis of
UML 1.4 sequence and activity diagrams based on the labeled generalized stochas-
tic Petri nets (LGSPN). Along the same lines, Trowitzsch et al. [235] present the
derivation of stochastic Petri nets (SPNs) from a restricted version of UML 2.0 state
machines annotated with the SPT profile.

Alternatively, stochastic process algebras (SPA) are also extensively used for per-
formance modeling of UML design models [17, 37, 38, 146, 202, 228, 233, 234].
Pooley [202] considers a systematic transformation of collaboration and statechart
diagrams into the performance evaluation process algebra (PEPA). Canevet et al.
[38] describe a PEPA-based methodology and a toolset for extracting performance
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measurements from UML 1.x statechart and collaboration diagrams. The state space
generated by the PEPA workbench is used to derive the corresponding Continuous-
Time Markov Chain (CTMC). In a subsequent work, Canevet et al. [37] present
an approach for the analysis of UML 2.0 activity diagrams using PEPA. A map-
ping from activity to PEPA net model is provided, although it doesn’t consider
join nodes. Tribastone and Gilmore propose a mapping of UML activity diagrams
[233] and UML sequence diagrams [234] annotated with MARTE [189] into the
stochastic process algebra PEPA. Another type of process algebra is proposed by
Lindemann et al. [146]: the generalized semi-Markov process (GSMP). The UML
1.x state machine and activity diagrams are addressed. Trigger events with deter-
ministic or exponentially distributed delays are proposed for the analysis of timing
in UML state diagrams and activity diagrams. Bennett and Field [17] propose the
application of performance engineering to UML diagrams annotated using the SPT
UML profile. System behavior scenarios are translated into the stochastic finite state
processes (FSP). Stochastic FSP are analyzed using a discrete-event simulation tool.
However, no algorithm is provided for the inner workings of the approach. Tabuchi
et al. [228] propose a mapping of UML 2.0 activity diagrams annotated with SPT
profile into interactive Markov chains (IMC) intended for performance analysis.
Some features in activity diagrams are not considered, such as guards on deci-
sion nodes and probabilistic decisions. The duration of actions is expressed using
a negative-exponential distribution of the delay. More recently, Gallotti et al. [87]
focus on model-based analysis of service compositions by proposing the assessment
of their corresponding non-functional quality attributes, namely performance and
reliability. The high-level description of the service composition, given in terms
of activity diagrams, is employed to derive stochastic models (DTMC, MDP, or
CTMC) according to the verification purpose and the characteristics of the activity
diagram. The probabilistic model-checker PRISM is used for the actual verification.
However, there is neither a clear explanation of the translation steps nor a PRISM
model example that illustrates the approach.

With respect to program analysis techniques for the V&V of SE design models,
Garousi et al. [88] consider a model-based control flow analysis (CFA) for UML 2.0
sequence diagrams. To the best of our knowledge, this is the one and only work that
can be highlighted in this research direction.

5.4 Tool Support

In this section, we focus on describing the most visible formal verification environ-
ments targeting UML models and static analyzers.

5.4.1 Formal Verification Environments

A surge of interest has been expressed in the application of model checking to the
verification and validation of UML models. In this context, various tools emerged as
a result of various research activities including [29, 65, 80, 135, 141, 155, 161, 212]
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for UML 1.x and [15, 77, 79, 93, 98, 129, 166, 258] for UML 2.x. Therein, a number
of V&V framework tools are proposed such as TABU [15], HIDE [29], PRIDE
[155], HUGO [212], Hugo-RT [135], and VIATRA [58]. Below, we detail some of
the most relevant ones.

TABU (tool for the active behavior of UML) [15] is a tool that enables the
automatic verification of reactive systems behavior modeled by state machine and
activity diagrams by means of formal method techniques using the symbolic model
verifier (SMV [158]) model checker. The UML version is not clearly specified but
it seems to be a subset of UML 2.0. The automatic transformation performed by
the tool encodes the diagrams into the SMV specification language via the XML
metadata interchange (XMI) format.

Bondavalli et al. [28] express the increasing need for the integration of valida-
tion techniques and cite two projects (HIDE and GUARDS) that have been carried
out with the objective to integrate a set of validation techniques into a common
framework. The most relevant to our work is the HIDE (high-level integrated design
environment for dependability) tool [29]. It is an approach for an integrated valida-
tion environment within a European project (ESPRIT 27493) based on formal ver-
ification, quantitative and timeliness analysis. Given the systems design described
in UML 1.x, the overall methodology is based on two translations [27]. The first is
a translation of UML structural diagrams (use case, class, object, and deployment
diagrams) into timed and generalized stochastic Petri nets for dependability assess-
ment using PANDA, a Petri net analysis tool. The second translation concerns UML
statechart diagrams, which are mapped into Kripke structures for formal verification
of functional properties. The resulting Kripke structure of a diagram, along with the
requirements formally expressed, is used as input to the model-checker SPIN [109]
to carry out the assessment of the design. Other parts of the dynamic model, mainly
sequence and activity diagrams, are translated to generalized stochastic Petri nets
(GSPN).

With the same goal of integrating methods for validation of design, a relatively
recent research project named PRIDE [155] has been developed. It aims principally
at developing a software development environment based on UML 1.4. The latter
integrates a formal V&V technique supported by SPIN model checker and the quan-
titative dependability attributes assessment. The project concentrates essentially on
dependable systems and it is an extension of an already existing environment dedi-
cated to the modeling of hard real-time (HRT) systems using UML (HRT-UML). To
use the model checker, the collection of statecharts representing a specific view of
the system design is converted into a PROMELA model (the SPIN input language).
The quantitative validation of system dependability attributes is based on building
a dependability model, namely stochastic activity networks (SAN) [210], from a
structural UML diagram. The latter provides a representation of the dependability
characteristics and permits analysis of the dependability measurements of a sys-
tem based on its design. Both HIDE and PRIDE are based on the same theoret-
ical background concerning the semantic model of statechart published in [142].
However, PRIDE extends it, mainly by offering the possibility of using object state
variables.
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Schäfer et al. [212] present HUGO, a prototype tool for the automatic verification
of UML 1.x state machines and collaboration diagrams. More precisely, the aim is
to use the model-checker SPIN to verify that the interactions defined in the col-
laboration diagrams are actually realized by the state machines. The state machine
diagrams are expressed in PROMELA and the properties represented in collabo-
rations are expressed as a set of Büchi automata. In the same vein, Knapp et al.
[135] present a prototype tool, HUGO/RT, for the automatic verification of a subset
of timed state machines and time-annotated collaboration UML 1.x diagrams. It is
an extension of the HUGO tool [212], which targets untimed UML state machines.
Knapp et al. [135] use the model-checker UPPAAL to verify state machine diagrams
(compiled to timed automata) against the properties described in the collaboration
diagrams (compiled to observer-timed automaton).

5.4.2 Static Analyzers

Many innovations in modern computer programming, including object orientation
and its related concepts such as type classes, inheritance, and the like are basically
elaborated forms of abstraction. Accordingly, the more complexity we have in pro-
gram behavior, the more the need for improved abstractions will continue to grow.
However, abstractions may induce slower execution, larger memory footprint, and
the execution side effects. In this respect, compiler optimizations can oftentimes
avoid these disadvantages. In addition, static analyzers are borrowing core concepts
and practices from compiler technology in order to “see” through the abstraction
layers and infer a broad range of possible behaviors of interest, ranging from mem-
ory leaks to security violations. In the following we present a number of relevant
static analyzers along with their features and potential benefits.

ASTRÉE (Analyseur Statique de logiciels Temps Réel Embarqués – Real-time
Embedded Software Static Analyzer) [55] is a static program analyzer developed at
the Laboratoire d’Informatique de l’École Normale Supérieure (LIENS). Its func-
tion is to prove the absence of run-time errors (RTE) in programs written in C. It
achieved a number of remarkable results. In November 2003, it proved automati-
cally the absence of any RTE in the primary flight control software of the Airbus
A340 fly-by-wire system, a program containing 132,000 lines of C code. Moreover,
in January 2004, it was extended to analyze the electric flight control codes then in
the development and testing of the A380 series. Also, in April 2008, ASTRÉE was
able to prove automatically the absence of any RTE in a C version of the automatic
docking software of the European Space Agency (ESA) Jules Vernes Automated
Transfer Vehicle (ATV).

Polyspace Technologies (operated now as a subsidiary of The MathWorks Inc.)
offers the system code verification toolkit Polyspace [231] that can be used to verify
run-time errors in applications written in C, C++, and ADA code. Before compila-
tion and execution, it can detect and mathematically prove the absence of different
classes of RTEs that may create vulnerabilities during the execution. The tool can



5.4 Tool Support 91

help developers improve the code quality. Moreover, it can be used to verify the code
against a set of coding rules. The product is used in various industrial domains, such
as aerospace and defense, biotech industries, automotive, pharmaceutical, commu-
nications, and semiconductor industries.

Fortify Static Code Analyzer (SCA) [83] helps developers analyze source code
for security vulnerabilities during the software development cycle. SCA reveals
static vulnerabilities and verifies other vulnerabilities found during testing and
production. With numerous rules of more than 200 vulnerability categories, this
analyzer reviews the possible paths that an application may consider. In a developer-
centric mode, Fortify-SCA supports a large variety of development environments
and a wide range of programming languages including C/C++, .NET, Java, JSP,
ASP.NET, ColdFusion, “Classic” ASP, PHP, VB6, VBScript, JavaScript, PL/SQL,
T-SQL, python, COBOL. Integration in IDEs is facilitated and may produce output
compliant with other dynamic executable and real-time analyzers. Rough Auditing
Tool for Security (RATS)2 is an automated code review tool initiated by Secure
Software Inc., who was later acquired by Fortify Software Inc. It can perform a
rough analysis of programs written in the following languages: C, C++, Perl, PHP,
and Python. RATS is able to detect common security-related programming errors
such as buffer overflows and race conditions.

Klocwork Truepath (KT) [134] from Kolcwork is an accurate and efficient tool
for finding critical security vulnerabilities, quality defects, and architectural issues.
It uses a variety of approaches to infer the run-time behavior of the application
before the actual execution. The tool includes an advanced symbolic logic engine
to establish the software’s behavior. The analyzer is able to detect memory and
resource leaks, incorrect memory de-allocation, concurrency violations, usage of
uninitialized data, etc. From the code security perspective, it also verifies SQL
injection, path injection, information leakage, weak encryption, buffer overflows,
etc. Furthermore, KT can also reveal dead or unreachable code, unused function
parameters, and local variables. The tool is used by more than 650 organizations for
bug identification as well as for verifying the code’s security and quality.

HP Code Advisor [102] is a static analysis tool for programs written in C and
C++. It can report various programming errors found in the source code. It stores
the diagnosed information in a database and with the built-in knowledge of system
APIs looks deep into the code and provides meaningful feedback. HP Code Advisor
can also detect a wide range of potential problems, including memory leaks, used
after free, double free, array/buffer out of bounds access, illegal pointer access, un-
initialized variables, unused variables, format string checks, suspicious conversion
and casting, as well as out of range operations.

PMD3 is a rule-set-based static analysis tool for Java source code. It can identify
potential problems such as empty try/catch/finally/switch blocks, unused local vari-
ables, parameters and private methods, empty if/while statements, overcomplicated

2 http://www.fortify.com/security-resources/rats.jsp
3 http://pmd.sourceforge.net/
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expressions, unnecessary if statements, and for loops transformable to while loops.
Moreover, it can detect suboptimal code, wasteful string usage, classes with high
cyclomatic complexity measurements, as well as duplicate code.

ChecKing [196] is a web application developed by Optimyth created for moni-
toring the quality of the software during the development process. The automated
analysis includes the use of measurements obtained during the software develop-
ment process (activity, requirements, defects, and changes) as well as analyzable
software elements such as project documentation, source code, test scripts, build
scripts.

Coverity is a software vendor that provides a static analysis tool named Prevent
[56]. It can be used to perform static analysis on C, C++, and Java source code.
It is based on the Stanford Checker which uses model checking to verify source
correctness. One of the most notable successes of Prevent was its deployment under
a U.S. Department of Homeland Security contract, who is using it to examine over
150 open-source applications for bugs. In March 2007, it was announced that its use
contributed to the detection and subsequent correction of a figure of over 6000 bugs
spanning across 53 projects.

The DMS Software Reengineering Toolkit [218] is a program analysis toolkit
provided by Semantic Designs. It allows for the automation and customization of
source code program analysis, modification, translation, or generation of software
systems that are required to mix many programming languages in the context of
large-scale software systems. Moreover, it has predefined language front ends for
many languages (C, C++, Java, Verilog, VHDL, COBOL, etc.) allowing for quick
customization.

Scitools’ Understand [215] is a commercial static code analyzer that is primarily
used in the field of reverse engineering, automatic documentation, and code met-
rics calculation for complex projects. It provides an IDE designed to help in the
maintenance and understanding of old and new code. This is done by using detailed
cross-references in conjunction with a variety of graphical views. Understand can
parse the following languages: Ada, FORTRAN, Jovial, Pascal, K&R C, ANSI C,
C++, Delphi, Java, and VHDL.

SofCheck’s Inspector [222] is a static analysis tool targeting Java and Ada. It can
statically determine and document the pre-conditions and post-conditions of every
method or subprogram that it inspects. It can then use that information to identify
logical flaws, race conditions, and redundant code.

5.5 Conclusion

The complexity and intricacy of modern system design requires effective resources
for V&V. In this chapter, various approaches and relevant techniques have been pre-
sented alongside the state of the art in the verification and validation research areas
targeting UML and SysML design models. The laborious nature of V&V stems from
its broad scope, one that has to encompass the system’s overall development life



5.5 Conclusion 93

cycle. Moreover, it requires elaborate approaches as it targets the absence of logical
bugs and concurrently ensures conformance to the requirements. In addition, a sub-
sequent accreditation process is usually performed in order to officially certify that
a proposed system meets the established acceptability criteria. With that in mind,
we have also presented various tools for formal verification and program analysis
that can fulfill different aspects of V&V pursuing high-quality system design and
development.



Chapter 6
Automatic Approach for Synergistic Verification
and Validation

Modeling languages, such as UML 2.x and SysML, support model-based systems
engineering. They are commonly used to specify, visualize, store, document, and
exchange design models. Generally, they contain all the syntactic, semantic, and
presentation information regarding a given application domain. A model is a repre-
sentation of the system that is used to compile the requirements in order to create
executable specifications. These specifications model the system at a high level of
abstraction and include all the information needed to specify the software or hard-
ware implementation. Specific diagrams are used to capture some of the system’s
important aspects:

• Requirements, which are a description of what a system should do. They are cap-
tured by either using SysML requirement diagrams or using UML 2.0 sequence
and use case diagrams.

• Interface, which identifies the shared boundaries of the different components
of the system, whereby the information is passed. This aspect is shown using
UML 2.0 class and composite structure diagrams and SysML block definition
and internal block diagrams.

• Structure, which is shown as UML class and composite structure diagrams and
SysML block definition and internal block diagrams.

• Control, which determines the order in which actions, states, events, and/or pro-
cesses are arranged. It is captured using UML 2.x and SysML state machine,
activity, and sequence diagrams.

• Concurrency, which is an aspect that identifies how activities, events, and pro-
cesses are composed (sequence, branching, alternative, parallel composition,
etc.). It is specified using UML/SysML sequence and activity diagrams.

• Time: It is captured by UML timing diagrams, which provide a visual represen-
tation of objects changing their states and interacting over time. UML/SysML
sequence diagrams can also be used to capture the interaction between systems’
entities over time using messages sending and receiving.

• Performance: It is the total effectiveness of the system. It relates to the time-
liness aspects of how systems behave. This includes different types of qual-
ity of service characteristics, such as latency and throughput. Timing diagrams,
sequence diagrams, and time-annotated activity diagrams can be used in order to
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express performance aspects. Other performance aspects can be modeled using
UML/SysML models in conjunction with specific UML profiles [176, 189].

Integrating V&V during the design phase allows one to continuously identify
and correct errors, thus gain confidence in the system. With fewer errors to fix, costs
at the maintenance phase are significantly reduced. Additionally, correcting errors
before the actual realization of the system enables the reduction of project failure
risks that occur while engineering complex systems. Furthermore, it improves the
quality of systems and shortens the time to market. Once the model becomes a
verified and validated executable specification, engineers can automatically generate
code from the model for the purpose of prototyping and deployment. Similar to the
model, the code can also be tested and verified at any point. Discovered errors can
easily be corrected on the model, the code then being regenerated, all the while
maintaining specification integrity between the model and its corresponding code.

In this chapter, we address the issue of model-based verification and validation of
systems engineering design models expressed using UML/SysML. The main objec-
tives are to assess the design from its structural and behavioral perspectives and
to enable a qualitative as well as a quantitative appraisal of its conformance with
respect to its requirements and a set of desired properties. We also elaborate a syn-
ergistic methodology and present some edifying results that justify this envisioned
approach. The foundations of this approach rely on the synergistic integration of
three well-established techniques: automatic formal verification, program analysis,
and software engineering quantitative methods.

6.1 Synergistic Verification and Validation Methodology

The concept behind our methodology is to enable the verification and validation of
more than one aspect of the system’s design. A software or system design model is
fully characterized by its structural and behavioral perspectives. The analysis of both
views is crucial for obtaining high-quality product. Furthermore, combining quan-
titative and qualitative assessment techniques provides more benefits than applying
only one or the other.

In the field of verification of systems and software, we propose three well-
established techniques for building our V&V methodology. On the one hand, auto-
matic formal verification techniques, namely model checking, are reported to be
a successful approach to the verification of the behavior of real-life software and
hardware applications. Such application domains include, among many others, dig-
ital circuits, communication protocols, and digital controllers. In addition to being
fully automated formal verification techniques and capable of thoroughly explor-
ing the state space of the system searching for potential errors, model checkers are
also generally capable of generating counterexamples for failed properties. Also,
their counterparts in the stochastic world, namely probabilistic model checkers, are
widely applied to quantitatively analyze specifications that encompass probabilistic
behavior [172].
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On the other hand, static analysis, usually applied on software programs [32], is
used prior to testing [21] and model checking [232]. Notably, static slicing [232]
yields smaller programs, which are less expensive to verify. Furthermore, empirical
methods, specifically software engineering metrics, have proved to be successful in
quantitatively measuring quality attributes of object-oriented design models. Since
we cannot compare what we cannot measure [66], metrics provide a means to eval-
uate the quality of proposed design solutions and review design decisions.

The quality of structural diagrams can be measured in terms of object-oriented
metrics. Such metrics provide valuable and objective insights into the quality char-
acteristics of the design. In addition, behavioral diagrams not only focus on the
behavior of systems’ elements but also show the functional architecture of the
underlying system (e.g., activity diagram). Applying specific classical metrics in
order to measure their quality attributes, namely the size and complexity-related
metrics, may help better assess the design. In the context of behavioral verification,
simulation execution of behavioral diagrams does not suffice for a comprehensive
assessment of the behavior. This is due to the increasing complexity of the behav-
ior of modern software and systems that may exhibit concurrency and stochastic
executions. Model-checking techniques have the ability to track such behaviors and
provide faithful assessment based on the desired specifications. Indeed, testing and
simulation can only reveal the presence of errors but cannot prove their absence.
Thus, our approach is based on a synergistic combination of model checking, soft-
ware engineering metrics, and static analysis. The choice of these three specific
techniques is deliberate, each one of them providing a means to tackle efficiently a
specific issue. Together they allow a more comprehensive design assessment. More
precisely, these techniques are not intended to be applied cumulatively, but rather
in a synergistic manner. Indeed, this provides a significant benefit, greater than the
sum of the benefits generated from each technique individually.

Figure 6.1 illustrates the synoptic of the overall proposed approach. Our V&V
framework takes as input UML 2.0/SysML 1.0 design and architecture diagrams
of the system under analysis along with the pre-defined requirements and desirable
properties that need to be verified. The applied analysis depends on the type of
the diagram under scope: structural or behavioral. While the analysis of structural
diagrams is performed directly, behavioral diagrams need to be encoded into their
corresponding computable model. The latter’s role is to capture the meaning of the
design and it allows performing an automated analysis. With respect to requirements
and specifications, they are encoded, using temporal logics, into a set of properties
that can be analyzed automatically. The overall results of the analysis help systems
engineers get an appraisal of the design quality and take appropriate actions in order
to remedy any detected deficiencies.

In order to establish the synergy, we propose to integrate static analysis tech-
niques and metrics with model checking while verifying behavioral diagrams in
order to tackle scalability issues. More precisely, program analysis techniques
such as control flow and dataflow analysis are integrated before the actual model
checking. They are applied on the semantic model (previously called the “computa-
tional model”) in order to abstract it by focusing on the model fragments (slices) that
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are relevant to the considered properties. The sliced model helps to narrow down the
verification scope, consequently leveraging the effectiveness of the model-checking
procedure. In this context, quantitative metrics are used in order to appraise the size
and complexity of the semantic model prior to static analysis. This enables one to
decide, prior to model checking, whether abstraction is actually needed. Figure 6.2
provides a detailed overview of our methodology.

6.2 Dedicated V&V Approach for Systems Engineering

The cornerstone of the proposed methodology is to provide an automated approach
for the verification and validation of systems engineering design models by estab-
lishing a synergy between the three tiers of the considered approach, namely auto-
matic formal verification, program analysis, and software engineering quantitative
methods. Following is a presentation of each tier of our approach and its role in
relation to the others.

6.2.1 Automatic Formal Verification of System Design Models

Model checking, as previously discussed, is an automatic model-based formal ver-
ification technique that targets the assessment of the behavior rather than the struc-
ture of the model according to some specified properties. Formally, model checking
operates on the formal semantics describing the meaning of the model. The process
of verification mainly consists in exploring the state space and checking whether a
given property holds or fails. The formal semantics of the model is usually expressed
in terms of extended/annotated transition system. However, the UML 2.0/SysML
specifications describe informally the semantics of the diagrams and their corre-
sponding constructs.

The automation of the V&V can be achieved by endowing the behavioral dia-
grams (e.g., activity, state machine) with formal semantics such as the structured
operational semantics (SOS) [201]. The latter has been applied to provide speci-
fication and programming languages a formal interpretation of the corresponding
meaning. Moreover, when compared to other semantics formalisms (e.g., deno-
tational semantics), the operational semantics formalism might be more adequate
for studying the behavioral aspects of a model. This characteristic is based on the
natural tendency of operational semantics to describe the single-step execution capa-
bilities of the systems. Therefore, it is helpful for explicitly describing the execution
of the behavior captured by a given behavioral diagram and its corresponding state
transformations within its state space.

More specifically, the first step consists in specifying an abstract syntax that rep-
resents a parsing of the graphical representation of the diagram into an abstract
non-graphical mathematical notation. Thereafter, based on this syntax, the second
step consists in devising a SOS-like semantics defined in terms of axioms and rules
that describe local behavior. The SOS-like semantics generates a sort of transition
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system. The corresponding transition relation describes how the individual steps
of computation take place after inductively applying the axioms and rules on a
given statement [1]. Extended formalisms, such as probabilistic timed automata and
Markov chains, are relevant models that enable describing semantics of behavioral
diagrams that specify stochastic, probabilistic, and/or time-constrained behavior.

Concerning the properties to be verified on the model, they are generally cap-
tured in some mathematical logics, such as the linear temporal logic (LTL) [248] or
the computation tree logic (CTL) [48]. To assess the SE design models, advanced
temporal logics, such as timed computation tree logic (TCTL) and probabilistic
computation tree logic (PCTL) [44] might be used to conveniently express prop-
erties according to the aspect to be verified (time, probability, or both). Actually,
the formalization and the V&V of SysML design models are still a barely explored
territory. The latter modeling language is more relevant to systems engineering and
it introduces new interesting features when compared to UML such as probabilistic
aspects and continuous behaviors.

6.2.2 Program Analysis of Behavioral Design Models

As mentioned before, program analysis has been successfully used in compilation,
program verification, and optimization. We believe that this technique can provide
significant advantages in order to achieve an efficient V&V.

Particularly, dataflow and control flow analysis, techniques which are in general
applied on flow graphs representation of programs, could be used on some UML
2.0/SysML diagrams that model control flow and dataflow (e.g., activity diagram).
This kind of techniques might be used in order to perform graph slicing. This, in
turn, would provide a way of coping with the scalability issues (e.g., state explo-
sion) that generally accompany the model-checking procedure. Slicing is generally
performed by traversing a graph and selecting the sub-graph where the same slicing
criterion holds. Since the semantic models derived from the studied behavioral dia-
grams are described by means of graphs (extended/annotated transition systems), it
might be possible to use slicing on these semantic models. For instance, a semantic
model might contain different invariants related to its nodes while some of these
nodes may share the same invariant. Thus, if we consider a specific invariant as a
slicing criterion, we can slice the semantic model graph accordingly. Hence, one can
obtain a sub-graph where the same invariant holds.

This technique can be used in order to leverage the effectiveness of the model-
checking procedure. Specifically, if some properties do not hold for a part of the
model, they also do not hold for the whole model. For instance, if a safety property
does not hold on at least one sub-graph, then it can be concluded that the behavior
of the model is not safe, and this without requiring the verification of the remaining
parts of the model. As a sub-graph has a reduced complexity when compared to
the original graph, less memory space and computation time are required in the
model-checking procedure. Thus, if we plan to verify whether a property holds
giving a specific invariant, we only need to extract the related sub-graph.
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6.2.3 Software Engineering Quantitative Techniques

In the literature, a significant number of software engineering metrics were devel-
oped in order to measure various quality attributes (e.g., size, complexity) of soft-
ware systems. Many metrics were derived specifically for structural diagrams, such
as the UML class and package diagrams [3, 43, 143, 167]. Software engineering
metrics can also be used in the quantitative assessment of systems engineering
design models. Moreover, a selection of metrics might be adopted and tailored
to quantitatively assess not only the structural diagrams of the design but also its
behavioral diagrams.

Similarly, in addition to applying these quantitative methods to the design itself,
the same concept can be used for the semantic models derived from the behavioral
diagrams. Indeed, metrics such as the cyclomatic complexity [90], the length of
critical path [108], number of states, and number of transitions can be used to obtain
useful quantitative measurements.

On the one hand, the length of critical path metric can provide a measurement
that determines the length of the path that has to be traversed in a graph from an
initial node to a destination node to achieve a given behavior with respect to a given
criterion (e.g., timeliness). The critical path is different from a regular path that
might traverse nodes other than the critical ones. For example, a program repre-
sented by a call graph might have as critical path the one that is needed to achieve
the execution of a given subroutine in the program within minimal time delay. In
the same sense, we can measure the length of critical path on the semantic models
derived from behavioral diagrams given some relevant criteria related to V&V.

On the other hand, we use the cyclomatic complexity metric in order to measure
the complexity of a behavioral diagram against the complexity of its corresponding
semantic model. In many cases, the latter is essentially a graph that unfolds the entire
dynamics of the behavioral diagram. Consequently, its complexity is usually greater
than, or at least equal to, the complexity of the diagram. If this is not the case, this
implies that the corresponding behavioral diagram contains some component parts
(e.g., unreachable states) that are either meaningless or redundant with respect to
the dynamics being modeled. This clearly shows that such quantitative methods can
potentially provide the designer with important feedback information in the process
of the design assessment.

6.3 Probabilistic Behavior Assessment

A range of systems inherently include probabilistic information. Probabilities can
be used in order to model unpredictable and unreliable behavior exhibited by a
given system. To merely satisfy the functional requirements of today’s systems are
insufficient; other quality standard attributes such as reliability, availability, safety,
and performance have to be considered as well. In order to enable the specification
of a larger spectrum of systems, SysML extends UML 2.1 activity diagrams with
probabilistic features. In this context, we propose to extend our aforementioned
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discussed framework with probabilistic verification of SysML activity diagrams.
Accordingly, we propose to integrate probabilistic model-checking techniques
within the automatic formal verification module. This consists of the systematic
translation of SysML activity diagrams into the input language of an appropriate
probabilistic model checker. Chapters 9 and 10 detail these proposed extensions
that contribute efficiently and rigorously into the V&V process.

6.4 Established Results

We have, thus far, presented and explained in this chapter the proposed approach
as well as the different underlying components. We shall now discuss a number of
established results emanating from the proposed approach and methodology.

With respect to the use of software engineering quantitative methods, we have
considered class and package diagrams as representative diagrams of the organiza-
tional architecture of the software or the system. We applied on these diagrams a
wide range of existing software engineering metrics [14, 33, 34, 43, 89, 96, 144,
150, 151] to assess the quality of the system with respect to various aspects, such
as complexity, understandability, maintainability, stability, and others [3]. Among
the metrics applied on UML class diagrams, we mention, for instance, coupling
between object classes (CBO), depth of inheritance tree (DIT), and weighted meth-
ods per class (WMC). These metrics for object-oriented design, that aim at assessing
complexity by measuring different quality attributes such as maintainability and
reusability, were previously proposed by Chidamber and Kemerer [43]. We further
elaborate on this topic in Chap. 7, which is dedicated to structural design assessment.

As far as the behavioral part is concerned, we have explored the case of state
machine, sequence, and activity diagrams. In order to assess the dynamics of the
system from the perspective of the behavioral diagrams, it is important to extract not
only the syntax (graphical components and relationships) but also the corresponding
semantics that are conveyed by such diagrams. For instance, a state machine shows
the different states of an object related with transitions. Its dynamics is interpreted
by rules encoded in the graphical representation of the diagram (states, edges, events
labeling edges, etc.). These rules dictate the evolution of the state machine in its state
space in response to some received events with respect to the active states. One can
also derive a similar reasoning for the other behavioral diagrams. In order to perform
the behavioral assessment, the diagrams’ semantics have to be captured in the form
of a computable model that encompasses all operational behavior and then input
into the model checker. The main challenge was to find a single computable model
framework that can be associated with each of the considered behavioral diagrams,
namely state machine, sequence, and activity diagrams. In [3], a suitable form of
a transition system is presented that can serve such a goal, called a configuration
transition system (CTS). CTS states are represented by the system’s configurations
and the transition relation describes how a given configuration is modified after a
computation step has been applied.

A configuration is defined as a snapshot in the evolution of the system at a par-
ticular point in time and from a specific view (i.e., the diagram’s point of view). In
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other words, a configuration is specific to a particular type of behavioral diagrams.
For instance, a configuration for a state machine represents a set of active states at a
given moment. Consequently, the dynamics of the state machine can be captured by
specifying all the possible configurations and the transitions among them. Thus, a
general parameterized CTS definition may be provided and tailored according to the
concrete dynamic elements of the considered behavioral diagram. The generation of
the CTS for each considered behavioral diagram can be automated. In essence, the
CTS can be derived by proceeding iteratively, with a breadth-first procedure, search-
ing for all possible configurations reachable from a currently selected configuration,
taken at each iteration from the newly discovered ones. This is discussed in more
detail in Chap. 8.

6.5 Verification and Validation Tool

In order to put into practice our V&V approach, we have designed and implemented
a software tool intended to be used in conjunction with a modeling environment
from which the design model under scope can be fetched and subjected to the V&V
module. The architecture of this software tool is illustrated in Fig. 6.3. The tool is
a multiple document interface (MDI) application throughout which one can easily
navigate among several views at once. The main interface is composed of a standard
menu on the top and a vertical menu bar on the left, where one can select a specific
view of a given module and load it into the MDI.

The tool interfaces with the modeling environment Artisan Real-Time Studio
[7], from where the designer can load the design model and select the diagram
for assessment. Once started, the tool automatically loads the assessment module
associated with the selected type of diagram. For instance, if the diagram loaded
is a class diagram, the metric module is then activated and the appropriate mea-
surements are performed. A set of quantitative measurements are provided with
their relevant feedback to the designer. Figure 6.4 shows a screenshot example
of metrics application. For behavioral diagrams, the corresponding model-checker

Fig. 6.3 Architecture of the verification and validation environment
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Fig. 6.4 Environment screenshot: metrics assessment

(NuSMV) code is automatically generated and generic properties, such as reachabil-
ity and deadlock absence for each state of the model, are automatically verified. An
assessment example using model checking is shown in Fig. 6.5. Furthermore, the
tool comprises an editor with a set of pre-programmed buttons through which the
user can specify custom properties. This is based on an intuitive and easy-to-learn
macro-based specification language we defined. More precisely, we developed a
set of macros using operators (always, mayreach, etc.) that are systematically

Fig. 6.5 Environment screenshot: model checking
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Fig. 6.6 Environment screenshot: property specification

expanded into their corresponding computation tree logic (CTL) operators. The
editor interface screenshot with an example of custom properties specification is
illustrated in Fig. 6.6. Finally, a specific window frame is dedicated to the presen-
tation of the assessment results. The feedback generated by the model checker not
being user-friendly nor understandable by non-experts, we built a back-end module
that analyzes the provided output traces, in the case of failed properties, and ren-
ders relevant information about the counterexamples in a meaningful way, using a
graphical visualization.

6.6 Conclusion

In summary, we elaborated an innovative approach that contributes to the V&V
of design models expressed using the modeling languages UML and SysML. It
is based on a synergy between three well-established techniques: model checking,
static analysis, and empirical software engineering quantitative methods. The syn-
ergy relies on the fact that, if each one of these techniques is applied alone, the result-
ing outcome is only a partial assessment of the design (for instance, either structural
or behavioral). In addition to qualitative analysis, our approach also enables quanti-
tative assessment of design models. With respect to behavioral diagrams, the main
challenge was to build a unified model that we call configuration transition system
(CTS). CTS represents a common parametrized model that describes the semantic
models of state machine, sequence, and activity diagrams. In Chap. 8, we present in
detail this approach.



Chapter 7
Software Engineering Metrics in the Context
of Systems Engineering

The need for reliable and high-performing software led to the emergence of soft-
ware engineering. Since the birth of software engineering in 1968, new approaches
and techniques were developed to govern the quality of software systems. Soft-
ware metrics are used to assess the quality of software systems in terms of system
attributes such as complexity, understandability, maintainability, stability. Differ-
ent software metrics have been developed to measure the quality of structural and
objected-oriented programming techniques.

Some of the metrics for the structural programming are the lines of code (LOC)
and cyclomatic complexity (CC) [156] metrics. When the object-oriented paradigm
emerged, many new metrics evolved to assess the quality of software system design
and to overcome the limitations of the legacy code metrics.

7.1 Metrics Suites Overview

In order to enhance the quality in today’s increasingly complex software systems’
some new techniques are needed. System quality should be controlled in the early
stages of design. A good software system offers components that are more robust,
maintainable, reusable, etc. In the literature, many object-oriented metrics have
emerged to create highly reliable software systems. Software metrics are efficient
methods for assessing the quality of software design including UML class and pack-
age diagrams. By using metrics, one can get significant insights into the complexity
and structure of software systems.

In the subsequent sections, we present a list of research works that have con-
tributed to the field of software engineering techniques by proposing metric suites
for UML class and package diagrams. Such metrics are extremely relevant given the
current trend toward model-based software and systems engineering.

7.1.1 Chidamber and Kemerer Metrics

Chidamber and Kemerer [43] proposed a set of six metrics for object-oriented
designs. This metrics suite measures the diagram’s complexity by applying the
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metrics on various quality attributes such as maintainability, reusability. From these
six metrics, only the following three can be applied on UML class diagrams:

• Coupling between object classes (CBO). This metric measures the level of
coupling among classes. A class that is excessively coupled to other classes is
detrimental to modular design and prohibits reuse and maintainability, especially
when changes are required in tightly coupled classes.

• Depth of inheritance tree (DIT). This metric represents the length of the inheri-
tance tree from a class to its root class. A deep class in the tree inherits a relatively
high number of methods, which in turn increases its complexity.

• Weighted methods per class (WMC). It is the summation of the complexity of
all the methods in the class. A simpler case for WMC is when the complexity
of each method is evaluated to unity. In that case, WMC is considered as the
number of methods in the class. On the other hand, high WMC value is a sign of
high complexity and less reusability.

7.1.2 MOOD Metrics

Abreu et al. [34] proposed a set of metrics, named metrics for object-oriented design
(MOOD), to assess the structural mechanisms of the object-oriented paradigm
such as encapsulation, inheritance, and polymorphism. MOOD metrics suite can
be applied on UML class diagrams as follows:

• Method hiding factor (MHF). This metric is a measure of the encapsulation in
the class. It is the ratio of the sum of hidden methods (private and protected) to
the total number of methods defined in each class (public, private, and protected).
If all the methods in the class are hidden, then the value of MHF is high and indi-
cates that this class is not accessible and thus not reusable. An MHF value of zero
signals that all the methods of the class are public, which hinders encapsulation.

• Attribute hiding factor (AHF). This metric represents the average of the invis-
ibility of attributes in the class diagram. It is the ratio of the sum of hidden
attributes (private and protected) for all the classes to the sum of all defined
attributes (public, private, and protected). A high AHF value indicates appro-
priate data hiding.

• Method inheritance factor (MIF) and attribute inheritance factor (AIF).
These two metrics represent a measure of the class inheritance degree. MIF is
calculated as the ratio of all inherited methods in the class diagram to the total
number of methods (defined and inherited) in the diagram. AIF is calculated
as the ratio of all inherited attributes in the class diagram to the total number
of attributes (defined and inherited) in the diagram. A zero value indicates no
inheritance usage, which may be a flaw unless the class is a base class in the
hierarchy.

• Polymorphism factor (POF). This metric is a measure of overriding methods
in a class diagram. It is the ratio between the number of overridden methods in a
class and the maximum number of methods that can be overridden in the class.



7.1 Metrics Suites Overview 109

• Coupling factor (COF). This metric measures the coupling level in the class
diagram. It is the ratio between the actual couplings and the maximum number
of possible couplings among all the classes in the diagram. A class is coupled
to another class when methods of the former access members of the latter. High
values of COF indicate tight coupling, which increases the complexity and dimin-
ishes the maintainability and reusability of the class.

7.1.3 Li and Henry’s Metrics

Li and Henry [144] proposed a metrics suite to measure several class diagram inter-
nal quality attributes such as coupling, complexity, and size. In the following, we
present the main two metrics proposed by Li and Henry that can be applied on
UML class diagrams:

• Data abstraction coupling (DAC). This metric calculates the number of
attributes in a class that represent other class types (composition). It measures
the coupling complexity caused by the existence of abstract data types (ADT).
The complexity due to coupling increases if more ADTs are defined within a
class.

• SIZE2. This metric is defined as the number of attributes and the number of local
methods defined in a class. This metric is a measure of the class diagram size.

7.1.4 Lorenz and Kidd’s Metrics

Lorenz and Kidd [150] proposed a set of metrics that can be used to measure the
static characteristics of a software design, such as size, inheritance, and the internal
attributes of the class.

With respect to size metrics, the public instance methods (PIMs) count the public
methods in a class. Moreover, the number of instance methods (NIMs) metric counts
all methods (public, protected, and private) in a class. In addition, the number of
instance variables (NIVs) counts the total number of variables in a class.

Furthermore, another set of metrics is proposed for measuring the class inheri-
tance usage degree. The NMO metric gives a measure of the number of methods
overridden by a subclass. The NMI is the total number of methods inherited by
a subclass. Additionally, the NMA metric is the count of the methods added in a
subclass.

Finally, the NMO and DIT [43] metrics are used to calculate the specialization
index (SIX) of a class, which gives an indication of the class inheritance utilization.

7.1.5 Robert Martin Metrics

Robert Martin [151] proposed a set of three metrics applicable for UML package
diagrams. This set of metrics measures the interdependencies among packages.
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Highly interdependent packages or subsystems tend to be less flexible, thus hardly
reusable and maintainable. Therefore, interdependency among packages in a system
should definitely be taken into consideration.

The three metrics defined by Robert Martin: instability, abstractness, and distance
from main sequence (DMS). The instability metric measures the level of instability
of a package. A package is unstable if its level of dependency is higher than that
of those depending on it. The abstractness metric is a measure of the package’s
abstraction level, which, in turn, depends on its stability. Finally, the DMS metric
measures the balance between the abstraction and instability of a package. These
metrics are discussed in detail in Sect. 7.3.

7.1.6 Bansiya and Davis Metrics

Bansiya and Davis [14] defined a set of five metrics to measure several object-
oriented design properties, such as data hiding, coupling, cohesion, composition,
and inheritance. In the following, we present only those metrics that can be applied
to UML class diagrams.

The first is the data access metric (DAM) and it measures the level of data hiding
in the class. DAM is the ratio of the private and protected (hidden) attributes to
the total number of defined attributes in the class. The second is the direct class
coupling (DCC) metric and it counts the total number of classes coupled with a
given class. Finally, the measure of aggregation (MOA) metric computes the number
of attributes defined in a class whose types represent other classes (composition) in
the model. Bansiya and Davis metrics have been applied to a number of case studies
where nominal ranges have been defined for their metrics based on the performed
observations.

7.1.7 Briand et al. Metrics

Briand et al. [33] proposed a metrics suite to measure the coupling among classes
in class diagrams. These metrics determine each type of coupling and the impact of
each type of relationship on the class diagram quality.

In their work, Briand et al. covered almost all types of coupling occurrences
in a class diagram. These types of relationships include coupling to ancestor and
descendent classes, composition, class–method interactions, and import and export
coupling. As a result of their work, they applied their metrics suite on two real
case studies and determined that coupling is an important structural aspect to be
considered when building quality models of object-oriented design. Moreover, they
also concluded that import coupling has more impact on fault-proneness compared
to export coupling.
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7.2 Quality Attributes

UML [184] has been standardized as a modeling language for object-oriented sys-
tem design. Previously, we discussed a set of object-oriented metrics proposed for
measuring the quality of UML class and package diagrams.

In the following, we present the measured quality attributes. In total, a set of 15
metrics for package and class diagrams will be addressed in this book. In addition,
we detail and discuss the analysis results of a class and package diagram case study.
Following is a brief presentation of a number of typical quality attributes captured
using the set of object-oriented metrics:

• Stability indicates the risk level for the occurrence of unexpected effects result-
ing from occasional modifications of the software.

• Understandability measures the degree to which the system stakeholders are
able to comprehend the system specifications.

• Maintainability measures ease and speed with which a system design and/or
implementation can be changed for perfective, adaptive, corrective, and/or pre-
ventive reasons.

• Reusability measures ease and speed with which a part (or more) of a system
design and/or implementation can be reused.

• Testability represents a characteristic that suggests how easy it is to test a given
application or how well are the tests able to interact with the code in order to
reveal potential flaws or a combination of the two aspects.

• Coupling measures how strongly system parts depend on each other. Generally,
a loose coupling is desirable in high-quality design. Moreover, there is a strong
correlation between coupling and other system quality attributes, such as com-
plexity, maintainability, and reusability.

• Cohesion refers to the degree to which system components are functionally
related (internal “glue”). Generally, a strong cohesion is sought in high-quality
system design.

• Complexity indicates the level of intricacy and compoundness. It measures the
degree to which a system design is difficult to be understood and/or to be imple-
mented.

The aforementioned quality attributes represent cornerstones in building qual-
ity software systems. In the next section, we detail the set of software engineering
metrics that can be used in order to assess such system quality attributes.

7.3 Software Metrics Computation

This section details the calculation methods for the metrics previously intro-
duced. To that effect, we present the means used to compute 15 metrics for class
and package diagrams. Each metric is explained, along with its formula and the
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corresponding nominal range (when applicable). The selected metrics target the
quality characteristics of object-oriented designs. They are used to measure quality
attributes of class and package diagrams by using various criteria applied on differ-
ent types of relationships (e.g., inheritance, associations, generalizations, aggrega-
tions).

7.3.1 Abstractness (A)

The abstractness [151] metric measures the package abstraction rate. A package
abstraction level depends on its stability level. Calculations are performed on classes
defined directly in the package and those defined in sub-packages. In UML models,
this metric is calculated on all the model classes.

The abstraction metric provides a percentage between 0 and 100%, where the
package contains at least one class and at least one operation in an abstract class.
The following formula is used to measure the abstractness of the package diagram.

Abstraction = Nma

Nmca
× Nca

Nc
× 100 (7.1)

where Nma is the number of abstract methods in all the package’s classes; Nmca is
the number of methods (abstract or not) in the package’s abstract classes; Nca is
the number of abstract classes; Nc is the number of classes (abstract or not) of the
package.

The abstractness metric [151] is indicative of how suitable package is for modi-
fication during the life cycle of the application. The more abstract a package is, the
more it is extensible, resulting in a more stable package. Indeed, extensible abstract
packages provide greater model flexibility. Nominal values for this metric cannot be
measured, since abstractness depends on the purpose of the package.

7.3.2 Instability (I)

The instability [151] metric measures the level of instability in a package. A package
is unstable if its level of dependency is higher than that of those depending. The
instability of a package is the ratio of its afferent coupling to the sum of its efferent
and afferent coupling. It is measured using the following formula:

I = AC

EC+ AC
(7.2)

where AfferentCoupling (AC) is the number of links (associations, dependencies,
and generalizations) toward classes defined in other packages and EfferentCoupling
(EC) is the number of links (associations, dependencies, and generalizations) com-
ing from classes defined in other packages.
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A package is more likely to be subject to change if the other packages that it
depends on change. The instability metric does not have a nominal range since some
packages may be kept in an unstable state to enable their extensibility.

7.3.3 Distance from the Main Sequence (DMS)

The distance from main sequence (DMS) [151] metric measures the appropriate
balance between the abstraction and the instability of the package. Packages should
be quite general in order to be consistent with the two aforementioned orthogonal
criteria. Packages should also be open to modifications. However, some level of
abstraction is needed as well. Therefore, a balance is required between the package
abstraction and its instability. This can be measured with the following formula:

DMS = |Abstraction+ Instability− 100| (7.3)

A DMS of 100% corresponds to an optimal balance between abstraction and
instability. Practically, a value greater than 50% is considered to be within the nom-
inal range of DMS.

7.3.4 Class Responsibility (CR)

The class responsibility (CR) [245] ratio is an indication of the responsibility level
assigned for each class in order to correctly execute an operation in response to a
message. A method is considered to be responsible if it has pre-conditions and/or
post-conditions. Before taking any action, a class method should be responsible
for checking whether a message is appropriate. Also, a class method should take
responsibility to ensure the success of the method.

CR is a ratio of the number of methods implementing pre-condition and/or post-
condition contracts to the total number of methods. CR is calculated using the fol-
lowing formula:

CR = PCC+ POC

2× NOM
× 100 (7.4)

where PCC is the total number of methods that implement pre-condition contracts;
POC is the total number of methods that implement post-condition contracts; NOM
is the total number of methods.

The CR nominal range is between 20 and 75%. A value below 20% indicates
irresponsible class methods. Irresponsible methods indicate that the class will react
passively to the sent and received messages. Responsible methods are desirable
since they diminish the number of runtime exceptions in a system. A CR value
above 75%, although preferable, is seldom achieved.
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7.3.5 Class Category Relational Cohesion (CCRC)

The CCRC [245] metric measures how cohesive the classes are in a class diagram
design. The construction of classes in the diagram must be justified by the links
that exist between the diagram classes. In the class diagram, a scarce level of rela-
tions among the classes indicates a lack of cohesiveness. Relational cohesion is the
number of relationships among classes divided by the total number of classes in the
diagram. The CCRC metric is calculated using the following formula:

CCRC =
∑Nc

i=1 NAi +∑Nc
i=1 NGi

Nc
× 100 (7.5)

where

• NA is the number of association relationships for a class.
• NG is the number of generalization relationships for a class.
• Nc is the number of classes in the diagram.

A class is considered to be cohesively related to other classes when the class
collaborates with other classes in order to achieve its responsibilities. A very small
CCRC value indicates that some classes have little or no relationships with other
classes in the design model. A CCRC nominal range is between 150 and 350%.
A value greater than 350% is not desirable due to the heightened complexity it
entails.

7.3.6 Depth of Inheritance Tree (DIT)

Inheritance is an important concept in object-oriented models; however, it should
be mindfully used to achieve the goals of good software system design. Classes
that are located deep in the inheritance tree are more complex and thus prone to
difficulties of development, testing, and maintenance. To achieve a good system
design, a trade-off should be considered when creating the class hierarchy. As a
result, it was empirically found that a DIT metric value between 1 and 4 fulfills this
goal. A value greater than 4 would overly increase the complexity of the model.

Algorithm 1 is used to measure the depth of inheritance. The recursive function
“TraversTree” checks for the depth of inheritance for each class. The algorithm
iterates all the classes in the diagram and records the maximum inheritance depth in
DI T Max .

7.3.7 Number of Children (NOC)

The NOC [43] metric measures the average number of children for the classes in the
class design model. It is an important metric because of the following factors:
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Algorithm 1 Measuring the Depth of Inheritance (DIT) of a Class
global integer DITMax = 0
for each class c in CD do

call TraverseTree(c)
end for
f unction TraverseTree(class c)
{
static integer DIT = 0
for each generalization relationship g from class c do

get superclasses of c
for each superclass s of class c do

DIT = DIT + 1
TraverseTree (s)

end for
if DIT GT DITMax then

DITMax = DIT
end if
DIT = DIT - 1

end for
}

• A large number of children indicates that a larger degree of reuse is achieved.
• Too many children may indicate a misuse of subclassing, which will increase the

complexity.

The NOC metric is calculated by summing up the number of children for each
class in the model. This number is then divided by the total number of classes,
excluding the child classes at the lowest level in the model. The NOC metric is
calculated using the following formula:

NOC =
∑Nc

i=1 NCCi

Nc − LLC
(7.6)

where NCC is the sum of children for a class; Nc is the total number of classes in
the diagram; LLC is the number of classes in the lowest level of inheritance in the
diagram.

A NOC value of 0 shows a lack of object orientation in the design model. A
nominal range for NOC is between 1 and 4. A value within this range indicates
that the goals of reusability are compliant with the goals of complexity management
while promoting encapsulation. A number greater than 4 indicates a potential misuse
of abstraction.

7.3.8 Coupling Between Object Classes (CBO)

The CBO metric [43] is a measure of the average degree of connectivity and inter-
dependency between objects in a model. It is directly proportional to coupling and
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complexity and inversely proportional to modularity. Therefore, it is preferable to
have a lower CBO value. This value is important due to the following reasons:

• Strong coupling inhibits the possibility of reuse.
• Strong coupling makes a class difficult to understand, correct, or change without

subsequent modifications to the other classes in the model.
• Tight coupling increases the model’s complexity.

CBO is calculated using the following formula:

CBO =
∑Nc

i=1 ARi +∑Nc
i=1 DRi

Nc
(7.7)

where AR is the total number of association relationships for each class in the dia-
gram; DR is the total number of dependency relationships for each class in the
diagram; Nc is the number of classes in the diagram.

A CBO value of 0 indicates that a class is not related to any other classes in
the model and, as such, should not be part of the system. The nominal range for
CBO falls between 1 and 4 indicating that the class is loosely coupled. A CBO
value above 4 may indicate that the class is tightly coupled to other classes in the
model, therefore, complicating the testing and modification operations and limiting
the possibilities of reuse.

7.3.9 Number of Methods (NOM)

The NOM [144] metric is the average count of methods per class. The number
of methods in a class should be moderate, but not at the expense of missing or
incomplete functionality. This metric is useful in identifying classes with little or no
functionality thus serving mainly as data types. Moreover, a subclass that does not
implement methods has little or no potential for reuse.

This metric is computed by counting the total number of methods (defined and
inherited from all parents) for all the classes in the model. This number is then
divided by the total number of classes in the model. Thus, NOM is calculated using
the following formula:

NOM =
∑Nc

i=1 NMi +∑Nc
i=1 NIMi

Nc
(7.8)

where NM is the number of methods for a class; NIM is the total number of inherited
methods by a class; Nc is the number of classes in the diagram.

The NOM metric nominal range lies between 3 and 7 and indicates that the class
has a reasonable number of methods. A NOM value greater than 7 indicates the need
for decomposing the class into smaller classes. Alternatively, a value greater than 7
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may indicate that the class does not have a coherent purpose. A value less than 3
indicates that a class is merely a data construct rather than a fully fledged class.

7.3.10 Number of Attributes (NOA)

The NOA [150] metric measures the average number of attributes for a class in the
model. This metric is useful in identifying the following important issues:

• A relatively large number of attributes in a class may indicate the presence of
coincidental cohesion. Therefore, the class needs to be decomposed into smaller
parts in order to manage the complexity of the model.

• A class with no attributes means that a thorough analysis must be done on the
semantics of the class. It could also indicate that it is a utility class rather than a
regular class.

The NOA metric is the ratio of the value obtained by counting the total number
of attributes (defined and inherited from all ancestors) for each class in the model to
the total number of classes in the model. It is calculated using the following formula:

NOA =
∑Nc

i=1 NAi +∑Nc
i=1 NIAi

Nc
(7.9)

where NA is the total number of attributes for a class in the diagram; NIA is the
total number of inherited attributes for a class in the diagram; Nc is the number of
classes in the diagram.

A nominal range for NOA falls between 2 and 5. A value within this range indi-
cates that a class has a reasonable number of attributes, whereas a value greater than
5 may indicate that the class does not have a coherent purpose and requires further
object-oriented decomposition. A value of 0 for a particular class may designate that
it represents a utility class.

7.3.11 Number of Methods Added (NMA)

The NMA [150] metric plays a significant role in the assessment of the class special-
ization. A class with too many added methods indicates an overspecialization when
compared to the functionality of its ancestors. Consequently, inheritance would be
rendered less effective due to the major differences between the subclass and its
ancestors. It is the ratio of all the added methods in the diagram to the total number
of classes in the diagram. It is computed using the following formula:

NMA =
∑Nc

i=1 AMi

Nc
(7.10)
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where MA is the total number of added methods for a class and, Nc is the number
of classes in the diagram.

This metric has a nominal range between 0 and 4. A value greater than 4 indicates
that a class contains major changes when compared to its ancestors. A class with an
NMA value above 4 hinders the inheritance usefulness.

7.3.12 Number of Methods Overridden (NMO)

The NMO metric [150] also plays a significant role in the assessment of the class
specialization. A class with too many redefined methods implies that little or no
functionality is reused, which may indicate misuse of inheritance. It counts the
number of redefined methods in the class and is calculated as follows:

NMO =
∑Nc

i=1 RMi

Nc
(7.11)

where RM is the total number of redefined methods in a class and, Nc is the number
of classes in the diagram.

A class that inherits methods must use them with a minimum of modifications.
A class with a high number of redefined methods is hardly making use of the inher-
itance concept. This metric has a nominal range between 0 and 5.

7.3.13 Number of Methods Inherited (NMI)

To maintain the usefulness of inheritance in a class, the number of inherited meth-
ods that are not redefined (overridden) should be relatively greater than the rede-
fined ones. The NMI [150] metric is the ratio of the total number of non-redefined
methods to the total number of inherited methods in a class. The following formula
measures the value of NMI:

NMI = NOHO

HOP
× 100 (7.12)

where NOHO is the number of non-redefined methods in a class and, HOP is the
number of inherited methods in a class.

The ratio of inherited methods should be high. This metric contrasts with the
previously presented NMO metric. A low number of inherited methods indicates a
lack of specialization. An ideal value of 100% is hardly achievable due to the fact
that some behaviors need to be modified in order to satisfy some new requirements.
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7.3.14 Specialization Index (SIX)

Excessive method overriding is undesirable due to the increase in the model com-
plexity and maintenance and the diminished reusability it incurs. Additionally, over-
ridden methods may be found at deeper levels in the inheritance hierarchy. To that
effect, the NMO metric is multiplied by the DIT metric and divided by the total
number of methods in the class in order to measure its specialization index. Thus,
the SIX metric is computed using the following formula:

SIX = NMO× DIT

NM
× 100 (7.13)

where NMO is the number of overloaded methods; DIT is the depth of inheritance
value; and NM is the total number of methods in a class.

The deeper in the inheritance hierarchy a class is, the more difficult it would
be to efficiently and meaningfully use method overriding. This is due to the fact
that it would be more difficult to understand the relationship between the class
and its ancestors. In this manner, overridden methods in lower levels of the hier-
archy are more easily developed and maintained. A value falling between 0 and
120% is considered in the nominal range. For a root class, the specialization
indicator is 0.

7.3.15 Public Methods Ratio (PMR)

The PMR [145] metric measures the access control restrictiveness of a class and
indicates how many methods in a class are accessible from other classes. The use-
fulness of this metric is based on the following considerations:

• Too many public methods preclude the goal of encapsulation, which is a desirable
property of an object-oriented design.

• The absence of public methods indicates an isolated entity in the design.

This PMR metric is the ratio of public methods (defined and inherited) to the
total number of methods (defined and inherited) in the class. It is calculated using
the following formula:

PMR = PM+ PIM

DM+ IM
(7.14)

where PM is the total number of public defined methods in a class; PIM is the
total number of public inherited methods in a class; DM is the total number of
defined methods in a class; and IM is the total number of inherited methods in
a class.
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A PMR metric nominal range falls between 5 and 50% and indicates that the class
has a reasonable number of public methods. A value below 5% is only acceptable
for abstract classes; otherwise the class functionality will be concealed. Conversely,
a value above 50% indicates a lack of encapsulation. As a rule, only methods that
export some functionality should be visible to other classes.

7.4 Case Study

We selected a case study example depicting a real-time heart monitoring system.
The diagram consists of three packages. The first one contains the window’s compo-
nents that display the monitoring results. The second package contains the platform-
specific heart monitoring tools, whereas the third package contains the heart
monitoring components.

This diagram is a good example due to the various types of relationships among
the classes. In the following paragraphs, we will present the assessment results.
When applying these metrics on the diagram in Fig. 7.1, the analysis results indi-
cate that some classes in the model have a high complexity, thus having a weak
reusability potential.

Table 7.1 shows the metrics related to package diagrams. The DMS metric mea-
sures the balance between the abstraction and instability levels in the package. As
shown in the table, the three packages in the diagram fall within the nominal range
of DMS.

Since the abstraction and instability metrics do not have nominal ranges due
to the difference in the design perspectives, the DMS is a compromise between
their values. Abstraction and instability metrics do not have nominal ranges due
to the fact that packages should depend on other packages in order to employ
composition. However, they must also be easily modifiable. The zero abstractness
value for the three packages shows that these packages are not easily extendable
and modifiable. Also, the metric in the second column shows a relatively high
instability value, indicating that the three packages are subject to change if other
packages change.

Table 7.2 presents the analysis results of the class diagram inheritance-related
metrics. The DIT metric shows a proper use of inheritance. Moreover, the use of
inheritance in this diagram does not have a negative impact on its complexity level.
Furthermore, our tool results show that the diagram has a shallow inheritance tree
which indicates a good level of understandability and testability.

With respect to the NOC metric, the analysis shows that only four classes in the
diagram have a good NOC value. In a class diagram, the number of children is an
indication of the class reusability in the diagram.

The analysis results also show that five classes in the diagram have a weak NOM
value. On the other hand, the class diagram has an overall NOM that lies within
the nominal range. The problem of unsuitable NOM values may be addressed by
decomposing the existing classes to smaller new classes that would include the
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Table 7.1 Package diagram metrics

Package name A I DMS

Platform-specific HM 0 49 51
HM 0 49 51
Windows components 0 50 50
Average 0 50 50
Nominal range – – 50–100%

Table 7.2 Class diagram inheritance-related metrics

Class name DIT NOC NOM NOA NMA NMI NMO SIX

Cardio 1 0 10 1 6 0 4 40
Rate_Hdlr 1 0 3 1 2 0 1 33
Gain_Hdlr 1 0 3 1 2 0 1 33
Power_Hdlr 1 0 3 1 2 0 1 33
TE_PlotTimer 1 0 5 2 2 67 3 43
Cardio_Proxy 1 0 11 0 5 33 4 0
Abstract_Cardio 0 2 4 0 4 0 0 0
WMutex 0 0 3 1 3 0 0 0
Event 0 3 1 0 1 0 0 0
TimedEvent 0 1 3 0 3 0 0 0
Active_Object 0 1 2 0 2 0 0 0
Queue 0 0 3 0 3 0 0 0
Input_Handler 0 0 5 0 5 0 0 0

Average 0.46 0.88 4.31 0.54 3.08 25 1.08 18.38
Nominal range 1–4 1–4 3–7 2–5 0–4 50–100% 0–5 0–120%

number of methods exceeding the nominal range. Consequently, the classes in the
diagram will be more reusable.

Table 7.2 shows that for the NOA metric, only one class is in the nominal range.
This calls for further enhancement by adding new attributes to the non-abstract
classes in the diagram. A class with a high number of attributes increases its size.

The NMA metric measures the inheritance usefulness degree. Three classes have
a high NMA value, indicating a misuse of inheritance. Classes with high NMA
may be difficult to reuse, whereas classes with no specialization and having large
number of methods may impede other classes from reusing their functionality. This
may require a decomposition into smaller specialized classes in order to improve
the design.

Table 7.2 also shows that only one class in the inheritance hierarchy satisfies the
NMI metric nominal range. Concerning the NMO metric, the analysis shows that
all the classes in the diagram fall within the nominal range.

The last metric in Table 7.2 shows that all the classes in the diagram comply with
the nominal range of the SIX metric. The latter reflects the overall performance of
the class diagram from the perspective of inheritance in object-oriented design.

The CBO metric measures the level of coupling between classes, where a high
coupling would result in an increase in the complexity. Table 7.3 shows seven
classes outside the CBO nominal range while six classes fall within it. This shows
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Table 7.3 Class diagram general metrics

Class name CR CCRC CBO PMR

Cardio 0 200 1 100
Rate_Hdlr 0 200 1 100
Gain_Hdlr 0 200 1 100
Power_Hdlr 0 200 1 100
TE_PlotTimer 0 100 0 100
Cardio_Proxy 0 700 5 100
Abstract_Cardio 0 100 1 100
WMutex 0 0 0 100
Event 0 0 0 100
TimedEvent 0 0 0 100
Active_Object 0 0 0 100
Queue 0 0 0 100
Input_Handler 0 200 2 100

Average 0 146 0.92 100
Nominal range 20–75% 150–350% 1–4 5–50%

an increased complexity and suggests further modification by reducing the number
of relationships between the classes.

The CCRC metric measures the cohesion of classes within the diagram. This
metric reflects the diagram’s architectural strength. Table 7.3 shows a good CCRC
level for only five classes, whereas the remaining eight classes have a weak CCRC
level. In addition, we can see that the average CCRC is outside of the nominal range,
indicating a cohesion problem between the classes.

The CR metric results in Table 7.3 show that none of the classes in the dia-
gram are implementing pre-conditions and/or post-conditions. CR is measured in
the cases where a class method should be responsible to check whether a message
is correct before taking any action. In the current example, the CR value can be
enhanced by adding pre/post-conditions to those methods that need to check the
validity of messages prior to or after the execution of an action. In the design
of a class diagram, the use of pre/post-conditions should be carefully considered.
Therefore, this metric is useful, especially for checking systems with real-time
messaging.

Finally, for the PMR metric, Table 7.3 shows that all methods in the class dia-
gram are accessible, which inhibits encapsulation in the diagram. This requires some
adjustment of the access control level for all the classes in the diagram.

7.5 Conclusion

Software engineering metrics can provide very valuable insights into many qual-
ity attributes relevant in software and system design. Moreover, metrics can be
useful for assessing already existing designs when exploring possible avenues of
improvement.
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In this chapter we presented a set of relevant metric suites for software and sys-
tems engineering design models captured by UML class and package diagrams.
Their usefulness was demonstrated by means of a case study, wherein a set of
15 metrics was used in order to assess the quality of an object-oriented system
design. The case study demonstrated how different object-oriented techniques, such
as inheritance or association, can affect various quality attributes, such as reusability
and complexity. Furthermore, we showed how the evaluated quality attributes can
serve as pointers for design enhancement.



Chapter 8
Verification and Validation of UML
Behavioral Diagrams

It is generally accepted that any system that has an associated dynamics can be
abstracted to one that evolves within a discrete state space. Such a system is able
to evolve through its state space assuming different configurations, where a con-
figuration can be understood as the set of states to which the system abides at any
particular moment. Hence, all the possible configurations summed up by the dynam-
ics of the system, and the transitions thereof, can be coalesced into a configuration
transition system (CTS). In this setting, we present the usefulness of this concept
when modeling the dynamics of behavioral design models expressed in modeling
languages such as UML.

In the context of verifying design models expressed as UML 1.x activity dia-
grams, Eshuis and Weiringa [80] explore an idea similar to CTS. However, the CTS
concept has a more general nature and can be conveniently adapted to be used for a
broad range of behavioral diagrams, including state machine activity and sequence
diagrams. In essence the CTS is basically a form of automaton. It is characterized
by a set of configurations that include a (usually singleton) set of initial configura-
tions and a transition relation that encodes the dynamic evolution of the CTS from
one configuration to another. Moreover, in accordance with the required level of
abstraction, the CTS’s flexible configuration structure may include more or less of
the dynamic elements of the behavioral diagram. Thus, it offers an abstraction scal-
ability that permits efficient dynamic analysis by adjusting the scope to the desired
parameters of interest.

8.1 Configuration Transition System

Given an instance of a behavioral diagram, one can generate the corresponding CTS
provided that the elements of the diagram are both established and understood and
there exists (and is defined) a step relation enabling one to systematically compute
the next configuration(s) of the diagram from any given configuration.

When the variables of interest, within the dynamic domain of a behavioral
diagram, can be abstracted to boolean state variables, each of the enclosed
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configurations within the CTS can be represented by the set of states that are active1

simultaneously. Furthermore, the transition relation of the CTS links configuration
pairs by a label comprising all those variable values (e.g., events, guards) that are
required to trigger the change from the current configuration to the next one. Note
that, in order to achieve tractability, the configuration space must be bounded. In
other words, we have to assume a finite countable limit for every variable within the
dynamic domain of the diagram. Hereafter, we further detail the CTS concept.

Definition 8.1 (Dynamic domain) The set of heterogeneous attributes that charac-
terize the evolution of a behavioral diagram D represents its dynamic domain and it
is denoted as D�.

A configuration can be understood as a snapshot in the evolution of a set of
dynamic elements of a system at a particular point in time and from a specific view.

Definition 8.2 (Configuration) For an established variable ordering, a configuration
c is a particular binding of a set of values to the set of variables in the dynamic
domain D� of a behavioral diagram.

Given a diagram D and its corresponding dynamic domain D�, if for every
attribute a1,...,n ∈ D�, we can find a corresponding positive integer i1,...,n , so
that for each projection of the dynamic domain πak (D�), k ∈ 1, . . . , n we have
max |πak (DΔ)| < 2ik , then a configuration c belonging to the CTS of D needs at
most I =∑

ik bits, while the number of possible CTS configurations is at most 2I .
Notwithstanding, the actual number of configurations is usually much smaller and
is restricted to the number of configurations reachable from the initial set of con-
figurations. Moreover, the state attributes are in most the cases confined to boolean
values.

Definition 8.3 (Configuration Transition System) A CTS is a tuple (C ,�,→), where
C is a set of configurations taken from the same view, � is a set of labels, and
→⊆ C × � × C is a ternary relation, called a transition relation. If c1, c2 ∈ C and

l ∈ �, the common representation of the transition relation is c1
l→ c2.

Since the dynamics of a particular diagram is captured by the corresponding CTS,
it is then considered as the underlying semantic model. Consequently, the CTS can
be used to systematically generate the model-checker input.

Moreover, the CTS structure can also provide useful feedback to the designer.
Thus, after the generated CTS may be graphically visualized using a suitable graph
editor such as daVinci [238], the latter can be used in order to provide an overall
visual appraisal of the diagram’s complexity with respect to the number of nodes

1 Though usually a true boolean value denotes the active status of a state, the f alse boolean value
might similarly be used, as long as the convention is used consistently.
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and edges. It can also be used as a quick feedback when applying corrective mea-
sures, giving some insights about the resulting increase or decrease of the diagram’s
behavioral complexity.

8.2 Model Checking of Configuration Transition Systems

The following paragraphs detail the back-end processing required for the model-
checking procedure of the CTS model. The chosen model checker is NuSMV [47],
an improved version of the original SMV [158].

The encoding of a transition system in the NuSMV input language basically
involves a grouping in at least the three following main syntactic declarative
divisions.2

First, we need a syntactic block, wherein the state variables are defined along
with their type and range. Second, we have to specify an initialization block,
wherein the state variables are given their corresponding initial values or a range
of possible initial values. Third, we have to describe the dynamics of the transition
system in a so-called next clause block, wherein the logic governing the evolution
of the state variables is specified. Based on this, the state variables can be updated
in every next step taking into account the logical valuation done at the current step.

The CTS can be used to systematically generate its corresponding encoding into
the model-checker input language by constructing the three declarative divisions
mentioned above. As presented in the foregoing section, the CTS dynamics is given
in the form of pairwise configuration transition relations. Hence, any given CTS
transition links a source configuration to a destination configuration. Consequently,
it might be conceivable to encode each configuration as a distinct entity in the
NuSMV model. However, one can note that, in a given CTS, the number of con-
figurations may be significantly higher than the number of states that are members
of different configurations. Also, the properties to be verified ought to be expressed
on states and not on configurations. It follows that, in order to encode the CTS
representation into the model-checker language in a compact and meaningful way,
we need to use, as dynamic entities, the configuration states rather than the configu-
rations themselves. This will be reflected accordingly in all three declarative blocks.

Thus, after the establishment of the dynamic entities, one can proceed with the
compilation of the three code blocks. The first one consists of enumerating the labels
associated with each dynamic entity, along with its type and range. The second one
is compiled by using the initial configuration of the CTS in order to specify the
initial values. The third one, more laborious in nature, consists in analyzing the CTS
transitions in order to determine its state-based evolution from its configuration-
based one.

2 If appropriate, one might use various other convenient constructs while encoding a transition
system in NuSMV as well as various levels of hierarchy, where a main module is referring to
several other sub-modules, due to the modular aspect that some particular transition systems might
exhibit. However, this has no semantic impact with respect to the considered declarative divisions.
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More precisely, for every state s in any given destination configuration that is
part of one or more transition relations of the CTS, we need to

1. specify the conditions that are required for the activation of s, for each destina-
tion configuration, and

2. specify that, in the absence of such conditions, s would be deactivated.

The aforementioned activation conditions can be expressed for every destination
configuration as boolean predicates. These predicates are in the form of conjunctions
over the active status belonging to each state in the corresponding source configura-
tion, along with the test term for the transition trigger, if such is the case. However,
there may be more general cases where the source configuration elements might
contain both multiple value and boolean state variables. In this situation, the activa-
tion condition predicates would also include value test terms for the corresponding
multivalued variables. Consequently, for each state3 variable in the configurations
of the CTS model, we have to specify what we would henceforth denote as transi-
tion candidates. Specifically, a candidate for each state s represents the disjunctive
combination over the activation conditions of all the destination configurations that
have s as a member.

In mathematical terms, under the convention that the true boolean value repre-
sents for each state its “active” status and given the structures:

• S, the set of all states in the CTS configurations;
• C , the set of all configurations in the CTS;
• �, the set of all trigger event labels in the CTS;
• → ⊆ (src : C × lbl : � × dst : C), the transition relation;
• e ∈ �, trigger event label;

we can determine the following:

∀t ∈→ .c = πdst (t).Ac =∧
(πsrc(t) ∧ e ≡ πlbl(t));

∀s ∈ S.∀c ∈ {C |∃t ∈→ .s ∈ C = πdst (t)}.As =∨
Ac;

where

• Ac is the set of CTS configuration activation conditions;
• As is the activation condition set of the states in the CTS configurations.

Given that As contains the transition candidates for each state, we can use it
in order to compile the corresponding evolution logic in the next clause block for
each state in the CTS configurations. Thus, the dynamics of the CTS is encoded at
state level. This stems from specifying that each state is activated at the next step
whenever the transition candidate for the state is satisfied (true) in the current step
and, conversely, deactivated if not.

3 In the presented context, a state should be understood as any boolean or multivalued variable that
is part of one or more CTS configurations.
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8.3 Property Specification Using CTL

The verification process by means of model checker requires the precise speci-
fication of properties for the potential benefits of this technique to unfold. The
NuSMV model checker primarily uses CTL [61] temporal logic for this purpose.
This logic has interesting features and great expressivity. CTL properties can be
used to express general safety and liveness as well as more advanced properties like
conditional reachability, deadlock freedom, sequencing, precedence. In the follow-
ing paragraphs, we briefly introduce the CTL logic and its operators.

CTL is used for reasoning about computation trees that are unfolded from state
transition graphs. CTL properties refer to the computation tree derived from the
transition graph. The paths of a computation tree represent every possible compu-
tation of its corresponding model. Moreover, CTL is classified as a branching time
logic since it has operators describing properties on the branching structure of the
computation tree.

CTL properties are built using atomic propositions, propositional logic, boolean
connectives, and temporal operators. The atomic propositions correspond to the
variables in the model. Each temporal operator consists of two components: a path
quantifier and an adjacent temporal modality.

The temporal operators are interpreted in the context of an implicit current state.
In general, it is possible to have many execution paths forming at the current state.
The path quantifier indicates whether the modality defines a property that should
hold for all the possible paths (universal path quantifier A) or only for some of them
(existential path quantifier E).

Figure 8.1 depicts a computation tree along with a number of basic CTL proper-
ties that hold at various points in the computation tree.

Figure 8.2 presents the syntax of CTL formulas and Table 8.1 explains the mean-
ing underlying the temporal modalities.

Though the syntax of CTL allows the specification of a broad range of properties,
it is a known fact that, except for very simple cases, the task of accurately captur-
ing a given specification in CTL can be quite tricky and cumbersome. In order to
alleviate this issue, one can use some intuitive macros that can be automatically
expanded to their corresponding CTL equivalents, thus allowing for a convenient

Fig. 8.1 Basic computation trees and their corresponding CTL properties (source [6])
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φ ::= p (Atomic propositions)
| !φ | φ ∧ φ | φ ∨ φ | φ → φ (Boolean Connectives)
| AG φ | EG φ | AF φ | EF φ (Temporal Operators)
| AX φ | EX φ | A[ φ U φ ] | E[ φ U φ ] (Temporal Operators)

Fig. 8.2 CTL syntax

Table 8.1 CTL modalities

G p Globally, p is satisfied for the entire subsequent path
F p Future (Eventually), p is satisfied somewhere on the subsequent path
X p neXt, p is satisfied at the next state
p U q Until, p has to hold until the point that q holds and q must eventually hold

way of expressing the specification with minimal, or even with no prior knowledge
of temporal logic.

Examples of useful CTL macros include

• ALWAYS
• NEVER
• MAYREACH
• INEVIT
• POSSIB
• NECESS
• PRECEDE

Later, we provide a number of case studies wherein the use of CTL macros will
be demonstrated for specifying the design properties to be verified using model
checking.

8.4 Program Analysis of Configuration Transition Systems

In the following, we discuss the use of program analysis techniques (data and con-
trol flow) on our semantic model, namely the CTS. These techniques can poten-
tially improve the effectiveness of the model-checking procedure by narrowing the
scope of the verification to what we might call semantic projections of the transition
system.

The goal is to identify and extract those parts of the CTS that exhibit proper-
ties that can be used in order to simplify the transition system that is supplied to
the model checker. The aspects that we are interested in are the data and control
flow. The former is applied by basically searching for the presence of invariants
(e.g., specific variable values or relations) whereas the latter can be used in order
to detect control flow dependencies among various parts of the transition system.
Consequently, the CTS may be sliced into smaller independent subgraphs that can
be individually subjected to the model-checking procedure.
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Though it might be possible to specify some properties that could span across
more than one subgraph of the original CTS, the slicing can safely be done under
the following conditions:

1. The properties to be verified fall into liveness4 or safety category5;
2. No property specification should involve sequences or execution traces that

require the presence of the initial state more than once.

It must be noted that the second constraint does not represent a major hindrance
for the verification potential. In this respect, the presence of invariants assures that
either revisiting the initial state or entering it for the first time is equivalent with
respect to the dynamics of the transition system.

It must, however, be mentioned that, even though some of the configuration sub-
graphs derived might be rather simple, it is nevertheless required for the model-
checking procedure that one specifies all the elements of the original model for
each transition system input to the model checker. This must be done in order to
preserve the original elements6 of the transition system, all the while ensuring that
the underlying dynamics is captured by the configuration subgraph in question.

Moreover, due to the fact that the dynamics may be severely restricted in some
cases, one has to take this fact into account when interpreting the model-checking
results. Thus, even though it might be the case that a liveness property fails for a
transition system corresponding to a particular subgraph, the property should not
be immediately declared as failed for the original model. The property in question
passes as long as there is at least one subgraph whose transition system satisfies
it. Conversely, whenever a safety property fails for a particular subgraph, then it is
declared as failed for the original model as well. Notwithstanding, this task can be
automated and virtually transparent.

In order to illustrate more effectively how data and control flow analysis can be
applied on the CTS model, we provide an edifying example in Sect. 8.5, wherein we
detail the verification and validation procedure of the state machine diagram. The
application of program analysis techniques are described in Sect. 8.5.3.

8.5 V&V of UML State Machine Diagram

In this chapter, we describe the verification and validation procedure of the state
machine diagram by means of model checking. A state machine is a specifica-
tion that thoroughly describes all the possible behaviors of some discrete dynamic

4 Liveness properties capture a system behavior that will eventually occur (e.g., eventually some-
thing “good” will happen).
5 A safety property is usually capturing a behavior that must always occur (e.g., at any point,
nothing “bad” happens).
6 Certain elements of the transition system may be needed when specifying various properties.
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model. The state machine diagram representation contains hierarchically organized
states that are related by transitions labeled with events and guards.

The state machine evolves in response to events that trigger the corresponding
transitions provided that the source state is active, that the transition has the highest
priority, and that the guard on the transition is true. If transitions conflict, priori-
ties are assigned to decide which transition will fire. Higher priority is assigned to
transitions whose source states are nested deeper in the containment hierarchy.

8.5.1 Semantic Model Derivation

The hierarchical structure of the state machine diagram can be represented as a tree,
where the root is the top state, the basic states are the leaves, and all the other nodes
are composite states. The tree structure can be used to identify the least common
ancestor (LCA) of a transition’s source and target states. This is useful in identify-
ing, after firing a transition, the states that will be deactivated and those that will
be activated. An appropriate labeling (encoding) of the states is required in order
to capture the hierarchical containment relation among them, that is, we have “is
ancestor of”/“is descendant of” relations within the set of states. Moreover, each
state down the hierarchy is labeled in the same manner as the table of contents of a
book (e.g., 1., 1.1., 1.2., 1.2.1.).

The labeling procedure consists of assigning Dewey positions and is presented
in Algorithm 2, where the operator +c denotes string concatenation (with implicit
operand-type conversion). To that effect, the labeling of the states is achieved by
executing Algorithm 2 on the top state with label “1.”, and thus recursively labeling
all states. The information encoded in the label of each state can be used to evaluate
the relation among the states: For any two states s and z of a state machine where sl

and zl represent their respective labels, (s “is ancestor of” z) holds if sl is a proper
prefix of zl (e.g., sl = “1.1.”, zl = “1.1.2.”). Conversely (s “is descendant of” z)
holds if zl is a proper prefix of sl .

The state labeling is used in order to find the LCA state of any pair of states under
the top state7 by identifying the common prefix. The latter represents the label of
the LCA state and can be more formally expressed in the following way:

For any pair of states (s, z), sl 
= “1.” 
= zl , ∃!lp 
= ε such that lp is the greatest
(longest) proper prefix of both sl and zl . Consequently, ∃!lcaState =LCA(s, z)
such that lcaStatel = lp.

While for any pair of states under the top, there is a unique LCA, it is also pos-
sible to have states that do not share “is ancestor of”/“is descendant of” relations
(e.g., sl = “1.1.1.”, zl = “1.2.1.”).

A configuration is the set of states of the state machine where the true value is
bound to active states and the f alse value to inactive ones. To avoid redundancy,

7 The LCA of any two states is the closest state in the containment hierarchy that is an ancestor of
both of them.
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Algorithm 2 Hierarchical State Labeling
labelState(State s, Label l)
sl ← l
for all substate k in s do

labelState(k, l +c indexof (k)+c ”.”);
end for

for every configuration one only needs to specify the states that are active. However,
to support a mechanism whereby all the configurations of a state machine can be
generated, we keep in each configuration two additional lists, one containing the
value of all the guards for that particular configuration and the other containing
a so-called join pattern list of configurations. The join pattern list terminology is
borrowed from [84] and it is used to record various synchronization points that may
be reached in the evolution of the state machine from one configuration to another.

In the following, we explain the procedure used for the generation of the CTS,
presented by Algorithm 3. The CTS is obtained by a breadth-first search iterative
procedure. The main idea consists of exploring, for each iteration, all the new config-
urations reachable from the current configuration, identified as CurrentConf. More-
over, three main lists are maintained. One, denoted by FoundConfList, records the
so far identified and explored configurations. The second one is holding the newly
found, but unexplored, configurations and is denoted by CTSConfList. Finally, the
third list is used to record the identified transitions from one configuration to another
and is denoted by CTSTransList. Additionally, we have a container list, denoted by
CTScontainer that holds all the state and guard elements of the state machine, along
with an initially empty join pattern list placeholder.

The iterative procedure starts with CTSConfList containing only the initial con-
figuration of the state machine, denoted by initialConf. In each iteration, a configu-
ration is popped from CTSConfList and represents the value of CurrentConf for the
current iteration. From CurrentConf, the three subsumed lists (crtStateList, crtGList,
and crtJoinPatList) are extracted. In order to be able to properly evaluate the value
of the guards before firing the transitions, the crtGList is inspected to check if it
contains an unspecified (any) guard value. If it does, then two new configurations
are added to CTSConfList, wherein the unspecified guard value is assigned the true
and f alse values, respectively, and the next iteration immediately starts. Otherwise,
if FoundConfList does not contain CurrentConf then the latter is added to Found-
ConfList.

Based on a list of possible incoming events referred to as EventList, we pick each
element one by one and dispatch it, each time restoring the state machine to the
current configuration by assigning the latter to the CTScontainer. The dispatching
operation is a generic procedure that is responsible for the event processing and
uses the state containment hierarchy labeling in order to properly move the state
machine from the current configuration to the next. Thus, the corresponding enabled
transitions labeled with the dispatched event are triggered respecting their priorities
and also, should a previously unidentified configuration be discovered, it is added
to CTSConfList.
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Algorithm 3 Generation of the State Machine CTS
FoundConfList = ∅
CTSConfList = { initialConf }
CTSTransList = ∅
CTScontainer = {DiagramStateList,guardValueList,∅}
while CTSConfList is not empty do

CurrentConf = pop(CTSConfList)
crtStateList = get(CurrentConf,0)
crtGList = get(CurrentConf,1)
crtJoinPatList = get(CurrentConf,2)
if crtGList containsV alue “any” then

splitIndex = getPosition(crtGList, “any”)
crtGList[splitIndex] = true
CTSConfList = CTSConfList ∪ { crtStateList, crtGList, crtJoinPatList }
crtGList[splitIndex] = false
CTSConfList = CTSConfList ∪ { crtStateList, crtGList, crtJoinPatList }

continue
end if
if FoundConfList not contains CurrentConf then

FoundConfList = FoundConfList ∪ CurrentConf
end if
for each event e in EventList do

setConf(CTScontainer, CurrentConf)
dispatch(CTScontainer, e)
nextConf = getConf(CTScontainer)
if nextConf not equals CurrentConf then

CTSConfList = CTSConfList ∪ nextConf
crtTrans = {CurrentConf, e, nextConf}
if CTSTransList not contains crtTrans then

CTSTransList = CTSTransList ∪ {crtTrans}
end if

end if
end for

end while

Whenever the next found configuration is different from the current one, a new
transition between CurrentConf and the next found configuration is formed and if
not already present, it is added to CTSTransList. After adding all the new possi-
ble successor (next) configurations of the current configuration to the CTSConfList,
the next iteration starts. The procedure stops when no elements can be found in
CTSConfList. Thus, by applying the above algorithm, we obtain the CTS corre-
sponding to a given state machine.

8.5.2 Case Study

In the following, we present a case study related to a UML 2.0-based design describ-
ing an automated teller machine (ATM). We perform V&V of this design with
respect to predefined properties and requirements.
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The ATM interacts with a potential customer (user) via a specific interface and
communicates with the bank over an appropriate communication link. A user that
requests a service from the ATM has to insert an ATM card and enter a personal
identification number (PIN). Both pieces of information (the card number and the
PIN) need to be sent to the bank for validation. If the credentials of the customer
are not valid, the card will be ejected. Otherwise, the customer will be able to carry
out one or more transactions (e.g., cash advance or bill payment). The card will be
retained in the ATM machine during the customer’s interaction until the customer
wishes for no further service. Figure 8.3 shows the UML 2.0 state machine diagram
of the ATM system.

The model is based on a hypothetical behavior and is meant only as an example.
Moreover, it intentionally contains a number of flaws in the design in order to outline
the usefulness of the approach in discovering problems in the behavioral model.
The diagram has several states that we will present in accordance to the diagram
containment hierarchy.

Fig. 8.3 Case study: ATM state machine diagram



136 8 Verification and Validation of UML Behavioral Diagrams

The top container state ATM encloses four substates: IDLE, VERIFY, EJECT, and
OPERATION. The IDLE state, wherein the system waits for a potential ATM user, is
the default initial substate of the top state. The VERIFY state represents the verifi-
cation of the card’s validness and authorization. The EJECT state depicts the phase
of termination of the user’s transaction. The OPERATION state is a composite state
that includes the states that capture several functions related to banking operations.
These are the SELACCOUNT, PAYMENT, and TRANSAC.

The SELACCOUNT state is where an account, belonging to card owner, has to be
selected. When the state SELACCOUNT is active, and the user selects an account,
the next transition is enabled and the state PAYMENT is entered. The PAYMENT state
has two substates, respectively, for cash advancing and bill payment. It represents a
two-item menu, controlled by the event next. Finally, the TRANSAC state captures
the transaction phase and includes three substates: CHKBAL for checking the balance,
MODIFY for modifying the amount, if necessary, and DEBIT for debiting the account.

Each one of the PAYMENT and TRANSAC states contains a shallow history pseu-
dostate. If a transition targeting a shallow history pseudostate is fired, the most
recently active substate in the composite state containing the history connector is
activated.

When applying formal analysis to assess the state machine diagram, the steps are
as follows. We first convert the diagram to its corresponding semantic model (CTS)
as depicted in Fig. 8.4. Each element is represented by a set (possibly singleton) of
states and variable values of the state machine diagram. Thereafter, we automatically
specify deadlock and reachability properties for every state. Furthermore, we also
provide user-defined properties in both macro- and CTL notations.

After completing the model-checking procedure, the results obtained pinpoint
some interesting design flaws in the ATM state machine design.

The model checker determined that the OPERATION state exhibits deadlock,
meaning that once entered, it is never left. This is because in UML state machine
diagrams, whenever there are conflicting transitions with the same trigger, higher
priority is given in the case where the source state is deeper in the containment
hierarchy.

Moreover, the transitions that have no event are fired as soon as the state machine
reaches a stable configuration containing the corresponding source state. This is
precisely the case with the transition from SELACCOUNT to PAYMENT. But, no con-
figuration allows the operation state to be exited. This can also be seen by looking at
the corresponding CTS where, we can notice that once a configuration that contains
the OPERATION state is reached, there is no transition to a configuration that does
not contain the OPERATION state.

In addition to the automatically generated properties, there are some relevant
user-defined properties, described in both macro- and CTL notations.

The first property (property (8.1)) asserts that it is always true that if the
VERIFY state is reached then, from that point on, the OPERATION state should be
reachable:
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Fig. 8.4 CTS of the ATM state machine

ALWAYS VERIFY → MAYREACH OPERATION

CT L : AG((VERIFY → (E[!(IDLE) U OPERATION]))) (8.1)

The next property (property (8.2)) asserts that it is always true that, after reaching
the OPERATION state, it is inevitable to reach and EJECT state at a later point:

ALWAYS OPERATION → INEVIT EJECT

CT L : AG((OPERATION → (A[!(IDLE) U EJECT]))) (8.2)
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IDLE [!cardOk,!pinOk];
VERIFY,CHKCARD,VERIFCARD,CHKPIN,VERIFPIN [cardOk,pinOk];
VERIFY,CHKCARD,CARDVALID,CHKPIN,VERIFPIN [cardOk,pinOk];
VERIFY,CHKCARD,CARDVALID,CHKPIN,PINVALID [cardOk,pinOk];
OPERATION,SELACCOUNT [cardOk,pinOk];
OPERATION,PAYMENT,CASHADV [cardOk,pinOk];
OPERATION,TRANSAC,DEBIT [cardOk,pinOk].

Fig. 8.5 State machine counterexample

The last property (property (8.3)) states that the state CHKBAL must precede the
state DEBIT:

CHKBAL PRECEDE DEBIT

CT L : (!E[!(CHKBAL) U DEBIT]))) (8.3)

Property (8.1) turned out to be satisfied when running the model checker. This
was expected. However, properties (8.2) and (8.3) failed. In this respect, from the
automatic specifications, we noticed that state operation is never left once entered
(it exhibits deadlock) and does not have state eject as a substate. The failure of
property (8.3) was accompanied by a trace provided by the model checker, depicted
in Fig. 8.5. Though the model checker can provide a counterexample for any of the
failed properties, we present the counterexample for property (8.3) as it captures a
critical and unintended behavior.

The foregoing counterexample is represented by a series of configurations (semi-
colon separated). Moreover, whenever two or more states are present in a given con-
figuration, a comma separates them in the notation. Additionally, for each configu-
ration, the variable values are enclosed in square brackets. In this case, the failure
is due to the presence of a transition from the PAYMENT state to the shallow history
connector of the TRANSAC state. This allows for the immediate activation of the
DEBIT state upon reentering the TRANSAC state by its history connector.

The counterexample can help the designer to infer the necessary changes to fix
the identified design flaw. The first modification consists in adding a trigger, such as
select, to the transition from the SELACCOUNT state to the PAYMENT state. This will
eliminate the deadlock state and property (8.2). The second modification corrects
the problem related to property (8.3). It consists in removing the history connector
of the TRANSAC state and changing the incoming transition from this target directly
to the TRANSAC state. Figure 8.6 depicts the corrected ATM state machine diagram.
After re-executing the V&V process on the corrected diagram, all the specifications,
both automatic and user-defined properties, were satisfied.

8.5.3 Application of Program Analysis

In the following, we show the use of program analysis on the configuration transition
system of the state machine case study presented in Sect. 8.5.2. In the corresponding
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Fig. 8.6 Corrected ATM state machine

CTS, presented in Fig. 8.4, every configuration contains various values for the
variables cardOk and pinOk. Whenever we have an exclamation mark preceding
a variable in a particular configuration, this means that the variable is f alse in that
configuration.

There are several subgraphs where certain invariants hold. Figure 8.7 presents
these subgraphs, each of them having invariants that can be abstracted. In Fig. 8.7a,
we notice the invariant !cardOk. Similarly, Fig. 8.7b shows another subgraph where
the invariant !pinOk holds. In the subgraph of Fig. 8.7c, both !cardOk and !pinOk
invariants hold. Additionally, Fig. 8.8 depicts a subgraph that is independent from
the control flow perspective. To that effect, once the control is transferred to this
subgraph, it is never transferred outside of it.

The subgraphs identified in the previous paragraph represent the basis that
enables us to slice (decompose) the initial model into several independent parts that
can then be analyzed separately. Obviously, the subgraphs have reduced complexity
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Fig. 8.7 Dataflow subgraphs

Fig. 8.8 Control flow subgraph

when compared to the original model. Accordingly, for each of them, the corre-
sponding transition system subjected to model checking requires fewer resources
in terms of memory space and computation time. The benefits of the slicing pro-
cedure are emphasized in the statistics below. Since the model checker is using
binary decision diagrams (BDDs) for storing the generated state space in a highly
compact manner, this serves as an eloquent comparison parameter (see Table 8.2
for the corresponding statistics). We can note that, while for verifying the initial
CTS graph the model checker allocated between 70,000 and 80,000 BDD nodes
(depending on the variable ordering), the number of allocated BDD nodes for the
sliced subgraphs is significantly reduced. Indeed, for the graphs in Fig. 8.7a and b,
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Table 8.2 Statistics related to model checking memory foot print

Graph Memory footprint (BDD nodes)

Figure 8.4 70,000–80,000
Figure 8.7a ≈ 4000
Figure 8.7b ≈ 4000
Figure 8.7c ≈ 8000
Figure 8.8 28,000–33,000

the number of BDD nodes is around 4000, whereas the graph in Fig. 8.7c required
around 8000 BDD nodes and the graph in Fig. 8.8 required about 28,000–33,000
nodes.

8.6 V&V of UML Sequence Diagram

Sequence diagrams are used in order to describe the communication required to
fulfill an interaction. A sequence diagram, as defined by UML 2.0, is a diagram
composed of a set of lifelines, which correspond to objects interacting in a temporal
order. The abstraction of the most general interaction unit is called InteractionFrag-
ment [181] and it represents the basic piece of interaction.

8.6.1 Semantic Model Derivation

In a given sequence diagram, every interaction fragment can be conceptually con-
sidered as an interaction [181]. Moreover, combined fragment (i.e., CombinedFrag-
ment) [181] is a specialization of InteractionFragment that has an interaction oper-
ator corresponding to one of the following constructs: Seq, Alt, Opt, Par, or Loop.
These constructs are examples of CombinedFragment. The interaction between life-
lines is represented by message exchange. More specifically, it represents a commu-
nication (e.g., raising a signal, invoking an operation, or creating or destroying an
instance of an object).

Generally, the sequence diagram can be used to capture attributes such as latency
and precedence. By extracting all possible execution paths of a given sequence dia-
gram, one can construct a corresponding transition system.

To proceed with the generation of the corresponding CTS, we have to first encode
the messages in a particular syntax. By convention, we can assume that each mes-
sage label starts with the sender actor and terminates with the receiving one. Conse-
quently, each exchanged message Msg is written in the following format: S_Msg_R,
where the sender of Msg is denoted as S and the receiver as R. In this case, a config-
uration is a set of messages sent in parallel (separated by a comma in the notation).
Messages that are not enclosed in any CombinedFragment, but rather in Seq, each
represents a singleton configuration. States are messages sent in parallel and the
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transitions are based on the sequencing operator. Thus, the transitions are derived
from the sequencing events between the messages in the sequence diagram.

8.6.2 Sequence Diagram Case Study

The sequence diagram presented below depicts a possible execution scenario of the
interaction between three actors of a banking system: The user, the ATM, and the
bank. Though there are other possible execution scenarios, we will only focus on
the one shown in Fig. 8.9.

The diagram comprises three main CombinedFragment: two are related to the
authentication process and one to a banking transaction operation. The first Com-
binedFragment (Par) captures the validation of the card and a request for the PIN.
The second CombinedFragment is an alternative choice (Alt) that captures the
validation of the PIN. A subsequent CombinedFragment (Alt) depicts a possible
interaction of using the cash advance service in the case where the credentials are
valid.

In order to assess this diagram, we convert it to its corresponding semantic model,
which is the CTS depicted in Fig. 8.10. Since deadlock and reachability properties
are generic specification, we only present some of the relevant properties, such as
service availability and safety. We describe each of them in two different notations:
macro and CTL.

The first property (property (8.4)) is a kind of service availability specification.
It asserts that it is always the case that, if the user inserts his card, then it should be
possible to have an execution path where the ATM advances cash:

ALWAYS U_insertCard_A → MAYREACH A_pickCash_U

CT L : AG(U_insertCard_A → E[!(end) U A_pickCash_U]) (8.4)

The second property (property (8.5)) is a safety property. It asserts that it is always
the case that should the credentials not be valid, then there should be no possibility
for the user to request a banking operation:

ALWAYS (!CardOk or !PINOk)→!MAYREACH (A_waitAccount_U)
CT L : AG((!Cardok or !PINOk)→!(E[!(end) U A_waitAccount_U])) (8.5)

The third property (property (8.6)) is related to an ergonomic specification stating
that, whenever the specified amount exceeds the level of available funds, it should
be possible for the user to request a new cash advance operation if the user wishes
to correct the amount:

ALWAYS A_insufFunds_U → POSSIB U_CashAdvance_A

CT L : AG(A_insufFunds_U → EX(U_CashAdvance_A)) (8.6)
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Fig. 8.9 ATM sequence diagram example

When subjecting the sequence diagram to V&V, only properties (8.4) and (8.5)
are satisfied, while property (8.6) fails. The model checker was able to produce a
counterexample for the failed property. The interpreted result of the corresponding
trace is the CTS path depicted in Fig. 8.11.

The identified path contains a series of messages (separated by semicolons) that
are exchanged between the actors. Hence, when analyzing the counterexample, one
can note that it is not possible to reach state U_cashAdv_A from state A_insuf_U.
Thus, we can conclude that the sequence diagram does not comply with all the
specified requirements.
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Fig. 8.10 The CTS of the ATM sequence diagram example

Fig. 8.11 Sequence diagram counterexample for property (8.6)
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8.7 V&V of UML Activity Diagram

The UML activity diagram basically inherits the structured development concept of
flowchart, being essentially its object-oriented equivalent. As such, it can be used for
business process modeling, for modeling various usage scenarios, or for capturing
the detailed logic of a complex operation. It must be noted that the activity and
state machine diagrams are related to some extent. However, while a state machine
diagram focuses on the state of a given object as it is undergoing a process (or on a
particular process that captures the object state), an activity diagram focuses on the
flow of activities of a particular process or operation involving one or more interact-
ing objects. Specifically, the activity diagram shows the nature of the relations estab-
lished among the activities involved in carrying out a process or operation, typically
including relations such as sequencing, conditional dependency, synchronization.

8.7.1 Semantic Model Derivation

The semantic model derivation for the activity diagram inherits an idea stemming
from the work of Eshuis and Weiringa [80] and consists of encoding the activity
diagram dynamics by generating its reachable configurations.

In a similar manner to the one presented in the case of the state machine, the
activity diagram is converted to its corresponding CTS. Accordingly, each config-
uration is represented by the set of actions that are concurrently active (true value
is bound to active actions). Likewise, in order to generate all the reachable config-
urations of the activity diagram, there is in every configuration the two additional
lists: one that corresponds to the values of all the guards for that configuration and
the second being the join pattern list for that configuration. The join pattern is also
required because the activity diagram allows for forking and joining activity flows as
well as cross-synchronization among different activity flows. Thus, as in the case of
the state machine, the join pattern list is used in order to record various synchroniza-
tion points that may be reached while generating the configurations of the activity
diagram. Consequently, the procedure used for the CTS generation in the case of
activity diagram is a variation of the state machine CTS generation algorithm pre-
sented in Sect. 8.5.1, the main difference being that, instead of generating the CTS
configurations by using a list of possible incoming events, we track each activity
flow associated with each concurrent action that is a member of every new identified
configuration. The procedure is presented in Algorithm 4, where the modification
consists in picking each state in crtStateList and computing all the possible next
configurations reachable by any control transfer to a successor state in the same
activity flow.

8.7.2 Activity Diagram Case Study

The selected case study for the activity diagram presents a compound usage oper-
ation of the UML 2.0 ATM design, whose state machine diagram was previously
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Algorithm 4 Generation of the Activity CTS (reusing part of Algorithm 3)
FoundConfList = {}
CTSConfList = { initialConf }
CTSTransList = ∅
CTScontainer = {DiagramStateList,guardValueList,∅}
while CTSConfList is not empty do

CurrentConf = pop(CTSConfList)
crtStateList = get(CurrentConf,0)
crtGList = get(CurrentConf,1)
crtJoinPatList = get(CurrentConf,2)
if crtGList containsV alue “any” then

splitIndex = getPosition(crtGList, “any”)
crtGList[splitIndex] = true
CTSConfList = CTSConfList ∪ { crtStateList, crtGList, crtJoinPatList }
crtGList[splitIndex] = false
CTSConfList = CTSConfList ∪ { crtStateList, crtGList, crtJoinPatList }

continue
end if
if FoundConfList not contains CurrentConf then

FoundConfList = FoundConfList ∪ CurrentConf
end if
for each state s in crtStateList do

setConf(CTScontainer, CurrentConf)
execute(s)
nextConf = getConf(CTScontainer)
if nextConf not equals CurrentConf then

CTSConfList = CTSConfList ∪ nextConf
crtTrans = {CurrentConf, nextConf}
if CTSTransList not contains crtTrans then

CTSTransList = CTSTransList ∪ {crtTrans}
end if

end if
end for

end while

presented in Sect. 8.5.2. Likewise, the usage operation scenario is a hypotheti-
cal one and reflects a typical cash withdrawal operation that a potential customer
(user) might perform. In the following paragraphs, we detail the intended operation,
captured by the activity diagram, along with some relevant properties. Figure 8.12
shows the UML 2.0 activity diagram of the ATM cash withdrawal operation.

The operation begins with the Insert Card activity. Thereafter, two execution
flows are forked, corresponding, respectively, to the Read Card and Enter Pin
actions. The activity flow starting with Read Card continues to the Authorize
Card action, while the one starting with Enter Pin continues to the Authorize
Pin action. Both Authorize Card and Authorize Pin actions are followed
by corresponding test branching points. In the case where both the user card
and PIN check out, the two activity flows are joined together and the Initiate
transaction action is started. This is followed, in order, by the Select amount,
Check Balance actions, and a decision node. If the latter guard is satisfied, then
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Fig. 8.12 ATM activity diagram example
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two new activity flows fork. The first activity flow begins with the Debit account
action and continues on with the Record Transaction action. The second one
forks anew to Dispense Cash and Print Receipt actions. The three activity
flows that are executing at this point are cross-synchronizing in the following
manner: the Record Transaction activity flow is joined together along with the
Dispense Cash activity flow into a single activity flow that subsequently contin-
ues with the execution of the Pick Cash action. The latter is then joined with the
remaining one that was executing the Print Receipt action. Finally, the control
is transferred to Show Balance and then to Eject Card, the latter finishing the
whole operation. For cases where the authorization test branching points are not
satisfied because the card and/or the PIN number do not check out, the control is
transferred to the Eject Card action.

In order to outline the benefits of the model-checking procedure, the presented
case study intentionally contains a number of flaws that are going to be identified
during the verification procedure. Furthermore, to subject the activity diagram to the
model checker, the following steps are required. First, the diagram is converted to
its corresponding CTS depicted in Fig. 8.13, which represents its semantic model.
Therein, each element is represented by a set (possibly singleton) of activity nodes.
Second, we automatically specify deadlock and reachability properties for every
action node in the diagram. Third, user-defined specifications intended to capture
the desired behavior are presented in both macro- and CTL notations.

The first property (property (8.7)) asserts that, executing the InsertCard action
implies that it is inevitable to reach at a later point the EjectCard action:

Insert_Card → INEVIT Eject_Card

CT L : Insert_Card → A[!(end) U Eject_Card] (8.7)

Next property (property (8.8)) asserts that it is always the case that whenever
the system is executing the InsertCard action, this implies that AuthCard action
precedes the EjectCard action:

ALWAYS Insert_Card → Auth_Card PRECEDE Eject_Card

CT L : AG((Insert_Card → (!E[!(Auth_Card) U Eject_Card]))) (8.8)

Another property (property (8.9)) asserts that it is always the case that executing
the Init_Transac action implies that the PickCash action may be reachable at a
later point:

ALWAYS Init_Transac → MAYREACH Pick_Cash

CT L : AG((Init_Transac → (E[!(end) U Pick_Cash]))) (8.9)

The fourth property (property (8.10)) is asserting that the DebitAccount action
should precede the DispenseCash action:
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[!pinOk][pinOk]
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Fig. 8.13 CTS of the ATM cash withdrawal activity diagram

Debit_Account PRECEDE Dispense_Cash

CT L : (!E[!(Debit_Account) U Dispense_Cash]))) (8.10)

The fifth property (property (8.11)) asserts that the EjectCard action should
never be followed by other actions:

NEVER (Eject_Card & POSSIB !end)

CT L : !EF(Eject_Card & EX !end) (8.11)
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After running the model checker, the obtained results indicate that no unreachable
or deadlock states were detected in the model. With respect to the manual spec-
ifications, properties 8.7 and 8.9 are satisfied. However, properties 8.8, 8.10, and
8.11 are violated. The counterexamples for properties 8.8 and 8.10 are presented,
respectively, in Figs. 8.14 and 8.15.

Property (8.11) failed since there are reachable configurations that contain the
Eject_Card action together with another action, such as Read_Card.

The cash withdrawal operation activity requires a number of modifications in
order to have all the specified properties pass. Figure 8.16 presents the corrected
version of the activity diagram. Several corrections were performed on the flawed
activity diagram. The authorization test branching points are cascaded in sequence
rather than concurrently after joining the activity flows forked for reading the card
and entering the PIN. Moreover, the Dispense_Cash and Record_Transaction
actions are swapped to enforce their execution after the Debit_Account action.
Running again the V&V procedure on the corrected activity diagram, all properties
were satisfied.

In Chaps. 9 and 10, we further describe an appropriate verification procedure
involving probabilistic model-checking techniques for assessing design models
expressed as SysML activity diagrams annotated with probability artifacts and time
constraints.

Insert_Card;
Enter_Pin,Read_Card;
Authorize_Card,Enter_Pin;
Eject_Card,Enter_Pin;

Fig. 8.14 Activity diagram counterexample for property (8.8)

Insert_Card;
Enter_Pin,Read_Card;
Authorize_Pin,Read_Card;
Authorize_Card,Authorize_Pin;
Authorize_Pin;
Init_Transac;
Sel_Amount;
Check_Bal;
Debit_Account,Dispense_Cash,Print_Receipt;
Debit_Account,Print_Receipt;

Fig. 8.15 Activity diagram counterexample for property (8.10)
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Fig. 8.16 Corrected ATM activity diagram example
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8.8 Conclusion

In this chapter, we presented an automatic approach for the V&V of behavioral
design models expressed in the UML modeling language. The approach presented
employs the concept of configuration transition system (CTS) which can be tailored
in order to construct corresponding semantic models for UML behavioral diagrams,
such as state machine, activity, and sequence. Each resulting semantic model can be
used as input to a model checker (e.g., NuSMV) in order to perform an automatic
verification of various properties specified in temporal logic (e.g., CTL). The assess-
ment results can serve as a basis for validating or debugging design models. With
respect to the latter, a valuable feedback is found in the counterexamples generated
for the failed properties during model checking.



Chapter 9
Probabilistic Model Checking of SysML
Activity Diagrams

Incorporated modeling and analysis of both functional and non-functional aspects
of today’s systems behavior represents a challenging issue in the field of formal
methods.

In this chapter, we look at integrating such an analysis on SE design models,
focusing on probabilistic behavior. Indeed, SysML 1.0 [187] extends UML activity
diagrams with probabilistic features. Thus, we propose to translate SysML activ-
ity diagrams into the input language of the probabilistic model-checker PRISM
[204]. In Sect. 9.1, we explain our approach for the verification of SysML activity
diagrams. In Sect. 9.2, we present the algorithm implementing the translation of
SysML activity diagrams into PRISM input language. Section 9.3 is dedicated to the
description of the property specification language, namely PCTL*. Finally, Sect. 9.4
illustrates the application of our approach on a SysML activity diagram case study.

9.1 Probabilistic Verification Approach

Our objective is to provide a technique by which we can analyze SysML activity
diagrams from functional and non-functional points of view in order to discover
subtle errors in the design. This allows one to reason with regard to the correction
of the design from these standpoints, before the actual implementation. In these
settings, probabilistic model checking allows the performance of both qualitative
and quantitative analyses of the model. It can be used to compute expectation on
systems performance by quantifying the likelihood of a given property being vio-
lated or satisfied in the system model. In order to carry out this analysis, we design
and implement a translation algorithm that maps SysML activity diagrams into the
input language of the selected probabilistic model checker. Thus, an adequate per-
formance model that correctly captures the meaning of these diagrams has to be
derived. More precisely, the selection of a suitable performance model depends on
the understanding of the behavior captured by the diagram as well as its underpin-
ning characteristics. It also has to be supported by an available probabilistic model
checker.
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The global state of an activity diagram can be characterized using the location of
the control tokens. A specific state can be described by the position of the token at a
certain point in time. The modification in the global state occurs when some tokens
are enabled to move from one node to another. This can be encoded using a transition
relation that describes the evolution of the system within its state space. Therefore,
the semantics of a given activity diagram can be described using a transition system
(automata) defined by the set of all the states reachable during the system’s evolution
and the transition relation thereof. SysML activity diagrams allow modeling prob-
abilistic behavior, using probabilistic decision nodes. The outgoing edges of these
nodes, quantified with probability values, specify probabilistic branching transitions
within the transition system. The probability label denotes the likelihood of a given
transition’s occurrence. In the case of a deterministic transition, the probability is
equal to 1. Furthermore, the behavior of activity diagrams presents non-determinism
that is inherently due to parallel behavior and multiple instances execution. More
precisely, fork nodes specify unrestricted parallelism, which can be described using
non-determinism in order to model interleaving of flows’ executions. This corre-
sponds, in the transition system, to a set of branching transitions emanating from
the same state, which allows the description of asynchronous behavior. In terms of
probability labels, all transitions occurring due to non-determinism are labeled with
probability equal to 1.

In order to select the suitable model checker, we need to first define the appro-
priate probabilistic model for capturing the behavior depicted by SysML activity
diagrams. To this end, we need a model that expresses both non-determinism and
probabilistic behavior. Thus, Markov decision process (MDP) might be a suitable
model for SysML activity diagrams. Markov decision processes describe both prob-
abilistic and non-deterministic behaviors. They are used in various areas, such as
robotics [9], automated control [100], and economics [111]. A formal definition of
MDP is given in the following [209]:

Definition 9.1 A Markov decision process is a tuple M=(S, s0, Act , Steps), where

• S is a finite set of states;
• s0 ∈ S is the initial state;
• Act is a set of actions;
• Steps : S → 2Act×Dist (S) is the probabilistic transition function that assigns to

each state s a set of pairs (a, μ) ∈ Act × Dist (S), where Dist (S) is the set of
all probability distributions over S, i.e., the set of functions μ : S → [0, 1] such
that

∑
s∈S μ(s) = 1.

We write s
a→ μ if, and only if, s ∈ S, a ∈ Act , and (a, μ) ∈ Steps(s), and we

refer to it as a step or a transition of s. The distribution μ is called an a-successor
of s. For a specific action α ∈ Act and a state s, there is a single α-successor
distribution μ for s. In each state s, there is a non-deterministic choice between
elements of Steps(s) (i.e., between the actions). Once an action–distribution pair
(a, μ) is selected, the action is performed and the next state, for example, s′, is
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determined probabilistically according to the distribution μ, i.e., with a probabil-
ity equal to μ(s′). In the case of μ of the form μ1

s′ (meaning the unique distri-

bution on s’, i.e., μ(s′) = 1), we denote the transition as s
a→ s′ rather than

s
a→ μ1

s′ .
Among the existing probabilistic model checkers, we have selected PRISM

model checker. The latter is a free and open-source model checker that supports
MDPs analysis and whose input language is both flexible and user-friendly. More-
over, PRISM is widely used in many application domains on various real-life case
studies and is recognized for its efficiency in terms of data structure and numerical
methods. In summary, to apply probabilistic model checking on SysML activity
diagrams, these diagrams will need to be mapped into their corresponding MDPs
using PRISM input language. With respect to properties, they must be expressed
using probabilistic computation tree logic (PCTL*), which is commonly used in
conjunction with discrete-time Markov chains (DTMC) and MDP [20]. Figure 9.1
illustrates the synopsis of the proposed approach.

In the next section, we present the algorithm that we devise for the systematic
mapping of SysML activity diagrams into the corresponding PRISM MDP code.

Fig. 9.1 Probabilistic model checking of SysML activity diagrams

9.2 Translation into PRISM

To translate SysML activity diagrams into PRISM code, we assume a single initial
node and a single activity final node. Nevertheless, this is not a restriction, since
we can replace a set of initial nodes by one initial node connected to a fork node
and a set of activity final nodes by a merge node connected to a single activity
final node.
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Definition 9.2 A SysML activity diagram is a tuple A = (N , N0, type, next, label)
where

• N is the set of activity nodes of types action, initial, final, flow final, fork, join,
decision, and merge;

• N0 is the initial node;
• type: N → {action , initial, final, flowfinal, fork, join, decision, merge} that asso-

ciates with each node its corresponding type;
• next: N → P(N ) a function that returns for a given node the set (possibly

singleton) of nodes that are directly connected to it via its outgoing edges;
• label: N × N → Act×]0, 1] a function that returns the pair of labels (g,p),

namely the guard and the probability on the edge connecting two given nodes.

We rely on a fine-grained iterative translation of SysML activity diagrams into
MDP. Indeed, the locus of control is tracked on both action and control nodes. Thus,
each of these nodes is represented by a variable in the corresponding PRISM model.
The join node represents a special case since the corresponding control passing rule
is not straightforward [188] compared to the other control node rules. More pre-
cisely, a join node has to wait for a locus of control on each incoming edge in order to
be traversed. Therefore, we need to keep a variable for each pin of a given join node.
We also define a boolean formula corresponding to the condition of synchronization
at each join node. Moreover, multiple instances of execution are allowed, thus the
number of tokens in a given node is represented by an integer number denoting
active instances at a certain point in time. At this point, we consider that in realistic
systems a certain number of instances are active at the same time. Therefore, we
model each variable as being an integer within a range [0, . . . ,max_inst] where
the constant max_inst represents the maximum supported number of instances. This
value can be tailored according to the application’s needs.

Aside from the variables, the commands encode the behavior dynamics captured
by the diagram. Thus, each possible progress of the locus of control corresponds to a
command in PRISM code. The predicate guard of a given command corresponds to
the precondition for triggering the control passing whereas the updates represent its
effect on the global state. A given predicate guard expresses the ability of the source
nodes to pass the control and also the destination nodes to accept it. A given update
expresses the effect that control passing has on the number of active instances of
the source and destination nodes. For instance, the fork node F1 in Fig. 9.5 passes
the control to each of its outgoing edges on condition that it possesses at least one
locus of control and that the destination nodes are able to receive the token (did
not reach their maximum number of instances). The modification in the control
configuration has to be reflected in the updates of the command, where the fork
node looses one locus of control and the number of active instances of the des-
tination nodes increases. The corresponding PRISM command can be written as
follows:
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[F1] F1>0 & Autofocus<max_inst & DetLight<max_inst &
D3<max_inst & !End →

F1’=F1-1 & Autofocus’=Autofocus-1 &
DetLight’=DetLight-1 & D3’=D3-1;

This dependency of the predicates and updates on the nodes at source and at
destination of the control passing inspired us to develop the systematic mapping
procedure. In fact, the principle underlying our algorithm is that the predicates and
updates for the source and destination nodes are generated separately so that, when
composed together, they provide the whole final command. The commands are gen-
erated according to the type of the source node and the number of outgoing edges.
For instance, in the case where the source node is a non-probabilistic decision node,
the algorithm generates as many commands as outgoing edges. Concerning the
probabilistic decision node, a only single command is needed, where the updates are
the sum of all the probabilistic occurrences associated with different probabilistic
choices. For a fork node, a single command enables all the outgoing target nodes.
Finally, a single command suffices for nodes with a unique outgoing edge, such as
action, join, merge, and initial.

The algorithm translating SysML activity diagrams into the input language of
PRISM is presented in Figs. 9.2, 9.3, and 9.4. The algorithm visits the activity nodes
using a depth-first search procedure and generates on-the-fly the PRISM commands.
The main procedure T (A,N ) is illustrated in Fig. 9.2 and is continued in Fig. 9.3.
Initially, the main procedure T (A,{N0}) is called where A is the data structure rep-
resenting the activity diagram and N0 is the initial node. It is then called recursively,
where N represents the set (possibly singleton) of the next nodes to be explored.
The algorithm uses a function C(n, g, u, n′, p) illustrated in Fig. 9.4 where n is the
current node representing the action name of the command, g and u are expressions,
and n′ is the destination node of n. The function C serves the generation of different
expressions related to the destination node n′, returning the final resulting command
to be appended into the output of the main algorithm.

We make use of the usual Stack data structure with fundamental operations such
as pop, push, and empty. We define user-defined types such as

• PrismCmd : a record type containing the fields act , grd, and upd correspond-
ing respectively to the action, the guard and the update of the command of type
PrismCmd.

• Node : a type defined to handle activity nodes.
• PRISMVarId : a type defined to handle PRISM variables identifiers.

The variable nodes is of type Stack and serves to temporarily store the nodes
that are to be explored by the algorithm. At each iteration, a current node cNode is
popped from the stack nodes and its destination nodes in the activity diagram are
stored in the list of nodes nNode. These destination nodes will be pushed in the stack
in the next recursive call of the main algorithm. If the current node is already visited
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nodes as Stack;
cNode as Node;
nNode as list of Node;
vNode as list of Node;
cmd as PrismCmd;
varfinal, var as PRISMVarId;
cmdtp as PrismCmd;
procedure T(A,N)

/ ∗ Stores all newly discovered nodes in the stack ∗/
for all n in N do

nodes.push(n);
end for
while not nodes.empty() do

cNode := nodes.pop();
if cNode not in vNode then

vNode := vNode.add(cNode);
if type(cNode)= final then

cmdtp := C(cNode, eq(varfinal,1), raz(vars), null, 1.0);
else

nNode := next(cNode);
/ ∗ Return the PRISM variable associated with the cNode ∗/

var := prismElement(cNode);
if type(cNode)= initial then

cmdtp := C(cNode, eq(var,1), dec(var), nNode, 1.0)
end if
if type(cNode) in {action, merge} then

/ ∗ Generate the final PRISM command for the edge cNode-nNode ∗/
cmdtp := C(cNode, grt(var,0), dec(var), nNode, 1.0);

end if
if type(cNode)= join then

cmdtp := C(cNode, var, raz(pinsOf(var)), nNode, 1.0);
end if
if type(cNode)= fork then

cmdtp1 := C(cNode, grt(var,0), dec(var), nNode[0], 1.0);
cmdtp := C(cNode, cmdtp1.grd, cmdtp1.upd, nNode[1], 1.0));

end if

Fig. 9.2 Translation algorithm of SysML activity diagrams into MDP – part 1

by the algorithm it is stored in the set of nodes vNode. In accordance with the current
node’s type, the parameters to be passed to the function C are computed. We denote
by varfinal the PRISM variable identifier of the final node and vars represents the
set of all PRISM variables of the current activity diagram. Finally, max is a constant
value specifying the maximum value of all PRISM variables (of type integer). The
algorithm terminates when the stack is empty and all instances of the main algorithm
have stopped running. All the PRISM commands generated by the algorithm T are
appended into a list of commands cmd (using the utility function append), which
allows us to build the performance model.

We make use of the following utility functions:

• The functions type, next, and label are related to the accessing of the activity
diagram structure and components.
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if type(cNode)= decision then
g := Π (label(cNode, nNode[0]), 1);
upd := and(dec(var), set(g,true)) ;
cmdtp1 := C(cNode, grt(var,0), upd, nNode[0], 1.0);
g := Π (label(cNode, nNode[1]), 1);
upd := and(dec(var), set(g,true)) ;
cmdtp2 := C(cNode, grt(var,0), upd, nNode[1], 1.0);

/∗Append both generated commands together before final appending ∗/
append(cmdtp, cmdtp1);
append(cmdtp, cmdtp2);

end if
if type(cNode)= pdecision then
g := Π (label(cNode,nNode[0]), 1);
p := Π (label(cNode,nNode[0]), 2);
upd := and(dec(var), set(g,true)) ;
cmdtp1 :=C(cNode, grt(var,0), upd, nNode[0], p);
g := Π (label(cNode,nNode[1]), 1);
q := Π (label(cNode,nNode[1]), 2);
upd := and(dec(var), set(g,true)) ;
cmdtp2 := C(cNode, grt(var,0), upd, nNode[1], q);

/∗Merge commands into one final command with a probabilistic choice ∗/
cmdtp :=merge(cmdtp1,cmdtp2);

end if
end if

/∗Append the newly generated command into the set of final commands ∗/
append(cmd, cmdtp);
T(A,nNode);

end if
end while

end procedure

Fig. 9.3 Translation algorithm of SysML activity diagrams into MDP – part 2

• The function PRISMELEMENT takes a node as parameter and returns the PRISM
element (either a variable of type integer or a formula) associated with the node.

• The function PINPRISMELEMENT takes two nodes as parameters, where the sec-
ond is a join node and returns the PRISM variable related to the specific pin.

• Various functions are used in order to build the expressions needed in the guard
or the updates of the commands. The function raz returns the expression that is
the conjunction of the expression of resetting the variables taken as parameter to
their default values. The function grt(x ,y) returns the expression x > y, while
function less(x ,y) returns the expression x < y. The function dec(x) returns the
expression x ′ = x − 1. The function inc(x) returns the expression x ′ = x + 1.
The function not(x) returns the expression !x . The function and(x ,y) returns the
expression x&y. The function eq(x ,y) returns the expression x = y. The function
set(x ,y) returns the expression x ′ = y.

• The � is the conventional projection that takes two parameters, a pair (x, y) and
an index (1 or 2), and returns x , if index = 1, and y if index = 2.

• The function pinsOf takes as input the PRISM formula corresponding to a
join node and extracts the corresponding pins variables into a list of PRISM
variables.
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function C(n, g, u, n , p)
var := prismElement(n );
if type(n )=flowfinal then

/∗ Generate the final PRISM command ∗/
cmdtp := command(n,g,u,p);

end if
if type(n )=final then

u := inc(var);
cmdtp := command(n, g, and(u,u ), p);

end if
if type(n )=join then

/∗ Return the PRISM variable related to a specific pin of the join ∗/
varpin :=pinPrismElement(n,n );
varn :=prismElement(n);
g1 := not(varn);
g2 :=less(varpin,max);
g := and(g1,g2);
u :=inc(varpin,1);
cmdtp = command(n,and(g,g ),and(u, u ),p);

end if
if type(n ) in {action, merge, fork, decision, pdecision} then

g := less(var,max);
u := inc(var,1);
cmdtp = command(n,and(g,g ),and(u, u ),p);

end if
return cmdtp;
end function

Fig. 9.4 Function generating PRISM commands

• The function command takes as input, in this order, the action name a, the
guard g, the update u, the probability of the update p and returns the expression
[a] g → p : u.

• The function merge merges two sub-commands, taken as parameters, into one
command consisting of a set of probabilistic updates. More precisely, it takes two
parameters cmdtp1 = [a] g1 → p : u1 and cmdtp1 = [a] g2 → q : u2,
then generates the command [a] g1 & g2 → p : u1 + q : u2.

9.3 PCTL* Property Specification

In order to apply probabilistic model checking on the MDP model resulting from the
translation algorithm, we need to express the properties in an appropriate temporal
logic. For MDP models, we can use either LTL [248], PCTL [44], or PCTL* [248].
The probabilistic computation tree logic (PCTL) [44] is an extension of CTL [48],
mainly with the added probability operator P . PCTL* subsumes PCTL and LTL
[248]. It is based on PCTL, where arbitrary combinations of path formulas and only
propositional state formulas are allowed [10].
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PCTL* syntax according to [10] is as follows:

φ ::= true | a | ¬ φ | φ ∧ φ | P��p[ψ]
ψ ::= φ | ψ1 U t ψ2 | ψ1 U ψ2 | Xψ | ψ1 ∧ ψ2 | ¬ ψ

where a is an atomic proposition, t ∈ N, p ∈ [0, 1] ⊂ R, and �� ∈ {>, ≥, <, ≤}.
PRISM extends the latter syntax in order to quantify probability values with the

operator P =?. For the case of MDP, all non-determinism has to be resolved. Thus,
properties quantifying the probability actually reason about the minimum or max-
imum probability, over all possible resolutions of non-determinism, that a certain
type of behavior is observed. Measuring the minimum/maximum probabilities pro-
vides the worst/best-case scenarios.

9.4 Case Study

In order to explain our approach, we present a SysML activity diagram of a hypo-
thetical model of a digital photo-camera device. The diagram captures the function-
ality of taking a picture as illustrated in Fig. 9.5. The corresponding dynamics are
rich enough to allow the verification of several interesting properties that capture
important functional aspects and performance characteristics. We deliberately mod-
eled some flaws into the design in order to demonstrate the applicability as well as
the benefits of our approach. The process captured by the digital photo-camera activ-
ity diagram starts by turning on the camera (TurnOn). Subsequently, three parallel
execution flows are spawned. The first one begins by (AutoFocus) followed by a
decision checking the status of the memory (memFull guard). In the case where the
memory is full, the camera cannot be used and it is turned off. The second parallel
flow is dedicated to the detection of the ambient lighting conditions (DetLight) and
it determines whether the flash is needed in order to take a picture. The third flow
allows charging the flash (ChargeFlash) if it is not already charged. The action
(TakePicture) executes in two possible conditions: either it is sunny (sunny= true)
and the memory is not full (memFull = f alse) or the flash (Flash) is needed
because of the lack of luminosity (sunny= f alse). Thereafter, the picture is stored
in the memory of the camera (WriteMem) and the activity diagram ends after turning
off the camera (TurnOff).

By applying our algorithm on the SysML activity diagram case study, we end up
with the MDP described using PRISM language as shown in Fig. 9.6 and continued
in Fig. 9.7. After supplying the model to PRISM, the latter constructs the reachable
state space in the form of a state list and a transition probability matrix.

At the beginning, one can search for the presence of deadlock states in the model.
This is expressed using property (9.1). It is also possible to quantify the worst/best-
case probability of such a scenario happening using properties (9.2) and (9.3):
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Fig. 9.5 Case study: digital camera activity diagram – flawed design

“init” => P>0 [ F “deadlock” ] (9.1)

Pmax =? [ F “deadlock” ] (9.2)

Pmin =? [ F “deadlock” ] (9.3)

The labels "init" and "deadlock" in property (9.1) are built-in labels that are
true for, respectively, initial and deadlocked states. Property (9.1) states that, from
an initial state, the probability of eventually reaching a deadlocked state is greater
than 0. This returns true, which means that the property is satisfied in some states
of the model. However, after further investigation, we found that there is only one
deadlocked state due to the activity final node in the activity diagram. This deadlock
can be accepted since, according to the desired execution, at the activity final node,
the activity terminates and there are no outgoing transitions.

It is also important in the case of activity diagram to verify that we can eventually
reach the activity final node once the activity diagram has started. Such a property
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mdp
const int max inst = 1;
formula J1 = J1 pin1>0 & J1 pin2>0 ;
formula J2 = J2 pin1>0 & J2 pin2>0 ;

module mainmod
memful : bool init false;
sunny : bool init false;
charged : bool init false;
Start : bool init true; TurnOn : [0 .. max inst] init 0; F1 : [0 .. max inst] init 0;
Autofocus : [0 .. max inst] init 0; DetLight : [0 .. max inst] init 0;
D3 : [0 .. max inst] init 0; ChargeFlash : [0 .. max inst] init 0;
D1 : [0 .. max inst] init 0; D2 : [0 .. max inst] init 0; F2 : [0 .. max inst] init 0;
J1 pin1 : [0 .. max inst] init 0; J1 pin2 : [0 .. max inst] init 0;
J2 pin1 : [0 .. max inst] init 0; J2 pin2 : [0 .. max inst] init 0;
M1 : [0 .. max inst] init 0; M2 : [0 .. max inst] init 0; M3 : [0 .. max inst] init 0;
TakePicture : [0 .. max inst] init 0; WriteMem : [0 .. max inst] init 0;
Flash : [0 .. max inst] init 0; TurnOff : [0 .. max inst] init 0; End : bool init false;

[Start] Start & TurnOn<max inst & !End → Start =false & TurnOn =TurnOn +1;

[TurnOn] TurnOn>0 & F1<max inst & !End → TurnOn =TurnOn −1 & F1 =F1+1;

[F1] F1>0 & Autofocus<max inst & DetLight<max inst & D3<max inst & !End →
F1 = F1−1 & Autofocus =Autofocus +1 & DetLight =DetLight +1 & D3 =D3+1;

[Autofocus] Autofocus>0 & D1<max inst& !End →
Autofocus =Autofocus −1 & D1 =D1+1;

[DetLight] DetLight>0 & D2<max inst& !End →
DetLight = DetLight −1 & D2 = D2+1 ;

[D3] D3>0 & ChargeFlash <max inst& !End →
ChargeFlash = ChargeFlash +1 & D3 =D3−1& (charged =false);

[D3] D3>0 & M2<max inst& !End →
M2 = M2+1 & D3 = D3−1& (charged =true);

[D1] D1>0 & M1<max inst & J2 pin1<max inst & !J2 & !End →
0.2 : (M1 =M1+1) & (D1 =D1−1)& (memful = true) +
0.8 : (J2 pin1 =J2 pin1+1) & (D1 =D1−1)& (memful = false);

[D2] D2>0 & J2 pin2<max inst & J1 pin1<max inst & !J1 & !J2 & !End →
0.6 : (J1 pin1 =J1 pin1+1) & (D2 =D2−1) & (sunny =false) +
0.4 : (J2 pin2 =J2 pin2+1) & (D2 =D2−1) & (sunny =true);

[ChargeFlash] ChargeFlash>0 & M2<max inst& !End →
M2 = M2+1 & ChargeFlash =ChargeFlash −1;

Fig. 9.6 PRISM code for the digital camera case study – part 1
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[M2]M2>0 & J1 pin2<max inst & !J1& !End →
M2 =M2−1 & J1 pin2 =J1 pin2+1;

[M1] M1>0 &TurnOff<max inst & !End →
TurnOff =TurnOff +1 &M1 =M1 −1;

[J2] J2 &TakePicture<max inst & !End →
TakePicture =TakePicture +1 & J2 pin1 =0 & J2 pin2 =0 ;

[J1] J1& F2<max inst & !End →
F2 =F2+1 & J1 pin1 =0 & J1 pin2 =0 ;

[F2] F2>0 & Flash<max inst & TakePicture<max inst & !End →
F2 =F2−1 & Flash = Flash + 1 & TakePicture =TakePicture +1;

[TakePicture ] TakePicture>0 &WriteMem<max inst & !End →
TakePicture = TakePicture −1 &WriteMem =WriteMem +1;

[WriteMem]WriteMem>0 &M1<max inst & !End →
WriteMem =WriteMem−1 &M1 =M1 +1;

[TurnOff ] TurnOff>0 & !End →
TurnOff =TurnOff −1 & End =true;

[End] End →
TurnOn =0 & F1 =0 & Autofocus =0 & DetLight =0 & D3 =0 & ChargeFlash =0 & D1 =0
& D2 =0 & J1 pin1 =0 & J1 pin2 =0 & F2 =0 & J2 pin1 =0 & J2 pin2 =0 &M1 =0 &
M2 =0 &M3 =0 & TakePicture =0 & WriteMem =0 & Flash =0 & TurnOff =0&
(memful = false)& (sunny =false)& (charged =false);

endmodule

Fig. 9.7 PRISM code for the digital camera case study – part 2

is stated in property (9.4). Properties (9.5) and (9.6) are used in order to quantify the
probability of such a scenario happening:

TurnOn>=1 => P>0 [F End ] (9.4)

Pmax =? [ F End ] (9.5)

Pmin =? [ F End ] (9.6)

Property (9.4) returns true and properties (9.5) and (9.6) both return the prob-
ability value 1. This represents satisfactory results, the final activity being always
reachable.

The first functional requirement states that the TakePicture action should not
be activated if the memory is full (memfull=true) or if the Autofocus action is
still ongoing. Thus, we would like to evaluate the actual probability for this scenario
to happen. Since we are relying on MDP model, we need to compute the minimum
(9.7) and the maximum (9.8) probability measures of reaching a state where either
the memory is full or the focus action is ongoing while taking a picture:
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Pmin =? [ true U (memfull | Autofocus ≥ 1)& TakePicture ≥ 1 ] (9.7)

Pmax =? [ true U (memfull | Autofocus ≥ 1)& TakePicture ≥ 1 ] (9.8)

The expected likelihood for this scenario should be null (impossibility). However,
the model checker determines a non-zero probability value for the maximum mea-
surement (Pmax = 0.6) and a null probability for the minimum. This shows that
there is a path leading to an undesirable state, thus pointing out to a flaw in the
design. On the activity diagram, this is caused by a control flow path that leads to
the TakePicture action and this being done independently of the evaluation of
the memfull guard and of the termination of the action AutoFocus. In order to
correct this misbehavior, the designer must alter the diagram so that the control flow
reaching the action AutoFocus and subsequently evaluating the guard memfull to
false has to synchronize with all the possible paths leading to TakePicture. This
might be done using a fork node that splits two threads, each having to synchronize
with a possible flow before activating TakePicture. Thus, we block the activation
of TakePicture action unless AutoFocus eventually ends and memory space is
available in the digital camera. Figure 9.8 illustrates the corrected SysML activity
diagram.

As the main function of the digital photo camera device is to take pictures, we
would like to measure the probability of taking a picture in normal conditions. The
corresponding properties are specified as follows:

Fig. 9.8 Case study: digital camera activity diagram – corrected design
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Pmin =? [ true U TakePicture ≥ 1] (9.9)

Pmax =? [ true U TakePicture ≥ 1] (9.10)

The measures provided by the model checker are, respectively, Pmin = 0.8 and
Pmax = 0.92. These values have to be compared with the desired level of reliability
of the system.

We applied probabilistic model checking on the corrected design in order to
compare both the flawed and corrected SysML activity diagrams. The comparison is
summarized in Table 9.1. The correction of the design has removed the flaw revealed
by property (9.8), the probability value became 0. However, we lost in terms of
reliability in the best-case scenario, since the maximum probability calculated for
property (9.10) has dropped to 0.8 instead of 0.92.

Table 9.1 Comparative assessment of flawed and corrected design models

Properties Flawed design Corrected design

(9.1) true true
(9.2) 1 1
(9.3) 1 1
(9.4) true true
(9.5) 1 1
(9.6) 1 1
(9.7) 0.0 0.0
(9.8) 0.6 0.0
(9.9) 0.8 0.8
(9.10) 0.92 0.8

9.5 Conclusion

This chapter presented a translation algorithm that was designed and implemented
in order to enable probabilistic model checking of SysML activity diagrams. The
algorithm maps these diagrams into their corresponding Markov decision process
(MDP) models. The code is written in the input language of the selected prob-
abilistic model checker, i.e., PRISM. Moreover, a case study was presented in
order to show the practical benefits of using the presented approach. Finally, MDP
allowed the interpretation and analysis of SysML activity diagrams for systems that
exhibit asynchronous behavior. In Chap. 10, we present a methodology for analyz-
ing SysML activity diagrams with a specific consideration for time constraints on
activity action nodes.



Chapter 10
Performance Analysis of Time-Constrained
SysML Activity Diagrams

Many modern systems are now being developed by aggregating other subsystems
and components that may have different expected, though not exactly determined,
characteristics and features. As such, these kinds of systems may exhibit fea-
tures such as concurrency and probabilistic behavior. In this context, appropriate
models are needed in order to effectively capture the system behavior. Among
SysML behavioral diagrams, activity diagrams [23] represent a highly interesting
and expressive behavioral model, due to both its suitability for functional flow
modeling and its similarity to the extended functional flow block diagrams (EFF-
BDs) [24] commonly used by systems engineers. The SysML specification [187]
has redefined and widely extended activity diagrams using the profiling mechanism
of UML. The main extensions concern the support of continuous and probabilistic
systems modeling.

10.1 Time Annotation

In this section, we examine time constraints and probability specifications in SysML
activity diagrams. SysML activity diagrams are meant to describe control flow and
dataflow dependencies among the functions and/or processes defined by the system.
Activity modeling is used for coordinating behaviors in the system being modeled.
Particularly, these behaviors may require a time duration to execute and terminate.
Thus, we need to specify such constraints in order to be able to verify time-related
properties for quantitative analysis, especially in the real-time system domains such
as industrial manufacturing control, robotics, and various embedded systems. Such
systems need to be engineered under strict functional performance requirements.
However, annotation of time constraints on top of SysML activity diagrams is not
clearly defined in the standard [187]. The only existing extension containing per-
formance and time aspects can be found in the UML profile for schedulability,
performance, and time (SPT) [179] adopted for UML 1.4. Unfortunately, SysML
did not import this profile and adopting it would require to upgrade it accordingly.
In fact, the SysML specification [187] gives a mere recommendation to use the
simple time model defined in [186] that might be used in order to annotate activity

M. Debbabi et al., Verification and Validation in Systems Engineering,
DOI 10.1007/978-3-642-15228-3_10, C© Springer-Verlag Berlin Heidelberg 2010

167



168 10 Performance Analysis of Time-Constrained SysML Activity Diagrams

diagrams. The SimpleTime [186] is a UML 2.x sub-package related to the Com-
monBehavior package. It allows time specification constraints, such as interval of
time and duration on the sequence diagram. However, its usage for activity diagrams
is not clearly specified. Another proposed alternative to specify time constraints is
to use timing diagrams, even though they are not part of the SysML specification.
Consequently, we propose an appropriate and straightforward time annotation, sim-
ilar to the simple time model. The proposed notation allows us to specify duration
variability with respect to action termination, which provides a flexible means of
estimating execution durations.

The execution time of a behavior depends on various parameters such as resource
availability and rates of incoming dataflows. This may result in a variation of the
total time needed for behavior completion. Consequently, if an action terminates
within a bounded time interval, then a probability distribution for terminating the
action can be established with respect to the corresponding execution time inter-
val. Thus, we propose a suitable discrete-time annotation on top of action nodes
in the SysML activity diagram that specifies the estimation of the time duration of
an action execution. We consider a time reference maintained by a global clock C.
When an activity diagram starts, C is reset to zero. Since we consider a discrete-time
model, the clock readings are included in the set of positive integers denoted by
Int. We define the activation time as the duration of time wherein an action node
is active. Moreover, since we consider that a transition taken on an activity edge
is timeless, time annotations are specified only for action nodes in the form of a
time interval I = [a, b], where a, b ∈ Int are evaluated relatively to the start of the
activation time of the corresponding action. Time value a represents the earliest time
for the execution completion and time value b is the latest. However, some actions
may need a fixed time value to complete execution, i.e., a = b. In such a case, a
time value is used. Furthermore, the time annotation can be omitted if the activation
time of an action is negligible compared to other actions. Finally, the selection of an
appropriate unit of time from the sequencing and performance perspectives has to
be relevant to the intent of the system designer.

Note that it is preferable to select a convenient time unit by scaling down, if
possible, the actual values by the same factor. Such abstraction may add benefits
to the performance of the both model-checking and the semantic model generation
procedures. Usually, the smallest value of time durations can be considered as the
time unit. The impact of widely separated timescales and the benefits of abstraction
are discussed later. As depicted in Fig. 10.1, the action TurnOn requires exactly 2
units of time to terminate; Action AutoFocus terminates within the interval [1,2];
The action TakePicture execution time is negligible.

The features defined in SysML activity diagrams for modeling probabilistic sys-
tems are mainly probabilities assigned on the transitions emanating from probabilis-
tic decision nodes and obeying a specific probability distribution. Accordingly, the
assigned values should sum up to unity. The probability on a given edge expresses
the likelihood that a value stemming from a decision node will traverse the cor-
responding edge. Figure 10.1 illustrates how the probability value is specified on
the outgoing edges of the decision nodes testing their corresponding guards. For
instance, the decision node testing the guard charged has the following semantic
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Fig. 10.1 Digital camera activity diagram-flawed design

interpretation: there is a likelihood of 0.3 that the outcome of the decision node will
be (charged=true) and the corresponding edge traversed.

10.2 Derivation of the Semantic Model

We introduced in Chap. 8 the concept of configuration transition system (CTS) that
can be used to model the dynamics of various behavioral diagrams. In essence, the
CTS is a form of automaton characterized by a set of configurations that include a
(usually singleton) set of initial configurations and also a transition relation that
encodes the dynamic evolution of the CTS from one configuration to another.
However, the CTS model assumes a background computation of some sort that is
responsible for the change in the set of dynamic parameters, a computation which
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is abstracted to a possible transition from one configuration to another. While this
abstraction can be suitable in many cases, it might need more refinement in cases
where features such as the duration of the computation and/or the likelihood of
a decision must be taken into account in relation to the dynamic elements of the
model. Thus, it becomes apparent that an enriched model is required in order to
capture the aforementioned features. Since the most important elements of interest
in the dynamics corresponding to various behavioral diagrams are usually repre-
sented by state variables or action blocks, we will consider these artifacts as dynamic
elements.

When modeling a system with an aggregation or network of automata, commu-
nication can be used in order to achieve synchronization. Also, time quantization
techniques can be employed in order to capture the time-related system dynamics
modeled by the communicating automata into a compact computable model suitable
for automatic verification purposes. Accordingly, the approach consists in mapping
the SysML activity diagram into a corresponding network of discrete-time Markov
chains (DTMCs) representing a discrete-time transition systems with discrete prob-
ability distributions.

The main motivation behind the selection of a network of DTMCs as the semantic
interpretation for SysML activity diagram is based on the reasoning that activity dia-
grams can be used in order to specify the coordination of behaviors that the system
exhibits. According to the specification, the actions belonging to a given activity
diagram may possibly be performed by different parts of the modeled system. These
parts, and the relationship among them, are specified by using the block definition
diagram and internal block diagram. In order to highlight in the activity diagram
the part (block) of the system that is assigned the responsibility of performing a
given behavior/action, the designer may use the swimlane construct. In this setting,
the actions that are placed along the same swimlane are performed in the same
corresponding block of the system. From the internal block diagram perspective,
which describes the internal structure of a system in terms of its parts, ports, and
connectors, the diagram may show the allocation of activity invocation to the parts
of the system. Furthermore, a swimlane generally corresponds to a concurrent thread
in the activity diagram. Thus, one can decompose the activity diagram into a set of
threads (possibly singleton). In essence, the threads are collaborating, and they may
synchronize at certain points in order to proceed with the remaining operations.
Moreover, when modeling time-dependent behavior, the same passage of time, or
more precisely the same time flow rate, must be allowed for all the interacting
threads.

10.3 Model-Checking Time-Constrained Activity Diagrams

Our verification approach relies on model checking, which has been successfully
applied in hardware systems verification. Moreover, it is an appropriate choice to
assess behavioral aspects since it is automatic, is comprehensive, and has solid
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mathematical foundations. The principal function of model checking is to enable
systematic verification by examining whether a given model satisfies a specified
property. The result is either a positive answer (the system satisfies the specifica-
tion) or a negative one (the system violates the specification). However, this repre-
sents only a qualitative assessment. On the other hand, probabilistic model check-
ing allows performing a quantitative analysis of the model. It is needed in order to
quantify the likelihood of a given property being either violated or satisfied by the
modeled system.

Basically, the semantic interpretation of SysML activity diagrams can be encoded
into the input language of a probabilistic model checker such as the probabilis-
tic symbolic model checker (PRISM). It was first developed at the University of
Birmingham [239] and then moved on to the University of Oxford [240]. It has
been widely applied to analyze systems from many application domains, including
communication, multimedia, and security protocols. In addition to PRISM’s wide
application, many of its features also motivated our choice. Essentially, in order
to have a compact model, PRISM makes use of efficient data structures such as
multi-terminal binary decision diagram (MTBDD), sparse matrices, as well as a
hybrid of these two. Moreover, the applied numerical methods are reported to be
time and memory wise. A comprehensive comparative study of probabilistic model
checkers can be found in [193]. We employ PRISM model checker capabilities to
determine the actual probability value for a given behavior occurrence and also to
test the satisfaction of a number of probabilistic properties related to time-bounded
reachability. These properties depend on the functional requirements and perfor-
mance specifications of the system. Figure 10.2 illustrates a synopsis of the proposed
approach.

Thus, we propose an algorithm that systematically encodes SysML activ-
ity diagrams into their corresponding DTMC model expressed using PRISM
language.
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Fig. 10.2 Proposed approach
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10.3.1 Discrete-Time Markov Chain

The DTMC represents a discrete-time transition system with discrete probability
distributions that can efficiently capture the intended behavior of the activity dia-
gram. Furthermore, it is lightweight compared to the other probabilistic models
supported by PRISM.1

The trade-off involved in selecting a discrete-time model consists of either having
a more fine-grained representation (at the expense of higher costs in terms of veri-
fication feasibility) or a less fine-grained one that can in turn significantly boost the
verification performance, thus allowing for more elaborated models to be verified.

A concise definition of the DTMC model [208] is as follows:

Definition 10.1 A discrete-time Markov chain (DTMC) is a tuple D = (S, s, P),
where S is a finite set of states, s ∈ S is the initial state, and P : S × S → [0, 1]
is a transition probability matrix, such that

∑
s′∈S P(s, s′) = 1 for all s ∈ S, where

P(s, s′) is the probability of making a transition from a state s to a state s′.

10.3.2 PRISM Input Language

PRISM language uses a state-based language that relies on the concept of reactive
modules that was defined by Alur and Henzinger [5]. Reactive modules are basically
similar to a set of interacting transition systems, where transitions can be labeled by
probabilities. These transition systems may be represented within the same model
by a number of different modules that may interact together and, depending on the
model, evolve either in a synchronous or interleaved manner. The fundamental ele-
ments of a PRISM model are modules, variables, and commands. A module can be
thought of as a process that runs concurrently with other modules and may interact
with them. The set of variables defines the global state of the system. Internally,
PRISM parses the system description and translates the set of modules into a single
system module in a compositional manner. Consequently, the probabilistic model
corresponding to the system description file represents the parallel composition of
its modules. PRISM supports three parallel composition styles that are similar to
the process algebra mechanism (i.e., on common actions): full parallel composition
with synchronization on common actions, asynchronous parallel composition with
no synchronization at all, and a restricted parallel composition with synchronization
limited to only a specific set of actions. Finally, a PRISM command is an action
in the model that is composed of an action name, a guard expression, and a set
of update expressions. The action name, placed between square brackets, is used
for synchronization purposes. If a command’s guard is evaluated to true, the set of
updates occur depending on a probabilistic distribution defined over the updates.

1 Relating to the other probabilistic models supported by PRISM, CTMC can be viewed as DTMC
with an infinitesimally small time step whereas MDP is extending DTMC with non-determinism
[140].



10.3 Model-Checking Time-Constrained Activity Diagrams 173

10.3.3 Mapping SysML Activity Diagrams into DTMC

There are two possible choices of encoding activity diagram semantics into PRISM
language: either to represent the semantics of the whole diagram as a single module
or to decompose the diagram into processes and encode each one as a module. In the
latter case, the whole activity diagram behavior is specified using the result of the
parallel composition of the generated PRISM modules. The second choice appears
more interesting since it is more intuitive to specify the behavior of the parts com-
posing the activity diagram with their possible interactions than to work out the full
behavior of an activity that could be quite complex. Also, we delegate the com-
position of the whole DTMC to PRISM, along with other tedious tasks including
the computation and normalization of the compound probability distributions (in
case of concurrent probabilistic decision nodes) and the behavior resulting from the
overlapping of time intervals. In the context of our approach, we instruct PRISM to
compose the modules synchronously.

In order to achieve an efficient and intuitive decomposition of the activity dia-
gram, we propose to decompose activity diagrams into a set of threads (possibly
singleton). The rationale behind this is based on the following: activity diagrams are
composed of a set of flows. Some flows are composed sequentially, while others are
composed concurrently. This composition is achieved using activity control nodes.
We define a thread as being a sequence of actions that traverse neither fork nodes
nor join nodes because these nodes are used to generate concurrent activity flows.
Each identified thread is encoded as a module in the system description, where each
module is of itself a DTMC. The interaction between these modules is determined
by the activity control nodes, which are basically at the beginning and at the end
of the threads. The parallel composition of all the modules (DTMCs) results in a
network of DTMCs, which is in itself a DTMC.

Algorithm 5 defines the mapping of a given time-annotated SysML activity dia-
gram into its PRISM DTMC model. The first step consists of extracting the control
flow relations from the structure of the diagram. Then, the diagram is decomposed
into a number of threads, according to Algorithm 6. Prior to the code generation,
the interaction and coordination between threads have to be considered in order to
encode the modules’ interactions. The corresponding auxiliary function is denoted
as getCoordinationPts. The other functions are self-explanatory, their names
being inferred from their objectives.

10.3.4 Threads Identification

Prior to threads identification, various control nodes in the activity diagram have to
be assigned unique labels so as to encode them appropriately. We assume a single
initial node in a given activity diagram labeled with Start. A prerequisite of the
thread identification procedure is the set, denoted as CFR and, composed of control
flow relations among the nodes of the activity diagram. The CFR is a set of tuples
representing the activity edges, where each tuple is composed of the source node,
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Algorithm 5 SysML Activity Diagram to PRISM DTMC: parseAD(A)
Init CFR as List;

/∗ Control Flow Relations ∗/
Init Threads, SSP, Commands as Map;
Init variables, guards, formulas as List;
CFR = generateCFR(A);

/∗ Extract control flow relations ∗/
Threads = getThreads(CFR);

/∗ Explores CFR and extract the threads ∗/
SSP = getCoordinationPts(CFR,Threads);

/∗ Generates a map of synchronization points between threads ∗/
for all item in Threads do

key = item.ThreadId;
newModule = createModule(key);

/∗ Create a module for each thread ∗/
variables = getLocalVariables(item,SSP,key);
newModule.addDeclaration(variables,key);
PRISMCode.addGlobalVariables(variables);
formulas = setFormulas(SSP,variables,key);
PRISMCode.addFormulas(formulas);
guards=setGuards(variables,formulas,key);
Commands.put(key,guards);
updateCommands(Commands,item,key);
newModule.addCommands(Commands);
PRISMCode.add(newModule);

/∗ Add the module to the main PRISM code ∗/
end for

the target node, the guard (if any), and the probability value (if any). The generation
of the CFR can be achieved by using an auxiliary function generateCFR. The thread
identification procedure is a breadth-first search of the control flow relations CFR as
detailed in Algorithm 6.

In Algorithm 6, the map data structure Threads stores the output of the algo-
rithm, the stack StackNodes contains unexplored nodes, and the list Visited com-
prises the visited nodes. The auxiliary function getAllCFR(pos,node) returns the
list of control flows containing the node in the position pos (possible pos values
are “source” or “target”). The auxiliary function getNode(y,pos) returns the node
in the control flow y that has the position pos. During the node exploration, a new
thread is allocated for each outgoing flow when a fork or a join node is encoun-
tered. In the same sequencing flow, the same thread identifier is used. Note that for
the merge node, this depends on whether or not the same thread is allocated for
the incoming flows. In the first case, the same thread identifier is allocated for the
outgoing flow; otherwise, a new one is created. For the sake of simplicity, the algo-
rithm shows only the case of allocating a new thread identifier for the outgoing flow
of merge nodes. However, it must be noted that to allocate a new thread identifier
each time in all the cases will only impact the complexity of the code and not the
complexity of the model’s dynamics.
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Algorithm 6 Thread Identification: getThreads(CFR)
Init Threads as Map;
Init StackNodes as Stack;

/∗ StackNodes is a stack of unexplored nodes ∗/
Init Visited, tempListCFR as List;
ThreadID = 1;
tempListCFR := getAllCFR(‘source’,‘Start’);
Threads.put(ThreadID,tempListCFR);
Visited.add(Start);
StackNodes.push(getNode(tempListCFR,‘target’));
while not StackNodes.empty() and not CFR.empty() do

CurrentNode = StackNodes.pop();
if Visited.contains() or CurrentNode instOf Final then

continue;
end if
if currentNode instOf Action or Decision then

tempListCFR = getAllCFR(‘source’,CurrentNode);
for all y in tempListCFR do

key = getCFR(‘target’,CurrentNode).getThreadID();
Threads[key].add(y);
StackNodes.push(getNode(y,‘target’));
CFR.delete(y);

end for
end if
if currentNode instOf Fork or Join or Merge then

tempListCFR = getAllCFR(‘source’,CurrentNode);
for all y in tempListCFR do

Threads.put(ThreadID++,y);
StackNodes.push(getNode(y,‘target’));
CFR.delete(y);

end for
end if
Visited.add(CurrentNode);

end whilereturn Threads

The synchronization mechanism among the modules allows for two or more con-
current activity flows or execution threads to “experience” the same passage of time
with respect to time constraints that may be specified for each of them. Conse-
quently, each thread has its own clock variable that is used to track the passage of
time in the current state of the thread.

The dynamics of the synchronously composed DTMC models ensure that all
the clock variables are updated (advanced or reset) synchronously. Thus, the clock
variable of each thread is either advanced as a result of a self-transition or reset
whenever the current state is left. Furthermore, whenever the clock variable of a
thread falls within the time constraint interval of the current state, the control can
either remain in the current state or be transferred to another state reached by a
transition from the current state according to a probability distribution. The choice
for such a distribution may depend on the actual system being modeled.
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The derived PRISM modules forming the DTMC network modeling the activity
diagram are composed synchronously in a CSP-like manner (i.e., synchronization
over common actions). This allows the proper updating of the clock variables cor-
responding to action execution in the different threads. Each module is composed
of two main parts: one containing the declaration of its state variables and another
encoding the dynamics thereof by means of commands guarded by predicates that
may span over the state variables that may also belong to any of the modules.

Furthermore, each command is labeled with the same action step and also has
a set of updates of its state variables. Specifically, every module can read the value
of all the variables but can only change the value of the variables declared within
its scope. In each module, the state variables correspond to action nodes, guards of
the decision nodes, and clocks corresponding to the identified thread in the activity
diagram. If required, each module can also contain additional boolean state vari-
ables that might be needed for thread merging or synchronization. The dynamic
evolution of each module is determined by selecting a matching command whose
boolean predicate evaluates to true. Consequently, based on the current value of the
variables, each module updates its own variables upon the execution of a matching
command.

Since the modules are always synchronizing on the action step, this means that
no module can evolve independently of the others. More precisely, at each synchro-
nizing step, every module is equally given the possibility to update its variables.
Moreover, in order to allow the system to progress, each module contains a com-
mand whose guarding predicate is the negated disjunction of all the others in the
same module. The updates of the guarding predicate are trivially keeping the same
values of the state variables. Similarly, in order to ensure the proper termination
of the activity behavior, each command predicate contains the negation of the state
designated as the activity final node.

10.4 Performance Analysis Case Study

In order to explain our approach, we present a case study of a hypothetical model of
a digital photo-camera device. The system model is composed of a SysML activity
diagram containing time constraints. It captures the functionality of taking a picture
as depicted in Fig. 10.1. For the sake of clarity and understanding, the model consists
of only one activity diagram. Presenting a more complicated model might affect the
presentation of the approach, since the resulting code and reachability graph would
be too large to be followed by the reader. However, as it will be subsequently shown,
a simple model does not preclude a highly dynamic behavior. Moreover, the corre-
sponding dynamics are rich enough to allow for the verification of several interesting
properties that capture important functional aspects and performance characteristics.
We intentionally modeled some flaws into the design in order to demonstrate the
applicability of our approach.
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In order to proceed with the assessment of the activity diagram, the main step
consists in the generation of the DTMC model that captures the behavior of the
system. Moreover, the specification properties that have to be checked are supplied
in PCTL logic according to the syntax required by the model checker. The model
generated for the digital photo-camera activity diagram is shown in Fig. 10.3 and
continued in Fig. 10.4, where each module represents a thread in the activity dia-
gram. Table 10.1 depicts the thread allocation according to the control flow rela-
tions’ set of the flawed activity diagram in Fig. 10.1. After supplying the model and

Fig. 10.3 PRISM code for the digital camera activity diagram example – part 1
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Fig. 10.4 PRISM code for the digital camera activity diagram example – part 2

Table 10.1 Thread allocation for the flawed design

Threads Control flow relations set

ID1 (start,TurnOn); (TurnOn,F1)
ID2 (F1,Autofocus); (Autofocus,D1); (D1,M1); (D1,J2)
ID3 (F1,DetLight); (DetLight,D2); (D2,J2); (D2,J1)
ID4 (F1,D3); (D3,ChargeFlash); (D3,M2);

(ChargeFlash,M2); (M2,J1)
ID5 (J2,M3); (F2,M3); (M3,TakePicture);

(TakePicture,WriteMem); (WriteMem,M1)
ID6 (F2,Flash)
ID7 (M1,TurnOff); (TurnOff,End)
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the specification properties to the model checker, the latter constructs the state space
in the forms of a state list and a transition probability matrix. Numerical analysis
obtained from the model allows properties verification.

In order to represent in a user-friendly way the dynamics of the model, we gen-
erate a reachability graph containing both the information on the states and their
transition relations (as illustrated in Fig. 10.5). The latter shows a highly dynamic
behavior resulting from the concurrency of the threads in the activity diagram in
conjunction with the overlapping completion intervals of various activity nodes.

In the following, we present the results obtained by verifying a number of inter-
esting properties expressed in the syntax of the temporal logic defined by PRISM
and based on PCTL.
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Fig. 10.5 Reachability graph of the flawed activity diagram
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The first property (10.1) illustrates a general functional requirement, namely
that the TakePicture action should not be activated if either the memory is full
memfull=true or the Autofocus action is still ongoing. It instructs the model
checker to determine the probability value for this scenario happening:

P =? [ true U (memfull | Autofocus)
& TakePicture ] (10.1)

The expected likelihood in a good design should be null (impossibility). However,
the model checker determines a non-zero probability value, thus pointing out a flaw
in the design. In order to determine more precisely the reason of the misbehavior, the
property can be restated separately for memfull and Autofocus. Since the value of
this probability is greater than 0, this means that there is a path leading to a state in
the reachability graph that leads to either the TakePicture action being activated
while the memory is full or before deactivating Autofocus. This can be determined
to be caused by the existence of a control flow path in the activity diagram leading to
the TakePicture action without testing the memfull guard. In order to correct this
misbehavior, the designer must alter this control flow path such that either it tests
the memfull guard or it synchronizes with the other control flow path testing it.

The next property (10.2) states that the probability of taking a picture after turn-
ing on the camera should be 0.75 or greater and it is expressed as follows:

TurnOn ⇒ P >= 0.75 [ true U TakePicture ] (10.2)

When analyzing this property over the DTMC corresponding to the activity diagram,
it turns out to be satisfied. This tells us that the model meets the minimum required
level of reliability on that basic functionality, i.e., taking a picture.

Property (10.3) builds on the previous one and is used to check if the probability
of taking a picture using the flash after turning on the camera is at least 0.6.

TurnOn ⇒ P >= 0.6 [ true U TakePicture &

Flash ] (10.3)

The model checker determines that property (10.3) fails for the specified probability
value. One can instruct PRISM to determine whether there is a probability value for
which the property would pass by restating the property as in (10.4). Consequently,
the value obtained is 0.56:

P =? [ true U TakePicture & Flash {TurnOn} ] (10.4)

The last property (10.5) further refines the previous one and it is intended to
assess one of the critical performance characteristic of the digital camera in a
worst case scenario. It is a probabilistic-timed reachability property that measures
the probability of reaching a scenario in the model within a certain time bound.
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Specifically, it evaluates the probability of reaching the TakePicture action within
a time bound in poor lighting conditions, starting from the beginning of the TurnOn
action with the flash discharged:

P =? [ !sunny & !charged U<=10 TakePicture

& Flash {TurnOn & t1_ck=0}] (10.5)

The result of the verification of property (10.5) shows a rather poor performance of
the model in a worst-case scenario.

To have a better appraisal of the impact of the design changes in the diagram, we
also performed the verification of the corrected diagram (Fig. 9.8 with added time
constraints annotation). Table 10.2 summarizes the assessment results with respect
to the performance evaluation for both the flawed and corrected designs.

We can notice that we have a trade-off between performance and reliability.
Indeed, on the one hand property (10.1) has a null value for the corrected design,
as required. On the other hand, property (10.5) shows performance degradation in
the case of the corrected design. However, property (10.4) results show that the cor-
rected design exceeds the minimum level of reliability and thus meets the require-
ment stated by property (10.3).

With respect to the size of the performance model reachability graph, we can
notice in Table 10.3 that, in terms of number of states and transitions, the two models
have almost the same complexity.

Table 10.2 Comparative table of the assessment results for the flawed and corrected designs

Properties Flawed design Corrected design

(10.1) 0.1245 0
(10.2) True True
(10.3) False True
(10.4) 0.5685 0.7999
(10.5) 0.3885 0.252

Table 10.3 Comparative table of the performance model reachability graph complexity

Flawed design Corrected design

Number of states 92 93
Number of trans. 139 140

10.5 Scalability

This section discusses the scalability of our approach based on numerical results.
Our objective is to study the performance of our approach when applied on more
complex activity diagrams. It is worthy of notice that the behavioral complexity of
an activity diagram is not related to the number of its action nodes but rather to the
intricate dynamics it may capture. Accordingly, the main factors that have a direct
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impact on the behavioral complexity are the concurrency aspect and the probabilistic
duration of actions. We study below the impact of concurrency and timed behavior
on important parameters related to the performance of our approach, such as the
size of the DTMC model, the size of the MTBDD, the time needed by PRISM to
construct the model, and the time and memory consumption of the model-checking
procedure.

From the activity diagram’s perspective, adding concurrency means adding par-
allel flows of actions emanating from fork nodes. From PRISM’s code perspective,
with respect to our approach, adding new concurrent flows means adding one or
more modules corresponding to concurrent threads. We chose to add a new con-
current thread that emanates from the fork node F1 in Fig. 10.1. Accordingly, we
replicated the module t4 and made some necessary adjustments, such as changes
to the idle formula, the names of the local variables, and the joining condition for-
mulae.

With respect to timed behavior, by varying the constants corresponding to the
time interval bounds in PRISM code, we can adjust the time interval scales and
their overlapping. The constants are t1_tb, t2_lb, t2_ub, t3_lb, t3_ub, t4_lb,
t4_ub, t5_lb, and t5_ub as presented in the first column of Table 10.4.

In order to study the impact of these two factors on our approach, we performed
several experiments consisting in applying variants of the previously discussed
parameters and recording the following information:

• The time required to build the model
• The number of DTMC states
• The number of DTMC transitions
• The number of MTBDD nodes
• The size of the matrix (number of rows and columns)

Concerning model checking, we verified the same properties on the different
models obtained in the previously mentioned experiments. We recorded the follow-
ing model-checking-related information:

• The total time
• The maximum memory consumption, i.e., the memory footprint

Table 10.4 Time intervals bounds values per experiment

T.1 T.2 T.3 T.4 T.5

t1_tb 2 2 20 20 20
t2_lb 1 1 1 1 10
t2_ub 2 2 2 2 20
t3_lb 0 10 100 1000 0
t3_ub 1 20 150 1020 10
t4_lb 2 15 75 1000 20
t4_ub 4 40 80 1200 40
t5_lb 2 2 20 2000 20
t5_ub 3 3 30 3000 30
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In Table 10.4 we report the different time-related experiments, namely T.1, T.2,
T.3, T.4, and T.5, and the different values that we assigned to each time constant. The
time values for the experiment T.1 represent the original constants in the case study.
The next three experiments, namely T.2, T.3, and T.4, are meant to show widely
separated timescales between the time duration for the Autofocus action and the
duration of the other actions. We consider around 10 units of time difference in T.2,
100 units of time in T.3, and 1000 units of time difference in T.4. These experiments
are done to study the impact of widely dissimilar timescales that preclude scaling
down the interval-bound constants with the same factor. Experiment T.5 shows the
benefit of abstraction (i.e., scaling down the time constants by the same factor) on
the overall procedure. For T.5, the corresponding values of the constants represent
exactly 10 times the constants of T.1. With respect to concurrency, we have chosen
three experiments, namely C.0, C.1, and C.2, where we add, respectively, 0, 1, and
2 new modules to the original model.

As a notation convention, we use T.1+C.1 to indicate that both T.1 and C.1 are
applied together. This means that we set the time values of T.1 and we add one
new concurrent module to the existing modules in the PRISM code of Figs. 10.3
and 10.4.

The experiments were performed using a Pentium 4 Intel machine with the
following characteristics: CPU 2.80 GHZ, with 1.00 GB of RAM. We set the
PRISM tool to use the “Hybrid” engine and the Jacobi method. Note that, hardware
resources allowing, it is possible to configure PRISM to use a larger amount of
memory for MTBDDs, thus allowing larger models to be assessed.

Tables 10.5, 10.6, and 10.7 present the information related to the model construc-
tion. Tables 10.8, 10.9, and 10.10 show the time and memory consumption for the
model-checking procedure.

In the following, we discuss the numerical results corresponding to the afore-
mentioned series of experiments. Figure 10.6 illustrates the effect of widely sepa-
rated timescales on the MTBDD size. One can notice that the size of the MTBDD
increases only to some extent for the experiment T.1+C.0, T.2+C.0, and T.3+C.0.
However, it increases significantly for experiment T.4+C.0, where the difference
between the smallest and all the other time values is of about three orders of mag-
nitude. In this setting, it can be safe to consider the smallest value as negligible
in duration compared to the other values. The chart in Fig. 10.7 shows the effect
of two important factors that impact the MTBDD size. The first one relates to the

Table 10.5 Experimental results: varying time constants with no added concurrency (C.0)

T.1 T.2 T.3 T.4 T.5

Time (s) 0.578 0.828 1.687 77.813 2.0
DTMC
Number of states 92 233 487 18294 877
Number of transitions 139 439 741 26652 1588
MTBDD
Number of nodes 1573 2501 2954 27049 7002
Rows/cols 29r/29c 36r/36c 46r/46c 56r/56c 44r/44c
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Table 10.6 Experimental results: varying time constants and adding one new concurrent
module (C.1)

T.1 T.2 T.3 T.4 T.5

Time (s) 1.656 2.687 5.297 249.625 4.609
DTMC
Number of states 222 833 967 49214 2459
Number of transitions 375 1949 1499 87192 5204
MTBDD
Number of nodes 2910 7474 7068 118909 15630
Rows/cols 35r/35c 45r/45c 56r/56c 70r/70c 53r/53c

Table 10.7 Experimental results: varying time constants and adding two new concurrent
modules (C.2)

T.1 T.2 T.3 T.5

Time (s) 18.75 13.281 25.078 19.453
DTMC
Number of states 566 2735 1957 7243
Number of transitions 1105 8059 3123 19300
MTBDD
Number of nodes 4553 15612 11449 27621
Rows/cols 41r/41c 54r/54c 66r/66c 62r/62c

Table 10.8 Model-checking performance results – part 1

T.1+C.0 T.2+C.0 T.3+C.0 T.4+C.0 T.5+C.0

Properties
Time
(s)

Mem
(KB)

Time
(s)

Mem
(KB)

Time
(s)

Mem
(KB)

Time
(s)

Mem
(KB)

Time
(s)

Mem
(KB)

(10.1) 0.094 23.6 0.0 0.0 0.0 0.0 0.016 0.0 0.375 96.9
(10.2) 0.109 22.9 0.438 19.4 1.953 28.6 54.125 398.7 1.547 111.8
(10.3) 0.062 20.4 0.297 46.7 1.906 69.9 36.5 891.8 0.953 92.7
(10.4) 0.078 20.4 0.296 46.7 1.828 69.9 42.797 891.8 0.719 92.7
(10.5) 0.046 21.9 0.125 48.1 0.25 66.3 11.281 834.6 0.156 94.4
Total time 0.389 1.156 5.937 144.719 3.75
Max memory 23.6 48.1 69.9 891.8 111.8

Table 10.9 Model-checking performance results – part 2

T.1+C.1 T.2+C.1 T.3+C.1 T.4+C.1 T.5+C.1

Properties
Time
(s)

Mem
(KB)

Time
(s)

Mem
(KB)

Time
(s)

Mem
(KB)

Time
(s)

Mem
(KB)

Time
(s)

Mem
(KB)

(10.1) 0.109 46.3 0 0 0 0 0.094 0 1.016 217.9
(10.2) 0.375 45.8 2.141 38.7 5.219 46.3 – – 2.765 249.5
(10.3) 0.187 41.7 1.406 134.5 4.141 171.2 – – 2.093 211.1
(10.4) 0.188 41.7 1.484 134.5 4.125 171.2 136.265 2710.8 2.157 211.1
(10.5) 0.094 41.1 0.687 137.9 0.547 133.5 35.312 2562.2 0.797 198.7
Total time 0.953 5.718 14.032 – 8.828
Max memory 46.3 137.9 171.2 – 249.5
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Table 10.10 Model-checking performance results – part 3

T.1+C.2 T.2+C.2 T.3+C.2 T.5+C.2

Properties
Time
(s)

Mem
(KB)

Time
(s)

Mem
(KB)

Time
(s)

Mem
(KB)

Time
(s)

Mem
(KB)

(10.1) 0.375 79.5 0.016 0 0 0 2.25 429.4
(10.2) 1.641 79.4 8.156 85.3 10.532 75.2 10.171 471.7
(10.3) 0.859 73.5 6.516 289.3 9.89 291.8 7.358 420.1
(10.4) 0.968 73.5 5.891 289.3 9.297 291.8 5.563 420.1
(10.5) 0.656 73.6 3.859 353.9 1.938 249.2 2.594 449.0
Total time 4.499 24.438 31.657 27.936
Max memory 79.5 353.9 291.8 471.7
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added concurrency. As expected, the increased concurrency results in a more com-
plex model. The second factor relates to the omitting of downscaling time values.

One can notice that larger time values also lead to increased complexity. Elevated
time values for all the time bounds allow scaling them down with the same factor.
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This abstraction is of benefit to the model-checking procedure since it decreases the
size of the model while preserving the underlying dynamics. This type of abstraction
is also presented in other research initiatives related to probabilistic model check-
ing [74].

Figures 10.8, 10.9, and 10.10 illustrate the effect on model-checking performance
of the widely separated timescales and the added concurrency in the absence of
downscaling abstraction. For the presented experiments, the maximum amount of
time used by the model-checking procedure is 144.72 s whereas the maximum
amount of memory is around 891.8 KB.

In spite of the complexity of the new activity diagrams considered in these exper-
iments, the values on time and memory consumption are within a reasonable range.
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Also, the assessment can be further optimized by applying the recommendations
previously stated, namely

• Considering as negligible timed actions, if it is safe to do so within the tolerated
margins of error, when their corresponding time values are at a difference greater
than two orders of magnitude compared to the others

• Scaling down (abstracting), if possible, by the same factor the time constants
• Reconsidering unnecessary concurrency in the design

10.6 Conclusion

In this chapter, we presented a novel automatic approach for the assessment of
SysML 1.0 activity diagrams from the functional and performance perspectives. The
relevance of assessing SysML 1.0 activity diagrams is related to their importance
and their wide usage in many domains including business process and functional
flows modeling, to name but a few. The approach is covering the core features,
namely the control flows, the structured activities, and the probabilistic decisions.
We have also used time annotations on top of the action nodes based on the sim-
ple time model. In addition, this annotation technique provides the means to spec-
ify action duration with a probabilistic estimation. Moreover, the properties to be
assessed are formally expressed in PCTL temporal logic.

With respect to the scalability, we showed a number of experiments that demon-
strate positive results from the perspective of the DTMC model size and the required
resources in terms of time and memory. The presented assessment approach allows
for refinement by performing appropriate time-related abstractions. In addition, in
the case of larger designs that are usually exhibiting a high level of modularity, one
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can perform a block-level assessment, where the concurrency aspect is expected
to be lower. In regard to the probabilistic estimation of actions termination, a uni-
form delay distribution was used in order to take into account resource contention.
However, any other discrete distribution can be handled by specifying discrete prob-
abilities for each unit of time within the interval bounds.



Chapter 11
Semantic Foundations of SysML
Activity Diagrams

In this chapter, we propose to study the semantic foundations of SysML activity
diagrams. A formalization of the semantics will allow us to build a sound and rigor-
ous framework for the V&V of design models expressed using these diagrams. To
this end, we design a dedicated formal language, called activity calculus (AC), used
in order to mathematically express and analyze the behaviors captured by SysML
activity diagrams. In the following, the syntactic and semantic definitions of the AC
language are presented in Sect. 11.1. Therein, a summary of the informal mapping
of the diagram constructs into AC terms with an illustrative example is also pro-
vided. In order to illustrate the usefulness of such a formal semantics, a case study
is presented in Sect. 11.2 consisting of a SysML activity diagram for a hypothetical
design of a banking operation on an automated teller machine (ATM). We apply the
semantic rules on the case study in order to show how this may uncover subtle errors
in the design. Finally, Sect. 11.3 defines the underlying Markov decision process that
describes SysML activity diagram semantics.

11.1 Activity Calculus

The activity calculus is built with the goal in mind to provide a dedicated calculus
that captures the rich expressiveness of activity diagrams and formally models the
behavioral aspects using operational semantics framework. It is mainly inspired by
the concept of process algebras, which represent a family of approaches used for
modeling concurrent and distributed systems.

Apart from ascribing a rigorous meaning to the informally specified diagrams,
formal semantics provides us with an effective technique to uncover design errors
that could be missed by intuitive inspection. Furthermore, it allows the application
of model transformations and model checking. Practically, the manipulation of the
graphical notations as it is defined in the standard does not provide the flexibil-
ity offered by a formal language. There is a real need to describe this behavior
in a mathematical and a rigorous way. Thus, our formal framework allows the
automation of the validation using existing techniques such as probabilistic model
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checking. Moreover, it allows reasoning about potential relations between activ-
ity diagrams from the behavioral perspective and deriving related mathematical
proofs.

To the best of our knowledge, this is the first calculus of its kind that is dedicated
to capture the essence of SysML activity diagrams. While reviewing the state of
the art, we cannot find proposals along the same line as our activity calculus. With
respect to UML 2.x activity diagrams, most of the research initiatives use existing
formalisms such as CSP in [216], the interactive Markov chain (IMC) in [228],
and variants of Petri nets formalism in [224–226]. Although these formalisms have
well-established semantic domains, they impose some serious limitations to the
expressiveness of activity diagrams (e.g., disallow multiple instance of actions). The
majority of reviewed initiatives express the activity diagrams as data structure tuple.
Very few proposals provide a dedicated algebraic-like notation [82, 234], where
only Tabuchi et al. [228] aim at defining a semantic framework. The main supported
features that make our calculus distinguishable is its ability to express various con-
trol flows with mixed and nested forks and joins that are allowed by UML specifi-
cation. Furthermore, AC allows multiple instances and includes both guarded and
probabilistic decision. Finally, AC allows us to define an operational semantics for
SysML activity diagrams that are intuitive and original based on tokens propaga-
tion. In the following, we explain in detail the syntax and semantics of our activity
calculus.

11.1.1 Syntax

From the structural perspective, an activity diagram can be viewed as a directed
graph with two types of nodes (action and control nodes) connected using directed
edges. Alternatively, from the dynamic perspective, the activity diagram behavior
amounts to a specifically ordered execution of its actions. This order depends on the
propagation of the control locus (token) that starts from the initial node. When an
action receives a token, it becomes active and starts executing. When its execution
terminates, it delivers the token to its outgoing edges. Moreover, multiple instances
of the same action may execute concurrently if more than one control token is
received. During the execution, the activity diagram structure remains unchanged;
however, the location of the control tokens changes. Thus, the behavior (the mean-
ing) depicted by the activity diagram can be described using a set of progress rules
that dictates the tokens movement through the diagram. In order to specify the
presence of control tokens, we use the word marking (borrowed from the Petri net
formalism).

We assume that each activity node in the diagram (except initial) is assigned a
unique label. Let L be a collection of labels ranged over by l, l0, l1, . . . and N
any node (except initial) in the activity diagram. We write l : N to denote an l-
labeled activity node N . Labels serve different purposes. Mainly, a label l is used for
uniquely referring to an l-labeled activity node in order to model a flow connection
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Fig. 11.1 Unmarked syntax (left) and marked syntax (right) of activity calculus

to the already defined node. Particularly, labels are useful for connecting multiple
incoming flows toward merge and join nodes. The syntax of the AC language is
defined using the Backus-Naur-Form (BNF) notation in Fig. 11.1. The AC terms
are generated using this syntax. We can distinguish two main syntactic categories:
unmarked terms and marked terms. An unmarked AC term, typically given by A,
corresponds to the diagram without tokens. A marked AC term, typically given by
B, corresponds to an activity diagram with tokens. The difference between these
two categories is the added “overbar” symbol for the marked terms (or sub-terms)
denoting the presence and the location of a token. A marked term is typically used
to denote an activity diagram while its execution is in progress. The idea of decorat-
ing the syntax was inspired by the work on Petri net algebra in [19]. However, we
extended this concept in order to handle multiple tokens. We discard the intuitive

but useless solution to write the expression N to denote a term N that is marked
twice since it can result in overwhelming unmanageable marked AC terms if the
number of tokens grows. Thus, we augment the “overbar” operator with an integer
n such that N n

denotes a term marked with n tokens. This allows us to consider
loops in activity diagrams and so multiple instances.

Referring to Fig. 11.1, the definition of the term B is based on A, since B rep-
resents all valid sub-terms with all possible locations of the overbar symbol on top
of A sub-terms. N defines an unmarked sub-term and M represents a marked sub-
term of A. An AC term A is either ε, to denote an empty activity, or ι � N ,
where ι specifies the initial node and N can be any labeled activity node (or control
flows of nodes). The symbol�is used to specify the activity control flow edge. The
derivation of an AC term is based on a depth-first traversal of the corresponding
activity diagram. Thus, the mapping of activity diagrams into AC terms is achieved
systematically. It is important to note that, as a syntactic convention, each time a
new merge (or join) node is met, the definition of the node and its newly assigned
label are considered. If the node is encountered later in the traversal process, only its
corresponding label is used. This convention is important to ensure well formedness
of the AC terms.
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Among the basic constructs of N , we have the following:

• The term l :� (resp. l :�) specifies the flow final node (resp. the activity final
node).

• The term l : Merge(N ) (resp. l : x .Join(N )) represents the definition of the
merge (resp. join) node. This notation is used only when the corresponding node
is first encountered during the depth-first traversal of the activity diagram. The
parameter N inside the merge (resp. join) refers to the subsequent destination
nodes (or flow) connected to the outgoing edge of the merge (resp. join) node.
With respect to the join node, the entity x represents an integer specifying the
number of incoming edges into this specific join node.

• The term l : Fork(N1,N2) is the construct referring to the fork node. The param-
eters N1 and N2 represent the sub-terms corresponding to the destination of the
outgoing edges of the fork node (i.e., the flows split in parallel).

• The term l : Decision p(〈g〉N1, 〈¬g〉N2) (resp. l : Decision(〈g〉N1, 〈¬g〉N2))
specifies the probabilistic (resp. non-probabilistic) decision node. It denotes a
probabilistic (resp. non-probabilistic guarded) choice between alternative flows
N1 and N2. For the probabilistic case, the sub-term N1 is selected with a proba-
bility p, whereas N2 is selected with probability 1− p.

• The term l : a �N is the construct representing the prefix operator: The labeled
action l : a is connected to N using a control flow edge.

• The term l is a reference to a node labeled with l.

A marked term B is either A or ι � N , which denotes the initial node ι marked
with one token and connected to the unmarked sub-term N , or ι�M that denotes
an unmarked initial node that is connected to the marked sub-term M. Among the
basic constructs of M, we have the following:

• The term N is a special case of an AC marked term where n = 0.
• The term Mn

denotes a term M that is marked with n other tokens such that
n ≥ 0.

• The term l : Merge(M) (resp. l : x .Join(M)) represents the definition of an
unmarked merge (resp. join) term with a marked sub-term M.

• The term l : Fork(M1,M2) represents an unmarked fork term with two marked
sub-terms M1 and M2.

• The term l : Decision(〈g〉M1, 〈¬g〉M2) (resp. l : Decision p(〈g〉M1, 〈¬g〉M2))
denotes an unmarked decision (resp. probabilistic decision) term having two
marked sub-terms M1 and M2.

• The term l : an �M denotes a prefix operator with n-times marked action con-
nected to a marked sub-term M.

An important observation has to be made. Since the “overbar” symbol represents
the presence (and eventually the location) of tokens, one may picture these tokens
graphically on the activity diagram using small solid squares (to not mix with initial
node notation) similar to the Petri-net tokens. This is not part of the UML notation,
but it is only meant for illustration purposes. This exercise may reveal that two
marked expressions may refer to the same activity diagram structure annotated with
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tokens that can be considered to be in the same locations. For instance, this is the
case for the marked expressions ι�N and ι�N . More precisely, the term ι�N
denotes an activity diagram with a token on the top of the whole diagram. This
configuration is exactly the same as having the token placed in the initial element
of the diagram, which is represented by the term ι� N . This is also the case of
l : a �N and l : a � N . This complies with [188] stating that “when an activity
starts, a control token is placed at each action or structured node that has no incom-
ing edges.”

Thus, in order to identify these pairs of marked expressions, we define a pre-order
relation denoted by �M over the set of marked expressions.

Definition 11.1 Let �M⊆ M ×M be the smallest pre-order relation defined as
specified in Fig. 11.2.

This relation allows us to rewrite M1 into M ′1 in the case where M1 �M M ′1 and
then apply the semantic rule corresponding to M ′1. This simplifies considerably our
operational semantics by keeping it concise. In these settings, we only need the
pre-order concept; however, �M can be extended easily to an equivalence relation
using the kernel of this pre-order.

Before discussing the operational semantics, we present first the translation of
activity diagram constructs into their corresponding AC syntactic elements then, we
express an activity diagram example using AC. The correspondence between the
concrete syntax of activity diagrams and the syntax of the calculus is summarized
in Fig. 11.3.

Example 11.1 The SysML activity diagram illustrated in Fig. 11.4 denotes the
design of a withdraw money banking operation. It can be expressed using the
unmarked term Awithdraw as follows:
Awithdraw = ι� l1 : Enter� l2 : Check�N1

N1 = l3 : Decision0.1(〈not enough〉N2, 〈enough〉N3)

N2 = l4 : Notify� l5 : Merge(l6 :�)
N3 = l7 : Fork(N4, l13 : Fork(l14 : Disp� l10, l15 : Print� l12))

N4 = l8 : Debit� l9 : Record� l10 : 2.Join(l11 : Pick� l12 : 2.Join(l5))
The Awithdraw term expresses the structure of the activity diagram. One can

draw exactly the same activity diagram from its corresponding AC term.

Fig. 11.2 Marking pre-order definition
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Fig. 11.3 Mapping activity diagram constructs into AC syntax

11.1.2 Operational Semantics

In this section, we present the operational semantics of the activity calculus in the
structural operational semantics (SOS) style [201]. The latter is a well-established
approach that provides a framework to give an operational semantics to many pro-
gramming and specification languages [201]. It is also considerably applied in the
study of the semantics of concurrent processes. Defining such a semantics (small-
step semantics) consists in defining a set of axioms and inference rules that are used
to describe the operational evolution. Since the propagation of the tokens within
the diagram denotes its execution steps, the axioms and rules specify the tokens
progress within the corresponding marked AC term. Each axiom and rule specifies
the possible transitions between two marked terms of the activity diagram. In some
cases, we might have more than one token present in the activity at a given instant.
The selection of the progressing token is then performed non-deterministically.

The operational semantics is given by a probabilistic transition system (PTS)
as presented in Definition 11.2. The initial state of the PTS corresponds to place
a unique token on the initial node. The initially marked AC term corresponding
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Fig. 11.4 Case study: activity diagram of money withdrawal

to A is the term A where the one overbar is placed on the sub-term ι (i.e., ι�N )
according to (M1) in Fig. 11.2. We denote this marked term by Bo. The general form
of a transition is B α−→p B′ or B α−→p A, such that B and B′ are marked activity
calculus terms, A is the unmarked activity calculus term, α ∈  ∪ {o}, the set of
actions ranged over by a, a1, . . ., b, o denotes the empty action, and p, q ∈ [0, 1] are
probabilities of transitions’ occurrences. This transition relation shows the marking
evolution and means that a marked term B can be transformed into another marked
term B′ or to an unmarked term A by executing α with a probability p. If a marked
term is transformed into an unmarked term, the transition denotes the loss of the
marking. This is the case when either a flow final or an activity final node is reached.
For simplicity, we omit the label o on the transition relation, if no action is executed,
i.e., B −→p B′ or B −→p A. The transition relation is defined using the semantic
rules from Figs. 11.5, 11.6, 11.7, 11.8, 11.9, 11.10, 11.11, and 11.12.

Definition 11.2 The probabilistic transition system of the activity calculus term A
is the tuple T = (S, s0,

α−→p) where

• S is the set of states, ranged over by s, each of which represents an AC term B
corresponding to the unmarked term A;

• s0 ∈ S, the initial state representing the term Bo = A;
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• α−→p⊆ S ×  ∪ {o} × [0, 1] × S is the probabilistic transition relation and
it is the least relation satisfying the AC operational semantics rules. We write
s1

α−→p s2 in order to specify a probabilistic transition of the form (s1, (α, p), s2)

for s1, s2 ∈ S and (α, p) in  ∪ {o} × [0, 1].

Let e be a marked term and f , f1, . . ., fn specify marked (or unmarked) sub-
terms. The term f is a sub-term (or a sub-expression) of e, denoted by e[ f ], if f
is a valid activity calculus term occurring once in the definition of e. We also use
the notation e[ f {x}] to denote that f occurs exactly x times in the expression e.
For simplification e[ f {1}] = e[ f ]. We may generalize this notation to more than
one sub-term, i.e., e[ f1, f2,. . ., fn]. For instance, given a marked term B= ι �
l1 : a1 � l2 : a2 � l3 :�. We write B[l1 : a1] to specify that l1 : a1 is a sub-term of B.
Furthermore, we use the notation |B| to denote the unmarked activity calculus term
obtained by removing the marking (all overbars) from the marked term B.

The AC operational semantics rules are presented in next section.

INIT-1

INIT-2

α
q

α
q

Fig. 11.5 Semantic rules for initial

ACT-1 ∀ 0

ACT-2

α
q

α
q

1

Fig. 11.6 Semantic rules for action prefixing

Fig. 11.7 Semantic rules for final

Fig. 11.8 Semantic rules for fork
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Fig. 11.9 Semantic rules for non-probabilistic guarded decision

Fig. 11.10 Semantic rules for probabilistic decision

Fig. 11.11 Semantic rules for merge

Fig. 11.12 Semantic rules for join
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11.1.2.1 Rules for Initial

The first set of rules in Fig. 11.5 refers to the transitions related to the term ι�N .
“Tokens in an initial node are offered to outgoing edges” [188]. This is interpreted
by our semantics using the axiom INIT-1, which means that if ι is marked, the
marking propagates to the rest of the term N throughout its outgoing edge, with
no observable action and a probability q = 1. Rule INIT-2 allows the marking to
evolve in the rest of the activity term from ι�M to ι�M′ with a probability q,
by executing the action α if the marking on the sub-term M can evolve to another
marking M′ using the same transition.

11.1.2.2 Rules for Action Prefixing

The second set of rules in Fig. 11.6 concerns action prefixing. These rules illustrate
the possible progress of the tokens in the expression l : an �M. “The completion
of the execution of an action may enable the execution of successor node” [188].

Accordingly, the axiom ACT-1 specifies the progress of a token from l : ak
, where

action a terminates its execution, to the sub-term M. Note that ACT-1 supports the
case of multiple tokens, which is compliant with the specification stating that “start
a new execution of the behavior with newly arrived tokens, even if the behavior is
already executing from tokens arriving at the invocation earlier” [188]. Rule ACT-2
allows the marking to evolve in the rest of the activity term from l : an � M to
l : an �M′ by executing the action α and with a probability q, if the marked sub-
term M can evolve to M′.

11.1.2.3 Rules for Final

The rules for activity final are given in Fig. 11.7. “A token reaching an activity
final node terminates the activity. In particular, it stops all executing actions in the
activity, and destroys all tokens” [188]. Once marked (one token is enough), the
activity final node imposes the abrupt termination of all the other normal flows in the
activity. Accordingly, the axiom FINAL states that if l :� is a subterm of a marked
term B, the latter can do a transition with a probability q = 1 and no action, which
results in the deletion of all overbars (tokens) from the marked activity term B.

11.1.2.4 Rules for Fork

The rules for fork are listed in Fig. 11.8. “Tokens arriving at a fork are duplicated
across the outgoing edges” [188]. Accordingly, the axiom FORK-1 shows the propa-
gation of the tokens to the sub-terms of the fork in the case where the fork expression
is marked. A fork expression is marked means that one or many tokens are offered
at the incoming edge of the fork node. Rule FORK-2 illustrates two symmetric rules
showing the evolution of the marking within the sub-terms of the fork expression.
According to the activity diagram specification, “UML 2.0 activity forks model
unrestricted parallelism,” which is contrasted with the earlier semantics of UML
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1.x, where there is a required synchronization between parallel flows [188]. Thus,
the marking evolves asynchronously according to an interleaving semantics on both
left and right sub-terms.

11.1.2.5 Rules for Decision

The next set of rules concerns the non-probabilistic decision shown in Fig. 11.9 and
the probabilistic decision provided in Fig. 11.10. With respect to non-probabilistic
decision nodes, the specification document states the following: “Each token arriv-
ing at a decision node can traverse only one outgoing edge. Guards of the outgoing
edges are evaluated to determine which edge should be traversed” [188]. Axioms
DEC-1 and DEC-2 describe the evolution of tokens reaching a non-probabilistic
decision node. For the probabilistic counterpart, the axioms PDEC-1 and PDEC-2
specify the likelihood of a token reaching a probabilistic decision node to traverse
one of its branches. The choice is probabilistic. The marking will propagate either
to the first branch with a probability p (PDEC-1) or to the second branch with a
probability 1− p (PDEC-2). This complies with the specification [187].

Rule PDEC-3 (respectively, DEC-3) groups two symmetric cases that
are related to the marking evolution through the decision sub-terms. If
a possible transition M1

α−→q M′
1 exists and M1 is a subexpres-

sion of l : Decision p(〈g〉M1, 〈¬g〉M2))
n
, then we can deduce the transition

l : Decision p(〈g〉M1, 〈¬g〉M2)
n α−→q l : Decision p(〈g〉M′

1, 〈¬g〉M2)
n
.

11.1.2.6 Rules for Merge

Rules for merge are presented in Fig. 11.11. The semantics of merge node accord-
ing to Ref. [188] is defined as follows: “All tokens offered on incoming edges
are offered to the outgoing edge. There is no synchronization of flows or joining
of tokens.” Thus, the axiom MERG-1 states that the marking on top of the merge
evolves with a probability 1 and no action to its sub-term M. Rule MERG-2 allows
the marking to evolve in l :Merge(M)

n
if there is a possible transition such that

M α−→q M′.

11.1.2.7 Rules for Join

Rules for join are presented in Fig. 11.12. “If there is a token offered on all incom-
ing edges, then one control token is offered on the outgoing edge” [188]. Axioms
JOIN-1 and JOIN-2 describe the propagation of a token on the top of the join def-
inition expression, namely l : x .Join(M)

n
and the referencing labels. Unlike the

merge node, the join traversal requires all references to itself to be marked, which
is described using the “join specification” requirement in [188]. More precisely, all
the sub-terms l corresponding to a given join node in the AC term, including the
definition of the join itself, have to be marked so that the token can progress to
the rest of the expression. The number of occurrences of the sub-term l in the whole
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marked term is known and it corresponds to the value of x−1. If so, only one control
token propagates to the subsequent subterm M with a probability q=1. Moreover,
Ref. [188] states that “Multiple control tokens offered on the same incoming edge
are combined into one before” the traversal, which is specified in axiom JOIN-1.
Axiom JOIN-2 corresponds to the special case where x = 1. According to [188],
there is no restriction on the use of a join node with a single incoming edge even
though this is qualified therein as not useful. Rule JOIN-3 shows the possible evo-
lution of the marking in l : x .Join(M)

n
to l : x .Join(M′)n , if the marking in M

evolves to M′ with the same transition.

11.2 Case Study

We present a SysML activity diagram case study depicting a hypothetical design of
the behavior corresponding to banking operations on an ATM system illustrated in
Fig. 11.13. We first show how we can express the activity diagram using the AC
language and then demonstrate the benefit and usefulness of the proposed formal
semantics.

The actions in an activity diagram can be refined using structured activity nodes
in order to expand their internal behavior. For instance, the node labeled Withdraw
in Fig. 11.13 is actually a structured node that calls the activity diagram pic-
tured in Fig. 11.4. Using the operational semantics defined earlier, a compositional
assessment of the design can be performed. For instance, the detailed activities
are abstracted away at a first step and the global behavior is validated. Then, the
assessment of the refined behavior can be performed. The compositionality and

Fig. 11.13 Case study: activity diagram of a banking operation
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abstraction features allow handling real-world systems without compromising the
validation process. For instance, we consider the activity diagram of Fig. 11.13
and assume that Withdraw action is an atomic action denoted by the abbrevia-
tion d. Moreover, considering the actions a, b, and c as the abbreviations of the
actions Authentication, Verify ATM, and Choose account, respectively, the
corresponding unmarked term A1 is as follows:

A1 = ι� l1 : a � l2 : Fork(N1, l12)

N1 = l3 : Merge(l4 : b� l5 : Fork(N2,N3))

N2 = l6 : Decision0.9(〈g2〉 l3, 〈¬g2〉 l7 : 2.Join(l8 :�))
N3 = l9 : 2.Join(l10 : d �N4)

N4 = l11 : Decision0.3(〈g1〉N5, 〈¬g1〉 l7)
N5 = l12 : Merge(l13 : c� l9)

The abbreviations are used to simplify the presentation of the AC term. The guard
g1 denotes the possibility of triggering a new operation if evaluated to true and
guard g2 denotes the result of evaluating the status of the connection. Applying
the operational rules on the marked A1, we can derive a run that leads to a dead-
lock, which means that we reached a configuration where the expression is marked
but no progress can be made (no operational rule can be applied). This derivation
may reveal a design error in the activity diagram, which is not obvious using only
inspection. Even though one may suspect the join2 to cause the deadlock due to
the presence of a prior decision node, the deadlock actually occurs due to the other
join node (i.e., node join1).

Fig. 11.14 Derivation run leading to a deadlock – part 1
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More precisely, the run consists in executing the action c twice (because the
guard g1 is true) and the action b once (g2 evaluated to false). The deadlocked
configuration reached by the derivation run has the following marked sub-terms:

M2 = l6 : Decision0.9(〈g2〉 l3, 〈¬g2〉 l7 : Join(l8 :�))
M5 = l12 : Merge(l13 : c� l9)

A possible derivation run leading to this deadlocked configuration is presented in
Fig. 11.14 and 11.15. This has been obtained by applying the AC operational seman-
tic rules on the term A1, which corresponds to the initial state of the probabilistic
transition system. This run represents a single path in the probabilistic transition sys-
tem corresponding to the semantic model of the activity diagram of Fig. 11.13. Infor-
mally, the deadlock occurs because both join nodes join1 and join2 are waiting for
a token that will never be delivered on one of their incoming edges. There is no pos-
sible token progress from the deadlocked configuration since no rule can be applied.

Fig. 11.15 Derivation run leading to a deadlock – part 2
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11.3 Markov Decision Process

The MDP underlying the PTS corresponding to the semantic model of a given
SysML activity diagram can be described using the following definition.

Definition 11.3 The Markov decision process MT underlying the probabilistic
transition system T =(S, s0,

α−→p) is the tuple MT =(S, s0, Act , Steps) such that

• Act=Σ ∪ {o},
• Steps : S→2Act×Dist (S) is the probabilistic transition function defined over S

such that for each s ∈ S, Steps(s) is defined as follows:

• For each set of transitions �α={s
α−→p j s j , j ∈ J , p j < 1, and

∑
j p j = 1},

(α, μ�) ∈ Steps(s) such that μ�(s j ) = p j and μ�(s′) = 0 for s′ ∈ S \
{s j } j∈J .

• For each transition τ = s
α−→1 s′, (α, μτ ) ∈ Steps(s) such that μτ (s′) = 1

and μτ (s) = 0 for s 
= s′.

11.4 Conclusion

In this chapter, we defined a probabilistic calculus that we called activity calculus
(AC). The latter allows expressing algebraically SysML activity diagrams and pro-
viding its formal semantic foundations using operational semantics framework. Our
calculus not only serves proving the soundness of the translation algorithm that we
presented in the previous chapter but also opens up new directions to explore other
properties and applications using the formal semantics of SysML activity diagrams.
The next chapter defines a formal syntax and semantics for PRISM specification
language and examines the soundness of the proposed translation algorithm that
maps SysML activity diagrams into PRISM MDP.



Chapter 12
Soundness of the Translation Algorithm

In this chapter, our main objective is to closely examine the correctness of the trans-
lation procedure proposed earlier that maps SysML activity diagrams into the input
language of the probabilistic model checker PRISM. In order to provide a system-
atic proof, we rely on formal methods, which enable us with solid mathematical
basis. To do so, four main ingredients are needed. First, we need to express for-
mally the translation algorithm. This enables its manipulation forward deriving the
corresponding proofs. Second, the formal syntax and semantics for SysML activity
diagrams need to be defined. This has been proposed in the previous chapter by the
means of the activity calculus language. Third, the formal syntax and semantics of
PRISM input language have to be defined. Finally, a suitable relation is needed in
order to compare the semantics of the diagram with the semantics of the resulting
PRISM model.

We start by exposing the notation that we use in Sect. 12.1. Then, in Sect. 12.2
we explain the followed methodology for establishing the correctness proof. After
that, we describe in Sect. 12.3 the formal syntax and semantics definitions of PRISM
input language. Section 12.4 is dedicated for formalizing the translation algorithm
using a functional core language. Section 12.6 defines a simulation relation over
Markov decision processes, which can be used in order to compare the semantics
of both SysML activity diagrams and their corresponding PRISM models. Finally,
Sect. 12.7 presents the soundness theorem, which formally defines the soundness
property of the translation algorithm. Therein, we provide the details of the related
proof.

12.1 Notation

In the following, we present the notation that we are going to use in this chapter.
A multiset is denoted by (A, m), where A is the underlying set of elements and
m : A −→ N is the multiplicity function that associates a positive natural num-
ber in N with each element of A. For each element a ∈ A, m(a) is the number
of occurrences of a. The notation {||} is used to designate the empty multiset and
{| (a ↪→ n) |} denotes the multiset containing the element a occurring m(a) = n
times. The operator � denotes the union of two multisets, such that if (A1, m1)
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DOI 10.1007/978-3-642-15228-3_12, C© Springer-Verlag Berlin Heidelberg 2010

205



206 12 Soundness of the Translation Algorithm

and (A2, m2) are two multisets, the union of these two multisets is a multiset
(A,m) = (A1,m1) � (A2,m2) such that A = A1 ∪ A2 and ∀a ∈ A, we have
m(a) = m1(a)+ m2(a).

A discrete probability distribution over a countable set S is a function μ : S →
[0, 1] such that

∑
s∈S μ(s) = 1 where μ(s) denotes the probability for s under

the distribution μ. The support of the distribution μ is the set Supp(μ) = {s ∈
S : μ(s) > 0}. We write μ1

s for s ∈ S to designate a distribution that assigns a
probability 1 to s and 0 to any other element in S. Also, sub-distributions μ are
considered where

∑
s∈S μ(s) < 1 and μλs denotes a probability distribution that

assigns λ probability to s and 0 to any other element in S. The set of probability
distributions over S is denoted by Dist (S).

12.2 Methodology

Let A be the unmarked AC term corresponding to a given SysML activity dia-
gram. Let P be the corresponding PRISM model description written in the PRISM
input language. We denote by T the translation algorithm that maps A into P ,
i.e., T(A) = P . If we denote by S the semantic function that associates for each
SysML activity diagram its formal meaning S(A) denotes the corresponding seman-
tic model. According to our previous results, the semantics of the activity diagram
can be expressed as an MDP as defined in Definition 11.3. Let us denote it by
S(A) = MA. Similarly, let S′ be the semantic function that associates with a PRISM
model description its formal semantics. Since we are dealing with MDP models,
S′(P) = MP represents the MDP semantics of P .

Our main objective is to prove the correctness of the translation algorithm with
respect to the SysML activity diagram semantics. This can be reduced to prove the
commutativity of the diagram presented in Fig. 12.1. To this end, we aim at defining
a relation that we can use to compare MP with MA. Let ≈ denote this relation, we
aim at proving that there exists such a relation so that MP ≈ MA.

Fig. 12.1 Approach to prove
the correctness of the
translation

12.3 Formalization of the PRISM Input Language

We describe in this section the formal syntax and the semantics of the PRISM input
language. By doing so, we greatly simplify the manipulation of the output of our
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translation algorithm for the sake of proofs. Moreover, defining a formal seman-
tics for the PRISM language itself leads to more precise soundness concepts and
more rigorous proofs. While reviewing the literature, there were no initiatives in
this direction.

12.3.1 Syntax

The formal syntax of PRISM input language is presented in a BNF style in Figs. 12.2
and 12.3. A PRISM model, namely prism_model, starts with the specification of the
model type model_type (i.e., MDP, CTMC, or DTMC). A model consists of two
main parts:

• The declaration of the constants, the formulas, and the global variables corre-
sponding to the model.

• The specification of the modules composing the model each consisting of a set
of local variables declaration followed by a set of commands.

We focus on the commands since they describe the intrinsic behavior of the
model. The formal descriptions of constants, formulas, and local and global variable
declarations are not provided in detail since they are supposed to be pre-determined
and generated before the actual definition of the commands. In addition, we assume
that each variable declaration contains an initial value. We denote by x0 the initial
value of the variable x .

A command c is of the form [α]w ⇀ u where α represents the action label of the
command, w is the corresponding (boolean) guard, and u is its update representing
the effect of the command on the values of the variables. An update is build as
the probabilistic choice over unit updates di , denoted by

∑
i∈I λi : di such that

::= model_type
global_declaration
modules

(Global Declarations)
(Modules Specification)

modules ::= module module_name
localvar_dec
c
endmodule
 modules || modules

(Local Variables Declarations)
(Commands)

(Modules Composition)

global_declaration ::= const_dec
formula_dec
globalvar_dec

(Constants Declarations)
(Formulas Declarations)
(Global Variables Declarations)

model_type ::= mdp
ctmc
dtmc

|
|

prism_model

|

Fig. 12.2 Syntax of the PRISM input language – part 1
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∑
i∈I λi = 1. A given unit update d is the conjunction of assignments of the form

x ′ = e, where x ′ represents the new value of the variable x and e is an expression
over the variables, constants, and/or formulas of the model. Thus, we require type
consistency of the variable x and the expression e. A trivial update unit skip stands
for the update that does not affect the values of the variables. Finally, a guard w is
built using a logical expression over the variables and formulas of the model.

12.3.2 Operational Semantics

In this section, we focus on the semantics of a program written in PRISM input
language limiting ourselves to the fragment that has an MDP semantics. We define
the operational semantics of the PRISM language following the style of SOS [201].
We consider PRISM models consisting of a single system module, since any PRISM
model described as a composition of a set of modules can be reduced to a single
module system according to a set of construction rules described in [203]. In the
case of a single module, actions labeling the commands are not as much useful as in
the case of multiple modules.

c ::= [α ] w u (Command)
c ∪ c

w ::= e (Guard)

u ::= λ : d (Update)
|

|

u1 +u2

d ::= skip (Update unit)
| x = e
| d1 ∧ d2

e ::= x (Expression)
| v
| e1 op e2
| ¬ e1

v ::= i (Value)
| d
| b

op ∈ {∗,�, +, − ,<, ≤ ,>, ≥ ,=,=, ∧, ∨} (Operators)
λ ∈ [0, 1] (Probability Value)
x ∈ variables (Variable)

α ∈ actions (Action)
i ∈ integer (Integer)

d ∈ double (Double)
b ∈ boolean (Boolean)

Fig. 12.3 Syntax of the PRISM input language – part 2
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A configuration represents the state of the system at a certain moment during
its evolution. It is build as a pair 〈C, s〉 where C denotes the set of commands to
be executed and s the associated store, which models the memory used in order to
keep track of the current values associated with the variables of the system. Let V

be the set of values and S be the set of stores ranged over by s, s1, s2, etc. We write
s[x �→ vx ] to denote the store s that assigns to the variable x the value vx and the
value s(y) to the variable y 
= x . We denote by [[_]](_) the semantic function used to
evaluate expressions or guards defined in Fig. 12.3. Let E be the set of expressions
and W the set of guards. We have [[_]](_) : E ∪ W → S → V a function that takes
as argument an expression e (or a guard) and a store s and returns the value of the
expression e where each variable x is interpreted by s(x).

We define an auxiliary function f (_)(_) : Dist(S) → Dist(S) → Dist(S) such
that ∀μ1, μ2 ∈ Dist(S),

f (μ1)(μ2) = μ =
⎧
⎨

⎩

∑
i∈I
si=s

μ1(si )+∑
j∈J

s j=s
μ2(s j )

0 otherwise

The inference rules corresponding to the operational semantics of PRISM model
are listed in Fig. 12.4. Basically, rule (SKIP) denotes that the trivial unit update
skip does not affect the store (i.e., the values of the variables). Rule (UPD-EVAL)
expresses the effect on the store s of a new value assignment to the variable x using
the evaluation of the expression e. Rule (UPD-PROCESSING) is used to process a
conjunction of updates 〈d1 ∧ d2, s〉 given the evaluation of 〈d1, s〉. The unit update
d2 is applied on the store s1 resulting from applying the unit update d1. This rule
allows a recursive application of unit updates until processing all the components of

(SKIP) skip,s s

(UPD-EVAL) x = e,s s[x [[e]](s)]

(UPD-PROCESSING)
d1,s s1

d1∧d2,s d2,s1

(PROB-UPD)
d,s s1

λ : d,s μλ
s1

(PROBCHOICE-UPD)
u1,s μ1 u2,s μ2

u1 +u2,s f (μ1)(μ2)

(ENABLED-CMD)
[[w]](s) = true

[α ] w u,s α
u,s

(CMD-PROCESSING) 
c,s α

u,s u,s μ

c ∪C,s α
c ∪C,μ

Fig. 12.4 Semantic inference rules for PRISM’s input language
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an update of the form λ : d, which results in a new state of the system, i.e., a new
store reflecting the new variable values of the system. Rule (PROB-UPD) denotes
the processing of a probabilistic update on the system. The result of processing
〈λ : d, s〉 is a probability sub-distribution that associates a probability λ with a store
s1 obtained by applying the update. If λ < 1, the definition of the probability distri-
bution is partial since it is a part of a probabilistic choice over the related command’s
updates.

Rule (PROBCHOICE-UPD) processes the probabilistic choice between different
updates as a probability distribution over the set of resulting stores. It uses the func-
tion f in order to build the resulting probability distribution from partial probability
distribution definitions taking into account the possibility that different updates may
lead to the same store. Rule (ENABLED-CMD) is used to evaluate the guard of a
given command and thus enabling its execution if its corresponding guard is true.
Finally, rule (CMD-PROCESSING) states that if a command is non-deterministically
selected from the set of available enabled commands (since their guards are true)
for a given store s (first premise) and if the set of corresponding updates leads to the
probability distribution μ (second premise), then a transition can be fired from the
configuration 〈{c} ∪C, s〉 resulting in a set of new possible configurations where all
reachable states are defined using the probability distribution μ.

An operational semantics of a PRISM MDP program P is provided by means of
the MPD MP where the states are of the form 〈C, s〉, the initial state is 〈C, s0〉 such
that s0 is the store where each variable is assigned its default value, the set of actions
are the action labeling the commands, and the probabilistic transition relation is
obtained by the rule (CMD-PROCESSING) in Fig. 12.4 such that Steps(s) = (α, μ).
We omit the set of commands C from the configuration and write simply s

α→ μ to
denote Steps(s).

12.4 Formal Translation

We focus hereafter on the formal translation of SysML activity diagrams into their
corresponding MDP using the input language of PRISM. We presented in Chap. 9
the translation algorithm written in an imperative language representing an abstrac-
tion of the implementation code. In order to simplify the analysis of the translation
algorithm, we need to express it in some functional core language. The latter allows
making assertions about programs and prove their correctness easier than having
them written in an imperative language. Thus, we use the ML functional language
[101]. The input to the translation algorithm corresponds to the AC term expressing
formally the structure of the SysML activity diagram. The output of the translation
algorithm represents the PRISM MDP model. The latter contains two parts: variable
declarations and the set of PRISM commands enclosed in the main module. We
suppose that the declarations of variables, constants, and formulas are performed
separately of the actual translation using our algorithm.

Before detailing the translation algorithm, we first clarify our choices for the
constants, the formulas, and the variables in the model and their correspondences
with the elements of the diagram. First, we need to define a constant of type
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integer, namely max_inst, that specifies the maximum number of supported execu-
tion instances (i.e., the maximum number of control tokens). Each node (action or
control) that might receive tokens is associated with a variable of type integer, which
values range over the interval [0,max_inst]. Exceptionally, the flow final nodes are
the only nodes that are not represented in the PRISM model since they only absorb
the tokens reaching them. The value assigned to each variable at a point in the time
denotes the number of active instances of the corresponding activity node. An activ-
ity node that is not active will have its corresponding variable assigned the value 0.
An activity node that reached the maximum supported number of active instances
will have its corresponding variable assigned the maximum value max_inst. How-
ever, there are two exceptions to this rule: the first corresponds to the initial and the
final nodes and the second to the join nodes.

First, each of the initial and final nodes is associated with an integer variable
that takes two possible values 0 or 1. This is because these nodes are supposed to
have a boolean state (active or inactive). Second, the join node represents also an
exceptional case because of the specific processing of the join condition. The latter
states that each of the incoming edges has to receive at least one control token in
order to produce a single token that traverses the join node. Thus, we assign an
integer variable for each incoming edge of a join node. Their values range over
the interval [0,max_inst]. Then, we also assign a boolean formula to the join node
in order to express the join condition. This formula is a conjunction of boolean
conditions stating that each variable associated with an incoming edge has a value
greater than or equal to 1. Finally, we also consider the guards of all decision nodes.
These are helpful in describing properties to be verified on the model. Thus, we
assign a boolean PRISM variable for each boolean guard of a decision node.

We use the labels associated with the activity nodes as defined in the activity
calculus term as the identifiers of their corresponding PRISM variables. For the
exceptional cases (meaning the initial, final, and join nodes), we use other adequate
notation. As for the initial and final nodes, we use, respectively, the variable iden-
tifiers lι and l f . Concerning the join nodes denoted in the AC term either as the
subterm l : x . join(N ) for the definition of the join or as l for referencing each of
its incoming edges, we need to assign x distinct variables. Thus, we use the label
l concatenated with an integer number k such that k ∈ [1, x], which results in a
variable l[k] associated with each incoming edge. By convention, we use l[1] for
specifying the variable related to l : x .join(N ). We denote by LA the set of labels
associated with the AC term A representing the identifiers of the variables in the
corresponding MDP model.

A generated PRISM command c is expressed formally using the syntax definition
presented in Fig. 12.3. The main mapping function denoted by T is described in List-
ing 12.1. It makes use of the function E described in Listing 12.2. It also employs an
utility function L in order to identify the label of an element of the AC term. The sig-
natures of the two main functions are provided in their respective listings. We denote
by AC the set of unmarked AC terms and AC the set of marked AC terms. Let L be
the universal set of labels ranged over by l. Moreover, let C be the set of commands
ranged over by c, W be the set of guard expressions ranged over by w, Act be the
set of actions ranged over by α, and D be the set of update units ranged over by d.
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Listing 12.1 Formal SysML activity diagram translation algorithm

T : AC→ C
T(N ) = Case (N ) of

ι�N ′ ⇒ l e t
c = E(N ′ ) ( lι = 1 ) ( l ′ι = 0 ) ( 1.0 ) ( lι )

in
{c} ⋃

T(N ′ )
end

l : a �N ′ ⇒ l e t
c = E(N ′ ) ( l > 0 ) ( l ′ = l − 1 ) ( 1.0 ) ( l )

in
{c} ⋃

T(N ′ )
end

l :Merge(N ′) ⇒ l e t
c = E(N ′ ) ( l > 0 ) ( l ′ = l − 1 ) ( 1.0 ) ( l )

in
{c} ⋃

T(N ′ )
end

l : x .Join(N ′) ⇒ l e t
c = E(N ′ ) (

∧
1≤k≤x (l[k] > 0) ) (

∧
1≤k≤x ( l[k]′ = 0 ) ) ( 1.0 ) ( l[1] )

in
{c} ⋃

T(N ′ )
end

l : Fork(N1, N2) ⇒ l e t
[α] w ⇀ λ : d = E(N1 ) ( l > 0 ) ( l ′ = l − 1 ) ( 1.0 ) ( l )

in
l e t

c = E(N2 ) ( w ) ( d ) ( λ ) ( α )
in
{c} ⋃

T(N1 )
⋃

T(N2 )
end

end
l : Decision p(〈g〉 N1, 〈¬g〉 N2) ⇒ l e t

[α1] w1⇀λ1 : d1 =E(N1 ) ( l > 0 ) ( ( l ′ = l − 1 )∧ ( g′ = t t ) ) ( p ) ( l )
[α2] w2 ⇀ λ2 : d2 =

E(N2 ) ( t t ) ( ( l ′ = l − 1 )∧ ( g′ = f f ) ) ( 1− p ) ( l )
in
( [l] w1 ∧ w2 ⇀ λ1 : d1 + λ2 : d2 )

⋃
T(N1 )

⋃
T(N2 )

end
l : Decision(〈g〉 N1, 〈¬g〉 N2) ⇒ l e t

[α1] w1 ⇀ λ1 : d1=E(N1 ) ( l>0 ) ( ( l ′= l − 1 )∧ ( g′ = t t ) ) ( 1.0 ) ( l )
[α2] w2 ⇀ λ2 : d2=E(N2 ) ( l>0 ) ( ( l ′= l − 1 )∧ ( g′ = f f ) ) ( 1.0 ) ( l )

in
( [l] w1 ⇀ λ1 : d1 )

⋃
T(N1 )

⋃
( [l] w2 ⇀ λ2 : d2 )

⋃
T(N2 )

end
l f :� ⇒ l e t

w = ( l f = 1 )
d =

∧
l∈LA ( l ′ = 0 )

λ=1.0
in

( [l f ] w ⇀ λ : d )
o t h e r w i s e ⇒ s k i p
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Listing 12.2 Definition of the E function

E: AC→ W → D→ [0, 1] → Act → C
E(N ) (w) ( d ) ( λ ) ( α ) = Case (N ) of

l :� ⇒ ( [α] w ∧ (l f = 0) ⇀ λ : d )
l f :� ⇒ ( [α] w ∧ (l f = 0) ⇀ λ : (l ′f = 1) ∧ d )
l : x .Join(N ′) ⇒ l e t

w1 = w ∧ (l f = 0) ∧ ¬(∧1≤k≤x (l[k] > 0)) ∧ (l[1] < max_inst)
d1 = (l[1]′ = l[1] + 1) ∧ d

in
( [α] w1 ⇀ λ : d1 )

end
l ⇒ i f l = L( l : x .Join(N ′) ) then

l e t
w1 = w ∧ (l f = 0) ∧ ¬(∧1≤k≤x (l[k] > 0)) ∧ (l[ j] < max_inst)
d1 = (l[ j]′ = l[ j] + 1) ∧ d

in
( [α] w1 ⇀ λ : d1 )

end
end
i f l = L( l :Merge(N ′) ) then

l e t
w1 = w ∧ (l f = 0) ∧ (l < max_inst)
d1 = (l ′ = l + 1) ∧ d

in
( [α] w1 ⇀ λ : d1 )

end
end

o t h e r w i s e ⇒ l e t
w1 = w ∧ (l f = 0) ∧ (l < max_inst)
d1 = (l ′ = l + 1) ∧ d

in
( [α] w1 ⇀ λ : d1 )

end

12.5 Case Study

In this section, we present a SysML activity diagram case study depicting a hypo-
thetical design of the behavior corresponding to banking operations on an ATM
system illustrated in Fig. 11.13. It is designed intentionally with flaws in order to
demonstrate the viability of our approach. The activity starts by Authentication
then a fork node indicates the initiation of concurrent behavior. Thus, Verify ATM,
and Choose account are triggered together. This activity diagram presents mixed
disposition of fork and join nodes. Thus, Withdraw money action cannot start until
both Verify ATM and Choose account terminate. The guard g1, if evaluated to
true, denotes the possibility of triggering a new operation. The probability on the
latter decision node models the probabilistic user behavior. The guard g2 denotes the
result of evaluating the status of the connection presenting functional uncertainty.
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We first present the corresponding AC term A1 explained earlier and then explain
its mapping into PRISM code.

The corresponding unmarked term A1 is as follows:

A1 = ι� l1 : a � l2 : Fork(N1, l12)

N1 = l3 : Merge(l4 : b� l5 : Fork(N2,N3))
N2 = l6 : Decision0.9(〈g2〉 l3, 〈¬g2〉 l7 : 2.Join(l8 : �))
N3 = l9 : 2.Join(l10 : d �N4)

N4 = l11 : Decision0.3(〈g1〉N5, 〈¬g1〉 l7)
N5 = l12 : Merge(l13 : c� l9)

First, PRISM variable identifiers are deduced from the AC term. We use li and
l f as variable identifiers for, respectively, the initial node ι and the final node l8 :�.
For the join node l7 : 2.Join (resp. l9 : 2.Join), we use l7 (resp., l9) as identi-
fier for the formula specifying the join conditions and we use the PRISM vari-
ables l7_1 and l7_2 (resp., l9_1 and l9_2) as variable identifiers for the incoming
edges of the join node. Once the declaration of variables and formulas is done,
the module commands are generated using the algorithm T described in Listing
12.1. For instance, the first command labeled [li] is generated in the first iteration
while calling T(A1). It corresponds to the first case such that A1 = ι � N ′ and
N ′ = l1 : a � l2 : Fork(N1, l12). Thus, the function E described in Listing 12.2
is called E(N ′)((li = 1))((li ′ = 0))(1.0)(li). The last case of the latter function
is triggered since N ′ is of the form l : a � N . This allows to generate the first
command and then a call of T(N ′) is triggered which launches the algorithm again.
The translation halts when all the nodes are visited and all instances of the algorithm
T stop their executions. The PRISM MDP code obtained for the activity diagram A1
is shown in Fig. 12.5. Once, the PRISM code is generated, one can input the code
to PRISM model checker for assessment. However, the properties that have to be
verified on the model need to be expressed in adequate temporal logic. The property
specification language of PRISM subsumes several well-known probabilistic tempo-
ral logics, including PCTL [44], CSL [11], LTL [248], and PCTL* [204]. Moreover,
PRISM also extend and customize this logics with additional features. For instance,
PRISM adds the ability to determine the actual probability of satisfying a formula,
rather than only placing a bound on it.

In order to verify MDP model, we use PCTL* temporal logic. A property that
can verify on the model is the presence/absence of a deadlock. Property (12.1)
specifying the eventuality of reaching a deadlock state (with probability P > 0)
from any configuration starting at the initial state can be expressed as follows:

“ini t ′′ ⇒ P > 0 [ F “deadlock′′ ] (12.1)

Using PRISM model checker, this property returns true. In fact, the execution
of the action Choose account twice (because the guard g1 is true) and the action
Verify ATM only once (because g2 evaluated to false) result in a deadlock config-
uration where the condition of the join node join1 is never fulfilled. This confirms
the findings using the operational semantics of AC (see the corresponding case study
in Sect. 11.2).
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mdp

const intmax inst=1;
formula l9 = l9 1>0 & l9 2>0 ;
formula l7 = l7 1> 0 & l7 2>0;

modulemainmod

g1 :bool init false;
g2 :bool init false;
li : [0..1] init 1; lf : [0..1] init 0;
l1 : [0..max inst] init 0; l2 : [0..max inst] init 0;
l3 : [0..max inst] init 0; l4 : [0..max inst] init 0;
l5 : [0..max inst] init 0; l6 : [0..max inst] init 0;
l7 1 : [0..max inst] init 0; l7 2 : [0..max inst] init 0;
l9 1 : [0..max inst] init 0; l9 2 : [0..max inst] init 0;
l10 : [0..max inst] init 0;
l11 : [0..max inst] init 0;l12 : [0..max inst] init 0;
l13 : [0..max inst] init 0;

[li] li=1 & l1<max inst & lf=0 → 1.0 : (l1 =l1+1) & (li =0);
[l1] l1>0 & l2<max inst & lf=0 → 1.0 : (l2 =l2+1) & (l1 =l1−1);
[l2] l2>0 & l3<max inst & l12<max inst & lf=0

→ 1.0 : (l3 =l3+1) & (l12 =l12+1) & (l2 =l2−1);
[l3] l3>0 & l4<max inst & lf=0 → 1.0 : (l4 =l4+1)&(l3 =l3−1);
[l4] l4>0 & l5<max inst & lf=0 → 1.0 : (l5 =l5+1)&(l4 =l4−1);
[l5] l5>0 & l6<max inst & !l9 & l9 1<max inst & lf=0

→ 1.0 : (l6 =l6+1) &(l9 1 =l9 1+1) & (l5 =l5−1);
[l6] l6>0 & l3<max inst & !l7 & l7 1<max inst &lf=0 →

0.9 : (l3 =l3+1) & (l6 =l6−1) & (g2 =true)
+0.1 : (l7 1 =l7 1+1) & (l6 =l6−1) & (g2 =false);

[l7] l7 & lf=0 → 1.0 : (l7 1 =0) & (l7 2 =0) & (lf =1);
[l9] l9 & l10<max inst & lf=0 → 1.0 : (l10 =l10+1) & (l9 1 =0) & (l9 2 =0);
[l10]l10>0 & l11<max inst & lf=0 → 1.0 : (l11 =l11+1) & (l10 =l10−1);
[l11]l11>0 & l12<max inst & ! l7 &l7 2<max inst & lf=0 →

0.3 : (l12 =l12+1) & (l11 =l11−1) & (g1 =true)
+ 0.7 : (l7 2 =l7 2+1) & (l11 =l11−1) & (g1 =false);

[l12] l12>0 & l13<max inst & lf=0 → 1.0 : (l13 =l13+1) & (l12 =l12−1);
[l13] l13>0 & !l9 & l9 2<max inst & lf=0 → 1.0 : (l9 2 =l9 2+1) & (l13 =l13−1);
[lf ] lf=1 → 1.0 : (li =0)& (lf =0) & (l1 =0) & (l2 =0) & (l3 =0) &

(l4 =0) & (l5 =0) & (l6 =0) & (l7 1 =0)& (l7 2 =0)& (l9 1 =0)& (l9 2 =0)&
(l10 =0)& (l11 =0)& (l2 =0)& (l3 =0) & (g1 =false) & (g2 =false);

endmodule

Fig. 12.5 PRISM code for the SysML activity diagram case study

12.6 Simulation Preorder for Markov Decision Processes

Simulation preorder represents one example of relations that have been defined
in both non-probabilistic and probabilistic settings in order to establish a step-by-
step correspondence between two systems. Segala and Lynch have defined in their
seminal work [217] several extensions of the classical simulation and bisimula-
tion relations to the probabilistic settings. These definitions have been reused and
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tailored in Baier and Kwiatkowska [12] and recently in Kattenbelt and Huth [130].
Simulations are unidirectional relations that have proved to be successful in formal
verification of systems. Indeed, they allow to perform abstractions of the models
while preserving safe CTL properties [163]. Simulation relations are preorders on
the state space such that a state s simulates state s′ (written s � s′) if and only if
s′ can mimic all stepwise behavior of s. However, the inverse is not always true; s′
may perform steps that cannot be matched by s.

In probabilistic settings, strong simulation have been introduced, where s � s′
(meaning s′ strongly simulates s) requires that every α-successor distribution of s
has a corresponding α-successor at s′. This correspondence between distributions is
defined based on the concept of weight functions [128]. States related with strong
simulation have to be related via weight functions on their distributions [163]. Let M
be the class of all MDPs. A formal definition of MDP is provided in Definition 9.1.
In the following, we recall the definitions related to strong simulation applied on
MDPs. First, we define the concept of weight functions as follows.

Definition 12.1 Let μ ∈ Dist (S) and μ′ ∈ Dist (S′) and R ⊆ S × S′. A weight
function for (μ,μ′)w.r.t.R is a function δ : S×S′ → [0, 1] satisfying the following:

• δ(s, s′) > 0 implies (s, s′) ∈ R.
• For all s ∈ S and s′ ∈ S′,

∑
s′∈S′ δ(s, s′) = μ(s) and

∑
s∈S δ(s, s′) = μ′(s′).

We write μ �R μ
′ if there exists such a weight function δ for (μ,μ′) with respect

to R.

Definition 12.2 Let M = (S, s0, Act, Steps) and M ′ = (S′, s′0, Act ′, Steps′)
be two MDPs. We say M ′ simulates M via a relation R ⊆ S × S′, denoted by
M �R

M M ′, if and only if for all s and s′: (s, s′) ∈ R, if s
α−→ μ then there is a

transition s′ α−→ μ′ with μ �R μ
′.

Basically, we say that M ′ strongly simulates M , denoted by M �R
M M ′, ⇐⇒

there exists a strong simulation R between M and M ′ such that for every s ∈ S and
s′ ∈ M ′ each α-successor of s has a corresponding α-successor of s′ and there exists
a weight function δ that can be defined between the successor distributions of s
and s′.
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Fig. 12.6 Example of simulation relation using weight function
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Example 12.1 Let us consider the example illustrated in Fig. 12.6. We consider two
set of states S = {s, t, u} destination of X and S′ = {v,w, r, z} destination states of
Y . The distribution μ over S is defined as follows: μ(s) = 2/9, μ(t) = 5/9, and
μ(u) = 2/9, whereas the distribution μ′ over S′ is defined such that μ′(v) = 1/3,
μ′(w) = 4/9, μ′(r) = 1/9, and μ′(z) = 1/3. If we consider the relation R
such that R = {(s, v), (t, v), (t,w), (u, r), (u, z)}, we can find out whether R is
a simulation relation provided that we can define a weight function that fulfills the
constraint of being a weight function relating μ and μ′. Let δ be a weight function
such that δ(s, v) = 2

9 , δ(t, v) = 1
9 , δ(t,w) = 4

9 , δ(u, r) = 1
9 , and δ(u, z) = 1

9
fulfill the constraints of being a weight function. According to Definition 12.1,
the first condition is satisfied. For the second condition we have

∑
s′∈S′ δ(t, s′) =

δ(t, v) + δ(t,w) = 5
9 = μ(t),

∑
s1∈S δ(s1, v) = δ(s, v) + δ(t, v) = 3

9 = μ(t), and
∑

s′∈S′ δ(u, s′) = δ(u, r) + δ(u, z) = 2
9 = μ(u). It follows that μ �R μ′. Thus,

X �R
M Y ′.

12.7 Soundness of the Translation Algorithm

In this section, we aim at ensuring that the translation function T defined in Listing
12.1 generates a model that correctly captures the behavior of the activity diagram.
More precisely, we look forward to prove the soundness of the translation. To this
end, we use the operational semantics defined for both the SysML activity diagrams
and the PRISM input language. Before formalizing the soundness theorem, we need
first to make some important definitions.

We use the function �_� specified in Listing 12.3. The latter takes as input a
term B in AC ∪ AC and returns a multiset of labels (LB, m) corresponding to the
marked nodes in the corresponding activity calculus term, i.e., �B�= {| l j ∈ LB|
m(l j ) > 0 |}.

In the next definition, we make use of the function [[_]](_) defined in Sect. 12.3.2
in order to define how an activity calculus term B satisfies a boolean expression.
This is needed in order to define a relation between a state in the semantic model of
PRISM model and another state in the semantic model of the corresponding SysML
activity diagram.

Definition 12.3 An activity calculus term B such that �B�=(LB, m) satisfies a
boolean expression e and we write [[e]](B) = true ⇐⇒ [[e]](s[xi �→ m(li )]) =
true, ∀li ∈ LB and xi ∈ variables.

The evaluation of the boolean expression e using the term B consists of two steps.
First, a store s is defined where we assign to each variable xi the marking of the node
labeled li . The second step is to replace in the boolean expression e each variable xi

with s(xi ).
Let MPA = (SPA , s0, Act, StepsPA) and MA = (SA, s0, Act, StepsA) be the

MDPs corresponding, respectively, to the PRISM model PA and the SysML activity
diagram A. We need to define in the following a relation R ⊆ SPA × SA.
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Definition 12.4 Let R ⊆ SPA × SA be a relation defined as follows.
For all sp ∈ SPA and B ∈ SA, sp R B ⇐⇒ for any expression w ∈ W ,
[[w]](sp) = true implies [[w]](B) = true, ∀li ∈ LB and xi ∈ variables.

Listing 12.3 Function �−� definition

�−� : AC −→ PL
�M� = Case (M ) of

ι�N ⇒ {| (lι ↪→ 1) |}
ι�M′ ⇒ ⌊

M′⌋

l f :�n ⇒ i f n > 0 then {| (l f ↪→ 1) |} e l s e {||}
l :Merge(M′)n ⇒ {| (l ↪→ n) |} � ⌊

M′⌋

l : x .Join(M′)n ⇒ {| (l[1] ↪→ n) |} � ⌊
M′⌋

l : Fork(M1, M2)
n ⇒ {| (l ↪→ n) |} � �M1� � �M2�

l : Decision p(〈g〉M1, 〈¬g〉M2)
n ⇒ {| (l ↪→ n) |} � �M1� � �M2�

l : Decision(〈g〉M1, 〈¬g〉M2)
n ⇒ {| (l ↪→ n) |} � �M1� � �M2�

l : an � M′ ⇒ {| (l ↪→ n) |} � ⌊
M′⌋

l
n ⇒ i f l = L(l : x . join(N )) then

{| (l[k] ↪→ n) |}
e l s e

{| (l ↪→ n) |}
end

O t h e r w i s e ⇒ {||}

This definition states that an AC term B is in relation with a state s if they both
satisfy the same boolean expression. Based on this relation, we present hereafter the
soundness theorem.

Theorem 12.7.1 (Soundness) Let A be an AC term of a given SysML activity dia-
gram and MA its corresponding semantic model. Let T(A)=PA be the correspond-
ing PRISM model and MPA be its MDP. We say that the translation algorithm T is
sound if MPA �R

M MA.

Proof (Proof of soundness) In order to prove the theorem, we have to prove the
existence of a simulation relation between both the MDPs MA and MPA . We reason
by structural induction on the syntax of the AC term describing the activity diagram.
The proof process consists in proving that the soundness holds for the base cases,
which are l :� and l :�, and then proving it for the inductive cases.

• Case of l :�
The algorithm generates neither a PRISM variable nor a PRISM command asso-
ciated with this element. So, there is no transition in MPA corresponding to
this element. According to the operational semantics, we have l :�n ≡M l :�
(according to (M3) in Fig. 11.2) and there is no operational inference rule asso-
ciated with this element. So there is no transition in MA associated with this
element. Thus, the theorem holds for this case.

• Case of l :�
The algorithm generates a single PRISM command such that
[l f ] l f = 1 ⇀ 1.0 : l ′f = 0.
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There exists a state s0 satisfying the corresponding guard, meaning [[(l f =
1)]](s0) = true, from which emanates a transition of the form s0 −→ μ2 where
μ2 = μs1

1 .
The AC term B = l f :� is related to s0 via R, since [[(l f = 1)]](l f :�) = true
(Definition 12.4). This can be justified because

⌊
l f :�

⌋ = {| (l f ↪→ 1) |}
(Listing 12.3).
According to the operational rule FINAL, we have l f :� −→ μ such that μ =
μ

l f :�
1 .

For R = {(s0, l f :�), (s1, l f :�)}, it follows that μ �R μ2 as δ defined such
that δ(s1, l f :�) = 1 fulfills the constraints of being a weight function. Thus, the
theorem is proved for this case.

Let MN denote the semantics of N and MPN denotes the semantics of the cor-
responding PRISM model obtained from T(N ). We assume that MPN �R

M MN .
We also assume a bounded number of instances max_inst , i.e., ∀l, l ≤ max_inst
(ASSUMPTION 1).

• Case of ι�N
According to the translation algorithm, we have T(ι� N ) = {c} ⋃ T(N ). By
assumption of the inductive step we have MPN �R

M MN . Thus, we need to
prove the theorem for the command c such as
c =E(N )(lι = 1)(l ′ι = 0)(1.0)(lι).
Let w be the guard and d the update generated by E(N ), the command c can be
written as follows:
c = [lι] w ∧ (lι = 1) ∧ (l f = 0) ⇀ 1.0 : d ∧ (l ′ι = 0).
There exists a state s0 satisfying the guard, i.e., [[w ∧ (lι = 1) ∧ (l f = 0)]](s0) =
true and a transition s0 −→ μ where μ = μs1

1 .
Given that �ι�N � = {| (lι ↪→ 1) |}, we can easily verify that [[(lι = 1)∧ (l f =
0)]](ι�N ) = true. It remains to verify that ∀N , [[w]](ι�N ) = true.
There are two cases: w = ¬(∧1≤k≤x (l[k] > 0)) ∧ (l[ j] < max_inst) or w =
(l < max_inst). Since ∀l 
= lι, m(l) = 0 and having ASSUMPTION 1, we can
conclude that [[w]](ι�N ) = true. Thus, by Definition 12.4 s0 R ι�N .
The operational semantics rule INIT-1 allows a transition ι� N −→ μ′ such
that μ′(ι�N ) = 1.
For R = {(s0, ι�N ), (s1, ι�N )}, it follows that μ′ �R μ as δ defined such
that δ(s1, ι� N ) = 1 fulfills the constraints of being a weight function. Thus,
the theorem is proved for this case.

• Case of l : a �N
This case can be proved similar to the previous one. We need to prove the theorem
for the command c expressed as follows:
c = E(N )(l > 0)(l ′ = l − 1)(1.0)(l).
Let w be the guard and d the update such that
c = [l] w ∧ (l > 0) ∧ (l f = 0) ⇀ 1.0 : d ∧ (l ′ = l − 1).
The corresponding transition is s0 −→ μwhereμ = μs1

1 and [[w∧(l > 0)∧(l f =
0)]](s0) = true.
We can verify easily that [[w ∧ (l > 0) ∧ (l f = 0)]](l : a �N ) = true.
Let R = {(s0, l : a �N ), (s1, l : a �N )}.



220 12 Soundness of the Translation Algorithm

The operational semantics rule ACT-1 allows a transition l : a �N a−→ μ′
such that μ′(l : a �N ) = 1.
It follows that μ′ �R μ as δ defined such that δ(s1, l : a � N ) = 1 fulfills the
constraints of being a weight function. Thus, the theorem is proved for this case.

• Case of l :Merge(N )
T(l : Merge(N )) = {c} ⋃ T(N ). In order to prove this case, we need to prove
the theorem for the command c:
c = E(N )(l > 0)(l ′ = l − 1)(1.0)(l).
Let us denote by w the guard and d the update such that
c = [l] w ∧ (l > 0) ∧ (l f = 0) ⇀ 1.0 : d ∧ (l ′ = l − 1).
The state s0 such that [[w ∧ (l > 0) ∧ (l f = 0)]](s0) = true is the source of a
transition of the form s0 −→ μ where μ = μs1

1 .
We can easily verify that [[w∧ (l > 0)∧ (l f = 0)]](l :Merge(N )) = true. Thus,
by Definition 12.4, (s0, l :Merge(N )) ∈ R.
Let R = {(s0, l :Merge(N )), (s1, l :Merge(N ))}.
The operational semantics rule MERGE-1 allows a transition l :Merge(N ) −→
μ′ such that μ′(l :Merge(N )) = 1.
It follows that μ′ �R μ as δ defined such that δ(s1, l : Merge(N )) = 1 fulfills
the constraints of being a weight function. Thus, the theorem is proved for this
case.

• Case of l : x .Join(N )
This case is jointly treated with the case where l is a reference of a join node.
T(l : x .Join(N )) = {c}⋃ T(N ) such that
c = E(N )(

∧
1≤k≤x (l[k] > 0))(

∧
1≤k≤x (l[k]′ = 0))(1.0)(l[1]).

Let us denote by w the guard and d the update such that
c = [l] w ∧ (∧1≤k≤x (l[k] > 0)) ∧ (l f = 0) ⇀ 1.0 : d ∧ (∧1≤k≤x (l[k]′ = 0).
The corresponding transition is s0 −→ μ where μ = μ

s1
1 and [[w ∧

(
∧

1≤k≤x (l[k] > 0)) ∧ (l f = 0)]](s0) = true.

The activity calculus term B[l : x .Join(N ), l{x − 1}] satisfies the guard w ∧
(
∧

1≤k≤x (l[k] > 0)) ∧ (l f = 0). Thus by Definition 12.4, s0 R B.
The operational semantics rule JOIN-1 allows a transition such that
B[l : x .Join(N ), l{x − 1}] −→1 B[l : x .Join(N ), l{x − 1}].
For B′ = B[l : x .Join(N ), l{x − 1}], we can write B −→ μ′ such that
μ′(B′) = 1.
Let R = {(s0,B), (s1,B′)}. It follows that μ′ �R μ as δ defined such that
δ(s1,B′) = 1 fulfills the constraints of being a weight function. Thus, the theorem
is proved for this case.

• Case of l
l is a reference to l : x .Join(N ) or to l : Merge(N ). Thus, the proof can be
inferred from the previous corresponding cases.

Let MN1 and MN2 , respectively, denote the semantics of N1 and N2. Also, MPN1
denotes the semantics of the corresponding PRISM translation T(N1) and MPN2

the one of T(N2). We assume that MPN1
�R

M MN1 and MPN2
�R

M MN2 .
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• Case of l : Fork(N1, N2)

According to the translation algorithm, we have T(ι � N ) = {c} ⋃
T(N1)⋃

T(N2). By assumption of the inductive step we have MPN1
�R

M MN1 and

MPN2
�R

M MN2 . Thus, we need to prove the theorem for the command c.
Let us denote by w1 and w2 the guards generated, respectively, for N1 and N2
and d1 and d2 the corresponding updates such that
c = [l] w1 ∧ w2 ∧ (l > 0) ∧ (l f = 0) ⇀ 1.0 : d1 ∧ d2 ∧ (l ′ = l − 1).
Thus, there exists a state s0 such that [[w1∧w2∧ (l > 0)∧ (l f = 0)]](s0) = true
and a transition s0 −→ μ where μ = μs1

1 .
We can easily verify that [[w1 ∧ w2 ∧ (l > 0) ∧ (l f = 0)]](l : Fork(N1,N2)) =
true. So, s0 R l : Fork(N1,N2).
According to rule FORK-1, we have l : Fork(N1,N2) −→1 l : Fork(N1,N2), or

l : Fork(N1,N2) −→ μ′, where μ′ = μl : Fork(N1,N2)
1 .

Let R = {(s0, l : Fork(N1,N2)), (s1, l : Fork(N1,N2))}. It follows that μ′ �R

μ as δ defined such that δ(s1, l : Fork(N1,N2)) = 1 fulfills the constraints of
being a weight function. Thus, the theorem is proved for this case.

• Case of l : Decision p(〈g〉 N1, 〈¬g〉 N2)

The translation algorithm results in the following:
T(l : Decision p(〈g〉N1, 〈¬g〉N2))= ([l] w1 ∧ w2 ∧ (l > 0)∧ (l f = 0) ⇀ λ1 :
d1 ∧ (l ′ = l − 1) ∧ (g′ = true) + λ2 : d2 ∧ (l ′ = l − 1) ∧ (g′ = f alse))

⋃

T(N1)
⋃

T(N2).
Given the assumption of the inductive step, we have to prove the theorem for the
following command:
c = [l] w1 ∧ w2 ∧ (l > 0) ∧ (l f = 0) ⇀ p : d1 ∧ (l ′ = l − 1) ∧ (g′ =
true)+ (1− p) : d2 ∧ l ′ = l − 1 ∧ (g′ = f alse).
There exists a state s0 such that the command c is enabled, i.e., [[w1 ∧ w2 ∧ (l >
0) ∧ (l f = 0)]](s0) = true. The enabled transition is of the form s0 −→ μ such
that μ(s1) = p and μ(s2) = 1− p:
[[w1 ∧ w2 ∧ (l > 0) ∧ (l f = 0)]](l : Decision p(〈g〉 N1, 〈¬g〉 N2)) = true.
Thus, s0 R l : Decision p(〈g〉 N1, 〈¬g〉 N2).
According to the operational semantics, there are two possible transitions ema-
nating from the configuration l : Decision p(〈g〉 N1, 〈¬g〉 N2). The transition
enabled by rule PDEC-1:
l : Decision p(〈g〉N1, 〈¬g〉N2) −→p l : Decision p(〈t t〉N1, 〈f f 〉N2).
The transition enabled by rule PDEC-2:
l : Decision p(〈g〉N1, 〈¬g〉N2) −→1−p l : Decision p(〈f f 〉N1, 〈t t〉N2).
Definition 11.3 defines a transition in the Markov decision process MA such
that l : Decision p(〈g〉N1, 〈¬g〉N2) −→ μ′ where μ′(l : Decision p(〈t t〉N1,

〈f f 〉N2)) = p and μ′(l : Decision p(〈f f 〉N1, 〈t t〉N2)) = 1− p.
Let R = {(s0, l : Decision p(〈g〉N1, 〈¬g〉N2)), (s1, l : Decision p(〈t t〉N1,

〈f f 〉N2)), (s2, l : Decision p(〈f f 〉N1, 〈t t〉N2))}. It follows that μ′ �R μ

as δ defined such that δ(s1, l : Decision p(〈t t〉N1, 〈f f 〉N2)) = p and
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δ(s2, l : Decision p(〈f f 〉N1, 〈t t〉N2)) = 1 − p fulfills the constraints of being
a weight function. Thus, the theorem is proved for this case.

• Case of l : Decision(〈g〉 N1, 〈¬g〉 N2)

The translation algorithm results in the following:
T(l : Decision(〈g〉 N1, 〈¬g〉 N2))= ([l] w ⇀ 1.0 : d)

⋃
T(N1)

⋃
([l] w′ ⇀

1.0 : d ′) ⋃
T(N2).

Given the assumption of the inductive step, we have to prove the theorem for two
commands c1 and c2:
c1 = [l] w1 ∧ (l > 0) ∧ (l f = 0) ⇀ 1.0 : d1 ∧ (l ′ = l − 1) ∧ (g′ = true),
c2 = [l] w2 ∧ (l > 0) ∧ (l f = 0) ⇀ 1.0 : d2 ∧ (l ′ = l − 1) ∧ (g′ = f alse).
There exists a state s0 such that the commands c1 and c2 are enabled, i.e., [[w1 ∧
(l > 0) ∧ (l f = 0)]](s0) = true and [[w2 ∧ (l > 0) ∧ (l f = 0)]](s0) = true.
Two enabled transitions from s0 such that s0 −→ μ1 where μ1(s1) = 1 and
s0 −→ μ2 where μ2(s2) = 1.
We have [[w1 ∧ (l > 0) ∧ (l f = 0)]](l : Decision(〈g〉 N1, 〈¬g〉 N2)) = true.
Also, [[w2 ∧ (l > 0) ∧ (l f = 0)]](l : Decision(〈g〉 N1, 〈¬g〉 N2)) = true.
Thus, s0 R l : Decision(〈g〉 N1, 〈¬g〉 N2).
According to the operational semantics, there are two possible transitions ema-
nating from the configuration l : Decision(〈g〉 N1, 〈¬g〉 N2). The transition
enabled by rule DEC-1:
l : Decision(〈g〉N1, 〈¬g〉N2) −→1 l : Decision(〈t t〉N1, 〈f f 〉N2).
The transition enabled by rule DEC-2:
l : Decision(〈g〉N1, 〈¬g〉N2) −→1 l : Decision(〈f f 〉N1, 〈t t〉N2).
Definition 11.3 defines two transitions in the Markov decision process MA ema-
nating from the same state such that l : Decision(〈g〉N1, 〈¬g〉N2)−→ μ′1 where
μ′1(l : Decision(〈t t〉N1, 〈f f 〉N2)) = 1 and l : Decision(〈g〉N1, 〈¬g〉N2) −→
μ′1 where μ′2(l : Decision(〈f f 〉N1, 〈t t〉N2)) = 1.
Let R = {(s0, l : Decision(〈g〉N1, 〈¬g〉N2)), (s1, l : Decision(〈t t〉N1, 〈f f 〉N2)),

(s2, l : Decision(〈f f 〉N1, 〈t t〉N2))}. It follows that μ′1 �R μ1 and μ′2 �R μ2 as
δ1 defined such that δ1(s1, l : Decision(〈t t〉N1, 〈f f 〉N2)) = 1
and δ2 defined such that δ2(s2, l : Decision(〈f f 〉N1, 〈t t〉N2)) = 1 fulfill both the
constraints of being weight functions. Thus, the theorem is proved for this case.

12.8 Conclusion

The main result of this chapter was the proof that our translation algorithm is sound.
This establishes confidence in that the PRISM code generated by our algorithm
correctly captures the behavior intended by the SysML activity diagram given as
input. Thus, it ensures the correctness of our probabilistic verification approach.



Chapter 13
Conclusion

Many mature technologies,1 accompanied by ever improving and automated pro-
cesses of production, brought about an increasing availability of different special-
ized systems and sub-systems that provide specific functionalities, such as wired
and wireless data link connectivity, data storage, analog/digital signal processing,
encryption. In addition, in order to benefit from hardware and software reuse, the
specialization of such systems is often achieved with corresponding control software
along with various libraries or APIs. In fact, today’s software aspect is so pervasive
that even systems that have been traditionally mechanical in nature, such as auto-
mobiles, are integrating more and more control software to optimize such things as
fuel consumption, cruise control, or sensor data processing.

The availability of such a rich spectrum of sub-systems has enabled faster
avenues with regard to the development of future systems that already have the
possibility of integrating available sub-components required for their operation.
However, this corresponds to a higher level of system integration, where various
components from a heterogeneous vendor pool participate in the realization of a new
product or service. This, in turn, puts economic pressure on the various underpinning
industry players that are competing to maintain or enlarge their market share. Thus,
each vendor or service provider is required to achieve appropriate time-to-market
as well as competitive pricing. These variables represent critical factors that can
make or break a product. As a result, there is often a trade-off between business and
engineering goals that can impact the time and expenditure allocated for the V&V
process. In this context, undetected flaws in one of the building blocks of a highly
integrated system may trickle into the functionality of the encompassing aggregate.

Consequently, this compounds the V&V process even more, forcing it to depend
on the effectiveness of previous verification efforts. Also, technology forecasting,
mainly underpinned by Moore’s law, enable project planning based on the expected
availability of certain products and services within a foreseeable time frame and with
a reasonably accurate price estimate. These priorities are especially evident in areas
where the information technology represents an instrumental factor. In this respect,

1 Constant advancements have been made in fields such as mechanics, electronics, and manufac-
turing that have ramped up their respective industries.
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we have witnessed the rapid proliferation of a myriad of gadgets, such as digital
cameras, flash memory drives, GPS devices, cell phones, or audio/video players
that are becoming more capable and less costly with each passing year. To that
effect, increased capabilities, coupled with affordable prices, open the door for new
products or services that were heretofore unmarketable to the ordinary consumers.2

In addition, the trend toward an even higher level of integration is readily apparent.
Indeed, our modern urban lifestyle requires a lot of portable gadgets, such as cell
phones, GPS devices, flash memory drives. The very essence of these gadgets has
called for their integration into aggregated systems, such as the modern smart phone,
that can be more easily carried about while offering all the needed functionalities.
In this situation, the reliability of a highly integrated system is all the more critical,
since the user may depend solely on such system, and in a multitude of ways. Thus,
a single point of failure can create multiple difficulties for the system users. Conse-
quently, the case for adopting more comprehensive techniques and methodologies
for the V&V of systems engineering products is even more compelling.

The increased challenges faced by modern system development, especially in the
area of software-intensive systems design, led to the emergence of systems modeling
languages such as UML 2.0 and SysML. Following an iterative process that bene-
fited from industry feedback, these languages have been gradually endowed with
the necessary expressiveness that can support the transition from document-based
to model-based systems engineering (MBSE). This can bring along significant ben-
efits in many areas by improving, among other aspects, design reuse and exchange,
maintenance, and assessment.

In this pursuit, organizations such as INCOSE and OMG are representing very
active drivers in the development of the aforementioned modeling languages meant
to accommodate a broad range of systems engineering aspects. The present material
aimed at providing the reader with relevant insights with respect to the process of
V&V in model-driven systems engineering design and development. In this respect,
it presented an overview of systems engineering, along with the relevance of model-
ing languages such as UML and SysML for the architecture and design of systems
engineering design models. Moreover, it presented architectural concepts and V&V
methodologies, along with their accompanying shortcomings, while detailing an
emerging and more comprehensive V&V paradigm. The latter can enhance cur-
rent approaches by synergistically applying formal methods, program analysis, and
quality metrics on systems engineering design models.

Chapter 2 presented the paradigm of architecture frameworks that was adopted
and extended by defense organizations, mainly the US Department of Defense in
pursuit of defense systems’ procurement and capability engineering. In the com-
mercial field, the concept of architecture framework is known as enterprise archi-
tecture framework and is used by business and corporations for managing large scale

2 As point in fact, the technological feasibility of modern personal entertainment devices can be
tracked back to more than a decade but, at the time, the average person would hardly want to spend
a whole month’s earnings for such a gadget.
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projects involving many design and development teams often spread nationwide or
worldwide. Architecture frameworks ensure the commonality of views and enable
effective information sharing and communication. The emergence of standardized
modeling languages like SysML raised the need to use them in the context of archi-
tecture frameworks. In this respect, the corresponding features of interest have also
been presented. In Chap. 3, an overview of the UML 2.0 modeling language was
provided, describing the historical context of its emergence along with its corre-
sponding structural and behavioral diagrams. Moreover, the UML profiling mecha-
nism was also discussed. Chapter 4 presented the SysML modeling language along
with a chronological account of its adoption process. The commonalities as well
as the specific differences that are present between SysML and UML were detailed
along with the features of SysML structural and behavioral diagrams. Moreover,
specific details were given with respect to the informal syntax and semantics of
the reused UML 2.0 behavioral models, namely the state machine, sequence, and
activity diagrams.

Chapter 5 elaborated on the verification, validation and accreditation concepts.
Relevant V&V methodologies were reviewed along with specific verification tech-
niques for object-oriented designs, such as software engineering techniques, formal
verification, and program analysis. Useful methodologies and relevant research ini-
tiatives were presented, including the state of the art in the verification and validation
approaches targeting UML and SysML design models. Also, various tools targeting
specific V&V aspects were presented, including formal verification environments
and static program analyzers.

Chapter 6 presented an effective and synergistic approach for performing V&V
on systems engineering design models expressed in standardized modeling lan-
guages such as UML and SysML. A number of established results were shown in
support of the proposed synergistic verification and validation methodology, demon-
strating its suitability for assessing systems engineering design models in a highly
automated manner. In this respect, Chap. 7 demonstrated the usefulness of software
engineering metrics for assessing structural aspects of design models captured by
UML class and package diagrams. To that effect, a set of 15 metrics were discussed
in the context of a relevant example. Moreover, Chap. 8 described the proposed
verification methodology for behavioral diagrams. In this context, the concept of the
configuration transition system (CTS) was detailed and shown as a valid semantic
interpretation of design models expressed as state machine, sequence, or activity
diagrams. The corresponding model-checking verification methodology was illus-
trated by using an appropriate model checker, namely NuSMV that can take as input
the proposed semantic model. We showed the great potential for verifying systems
engineering design models expressed in the considered behavioral diagrams. In this
setting, the temporal logic CTL was introduced along with an illustrative description
of its temporal operators, their expressiveness, and a related CTL macro-notation.
Relevant case studies exemplifying the assessment of the state machine, sequence,
and activity diagrams were also presented and discussed.

Chapter 9 presented the probabilistic verification of SysML activity diagrams.
A translation algorithm was provided for mapping this type of diagram into an
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asynchronous probabilistic model, namely MDP, based on the input language of
the probabilistic model checker PRISM. A case study demonstrated the proof of
concept of the V&V approach for the performance analysis of asynchronous SysML
activity diagram models. Furthermore, Chap. 10 detailed a transformation procedure
for SysML activity diagrams annotated with time constraints and probability arti-
facts into a model consisting of a network of discrete-time Markov chains. Among
other important performance aspects considered in the scope of a case study, we
showed how the model can be analyzed by the probabilistic model checker PRISM
for time-bounded reachability assessment.

Chapter 11 presented a probabilistic calculus that we called activity calculus
(AC). It is used to capture the essence of SysML activity diagrams endowed with
probabilistic features. The devised calculus was then used in order to build the
underlying semantic foundations of SysML activity diagrams in terms of Markov
decision processes using operational semantics framework.

Chapter 12 goal was to examine the soundness of the translation procedure
described in Chap. 9 that maps SysML activity diagrams into MDP written in the
input language of PRISM. This guarantees that the properties verified on the gener-
ated MDP PRISM model actually hold on the analyzed diagram. Accordingly, we
formulated the soundness theorem based on a simulation pre-order upon Markov
decision processes. The latter establishes a step-by-step unidirectional correspon-
dence between the SysML activity diagram semantics and the semantics of the
resulting MDP PRISM model generated by the translation algorithm. Thus, we also
developed a formal syntax and semantics for the fragment of PRISM input language
that has MDP semantics. The proof of soundness was derived using structural induc-
tion on the activity calculus syntax and the so-called weight function concept.

As final remarks, we can safely say that the trend toward model-based systems
engineering (MBSE) is likely to continue unabated. In this respect, modeling lan-
guages like UML and SysML can bridge the many understanding and conceptual
gaps by providing a rich yet precise expressiveness that can bring about a high
degree of cohesion across the design, development, and verification teams. This
is also relevant when considering today’s competitive business environment that
typically stimulates outsourcing, thus increasing the heterogeneity of the personnel
involved in the processes of design, development, and V&V. The latter process can
also draw significant benefits from MBSE since design models expressed in stan-
dardized modeling languages readily allow for the application of more comprehen-
sive and rigorous design assessment procedures. Consequently, one can anticipate
an improved level of harmonization between business and engineering objectives
leading to higher quality products and services.
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