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   Preface

   Systems engineering is a multidisciplinary approach for developing solutions to 
complex problems. The increase in system complexity is demanding more rigor-
ous and formalized systems engineering practices. In response to this demand, 
along with advancements in computer technology, the practice of systems engi-
neering is undergoing a fundamental transition from a document-based approach 
to a model-based approach. In the model-based approach, the emphasis shifts 
from producing and controlling documentation to producing and controlling a 
coherent model of the system. Model-based systems engineering (MBSE) can help 
to manage complexity, while at the same time improve design quality and cycle 
time, improve communications among a diverse development team, and facilitate 
knowledge capture and design evolution. 

   A standardized and robust modeling language is considered a critical enabler 
for MBSE. The Systems Modeling Language (OMG SysML™) is a general-purpose 
modeling language that supports the specification, design, analysis, and verifica-
tion of systems. These systems may include hardware, software, data, personnel, 
procedures, and facilities. SysML is a graphical modeling language with a seman-
tic foundation for representing requirements, behavior, structure, and properties 
of the system and its components. The modeling language is intended to model 
systems from a broad range of industry domains such as aerospace, automotive, 
health care, and so on. 

   SysML is an extension of the Unified Modeling Language (UML), version 2, 
which has become the de facto standard software modeling language. Require-
ments were issued by the Object Management Group (OMG) in March 2003 to 
extend UML to support systems modeling. UML 2 was selected as the basis for 
SysML because it is a robust language that addresses many of the systems engin-
eering needs, while at the same time, the systems engineering community is able 
to leverage the broad base of experience and tool vendors that support UML. This 
approach also facilitates the integration of systems and software modeling, which 
is becoming increasingly important for today’s software-intensive systems. 

   The development of the language specification was a collaborative effort 
between members of the OMG, the International Council on Systems Engineering 
(INCOSE), and the AP233 Working Group of the International Standards Organiza-
tion (ISO). Following three years of development, the OMG SysML specification 
was adopted by the OMG in May 2006 and the formal version 1.0 language speci-
fication was released in September 2007. Several vendors have now implemented 
SysML in their tools. It is expected that OMG SysML will continue to evolve 
through further revisions to the specification based on feedback from end users, 
tool vendors, and research activities. Information on SysML is available on the offi-
cial OMG SysML Web site at http://www.omgsysml.org  . 



xii Preface

   This book provides the foundation for understanding and applying SysML to 
model systems as part of a model-based systems engineering approach. The book 
is organized into four parts including the Introduction, Language Description, 
Modeling Examples, and Transitioning to Model-Based Systems Engineering. 

Part I, Introduction, contains an overview of systems engineering, a summary 
of key MBSE concepts, followed by an overview of SysML. The systems engineer-
ing overview and MBSE concepts in Chapters 1 and 2 set the context for SysML, 
and the language overview in Chapter 3 illustrates how the language is applied to 
a simple example. 

   Part II, Language Description, provides the detailed description of the language. 
Chapter 4 provides an overview of the language architecture, and Chapters 5 
through 14 describe key concepts related to model organization, blocks, paramet-
rics, activities, interactions, states, use cases, requirements, allocations, and pro-
files. The ordering of the chapters and the concepts are not based on the ordering 
of activities in the systems engineering process, but are based on the dependen-
cies between the language concepts. Each chapter builds the readers’ understand-
ing of the concepts by introducing language constructs: their meaning, notation, 
and examples of how they are used. The example used to demonstrate the lan-
guage throughout Part II is a security surveillance system. This example should 
be understandable to most readers and has sufficient complexity to demonstrate 
the language concepts. 

   Part III, Modeling Examples, includes two examples to illustrate how SysML can 
support different model-based methods. The first example in Chapter 15 applies 
to the design of a water distiller system. It uses a simplified version of a classic 
functional analysis and allocation method that is applied to the design of a system 
that primarily controls physical processes. The second example in Chapter 16 
applies to the design of a residential security system. It uses a comprehensive 
object-oriented systems engineering method (OOSEM) and emphasizes how 
the language is used to address a wide variety of systems engineering concerns, 
including black-box versus white-box design, logical versus physical design, and 
system distribution. While these two methods are considered representative of 
how systems engineering can be applied, SysML is intended to support a variety 
of other systems engineering methods. 

   Part IV, Transitioning to Model-Based Systems Engineering, addresses how to 
transition SysML into an organization. Chapter 17 is about how to integrate SysML 
into a systems development environment. It describes the type of data that are 
exchanged between a SysML tool and other classes of tools, and some of the types 
of data exchange mechanisms that can be used. The chapter also includes a dis-
cussion on the criteria for selecting a SysML tool. Chapter 18 in this part, and the 
last chapter of the book, describes how to deploy SysML into an organization. 
SysML is introduced into the organization along with model-based methods, tools, 
and training as part of a carefully planned and implemented improvement process. 

   Questions are included at the end of each chapter to test readers ’ understand-
ing of the material. The answers to the questions can be found on the following 
Web site at http://www.elsevierdirect.com/companions/9780123743794.



xiiiPrefeace

   The Appendix contains the SysML notation tables. These tables provide a ref-
erence guide for SysML notation along with a cross reference to the applicable 
sections in Part II of the book. 

   This book is a “practical guide ” targeted to a broad spectrum of industry prac-
titioners and students. It can serve as an introduction and reference for practi-
tioners, as well as an introductory text for courses in systems modeling and its 
application to model-based systems engineering. In addition, because SysML reuses 
many UML concepts, software engineers familiar with UML can use this informa-
tion as a basis for understanding systems engineering concepts. This will also help 
to bridge gaps in understanding between team members who have diverse exper-
tise, such as is often the case with integrated systems and software engineering 
teams. Finally, many systems engineering concepts come to light when using an 
expressive language, and as such, this book can be used to help teach systems 
engineering concepts. 

   A first-time reader should pay close attention to the introductory chapters, 
may choose to do a cursory reading of Part II, and then review the simplified dis-
tiller example in Part III. A more advanced reader may choose to read the intro-
ductory chapters, do a more comprehensive review of Part II, and then review 
the residential security example in Part III. Part IV is of general interest to those 
interested in trying to introduce SysML and MBSE into their organization or 
project.
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   The Object Management Group’s OMG SysML™ [1] is a general-purpose graphi-
cal modeling language for representing systems that may include combinations of 
hardware, software, data, people, facilities, and natural objects. SysML supports the 
practice of model-based systems engineering (MBSE) that is used to develop system 
solutions in response to complex and often technologically challenging problems. 

   This chapter introduces the systems engineering approach independent of 
modeling concepts to set the context for how SysML is used. It describes the 
motiv ation for systems engineering, introduces the systems engineering process, 
and then describes a simplifi ed automobile design example to highlight how com-
plexity is addressed by the process. This chapter also summarizes the role of stan-
dards, such as SysML, to help codify the practice of systems engineering. 

   The next two chapters in Part I introduce model-based systems engineering 
and provide an overview of SysML. The language overview includes a simplifi ed 
SysML model of the automobile design example introduced in this chapter. 

    1.1   Motivation for Systems Engineering 
   Whether it is an advanced military aircraft, a hybrid vehicle, a cell phone, or a 
distributed information system, these systems are expected to perform at levels 
undreamed of a generation ago. Competitive pressures demand that the systems 
leverage technological advances to provide continuously increasing capability at 
reduced costs and within shorter delivery cycles. The increased capability drives 
requirements for increased functionality, interoperability, performance, reliability, 
and smaller size. 

   The interconnectivity among systems also places increased demands on sys-
tems. Systems can no longer be treated as stand-alone, but behave as part of a 
larger whole that includes other systems as well as humans. Systems are expected 
to support many different uses as part of an interconnected system of systems 
(SoS). These uses drive evolving requirements that may not have been anticipated 
when the system was originally developed. An analogy can be made by looking 
at how the interconnectivity provided by email impacts the requirements on 

                  Systems Engineering 
Overview   1 
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day-to-day activities. Clearly, email can result in unanticipated requirements that 
affect who we communicate with, how often, and how we respond. The same is 
true for interconnected systems. 

   The practices to develop these systems must support these increasing 
demands. Systems engineering is an approach that has been dominant in the 
aerospace and defense industry to provide system solutions to technologically 
challenging and mission-critical problems. The solutions often include hardware, 
software, data, people, and facilities. Systems engineering practices have con-
tinued to evolve to address the added complexity of the interconnected SoS 
challenges, which are no longer limited to aerospace and defense systems. As a 
result, the systems engineering approach has been gaining broader recognition and 
acceptance across other industries such as automotive, telecommunications, and 
medical equipment, to name a few.  

    1.2    The Systems Engineering Process 
    Systems engineering is a multidisciplinary approach to develop balanced sys-
tem solutions in response to diverse stakeholder needs. Systems engineering 
includes the application of both management and technical processes to achieve 
this balance and mitigate risks that can impact the success of the project. The 
management process is applied to ensure that development cost, schedule, and 
technical performance objectives are met. Typical management activities include 
planning the technical effort, monitoring technical performance, managing risk, 
and controlling the system technical baseline. The technical processes are applied 
to specify, design, and verify the system to be built. The practice of systems engi-
neering is not static, but continues to evolve to deal with increasing demands. 

   A simplifi ed view of the systems engineering technical processes is shown in 
Figure 1.1   . The  System Specifi cation and Design process is used to specify the 
system and component requirements to meet stakeholder needs. The components 
are then designed, implemented, and tested to ensure that they conform with their 
requirements.  The  System Integration and Test process includes activities to inte-
grate the components into the system and verify that the system requirements are 

System
Specification and
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 FIGURE 1.1 

      Simplifi ed systems engineering technical processes.    
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satisfi ed. These processes are applied iteratively throughout the development of 
the system, with ongoing feedback between the different processes. In more com-
plex applications, there are multiple levels of system decomposition beginning at 
an enterprise or SoS level. In those cases, variants of this process are applied recur-
sively to each intermediate level of the design down to the level at which the com-
ponents are purchased or built. 

   The System Specifi cation and Design process includes the following activities 
to provide a balanced system solution that satisfi es the diverse stakeholders ’ needs: 

■     Elicit and analyze stakeholder needs to understand the problem to be 
solved, the goals the system is intended to support, and the effectiveness 
measures needed to evaluate how well the system supports the goals 

■     Specify system functionality, interfaces, physical and performance character-
istics, and other quality characteristics required of the system to support the 
goals and effectiveness measures 

■     Synthesize alternative system solutions by partitioning the system design 
into components that can satisfy the system requirements 

■     Perform trade-off analysis to evaluate and select a preferred solution that 
satisfies system requirements and provides optimum balance to achieve the 
overall effectiveness measures 

■     Maintain traceability from the system goals to the system and component 
requirements and verification results to ensure that requirements and stake-
holder needs are addressed 

    1.3   Typical Application of the Systems Engineering Process 
   The System Specification and Design process can be illustrated by applying this 
process to an automobile design. A multidisciplinary systems engineering team is 
responsible for executing this process. The participants and roles of a typical sys-
tems engineering team are discussed in Section 1.4. 

   The team must fi rst identify the stakeholders and analyze their needs. Stake-
holders include the purchaser of the car and the users of the car. In this example, 
the user includes the driver and the passengers. Each of their needs must be 
addressed. Stakeholder needs further depend on the particular market segment, 
such as a family car versus a sports car versus a utility vehicle. For this example, we 
assume the automobile is targeted toward a typical mid-career individual who uses 
the car for his or her daily transportation needs. 

   In addition, a key tenet of systems engineering is to address the needs of other 
stakeholders who may be impacted throughout the system life cycle, so additional 
stakeholders include the manufacturers that produce the automobile and those 
who maintain the automobile. Each of their concerns must be addressed to ensure 
a balanced life-cycle solution. Less obvious stakeholders are governments that 
express their needs via laws and regulations. Clearly, each stakeholder’s concern 
is not of equal importance, and therefore stakeholder concerns must be properly 

1.3 Typical Application of the Systems Engineering Process
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weighted. Analysis is performed to understand the needs of each stakeholder and 
defi ne effectiveness measures with target values. Target values are used to bound 
the solution space, to evaluate the alternatives, and to discriminate the solution 
from competitor solutions. In this example, the effectiveness measures may relate 
to aesthetics, performance, fuel economy, safety, reliability, repair time, and produc-
tion cost. 

   The system requirements are specifi ed to address stakeholder needs and associ-
ated effectiveness measures. This begins with a defi nition of the system boundary 
so that clear interfaces can be established between the system and external sys-
tems and users as shown in  Figure 1.2   . In this example, the driver and passengers 
are external users who interact with the automobile. The gas pump and mainte-
nance equipment are examples of external systems that the vehicle interacts with. 
In addition, the vehicle interacts with the physical environment such as the road. 
All of these external systems, users, and the physical environment must be speci-
fi ed to clearly demarcate the system boundary and its associated interfaces. 

   The functional requirements for the automobile are specifi ed by analyzing 
what the system must do to support its overall goals. This vehicle must perform 
functions related to accelerating, braking, and steering, and many additional func-
tions to address driver and passenger needs. The functional analysis identifi es the 
inputs and outputs for each function. As shown in the example in  Figure 1.3   ,
the functional requirement to accelerate the automobile requires an acceleration 
input from the driver and produces outputs that correspond to the automobile 
forces and the speedometer reading for the driver. The functional requirements 
analysis also includes specifying the sequence and ordering of the functions. 

AutomobileDriver

Road

Pump

 FIGURE 1.2 

      Defi ning the system boundary.    
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      Specifying the functional requirements.    
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   Functional requirements must also be evaluated to determine the required level 
of performance. As indicated in  Figure 1.4   , the automobile is required to accelerate 
from 0 to 60 miles per hour (mph) in less than 8 seconds under specifi ed con-
ditions. Similar performance requirements can be specifi ed for stopping distance 
from 60 to 0    mph and for steering requirements such as the turning radius. 

   Additional requirements are specifi ed to address the concerns of each stake-
holder. Example requirements include specifying riding comfort, fuel effi ciency, 
reliability, maintainability, safety, and emissions. Physical characteristics, such as 
maximum vehicle weight, may be derived from the performance requirements, 
or maximum vehicle length may be dictated by other concerns such as standard 
parking space dimensions. The system requirements must be clearly traceable 
to stakeholder needs and validated to ensure that the requirements address their 
needs. The early and ongoing involvement of representative stakeholders in this 
process is a critical success factor to the overall development effort. 

   The system design involves identifying system components and specifying 
requirements for the components needed to satisfy system-level requirements.
This may involve fi rst developing a logical system design independent of the tech-
nology used, and then a physical system design that refl ects specifi c technology 
selections. In the example shown in Figure 1.5, the system’s physical components 
include the Engine, Transmission, Differential, Chassis, Body, Brakes, and so on. 
This system includes a single level of decomposition from the system to compo-
nent level. However, as indicated earlier, more complex systems may include mul-
tiple levels of system decomposition. 

   Design constraints are often imposed on the solution. A common kind of con-
straint is to reuse a particular component. For example, there might be a require-
ment to reuse the engine from the inventory of existing engines. This constraint 
implies that no additional engine development is to be performed. Although 
design constraints are typically imposed to save time and money, sometimes anal-
ysis reveals that relaxing the constraint would be less expensive and faster. For 
example, if the engine is reused, expensive fi ltering equipment might be needed 
to satisfy newly imposed pollution regulations. On the other hand, the cost of a 
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redesign to incorporate newer technology might be easily recovered over the auto-
mobile’s life cycle. Systems engineers should examine the rationale behind design 
constraints and inform stakeholders whether the analysis validates the assump-
tions behind the constraints. 

   The components are specifi ed such that if their requirements are satisfi ed, the 
system requirements are also satisfi ed. The power subsystem shown in  Figure 1.6    
includes the Engine, Transmission, and Differential components, and must pro-
vide the power to accelerate the automobile. Similarly, the steering subsystem must 
control the direction of the vehicle, and the braking subsystem must decelerate 
the vehicle. 

   The system performance and physical requirements are allocated to the com-
ponent requirements. This involves engineering analysis to determine how the 
system performance requirements, such as the vehicle acceleration, must be allo-
cated to the component performance requirements such as engine horsepower, 
coeffi cient of drag of the body, and the weight of each component. Similar analysis 
must be performed to allocate the other system performance requirements related 
to fuel economy, fuel emissions, reliability, and cost. The requirements for riding 
comfort may require multiple analysis that address human factors considerations 
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 FIGURE 1.6 

      Interaction among components to achieve the functional and performance requirements.    
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      Automobile system decomposes into its components.    



9

related to road vibration, acoustic noise propagation to the vehicle’s interior space–
volume analysis, and placement of displays and controls, to name a few. 

   The system design alternatives are evaluated to determine the preferred system 
solution that achieves a balanced design that addresses multiple competing require-
ments. In this example, the acceleration and fuel economy requirement may result 
in evaluating alternative engine design confi gurations, such as a 4-cylinder versus a 
6-cylinder engine. The alternative designs are then evaluated based on criteria that 
are traceable to the system requirements and effectiveness measures. The preferred 
solution is validated with the stakeholders to ensure that it addresses their needs. 

   The component requirements are input to the  Component Design, Implemen-
tation, and Test process from  Figure 1.1 . The component developers provide feed-
back to the systems engineering team to ensure that component requirements can 
be satisfi ed by their designs, or they may request that the component requirements 
be reallocated. This is an iterative process throughout development that is often 
required to achieve a balanced design solution. The system and component require-
ments are also provided to the  System Integration and Test Team  to develop the 
necessary test procedures to verify that the system satisfi es its requirements. 

   As indicated in Figure 1.7   , requirements traceability is maintained between the 
Stakeholder Needs , the  System Requirements , and the  Component Requirements 
to ensure design integrity. For this example, the system and component require-
ments, such as vehicle acceleration, vehicle weight, and engine horsepower, can be 
traced to the stakeholder needs associated with performance and fuel economy. 

   A systematic process to develop a balanced system solution that satisfi es 
diverse stakeholder needs becomes essential as system complexity increases. An 
effective application of systems engineering requires maintaining a broad system 
perspective that focuses on the overall system goals and the needs of each stake-
holder, while at the same time maintaining attention to detail and rigor that will 
ensure the integrity of the system design. The expressiveness and level of pre-
cision of SysML is intended to enable this process. 

    1.4   Multidisciplinary Systems Engineering Team 
   To represent the broad set of stakeholder perspectives, systems engineering 
requires participation from many engineering and nonengineering disciplines. The 
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participants must have an understanding of the end-user domain, such as the drivers 
of the car, and the domains that span the system life cycle such as manufacturing 
and maintenance. The participants must also have knowledge of the system’s tech-
nical domains such as the power and steering subsystems. The participants must 
also include understanding of the specialty engineering domains, such as reliabil-
ity, safety, and human factors, to support the system design trade-offs. In addition, 
they must have sufficient participation from the component developers and test-
ers to ensure the specifications are implementable and verifiable. 

   A typical multidisciplinary systems engineering team should include rep-
resentation from each of these perspectives. The extent of participation depends 
on the complexity of the system and the knowledge of the team members. A sys-
tems engineering team on a small project may include a single systems engineer, 
who has broad knowledge of the domain and can work closely with the hardware 
and software development team and the test team. On the other hand, the devel-
opment of a large system may involve a systems engineering team led by a systems 
engineering manager who plans and controls the systems engineering effort. This 
project may include tens or hundreds of systems engineers with varying expertise. 

   A typical multidisciplinary systems engineering team is shown in  Figure 1.8   .
The Systems Engineering Management Team is responsible for the management 
activities related to planning and control of the technical effort. The  Require-
ments Team analyzes stakeholder needs, develops the concept of operations, and 
specifi es and validates system requirements. The  Architecture Team is responsible 
for developing the system architecture design in terms of system components 
and their interactions and interconnections. This includes allocating the system 
requirements to the components that may include hardware and software specifi -
cations. The Systems Analysis Team is responsible for performing the engineering 
analysis on different aspects of the system, such as performance and physical char-
acteristics, reliability, maintainability, and cost. The  Integration and Test Team is 
responsible for developing test plans and procedures and conducting tests. There 
are many different organizational structures to accomplish similar roles, and indi-
viduals may participate in different roles on different teams.  
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 FIGURE 1.8 

      A typical multidisciplinary systems engineering team needed to represent diverse stakeholder perspectives.    
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    1.5   Codifying Systems Engineering Practice through Standards 
   As mentioned earlier, systems engineering has been a dominant practice within 
the aerospace and defense industries to engineer complex, mission-critical systems 
that leverage advanced technology. These systems include land-, sea-, air-, and space-
based platforms; weapon systems; command, control, and communications systems; 
and logistics systems, to name a few. The emphasis has shifted to treat a system as 
part of a larger whole, which is sometimes referred to as a  system of systems  
(SoS) or an enterprise.

   The complexity of systems being developed in other industry sectors has dra-
matically increased due to the competitive demands and technological advances 
discussed earlier in this chapter. Specifi cally, many commercial products incor-
porate the latest processing and networking technology that have signifi cant 
software content with substantially increased functionality and are more intercon-
nected with increasingly complex interfaces. The products are being used in new 
ways, such as the integration of cell phones with cameras and the use of global 
positioning systems in automobiles, that were not previously envisioned. The prac-
tice of systems engineering is evolving to other industries to help deal with this 
complexity. The need to establish standards for systems engineering concepts, ter-
minology, processes, and methods has become increasingly important to advance 
and institutionalize the practice of systems engineering across industry sectors. 

   Systems engineering standards have evolved over the last several years. 
Figure 1.9    shows a partial taxonomy of standards that includes systems engineer-
ing process standards, architecture frameworks, methods, modeling standards, and 
data exchange standards. A comprehensive standards-based approach to systems 
engineering may implement at least one standard from each layer of this taxonomy. 
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   A primary emphasis for systems engineering standards has been on develop-
ing process standards that include EIA 632 [2], IEEE 1220 [3], and ISO 15288 [4]. 
These standards address broad industry needs and refl ect the fundamental tenets 
of systems engineering that provide a foundation for establishing a systems engi-
neering approach. 

   The systems engineering process standards share much with software engi-
neering practices. Management practices for planning, as an example, are similar 
whether it is for complex software development or systems development. As a 
result, there has been signifi cant emphasis in the standards community on aligning 
the systems and software standards where practical. 

   The systems engineering process defi nes what activities are performed, but does 
not generally give details on how they are performed. A systems engineering 
method describes how the activities are performed in terms of the types of arti-
facts that are produced and how they are developed. For example, an important 
systems engineering artifact is the concept of operations. As its name implies, the 
concept of operations defi nes what the system is intended to do from the stake-
holders ’ perspective. It depicts the interaction of the system with its external sys-
tems, but may not show any of the system’s internal operations. Different methods 
may use different techniques and representations for developing a concept of oper-
ations. The same is true for many other systems engineering artifacts. 

   Examples of systems engineering methods are identifi ed in a Survey of Model-
Based Systems Engineering Methods [5] and include Harmony [6, 7], the Object-
Oriented Systems Engineering Method (OOSEM) [8], the Rational Unifi ed Process 
for Systems Engineering (RUP SE) [9, 10], the State Analysis method [11], and the 
Vitech Model-Based Systems Engineering Method [12]. Many organizations have 
internally developed processes and methods as well. The methods are not offi cial 
industry standards, but de facto standards may emerge as they prove their value 
over time. Criteria for selecting a method include its ease of use, its ability to 
address the range of systems engineering concerns, and the level of tool support. 
The two example problems in Part III include the use of SysML with a functional 
analysis and allocation method and a use case driven method (OOSEM). SysML is 
intended to support many different systems engineering methods. 

   In addition to systems engineering process standards and methods, several stan-
dard frameworks have emerged to support system architecting. An architecture 
framework includes specifi c concepts, terminology, artifacts, and taxonomies for 
describing the architecture of a system. The Zachman framework [13] was intro-
duced in the 1980s to defi ne enterprise architectures; it defi nes a standard set of 
stakeholder perspectives and a set of artifacts that address fundamental questions 
associated with each stakeholder group. The C4ISR framework [14] was intro-
duced in 1996 to provide a framework for architecting information systems for 
the U.S. Department of Defense (DoD). The Department of Defense Architecture 
Framework (DoDAF) [15] evolved from the C4ISR framework to support architect-
ing a SoS for the defense industry by defi ning the architecture’s operational, system, 
and technical views. 

   The United Kingdom introduced a variant of DoDAF called the Ministry 
of Defence Architecture Framework (MODAF) [16] that added the strategic 
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and acquisition view. The IEEE 1471-2000 standard was approved in 2000 as a 
 “ Recommended Practice for Architectural Description of Software-Intensive 
Systems” [17]. This practice provides additional fundamental concepts, such as the 
concept of view and viewpoint that applies to both software and systems archi-
tecting. The Open Group Architecture Framework (TOGAF) [18] was originally 
approved in the 1990s as a method for developing architectures. 

   Modeling standards is another class of systems engineering standards that 
provide a common language for describing systems. Behavioral models and func-
tional fl ow diagrams have been de facto modeling standards for many years and 
have been broadly used by the systems engineering community. The Integration 
Defi nition for Functional Modeling (IDEF0) [19] was issued by the National 
Institute of Standards and Technology in 1993. The OMG SysML specifi cation was 
adopted in 2006 by the Object Management Group as a general-purpose graphi-
cal systems modeling language that extends the Unifi ed Modeling Language (UML) 
and is the subject of this book. Several other extensions of UML have been devel-
oped for specifi c domains. The Unifi ed Profi le for DoDAF/MODAF (UPDM) is being 
developed to describe system of systems and enterprise architectures that are com-
pliant with DoDAF and MODAF requirements. The foundation for the UML-based 
modeling languages is the OMG Meta Object Facility (MOF) [20], which is a lan-
guage that is used to specify other modeling languages. 

   Model and data interchange standards is a critical class of standards that sup-
ports model and data exchange among tools. Within the OMG, the XML Metadata 
Interchange (XMI) specifi cation [21] supports interchange of model data when 
using a MOF-based language such as UML, SysML, or another UML profi le. XMI 
is summarized in Chapter 17. Another data exchange standard for interchange of 
systems engineering data is ISO 10303 (AP233) [22], which is also briefl y 
described in Chapter 17. 

   Additional modeling standards from the Object Management Group relate to 
the Model Driven Architecture (MDA®) [23]. MDA includes a set of concepts that 
include creating both technology-independent and technology-dependent models. 
The MDA standards enable transformation between the models and different mod-
eling languages. MDA encompasses OMG standards in both the modeling language 
and data exchange layers of  Figure 1.9 .

   The development and evolution of these standards are all part of a trend 
toward a standards-based approach to the practice of systems engineering. Such 
an approach enables common training, tool interoperability, and reuse of system 
specifi cation and design artifacts. It is expected that this trend will continue as 
systems engineering becomes prevalent across a broader range of industries. 

    1.6   Summary 
   Systems engineering is a multidisciplinary approach to transform a set of stake-
holder needs into a balanced system solution that meets those needs. Systems engi-
neering is a key practice to address complex and often technologically challenging 

1.6 Summary
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problems. The process includes activities to establish top-level goals that a system 
must support, specify system requirements, synthesize alternative system designs, 
evaluate the alternatives, allocate requirements to the components, integrate the 
components into the system, and verify that the system requirements are satis-
fied. It also includes essential planning and control processes needed to manage a 
technical effort. 

   Multidisciplinary teams are an essential element of systems engineering to 
address the diverse stakeholder perspectives and technical domains to achieve a 
balanced system solution. The practice of systems engineering continues to evolve 
with an emphasis on dealing with systems as part of a larger whole. Systems engi-
neering practices are becoming codifi ed in various standards, which is essential to 
advancing and institutionalizing the practice across industry domains. 

    1.7    Questions 
      1.   What are some of the demands that are driving system development? 
    2.   What is the purpose of systems engineering? 
    3.   What are the key activities in the system specifi cation and design process?  
    4.   Who are the typical stakeholders that span a system’s life cycle?  
    5.   What are different types of requirements?  
    6.   Why is it important to have a multidisciplinary systems engineering team?  
    7.   What are some of the roles on a typical systems engineering team? 
    8.   What role do standards play in systems engineering?       



   Model-based systems engineering (MBSE) applies systems modeling as part of the 
systems engineering process described in Chapter 1 to support analysis, speci-
fication, design, and verification of the system being developed. A primary arti-
fact of MBSE is a coherent model of the system being developed. This approach 
enhances communications, specification and design precision, design integration, 
and reuse of system specification and design artifacts. 

   This chapter summarizes MBSE concepts to provide further context for SysML 
without emphasizing the specifi c modeling language, method, or tools. MBSE is 
contrasted with the more traditional document-based approach to motivate the 
use of MBSE and highlight its benefi ts. Principles for effective modeling are also 
discussed. 

    2.1    Contrasting the Document-Based 
and Model-Based Approach 

   The following sections contrast the document-based approach and the model-
based approach to systems engineering. 

    2.1.1   Document-Based Systems Engineering Approach 
   Traditionally, large projects have employed a  document-based systems engi-
neering approach. This approach is characterized by the generation of textual 
specifications and design documents, in hard-copy or electronic file format, that 
are then exchanged between customers, users, developers, and testers. System 
requirements and design information are expressed in these documents and draw-
ings. The systems engineering emphasis is placed on controlling the documenta-
tion and ensuring the documents and drawings are valid, complete, and consistent, 
and that the developed system complies with the documentation. 

   In the document-based approach, specifi cations for a particular system, its 
subsystems, and its hardware and software components are usually depicted in a 
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hierarchical tree, called a  specifi cation tree.  A systems engineering management 
plan (SEMP) documents how the systems engineering process is employed on the 
project, and how the engineering disciplines work together to develop the docu-
mentation needed to satisfy the requirements in the specifi cation tree. Systems 
engineering activities are planned by estimating the time and effort required to 
generate documentation, and progress is then measured by the state of comple-
tion of the documents. 

   Document-based systems engineering typically relies on a concept of operation 
document to defi ne how the system is used to support the required mission or 
objective. Functional analysis is performed to allocate the top-level system func-
tions to the components of the system. Drawing tools are used to capture the 
system design, such as the functional fl ow diagrams or schematic block diagrams. 
These diagrams are stored as separate fi les and included in the system design docu-
mentation. Engineering trade studies and analyses are performed and documented 
by many different disciplines to evaluate and optimize alternative designs and allo-
cate performance requirements. The analysis may be supported by individual analy-
sis models for performance, reliability, safety, mass properties, and other aspects of 
the system. 

   Requirements traceability is established and maintained in the document-based 
approach by tracing requirements between the specifi cations at different levels 
of the specifi cation hierarchy. Requirements management tools are used to parse 
requirements contained in the specifi cation documents and capture them in a 
requirements database. The traceability between requirements and design is main-
tained by identifying the part of the system or subsystem that satisfi es the require-
ment, and/or the verifi cation procedures used to verify the requirement, and then 
refl ecting this in the requirements database. 

   The document-based approach can be rigorous but has some fundamental lim-
itations. The completeness, consistency, and relationships between requirements, 
design, engineering analysis, and test information are diffi cult to assess since this 
information is spread across several documents. This makes it diffi cult to under-
stand a particular aspect of the system and to perform the necessary traceabil-
ity and change impact assessments. This, in turn, leads to poor synchronization 
between system-level requirements and design and lower-level hardware and soft-
ware design. It also makes it diffi cult to maintain or reuse the system requirements 
and design information for an evolving or variant system design. Also, progress of 
the systems engineering effort is based on the documentation status that may not 
adequately refl ect the system requirements and design quality. These limitations 
can result in ineffi ciencies and potential quality issues that often show up during 
integration and testing, or worse, after the system is delivered to the customer.  

    2.1.2    Model-Based Systems Engineering Approach 
   A model-based approach has been standard practice in electrical and mechanical 
design and other disciplines for many years. Mechanical engineering transitioned 
from the drawing board to increasingly more sophisticated two-dimensional (2D) 
and then three-dimensional (3D) computer-aided design tools beginning in the 
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1980s. Electrical engineering transitioned from manual circuit design to automated 
schematic capture and circuit analysis in a similar time frame. Computer-aided 
software engineering became popular in the 1980s for using graphical models to 
represent software at abstraction levels above the programming language. The use 
of modeling for software development is becoming more widely adopted, particu-
larly since the advent of the Unified Modeling Language in the 1990s. 

   The model-based approach is becoming more prevalent in systems engineering. 
A mathematical formalism for MBSE was introduced in 1993 [24]. The increas-
ing capability of computer processing, storage, and network technology along with 
emphasis on systems engineering standards has created an opportunity to signifi -
cantly advance the state of the practice of MBSE. It is expected that MBSE will become 
standard practice in a similar way that it has with other engineering disciplines. 

    “ Model-based systems engineering ( MBSE) is the formalized application of 
modeling to support system requirements, design, analysis, verifi cation, and valida-
tion activities beginning in the conceptual design phase and continuing through-
out development and later life cycle phases ” [25]. MBSE is intended to facilitate 
systems engineering activities that have traditionally been performed using the 
document-based approach and result in enhanced communications, specifi cation 
and design precision, system design integration, and reuse of system artifacts. The 
output of the systems engineering activities is a coherent model of the system 
(i.e., system model), where the emphasis is placed on evolving and refi ning the 
model using model-based methods and tools. 

    The System Model 
   The system model  is generally created using a modeling tool and contained in 
a model repository. The system model includes system specification, design, anal-
ysis, and verification information. The model consists of elements that represent 
requirements, design elements, test cases, design rationale, and their interrelation-
ships.  Figure 2.1    shows the system model as an interconnected set of model 
elements that represent key system aspects as defined in SysML, including its 
structure, behavior, parametrics, and requirements. 

   A primary use of the system model is to design a system that satisfi es system 
requirements and allocates the requirements to the system’s components.  Figure 2.2    
depicts how the system model is used to specify the components of the system. 
The system model includes component interconnections and interfaces, compo-
nent interactions and related functions components must perform, and component 
performance and physical characteristics. The textual requirements for the compo-
nents may also be captured in the model and traced to system requirements. 

   In this regard, the system model is used to specify the component require-
ments and can be used as an agreement between the system designer and the 
subsystem and �or component developer. The component developers receive 
the component requirements in a way that is meaningful to them either through a 
model data exchange mechanism or by providing documentation that is automatic-
ally generated from the model. The component developer can provide informa-
tion about how the component design complies with its requirements in a similar 
way. The use of a system model provides a mechanism to specify and integrate 

2.1 Contrasting the Document-Based and Model-Based Approach
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subsystems and components into the system and maintain traceability to higher-
level requirements. 

   The system model can also be integrated with engineering analysis and simula-
tion models to perform computation and dynamic execution. If the system model 
is executed directly, the system modeling environment must be augmented with 
an execution environment. A brief discussion of executable models is included in 
Chapter 17.  

    The Model Repository 
   The model elements are stored in a  model repository and depicted on diagrams 
by graphical symbols. The tool enables the modeler to create, modify, and delete 
individual model elements and their relationships in the model repository. The 
modeler uses the symbols on the diagrams to enter the information into the 
model repository and to view model repository information. The specification, 
design, analysis, and verification information previously captured in documents is 
now captured in the model repository. The model can be viewed in diagrams or 
tables or in reports generated by querying the model repository. The views enable 
understanding and analysis of different aspects of the same system model. The doc-
uments can continue to serve as an effective means for reporting the information, 
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 FIGURE 2.1 

      Representative system model example in SysML. (Specifi c model elements have been 
deliberately obscured and will be discussed in subsequent chapters.)    
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but in MBSE, the information contained in documentation is generated from the 
model. In fact, many of the modeling tools have flexible and automated document-
generation capability that can significantly reduce the time and cost of building 
and maintaining the system specification and design documentation. 

   Model elements corresponding to requirements, design, analysis, and verifi cation 
information are traceable to one another through their relationships, even if they are 
represented on different diagrams. For example, an engine component in an automo-
bile system model may have many relationships to other elements in the model. The 
engine, which is part of the automobile system, is connected to the trans mission, 
satisfi es a power requirement, performs a function to convert fuel to mechanical 
energy, and has a weight property that contributes to the vehicle’s weight. 

   The static semantics of the model impose rules that constrain which relation-
ships can exist. For example, the model should not allow a requirement to contain 
a system component or an activity to produce inputs instead of outputs. Additional 
model constraints may be imposed based on the method being employed. An 
example of a method-imposed constraint may be that all system functions must 
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 FIGURE 2.2 

      The system model is used to specify the components of the system.    

2.1 Contrasting the Document-Based and Model-Based Approach
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be decomposed and allocated to a component of the system. Modeling tools are 
expected to enforce constraints at the time the model is constructed, or by run-
ning a model-checker routine at the modeler’s convenience and providing a report 
of the constraint violations. 

   The model provides much fi ner-grain control of the information than is avail-
able in a document-based approach, where this information may be spread across 
many documents and the relationships may not be explicitly defi ned. The model-
based approach promotes rigor in the specifi cation, design, analysis, and verifi ca-
tion process. It also signifi cantly enhances the quality and timeliness of traceability 
and impact assessment over the document-based approach.  

    Transitioning to MBSE 
   Models have been used as part of the document-based systems engineering 
approach for many years, and include functional flow diagrams, behavior diagrams, 
schematic block diagrams, N2 charts, performance simulations, and reliability mod-
els, to name a few. However, the use of models has generally been limited in scope 
to support specific types of analysis or selected aspects of system design. The 
individual models have not been integrated into a coherent model of the overall 
system, and the modeling activities have not been integrated into the systems engin-
eering process. The transition from document-based systems engineering to MBSE 
is a shift in emphasis from controlling the documentation about the system to 
controlling the model of the system. MBSE integrates system requirements, design, 
analysis, and verification models to address multiple aspects of the system in a 
cohesive manner, rather than a disparate collection of individual models. 

   MBSE provides an opportunity to address many of the limitations of the 
document-based approach by providing a more rigorous means for capturing and 
integrating system requirements, design, analysis, and verifi cation information, and 
facilitating the maintenance, assessment, and communication of this information 
across the system’s life cycle. Some of the MBSE potential benefi ts include the 
following: 

      ■    Enhanced communications 
–        Shared understanding of the system across the development team and 

other stakeholders 
      –    Ability to integrate views of the system from multiple perspectives     

      ■    Reduced development risk 
      –    Ongoing requirements validation and design verifi cation 
      –    More accurate cost estimates to develop the system     

      ■    Improved quality 
      –     More complete, unambiguous, and verifi able requirements 
      –     More rigorous traceability between requirements, design, analysis, and 

testing  
      –    Enhanced design integrity     

      ■    Increased productivity 
      –    Faster impact analysis of requirements and design changes  
      –    Reuse of existing models to support design evolution 
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      –     Reduced errors and time during integration and testing 
      –     Automated document generation     

      ■    Enhanced knowledge transfer 
      –     Specifi cation and design information captured in a standard format that 

can be accessed via query and retrieval       

   MBSE can provide additional rigor in the specifi cation and design process when 
implemented using appropriate methods and tools. However, this rigor does not 
come without a price. Clearly, transitioning to MBSE underscores the need for 
up-front investment in processes, methods, tools, and training. It is expected that 
during the transition, MBSE is performed in combination with document-based 
approaches. For example, the upgrade of a large, complex legacy system still relies 
heavily on the legacy documentation, and only parts of the system may be mod-
eled. Careful tailoring of the approach and scoping of the modeling effort is essen-
tial to meet the needs of a particular project. The considerations for transitioning 
to MBSE are discussed in Chapter 18.    

    2.2   Modeling Principles 
   The following sections provide a brief overview of some of the key modeling 
principles. 

    2.2.1   Model and MBSE Method Defi nition 
   A model is a representation of one or more concepts that may be realized in 
the physical world. It generally describes a domain of interest. A key feature of 
a model is that it is an abstraction that does not contain all the detail of the mod-
eled entities within the domain of interest. Models are represented in many forms 
including graphical, mathematical, and logical representations, and physical pro-
totypes. For example, a model of a building may include a blueprint and a scaled 
prototype physical model. The building blueprint is a specification for one or 
more buildings that are built. The blueprint is an abstraction that does not contain 
all the building’s detail such as the characteristics of its materials. 

   A SysML model is analogous to a building blueprint that specifi es a system to be 
implemented. Instead of a geometric representation of the system, the SysML model 
represents the behavior, structure, properties, constraints, and requirements of the 
system. SysML has a semantic foundation that specifi es the types of model elements 
and the relationships that can appear in the system model. The model elements 
that comprise the system model are stored in a model repository and can be rep-
resented graphically. A SysML model can also be simulated if it is supported by an 
execution environment. 

   A method is a set of related activities, techniques, and conventions that imple-
ment one or more processes and is generally supported by a set of tools. A  model-
based systems engineering method can be characterized as a method that 
implements all or part of the systems engineering process, and it produces a sys-
tem model as one of its primary artifacts. 

2.2 Modeling Principles
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    2.2.2    The Purpose for Modeling a System 
   The purpose for modeling a system for a particular project must be clearly 
defined in terms of the expected results of the modeling effort, the stakeholders 
who use the results, and how the results are intended to be used. The model pur-
pose is used to determine the scope of the modeling effort in terms of model 
breadth, depth, and fidelity. This scope should be balanced with the available sched-
ule, budget, skill levels, and other resources. Understanding the purpose and scope 
provides the basis for establishing realistic expectations for the modeling effort. The 
purposes for modeling a system may emphasize different aspects of the systems 
engineering process or support other life-cycle uses, including the following: 

      ■    Characterize an existing system  
      ■    Specify and design a new or modifi ed system 

      –    Represent a system concept  
      –    Specify and validate system requirements  
      –    Synthesize system designs  
      –    Specify component requirements  
–       Maintain requirements traceability     

      ■    Evaluate the system 
      –    Conduct system design trade-offs  
      –    Analyze system performance requirements or other quality attributes  
–       Verify that the system design satisfi es its requirements  
      –    Assess the impact of requirements and design changes     

      ■    Train users on how to operate or maintain a system     

    2.2.3    Establishing Criteria to Meet the Model Purpose 
   Criteria can be established to assess how well a model can meet its modeling 
purpose. However, one must first distinguish between a good model and a good 
design. One can have a good model of a poor design or a poor model of a good 
design. A good model meets its intended purpose. A good design is based on how 
well the design satisfies its requirements and the extent to which it incorporates 
quality design principles. As an example, one could have a good model of a chair 
that meets its intended purpose by providing an accurate representation of the 
modeled system. However, the chair’s design may be a poor design if it does not 
have structural integrity. A good model provides visibility to aid the design team in 
identifying issues and assessing design quality. The selected MBSE method and tools 
should facilitate a skilled team to develop both a good model and a good design. 

   The answers to the following questions can be used to assess the goodness of 
the model and derive quality attributes of it. The quality attributes in turn can be 
used to establish preferred modeling practices. 

    Is the model’s scope suffi cient to meet its purpose? 
   Assuming the purpose is clearly defined as described earlier, the scope of the 
model is defined in terms of its breadth, depth, and fidelity. The model scope sig-
nificantly impacts the level of resources required to support the modeling effort. 
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     Model breadth. The breadth of the model must be sufficient for the purpose by 
determining which parts of the system need to be modeled. This question is 
particularly relevant to large systems where one may not need to model the 
entire system to meet project needs. If new functionality is being added to an 
existing system, one may choose to focus on modeling only those portions 
needed to support the new functionality. In an automobile design, for example, 
if the emphasis is on new requirements for fuel economy and acceleration, 
the model may focus on elements related to the power train, with less focus on 
the braking and steering subsystems. 

     Model depth. The depth of the model must be sufficient for the purpose by deter-
mining the level of the system design hierarchy that the model must encompass. 
For a conceptual design or initial design iteration, the model may only address 
a fairly high level of the design. In the automobile example, the initial iterations 
may only model to the engine level, where a future design iteration may model 
the engine parts if it is subject to further development. 

     Model fidelity. The fidelity of the model must be sufficient for the purpose by 
determining the required level of detail for different modeling constructs. For 
example, a low-fidelity behavioral model may be sufficient to communicate a 
simple ordering of actions in an activity diagram. Additional detail is required 
if the behavioral model is intended to be executed to validate the logic. When 
modeling interfaces, a low-fidelity model may only include the logical interface 
description, where as a higher-fidelity model may model the communication 
protocol. Additional detail is required to model system performance.     

    Is the model complete relative to its scope? 
   A necessary condition for the model to be complete is that its breadth, depth, and 
fidelity must match its defined scope. Other completion criteria may relate to 
other quality attributes of the model (e.g., whether the naming conventions have 
been properly applied) and design completion criteria (e.g., whether all design 
elements are traced to a requirement). The MBSE metrics discussed in Section 
2.2.4 can be used to establish additional completion criteria. 

    Is the model well formed such that model constraints are adhered to? 
   A well-formed model conforms to its static semantics. For example, the static seman-
tics in SysML do not allow a requirement to contain a system component, although 
other relationships are allowed between components and requirements such as the 
satisfy relationship. The modeling tool should enforce the constraints imposed by 
the static semantics or provide a report of violations. 

    Is the model consistent? 
   In SysML, some rules are built into the language to ensure model consistency. For 
example, compatibility rules can support type checking to determine whether 
interfaces are compatible or whether units are consistent on different properties. 
Additional constraints can be imposed by the method used. For example, a method 
may impose a constraint that logical components can only be allocated to hardware, 

2.2 Modeling Principles
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software, or operational procedures. These constraints can be expressed in the 
object constraint language (OCL) [26] and enforced by the modeling tool. 

   Enforcing constraints assists in maintaining consistency across the model, but 
it does not prevent inconsistencies. A simple example may be that a modeler inad-
vertently gives a component two different names that are interpreted by a model 
checker as different components. The likelihood of inconsistencies increases when 
multiple people are working on the model. A combination of well-defi ned model 
conventions and a disciplined process can limit this from happening. 

    Is the model understandable? 
   There are many factors driven by the model-based method and modeling style that 
can contribute to understandability. A key contributing factor to enhance under-
standability is the effective use of model abstraction. For example, when describ-
ing the functionality of an automobile, one could describe a top-level function as 
 “ drive car ” or provide a more detailed functional description such as  “turn igni-
tion on, put gear into drive, push accelerator pedal, ” and so on. An understandable 
model should include multiple levels of abstraction that represent different levels 
of detail but relate to one another. As will be described in later chapters, the use of 
decomposition, specialization, allocations, views, and other modeling approaches 
in SysML can be used to represent different levels of abstraction. 

   Another factor that impacts understandability relates to the presentation of 
information on the diagrams themselves. Often, there is a lot of detail in the model, 
but only selected information is relevant to communicate a particular design 
aspect. The information on the diagram can be controlled by using the tool capa-
bility to elide (hide) nonessential information and display only the information rel-
evant to the diagram’s purpose. Again, the goal is to avoid information overload 
for the reviewer of the model. 

   Other factors that contribute to understandability are the use of modeling con-
ventions and the extent to which the model is self-documenting as described next. 

    Are modeling conventions documented and used consistently? 
   Modeling conventions and standards are critical to ensure consistent representa-
tion and style across the model. This includes establishing naming conventions for 
each type of model element, diagram names, and diagram content. Naming conven-
tions may include stylistic aspects of the language, such as when to use uppercase 
versus lowercase, and when to use spaces in names. The conventions and stand-
ards should also account for tool-imposed constraints, such as limitations in the use 
of alphanumeric and special characters. It is also recommended that a template be 
established for each diagram type so that consistent style can be applied. 

    Is the model self-documenting in terms of providing suffi cient 
supporting information? 
   The use of annotations and descriptions throughout the model can help to pro-
vide value-added information if applied consistently. This can include the rationale 
for design decisions, flagging issues or problem areas for resolution, and providing 
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additional textual descriptions for model elements. This enables longer-term main-
tenance of the model and enables it to be more effectively communicated to others. 

    Does the model integrate with other models? 
    The system model may need to be integrated with electrical, mechanical, software, 
test, and engineering analysis models. This capability is determined by the spe-
cific method, tool implementation, and modeling languages used. For example, the 
approach for passing information from the system model using SysML to a soft-
ware model using UML can be defined for specific methods and tools. In general, 
this is addressed by establishing an agreed-on expression of the modeling informa-
tion so that it can be best communicated to the user of the information, such as 
hardware and software developers, testers, and engineering analysts.   

    2.2.4   Model-Based Metrics 
   Measurement data collection, analysis, and reporting can be used as a manage-
ment technique throughout the development process to assess design quality 
and progress. This in turn is used to assess status and risk and to support ongoing 
project planning and control. Model-based metrics can provide useful data that 
can be derived from the model and can help answer the following questions. This 
discussion refers to metrics that can be derived from a typical SysML model. 

    What is the quality of the design? 
   Metrics can be defined to measure the quality of a model-based system design 
based on metrics that have been traditionally used in document-centric designs. 
This includes metrics for assessing requirements satisfaction, critical performance 
properties, and how well the design is partitioned. 

   A SysML model can provide explicit relationships that can be used to measure 
the extent that the requirements are satisfi ed. The model can provide granular-
ity by identifying model elements that satisfy specifi c requirements. The require-
ments traceability can be established from mission-level requirements down to 
component-level requirements. Other SysML relationships can be used in a similar 
way to measure which requirements have been verifi ed. These data can be cap-
tured directly from the model or indirectly from a requirements management tool 
that is integrated with the SysML modeling tool. 

   A SysML model can include critical properties that are monitored throughout 
the design process. Typical properties may include performance properties, such 
as latency, physical properties (e.g., weight), and other properties (e.g., reliability 
and cost). These properties can be monitored using standard technical perfor-
mance measurement (TPM) techniques. The model can also include relationships 
among the properties that indicate how they may be impacted as a result of design 
decisions. 

   Design partitioning can be measured in terms of the level of cohesion and cou-
pling of the design. Coupling can be measured in terms of the number of inter-
faces or in terms of more complex measures of dependencies between different 
model parts. Cohesion metrics are more diffi cult to defi ne, but measure the extent to 
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which a component can perform its functions without requiring access to exter-
nal data. The object-oriented concept of encapsulation refl ects this concept.  

    What is the progress of the design and development effort? 
   Model-based metrics can be defined to assess design progress by establishing 
completion criteria for the design. The quality attributes in the previous section 
referred to whether the model is complete relative to the defined scope of the 
modeling effort. This is necessary, but not sufficient, to assess design complete-
ness. The requirements satisfaction described to measure design quality can also 
be used to assess design completeness. Other intermediate metrics may include 
the number of use case scenarios that have been completed or the percent of 
logical components that have been allocated to physical components. From a 
systems engineering perspective, a key measure of system design completeness is 
the extent to which components have been specified. This metric can be measured 
in terms of the completeness of the specification of component interfaces, behav-
ior, and properties. 

   Other metrics for assessing progress include the extent to which components 
have been verifi ed and integrated into the system, and the extent to which the 
system has been verifi ed to satisfy its requirements. Test cases and verifi cation sta-
tus can be captured in the model and used as a basis for this assessment.  

    What is the estimated effort to complete design and development? 
   The Constructive Systems Engineering Cost Model (COSYSMO) is used for esti-
mating the cost and effort to perform systems engineering activities. This model 
includes both sizing and productivity parameters, where the size estimates the 
magnitude of the effort, and productivity factors are applied to come up with an 
actual labor estimate to do the work. 

   When using model-based approaches, sizing parameters can be identifi ed in 
the model in terms of numbers of different modeling constructs that may include the 
following: 

    # Requirements  
    # Use cases  
    # Scenarios  
    # States  
    # System and component interfaces  
    # System and component activities or operations  
    # System and component properties  
    # Components by type (e.g., hardware, software, data, operational procedures)  
    # Test cases    

   The MBSE sizing parameters will need to be integrated into the cost model. 
Data will need to be collected and validated over time to establish statistically 
meaningful data. However, early users of MBSE can identify sizing parameters that 
contribute most signifi cantly to the modeling effort, and use this data for local 
estimates and to assess productivity improvements over time.   
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    2.2.5   Other Model-Based Metrics 
   The previous discussion is a sampling of some of the model-based metrics that can 
be defined. Many other metrics can also be derived from the model, such as the 
stability of the number of requirements and design changes over time, or potential 
defect rates. The metrics can also be derived to establish benchmarks from which 
to measure the MBSE benefits as described in Section 2.1.2, such as the productiv-
ity improvements resulting from MBSE over time. Chapter 18 includes a discussion 
of additional organizational metrics related to deploying MBSE in an organization.   

    2.3   Summary 
   The practice of systems engineering is transitioning from a document-based 
approach to a model-based approach like many of the other engineering disciplines, 
such as mechanical and electrical engineering, have already done. MBSE offers sig-
nificant potential benefits to enhance communications, specification and design 
precision, design integration, and reuse that can improve design quality, productiv-
ity, and reduce development risk. The emphasis in MBSE is on producing and con-
trolling a coherent system model, and using this model to specify and design the 
system. Quality attributes of a model such as model consistency, understandability, 
and well formedness, and the use of modeling conventions, can be used to assess 
the goodness of a model and to derive preferred modeling practices. MBSE metrics 
can be used to assess design quality, progress and risk, and support management of 
the development effort. 

    2.4   Questions 
      1.   What are some of the primary distinctions between MBSE and a document-

based approach? 
    2.   What are some of the benefi ts of MBSE over the document-based approach? 
    3.   Where are the model elements of a system model stored? 
    4.   Which aspects of the model can be used to defi ne the scope of the model? 
    5.   What constitutes a good model? 
    6.   What are some of the quality attributes of a good model? 
    7.   What is the difference between a good model and a good design? 
    8.   What are examples of questions that MBSE metrics can help answer? 
    9.   What are possible sizing parameters that could be used to estimate an MBSE 

effort?       

2.4 Questions
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   This chapter provides an overview of SysML that includes a simple example 
showing how the language is applied to the system design of an automobile that 
was introduced in Chapter 1. The example includes references to chapters in 
Part II that provide a detailed description of the diagrams and language concepts. 
Part III includes two more detailed examples of how MBSE methods can be used 
with SysML to specify and design a system. 

    3.1   SysML Purpose and Key Features 
   SysML is a general-purpose graphical modeling language that supports the analy-
sis, specification, design, verification, and validation of complex systems. These 
systems may include hardware, software, data, personnel, procedures, facilities, 
and other elements of man-made and natural systems. The language is intended 
to help specify and architect systems and specify its components that can then be 
designed using other domain-specific languages such as UML for software design 
and VHDL for hardware design. 

       SysML can represent systems, components, and other entities as follows: 

      ■    Structural composition, interconnection, and classifi cation 
      ■    Function-based, message-based, and state-based behavior 
      ■    Constraints on the physical and performance properties 
      ■    Allocations between behavior, structure, and constraints (e.g., functions allo-

cated to components) 
      ■    Requirements and their relationship to other requirements, design elements, 

and test cases     

    3.2   SysML Diagram Overview 
   SysML includes nine diagrams as shown in the diagram taxonomy in  Figure 3.1   .
Each diagram type is summarized here, along with its relationship to UML diagrams: 

      ■     Requirement diagram represents text-based requirements and their rela-
tionship with other requirements, design elements, and test cases to support 
requirements traceability (not in UML) 

                             SysML Language Overview   3 
CHAPTER
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      ■     Activity diagram represents behavior in terms of the ordering of actions 
based on the availability of inputs, outputs, and control, and how the actions 
transform the inputs to outputs (modifi cation of UML activity diagram)  

      ■     Sequence diagram represents behavior in terms of a sequence of messages 
exchanged between parts (same as UML sequence diagram)  

      ■     State machine diagram represents behavior of an entity in terms of its 
transitions between states triggered by events (same as UML state machine 
diagram)  

      ■     Use case diagram represents functionality in terms of how a system or 
other entity is used by external entities (i.e., actors) to accomplish a set of 
goals (same as UML use case diagram)  

      ■     Block defi nition diagram represents structural elements called blocks, and 
their composition and classifi cation (modifi cation of UML class diagram)  

      ■     Internal block diagram represents interconnection and interfaces between 
the parts of a block (modifi cation of UML composite structure diagram)  

      ■     Parametric diagram represents constraints on property values, such as 
F      �      m*a, used to support engineering analysis (not in UML)    

      ■     Package diagram represents the organization of a model in terms of pack-
ages that contain model elements (same as UML package diagram)  

   A diagram graphically represents a particular aspect of the system model as 
described in Section 2.1.2. The diagram type constrains the type of model elements 
and associated symbols that can appear on a diagram. For example, an activity 
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diagram can include diagram elements that represent actions, control fl ow, and 
input/output fl ow, but not diagram elements for connectors and ports. As a result, 
a diagram represents a subset of the underlying model repository, as described in 
Chapter 2. Tabular representations are also supported in SysML as a complement 
to diagram representations to capture model information such as allocation tables. 

    3.3   Using SysML in Support of MBSE 
   SysML provides a means to capture the system modeling information as part of an 
MBSE approach without imposing a specific method on how this is performed. 
The selected method determines which activities are performed, the ordering of 
the activities, and which modeling artifacts are created to represent the system. 
For example, traditional structured analysis methods can be used to decompose 
the functions and allocate the functions to components. Alternatively, one can 
apply a use case driven approach that derives functionality based on scenario 
analysis and associated interactions among parts. The two methods may produce 
different combinations of diagrams in different ways to represent the system spec-
ification and design. 

   A typical use of the language may include one or more iterations of the follow-
ing activities to specify and design the system: 

      ■    Capture and analyze black box system requirements 
      –   Capture text-based requirements in a requirements management tool 
      –   Import requirements into the SysML modeling tool 
      –   Identify top-level functionality in terms of system use cases 
      –   Capture the traceability between the use cases and requirements 
      –   Model the use case scenarios as activity diagrams, sequence diagrams, 

and/or state machine diagrams 
      –   Create the system context diagram 
      –   Identify system test cases to support system verifi cation     

      ■    Develop one or more candidate system architectures to satisfy the 
requirements 
      –   Decompose the system using the block defi nition diagram 
      –   Defi ne the interaction among the parts using activity or sequence 

diagrams 
      –   Defi ne the interconnection among the parts using the internal block 

diagram     
      ■    Perform engineering and trade-off analysis to evaluate and select the 

preferred architecture 
      –   Capture the constraints on system properties using the parametric 

diagram to support analysis of performance, reliability, cost, and other 
critical properties 

      –   Perform the engineering analysis to determine the budgeted values of the 
system properties (typically done in separate engineering analysis tools)     

3.3 Using SysML in Support of MBSE
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      ■    Specify component requirements and their traceability to system 
requirements 
      –    Capture the functional, interface, and performance requirements for 

each component (block) in the architecture  
      –    Trace component requirements to the system requirements     

      ■    Verify that the system design satisfi es the requirements by executing 
system-level test cases    

   Other systems engineering activities are performed in conjunction with the 
preceding modeling activities such as confi guration management and risk man-
agement. Detailed examples of how SysML can be used to support two different 
MBSE methods are included in the modeling examples in Part III. A simplifi ed 
example is described next.  

    3.4    A Simple Example Using SysML for an Automobile Design 
   The following example was introduced in Chapter 1 without introducing the 
model-based approach. It is a simplified example that illustrates how SysML can 
be applied to specify and design a system. 

    3.4.1    Example Background and Scope 
   The example includes at least one diagram for each SysML diagram type, but only 
highlights selected features of the language. It includes multiple references to the 
chapters in Part II for the detailed language description. The way the diagrams 
are used to represent the system and the ordering of the diagrams is intended to 
be representative of applying a typical model-based approach. However, this will 
vary depending on the specific process and method used. 

    3.4.2    Problem Summary 
   The sample problem describes the use of SysML as it applies to the design of an 
automobile. A marketing analysis that was done indicated the need to increase 
the automobile’s acceleration and fuel efficiency from its current capability. A var-
iant of the process described in Section 3.3 is used to design the system to satisfy 
the requirements. In this simplified example, selected aspects of the design are 
considered to support an initial trade-off analysis. The trade-off analysis included 
evaluation of alternative vehicle configurations that included a 4-cylinder engine 
and a 6-cylinder engine to determine whether they can satisfy the acceleration 
and fuel efficiency requirement. 

   In addition, the proposed vehicle design includes a vehicle controller and 
associated software to control the fuel      –      air mixture and maximize fuel effi ciency 
and engine performance. Only a small subset of the design is addressed to 
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highlight the use of the language. The diagrams used in this example are shown in 
 Table 3.1   .

   SysML diagrams include a  diagram frame. The diagram header in the dia-
gram frame describes the kind of diagram, the diagram name, and some additional 
information that provides context for the  diagram content. Detailed information 
on diagram frames, diagram headers, and other common diagram elements that 
apply to all SysML diagrams is described in Chapter 4. 

   The example includes the following user-defi ned notations, called a stereotype, 
that are added for this example. Chapter 14 describes how stereotypes are used to 
further customize the language for domain-specifi c applications. 

       «hardware »
     « software »  
     « store »  
     « system of interest »     

Table 3.1       Diagrams Used in the Automobile Example 

   Figure Diagram Kind  Diagram Name 

   3.2 Requirement diagram  Automobile System Requirements 

   3.3 Block defi nition diagram  Automobile Domain 

   3.4 Use case diagram  Operate Vehicle 

   3.5 Sequence diagram  Drive Vehicle 

   3.6 Sequence diagram  Start Vehicle 

   3.7 Activity diagram  Control Power 

   3.8 State machine diagram  Drive Vehicle States 

   3.9 Internal block diagram  Vehicle Context 

   3.10 Block defi nition diagram  Vehicle Hierarchy 

   3.11 Activity diagram  Provide Power 

   3.12 Internal block diagram  Power Subsystem 

   3.13 Block defi nition diagram  Analysis Context 

   3.14 Parametric diagram  Vehicle Acceleration Analysis 

   3.15 Timing diagram (not SysML)  Vehicle Performance Timeline 

   3.16 Activity diagram  Control Engine Performance 

   3.17 Block defi nition diagram  Engine Specifi cation 

   3.18 Requirement diagram  Max Acceleration Requirement 
Traceability 

   3.19 Package diagram  Model Organization 

3.4 A Simple Example Using SysML for an Automobile Design
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    3.4.3   Capturing the Automobile Specifi cation in a Requirement Diagram 
   The requirement diagram for the  Automobile System Requirements is shown 
in Figure 3.2   . The kind of diagram (e.g., req) and the diagram name are shown in 
the diagram header at the upper left. The diagram depicts the requirements that 
are typically captured in a text specification. The requirements are shown in a 
containment hierarchy to depict the hierarchical relationship among them. The 
Automobile Specification is the top-level requirement that contains the lower-
level requirements. The line with the crosshairs symbol at the top is the  contain-
ment  relationship. 

   The specifi cation contains requirements for  Passenger and Baggage Load ,
Vehicle Performance , Riding Comfort , Emissions, Fuel Effi ciency , Production Cost ,
Vehicle Reliability , and  Occupant Safety . The Vehicle Performance requirement 
contains requirements for  Maximum Acceleration , Top Speed, Braking Distance ,
and Turning Radius . Each requirement includes a unique identifi cation, its text, 
and can include other user-defi ned properties, such as verifi cation status and 
risk, that are typically associated with requirements. The text for the  Maximum 
Acceleration  requirement is  “the vehicle shall accelerate from 0 to 60 mph in less 
than 8 seconds ” and the text for the  Fuel Effi ciency  requirement is  “the vehicle 
shall achieve at least 25 miles per gallon under the stated driving conditions. ”

   The requirements may have been created in the modeling tool, or alternatively, 
they may have been imported from a requirements management tool or a text 
document. The requirements can be related to other requirements, design ele-
ments, and test cases using  derive, satisfy, verify, refi ne, trace, and copy rela-
tionships. These relationships can be used to establish requirements traceability 
with a high degree of granularity. Some of these relationships are highlighted in 
Section 3.4.19. Chapter 12 provides a detailed description of how requirements 
are modeled in SysML. Requirements can be represented using multiple display 
options to view the requirements, their properties, and their relationships, which 
includes a tabular representation.  

    3.4.4     Defi ning the  Vehicle  and Its External Environment 
Using a Block Defi nition Diagram 

   In system design, it is important to identify what is external to the system that may 
either directly or indirectly interact with it. The  block definition diagram for the 
Automobile Domain in Figure 3.3    defines the Vehicle and the external systems, 
users, and other entities that the vehicle may directly or indirectly interact with. 

   A block is a very general modeling concept in SysML that is used to model 
a wide variety of entities that have structure such as systems, hardware, soft-
ware, physical objects, and abstract entities. That is, a block can represent any 
real or abstract entity that can be conceptualized as a structural unit with one or 
more distinguishing features. The block defi nition diagram captures the relation 
between blocks such as a block hierarchy. 

   The Automobile Domain is the top-level block in the block defi nition diagram 
in  Figure 3.3 . It is  composed of other blocks as indicated by the black diamond 
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req Requirements [Automobile System Requirements]

 FIGURE 3.2 

      Requirement diagram showing the system requirements contained in the  Automobile Specifi cation.     
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bdd Structure [Automobile Domain]
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 FIGURE 3.3 

      Block defi nition diagram of the  Automobile Domain showing the Vehicle  and its external users and physical environment.    
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symbol and line with the arrowhead pointing to the blocks that compose it. The 
differences between the composition hierarchy (i.e., black diamond) and the con-
tainment hierarchy (i.e., crosshairs symbol) shown in  Figure 3.2  are explained 
in Part II. The name next to the arrow identifi es a particular usage of a block as 
described later in this section. The  Vehicle block is referred to as the  «system of 
interest » using the bracket symbol called  guillemet. The other blocks are exter-
nal to the vehicle. These include the  Driver, Passenger, Baggage, and  Physical 
Environment. The Driver and Passenger are shown using stick-fi gure symbols. 
Notice that even though the  Driver, Passenger, and  Baggage are assumed to be 
physically inside the  Vehicle, they are not part of the  Vehicle structure, and there-
fore are external to it. 

   The Driver and Passenger are  subclasses of Vehicle Occupant as indicated by 
the hollow triangle symbol. This means that they are kinds of vehicle occupants 
that inherit common features from  Vehicle Occupant . In this way, a classifi cation 
can be created by specializing blocks from more generalized blocks. 

   The Physical Environment is composed of the Road, Atmosphere, and multi-
ple External Entities. The External Entity can represent any physical object, such 
as a traffi c light or another vehicle, that the  Driver interacts with. The interaction 
between the  Driver and an External Entity can impact how the  Driver interacts 
with the Vehicle, such as when the traffi c light changes color. The  multiplicity  
symbol 0..* represents an undetermined maximum number of external entities. 
The multiplicity symbol can also represent a single number or a range, such as the 
multiplicity of 0..4, for the number of  Passengers.

   Each block defi nes a structural unit, such as a system, hardware, software, data 
element, or other conceptual entity, as described earlier. A block can have a set 
of features that further defi ne it. The features of the block defi ne its  proper-
ties (e.g., weight), its  behavior in terms of activities  allocated to the block or 
operations of the block, and its interfaces as defi ned by its  ports. Together, these 
features enable a modeler to specify each block at the level of detail that is appro-
priate for the application. 

   The Road is a block that has a property called  incline with units of Radians  
and a property called  friction that is defi ned as a real number. Similarly,  Atmos-
phere is a block that has two properties for  temperature and air density. These 
properties are used along with other properties to support analysis of vehicle 
acceleration and fuel effi ciency, which are discussed in Sections 3.4.12 and 3.4.13. 

   The block defi nition diagram specifi es the blocks and their interrelationships. 
It is often used in systems modeling to depict multiple levels of the system hierar-
chy from the top-level domain block (e.g.,  Automobile Domain) down to vehicle 
components. Chapter 6 provides a detailed description of how blocks are mod-
eled in SysML, including their features and relationships. 

    3.4.5   Use Case Diagram for  Operate Vehicle  
   The use case diagram for  Operate Vehicle in Figure 3.4    depicts the major func-
tionality for operating the vehicle. The  use cases include  Enter Vehicle, Exit
Vehicle, Control Vehicle Accessory, and  Drive Vehicle. The Vehicle is the subject  

3.4 A Simple Example Using SysML for an Automobile Design
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of the use cases and is represented by the rectangle. The  Vehicle Occupant is an 
actor who is external to the vehicle and is represented as the stick figure. The 
subject and actors correspond to the blocks in  Figure 3.3 . In a use case diagram, 
the subject (e.g.,  Vehicle) is used by the actors (e.g.,  Vehicle Occupant) to achieve 
the goals defined by the use cases (e.g.,  Drive Vehicle ). 

   The Passenger and Driver are both kinds of vehicle occupants as described 
in the previous section. All vehicle occupants participate in entering and exiting 
the vehicle and controlling vehicle accessories, but only the driver participates 
in Drive Vehicle. There are several other relationships between use cases that are 
not shown here. Chapter 11 provides a detailed description of how use cases are 
modeled in SysML. 

   Use cases defi ne how the system is used to achieve a user goal. Other use 
cases can represent how the system is used across its life cycle, such as when 

uc Use Cases [Operate Vehicle]

Vehicle

Enter Vehicle

Drive Vehicle

Exit Vehicle

Control Vehicle
Accessory

Vehicle Occupant

Passenger

Driver

 FIGURE 3.4 

      Use case diagram describes the major functionality in terms of how the  Vehicle  is used by 
the actors to Operate Vehicle . The actors are defi ned on the block defi nition diagram in
 Figure 3.3 .    
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manufacturing, operating, and maintaining the vehicle. The primary emphasis for 
this example is on the  Drive Vehicle use case to address the acceleration and fuel 
effi ciency requirements. 

   The requirements are often related to use cases since use cases represent 
the high-level functionality or goals for the system. Sometimes, use case textual 
descriptions are defi ned to accompany the use case defi nition. One approach to 
relate requirements to use cases is to capture the use case descriptions as SysML 
requirements and relate them to the use case using a refi ne relationship. 

   The use cases describe the high-level goals of the system as described previ-
ously. The goals are accomplished by the interactions between the actors (e.g., 
Driver) and the subject (e.g.,  Vehicle). These interactions are realized through 
more detailed descriptions of behavior as described in the next section. 

    3.4.6    Representing  Drive Vehicle  Behavior 
with a Sequence Diagram 

   The behavior for the  Drive Vehicle use case in Figure 3.4  is represented by the 
sequence diagram in Figure 3.5   . The sequence diagram specifies the  interac-
tion between the  Driver and the Vehicle as indicated by the names at the top of 
the lifelines. Time proceeds vertically down the diagram. The first interaction is 
Start Vehicle. This is followed by the  Driver and Vehicle interactions to  Control 
Power, Control Brake, and Control Direction. These three interactions occur in 
parallel as indicated by  par. The alt on the Control Power interaction stands for 
alternative, and indicates that the  Control Neutral Power,Control Forward Power,
or Control Reverse Power interaction occurs as a condition of the  vehicle state  
shown in brackets. The state machine diagram in Section 3.4.9 specifies the  vehi-
cle state. The Turn-off Vehicle interaction occurs following these interactions. 

   The   interaction occurrences in the fi gure each reference a more detailed 
interaction as indicated by  ref. The referenced interaction for Start Vehicle is 
another sequence diagram that is illustrated in Section 3.4.7. The remaining inter-
action occurrences are references allocated to activity diagrams as described in 
Section 3.4.8. 

    3.4.7   Referenced Sequence Diagram to  Start Vehicle  
   The Start Vehicle sequence diagram in  Figure 3.6    is an interaction that is referenced 
in the sequence diagram in  Figure 3.5 . As stated previously, time proceeds vertically 
down the diagram. In this example, the more detailed interaction shows the driver 
sending a message requesting the vehicle to start. The vehicle responds with 
the vehicle on reply message shown as a dashed line. Once the reply has been 
received, the driver and vehicle can proceed to the next interaction. 

   The sequence diagram can include multiple types of messages. In this example, 
the message is  synchronous as indicated by the fi lled arrowhead on the message. 
The messages can also be  asynchronous  represented by an open arrowhead, 
where the sender does not wait for a reply. The synchronous messages represent 
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an operation call that specifi es a request for service. The arguments of the opera-
tion call represent the input data and return. 

   Sequence diagrams can include multiple message exchanges between multiple 
lifelines that represent interacting entities. The sequence diagram also provides 
considerable additional capability to express behavior that includes other mes-
sage types, timing constraints, additional control logic, and the ability to decom-
pose the behavior of a lifeline into the interaction of its parts. Chapter 9 provides 
a detailed description of how interactions are modeled with sequence diagrams.  

sd Drive Vehicle

:Vehicle

par

alt

ref
Start Vehicle

ref
Turn Off Vehicle

ref
Control Neutral Power

ref
Control Forward Power

ref
Control Reverse Power

ref
Control Brake

ref
Control Direction

{vehicle state � neutral}

{vehicle state � forward}

{vehicle state � reverse}

:Driver
«Actor»

 FIGURE 3.5 

       Drive Vehicle  sequence diagram describes the interactions between the  Driver  and the  Vehicle  
to realize the Drive Vehicle  use case in  Figure 3.4 .    
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    3.4.8    Control Power  Activity Diagram 
   The sequence diagram is effective for communicating discrete types of behav-
ior as indicated with the Start Vehicle sequence diagram in  Figure 3.6 . However, 
continuous types of behaviors associated with the interactions to  Control Power,
Control Brake, and  Control Direction can sometimes be more effectively repre-
sented with activity diagrams. 

   The Drive Vehicle sequence diagram in  Figure 3.5  includes the control power 
interactions that we would like to represent with an activity diagram instead 
of a sequence diagram. To accomplish this, the  Control Neutral Power, Control 
Forward Power, and  Control Reverse Power interactions in  Figure 3.5  are  allo-
cated to a corresponding  Control Power activity diagram using the SysML alloca-
tion relationship (not shown). 

   The activity diagram in Figure 3.7    shows the  actions required of the  Driver  
and the Vehicle to Control Power. The activity partitions (or swimlanes) rep-
resent the  Driver and the Vehicle. The actions in the activity partitions specify 
functional requirements that the  Driver  and  Vehicle must perform. 

   When the activity is initiated, it starts execution at the  Initial Node and 
transitions to the  Control Accelerator Position action that is performed by the 
Driver. The output of this action is the Accelerator Cmd, which is a continuous 
input to the Provide Power action that the Vehicle must perform. The output 
of the Provide Power action is the Torque generated by the wheels to the road 
to produce the force that accelerates the  Vehicle. When the  ignition off signal 
is received by the  Vehicle, the activity terminates at the  Activity Final. Based 

sd Start Vehicle

:Vehicle

start vehicle ()

vehicle on

:Driver
«Actor»

 FIGURE 3.6 

      Sequence diagram for the  Start Vehicle  interaction that was referenced in the  Drive Vehicle  
sequence diagram, showing the message from Driver  requesting  Vehicle  to start and the 
vehicle on  reply from the  Vehicle .    
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on this scenario, the  Driver is required to  Control Accelerator Position and the 
Vehicle  is required to  Provide Power.

   Activity diagrams include semantics for precisely specifying the behavior in 
terms of the fl ow of control and inputs and outputs. Chapter 8 provides a detailed 
description of how activities are modeled.  

    3.4.9    State Machine Diagram for  Drive Vehicle States  
   The state machine diagram for the  Drive Vehicle States is shown in  Figure 3.8   . 
This diagram shows the states of the  Vehicle and the events that can trigger a 
transition  between the  states.

   When the Vehicle  is ready to be driven, it starts in the  vehicle off state. The 
ignition on event triggers a transition to the  vehicle on state. The text on the 
transition indicates that the  Start Vehicle behavior is executed prior to entering 
the vehicle on state. After entry to the  vehicle on state, the  Vehicle immediately 
transitions to the  neutral state. A  forward select event triggers a transition to the 
forward state if the guard condition [speed   �      �      0] is true. While in the  forward  
state, the  Vehicle  performs the  Provide Power behavior that was referred to in the 
activity diagram in  Figure 3.7 . The neutral select event triggers the transition from 

act Control Power

«allocateActivityPartition»
:Driver

«allocateActivityPartition»
:Vehicle

Control
Accelerator

Position

Provide
Power

{stream}
:Torque

ignition off

{stream}
:Torque

«continuous»
{stream}
:Accelerator Cmd

{stream}
:Accelerator Cmd

«continuous»

 FIGURE 3.7 

      Activity diagram allocated from the  Control Power  interaction that was referenced in the  Drive
Vehicle  sequence diagram in  Figure 3.5 . It shows the continuous  Accelerator Cmd  input from 
the Driver  to the  provide power  action that the  Vehicle  must perform.    
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the forward state back to the  neutral state. The state machine diagram shows 
the additional transitions between the  neutral and reverse states. An  ignition off  
event triggers the transition back to the  vehicle off state. The  Vehicle can reenter 
the vehicle on  state when an  ignition on event occurs. 

   A state machine can specify the life-cycle behavior of a block in terms of its 
states and transitions, and are often used with sequence and activity diagrams, as 
shown in this example. State machines have many other features including  ortho-
gonal regions and additional transition semantics that are described in Chapter 10. 

    3.4.10    Vehicle Context  Using an Internal Block Diagram 
   The Vehicle Context  Diagram is shown in  Figure 3.9   . The diagram shows the 
interfaces between the  Vehicle, the Driver, and the Physical Environment (i.e., 
Road, Atmosphere, and External Entity) that were defined in the block definition 
diagram in  Figure 3.3 . The Vehicle has interfaces with the  Driver, the  Atmosphere,

stm Drive Vehicle States

vehicle on

forward

do/provide power

neutral

reverse

do/provide power

neutral select reverse select [speed��0]

neutral select

forward select [speed��0]

vehicle off

ignition off
/turn Off vehicle

ignition on
/start vehicle

 FIGURE 3.8 

      State machine diagram that shows the  Drive Vehicle States  and the transitions between them.    
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and the Road. The Driver has interfaces with the  External Entities such as a traf-
fic light or another vehicle, via the driver sensor inputs (e.g., seeing, hearing). 
However, the  Vehicle does not directly interface with the  External Entities. The 
multiplicity on the External Entity is consistent with the multiplicity shown in 
the block definition diagram in  Figure 3.3 .

   This context diagram is an  internal block diagram that shows how the 
parts of the Automobile Domain block from  Figure 3.3  are connected. It is called 
an internal block diagram because it represents the internal structure of a higher-
level block, which in this case is the  Automobile Domain block. The  Vehicle  
ports specify interaction points with other parts and are represented as the small 
squares on the boundary of the parts.  Connectors defi ne how the parts connect 
to one another via their ports and are represented as the lines between the ports. 
Parts can also be connected without ports as indicated by some of the interfaces 
in the fi gure when the details of the interface are not of interest to the modeler. 

   In Figure 3.9 , only the external interfaces needed for the  Vehicle to provide 
power are shown. For example, the interfaces between the rear tires and the road 
are shown. It is assumed to be a rear wheel –drive vehicle where power can be 
distributed differently to the rear wheels depending on tire-to-road traction and 
other factors. The interface between the front tires and the road is not shown in 
this diagram, but it would be shown when representing the external interfaces 
for the steering subsystem where the front tires would play a signifi cant role. It is 
common modeling practice to only represent the aspects of interest on a particu-
lar diagram, even though additional information is included in the model. 

ibd Automobile Domain [Vehicle Context Diagram]

:Physical Environment

:Driver

foot if

hand if

driver sensor in

:Vehicle

road if right rear

road if left rear

throttle in
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gear in

:Atmosphere:External Entity [0..*] :Road

road if-1 road if-2

Gear Select

Sensor Input
Air

Accelerator Cmd

Wheel Force
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 FIGURE 3.9 

      Internal block diagram for the  Vehicle Context  shows the  Vehicle  and its external interfaces with the  Driver  
and Physical Environment  that were defi ned in  Figure 3.3 .    
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   The black-fi lled arrowheads on the connector are called  item fl ows that rep-
resent the items fl owing between parts and may include mass, energy, and/or 
information. In this example, the  Accelerator Cmd that was previously defi ned in 
the activity diagram in  Figure 3.8  fl ows from the  Driver port to the  throttle in  
port of the  Vehicle, and the  Gear Select fl ows from another  Driver port to the 
gear in port on the  Vehicle. The inputs and outputs from the activity diagram 
are  allocated to the item fl ows on the connectors. Allocations are discussed as 
a general-purpose relationship for mapping one model element to another in 
Chapter 13. 

   In SysML, there are two different kinds of ports. The  fl ow port specifi es the 
kind of item that can fl ow in or out of an interaction point, and a  standard port  
specifi es the services that either are required or provided by the part. The port 
provides the mechanism to integrate the behavior of the system with its structure. 

   The internal block diagram enables the modeler to specify both external and 
internal interfaces of a system or component. An internal block diagram shows 
how parts are connected, as distinct from a block defi nition diagram that does not 
show connectors. Details of how to model internal block diagrams are described 
in Chapter 6. 

    3.4.11    Vehicle Hierarchy  Represented on a Block Defi nition Diagram 
   The example to this point has focused on specifying the vehicle in terms of its 
external interactions and interfaces. The  Vehicle Hierarchy in Figure 3.10    is a 
block definition diagram that shows the decomposition of the  Vehicle into its com-
ponents. The Vehicle is composed of the Body, Chassis, Interior, Power Train, and 
other types of components. Each component type is designated as  «hardware ».

   The Power Train is further decomposed into the  Engine, Transmission,
Differential, and  Wheel. Note that the  right rear and left rear indicate different 
usages of a  Wheel in the context of the  Power Train. Thus, each rear wheel has a 
different role and may be subject to different forces, such as is the case when one 
wheel looses traction. The front wheels are not shown, but could be part of the 
chassis or part of the steering assembly and would have different roles as well. 

   The engine may be either 4 or 6 cylinders as indicated by the specialization 
relationship. The 4- and 6-cylinder vehicle confi guration alternatives are being 
considered to satisfy the acceleration and fuel effi ciency requirements. Only one 
engine type is part of a particular  Vehicle as indicated by the  {  complete, disjoint }  
constraint. This implies that the 4- and 6-cylinder engines represent a complete set 
of subclasses and are mutually exclusive or disjoint. 

   The vehicle:Controller «software » has been allocated to the Vehicle Processor  
as indicated by the allocation compartment. The  Vehicle Processor is the execu-
tion platform for the vehicle control software. The software is being enhanced to 
control many of the automobile engine and transmission functions to optimize 
engine performance and fuel effi ciency. 

   The interaction and interconnection between these components is analyzed 
in a similar way to what was done at the  Vehicle black box level, and is used to 
specify the components of the Vehicle  system as described in the next sections. 
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 FIGURE 3.10 

      Block defi nition diagram of the  Vehicle Hierarchy  shows the  Vehicle  and its components. The  Power Train  is further decomposed into its 
components and the Vehicle Processor  includes the  Controller software.    
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    3.4.12   Activity Diagram for  Provide Power  
   The activity diagram in  Figure 3.7  showed that the vehicle must  provide power in 
response to the driver accelerator command and generate wheel     �     tire torque at 
the road surface. The  Provide Power activity diagram in  Figure 3.11    shows how 
the vehicle components generate this torque. 

   The external inputs to the activity include the  Accelerator Cmd and Gear
Select from the  Driver, and  Air from the  Atmosphere to support engine combus-
tion. The outputs are the torque from the right and left rear wheels to the road 
that provides the force to accelerate the  Vehicle. Some of the other inputs and out-
puts, such as exhaust from the engine, are not included for simplicity. The activity 
partitions represent the vehicle components shown in the block defi nition dia-
gram in  Figure 3.10 .

   The fuel tank stores and dispenses the fuel to the  Engine. The accelerator 
command and air and fuel are input to the  generate torque action. The engine 
torque is input to the  amplify torque action performed by the  Transmission . 
The amplifi ed torque is input to the  distribute torque action performed by the 
Differential that distributes torque to the right and left rear wheels to  provide 
traction  to the road surface to generate the force to accelerate the  Vehicle.

   The actions that are allocated to the  Vehicle  components realize the  provide 
power action that the Vehicle performs, as shown in  Figure 3.7 . This approach is 
used to decompose the system behavior. 

   A few other items are worth noting in this example. The fl ows are shown to 
be continuous for all but the  Gear Select. The inputs and outputs continuously 
fl ow in and out of the actions.  Continuous means that the delta time between 
arrival of the inputs or outputs approaches zero. Continuous fl ows build on the 
concept of streaming inputs and outputs, which means that inputs are accepted 
and outputs are produced while the action is executing. Conversely, nonstreaming 
inputs are only available prior to the start of the action execution, and nonstream-
ing outputs are produced only at the completion of the action execution. The 
ability to represent streaming and continuous fl ows adds a signifi cant capability 
to classic behavioral modeling associated with functional fl ow diagrams. The con-
tinuous fl ows are assumed to be streaming. 

   Many other activity diagram features are explained in Chapter 8; they provide 
a capability to precisely specify behavior in terms of the fl ow of control and data, 
and the ability to reuse and decompose behavior. 

    3.4.13   Internal Block Diagram for the  Power Subsystem  
   The previous activity diagram described how the parts of the system interact to 
provide power. The parts of the system are represented by the activity partitions 
in the activity diagram. The internal block diagram for the vehicle in  Figure 3.12    
shows how the parts are interconnected to achieve this functionality and is used 
to specify the interfaces between the parts. This is a structural view of the system 
versus the behavioral view that was expressed in the activity diagram. 
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 FIGURE 3.11 

      Activity diagram for  Provide Power  shows how the  Vehicle  components generate the torque to move the vehicle. This activity diagram realizes the 
provide power  action in  Figure 3.7  with activity partitions that correspond to the components in  Figure 3.10 .    
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ibd Vehicle [Power Subsystem]
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 FIGURE 3.12 

      Internal block diagram for the  Power Subsystem  shows how the parts that  provide power  are interconnected. The parts are represented as the 
activity partitions in  Figure 3.11 .    
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   The internal block diagram represents the  Power Subsystem that only includes 
the parts of the  Vehicle that collaborate to  provide power. The frame of the dia-
gram represents the  Vehicle black box. The ports on the diagram frame  corre-
spond to the same ports shown on the Vehicle in the Vehicle Context diagram 
in Figure 3.9 . This enables the external interfaces to be preserved as the internal 
structure of the  Vehicle  is further specifi ed. 

   The Engine, Transmission, Differential, right rear and left rear Wheel, Vehicle 
Processor, and  Fuel Tank are interconnected via their ports. The  Fuel is stored in 
the Fuel Tank as indicated by  « store » . The item fl ows on the connectors are not 
shown, but represent the items that fl ow through the system and are allocated 
from the inputs and outputs on the  Provide Power  activity diagram in  Figure 3.11 .

   Additional subsystems can be created in a similar way to realize specifi c func-
tionality such as provide braking and provide steering. A composite view of all of 
the interconnected parts across all subsystems can also be created in a composite 
Vehicle internal block diagram. An example of this is included in the residential 
security example in Chapter 16. 

   It is appropriate to elaborate on the usage concept that was fi rst introduced in 
Section 3.4.11 when discussing the right rear and left rear wheels. A part in an 
internal block diagram represents a particular usage of a block. The block repre-
sents the generic defi nition, whereas the part represents a usage of a block defi ni-
tion in a particular context. Thus, the right rear and left rear are different usages 
of the Wheel block in the context of the  Vehicle. A usage (or part) is the same 
as a role. The parts in the diagram are indicated by the colon (:) notation. A part 
enables the same block to be reused in many different contexts and be uniquely 
identifi ed by its usage. Each part may have unique behaviors, properties, and con-
straints that apply to its particular usage. 

   The concept of defi nition and usage is applied to many other SysML language 
constructs as well. One example is that the item fl ows themselves can have a defi -
nition and usage. For example, an item fl ow entering the fuel tank can be in : Fuel 
and the item fl ow exiting the fuel tank can be out : Fuel. Both fl ows are defi ned by 
fuel, but  “ in ” and  “ out ” represent different usages of Fuel in the  Vehicle  context. 

   As mentioned previously, Chapter 6 provides the detailed language description 
for both block defi nition diagrams and internal block diagrams, and includes the 
concept of role, references, and many other key concepts for modeling blocks and 
parts.  

    3.4.14     Defi ning the Equations to Analyze 
Vehicle Performance 

   Critical requirements for the design of this automobile are to accelerate from 0 to 
60 mph in less than 8 seconds, while achieving a fuel efficiency of greater than 
25 miles per gallon. These two requirements impose conflicting requirements on 
the design space, such that increasing the acceleration capability can result in a 
design with lower fuel efficiency. Two alternative configurations, including a 4- and 
6-cylinder engine, are evaluated to determine which configuration is the preferred 
solution to meet the acceleration and fuel efficiency requirements. 
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   The 4- and 6-cylinder engine alternatives are shown in the  Vehicle Hierarchy  
in Figure 3.10 . There are other design impacts that may result from the automo-
bile confi gurations with different engines, such as the vehicle weight, body shape, 
and electrical power. This simplifi ed example only considers the impact on the 
Power Subsystem. The vehicle controller is assumed to control the fuel and air 
mixture, and control when the gear changes the automatic transmission to opti-
mize engine and overall performance. 

   The block defi nition diagram in  Figure 3.13    introduces a new type of block 
called a constraint block. Instead of defi ning systems and components, the con-
straint block defi nes constraints in terms of equations and their  parameters.

   In this example, the  Analysis Context block is composed of a series of con-
straint blocks to analyze the vehicle acceleration to determine whether either the 
4- or 6-cylinder vehicle confi guration can satisfy its requirement. The constraint 
blocks defi ne generic equations for  Gravitational Force, Drag Force, Power Train 

bdd Parametrics [Analysis Context]

«block»
Analysis
Context

a

«constraintBlock»
Gravitational Force

w:  Pounds 
fg:  Pounds
theta:  Radians

constraints
{fg � w/g * sin(theta)}

parameters

«constraintBlock»
Drag Force

fd:  Pounds 
rho:  Mass/Volume
v:  Ft/sec
Cd:  Real

constraints
{fd � 0.5*rho*v*v*Cd}

parameters

«constraintBlock»
Power Train Force

fp:  Pounds

constraints
{fp(Teng, Ttrans, Tdiff, fw)}

parameters

«constraintBlock»
Total Force

fi:  Pounds
fk: Pounds
ft:  Pounds
fj:  Pounds

constraints
{ft � fi�fj�fk}

parameters

«constraintBlock»
Acceleration

f:  Pounds 
a:  Ft/sec2
w:  Pounds

constraints
{f � (w/g) *a}

parameters

«constraintBlock»
Integrator

y:  Ft/sec
y0:  Ft/sec
x:  Ft/sec2

constraints
{y � integral{xdt}�y0}

parameters

«constraintBlock»
Transmission Torque

torque in:  Foot pounds
gear ratio:  Integer
Ttrans:  Foot pounds
eff tm:  Percent

constraints
{Ttrans (torque in, gear ratio, eff tm)}

parameters

«constraintBlock»
Differential Torque

Tdiff:  Foot pounds
eff ta:  Percent
torque in:  Foot pounds
k:  Integer

constraints
{Tdiff (torque in, k, eff ta)}

parameters

«constraintBlock»
Engine Torque

Teng:  Foot pounds
fuel flow rate:  Mass/Volume
Ncyl:  Integer
displ:  Cubic Inches
eff eng:  Percent
rpm:  Real

constraints
{Teng (fuel flow rate, Ncyl, displ, eff eng, rpm)}

parameters

«block»
Automobile

Domain

«constraintBlock»
Wheel Force

fw:  Pounds
torque in:  Foot pounds
wheel dia:  Inches
tire friction:  Real

constraints
{fw (torque in, wheel dia,

tire friction)}

parameters

 FIGURE 3.13 

      Block defi nition diagram for the  Analysis Context  that defi ned the equations for analyzing the vehicle 
acceleration requirement. The equations and their parameters are specifi ed using constraint blocks. The 
Automobile Domain  block from  Figure 3.3  is referenced since it is the subject of the analysis.    

3.4 A Simple Example Using SysML for an Automobile Design
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Force, Total Force, Acceleration, and an  Integrator. The Total Force equation, as 
an example, shows that  ft is the sum of fi , fj, and  fk. Note that the parameters are 
defi ned along with their units and/or dimensions in the constraint block. 

   The Power Train Force is further decomposed into other constraint blocks that 
represent the equations for torque from the  Engine, Transmission, Differential,
and Wheels. The equations are not explicitly defi ned, but the critical parameters 
of the equations are. This is important since it may be of value to identify the criti-
cal parameters, and to defer defi nition of the equations until the detailed analysis 
is performed. 

   The Analysis Context block also references the  Automobile Domain block 
that was originally shown in the block defi nition diagram in  Figure 3.3 . The intent 
of this diagram is to identify both the equations for the analysis and the subject of 
the analysis. Referencing the  Automobile Domain enables the equations to con-
strain the properties of the  Vehicle , its components, and the physical environment. 
The parameters of the generic equations are bound to the properties of the sys-
tem and the environment that is being analyzed, as described in the next section.  

    3.4.15   Analyzing Vehicle Acceleration Using the Parametric Diagram 
   The previous block definition diagram defined the equations and associated para-
meters needed to analyze the system. The  parametric diagram in  Figure 3.14    
shows how these equations are used to analyze the vehicle acceleration to deter-
mine the time for the  Vehicle  to accelerate from 0 to 60 mph. 

   The parametric diagram shows a network of constraints (equations). Each con-
straint is a usage of a constraint block defi ned in the block defi nition diagram in 
Figure 3.13 . The parameters of the equation are shown as small rectangles fl ush 
with the inside boundary of the constraint. 

   A parameter in one equation can be bound to a parameter in another equation 
by a  binding connector. An example of this is the parameter  ft in the Total Force  
equation that is bound to the parameter  f in  the Acceleration equation. This means 
that ft in the Total Force equation is equal to f in  in the Acceleration equation. 

   The parameters can also be bound to  properties of blocks to make the param-
eter equal to the property. The properties of blocks are shown as the rectangles 
in the diagram. An example is the binding of the coeffi cient of drag parameter 
cd in the Drag Force equation to the drag property called  drag, which is a prop-
erty of the vehicle  Body. The dot notation  “ a.v.b. ”  that precedes the drag property 
specifi es that this is a property of the body, which is part of the vehicle that is part 
of the Automobile Domain. Another example is the binding of the road  incline  
angle to the angle theta in the gravity force equation. This binding enables param-
eters of generic equations to be set equal to specifi c properties of the blocks. In 
this way, generic equations can be used to analyze many different designs. 

   The parametric diagram and related modeling information can be provided to 
the appropriate simulation and/or analysis tools to support execution. This engi-
neering analysis is used to perform sensitivity analysis and determine which prop-
erty values are required to satisfy the acceleration requirement. 

   Other analysis can be performed to determine the required property values for 
the system components (e.g.,  Body, Chassis, Engine, Transmission, Differential, 
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Brakes, Steering Assembly) to satisfy the overall system requirements. In addition to 
the acceleration and fuel effi ciency requirements, other analyses may address require-
ments for braking distance, vehicle handling, vibration, noise, safety, reliability, produc-
tion cost, and so on. The parametrics enable the critical properties of the system to 
be identifi ed and integrated with analysis models. Details of how to model constraint 
blocks and their usages in parametric diagrams are described in Chapter 7. 

    3.4.16   Analysis Results from Analyzing  Vehicle Acceleration  
   As mentioned in the previous section, the parametric diagram is expected to be 
executed in an engineering analysis tool to provide the results of the analysis. 
This may be a separate specialized analysis tool that is not provided by the SysML 
modeling tool, such as a simple spreadsheet or a high-fidelity performance simula-
tion depending on the need. The analysis results from the execution then provide 
values that can be incorporated back into the SysML model. 

   The analysis results from executing the constraints in the parametric diagram 
are shown in  Figure 3.15   . This example uses the  UML timing diagram to display 
the results. Although the timing diagram is not currently one of the SysML diagram 

par [block]Analysis Context [Vehicle Acceleration Analysis]

:Gravitational Force

theta w

fg

:Drag Force
fd

rho cd v

:Power Train
Force

fp
:Total Force

fifj

fk

ft
:Acceleration

f

w

a
:Integrator

yx(t) y0

a.v.wta.pe.r.incline

a.v.b.drag

a.v.speed

 FIGURE 3.14 

      Parametric diagram that uses the equations defi ned in  Figure 3.13  to analyze Vehicle Acceleration . The 
parameters of the equations are bound to parameters of other constraints and to properties of the Vehicle  
and its environment.    

3.4 A Simple Example Using SysML for an Automobile Design
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types, it can be used in conjunction with SysML if it is useful for the analysis, 
along with other more robust visualization methods. The vehicle speed property 
is shown as a function of time, and the  Vehicle state is shown as a function of 
time. The Vehicle states correspond to nested states within the  forward state in 
Figure 3.8 . Based on the analysis performed, the 6-cylinder (V6) vehicle confi gura-
tion is able to satisfy its acceleration requirement but a similar analysis showed 
that the 4-cylinder (V4) vehicle confi guration does not satisfy the requirement.  

    3.4.17    Using the  Vehicle Controller  to Optimize Engine Performance 
   The analysis results showed that the V6 configuration is needed to satisfy the vehi-
cle acceleration requirement. Additional analysis is needed to assess whether the 
V6 configuration can satisfy the fuel efficiency requirement for a minimum of 
25 miles per gallon under the stated driving conditions as specified in the  Fuel
Efficiency  requirement in  Figure 3.2 .

   The activity diagram in  Figure 3.16    is a refi nement of a portion of the  Provide 
Power activity diagram in  Figure 3.11 . In this fi gure, the  vehicle controller software 
has been added as an activity partition to support the analysis needed to optimize 
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 FIGURE 3.15 

      Analysis results from executing the constraints in the parametric diagram in  Figure 3.14  
showing the vehicle speed property and Vehicle  state as a function of time. This is captured 
in a UML timing diagram.      
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act Control Engine Performance

Gear
Select

«allocateActivityPartition»
:Engine

Generate
Torque

out

:Fuel

:Air

«allocateActivityPartition»
:Transmission

Amplify
Torque

transmission
out

in

:Gear
Select

«allocateActivityPartition»
:Fuel Tank

Store and
Dispense

Fuel :Fuel

«allocateActivityPartition»
vehicle:Controller

Control Gear

Control Fuel
Air Mixture

in out

engine
parameters
include RPM,
Temperature

«continuous»

«continuous»

«continuous» out1 :Engine
Parameters

eng :Accelerator Cmd

«continuous»

:Air

«continuous»

in :Gear Select

«continuous»

«continuous»

:Accelerator Cmd

in :Engine
Parameters

out :Gear Select

out2 :Engine
Parameters

in :Engine
Parameters

 FIGURE 3.16 

      Activity diagram used to analyze the vehicle controller software interaction with the engine and transmission to optimize fuel effi ciency and engine 
performance. This diagram is a refi nement of a portion of the activity diagram in  Figure 3.11 .    
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fuel effi ciency and engine performance. The  vehicle Controller includes an action to 
control fuel –air mixture that in turn produces the engine accelerator command. The 
inputs to this action include the Accelerator Cmd from the  Driver and Engine Para-
meter such as revolutions per minute (RPM) and engine temperature. The  vehicle 
Controller also includes the Control Gear action to determine when to change gears 
based on engine speed (i.e., RPM) to optimize performance. The specifi cation of the 
vehicle controller software can include a state machine diagram that changes state in 
response to the inputs consistent with the state machine diagram in  Figure 3.8 .

   The specifi cation of the algorithms to realize these actions requires further 
analysis. A parametric diagram can specify the required fuel and air mixture in 
terms of RPM and engine temperature to achieve optimum fuel effi ciency, and 
they can be used to constrain the input and output of the actions. The algorithms 
must implement these constraints by controlling fuel fl ow rate and air intake, and 
perhaps other parameters. The algorithms, which consist of mathematical and log-
ical expressions, can be captured in an activity diagram or directly in code. Based 
on the previous engineering analysis—the details of which are omitted here—the 
V6 engine is able to satisfy the fuel effi ciency requirements and is selected as the 
preferred vehicle system confi guration. 

    3.4.18    Specifying the  Vehicle  and Its Components 
   The block definition diagram in  Figure 3.10  defined the blocks for the  Vehicle 
and its components. The preceding analysis is used to specify the features of the 
blocks in terms of the functions they perform, their interfaces, and their perform-
ance and physical properties. Other aspects of the specification may include a 
state machine for state-based behavior and definitions of items that are stored by 
the block, such as fuel. 

   A simple example is the specifi cation of the  Engine block shown in  Figure 
3.17   . This block was originally shown in the  Vehicle Hierarchy block defi nition 
diagram in  Figure 3.10 . In this example, the  Engine hardware element performs 
a function called generate torque, with ports that specify its interfaces to  air in,
fuel in, control if, and out torque. Selected properties are shown that represent 
performance and physical properties including its  displacement, combustion effi -
ciency, max power, and  weight along with their units. The property values may 
also be represented as either a single value or a distributed value. Other blocks are 
specifi ed in a similar way.  

    3.4.19    Requirements Traceability 
   The Automobile System Requirements were shown in  Figure 3.2 . Capturing 
the text-based requirements in the SysML model provides the means to establish 
traceability between the text-based requirements and other parts of the model. 

   The requirements traceability for the  Maximum Acceleration requirement is 
shown in  Figure 3.18   . The requirement is  satisfi ed by the  Power Subsystem. The 
rationale refers to the engineering analysis based on the  Vehicle Acceleration 
Analysis parametric diagram in  Figure 3.14 . The  Max Acceleration test case is 
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also shown as the method to verify that the requirement is satisfi ed. In addition, 
the Engine Power requirement is derived from the  Max Acceleration requirement 
and contained in the Engine Specifi cation. The Engine block refi nes the  Engine 
Specifi cation by restating the text requirements in the model. In this way, the sys-
tem requirements can be traced to the system design and test cases, along with 
rationale. 

   The direction of the arrows points from the  Power Subsystem design,  Max
Acceleration test case, and  Engine Power requirement to the  Max Acceleration as 
the source requirement. This is in the opposite direction that is often used to rep-
resent requirements fl ow-down. The direction represents a dependency from the 
design, test case, and derived requirement to the source requirement, such that if 
the source requirement changes, the design, test case, and derived requirement 
should also change. 

   As stated previously, there are other requirements relationships for trace and 
copy. The requirements are supported by multiple notation options including a 
tabular representation. Details of how SysML requirements and their relationships 
are modeled are described in Chapter 12. 

    3.4.20   Package Diagram for Organizing the Model 
   The concept of an integrated system model is a foundational concept for MBSE 
as described in Chapter 2. The  model contains all of the model elements. The 

bdd Vehicle Structure [Engine Specification]

«hardware»
6-Cylinder Engine

combustion efficiency: Percent
displacement: Cubic Inches
max power: Horsepower
weight: Pounds

generate torque ()

fuel in

air in

control if

out torque

values

operations

 FIGURE 3.17 

      The block defi nition diagram shows the  Engine  block and the features used to specify the 
block. This block was previously shown in the Vehicle Hierarchy  block defi nition diagram in 
 Figure 3.10 .   

3.4 A Simple Example Using SysML for an Automobile Design
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model elements  and their relationships are captured in a model repository and can 
be displayed on diagrams. The model elements are integrated such that a model 
element that appears on one diagram may have relationships to model elements 
that appear on other diagrams. An example is the  Road property, such as the 
incline angle that appears as a property of  Road in the block definition diagram in 
Figure 3.3 , and also is bound to a parameter of a constraint in the parametric dia-
gram in  Figure 3.14 . The diagrams represent a view into this model. 

   A model organization is essential to managing the model. A well-organized 
model is akin to having a set of drawers to organize your supplies, where each 
supply element is contained in a drawer, and each drawer is contained in a particu-
lar cabinet. This facilitates understandability, access control, and change manage-
ment of the model. 

req Requirements [Max Acceleration Requirement Traceability]

«requirement»
Maximum Acceleration

id � 3.2.1
text � The vehicle shall accelerate from 0 to 60 mph i . . .

«testCase»
Max Acceleration

«block»
Power Subsystem

«requirement»
Engine Power

id � 3.2.2
text � The max engine horsepower shall be greater
than . . .

«requirement»
Engine Specification

«hardware»
6-Cylinder Engine

«rationale»
Refer to engineering
analysis results from
Vehicle Acceleration
Analysis parametric
diagram.

«deriveReqt»

«verify»

«satisfy»

«refine»

 FIGURE 3.18 

      Requirement diagram showing the traceability of the  Max Acceleration  requirement that was shown in the 
Automobile Specifi cation  in  Figure 3.2 . The traceability to a requirement includes the design elements 
that satisfy it, other requirements derived from it, and test cases to verify it. Rationale for the traceability 
relationships is also shown.    
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   The package diagram in Figure 3.19    shows how the model elements for this 
example are organized into  packages. Each package  contains a set of model 
elements. Model elements in one package can be related to model elements in 
another package. However, model organization enables each model element to 
be uniquely identifi ed by the package that contains it. The model organization is 
generally similar to the view that is shown in the tool browser. Details on how to 
organize the model with packages are given in Chapter 5. 

Requirements

Use Cases

Behavior

Structure

Parametrics

Test Cases

Support Elements

Automobile Model

pkg Automobile Model [Model Organization]

 FIGURE 3.19 

      Package diagram showing how the model is organized into packages that contain model 
elements that comprise the Automobile Domain . Model elements in packages are displayed 
on diagrams. Model elements in one package can be related to model elements in another 
package.   

3.4 A Simple Example Using SysML for an Automobile Design
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    3.4.21    Model Interchange 
   A SysML model that is captured in a model repository can be imported and 
exported from a SysML-compliant tool in a standard format called XML metadata
interchange (XMI). This enables other tools to exchange this information if they 
also support XMI. An example may be the ability to export selected parts of the 
SysML model to another UML tool to support software development of the con-
troller software, or to import and export the requirements from a requirements 
management tool, or to import and export the parametric diagrams and related 
information to engineering analysis tools. The ability to achieve seamless inter-
change capability may be limited by the quality of the model and how the tool 
implements the standard, but this capability continues to improve. A description 
of XMI is included in Chapter 17.   

    3.5    Summary 
   SysML is a general-purpose graphical language for modeling systems that may 
include hardware, software, data, people, facilities, and other elements within the 
physical environment. The language supports modeling of requirements, struc-
ture, behavior, and parametrics to provide a robust description of a system, its 
components, and its environment. 

   The semantics of the language enable a modeler to develop an integrated 
model where model elements on one diagram can be related to model elements 
on other diagrams. The diagrams enable capturing and viewing the information 
in the model repository to help specify, design, analyze, and verify systems. The 
repository information can be imported and exported to exchange model data via 
the XMI standard and other exchange mechanisms. 

   The SysML language is a critical enabler of MBSE and can be used with a vari-
ety of processes and methods. However, effective use of the language requires a 
well-defi ned MBSE method. The automobile example illustrated the use of one 
such method. Other examples are included in Part III.  

    3.6    Questions 
       1.   What are some of the aspects of a system that SysML can represent?  
     2.   What is a requirement diagram used for?  
  3.   What is an activity diagram used for?  
  4.   What is a sequence diagram used for?  
  5.   What is a state machine diagram used for?  
  6.   What is a use case diagram used for?  
  7.   What is the primary unit of structure in SysML?  

     8.   What is the block defi nition diagram used for?  
     9.   What is an internal block diagram used for?  
    10.   What is a parametric diagram used for?  
    11.   What is a package diagram used for?          
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   This chapter sets the stage for the detailed description of the SysML language that 
follows in the rest of Part II. It contains a discussion on the SysML language archi-
tecture and provides an introduction to common concepts that apply to all SysML 
diagrams. It also includes an introduction to the example used throughout the 
chapters in Part II to illustrate the language concepts. The remaining chapters in 
Part II provide the detailed description of the language. 

    4.1   The OMG SysML Language Specifi cation 
   The official OMG SysML specification [1] for the SysML language has been pub-
licly available since September 2007. The specification was developed in response 
to the requirements specified in the UML for Systems Engineering Request for 
Proposal (UML for SE RFP) [27]. It was formally adopted by the OMG in 2006 as 
an extension to the Unified Modeling Language (UML) [28]. The SysML specifica-
tion is maintained and evolved by the OMG SysML Revision Task Force (RTF). 

   The SysML specifi cation defi nes the SysML language concepts used to model 
systems. The SysML language concepts are described in three parts: 

      ■    An  abstract syntax , or schema, described by a metamodel 
      ■    A concrete syntax , or notation, described using notation tables 
      ■    The semantics, or meaning, of the language concepts in the systems engin-

eering domain    

   SysML is derived from the Unified Modeling Language, which was originally speci-
fied as a modeling language for software design but has been extended by SysML 
to support general-purpose systems modeling. As indicated in the Venn diagram 
in Figure 4.1   , SysML reuses a subset of the UML language and adds extensions to 
meet the requirements in the UML for SE RFP. 

   Approximately half of the UML language was reused. The subset of UML reused 
by SysML is called UML4SysML as indicated in the diagram. The other portion of 
UML was not viewed as essential to meet the requirements of the UML for SE RFP. 

                       SysML Language 
Architecture   4 

CHAPTER
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Limiting the portion of UML that was used reduces the requirements for SysML 
training and tool implementation, while satisfying the requirements for systems 
modeling. 

   The reusable portion of UML was in some cases used as is, without modifi ca-
tion such as interactions, state machines, and use cases. Other parts of the reus-
able portion of UML were extended to address unique systems engineering needs. 
The profi le is the standard UML mechanism used to specify the systems engineer-
ing extensions to the language and is described in more detail in Chapter 14. The 
profi le-based approach was chosen over other extension mechanisms because 
many UML tools can interpret profi les directly. This enables the systems modeling 
community to leverage widely used UML-based tools for systems modeling. An 
additional benefi t is that a profi le of UML can be used in conjunction with UML to 
help bridge the gap between systems and software modeling. 

   The SysML profi le is organized into the following discrete language units that 
extend the language: 

      ■     Requirements—textual requirements and their relationships to each other 
and to models  

      ■     Blocks —system structure and properties  
      ■     Activities—extensions to UML activities to support continuous behavior 
      ■     Constraint blocks —parametric models  
      ■     Ports and fl ows—extensions to the UML structural model to support fl ow 

of information, matter, and energy between system elements    

   The SysML profi le is intended to be applied strictly, which means that models 
authored using the SysML extensions may only use the supported subset of UML, 
UML4SysML. The SysML language described in the specifi cation is therefore the 
combination of UML4SysML and the SysML profi le as indicated in  Figure 4.1 .

UML4SysML

SysMLUML

UML -
UML4SysML SysML

Profile

 FIGURE 4.1 

      Relationship between SysML and UML.    
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    4.2   The Architecture of the SysML Language 
   There are typically three levels of concept relevant to a modeling language: 

      ■    Domain concepts for the domain being modeled (e.g., for SysML, general-
purpose systems modeling concepts such as system and function) 

      ■    Mapping of domain concepts to language concepts (e.g., blocks, activities), 
often called the metamodel 

      ■    Instantiation and representation of the language concepts as they apply to a 
particular system (e.g., a block called airplane), often called the user model    

   This section describes these levels in more detail. 

    4.2.1   The General-Purpose Systems Modeling Domain 
   The goal of a modeling language is to enable the description of some domain of 
interest. For SysML the domain of interest is the general-purpose modeling of sys-
tems such as airplanes, automobiles, and information systems. The domain concepts 
are defined in the UML for Systems Engineering (SE) RFP that specifies the require-
ments for SysML. The requirements are organized into concepts needed to model 
structure, behavior, properties, requirements, and other systems modeling con-
structs. The following is an example of a requirement under the Structure section: 

  6.5.1.1. System hierarchy. UML for SE shall provide the capability to 
model the hierarchical decomposition of a system into lower-level logical 
or physical components.   

   Other examples include the requirement to model a system, its environment, 
functions, inputs/outputs, events, and property values to name a few. These con-
cepts enable the modeler to describe a system such as an airplane. 

    Figure 4.2    shows a model of an airplane called  Bill’s Plane, and some of its rel-
evant characteristics. In this example, the structure of the airplane is composed of 
its fuselage, wings, and landing gear. The airplane behavior is described in terms 
of its interaction with the pilot and the physical environment to support takeoff, 
fl ight, and landing. Some of its performance and physical properties include its 

Bill’s Plane

G-AS12

500

 FIGURE 4.2 

      A typical system.    

4.2 The Architecture of the SysML Language
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speed, dry weight, and fuel load. The principal requirement for this airplane is 
to fl y a specifi ed distance with a specifi ed payload in a specifi ed time, and it also 
needs to meet other requirements such as safety, reliability, and cost.  

    4.2.2    The Modeling Language (or Metamodel) 
   At the core of SysML is a  metamodel that describes the concepts in the language, 
their characteristics, and interrelationships. This is sometimes called the abstract 
syntax, and is distinct from the concrete syntax that specifies the notation for the 
language. The OMG defines a language for representing metamodels, called the 
Meta Object Facility (MOF) [20]; it is used to define UML and other metamodels. 

   In a metamodel, the individual concepts in a language are described by  meta-
classes that are related to each other using relationships such as generalizations 
and associations. Each metaclass has a set of properties that characterize the lan-
guage concept it represents, and a set of constraints that impose rules on the val-
ues for those properties. 

   The package diagram in  Figure 4.3    shows a small fragment of  UML4SysML, the 
MOF metamodel on which SysML is based. It shows one of the fundamental con-
cepts of UML, called  Class, and some of its important relationships.  Class special-
izes Classifi er, which enables it to form classifi cation hierarchies. The fi gure also 
shows an association from  Class to Property, which allows classes to have attri-
butes. Another Classifi er, Data Type, is used to describe values of attributes such 
as integers and real numbers. Finally, the notion of a  Package is introduced; it can 
be used to group model elements, called generically  Packageable Elements. All 
Classifi ers are  Packageable Elements and so are its specializations such as classes 
and data types. 

«metamodel diagram»
pkg [Model] UML4SysML [Small Fragment]

«metaclass»
Packageable Element

«metaclass»
Package

«metaclass»
Property

«metaclass»
Class

«metaclass»
Data Type

«metaclass»
Classifier

ownedAttribute

packagedElement

 FIGURE 4.3 

      A fragment of the UML4SysML.    
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   A profi le in UML is the mechanism used to customize the UML language. A 
profi le contains  stereotypes, which are similar to metaclasses, and are used to 
extend the metaclasses in UML to create new or modifi ed concepts in the custom-
ization. The system engineering extensions to UML in SysML are described using a 
profi le called the SysML profi le. 

    Figure 4.4    shows two SysML concepts in the  Blocks language unit of the SysML 
profi le and how they relate to UML metaclasses.  Class and Data Type are UML 
metaclasses from the  UML4SysML subset.  Block extends  Class and is the funda-
mental structural concept in SysML.  Value Type extends  Data Type and adds quan-
titative features such as unit and dimension. 

   The semantics of a language describe the meaning of its concepts in the 
domain of interest. Semantics are described via a mapping between the domain 
concepts and the language concepts. The domain concepts can be defi ned in 
natural language (e.g., English text) or more formally defi ned mathematically. For 
SysML, the domain concepts were defi ned by the requirements in the UML for SE 
RFP as English text, as described earlier. 

   The mapping between concepts in the systems modeling domain and the 
language concepts in SysML is performed by mapping the requirements in the 
UML for SE RFP to the metaclasses in the SysML metamodel, and it is captured 
in a requirements traceability matrix [29]. For example, a system and its compo-
nents map to blocks, a composition relationship maps to a composite association, 
a function maps to an activity, and a requirement in the domain maps to a require-
ment in the SysML metamodel. 

    4.2.3   The System Model (or User Model) 
   As described in Chapter 2, the user model is a description of a system and its envi-
ronment for a specific purpose, such as the validation of the requirements for the 
system or to specify the system’s components. A SysML user model consists of 

pkg [Profile] Blocks

«metaclass»
UML4SysML::Data Type

«stereotype»
Value Type

«metaclass»
UML4SysML::Class

«stereotype»
Block

 FIGURE 4.4 

      A fragment of the SysML profi le for blocks.    
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model elements that are instances of the metaclasses in the SysML metamodel; 
for example, a SysML block may be instantiated as an airplane, a fuselage, a wing, 
and a landing gear in the user model. The model elements represented in the user 
model conform to the metaclass properties, constraints, and relationships defined 
by the metamodel. These model elements are visualized using a concrete syntax 
(e.g., symbols on diagrams) as described in Section 4.3. The concrete syntax is 
mapped to the abstract syntax so that each symbol represents a specific concept. 
For example, a block and its properties have a specific graphical representation as 
a box symbol with internal compartments. 

    Figure 4.5    shows a fragment of a block defi nition diagram for defi ning airplanes, 
along with their mapping to the metaclasses that represent the various concepts. 
Airplane Model is a package containing  Airplane and Wing blocks;  Pilot, an actor 
(i.e., external to the system); and  Liters, a value type.  Airplane has two properties 
that describe two of its quantifi able characteristics:  call sign, whose valid values 
are described by  String (a primitive concept defi ned by SysML), and  fuel load,
with units of Liters. Airplane has an association to block  Wing, which describes 
part of its structure, in this case its (two)  wings.

   As described in Chapter 2, a SysML modeling tool can store a user model as 
structured data in a model repository. The modeler uses the tool to enter and 
retrieve this information from the model repository, primarily by using the graphi-
cal representation provided by SysML diagrams. A SysML modeling tool that com-
plies with the SysML specifi cation enforces the metaclass properties, constraints, 
and relationships on the information entered or retrieved from the model. 

    Figure 4.6    shows how the original concept described in  Figure 4.2  relates to 
the user model fragment described in  Figure 4.5 . That fi gure shows the class of 
airplanes, but in this example, we are referring to a specifi c airplane.  Bill’s Plane  
is a specifi c instance of the  Airplane block with values for  call sign and fuel load  
related to the corresponding properties of the block.  Bill is an instance of Pilot and 
the wings of Bill’s Plane are instances of the block  Wing. The value type  Liters  
describes how to interpret the value for  fuel load, which in the case of  Bill’s Plane  
is 500 liters. Note that the stereotypes and metaclasses referenced by the model 
elements in Figure 4.5 —Block, Value Type, Actor, and Property—all represent 

Airplane Model

«metaclass»
Package

«stereotype»
Block

«stereotype»
Value Type

«valueType»
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«block»
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call sign  : String
fuel load : Liters

«block»
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«metaclass»
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«metaclass»
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wings

2

«metaclass»
Property

 FIGURE 4.5 

      Relationship of metaclasses to model elements.    
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something in the real world of the user.  Package, however, does not; it is simply 
used to bring structure to the user model. 

    4.2.4   Model Interchange 
   As well as enabling the reuse of relevant concepts and diagrams from UML, build-
ing SysML as a formal extension of UML also enables SysML tools to leverage the 
data interchange format, called XML metadata interchange or XMI.  XMI explicitly 
states how UML models, including models that use profiles, such as SysML, get con-
verted into XML. The implementation of the XMI specification [21] is intended to 
enable SysML tools to read and write SysML models so that the modeling informa-
tion can be exchanged between tools. XMI is summarized in Chapter 17.   

    4.3   SysML Diagrams 
   In addition to a metamodel, SysML defines a  notation, or concrete syntax that 
describes how SysML concepts are visualized as graphical or textual elements. In 
the SysML specification, this notation is described in notation tables that map lan-
guage concepts to graphical symbols on diagrams. 

    Figure 4.7    shows the SysML diagram taxonomy. SysML notation is based on 
the notation for UML, although several of the UML diagrams, including the object 
diagram, collaboration diagram, deployment diagram, communication diagram, 
interaction overview diagram, and timing diagram, were omitted. SysML includes 
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fuel load : Liters

«block»
Wing «valueType»
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 FIGURE 4.6 

      Relating real-world concepts to model concepts.    
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modifi cations to other UML diagrams such as the class diagram, composite struc-
ture diagram, and activity diagram, and it adds two new diagrams for requirements 
and parametrics. The detailed notation tables that describe the symbols used on 
the diagrams can be found in the Appendix. 

   In addition to the graphical forms of representation used on SysML diagrams, 
SysML identifi es the need for tabular and tree representations of model data, 
examples of which are included in various chapters in Part II.  

    4.3.1    Diagram Frames 
   Every SysML diagram must have a frame, as shown in  Figure 4.8   . Diagram frames 
provide a visible context for the diagram. The frame represents a model element 

Content

«diagram usage»
diagram kind [model element type] model element name [diagram name]

Header

Diagram description
Version
Description
Completion status
Reference
User-defined fields

 FIGURE 4.8 

      A diagram frame.    
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 FIGURE 4.7 

      SysML diagram taxonomy.    
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that provides the context for the diagram content. In addition, certain diagrams 
explicitly draw symbols on or to the frame boundary to indicate external inter-
faces of the model element owning the diagram. 

   The diagram frame is a rectangle with a header, or label, containing standard 
information in the top left corner. The rest of the rectangle is the content area, or 
canvas, where the symbols representing diagram content are drawn. An optional 
diagram description, providing further detail on the status and purpose of the dia-
gram, can be attached to the frame boundary. 

    4.3.2   Diagram Header 
   The diagram header, or label, is a rectangle with its lower right corner cut off. 
It includes the following information: 

      ■     Diagram kind—an abbreviation indicating the type of the diagram 
      ■     Model element type—the type of model element that the diagram represents 
      ■     Model element name —the name of the represented model element 
      ■     Diagram name—the name of the diagram, which is often used to say some-

thing about its purpose 
      ■     Diagram usage —a keyword indicating a specialized use of a diagram    

   An example of a diagram frame with header is shown in  Figure 4.3 .

    Diagram Kind 
   The diagram kind may take one of the following values, depending on the type 
of diagram: 

      ■    Activity diagram— act   
      ■    Block defi nition diagram— bdd   
      ■    Internal block diagram— ibd   
      ■    Package diagram— pkg   
      ■    Parametric diagram— par   
      ■    Requirement diagram— req   
      ■    Sequence diagram— sd   
      ■    State machine diagram— stm   
      ■    Use case diagram— uc      

    Model Element Type 
   Different diagrams represent different types of model element. The valid permuta-
tions are listed here by diagram: 

      ■     Activity diagram —activity control operator 
      ■     Block defi nition diagram —block, constraint block, package, model, model 

library 
      ■     Internal block diagram —block 
      ■     Package diagram —package, model, model library, profi le, view 
      ■     Parametric diagram —block, constraint block 
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      ■     Requirement diagram —package, model, model library, requirement  
      ■     Sequence diagram —interaction  
      ■     State machine diagram —state machine  
      ■     Use case diagram —package, model, model library    

   The choice of  model element type is explained further in the following chap-
ters where the diagrams are discussed. Strictly speaking, the model element type 
only needs to be included in the header to avoid ambiguity if there is more than 
one allowable model element type that the diagram can represent, although it 
can help to orient novices in the language. SysML does make provision for the 
model element type to be a user-defi ned stereotype where appropriate.  

    Diagram Name 
   Since a model can contain considerable amounts of information, the modeler may 
choose to only highlight selected features in a particular diagram for a given pur-
pose, and hide (elide) other features that may detract from this purpose. The  dia-
gram name is intended to provide a concise description of the diagram’s purpose. 

    Diagram Usage 
   The diagram usage describes a specialized use for the diagram type. The diagram 
usage name is included in the header in guillemets. For example, a modeler may 
specify a context diagram as a usage of a use case diagram. The diagram usage 
notation does not have any semantic foundation but is thought to be a useful nota-
tional extension.    

     4.3.3    Diagram Description 
   The diagram description is an optional note attached either to the inside or 
outside of the diagram frame. It is intended to enable the modeler to capture addi-
tional information about the diagram. The information includes some predefined 
fields but also has a provision for user-defined fields. The following are the pre -
defined fields. 

     Version:   Version of the diagram.  

     Completion status: A statement by the diagram author about the completeness of 
the diagram. It may include a statement, such as  “ in-process, ” “ draft, ” or  “ complete, ”
and may also include a specific description of the information that is still missing 
from the diagram. A very important use of this field is to indicate whether 
the diagram is a complete view given its scope. Systems engineers are used 
to modeling tools that show the complete detail for a given scope, whereas SysML 
diagrams only show a subset of the possible details. This field can therefore be 
used by the diagram author to assert its intended completeness of coverage. 

     Description:  Free text description of the diagram content or purpose.  

     Reference: References to other information about the diagram, or hyperlinks to 
related diagrams to aid in navigation.     
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    4.3.4   Diagram Content 
   The diagram content area, or  canvas, contains graphical elements that repre-
sent underlying elements in the model. SysML diagrams are composed of two 
types of graphical elements: nodes and paths. A node is a symbol that can con-
tain text and/or other symbols to represent the internal detail of the represented 
model element. Paths, also known as edges, are lines that may have multiple addi-
tional adornments such as arrows and text strings. The amount of information in 
the description of many model elements is potentially very large and can lead to 
diagram clutter. To help mitigate this problem, SysML tools typically offer the user 
options to hide detail. 

    Properties and Keywords 
   SysML includes the notion of a  keyword that is included in brackets called  guille-
mets as   « keyword » before the name of a model element. The keyword identi-
fies the type of model element (i.e., the metaclass) and is typically used to remove 
ambiguity when a type of graphical element (e.g., rectangle, dashed arrow) rep-
resents more than one modeling concept. Users can create their own keywords 
and associated meanings to further customize the language using stereotypes, as 
described in Chapter 14. 

   Symbols display certain commonly used information about their model ele-
ment, such as name and type, in a formatted string that is often called their name 
string. Model elements often have additional properties, besides their name 
string, that also need to be displayed on diagrams. These are shown as a comma-
separated list, enclosed in braces, following the name of the model element. A 
user can also add additional properties, sometimes called tags, to model elements 
associated with a keyword. To differentiate these from other properties, these 
properties are displayed before the name and after their associated keyword using 
the same form (i.e., a comma-separated list in braces). 

    Node Symbols 
   Node symbols are generally rectangular but may be round-angles, ellipses, and so 
on. All node symbols have a name compartment that can be used to display the 
name string of the represented model element, along with any applicable key-
word or keywords and properties. Some node symbols, in addition, have extra 
compartments used to display details of nested elements, either in textual or 
graphical form. In addition to its predefined nested elements, compartments can 
be used to display tags added by the user. 

    Figure 4.9    shows two examples of node symbols, a use case called  Fly Airplane  
and the block  Airplane. The Airplane symbol shows an internal compartment 
labeled  values  to store value properties. 

    Path Symbols 
   All path symbols are some kind of line, but they have different styles and ends 
depending on the modeling concept they represent. Paths may have a text adorn-
ment that will contain their name string, keywords, and additional properties, 
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although this is often hidden. Additional textual information may also be shown 
on the ends of the lines where the represented model element requires it. 

    Figure 4.10    shows two examples of path symbols, an association and a general-
ization. The association symbol indicates that an Airplane has exactly two wings. 
The generalization symbol indicates that an  Airplane  is a kind of  Flying Thing.

    Icon Symbols 
    Icons are typically used to represent low-level concepts that do not have further 
internal detail. However, they can also be used as an alternate representation for 
most other symbols. In particular, a stereotype may specify an icon that can be 
used to display a stereotyped element. Where the model element represented by 
an icon has properties, such as a name, these are displayed in a text string floating 
near the object. Typically icons appear on the diagram canvas, or inside a node 
symbol, but icons can also appear on lines.  Figure 4.11    shows two examples of 
icons: a stick figure representing the actor  Pilot and a small box containing an 
arrow that represents fuel flowing into the  Airplane  block.  

    Note Symbols 
   A note symbol can be attached to the symbol for any model element or set of 
model elements and is used to annotate the model with additional textual infor-
mation that may include a hyperlink to a reference document. The note symbol 
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Airplanefuel in
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 FIGURE 4.11 

      Examples of icon symbols.    

Fly Airplane

«block»
Airplane

values
call sign : String
fuel load : Liters

 FIGURE 4.9 

      Examples of node symbols.    
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      Examples of path symbols.    
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is a rectangular box containing the textual information with a cutoff upper right 
corner. Often the content of a note is free format textual description of the model 
element, but notes can also be used to display user-defined tags. They are also 
used extensively in SysML to display cross-cutting information, such as traceability 
to requirements (see Chapter 12) and allocations (see Chapter 13). 

    Figure 4.12    shows two examples of note symbols; one just stores a comment 
about the  Pilot and the other represents the claim that  call sign satisfi es, the 
Airplane Unique Identity  requirement.    

     4.3.5   Additional Notations 
   SysML also includes nongraphical representations of model information that is 
often useful for efficiently displaying large amounts of information. The forms of 
nongraphical representation that SysML supports are tables, matrices, and trees. 

   A table can be a highly effi cient and expressive way to represent informa-
tion. Tables have been used traditionally for capturing a wide variety of systems 
engineering information. For example,  N-squared (N2) charts [30] capture inter-
face information, requirements tables, and many other types of information. SysML 
allows the use of tabular notation as an alternative diagram notation to represent 
the modeling information contained in a SysML model repository. Tabular for-
mats may be used to represent properties of model elements and/or relationships 
among model elements. The details of what information is captured in a table have 
not been specifi ed to leave this as a fl exible capability for a tool vendor to support, 
but the requirements and allocations chapters describe specifi c tabular formats for 
representing requirements and allocations, respectively. 

   When a table is used, the table is included in a diagram frame with the diagram 
kind table shown in the diagram label. Otherwise, the diagram label format is the 
same as that for any other kind of diagram. An example of a simple requirements 
table is shown in  Figure 4.13   .

    Matrices, identifi ed by the diagram kind  matrix, are very useful for describ-
ing relationships, where the rows and columns of the matrix are model elements 
and its cells describe a relationship between the appropriate row and column 
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call sign : String
fuel load : Liters

Pilot

A pilot flies an airplane. He or she
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«requirement»Airplane Unique Identity

 FIGURE 4.12 

      Examples of note symbols.    
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elements. Trees, identifi ed by the diagram kind  tree, typically describe hierarchi-
cal and other types of relationships that are frequently presented using browser 
panes in SysML modeling tools.   

    4.4    The Surveillance System Case Study 
   A single case study is used throughout this part of the book to help demonstrate 
the concepts in the SysML language. 

    4.4.1    Case Study Overview 
   A company, called ACME Surveillance Inc., produces and sells surveillance sys-
tems. Their range of surveillance systems products is intended to provide security 
either for homes or small commercial sites. Their systems use sophisticated pan 
and tilt cameras to produce video images of the surrounding area, and for a fee 
can be connected to a central monitoring service. ACME also produces the cam-
eras and sells them as separate products for  “ do-it-yourself ” enthusiasts. 

   The chapters in Part II use selected extracts of the ACME Surveillance Inc. 
model to highlight the features of SysML. A similar example is used in Chapter 16 
to demonstrate the application of a model-based systems engineering method to 
the development of a residential security system. 

    Figure 4.14    shows a typical surveillance system setup for a small commercial 
site. The system has four wall-mounted surveillance cameras, three connected into 
the company’s Ethernet network and the fourth connected via a wireless access 
point. One of the offi ces is used to house the monitoring station for the surveil-
lance system, which is also connected to the offi ce network. This particular moni-
toring station consists of one workstation and an additional screen. The offi ce has 
a PBX that the monitoring station uses to communicate to its designated com-
mand center.  

id reqʼt name reqʼt text

4 Capacity

4.1 CargoCapacity

4.2 FuelCapacity

4.3 PassengerCapacity

The Hybrid SUV shall carry 5 adult passengers, along with
sufficient luggage and fuel for a typical weekend campout.

The Hybrid SUV shall carry sufficient luggage for 5 people for
a typical weekend campout.

The Hybrid SUV shall carry sufficient fuel for a typical weekend
campout.

table [Requirement] Capacity [Decomposition of Capacity Requirement]

The Hybrid SUV shall carry 5 adult passengers.

 FIGURE 4.13 

      Example of tabular format in SysML.    
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    4.4.2   Modeling Conventions 
   Where elements are named in the example model, the names are chosen if pos-
sible to be valid English names. Whenever the names have more than one word, 
the words are separated by spaces. Names of model elements that represent defi-
nitions have the first letter of all words in uppercase. Names of features have the 
first letter of all words in lowercase. 

   The following chapters contain numerous SysML diagrams used to illustrate 
the concepts in the language. With few exceptions, each diagram is accompanied 
by a description, and to better relate the description to the fi gures, names used in 
the diagram are presented in italic font. Terms in bold are used to highlight funda-
mental concepts in the SysML language.   

    4.5   Chapter Organization for Part II 
   Chapters 5 through 14 in Part II describe the SysML language concepts and nota-
tion and how the language can be used to model a system. The ordering of the 
chapters is based on the logical development of the language concepts, including 
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 FIGURE 4.14 

      Depiction of surveillance system example.    
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concepts for model organization, structure, behavior, allocation, requirements, and 
profiles. The ordering is NOT based on a systems engineering process. Part III 
includes examples of model-based systems engineering methods that show how 
the language is used as part of a systems engineering process. 

   Each chapter describes applicable language concepts, diagram notation, and 
example diagrams to show how to create syntactically correct diagrams and mod-
els that conform to the language specifi cations. 

    4.6    Questions 
       1.   What does the abstract syntax of a modeling language describe? 
     2.   What are the two parts of the SysML abstract syntax?  
     3.   How are language concepts defi ned in a metamodel?  
     4.   What is a profi le and what does it contain?  
     5.   What do the semantics of a modeling language describe?  
     6.   What is XMI used for?  
     7.   What does the concrete syntax of a modeling language describe?  
     8.   What are the fi ve elements of a diagram header and what are they used for?  
     9.   What are the four kinds of symbols that can appear on a diagram?  
    10.   When is a keyword needed as part of a graphical symbol?    

     Discussion Topics 
   SysML could have been described completely as a metamodel, but instead used 
the UML profiling mechanism. Discuss the relative benefits of these two options. 

   Traditional engineering modeling tools always show all relevant model elements 
in any given diagram, whereas SysML allows modelers to selectively hide detail. 
Discuss the relative benefi ts of these two approaches. 

   In addition to graphical representations of the model through diagrams, SysML 
supports the use of nongraphical representations such as tables and trees. Under 
which circumstances does it make sense to use these different representations?      



   This chapter addresses the topic of model organization and describes the organi-
zational concepts provided by SysML: models, packages, and views. In SysML, the 
fundamental unit of model organization is the package. Packages and their contents 
are shown on a package diagram. Packages are both containers and namespaces, 
two fundamental concepts in SysML. 

    5.1   Overview 
   In SysML, each model element is contained within a single container that is 
sometimes called its owner or parent. Contained elements are often called the 
child elements. When a container is deleted or copied, its child elements are 
also deleted or copied. Some child elements are also containers, which leads to a 
nested containment hierarchy of model elements. 

   Packages are one example of a container. The model elements contained 
within a package are called packageable elements, examples of which are blocks, 
use cases, and activities. Since packages are also packageable elements, they can 
support package hierarchies. 

   In addition to having a place in a containment hierarchy, each model element 
with a name must also be a member of a namespace. A namespace enables its ele-
ments to be uniquely identifi ed within its namespace. A package is a namespace 
for the packageable elements it contains. 

   A model is a special type of package that contains a set of model elements 
that describe a domain of interest. The other chapters in Part II describe the 
different types of model elements, including structural, behavioral, and cross-
cutting, and how they are used to describe a subject area of interest. This chapter 
describes how those elements are organized to enhance modeling effectiveness. 

   An effective model organization facilitates reuse of model elements, and also 
easy access and navigability among model elements. It can also support confi gura-
tion management of the model, and exchange of modeling information with other 
tools, as described in Chapter 17. The importance of maintaining a well-defi ned 
model organization increases with the size of the model, but even small models 

                    Organizing the Model 
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benefi t from consistently applied organizational principles. The specifi c criteria 
for partitioning the model are methodology dependent, but some examples of 
model organization principles are included later in this chapter. 

   Because reuse is so important in modeling, SysML includes the concept of a 
model library, which is specifi cally intended to contain model elements that can 
be shared within and between models. Model libraries are more fully described in 
Chapter 14. 

   Views and viewpoints can be used to visualize models according to multiple 
organizing principles. A view is a kind of package used to show a particular per-
spective on the model, such as performance or security. A viewpoint represents 
a particular stakeholder perspective that specifi es the contents of a view. A view 
conforms to a viewpoint. 

   There are a number of relationships between packages and their contents. An 
import relationship allows elements contained in one package to be imported 
into another package so that it can be referenced by its name. SysML also contains 
a generic concept of dependency between packageable elements, which can be 
specialized as needed.  

    5.2    The Package Diagram 
   The model elements contained within a package can be shown on a  package
diagram . The complete diagram label for a package diagram is as follows: 

  pkg  [package type] package name [diagram name]   

   As described in Chapter 4, the diagram frame represents a particular model 
element that provides the context for the model elements represented on the 
diagram. 

   The fi rst fi eld in the diagram label is the diagram kind,  pkg, which is short for 
package. The  package type is the type of package that the diagram represents (e.g., 
model, package, model library, or view). The third fi eld in the diagram header is 
the package name that identifi es the particular package that the diagram frame 
represents. The last fi eld is a user-defi ned  diagram name used to provide further 
information about the diagram that typically summarizes the diagram purpose. 

   An example of a package diagram is shown in  Figure 5.1   . It shows several lev-
els of the package hierarchy for the  Products package of the ACME Surveillance 
Systems Inc. model. The notation tables for package diagrams are included in 
Table A.1 in the Appendix. 

    5.3    Defi ning Packages Using a Package Diagram 
   SysML models are organized into a hierarchical tree of packages that are much 
like folders in a Windows directory structure. Packages are used to partition ele-
ments of the model into coherent units that can be subject to access control, 
model navigation, configuration management, and other considerations. The most 
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pkg [Package] Products [Nested Packages]

Surveillance Systems

LogicalPhysical

Use Cases

Behavior Parametrics Structure

RequirementsCameras

 FIGURE 5.1 

      An example package diagram.    

significant types of packages used to organize models in SysML are models, pack-
ages, model libraries, and views. 

   A package is a container for other model elements. Any model element is con-
tained in exactly one container, and when that container is deleted or copied, the 
contained model element is deleted or copied along with it. This pattern of con-
tainment means that any SysML model is a tree hierarchy of model elements. 

   Model elements that can be contained in packages are called  packageable
elements and include blocks, activities, and value types, among others. Packages 
are themselves packageable elements, which allows packages to be hierarchically 
nested. The containment rules and other related characteristics of other package-
able elements are described in the relevant chapters. 

   A model in SysML is a top-level package in a nested package hierarchy. In a 
package hierarchy, models may contain other models, packages, and views. The 
choice of model content and detail—for example, whether to have a hierarchy 
of models—is dependent on the methodology used. Typically, however, a model 
is understood to represent a complete description of a system or subject area of 
interest for some purpose, as described in Chapter 2. 

   A model has a single primary hierarchy containing all elements whose organiz-
ing principle is based on what is most suitable to meet the needs of the project. 
Views, which are described in Section 5.9, can be used to provide additional per-
spectives on the model using alternative organizing principles. 

   Often a package is constructed with the intent that it will be reused in many 
models. SysML contains the concept of a model library—a package that is des-
ignated to contain reusable elements. A model library is depicted as a package 
symbol with the keyword  «modelLibrary » above the package name as shown in 
Figure 5.2    for  Components and Standard Defi nitions. See Chapter 14 for more 
details on model libraries. 

   Relationships, such as dependency and import relationships, can be estab-
lished between packages and between the packageable elements within those 
packages. These relationships are described in Sections 5.7 and 5.8. 

5.3 Defi ning Packages Using a Package Diagram
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   The diagram content area of a package diagram shows packages and other 
packageable elements within the package represented by the frame. Packages 
are displayed using a folder symbol, where the package name and keywords can 
appear in the tab or the body of the symbol. Where a model appears on a package 
diagram, which may happen where there is a hierarchy of models, the standard 
folder symbol includes a triangle in the top right corner of the symbol’s body. 

   The package diagram in  Figure 5.2  shows the top-level packages within the 
corporate model of  ACME Surveillance Systems Inc., as specifi ed in the frame 
label of the diagram. The user-defi ned diagram name for this diagram is  Top-Level 
Packages, indicating that the purpose of this diagram is to show the top level of 
the model’s package structure. In this example, the model contains separate pack-
age hierarchies for 

      ■    Standard off-the-shelf components  
      ■    Standard engineering defi nitions such as SI units—from the French  Système

International d’Unités  (also known as International System of Units)  
      ■    The company’s products  
      ■    Any specifi c extensions required to support more domain-specifi c notations 

and concepts (extensions to SysML, called profi les, are described in detail in 
Chapter 14)    

   Each package should contain packageable elements specifi c to the purpose 
of the package. These elements can then be represented as needed on different 
SysML diagrams including structure, behavior, and requirement diagrams, as 
described in later chapters in this part of the book.  

    5.4    Organizing a Package Hierarchy 
   As described previously, a model is organized into a single hierarchical struc-
ture of packages. The top-level package is always a model that generally contains 
packages at the next level of the model hierarchy, as shown in  Figure 5.2 . These 
packages in turn often contain subpackages that further partition elements in the 
model into logical groupings. 

pkg [Model] ACME Surveillance Systems Inc [Top-Level Packages]

«modelLibrary»
Standard Definitions

«modelLibrary»
Components Products Profiles

 FIGURE 5.2 

      Package diagram for the surveillance system model.    
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   Model organization is a critical choice facing the modeler because it impacts 
reuse, access control, navigation, confi guration management, data exchange, and 
other key aspects of the development process. For example, a package may be 
the unit of the model assigned write privileges, granting only selected users the 
ability to modify its contents. In addition, when a particular package is  “checked 
out” to modify its contents, other users may be excluded from making changes 
until the package is  “checked in. ” A poorly organized model makes it diffi cult for 
users to understand and navigate it. 

   The model hierarchy should be based on a set of organizing principles. The 
following are some of the possible ways to organize a model: 

      ■    By system hierarchy (e.g., system level, subsystem level, component level) 
      ■    By process life cycle where each model subpackage represents a stage in 

the process (e.g., requirements analysis, system design) 
      ■    By teams that are working on the model (e.g., Requirements Team, 

Integrated Product Team (IPT) 1, 2) 
      ■    By the type of model elements contained in it (e.g., requirements, behavior, 

structure) 
      ■    By model elements that are likely to change together 
      ■    By model elements organized to support reuse (e.g., model libraries) 
      ■    By other logical or cohesive groupings of model elements based on defi ned 

model-partitioning criteria 
      ■    A combination of the preceding    

   The containment relationship relates parents to children within a package 
hierarchy. Several levels of containment hierarchy can be shown on the package 
diagram using a containment relationship between container elements and their 
contained elements. The containment relationship is shown as a line with a cross-
hair at the container (parent) end, but with no adornment on the ends associated 
with the contained elements (children). Each containment relationship can be 
shown as a separate path, but typically they are shown as a tree with one cross-
hair symbol and many lines radiating from it. An alternative representation of the 
containment relationship is to show the nested model elements enclosed within 
the body of the package symbol. 

    Figure 5.3    shows the three packages contained within the  Products pack-
age of the corporate model:  Surveillance Systems, Cameras, and Requirements. 
This example uses both notations for package containment. Different organiza-
tional principles are used for the  Products, Cameras, and Surveillance Systems  
packages. The  Products package is organized to contain packages for the two 
primary product lines that the company offers and an additional package for all 
requirements specifi cations. The  Cameras package hierarchy is organized by 
artifact type, and it includes packages to capture the structural, behavioral, and 
parametric aspects of the camera. The  Surveillance Systems package hierarchy 
is organized based on architectural principles that require a  Logical Architecture  
package, a  Physical Architecture  package, and a  Use Cases  package. 

   The containment hierarchy is generally one of the primary browser views 
visible in a tool.  Figure 5.4    provides an example of the expanded browser view 

5.4 Organizing a Package Hierarchy
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pkg [Package] Products [Nested Packages]

Surveillance Systems

LogicalPhysical

Use Cases

Behavior Parametrics Structure

RequirementsCameras

 FIGURE 5.3 

      Showing nested packages on a package diagram.    

 FIGURE 5.4 

      Browser view of the model’s package hierarchy.    

corresponding to the model organization from  Figure 5.3 . The containment hier-
archy generally expands as the model evolves to include other nested packages 
with increasing number and type of model elements. A tool generally enables the 
containment hierarchy and associated content to be viewed in an expanded or 
contracted form from the browser, similar to the fi le browser in Windows. Models 
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and packages form the branches of the containment hierarchy with other model 
elements appearing as lower-level branches and leaves. 

    5.5   Showing Packageable Elements on a Package Diagram 
   In addition to packages, package diagrams are used to show packageable ele-
ments. Packageable elements are normally represented by node symbols of vari-
ous shapes and sizes, although icons can also be used. 

   The package diagram in  Figure 5.5    shows more detail of the  Components  
package from  Figure 5.2  and contains a set of off-the-shelf components intended 
for use in building cameras and surveillance systems. The components are blocks, 
as indicated by the  «block » keyword, and are shown within the diagram frame 
that represents the  Components package. The diagram only shows some of the 
model elements within the package to reduce clutter. As explained in Chapters 2 
and 4, diagrams are simply views of the underlying model and may not show all 
possible contents of the diagram’s context. The diagram name is also elided, but 
could have been included to highlight the diagram purpose. 

    5.6   Packages as Namespaces 
   In addition to acting as a container for packageable elements, a package is a 
namespace for all named elements within it. Most SysML model elements have 
names although a few, such as a comment, do not. 

   Any type of namespace defi nes a set of uniqueness rules to distinguish between 
the different named elements contained within it. The uniqueness rule for pack-
ageable elements in packages is that each element of a particular element type 
within the package must have a unique name. In practice, however, this can be 
confusing when the element types are not clearly distinguishable. As a result, many 
projects require that all packageable elements of a package are uniquely named, 
even if they have different types. Where this restriction is not used, the presence 
of the type keyword in the symbol—for example,  «block » in Figure 5.5 —can help 
to remove potential ambiguity. 

pkg [modelLibrary] Components

«block»
Digital Signal Processor

«block»
Video Controller

«block»
Tilt Gimbal

«block»
SDRAM

«block»
Pan Gimbal

«block»
Focal Plane Array

«block»
Stepper Motor

«block»
Brushless DC Motor

 FIGURE 5.5 

      Showing the contents of the components package using a package diagram.    

5.6 Packages as Namespaces
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   As stated earlier, a package hierarchy can include multiple levels of nested 
packages, meaning that a model element can be contained within a package 
that is contained in an arbitrarily number of higher-level packages. The contain-
ment relationship between a parent and child is unambiguously represented in 
a browser view of the model. It is also obvious when a model element appears 
as a symbol with its name on the canvas of a diagram that represents its parent. 
However, sometimes a model element needs to be shown on a diagram that does 
not represent its parent. Simply using the model element’s name is misleading in 
this case because it gives a false impression of the containment relationship. 

   The solution is to show a  qualifi ed name in the symbol for that model ele-
ment. If the model element is nested within the containment hierarchy of the 
package represented by the diagram, then the qualifi ed name shows the relative 
path from that package to the contained element. If the model element is not 
nested within the package represented by the diagram, the qualifi ed name con-
tains the full path from the root model to the element. 

   The qualifi ed name for a model element always ends with the model element 
name, preceded by a path with each containing namespace in the path delimited 
by a double-colon symbol  “  �  ” , so that when reading the qualifi ed name, the path 
is resolved from left to right. For example, a model element X that is contained 
within package B, which in turn is contained within package A, is represented as 
A� B � X. 

    Figure 5.6    shows some examples of the use of qualifi ed names in a package dia-
gram that describes the  Standard Defi nitions package shown in  Figure 5.3 . The 
symbol named Basic Types::Point denotes a value type called  Point within a pack-
age called  Basic Types, within the Standard Defi nitions package.  Point is used 
later to specify the scan pattern of a surveillance camera. The other two symbols 
represent model elements that are external to  Standard Defi nitions and there-
fore have fully qualifi ed names that correspond to the path name from the corpo-
rate model,  ACME Surveillance Systems Inc. In a package hierarchy, each model 
element is uniquely identifi ed within its type by its qualifi ed name regardless of 
which namespace it is contained in.  

pkg [Package] Standard Definitions [Some Named Elements]

«block»
ACME Surveillance Systems Inc::Components::Stepper Motor

«valueType»
Basic Types::Point

ACME Surveillance Systems Inc::Products::Cameras

 FIGURE 5.6 

      Using qualifi ed names to represent a model element within a containment hierarchy.    
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    5.7   Importing Model Elements into Packages 
   Depending on the organization of a model, model elements from different pack-
ages are often related to one another and these relationships usually need to be 
represented on package diagrams. In this case, a given diagram may need to dis-
play elements from many packages, so a more scalable alternative than using a 
qualified name, as shown in  Figure 5.6 , is needed to avoid diagram clutter. 

   An import relationship is used to bring an element or collection of ele-
ments belonging to a source package into another namespace, called the target 
namespace. The names of imported element names become part of the target 
namespace and do not require a qualifi ed name when shown on a diagram that 
represents the target namespace. 

   A package import applies to an entire package, and all the model elements of 
the source package are imported into the target namespace. An  element import  
applies to a single model element, and may be used when it is unnecessary and 
possibly confusing to import all the elements of a package. 

   A name clash occurs when two or more model elements in the target 
namespace would have the same names as the result of imports. An element 
import has an alias fi eld that can be used to provide an alternate name for a model 
element to prevent a name clash in the target namespace. The rules on name 
clashes are as follows: 

    ■  If an imported element name clashes with a child element of the target 
namespace, that element is not imported, unless an alias is used to provide 
a unique name. 

    ■  If the names of two or more imported elements clash, then neither can be 
imported into the target namespace. 

   The named elements recognized within a namespace, whether through direct 
containment or as a result of being imported, are called  members. Members 
have a  visibility, either public or private, within their namespace. The visibility 
of a member determines whether it can be imported into another namespace. A 
package import only imports names with public visibility in the source package 
into the target namespace. Furthermore, an import relationship can state whether 
the imported names should be public or private within the target namespace. 

   When access control on a model is enforced by a modeling tool, an imported 
element can only be changed in the source package, although any relevant 
changes made to the element are automatically visible in any diagrams represent-
ing the target package. 

   The import relationship is shown using a dashed arrow, labeled with the keyword 
«import ». The arrow points to the source from which names are being imported 
and the tail points to the namespace into which the names are to be imported. The 
arrow points either to an individual model element (element import) or to an entire 
package (package import). The keyword  «access» is used instead of «import » when 
elements are to be imported as private members of the target namespace. 

    Figure 5.7    shows three packages,  P1, P2, and P3, in package  Parent. The pack-
age called  Model::P1 is not contained in the diagram’s context and so its qualifi ed 

5.7 Importing Model Elements into Packages
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name has to be used. Model::P1 contains one block, called  A, with public visibility 
(SysML does not have a graphical notation for visibility, hence the notes attached 
to the symbols). Package  P2 privately imports  P1 and contains a set of blocks, 
B and C, which are defi ned with public visibility, and  F, which is defi ned with 
private visibility.  P2 also contains a nested package called  Child of P2, which 
in turn contains a single public block,  E. Package  P3 defi nes a public block,  C,
and imports the whole package  P2, but also separately imports block  C with the 
alias D to avoid a name clash. Note that the alias  D is annotated on the import 
relationship. 

    Figure 5.8    demonstrates the effect of import relationships on naming. It shows 
a diagram representing package  P3 showing the names of various model elements 
from  Figure 5.7 . Blocks  B, C, and D (an alias for  P2::C ) can be shown using sim-
ple names because they are members of the  P3, either by direct containment or 
because they were imported. Block  E has to be qualifi ed by its parent  Child of 
P2, whose name is visible because  P3 has imported  P2. Block  F has to be quali-
fi ed by  P2 because it was defi ned to be private and so is not imported, but  P2 is 
visible because it is in the same namespace as  P3. Block  A has to be qualifi ed by 
its parent’s fully qualifi ed name,  Model::P1, because although it was defi ned with 
public visibility,  Model::P1 was imported privately into  P2 and was therefore not 
visible in  P2  and so was not imported into  P3.

    Figure 5.9    shows some of the import relationships within the  Standard 
Defi nitions package. It contains an example of a reusable model library called  SI
Defi nitions, which is defi ned within the  SysML package. (These SI defi nitions are 
defi ned as a nonnormative model library in Annex C of the SysML specifi cation 
[1].) SI Defi nitions is imported into the  SI Types package, which provides a com-
mon set of units for use throughout the model.  SI Types is in turn imported for 

pkg [Package] Parent

Block F is private
in package P2

Block A public in
package P1

«access»

«import»

«import»
«block»

A

Model::P1

«block»
B

«block»
C

«block»
F

«block»
E

Child of P2

«block»
C

P3
P2

D

 FIGURE 5.7 

      Illustration of  « import »  and  « access » .    



89

use within many other packages, one of which is the  Standard Item Defi nitions  
package that contains defi nitions of information, material, and energy fl owing 
through the surveillance systems. 

    5.8   Showing Dependencies between Packageable Elements 
   A dependency relationship can be applied between packageable elements to 
indicate that a change in the element on one end of the dependency may result 
in a change in the element on the other end of the dependency. The model ele-
ments at the two ends of the dependency are called client and supplier. The cli-
ent is dependent on the supplier, such that a change in the supplier will result in 
a change in the client. 

   A dependency between packages is used when the content of one package is 
dependent on the content of another package. For example, the software applica-
tions in the application layer of the system software may depend on the software 
components within the system software’s service layer. This may be expressed 
in a model of the software architecture by a dependency between the package 
that represents the application layer and the package that represents the service 
layer. 

«block»
P2::F

«block»
D

«block»
Child of P2::E

«block»
C

«block»
Model::P1::A

«block»
B

pkg [Package] P3

 FIGURE 5.8 

      Naming in package  P3.   

pkg [modelLibrary] Standard Definitions

«import»

«model Library»
SysML::SI
Definitions

«modelLibrary»
SI Types

«modelLibrary»
Standard Item

Definitions«import»

 FIGURE 5.9 

      Importing a library of SI unit types into the Standard Defi nitions package.    

5.8 Showing Dependencies between Packageable Elements
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   Dependencies are often used to specify a relationship early in the modeling 
process that is subsequently replaced or augmented when the precise nature of 
the relationship is better defi ned. There are various types of dependency that can 
be used on the package diagram and selected other diagrams. The following is a 
list of the more common types of dependencies: 

      ■     Use —indicates that the client uses the supplier as part of its defi nition 
      ■     Refi ne—indicates that the client represents an increase in detail compared 

to the specifi cation of the supplier, such as when detailed physical and per-
formance characteristics are included in a component defi nition. This rela-
tionship is often used in requirements analysis, as described in Chapter 12.  

      ■     Realization—indicates that the client realizes the specifi cation expressed 
in the description of the supplier, such as when an implementation package 
realizes a design package  

      ■     Trace—indicates that there is a linkage between the client and supplier 
without imposing the more signifi cant semantic constraints of a more pre-
cise relationship    

   A dependency is represented by a dashed line with an open arrow pointing 
from the client to the supplier. The type of dependency is indicated by a keyword 
in guillemets. 

    Figure 5.10    shows some of the types of dependency relationships in the 
Camera Performance view, which can be seen in  Figure 5.11   . The constraint 
block  Video Stream Rate is a more precise representation (refi nement) of the 
Video Performance requirement.  Video Stream Rate uses a defi nition of megabits 
per second (Mbps) as part of its defi nition. The activity  Generate Video Outputs  
is traced to the  Video Stream Rate because if this constraint changes, the per-
formance of the activity may need to be reevaluated.  Generate Video Outputs is 
allocated to Camera to indicate that the camera is responsible for that activity. 
Details of these various model elements are described in later chapters.  

«activity»
Generate Video Outputs

«requirement»
Video Performance

«block»
Camera

«constraint»
Video Stream Rate

«valueType»
Mbps

«use»

«allocate» «refine»

«trace»

pkg [View] Camera Performance [Some Dependencies]

 FIGURE 5.10 

      Example of dependencies in the camera performance view.    
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    5.9   Specifying Views and Viewpoints 
   The package containment hierarchy provides the fundamental organization of a 
model. However, it is often useful to incorporate a set of model elements that 
span multiple namespaces into a view of the model that supports a particular 
stakeholder perspective. SysML introduces the concepts of view and viewpoint 
to facilitate this. The view and viewpoint terminology in SysML is generally con-
sistent with the IEEE 1471 standard,  “Recommended Practice for Architectural 
Description of Software-Intensive Systems ” [17]. 

   A viewpoint describes a perspective of interest to a set of stakeholders that 
is used to specify a view of a model. A viewpoint includes a set of properties 
that identify: 

      ■    The purpose or reason for taking this perspective 
      ■    The stakeholders who have an interest in this perspective 
      ■    The concerns that the stakeholders wish to address 
      ■    The languages used to present the view 
      ■    The methods used to establish the view    

5.9 Specifying Views and Viewpoints

 FIGURE 5.11 

      Defi nition of a  performance viewpoint  and a view that conforms to it.    

«viewpoint»
Profiles::Performance Viewpoint

«viewpoint»

«import»

«import»

«import»

«import»

«conform»

concerns � “Will the system perform adequately”
languages � “SysML”
methods � “performance analysis, requirements traceability”
purpose � “Highlight the performance issues of the system”
stakeholders � “product manager, chief engineer”

pkg [Package] Products [Camera Performance Definition]

Surveillance Systems::
Physical Architecture

Cameras::Structure

ACME Surveillance Systems Inc.
::Requirements

Cameras::Behavior

«view»
{viewPoint � Performance Viewpoint}

Cameras::Parametrics::
Camera Performance
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   A view is a type of package that conforms to a viewpoint. The view imports 
a set of model elements according to the viewpoint methods and is expressed in 
the viewpoint languages to present the relevant information to its stakeholders. 
The view is intended to provide the model information that addresses the stake-
holder concerns. The properties of a viewpoint are often specifi ed informally, 
as guidance to view builders, but can in theory be specifi ed precisely enough to 
allow automated construction and evaluation of a view. 

   A viewpoint is represented as a rectangle symbol with the keyword  « viewpoint »  
and the viewpoint name in the name compartment. The viewpoint properties 
are shown in a separate compartment headed  « viewpoint » . A view is represented 
as a package symbol with the keyword  « view » , along with the view name and a 
reference to its viewpoint. A conformance relationship between a view and 
viewpoint is shown as a dashed arrow pointing from the view to the viewpoint, 
adorned with the keyword  « conform » .

   A viewpoint that is often important from the perspective of a system architect 
is one that emphasizes those aspects of the model that affect system performance. 
In Figure 5.11  the  Performance Viewpoint highlights those aspects of the model 
that focus on performance. The  Camera Performance view conforms to the 
Performance Viewpoint. The Camera Performance view  imports the  Structure  
and Behavior packages of  Cameras because they contain elements whose perfor-
mance is being assessed. It also imports the  Requirements package to refer to the 
performance requirements. Finally, it imports the  Surveillance Systems::Physical 
Architecture package to enable the system architect to assess factors in the cam-
era environment that may affect camera performance.  

    5.10    Summary 
   A well-defined model organization is essential to ensure that the model is parti-
tioned into model elements that support reuse, access control, navigability, con-
figuration management, and data exchange. Different organizing principles can 
be applied to establish a consistent package hierarchy with nested packages, each 
of which contains logical groupings of packageable elements. The following list 
summarizes the important aspects of model organization. 

■     The principal SysML organizing construct is called a package. Package diagrams 
are used to describe this model organization in terms of packages, their 
contents, and relationships.  

■     A model is a type of package that represents a description of a system for a 
given purpose. Models are the roots of package hierarchies. If the area of 
interest is sufficiently complex then it may have submodels. 

■    Package hierarchies are based on the concept of containment or ownership 
of packageable elements. An essential aspect of containment is that the 
packageable elements in a package get deleted or copied with their container. 
Examples of packageable elements are blocks, activities, and value types.  
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■     Packages are also namespaces for a set of named elements called members. A 
namespace defines a set of rules for uniquely identifying an individual member. 
The namespace rule for packages is that a member must have a unique name 
within all members of its type (e.g., block, activity). 

■     The names of the diagram’s symbols must allow a viewer to explicitly understand 
where the represented element is within the model containment hierarchy. If a 
symbol represents a member of the package that the diagram represents, then 
its name (and sometimes keyword) is all that is required. Otherwise a qualified 
name is required, which is a concatenation of the member’s name and a path 
of all the namespaces between the member and the root model or diagram 
context. 

■     Package (and other) diagrams can get very cluttered with qualified names. To 
avoid this, SysML provides a mechanism to import the members from a package 
into a namespace, either as a whole package or as individual model elements. 
The visibility of the member in its source package governs whether it is a 
member of the target namespace. 

■     Model elements depend on each other in various ways. The dependency 
relationship between a supplier and a client element indicate that the supplier 
element is subject to change if the client element changes. Different types of 
dependencies are identified with a keyword and are used for specific purposes 
such as refinement, allocation, and traceability. 

■     A model has a single containment hierarchy, which therefore imposes a single 
organizational perspective on the model. A viewpoint is a mechanism designed 
to allow the modeler to view a model from a particular perspective. A given 
view conforms to a single viewpoint that identifies both how it should be 
constructed and its purpose. Views typically do not contain elements but instead 
import model elements in order to collect them into a common namespace for 
viewing via package and other diagrams.     

    5.11   Questions 
    1.   What is the diagram kind that appears in the frame label of a package diagram? 
    2.   Which kinds of model element can be represented by a package diagram? 
    3.   What is the generic term for model elements that can be contained in 

packages? 
    4.   Where does a model appear in a package hierarchy? 
    5.   Name three potential organizing principles that might be used to construct the 

package hierarchy of a model. 
    6.   How can you show on a package diagram that one package contains another? 
    7.   Which rule does a package enforce for the named elements that are its 

members? 
    8.   How can you tell by looking at a package diagram that a model element repre-

sented on the diagram is a member of the package that owns the diagram? 

5.11 Questions
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     9.   Write down the qualifi ed name for a block B1 contained in a package P1, 
which in turn is contained in a model M1.  

    10.   A package P1 contains three elements—block B1, block B2, and block B3—all 
with public visibility, and a package P4 with private visibility. Another package 
P2 contains a package called B1 and two blocks called B2 and B4. If package P2 
imports package P1 with public visibility, list all the members of P2. 

    11.   If an empty package P9 imports P2 with public visibility, list all the members 
of P9.  

    12.   What is an alias used for?  
    13.   Name three common kinds of dependency.  
    14.   How are dependencies shown on a package diagram?  
    15.   Name three properties of a viewpoint.  
    16.   How do you represent a view V1, which conforms to a viewpoint VP1, on a 

package diagram?  

    Discussion Topic 
   For a model that you are trying to build, discuss the type of model organization 
that is appropriate for it.     



   This chapter addresses modeling the structure of systems in terms of their hierar-
chy and interconnection. It describes blocks—the principle structural construct—
and the two types of diagrams used to represent structure—the block definition 
diagram and the internal block diagram. 

    6.1   Overview 
   The block is the modular unit of structure in SysML that is used to define a type 
of system, system component, or item that flows through the system, as well as 
conceptual entities or logical abstractions. The block describes a set of uniquely 
identifiable instances that share the block’s definition. 

   The block defi nition diagram is used to defi ne block characteristics in terms 
of their structural and behavioral features, and the relationships between the 
blocks such as their hierarchical relationship. The internal block diagram is 
used to describe the internal structure of a block in terms of how its parts are 
interconnected. 

   Properties are the primary structural feature of blocks. Part properties 
describe the decomposition hierarchy of a block and provide a critical mecha-
nism to defi ne a part in the context of its whole. Value properties describe quan-
tifi able physical, performance, and other characteristics of a block such as its 
weight or speed. Value properties are defi ned by value types that describe the 
valid range of values, along with its dimension (e.g., length) and its units (e.g., 
feet or meters). Value properties may be related using parametric constraints as 
discussed in Chapter 7. 

   Ports are structural features that describe the points at which a block interacts 
with other blocks and are used to connect the parts of a block. The two types of 
SysML ports are fl ow ports, which specify what can fl ow in and out of blocks, and 
standard ports, which specify the types of services that a block either requires or 
provides. An item fl ow describes what fl ows on the connectors between ports 
and parts. 

                                                  Modeling Structure 
with Blocks   6 

CHAPTER
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   The behaviors associated with a block defi nes how the block responds to a 
stimuli. The different behavioral formalisms, including activities, interactions, 
and state machines, are discussed in Chapters 8 through 10, respectively. The 
behavioral features of a block, which include operations and receptions, provide a 
mechanism for external stimuli to invoke these behaviors. 

   In addition to decomposition hierarchies, blocks can be organized into classifi -
cation hierarchies that allow blocks to be defi ned in terms of their similarities and 
differences. Within a classifi cation hierarchy, a block can specialize another more 
general block that allows it to inherit features from the general block and to add 
new features specifi c to it. Blocks in a classifi cation hierarchy can also be used to 
describe a unique design confi guration such as a system under test. 

    6.1.1    Block Defi nition Diagrams 
   The block definition diagram or  “ bdd ” is used to define blocks in terms of their 
features, and their structural relationships with other blocks. The block definition 
diagram header is depicted as follows: 

    bdd  [model element type] model element name [diagram name]

   A block defi nition diagram can represent a package, a block, or a constraint 
block, as indicated by the  model element type in square brackets. The  model ele-
ment name  is the name of the package, block, or constraint block, and the  diagram 
name is user defi ned and is often used to describe the purpose of the diagram. 

    Figure 6.1    shows an example block defi nition diagram containing the most 
common symbols. The diagram shows several levels of the composition hierarchy 

Protective Housing
values

clock speed : MHz
memory : MB

Electronics Assembly
Mount Assembly

Camera Module

parts
: Camera Housing
: Imaging Assembly
: Optical Assembly

Stepper Motor
Module

Pan GimbalTilt GimbalPlatform

Camera

1

azimuth gimbalelevation gimbal

ma

azimuth motor elevation motor

bdd [Package] Structure

 FIGURE 6.1 

      Example block defi nition diagram.    
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of an ACME camera. The notation used in the block defi nition diagram to describe 
blocks and their relationships is shown in the Appendix, Tables A.3 through A.5. 

    6.1.2   Internal Block Diagram 
   The internal block diagram or  “ibd” resembles a traditional system block dia-
gram and shows the connections between parts of a block. The internal block 
diagram header is depicted as follows: 

    ibd  [Block] block name [diagram name]

   The frame of an internal block diagram always represents a block, so the model 
element type is often elided in the diagram header. The  block name  is the name of 
the block that is designated by the frame, and the  diagram name  is user defi ned 
to represent a description of the diagram purpose. 

    Figure 6.2    shows an example internal block diagram containing some com-
mon symbols. The diagram describes part of the internal structure of the  Camera,
and how light fl ows in and through various intermediate parts to become video 
(MPEG4) output. 

   The notation used in the internal block diagram to describe the usage of 
blocks, called parts, and their interconnections is shown in the Appendix, Tables 
A.8 and A.9.   

    6.2   Modeling Blocks on a Block Defi nition Diagram 
   The block is the fundamental modular unit for describing system structure in 
SysML. It can define a type of a logical or conceptual entity, a physical entity (e.g., 
a system); a hardware, software, or data component; a person; a facility; an entity 
that flows through the system (e.g., water); or an entity in the natural environ-
ment (e.g., the atmosphere or ocean). Blocks are often used to describe reusable 
components that can be used in many different systems. The different categories 
of block features used to define the block are described later and are generally 
classified into structural features, behavioral features, and constraints. 

   A block is a type, that is, a description of a set of similar  instances, or  objects,
each of which exhibits the features defi ned by it. An example of a block is an auto-
mobile that might have a set of features including its physical, performance, and 
other properties (e.g., its weight, speed, odometer reading), and vehicle registration 
number, as well as its behavioral features that defi ne how it responds to stimuli. 
Each instance of the automobile block will include these features and be uniquely 
identifi ed by the value of some of its properties. So, for example, a Honda CR-V 
might be modeled as a block, a particular Honda CR-V is an instance of a Honda CR-V 
with vehicle registration  “A1F R3D ” and an odometer reading  “150,010” miles. An 
instance of a block can be modeled explicitly in SysML as a unique design confi gu-
ration, as described in Section 6.6.5. An instance can also include value properties 
the values of which change over time, such as the speed and odometer reading. 

   The block symbol is notated as a rectangle that is segmented into a series of 
compartments. The name compartment appears at the top of the symbol and 
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ibd [Block] Camera [Nested Flow]

light in : Light

camera I/O : 
Camera Interface

 : Electronics Assembly

 : MPEG Converter
 : MPEG4

 : Video

: Image Processor

 : Video

 : MPEG4

 : Camera Module

 : Imaging Assembly

 : Optical Assembly
 : Light

 : Light

 : Image

 : Image

 : Image  : Image

 : Light

 : Light

 FIGURE 6.2 

      Example internal block diagram.    
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is the only mandatory compartment. Other categories of block features, such as 
parts, operations, and ports, can be represented in other compartments of the 
block symbol. All compartments, apart from the name compartment, have labels 
that indicate the category of feature they contain. 

   Names on block defi nition diagrams follow the same convention as on package 
diagrams. Model elements that are either directly contained in or imported into 
the namespace represented by the diagram are designated just by their names. 
Other model elements must be designated by their full qualifi ed names in order 
to clearly identify their location in the model hierarchy. 

   A rectangular symbol on a block defi nition diagram is interpreted by default as 
representing a block, but the optional keyword  « block » may be used, preceding 
the name in the name compartment, if desired. To reduce clutter, the convention 
used in this chapter is that the  « block » keyword is only used where blocks appear 
on the same block defi nition diagram as other model elements represented by 
rectangles. 

    Figure 6.3    shows a block defi nition diagram that has three blocks in the com-
pany’s corporate model, called  ACME Surveillance Systems Inc. The names of the 
blocks are fully qualifi ed with their path to show where they are located within 
the package hierarchy of the model. The blocks shown cover a range of uses: 
Camera is a description of an ACME product;  Stepper Motor Module is an off-the-
shelf component used in ACME’s cameras; and  Video is used to describe the video 
images that the cameras produce. 

    6.3    Modeling the Structure and Characteristics 
of Blocks Using Properties 

    Properties are one category of features of a block. They are used to capture the 
structural relationships and values of a block. A property has a type that may be 

bdd [Model] ACME Surveillance Systems Inc. [Some Blocks]

Standard Definitions::Standard Item Definitions : :Video

Components::Stepper Motor Module

Products::Cameras::Structure: :Camera

 FIGURE 6.3 

      Blocks on a block defi nition diagram.    

6.3 Modeling the Structure and Characteristics of Blocks 
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another block, or some more basic concept such as an integer value. This section 
describes the three categories of property and their uses. 

      ■     Part properties (parts for short) describe the decomposition of a block into 
its constituent elements. These are described in Section 6.3.1.  

      ■     Reference properties describe weaker relationships between blocks than 
the composition relationship represented by part properties. These are 
described in Section 6.3.2.  

      ■     Value properties describe the quantifi able characteristics of a block, such as 
its weight or velocity. These are described in Section 6.3.3.    

   Later sections address more advanced topics related to properties, including: 

      ■     Property derivation is described in the Derived Properties, subsection of 
Section 6.3.3.  

      ■     Property redefi nition and subsetting  is defi ned in Section 6.6.5.  
      ■     Property ordering and uniqueness  is defi ned in Chapter 7, Section 7.3.    

    6.3.1     Modeling Block Composition Hierarchies 
Using Part Properties 

    Part properties, sometimes shortened to just  parts, describe composition rela-
tionships between blocks. This type of hierarchical composition of blocks is often 
seen in a breakdown of equipment, or bill of materials. A composition relationship 
is also called a whole–part relationship, where a block represents the whole and 
the part property represents the part. A part property is always typed by a block. 

   A part property uniquely identifi es the usage of its type in the context of 
another block. The key distinction between a part and an instance of a block is 
that the part describes an instance or instances of a block  in a particular context  
of an instance of the composite block. 

   An instance of a whole may include multiple instances of a part property. The 
potential number of instances is specifi ed by the multiplicity of the part property, 
which is defi ned as follows: 

      ■    A lower bound (minimum number of instances) that may be 0 or any 
positive integer. The term  optional is often used for multiplicities where 
the lower bound is 0 because an instance of the whole can include zero 
instances of the part.  

      ■    An upper bound (maximum number of instances) that may be 1, many 
(denoted by  “ * ” ), or a specifi c positive number.    

   A part property is a feature of a block, and as such can be listed in a separate parts 
compartment within a block. The parts compartment is headed by the keyword 
parts and contains one entry for each part in the block. Each entry has the follow-
ing format: 

part name: block name [multiplicity]

   The upper and lower bounds of a multiplicity are typically combined into one 
expression like this:  “lower bound .. upper bound, ” except where they have the 
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same value, in which case just the upper bound is shown. Where no multiplicity is 
shown, a value of 1..1 is assumed. 

    Figure 6.4    shows a simple example of an automobile with four wheels, where 
each usage of  Wheel is uniquely identifi ed by a part property. In this case, the  Auto -
mobile is the whole and the wheels are represented as parts. Each of the four 
wheels has a common block defi nition,  Wheel, with certain characteristics (e.g., 
size, pressure, and so on), but each wheel can have a unique  usage or role in 
the context of a particular automobile. The front wheels have a different role 
from the rear wheels and may have different values for their pressure. Each wheel 
may also behave differently when the car is accelerating and decelerating and be 
subject to different constraints. Similarly, the front wheels on a front wheel–drive 
vehicle may have a different role than front wheels on a rear wheel–drive vehicle. 

   A part property defi nes a set of instances that belong to an instance of the 
whole or composite block. If a block is at the part end of more than one compos-
ite block, the SysML semantics are that an instance of the block at the part end 
will be part of at most one block instance at the whole end at any point in time. 
An example is an engine that can be part of two different types of vehicle, such 
as an automobile and a truck. However, any given instance of engine can only be 
part of one vehicle instance at a time. This rule implies that at the instance level, 
the composition hierarchy is a strict tree, which means there can be no whole–
part cycles leading from any given instance back to itself. 

   Typically, a whole–part relationship means that certain operations that apply 
to the whole also apply to each of the parts. For example, if a whole represents 
a physical object, a change in position of the whole could also change the posi-
tion of each of its parts. A property of the whole, such as its mass, could also be 
implied by its parts. 

   A particular application domain may establish its own interpretation of the 
whole–part relationship for the blocks defi ned in a particular model. When 

bdd [Package] Automobile Example

parts
left front : Wheel
right front : Wheel
left rear : Wheel
right rear : Wheel

values
weight : kg
vehicle reg : String

AutomobileWheel

values
pressure : psi
size : mm

 FIGURE 6.4 

      An automobile with four wheels described as separate parts.    

6.3 Modeling the Structure and Characteristics of Blocks 
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blocks represent components of physical systems, the whole–part relationships 
generally can be thought of as an assembly relationship, where an instance of the 
block on the whole end is made from instances of the block on the part end. 
The implications of whole–part relationships for software relate to creating and 
returning memory locations for computation. This may also apply to the defi ni-
tion of operations that apply to the parts and the whole. For software objects, a 
typical interpretation is that delete, copy, and move operations apply to all parts 
of a composite whole. The whole–part semantics specify that when an instance 
at the whole end is destroyed, the instances at the part end will also be destroyed. 

    Composite Associations 
   While a part property does state the number of instances that can be included 
in an instance of its whole, it does not state whether instances of the part must 
always exist as part of an instance of some whole. For example, an engine may 
physically exist on its own, as well as in an instance of an automobile or truck. 

   This information must be specifi ed using a special relationship called a  com-
posite association that relates part and whole with a multiplicity at both its 
ends. The upper bound of the multiplicity at the whole end of a composite asso-
ciation is always 1 because an instance of a part property may only exist in one 
whole at any one time. The lower bound of the multiplicity at the whole end, 
however, may be 0 or 1. A value of 1 means that instances of the block at the part 
end must always be composed within instances of the block at the whole end. 
A value of 0 means that an instance of the block at the part end can exist if no 
whole exists. Specifying a lower bound of 0 enables a block to be part of more 
than one composite association. In this case, it is still mandated that an instance 
of a block at the part end is only part of a single instance at the whole end at any 
given time. 

   A composite association is shown as a line between two blocks with various 
adornments at its ends. The whole end of a composite association is adorned by 
a black diamond. A shorthand notation can be used to represent a block that has 
many composite associations by showing a single black diamond with a series 
of lines connecting to the part ends. The part end of an association is typically 
adorned with an arrowhead. The lack of an arrowhead indicates that the block 
at the part end has a reference property that can be used to reference the block at 
the whole end. Reference properties are described in the next section. 

   Each end of the association may optionally show a name, often called a role 
name, and a multiplicity. The term  role name is used to convey the idea that 
the instances at the part end are playing some role (c.f., an actor) in the overall 
whole. When the multiplicity for an end is not shown, the default interpretation 
is a whole end multiplicity of 0..1 and a part end multiplicity of 1. The name of 
the part property can appear as the role name at the part end of the association 
although, often, part properties are not named. 

   A block can include a parts compartment that contains the part properties 
represented at the part end of an association, but typically on a given diagram the 
part property is shown either in a parts compartment or as an association end. 
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bdd [Package] Structure [Camera Top Level]

 FIGURE 6.5 

      Showing a block composition hierarchy on a block defi nition diagram.    

6.3 Modeling the Structure and Characteristics of Blocks 

    Figure 6.5    shows a portion of the top two levels of the composition hierarchy 
for a  Camera. Any number of levels of decomposition can be shown on a single 
block defi nition diagram, although here only the decomposition for  Camera and 
Mount Assembly is shown. The parts of  Electronics Assembly and Camera Module  
are shown in compartments. Multiple levels of decomposition can be shown on a 
single diagram, but this can increase the clutter for even relatively simple systems. 
Note that even though the block defi nition diagram shows blocks, the diagram 
frame represents the package  Structure , as indicated in the diagram header. 

   Different projects have different philosophies on which part properties should 
have names. In this chapter, except where stated, the following naming philoso-
phy is used: 

    1.   A role name at the part end of the association is provided to distinguish two 
part properties with the same type (block). An example of this is the use of 
role names for  Stepper Motor Module to distinguish the two roles of  eleva-
tion motor and azimuth motor.

    2.   A role name is provided when the name of the type does not adequately 
describe the role the part plays. Examples of this are the role names  eleva-
tion gimbal and azimuth gimbal. The block names  Tilt Gimbal and Pan 
Gimbal do not explicitly describe the plane in which the gimbals move in 
the Camera  application. 
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    3.   A role name is not provided when the block name provides suffi cient infor-
mation on the role of the part. Examples of this are  Protective Housing,
Camera Module, and  Electronics Assembly. This is often the case when 
a block has been explicitly created to represent this part. This should also 
apply to  Mount Assembly, but a name was required to illustrate an addi-
tional notational form in  Figure 6.8.     

   Where a part name exists it is used in the figure description, otherwise the block 
name is used. 

   The lack of multiplicity adornments on all part ends in this fi gure indicate that 
there is exactly one instance of each in the composition hierarchy of  Camera . 
The single multiplicity adornments on the whole end indicate that the  Electronics 
Assembly, ma, and the  Camera Module are always part of a  Camera, whereas the 
block  Protective Housing may be used in other blocks. All the parts of  ma are 
typed by reusable blocks that have uses in many other contexts.  Camera Module  
is shown with a parts compartment that lists its three part properties. None of 
them has a name, and they all have the default multiplicity of 1. 

    Modeling Parts on an Internal Block Diagram 
   In addition to appearing on a block definition diagram, part properties can be 
shown on another diagram called the internal block diagram that presents a differ-
ent visualization of block composition. The internal block diagram enables parts to 
be connected to one another using connectors and ports as described later. 

   The relationship between composition, as expressed on a block defi nition dia-
gram and on an internal block diagram, is as follows: 

      ■    The whole end or composite (block) is designated by the diagram frame on 
the internal block diagram with the block name in the diagram header. It 
provides the context for all the diagram elements on the diagram.  

      ■    Each name on the part end of a composite association whose whole end 
is the context block, or an entry in the parts compartment of the context 
block, appears as a box symbol with a solid boundary within the frame of 
the internal block diagram. The name string of the box symbol is composed 
of the part name followed by a colon followed by the type of the part. 
Either the part name or the type name can be elided.    

   The multiplicity of each part property may be shown in the top right corner of 
the part symbol or in square brackets after the type name. If no multiplicity is 
shown, then a multiplicity of 1 is assumed. 

    Figure 6.6    is an internal block diagram derived from the composite associations 
whose whole end is Mount Assembly. The diagram header identifi es the  Mount
Assembly as the enclosing block that provides the context for the fi ve parts shown 
in the diagram. In this case, the multiplicities are not shown, indicating that the 
multiplicity is the default value of 1. (See  Figure 6.28  for an example of nondefault 
multiplicity.) Note that this is a simplifi ed form of internal block diagram for illus-
tration only. A modeler would seldom if ever build an internal block diagram with-
out connectors between the parts or other structural information present. 
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    Connecting Parts on an Internal Block Diagram 
   An internal block diagram can be used to show connections between the parts 
of a block, something that cannot be shown in a block definition diagram. 
A connector is used to bind two parts and provides the opportunity for those 
parts to interact, although the connector says nothing about the nature of 
the interaction. Connectors can also connect ports, as described later in the 
Connecting Flow Ports on an Internal Block Diagram section. The interaction 
between the parts of a block is specified by the behavior of the parts, as described 
in the Chapters 8, 9, and  10 about behavior. 

   This interaction may include the fl ow of inputs and outputs between parts, the 
invocation of services on parts, the sending and receiving of messages between 
parts, or constraints between properties of the parts on either end. Where appro-
priate, the nature and direction of items fl owing on a connector can be shown 
using item fl ows, as described in Section 6.4.2. 

   The ends of a connector can include multiplicities that describe the relative 
number of instances that can be connected by  links described by the connector. 
(Note: A link connects instances whereas a connector connects parts.) A connec-
tor may be typed by an association that allows further defi nition of the charac-
teristics of the connection. Where a connector is typed, its type is normally a 
reference association, although composite associations may be used. 

   On an internal block diagram, the connector between two parts is depicted as 
a line connecting two part symbols. A part can connect to multiple other parts, 
but a separate connector is required for each connection. The full form of the 
connector name string is as follows: 

   connector name: association name

   The ends of a connector can include an arrowhead, which means that the asso-
ciation that typed the connector had the equivalent adornment. The ends of the 

ibd [Block] Mount Assembly [Parts]

azimuth motor : Stepper Motor
Module

elevation motor : Stepper Motor
Module

azimuth gimbal : Pan Gimbalelevation gimbal : Tilt Gimbal

 : Platform

 FIGURE 6.6 

      An internal block diagram for the  Mount Assembly .    

6.3 Modeling the Structure and Characteristics of Blocks 
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connector can be adorned with the name and multiplicity of the connector ends. 
If no multiplicity is shown, then a multiplicity of 1 is assumed. When connectors 
cross one another, the intersection can be designated by a contour to indicate 
that they are not related in any way. 

   The internal block diagram for the  Camera is shown in  Figure 6.7   . The 
Protective Housing that protects the camera internals is mechanically connected 
to the Mount Assembly ( ma). The Mount Assembly provides the platform for the 
Camera Module and Electronics Assembly, which are connected to pass electrical 
signals that allow the camera to function. The connectors in this example have 
names, indicating that they are mechanically connected ( m1 to m3) or electrically 
connected ( e1), but the names have no semantic implications. Meaningful key-
words can be added using a domain-specifi c profi le as described in Chapter 14. All 
connectors have default multiplicity implying one-to-one connections. 

    Modeling Deeply Nested Structures and Connectors 
   Sometimes it is necessary to show multiple levels of nested parts within a system 
hierarchy on an internal block diagram. The nested parts can be represented by 
showing part symbols within part symbols, as shown in  Figure 6.8   . SysML also 
introduces an alternative notation to designate a nested part, also shown in the 
figure, where each level of nesting of the part is separated by a period (i.e., dot) 
within the name string of a single part symbol. The symbol’s name string, with 
dot notation, represents the path from the level of the context block for the dia-
gram down to the nested part. 

    Figure 6.8  shows two ways to display the nested part  azimuth gimbal within 
an internal block diagram whose context is the  Camera. The azimuth gimbal  
can be represented as a nested rectangle within the  ma:Mount Assembly symbol. 
It can also be represented using the dot notation with the higher-level part name, 
ma , and a dot preceding the part name,  azimuth gimbal.

ibd [Block] Camera [Part Connections] 

 : Electronics Assembly

ma : Mount Assembly

 : Protective Housing

 : Camera Module
e1

m1 m3

m2

 FIGURE 6.7 

      Connecting parts on an internal block diagram.    
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   Connectors can connect parts at different levels of nesting without directly 
connecting to the intermediate levels of nested parts. For example, a tire can be 
connected directly to a road without having to connect the road to the vehicle, 
the vehicle to the suspension, the suspension to the wheel, and the wheel to the 
tire with intermediate connectors at each level of nesting. The connector simply 
crosses the nested part boundaries in order to directly connect the tire to the 
road. It is often the case that connections are initially specifi ed between top-level 
parts, and then as the internal details of the parts become known, connectors are 
specifi ed between lower-level elements. It is a modeling choice as to whether the 
outer connectors are removed or kept. Blocks have a special Boolean property 
called encapsulated, which if true prohibits connectors from crossing boundaries 
without connecting to any intermediate nested parts. 

   Connectors with nested ends are shown in the same way as normal connec-
tors except that they cross the boundaries of part symbols. The encapsulated 
property on a block is shown if true and not shown if false. Where shown, it 
appears in the name compartment in braces before the block name. 

    Figure 6.9    includes a more detailed look at the connections within the subas-
semblies in  Figure 6.7 . After further investigation, connector  m1 has been aug-
mented with a nested connector, called  platform to housing, that connects the 
Platform of ma to the Camera Housing in the Camera Module. The electrical 
connector,  e1, has been augmented with a nested connector, called  imaging to 
video, that connects the  Imaging Assembly of the Camera Module to the Image 
Processor  in the  Electronics Assembly.

   When a connector at one level of the structure is used to add more detail 
about a connector at some higher level, there are potential issues with maintain-
ing the resulting model. For example, if the  m1 connector from  Figure 6.7  is 
removed from the model, should  platform to housing be removed as well? If this 
type of relationship is important, then an association block can be used to show 
decomposition of the connector in a similar way that blocks show the decomposi-
tion of parts. Association blocks are described in the next section.   

ma : Mount Assembly

azimuth gimbal : Pan Gimbal

ma.azimuth gimbal : Pan Gimbal

ibd [Block] Camera [Two ways of showing azimuth gimbal] 

 FIGURE 6.8 

      Showing deep-nested parts on an internal block diagram.    

6.3 Modeling the Structure and Characteristics of Blocks 
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    6.3.2     Modeling Noncomposite Relationships between Blocks 
Using Reference Properties 

    Reference properties, sometimes shortened to just  references, indicate that 
there is some relationship between the instances of the block that owns the ref-
erence property and the instances of the block that type the reference property. 
The composition semantics of whole–part relationships, as described by part 
properties, define a specific relationship between an instance of the block at the 
whole end and an instance of the block at the part end, as described in the pre-
vious section. An example of this is destruction semantics, where destroying an 
instance of the block at the whole end also destroys the instances of the blocks at 
the part ends. For reference properties, the destruction semantics associated with 
composition do not apply. There is also no constraint on the number of blocks 
that can have reference properties that reference the same instance. This is a par-
ticularly important point that provides significant utility as described next. 

   Reference properties can be used to describe a logical hierarchy that refer-
ences blocks that are part of other composition hierarchies. Reference proper-
ties can thus be used to cut across the tree structure of a composition hierarchy, 
which allows additional views besides the primary system whole–part hierarchy. 
This logical hierarchical organization can be represented on both the block defi ni-
tion diagram and internal block diagram. Allocations, discussed in Chapter 13, can 
be used to establish the relationship between the reference property in a logical 
hierarchy and the corresponding part in a composition hierarchy. Another use of 
reference properties is to model stored items (e.g., water stored in a tank). The 
water is not part of the tank in the same way that a valve is a part of the tank. For 
this case, the water may be owned by another block and shown as a reference 
property of the tank. 

    Reference Associations 
   The composite association was discussed earlier in this chapter to represent a hier-
archy of blocks.  Reference associations are used on a block definition diagram 

 FIGURE 6.9 

      Nested connectors on an internal block diagram.    

ibd [Block] Camera [Lower Part Connections]
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to capture a different relationship between blocks, where the block on one end of 
the association is referenced by the block on the other end. A reference associa-
tion can specify a reference property on the blocks at one or both ends. 

   A reference association is represented as a line between two blocks. The 
black diamond that represents a composite association is not used. When there 
is a reference property on only one end, the line has an open arrowhead pointing 
toward the type of the reference property and away from the owner of the refer-
ence property. If the association is bidirectional (i.e., has reference properties at 
both ends), then there are no arrowheads. Multiplicities on the ends of reference 
associations have the same form as for composite associations. 

   One end of a reference association may be represented by a white diamond. 
SysML assigns the same meaning to the association whether the white diamond is 
present or not. However, the white diamond symbol is intended to be used with 
an applied stereotype that may specify unique semantics for a particular domain. 

   Like part properties, reference properties can be listed in a separate compart-
ment within a block. The references compartment is headed by the keyword  ref-
erences and contains one entry for each reference property in the block, with the 
same presentation as part properties. 

    Figure 6.10    shows a block called  Mechanical Power Subsystem that uses ref-
erence associations to reference the power supply of the  Camera, its powered 
mechanical components, including the motors in the various assemblies, and the 
Distribution Harness. The Distribution Harness itself has references to other har-
nesses that are part of the different assemblies in the  Camera. In the composition 
hierarchy for the  Camera, the components are part of a number of different assem-
blies, some of which are shown in  Figure 6.5 . The Mechanical Power Subsystem  
represents a logical aggregation of these components that interact to provide 
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bdd [Block] Camera [Power Subsystem]

Mechanical Power
Subsystem

Distribution Harness Brushless DC Motor
Module

Stepper Motor
Module

Power Supply

azimuth
motor

elevation
motor power sourceiris motor focus motor

references

 : Camera Harness
 : Electronics Harness
 : Mount Harness

 FIGURE 6.10 

      A reference association on a block defi nition diagram.    
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power to the rest of the camera. The white diamond adornment is used in this 
example to emphasize the hierarchical nature of the  Mechanical Power Subsystem,
but this emphasis is strictly notational and has no semantic implications. 

   Different model-based methods may include a block such as the  Mechanical
Power Subsystem in different parts of the model structure. Here it is contained 
in the Camera block itself, but it could just as easily have been placed in a spe-
cial package of similar subsystems (refer to Chapter 16 for another example). 
An instance of Mechanical Power Subsystem would not show up in the equip-
ment tree for the  Camera, but is more like a cross-cutting view of a portion of the 
equipment tree.  

    Modeling Reference Properties on Internal Block Diagrams 
   Reference properties are depicted in a similar fashion to parts when shown on 
the internal block diagram, except that their box symbol has a dashed instead of 
solid boundary. Otherwise they have similar adornments and can be connected in 
the same way as any part symbol. 

    Figure 6.11    shows the connections between the reference properties in the 
Mechanical Power Subsystem used to support power transfer within the sub-
system. In this case a single power source provides all the power needs of the 
mechanical parts of the  Camera , through the  Distribution Harness.

    Using Associations to Defi ne Common Features of Connectors 
   A connector can be typed by an  association to define its characteristics in more 
detail. An association is defined between two blocks. For the connector to be 
typed by an association, the connected parts or references on the connector 
ends must have the same types as the association ends. An association defines 
the multiplicity of block instances on each of its ends. Although connectors may 
have their own multiplicities, their lower and upper bounds are constrained to be 
within the multiplicity defined for the ends of the association that types it. 

ibd [Block] Mechanical Power Subsystem

focus motor : Brushless DC
Motor Module

iris motor : Brushless DC
Motor Module

azimuth motor : Stepper
Motor Module

elevation motor : Stepper
Motor Module

power source : Power Supply  : Distribution Harness

 FIGURE 6.11 

      Reference properties and their interconnections on an internal block diagram.    
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   An Asynchronous Digital Subscriber Line (ADSL) connection is used to connect 
a Surveillance System and Command Center, as shown by the association  ADSL
Connection in Figure 6.12   . The ends of ADSL Connection are named  adsl dte  
and adsl dce, indicating the respective roles of the related blocks. A  Surveillance 
System is a data terminator and thus has higher download than upload and must 
be related, via its reference property  adsl dce, to exactly one  Command Center . 
A Command Center is related, via its reference property  adsl dte, to zero or more 
Surveillance Systems.

    Figure 6.13    shows the part of the  ACME Surveillance Network that deals with res-
idential users. It has a  residential center connected to two residences,  residence A  
and residence B. The two connectors,  ADSL A and ADSL B, are typed by the  ADSL 
Connection and so must conform to its defi ned multiplicities, which they do. 

bdd [Package] Physical [ADSL Connection]

Surveillance System Command Center
ADSL Connection adsl dce

1

adsl dte

0..*

 FIGURE 6.12 

      A reference association between two blocks.    
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adsl dce

adsl dte

adsl dce

adsl dte

ibd [Block] A Command Center [ACME Surveillance Network]

ADSL A : ADSL Connection

ADSL B : ADSL Connection

residential center : Command Center

residence A : Surveillance System

residence B : Surveillance System

 FIGURE 6.13 

      ADSL connection in use.    
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    Association Blocks 
   More detail can be specified for connectors by typing them with  association
blocks. An association block, as the name implies, is a combination of an association 
and a block, so it can relate two blocks together but can also have internal struc-
ture and other features of its own. 

   Association blocks are shown on block defi nition diagrams as an association 
path with a block symbol attached to it via a dashed line. The name of the asso-
ciation block is shown in the block symbol rather than on the association path. 

    Figure 6.14    shows a refi nement to  Figure 6.12  where  ADSL Connection is now 
an association block and is joined by another association block,  SDSL Connection . 
The fi gure also shows additional internal structure inside  Surveillance System and 
Command Center, an  ADSL Modem and an ADSL Gateway, respectively. These 
new parts are used to handle the ADSL communication between them, which is 
specifi ed in  ADSL Connection, as shown in  Figure 6.15   . SDSL Connection repre-
sents the use of a Synchronous Digital Subscriber Line (SDSL) between  Command
Centers , but the parts required to support SDSL are not shown. 

   The internals of an association block are specifi ed in an internal block diagram 
using the notation described earlier in this chapter but with one addition. The 
ends of the association block are represented by participant properties, shown 
on the diagram using a dashed box, like a reference property, but distinguished 
from other properties by the keyword  « participant ». They may also show an end 
property in braces indicating the association end that the participant property 
represents. 

    Figure 6.15  shows the internal detail of the  ADSL Connection association 
block. Its two participant properties— adsl dte and adsl dte—are shown using 
the «participant » keyword. In this case the end property is not shown because 
the participant properties have the same names as the association’s ends. The 
nested parts of  adsl dte and adsl dce are shown in order to describe how an  ADSL
Connection is achieved, in this case via a connector, called  adsl link, between an 
ADSL Modem and an ADSL Gateway. It is now implicit that every connector 

Command Center

: ADSL Gateway

Surveillance System

: ADSL Modem

ADSL Connection

-adsl dce

1

-adsl dte

0..*

SDSL Connection

-sdsl client
1

-sdsl host
1

bdd [Package] Physical [Communications]

 FIGURE 6.14 

      Using association blocks to relate blocks.    
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typed by  ADSL Connection ensures that the  ADSL Modem of its adsl dte and the 
ADSL Gateway of its adsl dce are connected via a connector called  adsl link. Note 
that the connector adsl link is not typed and so there is no additional detail on the 
link’s nature. If further internal detail, such as the nature of the physical details of 
the ADSL connection, were required, an association could have been added. 

    Figure 6.16    shows both the  ADSL Connection and SDSL Connection in use. 
This ACME Surveillance System has two command centers, one for corporate cli-
ents and the other for residential clients. The command centers communicate 
through an  SDSL Connection and to their clients through  ADSL Connections.  

    6.3.3    Modeling Quantifi able Characteristics of Blocks 
Using Value Properties 

    Value properties are used to model the quantitative characteristics, such as its 
weight or speed, associated with a block. They can also be used to model vector 
quantities such as position or velocity. Whereas the definition of a part or reference 
property is based on a block, the definition of a value property is based on a value 
type that specifies the range of valid values the property can take when describing 
an instance of its owning block. SysML defines the concepts of unit and dimension 
that can be used to further characterize a value type, although value types do not 
need to have dimensions or units. Value properties can have initial values associ-
ated with them, and they can also define a probability distribution for their values. 

    Modeling Value Types on a Block Defi nition Diagram 
    Value types are used to describe the values for quantities. For example, a value 
properties called  total weight and component weight might be typed by a value 
type called kilograms (kg) .The intent of the value type is to provide a uniform 
definition of a quantity that can be shared by all value properties. Value type defini-
tions can be reused by typing multiple value properties with the same value type. 

   A value type describes the data structure for representing a quantity and speci-
fi es its allowable set of values. This is especially important when relying on com-
puters to operate on the values to perform various computations. A value type 
can be based on the fundamental types that SysML provides— Integer, String, 

ibd [Block] ADSL Connection

: ADSL Modem : ADSL Gateway
adsl link

«participant»
adsl dte : Surveillance System

«participant»
adsl dce : Command Center

 FIGURE 6.15 

      The internal structure of an association block.    
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ibd [Block] ACME Surveillance Network

residential center : Command Centercorporate center : Command Center

residence A : Surveillance System

residence B : Surveillance System

company X : Surveillance System

company Y : Surveillance System

sdsl host       sdsl client

: SDSL Connection

adsl dce

adsl dte

ADSL Y : ADSL Connection

adsl dce

adsl dte

ADSL B : ADSL Connection

adsl dce

adsl dte

ADSL X : ADSL Connection

adsl dce

adsl dte

ADSL A : ADSL Connection

 FIGURE 6.16 

      Example of an ACME surveillance network with two command centers.    
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Boolean, Real, or  Complex—or it can be defi ned more generally. The following 
are the different categories of value type: 

      ■    A primitive type supports the defi nition of scalar values.  Integer, String,
Boolean , and  Real  are primitive types. 

      ■    An enumeration defi nes a set of named values called literals. Examples of 
enumerations are colors and days of the week. 

      ■    A structured type represents a specifi cation of a data structure that includes 
more than one data element, each of which is represented by a value prop-
erty.  Complex  is a structured type provided by SysML.    

   A value type can take any of these basic forms but extends the defi nition of a 
quantifi able characteristic to include units and dimensions. What they all have in 
common is that they represent values, not entities, and so unlike blocks they have 
no concept of identity. Two instances of a value type are deemed to be identical if 
they have the same values. 

   Value types are represented on a block defi nition diagram by a box symbol 
with a solid boundary. The name compartment of a value type has the keyword 
« valueType » preceding its name. The symbol representing an enumeration has a 
single compartment listing all the literals of the enumeration and the keyword 
«enumeration» preceding its name in the name compartment. The symbol repre-
senting a structured type also has a single compartment labeled  values that lists 
the subelements of the data type, using the same compartment notation as shown 
for other properties. 

    Figure 6.17    shows some value types in the  Basic Defi nitions package.  Size is a 
structured type, with three subelements:  width, height, and  length; they are typed 
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bdd [Package] Basic Definitions

«valueType»
MB

«valueType»
Size

width : m
height : m
length : m

values

«valueType»
Real

«valueType»
MHz

«valueType»
WayPoint

x : Real 
y : Real

values

«valueType»
Frames per Second

«enumeration»
Image Quality

low
normal
high

 FIGURE 6.17 

      Defi nition of basic types in a block defi nition diagram.    
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by another value type  m (for meters). The defi nition of  m includes its unit and 
dimension and is shown later in  Figure 6.19 . Image Quality is an enumeration 
used to specify the quality of image captured by the camera, which can be used to 
control how much data are required to capture each video frame. The other data 
types are all real numbers, so specialize the SysML value type  Real. In this case the 
specialization is simply stating that the values for  MHz, MB, and  Frames per 
Second are real numbers. See Section 6.6 for further discussion on the meaning 
and notation for specialization.  

    Adding Units and Dimensions to Value Types 
   SysML defines the concepts of unit and dimension to enable their use as share-
able definitions that can be used consistently across a model, or captured in a 
model library that can be reused across a set of models. A  dimension identi-
fies a physical quantity such as length, whose value may be stated in terms of 
defined units (e.g., meters or feet). A  unit must always be related to a dimen-
sion, but a dimension need not have any associated units, and often equations 
can be expressed in terms of quantities that include dimensions without specify-
ing units. 

   A value type that represents a physical quantity may reference a dimension 
and/or unit as part of its defi nition, and thus assign units and dimensions to any 
value property that it types.  

    The SI Standard for Units and Dimensions 
   The International System of Units (SI) is a standard for units and dimensions pub-
lished by the International Standards Organization (ISO). The complete set of SI 
dimensions and units are described in a model library in Annex C of the OMG 
SysML Specification. This model library can be imported into any model to allow 
the SI definitions to be used as is, or to use them as the basis for defining more 
specialized units and dimensions. Although this model library is not formally a 
part of the SysML specification, it is anticipated that many SysML modeling tools 
will include this library and possible extensions. 

    Figure 6.18    shows some of the defi nitions in the  SI Defi nitions model library 
of SysML. Although SysML provides descriptions of the SI units and dimensions, it 
does not defi ne standard value types because value types are often customized for 
the application based on the needs of data representation and accuracy.  SI Types  
is a locally defi ned model library that imports  SI Defi nitions in order to defi ne a 
set of SI value types for this application based on the SI units and dimensions. 

   Some of the types in the SI Types model library are shown in  Figure 6.19   , using 
unit and dimension defi nitions imported from the SysML  SI Defi nitions package. 
This enables a consistent representation of quantities that can be checked for 
compatibility of dimensions and consistency of units. Although not shown here, 
all the value types in this fi gure are defi ned to be real numbers. 

    Adding Value Properties to Blocks 
   Once a set of value types have been defined, they can be used to type the value 
properties of blocks. Value properties have the same features as other properties 
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such as multiplicity, and like other properties, are shown in a compartment of 
their owning block. The values compartment has the label  values.

    Figure 6.20    shows a block defi nition diagram containing three blocks with 
value properties:  Camera, Electronics Assembly, and  Optical Assembly. Some of 
the value properties are typed with the value types specifi ed in  Figure 6.17 , such 
as the clock speed and memory of Electronics Assembly. Others are typed with 
value types shown in  Figure 6.19 . For example, the  sensitivity of the Camera is 
typed by  lux, which measures luminosity. The names of value types are not lim-
ited to alphanumeric characters. For example,  pan fi eld of regard in Camera is 
typed by the symbol  “º”,   which stands for degrees. 

    Derived Properties 
   Properties can be specified as derived, which means that their values are derived 
from other values. In software systems, a  derived property is typically calculated 
by the software in the system. In physical systems, a property is typically marked as 

«unit»
Watt

dimension � Power

dimension � Length

«unit»
Meter

«modelLibrary»
SI Definitions

«dimension»
Length

«dimension»
Power «modelLibrary»

Standard Item Definitions
«modelLibrary»

Basic Definitions

«modelLibrary»
SI Types

«import»

«import»
«import»

pkg [Package] Standard Definitions [Dependencies]

 FIGURE 6.18 

      Importing the SI defi nitions defi ned by SysML.    
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«valueType»
lux

«valueType»
m

«valueType»
W

«valueType»
kg

«valueType»
s

dimension � Power
unit � Watt

dimension � Mass
unit � Kilogram

dimension � Illuminance
unit � Lux

dimension � Time
unit � Second

dimension � Length
unit � Meter

bdd [Package] SI Types [SI Types with Dimensions and Units]

 FIGURE 6.19 

      Using dimensions and units in the defi nition of value types.    
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bdd [Package] Structure [Value Properties with Types]

Electronics Assembly

values
clock speed : MHz
memory : MB

Optical Assembly

values
aperture : mm
focal length : mm

Camera

values
dimensions : Size
power : W
pan field of regard : �
sensitivity : lux
tilt field of regard : �

 FIGURE 6.20 

      Use of a value type to type a value property on an internal block diagram.    

derived to indicate that the values of derived properties are calculated based 
on analysis or simulation, and may well be subject to constraints as described in 
Chapter 7. By definition, constraints express noncausal relationships between 
properties, but derived properties can be interpreted as dependent variables, and 
thus allow the equations expressed in constraints to be treated as mathematical 
functions. 

   A derived property is indicated by placing a forward slash (/) in front of the 
property name. 

    Figure 6.21    shows  Optical Assembly with an additional property,  f-number ,
that is marked as derived. It also shows a constraint between  focal length, aperture,
and f-number that can be used, given  focal length and aperture, to calculate the 
value of  f-number.

    Modeling Property Values and Distributions 
   An initial can be assigned to a property. Initial values for value properties can be 
specified as part of their property string in an initial values compartment, for a 
block using the following syntax: 

   property name: type name     �     initial value

   The initial values for a part can be specifi ed using a dedicated compartment 
labeled  initialValues . Quantities may need to be represented by a  probability 

Optical Assembly

constraints
{f-number �� aperture/focal length}

values
aperture : mm
focal length : mm
/f-number : Real

 FIGURE 6.21 

      Example of derived property.    
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distribution rather than a single value. SysML allows a modeler to describe the 
probability distribution of the range of values for a value property.   Annex C of the 
OMG SysML specifi cation defi nes a small set of commonly used distributions in 
a model library that can be reused. The following notation is used to represent a 
distributed property: 

    «distributionName»   {p1     �     value, p2     �     value … } property name:type name

   The properties  p1, p2, and so on are properties that characterize the probabil-
ity distribution. For example, this may be a  mean and standard deviation for a 
normal distribution, or a  min  and  max  value for a uniform distribution. 

    Figure 6.22    shows a number of distributed properties, including  Camera.pan 
fi eld of regard and Optical Assembly.focal length. Camera.pan fi eld of regard  
is the size of the arc that the camera can cover while panning. It is defi ned as 
an interval distribution with a minimum of 0º and a maximum of 360º because 
the actual fi eld of regard will depend on where the camera is installed. The focal 
length of the Optical Assembly is defi ned as a normal distribution with a mean 
of 7 millimeters and a standard deviation of 0.7 millimeters. This is intended to 
accommodate differences arising from the combination of minor deviations in the 
placement of lenses and mirrors during manufacturing. 

   The distributions of both  pan fi eld of regard and focal length are distribu-
tions over the whole population of cameras and optical assemblies. The  Camera.
dimensions and Optical Assembly.aperture have initial values, a simple scalar 
value for  aperture, and a value for each of the constituent value properties of 
dimensions.   
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bdd [Package] Structure [Values]

values

Optical Assembly

Camera

values
dimensions : Size � (0.04,0.03,0.01)
«normal»{mean � "2.1", standardDeviation � "0.01"} power : W
«interval»{min � "0", max � "360"} pan field of regard : �
«interval»{min � "0.05", max � "0.1"} sensitivity : lux
«interval»{min � "0", max � "90"} tilt field of regard : �

aperture : mm � 2.4
«normal»{mean � "7", standardDeviation � "0.35"} focal length : mm

 FIGURE 6.22 

      Examples of property values and distributions.    
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    6.4    Modeling Interfaces Using Ports and Flows 
   A port represents an interaction point on the boundary of a block and on the 
boundary of any part typed by that block. The port enables the behavior of a 
block or part to be accessed. A block may have many ports that specify different 
interaction points. Even though ports are defined on blocks, ports can only be 
connected to one another by connectors on an internal block diagram to support 
the interaction between parts. 

   There are two kinds of ports in SysML to specify two different types of inter-
action. The fi rst kind is a fl ow port that specifi es what can fl ow in or out of the 
block at the interaction point. The fl ow port may represent physical fl ow; for 
example, a water pump might have a port that specifi es that water can fl ow in 
and water can fl ow out. The pump might have another fl ow port that specifi es 
that electrical power can fl ow in. Often, in electronic systems, fl ow ports describe 
the fl ow of information and/or control, such as a signal that a radar system has 
detected a target, or that a button has been pressed on a keyboard. Flow ports are 
described in Section 6.4.3. 

   The second kind of port is a standard port that specifi es the services required 
or provided by the block at this interaction point. Standard ports are often used 
either as high-level descriptions of system capabilities or to describe the interface 
with software-intensive systems, such as command and control. An example of a 
standard port might be one that provides access to a target-tracking subsystem, 
where a client can request information on current targets and threats, or perhaps 
historical data on recent levels of activity. Typically, a single standard port describes 
a set of features related to some specifi c service, such as tracking or navigation, but 
the allocation of the services offered by a block to its ports is a methodological 
question. Standard ports are described in Section 6.5.3. 

   The selection of which port type to use is a methodological question that often 
relates to how the behavior is expressed. In general, fl ow ports are well suited for 
representing continuous fl ows of physical entities, or representing other continu-
ous or discrete fl ows sent from one process to another. Standard ports are bet-
ter suited for a system whose behavior is described by the invocation of services 
and are commonly used to represent interfaces between software components. 
A combination of fl ow ports and standard ports can be used in any given model, 
but standard ports cannot be directly connected to fl ow ports or vice versa.  

    6.4.1    Modeling Items that Flow 
   An item is used to describe a type of entity that flows through a system; it may 
be a physical flow, which includes matter and energy, as well as a flow of informa-
tion. Items may be blocks, value types, or signals. Physical items may be modeled 
as blocks, which typically include value properties that describe physical quanti-
ties of the item, such as the water temperature for a block that represents water. 
A flow may also be simplified to represent just a quantifiable property (e.g., water 
temperature) in which case the item can be represented as a value type instead 
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of a block. An item may have a complex internal structure, such as an automobile 
that flows through an assembly line. 

   The fl ow of information can be represented by signals. Signals may also be 
used to control the behavior of a part that waits for the signal to be received. 

   Items can be defi ned at different levels of abstraction and may be refi ned 
throughout the design process. For example, an alert fl owing from a security system 
to an operator may be represented as a signal at a high level of abstraction. However, 
in exploring the nature of how that alert is communicated in detail, the item may 
be redefi ned. If the alert is communicated as an audio alarm, for example, it may be 
redefi ned as a block representing the amplitude and frequency of the sound. 

    Figure 6.23    shows part of the  Standard Item Defi nitions model library that 
covers the items that fl ow in cameras. The items are modeled as blocks and con-
tain value properties that describe their characteristics. 

    6.4.2   Modeling Flows between Internal Block Diagram Parts 
   An item flow is used to specify the items that flow across a connector in a par-
ticular context. An item flow specifies the type of item flowing and the direction 
of the flow. It may also be associated to a property, called an  item property , of 
the enclosing block to identify a specific usage of an item in the context of the 
enclosing block. For example, water may flow in one port and out of another. 
The type is the same for both; the property is different to correspond to different 
usages. Item properties can be constrained in parametric equations, as described 
in Chapter 7. A connector can have more than one item flow attached to it, either 
flowing in the same or different directions. 

   Item fl ows are represented as black-fi lled arrowheads on a connector where 
the direction of the arrowhead indicates the direction of fl ow. All the item fl ows 
in a given direction are shown in a comma-separated list of item fl ow descrip-
tions fl oating near the arrow for the appropriate fl ow direction. Each item fl ow 
description has a type name, and if related to an item property, includes the prop-
erty name as well. 

6.4 Modeling Interfaces Using Ports and Flows

Video

values
frame rate : Integer 
lines : Integer

DC

values
voltage : V 
current : A 
power : W

Light

bdd [Package] Item Definitions [Standard Item Definitions]

 FIGURE 6.23 

      Items that fl ow in the  Camera system.    
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    Figure 6.24    shows the fl ow of electricity (represented by the block  DC ) 
through  Mechanical Power Subsystem. The overall fl ow, as one might expect, 
is from  power source through the  Distribution Harness to the various motors. 
In this case, each item fl ow is represented by a corresponding item property 
owned by the  Mechanical Power Subsystem.

    6.4.3    Modeling Flow-Based Interfaces Using Flow Ports 
   A flow port is used to describe an interaction point for items flowing in or out of 
a block. It specifies what input items can be received by the block and what out-
put items can be sent by the block. Like other structural features of a block, a port 
can have a multiplicity that indicates how many instances of the port are present 
on an instance of its owning block. 

   Flow ports specify what can fl ow. What actually does fl ow in a particular con-
text, as represented by item fl ows, may be different. Item fl ows on connectors 
between ports must be compatible with the port defi nitions but may be more 
specifi c. For example, a fl ow port on a pump may be typed by fl uid, but in a given 
context, the specifi c fl uid that fl ows through the port may be typed by water. 

    Atomic Flow Ports 
   A port that specifies only a single type of input or output flow is modeled as an 
atomic flow port. An atomic flow port specifies the flow direction (in, out, or 
inout). An atomic flow port is typed by the item that can flow in and/or out of 
the block, which may be a block, value type, or signal. Examples include a block 
(e.g., water), a value type (e.g., current in units of amperes), or a signal (e.g., an 
alert message). 

   Atomic fl ow ports are shown as small squares on the boundary of the block with 
an arrow inside the symbol representing the direction of the port. A two-headed 

ibd [Block] Mechanical Power Subsystem [Power Flow]

focus motor : Brushless DC
Motor Module

iris motor : Brushless DC
Motor Module

azimuth motor : Stepper
Motor Module

elevation motor : Stepper
Motor Module

power source : Power Supply : Distribution Harness

altm supply : DC

fm supply : DC

azm supply : DC

im supply : DC

supply : DC

 FIGURE 6.24 

      Item fl ows on an internal block diagram.    
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arrow represents a direction of inout. The name, type, and multiplicity of the port 
are shown in a string fl oating near the port in the form: 

   port name: item name[multiplicity]

   Alternatively, the port strings can be included in a separate  flow ports compart-
ment, using the syntax: 

   direction port name: item name[multiplicity]

   On the block defi nition diagram in  Figure 6.25   , the atomic fl ow ports on 
Optical Assembly specify that it can accept Light as an input and produces a 
focused optical image, which is still  Light, as an output. The atomic fl ow ports on 
Imaging Assembly specify that it accepts an optical image and produces an  elec-
trical image  for further processing. 

    Nonatomic Flow Ports 
   Where an interaction point has a complex interface with many items flowing, the 
port is modeled as a  nonatomic flow port. In this case a flow specification must 
type the port. A  flow specification is defined on a block definition diagram. The 
flow specification includes flow properties that correspond to individual specifi-
cations of input and/or output flow. Each  flow property has a type and a direc-
tion (in, out, or inout). Like an atomic flow port, the type of the flow property 
can be a block, value type, or signal depending on the specification of what can 
flow. 

   When two blocks interact, they may exchange similar items but in opposite 
directions. Rather than creating two separate fl ow specifi cations for the nonatomic 
fl ow ports on the interacting blocks, SysML provides a mechanism called a  conju-
gate port to reuse a single fl ow specifi cation for both ports. One port is set to be 
the conjugate of the other, which indicates that the direction of all fl ow properties 
in the fl ow specifi cation is reversed with respect to this port. 

6.4 Modeling Interfaces Using Ports and Flows

bdd [Package] Structure [Flow Port Definitions]

Imaging Assembly

optical image : Light electrical image : Image

Optical Assembly

external light : Light optical image : Light

 FIGURE 6.25 

      A block with atomic fl ow parts.    
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   A fl ow specifi cation is shown as a box symbol with the  « fl owSpecifi cation »  
keyword above the name in the name compartment. The fl ow properties of a 
fl ow specifi cation are shown in a special compartment labeled  fl owProperties,
with each fl ow property shown in the format: 

direction property name: item name.

   A nonatomic fl ow port is indicated by two angle brackets facing each other 
(� �) drawn inside the port symbol. A conjugate fl ow port is indicated by invert-
ing the fi ll and line color in the symbol. Nonatomic fl ow ports can be listed in 
the fl ow ports compartment of their owning block, although they do not have a 
direction. If a noncomposite fl ow port is   « conjugated », then its entry ends with 
the keyword conjugated in braces. 

   In  Figure 6.26   , data are communicated from the  Monitoring Station to one or 
more  Cameras. A single fl ow specifi cation,  Camera Interface, describes the data 
that can be passed between the communication ports— camera I/O and station
I/O. Video fl ows out and commands in. Given that the two blocks are intended to 
be connected, they share the same fl ow specifi cation for their ports. The  station
I/O port on the  Monitoring Station is conjugated with the dark shading to indi-
cate that fl ow specifi cation is reversed from the  camera I/O port on the  Camera;
that is, the video fl ows in and the commands fl ow out. 

    Connecting Flow Ports on an Internal Block Diagram 
   When a block has ports, the parts that are typed by this block also feature these 
ports, which can then be connected on an internal block diagram using connec-
tors. When an output port, or nonatomic flow port with an output flow property, 

bdd [Block] Surveillance System [Composite Flow Ports]

«flowSpecification»
Camera Interface

«block»
Monitoring Station

station I/O :
Camera Interface

«block»
Camera

camera I/O :
Camera Interface

«valueType»
Control Data

command : Byte 
data1 : Word
data2 : Word

out digital video : MPEG4 
out analog video : Composite
in control : Control Data
in shutdown sig : Shutdown
in startup sig : Start Up
in start test sig : Start Test Signal
in stop test sig : Stop Test Signal

flowPropertiesvalues

 FIGURE 6.26 

      A block with a nonatomic fl ow port.    



125

is connected to more than one other port, the items sent from that port are broad-
cast along all connectors. 

   When attempting to connect two ports, their compatibility needs to be 
assessed. Whether ports are compatible or not depends on both the kind of port 
(fl ow ports can only be connected to fl ow ports and standard ports can only be 
connected to standard ports) and more signifi cantly on the compatibility of the 
specifi cation of the port types. 

   The simplest form of compatibility between two connected fl ow ports is where: 

      ■     Atomic fl ow ports have matching types and the direction of one port is in 
and the other out, or both are inout. 

      ■     Nonatomic fl ow ports have matching fl ow specifi cations and one fl ow port 
is the conjugate of the other.    

   As discussed in Section 6.6, the type of a port may be specialized, perhaps to add 
new features. For the purposes of compatibility, a port with a given type will 
always be compatible with a port that specializes that type. 

   Atomic fl ow ports may be connected to nonatomic fl ow ports as long as the 
fl ow specifi cation that types the nonatomic fl ow port contains a fl ow property 
of a matching type and direction. In  Figure 6.27   , two atomic fl ow ports on the 
Camera Module and Electronics Assembly of the Camera are connected to 
show that images can fl ow out of the  Camera Module and into the Electronics 
Assembly. The connection is valid since both ports have a compatible type, 
Image, and they have compatible directions. 

   In Figure 6.28   , two parts of the  4-Camera Surveillance System — Monitoring
Station and the set of cameras—are connected to enable communications 

6.4 Modeling Interfaces Using Ports and Flows

ibd [Block] Camera [Port Connector Example]

: Electronics Assembly

: Image

: Camera Module : Image

 FIGURE 6.27 

      Connecting ports on an internal block diagram.    

ibd [Block] 4-Camera Surveillance System

: Monitoring Station

station I/O :
Camera Interface

cameras :
Camera [4]

camera I/O :
Camera Interface

4
1

 FIGURE 6.28 

      A connector that connects two nonatomic fl ow ports with the same specifi cation.    
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between them. Ports on both parts use the fl ow specifi cation  Camera Interface  
to defi ne their interface. The port on the  Monitoring Station is conjugated, and 
the port on the  cameras is not, so they are compatible and can be connected. 
The multiplicities on the ends indicate how their instances can be connected in a 
4-Camera Surveillance System. A camera instance must be connected to exactly 
one monitoring station and a monitoring station must be connected to exactly four 
cameras. Given that the  Camera part has multiplicity 4 and the  Monitoring
Station part has a multiplicity of 1, the instance of  Monitoring Station is con-
nected to all four instances of  cameras.

    Delegating Responsibility between Ports 
   There are two cases to consider for how a block handles the interactions tak-
ing place at its ports. Either it handles the interactions directly itself, or it del-
egates the handling to a part or parts. If a block handles the port interactions 
itself, then the port is called a  behavior port. Where a flow port is a behavior 
port, the flowing items must be relayed either to/from some feature of its owning 
block, or a parameter of the block’s main (or classifier) behavior. The mechanism 
used to specify the mapping is not stated in SysML, allowing modelers in differ-
ent domains and situations to take different approaches. See Section 6.5.1 for a 
description of the classifier behavior for a block. 

   The other case is when the block delegates the behavior to its parts. In this 
case the block presents a port on its interface but it delegates responsibility for 
handling the interaction at that port to a nested part or parts, via ports on their 
interfaces. This type of port is called a  delegation port.

   The delegation is carried by a connector from a delegation port on the par-
ent to a port on one of its parts. To distinguish the two cases, a connector from a 
parent to a part is called a  delegation connector and a connector between parts 
is called an assembly connector. Delegation connectors are similar in most 
ways to assembly connectors except that the compatibility rules are different. 

   In the case of delegation connectors, the specifi cations of the connected ports, 
instead of being complementary, must be similar, so: 

      ■    For an atomic fl ow port, the types of ports must be compatible and their 
directions match.  

      ■    For nonatomic fl ow ports, they must be typed by the same fl ow specifi ca-
tion and either both must be conjugate or both not be conjugate.    

   The compatibility rules in the presence of specialization of port types are the 
same as for assembly connectors. 

   Ports shown on the diagram frame of the internal block diagram represent the 
ports on the enclosing block that is designated by the diagram frame as shown in 
Figure 6.29   . SysML at present does not provide a notation to distinguish behav-
ior ports, although this information is stored in the model repository. Depending 
on circumstances, it may be useful to add information in the diagram description 
about whether a given part on an internal block diagram delegates port interac-
tions to its own internal structure. 
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   In Figure 6.29 , the conversion of light by the  Camera Module into an electri-
cal signal that represents an image is actually performed by two of its parts, the 
Optical Assembly that focuses the light and the  Imaging Assembly that scans the 
result and converts it to an analog signal representing the image. The  MPEG4  
atomic output port of the  Electronics Assembly is connected to camera I/O on 
Camera that is a composite. However, this connector is valid because  Camera 
Interface contains an output fl ow property typed by  MPEG4. Note that the names 
of the internal fl ow ports have been elided to reduce clutter on the diagram. 

    Modeling Flows between Ports 
   As noted earlier, item flows can be shown on connectors between  parts . Item 
flows are also shown on port-to-port connectors. SysML includes compatibility 
rules to confirm that the item flow is compatible with the type of the ports on 
either side of the connector. For an item flow to be valid in this context, it must 
be attached to a connector between two flow ports that support types compat-
ible with the type of the flowing item. Specifically, the type of item that flows 
must be compatible with the type of connected atomic flow ports, or be com-
patible with the type of one of the flow properties in the flow specification that 
types the connected nonatomic flow ports. 

    Figure 6.30    shows the two parts of  Imaging Assembly, the  Image Detector  
that creates an analog electrical image from the incoming light and the  Imaging 
Electronics that amplifi es the electrical image so that it can be read by the image 
processor in the  Electronics Assembly. There are three item fl ows shown in the 
fi gure, representing the fl ow of light into the  Image Detector, the fl ow of electri-
cal signals from the  Image Detector to the Imaging Electronics, and the fl ow of 
boosted electrical signals from the  Imaging Electronics. All the item fl ows are 
associated to an item property and they are all compatible with their associated 
connector. For example, the type of  detector signal is Image, which is compatible 

ibd [Block] Camera [Nested Flow]

light in : Light

camera I/O :
Camera
Interface

: Electronics Assembly

: MPEG Converter

: MPEG4

: Video

: Image Processor

: Video

: MPEG4

: Camera Module

: Imaging Assembly

: Optical Assembly

: Light

: Light

: Image

: Image

: Image
: Image

: Light

: Light

 FIGURE 6.29 

      Examples of delegation ports.    

6.4 Modeling Interfaces Using Ports and Flows
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with the two ports at either end of its associated connector, and it is fl owing in a 
compatible direction, from an out port to an in port.    

   6.5 Modeling Block Behavior 
   Blocks provide the context for behaviors, which is a SysML term covering any 
and all descriptions of how the block deals with inputs and outputs and changes 
its internal state. The two ways to specify the behavior of a block are referred to 
as the main behavior (called classifier behavior) and by methods that provide the 
specification of how service requests are handled. These in turn may invoke other 
behaviors within the block. All behaviors have parameters that are used to pass 
items into or out of the behavior before, after, or sometimes during execution. 

   As Chapters 8 through 10 describe, there are three main behavioral formalisms 
in SysML: activities, state machines, and interactions: 

      ■    Activities transform inputs to outputs, including matter, energy, and information. 
      ■    State machines are used to describe how the block responds to events. 
      ■    Interactions describe how the parts of a block interact with each other 

using message passing.    

   SysML recognizes two other forms of behavior that are not formalized within 
the language. An opaque behavior is represented as a textual expression and 
defi nes the language in which the expression is written. A function behavior is 
similar to an opaque behavior with the added restriction that it is not allowed 
to directly affect the state of its owning block and may only communicate using 
parameters. Function behaviors are often used to defi ne mathematical functions. 

    6.5.1    Modeling the Main Behavior of a Block 
   The main behavior (sometimes called classifier behavior) of a block starts 
at the beginning of the block’s lifetime and generally terminates at the end of its 
lifetime. Depending on the nature of the block, the choice of formalism for the 
classifier behavior is between state machines, if the block is largely event-driven 
(e.g., part of a service-based architecture), and activities, if the block is largely 
used to transform input items to output items. A popular hybrid approach is to 
use a state machine to describe the states of a block and to specify an activity that 
executes when a block is in a given state. 

: Image

: Image Detector

: Image

detector signal :
Image

optical image:
Light

electrical image :
Image

: Light : Image

boosted
signal : Image

optical signal :
Light

ibd [Block] Imaging Assembly [Item Flows]

: Imaging Electronics

 FIGURE 6.30 

      A port-to-port connector with item fl ows.    
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   When a block has a classifi er behavior and also has parts with classifi er behav-
iors, the modeler should ensure that the behaviors between the whole and the 
parts are consistent at each system hierarchy level. A classifi er behavior may act as 
a controller that plays an active role in coordinating the behaviors of its parts. In 
this case, the behavior of the block is a combination of its classifi er behavior and 
the classifi er behavior of all its parts. Another approach is for the classifi er behavior 
of the block to be some alternative abstraction of the behavior of its parts. In this 
case, part-level behavior is a refi nement of the block’s classifi er behavior. 

    6.5.2   Specifying the Behavioral Features of Blocks 
   Along with structural features, blocks can also own  behavioral features that 
describe which requests a block can respond to. There are two types of behavio-
ral features, operations and receptions. A  reception represents an asynchronous 
request; that is, where the requester does not wait for a response. Each reception 
is associated with a signal that defines a message with a set of attributes that rep-
resent the content of the message. Receptions in different blocks can respond to 
the same signal type, so frequently used messages can be defined once and reused 
in many blocks. The attributes of the signal in turn define the set of arguments 
passed in with the asynchronous request. 

   An operation is a behavioral feature that typically represents a synchronous 
request; that is, where the requester waits for a response. Operations may also be 
asynchronous but then are largely equivalent to receptions. Operations defi ne a 
set of parameters that describe the arguments passed in with the request, or are 
passed out once a request has been handled, or both. 

   A behavioral feature may have an associated method that is a behavior invoked 
when the block handles a request for the feature. Behavioral features are discussed 
later in this section  and in more detail in the activity, interaction, and state machine 
chapters—Chapters 8 through 10, respectively. 

   Operations are shown in a separate compartment labeled  operations and are 
described by their signature, a combination of their name along with parameters, 
and optional return type as follows: 

   operation name (parameter list):return type

   The parameter list is comma-separated with the format: 

direction parameter name: parameter type

   Parameter direction may be in, out, or inout. 
   Receptions are shown in another compartment labeled  receptions and are 

described by their signature of name and list of attributes as follows: 

   «signal» reception name (attribute list)

   The attribute list is comma-separated with the format: 

   attribute name: attribute type 

6.5 Modeling Block Behavior
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   Signals are defi ned using a box symbol with a solid outline and the keyword 
«signal» before the signal name. A signal symbol has a single unlabeled compart-
ment that contains the attributes with the form: 

attribute name: attribute type [multiplicity]

    Figure 6.31    shows operations and receptions for the blocks  UI and Monitoring 
Station. UI has operations to support user login and a set of receptions so that it 
can be informed of the progress of camera tests. The diagram also shows the defi -
nition of the signals related to the receptions.  Monitoring Station has a set of oper-
ations that support route management, user management, and test management. 

    6.5.3    Modeling Service-Based Interfaces Using Standard Ports 
   An alternative method for describing a service-based interface to a block is to 
define the behavioral features the block can support at a given interaction point. 
A standard (service-based) port uses a definition called an  interface to specify 
the set of behavioral features either required or provided at this interaction point.  

    Modeling Interfaces 
   Interfaces that type a standard port are defined on a block definition diagram as 
box symbols with the keyword «interface» before their name. Interface symbols 
have operation and reception compartments like block symbols. 

    Figure 6.32    shows fi ve interfaces that describe different logical groupings of 
services.  Camera Control contains a set of operations that provide support for 
controlling the camera.  Test Tracking contains a set of receptions that allow the 
reporting of progress during camera testing. The other interfaces support other 
services (e.g., user and route management). 

bdd [Package] Logical [Classes with Operations]

«block»
UI

login() : String 
logout() : String

«block»
Monitoring Station

«signal»
Test in Progress

camera id : String

«signal»
System OK

operationsoperations

receptions
«signal» Test in Progress(camera id : String) 
«signal» Test Complete(camera id : String, OK : Boolean) 
«signal» System OK()

create route() : Route 
delete route(in r : Route) 
test cameras() 
camera test complete(in OK : Boolean) 
verify login details() : Boolean 
check capacity() 
pan camera(in strength : Integer) 
tilt camera(in strength : Integer) 
get camera status(in camera id : Integer, out camera status : String)

«signal»
Test Complete

camera id : String
OK : Boolean

 FIGURE 6.31 

      Showing block operations on a block diagram.    
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    Adding Interfaces to Standard Ports 
   A required interface on a port specifies one or more operations required by the 
block (or its parts) to realize its behavior. A  provided interface on a port speci-
fies one or more operations that a block (or one or more of its parts) provides. 
A part that has a port with a required interface generally requests another part 
to provide an input it needs to perform its function. The other part then pro-
vides the service by returning a value to the requester. Interface definitions can 
be reused as needed to define the interfaces of standard ports on many blocks. 

   When a standard port is a behavior port, the owner of the port must include 
all the operations and receptions specifi ed by its provided interfaces. The typical 
approach to modeling this is to add a  realization dependency from the block 
to each provided interface, which asserts that the block will declare a behavioral 
feature for each behavioral feature in that interface. A block can assert that it 
requires a set of behavioral features by adding a  uses dependency  to an inter-
face, although this has no affect on the features of the block. 

   The uses dependency is represented by a dashed arrow with an open head 
pointing toward the interface. The realization dependency is represented by a 
dashed arrow with an unfi lled triangular head pointing toward the interface. 

   The required and provided interfaces of a port may be represented by the 
dependency notation described earlier, but a more popular notation called  “ball
and socket ” is often used instead. An interface is represented by either a ball or 
socket symbol with the name of the interface fl oating near it. The ball depicts 
a provided interface, and the socket depicts a required interface. A solid line 
attaches the interface symbol to the port that requires or provides the interface. 

   A standard port can have one or more required interfaces and one or more 
provided interfaces, and hence can be connected to multiple interface symbols. 

bdd [Package] Logical [Interfaces]

«interface»
Camera Control

operations
get camera status(in camera id : Integer, in camera status : String)
test cameras()
pan camera(in strength : Integer)
tilt camera(in strength : Integer)

receptions

«interface»
Test Tracking

«signal» Test in Progress(camera id : String)
«signal» Test Complete(camera id : String, OK : Boolean)
«signal» System OK()

operations

«interface»
User Login

login() : String
logout() : String

«interface»
Login Support

operations
verify login details() : Boolean
check capacity()

«interface»
Route Management

create route() : Route
delete route(in r : Route)

operations

 FIGURE 6.32 

      A set of interfaces used to defi ne provided or required services.    
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Alternatively, the port strings can be included in a separate  standard ports com-
partment, using the following syntax: 

   port name: interface name[multiplicity]

    Figure 6.33    shows the set of standard ports that defi ne interface points on the 
blocks  UI and Monitoring Station. UI has four ports, two that provide services 
and two that require services. The port  test feedback provides the services defi ned 
by the interface  Test Tracking. The port  route requests requires the services 
defi ned by the interface  Route Management. Monitoring Station also has four 
ports, three that provide services and one that requires services. Whereas the port 
route requests on UI requires the interface  Route Management, port  route requests  
on Monitoring Station  provides the interface  Route Management.

    Login requests and test feedback on block  UI are behavior ports, and so  UI  
has realization dependencies to the  Test Tracking and User Login interfaces. 
Similarly,  Monitoring Station realizes  Camera Control, Route Management, and 
Login Support because login services, route requests, and  camera requests are all 
behavior ports.   

    6.5.4    Connecting Standard Ports on an Internal Block Diagram 
   On an internal block diagram, standard ports, like flow ports, can be connected to 
multiple other ports through connectors. A request made through a standard port 

bdd [Package] Logical [Ports and Interfaces]

UI

route
requests

login
services

test
feedback

login
requests

Monitoring Station

login
services

route
requests

camera
requests

test
feedback

Route
Management

Route
Management

Camera
Control

Login
Support

Login
Support

Test
Tracking

Test
Tracking

User
Login

«interface»
Test Tracking

«interface»
User Login

«interface»
Route Management

«interface»
Login Support

«interface»
Camera Control

 FIGURE 6.33 

      Defi ning a service-based interface using standard ports.    
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is communicated along any connector that connects it to a port with a compat-
ible interface. 

   A tool can verify the compatibility of the interfaces of connected standard ports 
by verifying the compatibility of the operations on the interfaces. For assembly 
connectors, compatibility is ensured if the provided interfaces of one port are 
matched one-for-one with the required interfaces of the other port and vice versa. 
For delegation connectors, the connected ports are compatible if they have the 
same required and provided interfaces. In many cases, however, this is overly 
restrictive because a connector may not be used for all the possible requests 
implied by the interfaces of the connected ports, and so SysML leaves the precise 
details of port compatibility for standard ports undefi ned. 

   Required and provided interfaces can be shown on an internal block diagram 
using the ball-and-socket notation introduced earlier if required, although this 
often adds clutter to the diagram. If the ball-and-socket notation is used, it is easy 
to perform a quick visual check on the compatibility of connected ports. Ports 
connected by delegation connectors should have the interface symbols with the 
same name and shape. Ports connected by assembly connectors should have 
interface symbols with the same name and different shapes. 

    Figure 6.34    displays an internal block diagram for  Surveillance System show-
ing two of its parts, the  UI and the Monitoring Station. The ports of these two 
parts are connected both to the ports on their parent and to each other’s ports. 
Surveillance System delegates the handling of requests on its  user login port to 
the UI, and the handling of requests on its  camera cmds port to the  Monitoring
Station. The UI uses Login Support services of the  Monitoring Station, via its 
login services port, to provide data on current users, and also passes through 
route management requests. The  Monitoring Station provides  Test Tracking  
services to the  UI.

6.5 Modeling Block Behavior

ibd [Block] Surveillance System [UI and Monitoring Station Connections]

user
login camera

cmds

login services

route requests

test feedback
login

requests

login services
: Monitoring Station: UI

route requests

camera
requests

test feedback
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Management

Login
Support

Test
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 FIGURE 6.34 

      Connecting standard ports on an internal block diagram.    
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    6.5.5    Modeling Block-Defi ned Methods 
   Some behaviors owned by the block only execute in response to a particular stim-
ulus, either a request for a service provided by an operation or a signal request 
tied to a reception. Such a behavior is called a  method, and it is related to the 
behavioral feature describing the request. 

   Unlike the main block behavior, methods typically have a limited lifetime, start-
ing their execution following the stimulus, performing their allotted task, and then 
terminating, perhaps returning some results. Methods are usually specifi ed using 
activities, opaque behaviors, or function behaviors. 

   It should be mentioned that not all behavioral features require methods. Requests 
associated with behavioral features can be handled directly by behaviors using the 
specialized constructs described in Chapters 8 through 10. 

   SysML supports the notion of  polymorphism, where many different blocks 
may respond to the same service request or message, but each may do so in a spe-
cifi c way; that is, by invoking a specifi c method. Polymorphism is strongly associ-
ated with classifi cation, as described in the next section.   

    6.6     Modeling Classifi cation Hierarchies 
Using Generalization 

   All the definitions that can appear on a block definition diagram are  classifiers,
which means that they can be organized into a classification hierarchy. The clas-
sifiers so far encountered in this chapter are blocks, value types, interfaces, flow 
specifications, and signals. In a classification hierarchy each classifier is described 
as being more general or more specialized than another. Typically a general clas-
sifier includes a set of features common to a set of more specialized classifiers 
that also include additional features. The relationship between the general classi-
fier and specialized classifier is called  generalization. Different terms are used to 
identify the classifiers at the end of a generalization relationship. In this chapter, 
the general classifier is called the  superclass, and the more specialized classifier 
is called the subclass.

   Classifi cation can facilitate reuse where a subclass reuses the features of a 
superclass and adds it own features. The benefi ts of such reuse can be substantial 
when the superclass has signifi cant detail. 

   This section deals initially with the classifi cation of structural features of a 
block, covering both the addition of features and the redefi nition of existing fea-
tures in subclasses. Although the focus for this section is blocks, other elements 
with structural features, such as fl ow specifi cations and value types, can also be 
classifi ed in the same fashion. Subclasses of fl ow specifi cations can add or rede-
fi ne fl ow properties. Subclasses of value types may add additional characteristics 
such as units and dimensions. Subclasses of an interface can add new operations 
and receptions, and subclasses of a signal can add new attributes. 

   In addition to classifi cation for reuse, classifi cation can also be used to describe 
specifi c confi gurations of a block, to identify unique confi gurations for testing, or 
as the input to simulations or other forms of analysis. 



1356.6 Modeling Classifi cation Hierarchies Using Generalization

   Classifi cation also applies to behavioral features and can be used to control 
the way blocks respond to incoming requests. Classifi cation of behavioral features 
and the semantics implied by the use of classifi cation are covered by numerous 
texts on object-oriented design and so will not be dealt with in any detail here. 

   Generalization is represented by an arrow between two classifi ers with a hol-
low triangular arrowhead on the superclass end. Generalization paths may be dis-
played separately, or a set of generalization paths may be combined into a tree, as 
shown later in  Figure 6.36 .

    Figure 6.35    shows two subclasses of  Camera, Wired Camera and Wireless 
Camera. Both of the subclasses require all the characteristics of  Camera but add 
their own specialized characteristics as well.  Wired Camera has both a mains 
connection and a wired Ethernet connection. The  Wireless Camera uses WiFi 

Camera

parts
 : Protective Housing
ma : Mount Assembly
 : Camera Module
 : Electronics Assembly

values
dimensions : Size
power : W
field of view : °
orientation : °

in light in : Light
camera I/O : Camera Interface

control : ICameraSignals

flow ports

standard ports

parts
: Transformer
: Ethernet Card

Wired Camera

in mains input : AC
flow ports

parts
: Battery
: WiFi Card

Wireless Camera

battery life : s
values

in charger input : DC
flow ports

bdd [Package] Structure [Two Specialized Types of Camera]

 FIGURE 6.35 

      Example of block specialization.    
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to communicate and is battery-driven. It has a DC charger input and a measure of 
the current battery life. 

    6.6.1    Classifi cation and the Structural Features of a Block 
   Different blocks in a classification have different structural features, with sub-
classes adding features not present in their superclasses. Not all features added in 
subclasses are new; some are introduced to override or otherwise change the defi-
nition of an existing feature, which is called  redefinition. A feature in a subclass 
may also be defined to represent a  subset  of a feature in a superclass. 

   The fundamental consequence of redefi ning a property in a subclass is to pre-
vent further use of that property in the subclass. However, on top of this the rede-
fi ning property is typically intended to be used in place of the redefi ned property, 
so often has the same name. When used instead of the redefi ned property, the 
redefi ning property may: 

      ■    Restrict its multiplicity—for example, from 0..* to 1..2 in order to reduce the 
number of instances or values that the property can hold. 

      ■    Add or change its initial value.  
      ■    Provide a new distribution or change an existing distribution.  
      ■    Change the type of the property to a more restricted type—in other words, 

a type that is a subclass of the existing type.    

   Redefinition is shown in braces after the name string of the redefining property 
using the keyword  redefines followed by the name of the redefined property. 

   In the Components package, two motor modules are described for use in the 
system. Both motor modules share a number of features; for example, they both 
have some common value properties, such as  weight, power consumption, and 
torque. In  Figure 6.36    a general concept of  Motor Module has been introduced to 
capture the common characteristics of the two motor modules. 

   In addition to value properties,  Motor Module defi nes a common concept of a 
control input using a fl ow port. The  Brushless DC Motor Module and the Stepper 
Motor Module are represented as subclasses of this common concept with spe-
cial features of their own, such as the  step size and position output for the  Stepper 
Motor Module. In addition, the common properties from  Motor Module have 
been redefi ned in the subclasses in order to place bounds on their values that 
are appropriate to the type of motor. The value properties are described by an 
« interval » probability distribution to represent the range of values properties can 
have in their given subclass. 

    6.6.2     Modeling Overlapping Classifi cations Using 
Generalization Sets 

   Sometimes a subclass may include features from multiple superclasses. This is 
called multiple generalization, or sometimes  multiple inheritance. The sub-
classes of a given class may also be organized into groupings based on how they 
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Brushless DC Motor
Module

values

Stepper Motor
Module

values

position : V

Motor Module

values
weight : g
power : W
torque : mNm

bdd [Package] Components [Types of Motor]

control input : V

«interval»{min � "8", max � "16"}weight : g{redefines weight}
«interval»{min � "5", max � "10"}power : W{redefines power}
«interval»{min � "1.5", max � "1.7"}torque : mNm{redefines torque}
step size : mm

«interval»{min � "0.3", max � "1.5"}weight : g{redefines weight}
«interval»{min � "0.2", max � "0.5"}power : W{redefines power}
«interval»{min � "0.02", max � "0.03"}torque : mNm{redefines torque}

 FIGURE 6.36 

      Showing a classifi cation hierarchy on a block defi nition diagram.    
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can be used for further classification. For example, a superclass  Person may have 
subclasses that represent the characteristics of an  Employee OR a Manager in 
their job AND subclasses that represent the characteristics of a  Woman OR a Man  
as their gender. This situation can be modeled using generalization sets, as shown 
in Figure 6.37   . Generalization sets have two properties that can be used to 
describe coverage and overlap between their members. 

   The coverage property specifi es whether all the instances of the superclass 
are instances of one or another of the members of the generalization set. The 
two values of the coverage property are complete and incomplete. The  overlap  
property specifi es whether an instance of the superclass can only be an instance 
of at most one subclass in the generalization. The two values of the property are 
disjoint and overlapping. 

   A generalization set may be displayed on a block defi nition diagram by a 
dashed line intersecting a set of generalization paths. The name of the gen-
eralization set and the values of the overlap and coverage properties, shown in 
braces, are displayed fl oating near the line that represents the generalization set. 
Alternatively, where the tree form of generalization notation is used, a general-
ization set may be represented by a tree with the generalization set name and 
properties fl oating near the triangle symbol at its root.  Figure 6.37  shows the dashed-
line variant and  Figure 6.40  the tree variant. 

    Figure 6.37  shows the example of generalization sets described earlier.  Person  
is subclassed by four subclasses in two generalization sets.  Gender has two mem-
bers,  Woman and Man, and is both disjoint and completely covered because all 
instances of Person, must be an instance of either  Woman or Man but not both. 
Job has two members,  Employee and Manager, and is overlapping and incom-
pletely covered because an instance of  Person may be an instance of both 
Employee  and  Manager , or neither.  

    6.6.3    Modeling Variants Using Classifi cation 
   The description and organization of product variants is a large and complex topic 
and requires solutions that cover many different disciplines, of which modeling 

bdd [Package] Generalization Set [Person Example]

Person

Employee ManagerWoman Man

{incomplete, overlapping}

Job

{complete, disjoint}

Gender

 FIGURE 6.37 

      Showing a generalization set on a block defi nition diagram.    
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is just one. Nonetheless, SysML contains concepts like classification that can be 
used to capture some of the details and relationships needed to model variants. 
For example, classification can be used to model different variants of a block defi-
nition that represent alternative designs being evaluated in a trade study. This can 
be achieved by describing several specialized variants of a block as subclasses of 
the original, grouped into generalization sets. Note that multiple subclasses of a 
superclass can be recombined using multiple generalizations in subsequent levels 
of classification, but these must obey the specified overlap and coverage of their 
superclasses. 

    Figure 6.38    shows two mutually exclusive characterizations of the  Camera: its 
intended location and the way that it connects with a controller. Each character-
ization in this case has two variants. There are two intended locations, indicated 
by the generalization set  Location, served by either an  Internal Camera or an 
External Camera. There are also two intended modes of connection, indicated 
by the  Connection generalization set, served by the  Wired Camera and Wireless 
Camera blocks originally shown in  Figure 6.35 . Two further variants,  Wireless 
Internal Camera and Wired External Camera, are created by multiple generaliza-
tion from these four. The features of the blocks are hidden to reduce clutter. 

    6.6.4    Using Property-Specifi c Types to Model Context-Specifi c 
Block Characteristics 

   A property-specific type is used to designate parts or value properties that are 
further specialized for localized use within an internal block diagram. This might 
happen, for example, when one or more properties of a part have different dis-
tributions than in the original of their type. The property-specific type implicitly 

bdd [Package] Structure [Camera Variants]

{complete, disjoint}

Location
{complete, disjoint}

Connection

Camera

Wireless Internal Camera Wired External Camera

External CameraWireless Camera Internal CameraWired Camera

 FIGURE 6.38 

      Modeling variant confi gurations on a block defi nition diagram.    

6.6 Modeling Classifi cation Hierarchies Using Generalization
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creates a subclass of the block that types the part property to add the unique 
characteristics. The presence of a property-specific type is indicated by including 
the type name of a property in brackets. Compartments can be used to depict the 
unique features for each part-specific property, such as the value properties for 
the different motors ’ weights in the following example. 

    Figure 6.39    shows a small fragment of a particular model of surveillance cam-
era, the  SC Model 1      A, that specializes  Camera. In the SC Model 1  A, the generic 
Stepper Motor Module used in the Mount Assembly ( ma) of Camera has been 
replaced by a specifi c motor module containing the  Maxon EC10 . To do this 
replacement, rather than specifi cally create a block that represents this variant 
of Mount Assembly, a property-specifi c type is used. Signifi cant properties of the 
Maxon EC10  are shown in the  values  compartments of the parts.  

    6.6.5    Modeling Block Confi gurations as Specialized Blocks 
   A block configuration describes a specific structure and specific property val-
ues intended to represent a unique instance of a block in some known context. 
For example, a block configuration may be used to identify a particular aircraft in 
an airline company’s fleet by its call sign and to provide other characteristics spe-
cific to that aircraft. In that example, the call sign is intended to consistently iden-
tify the same aircraft even though the values of other properties may change over 
time. Block configurations can also be used to identify the state of some entity at 
a given point in time. Extending the example of the aircraft, it might be important 
for an air-traffic control simulation to describe a snapshot of an aircraft’s position, 
velocity, fuel load, and so on at certain critical analysis stages. 

   It is important to note that because a block confi guration can only describe a 
fi nite set of features and values, there may be many actual instances in the physi-
cal domain that match that description. It is up to the modeler to ensure that the 
context is understood and that any ambiguity does not compromise the value of 
the model. Typically the block contains a value property whose value can be used 

ibd [Block] SC Model 1A [Specific Motors]

ma : [Mount Assembly]

elevation motor : Maxon EC10 azimuth motor : Maxon EC10

weight : g � 13{redefines weight}
power : W � 8{redefines power}
torque : mNm � 1.72{redefines torque}

values
weight : g � 13{redefines weight}
power : W � 8{redefines power}
torque : mNm � 1.72{redefines torque}

values

 FIGURE 6.39 

      Property-specifi c types.    
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to identify a single instance within the context. For example, a car number plate 
may be unique within a given country but not over all countries. 

    Modeling a Confi guration on a Block Defi nition Diagram 
   A block configuration is constructed using the generalization relationship des-
cribed earlier. The configuration becomes a subclass of the block for which it is 
a configuration. There is no specific notation for designating a unique configura-
tion. However, a block is often defined with a property that represents a unique 
identifier such as the vehicle identification number that can be used when mod-
eling configurations. Often it is useful to introduce a generalization set for block 
configurations to distinguish them from other specializations of that block. 

   A useful characteristic of the SysML property concept is the ability to state 
that a property in a subclass may subset one or more properties in one of its 
superclasses. This means that the set of instances or values of the subsetting prop-
erty are also in the set of instances or values for a subsetted property. Whereas a 
redefi ning property replaces the redefi ned property in the subclass, a subsetting 
property sits alongside its subsetted property and holds a subset of its values and 
instances. 

   Where a property has an upper bound of greater than 1, subsetting can be 
used to explicitly identify one of the set of instances held by the property in 
order to defi ne its specifi c characteristics. Subsetting is shown in braces after the 
name string of the subsetting property using the keyword  subsets followed by 
the names of the subsetted properties. 

   Two confi gurations of the company’s popular  4-Camera Surveillance System  
are shown in  Figure 6.40   . The values for  location in each case give the addresses 
of the installations. It is intended that within the context of the ACME business, the 
specifi c values for  location are enough to uniquely identify the instance of one of 
their surveillance systems. The company also offers an optional service package 
and the service level provides details of the level of service offered.  Business Gold  
includes hourly visits by a security agent outside offi ce hours.  Household 24/7  
ensures a response to any alert within 30 minutes, 24 hours and 7 days a week. 

    The 4-Camera Surveillance System specializes Surveillance System and redefi nes 
its camera’s part property with a new property, also called  cameras. The new prop-
erty has a multiplicity of 4 that restricts the upper number of instances held by  cam-
eras to 4 from the original upper bound of   “*,” and also raises the lower bound to 4. 

   To describe specifi c confi gurations,  AJM Enterprises System and Jones House-
hold System specialize the 4-Camera Surveillance System and redefi ne or subset 
some of its properties. Two value properties,  location and service level, are rede-
fi ned in order to provide specifi c values for them. The  camera ’s part property is 
subsetted by part properties that represent individual cameras in the confi gura-
tion. In AJM Enterprises, the new parts are called  front, reception, store room,
and computer room , based on their location within the company’s building. 

   The set of confi gurations of the  4-Camera Surveillance System is grouped by 
a generalization set called  Confi guration. Confi guration is disjoint because each 
subclass is intended to describe a separate instance, and is incomplete because 
there may be other instances of the superclass than just these. 

6.6 Modeling Classifi cation Hierarchies Using Generalization
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AJM Enterprises System

{incomplete, disjoint}
Configuration

bdd [Package] Logical [System Instances]

parts
reception : Wireless Internal Camera{subsets cameras}
front : Wired External Camera{subsets cameras}
store room : Wireless Internal Camera{subsets cameras}
computer room : Wireless Internal Camera{subsets cameras}

values
location : String � "Suite A, AJM House, NY"{redefines location}
sevice level : String � "Business Gold"{redefines service level}

Jones Household System

parts
front door : Wired External Camera{subsets cameras}
rear door : Wired External Camera{subsets cameras}
pool : Wired External Camera{subsets cameras}
garage : Wired External Camera{subsets cameras}

values
location : String � "200 Oak Ave, Newark, NJ"{redefines location}
service level : String � "Household 24/7"{redefines service level}

Surveillance System

parts
: Monitoring Station
cameras : Camera [1..*]
: UI

values
location : String
service level : String

parts
cameras : Camera [4]{redefines cameras}

4-Camera Surveillance System

 FIGURE 6.40 

      Modeling an instance of a block on a block defi nition diagram.    
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    Modeling Confi guration Details on an Internal Block Diagram 
   When a block has been used to describe a configuration, the internal block dia-
gram for that block can be used to capture the specific internal structural (e.g., 
precise multiplicities and connections) and values unique to configuration prop-
erties. In particular, this should include the value of a property that uniquely 
identifies the entities in the configuration (e.g., name, serial number, call sign). 
A unique design configuration, such as a configuration with a specific serial number, 
can be created by defining an identification property for each part in the block that 
corresponds to the unique identification of the enclosing block. 

   Given that  AJM Enterprises System is a subclass of  4-Camera Surveillance 
System, it has four cameras.  Figure 6.41    identifi es a number of camera variants, 
including the  Wireless Internal Camera and Wired External Camera, used here 
to satisfy the installation requirements. The  camera id property of each camera 
provides a unique identifi er for the cameras in the system and the four cameras 
have their own values, also stenciled on the casing of the camera. The confi gura-
tion also describes the  position and fi eld of regard (pan and tilt) of each camera 
to facilitate coverage analysis as part of a security viewpoint.   

    6.6.6   Classifi cation and Behavioral Features 
   Just as the properties of blocks can be organized into classification hierarchies, 
the behavioral features of blocks can be treated in a similar fashion. A summary 

camera I/O:
Camera Interface

store room:
Wireless Internal Camera

reception:
Wireless Internal Camera

front:
Wired External Camera

camera I/O:
Camera Interface

camera I/O:
Camera Interface

camera I/O:
Camera Interface

: Monitoring Station

station I/O:
Camera Interface

initialValues
camera id � "AJMWL3"
position � "(1.5,2.5,2.3)"
pan field of regard � "180"
tilt field of regard � "80"

initialValues
camera id � "AJMWL2"
position � "(1.6,2.2,2.0)"
tilt field of regard � "90"
pan field of regard � "90"

initialValues
camera id � "AJMIWI1"
position � "(1.5,2.1,2.5)"
tilt field of regard � "90"
pan field of regard � "270"

initialValues
camera id � "AJMWL1"
position � "(1.2,1.0,3.0)"
tilt field of regard � "75"
pan field of regard � "180"

computer room:
Wireless Internal Camera

ibd [Block] AJM Enterprises System [Configuration]

 FIGURE 6.41 

      Showing the confi guration of a block instance on an internal block diagram.    
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description of the classification of behavioral features and corresponding behav-
iors is included here; however, more complete discussions are beyond the scope 
of this book and can be found in many object-oriented design books. 

   General services are described at an abstract level (as operations or recep-
tions) in the classifi cation hierarchy and more specifi c services are described in 
more specialized blocks. As with structural features, the behavioral features of 
superclasses may be redefi ned in subclasses to modify their signature. 

   Interfaces can also be classifi ed and their behavioral features specialized in the 
same fashion as blocks. When a block realizes an interface, it must support the 
behavioral features of not just that interface but also all its superclasses. 

   The response of a block to a request for a behavioral feature may also be spe-
cialized. Although a behavioral feature is defi ned in a general block, the method 
for that feature in a given specialization of the block may be different. In software 
engineering, this phenomenon is called polymorphism—from the Greek  “ many 
forms ” —because the response to a request for a given behavioral feature may be 
different depending on the method that actually handles the request. 

   In object-oriented programming languages, polymorphism is handled by a dis-
patching mechanism. If a behavior sends a request to a target object, it knows 
what the type (e.g., block) of the target object is and that it can support the 
request. However, due to specialization, the target object may validly be a subclass 
of the type that the requester knew about, and that subclass may implement a dif-
ferent response to the request. The dispatching mechanism can  “look behind the 
scenes” and make sure the method of the appropriate type is invoked to handle 
the request.   

    6.7    Summary 
   SysML structure is primarily represented on block definition diagrams and internal 
block diagrams. The following are key concepts related to modeling structure. 

   ■ The block is the fundamental unit of structure in SysML and is represented 
on both the block definition diagram and the internal block diagram. Blocks 
describe types of entities defined by their features. A block provides the descrip-
tion for a set of uniquely identified instances that all have the features defined 
by the block. A block definition diagram is used to define a block, its character-
istics, and its relationship to other blocks. An internal block diagram is used to 
describe internal details of a block. 

   ■  Blocks have a number of structural and behavioral features that comprise its 
definition. Properties describe its structural aspects in terms of its relationship 
to other blocks and quantifiable characteristics. Ports describe a block’s inter-
face as a set of interaction points on its boundary. Behavioral features specify 
the behaviors that may be invoked by requests for service. 

   ■  A part property is used to describe the hierarchical composition (sometimes 
called whole–part relationships) of block hierarchies. Using this terminology, the 
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owner of the property is the whole and the type of the part property is the part. 
Any given instance of the block that types a part property may only exist as part 
of one instance of a whole. Composite associations are used to express the rela-
tionship of the part to the whole; in particular, whether blocks of the part type 
always exist in the context of an instance of the whole or may exist in isolation. 

   ■  Reference properties are used to describe other relationships between blocks. 
A reference property does not imply any exclusive relationship between related 
instances, but does allow blocks to keep references to others. 

   ■  Value properties represent quantifiable characteristics of a block such as its phys-
ical and performance characteristics. Value properties are typed by value types. 
A value type provides a reusable description of some quantity and may include 
units and dimensions that further characterize the quantity. A value property may 
have an initial value and has extensions for capturing probability distributions. 

   ■  SysML has two different types of ports: a flow port and a standard port. The flow 
port specifies what can flow in or out of a block and the standard port specifies 
what behavioral features are required or provided by the block. 

   ■  A block can have two types of behavioral features, operations and receptions. 
Operations describe synchronous interactions where the requester waits for 
the request to be handled; receptions describe asynchronous behaviors where 
the requester continues immediately. Behavioral features may be related to 
methods, which are the behaviors that handle requests for the features. Requests 
for behavioral features may also be handled directly by the main behavior, typi-
cally an activity or state machine, as described in Chapters 8 and 10. 

   ■  The concepts of classification and generalization sets describe how to create 
classification hierarchies of blocks and other classifiers such as value types and 
flow specifications. Classifiers specialize other classifiers in order to reuse their 
features and add new features of their own. Generalization sets group the sub-
classes of a given superclass according to how they partition the instances of 
their superclass. Subclasses may overlap, which means that a given instance can 
be described by more than one, or not. Subclasses may have complete coverage 
of the superclass, which means that all instances are described by one of the 
subclasses in the set, or not. 

     ■ Blocks can be used to describe configurations, where the features of the block 
are defined in enough detail to identify a specific instance of the block in the 
real world of the system. 

    6.8   Questions 
        1.   What is the diagram kind of a block defi nition diagram, and which model 

elements can it represent? 
    2.   What is the diagram kind of an internal block diagram, and which model 

elements can it represent? 

6.8 Questions
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     3.   How is a block represented on a block defi nition diagram? 
     4.   Name the three categories of block properties.  
     5.   Which type of property is used to describe composition relationships between 

blocks? 
     6.   What is the commonly used term for properties with a lower multiplicity 

bound of 0..1?  
   7.   What is the default interpretation of the multiplicity for both ends of an 

association when it is not shown on the diagram?  
     8.   Draw a block defi nition diagram, using composite associations, for blocks 

 “ Boat, ”“ Car, ” and  “Engine” showing that a  “ Car ” must have one  “Engine, ” and a 
 “ Boat ” may have between one and two  “Engines.”   

     9.   Give two situations in which the use of role names for the part end of a com-
posite association should be considered.  

    10.   How are parts shown on an internal block diagram?  
    11.   What does the presence of a connector between two parts imply?  
    12.   Draw an internal block diagram for the  “ Boat ” from Question 8, but with an 

additional part  “ p ” of type  “ Propeller. ” Add a connector between the  “Engine”
part (using its role name from Question 8 if you provided one) and  “ p, ” bear-
ing in mind that one  “ Propeller ” can be driven by only one  “ Engine. ”  

    13.   What are the two graphical mechanisms that can be used to represent prop-
erties nested more than one level deep on an internal block diagram? 

    14.   What is the major difference between parts and references?  
    15.   What is the difference in representation between the symbol for composite 

association and reference association on a block defi nition diagram? 
    16.   What is an association block?  
    17.   How are the quantitative characteristics of blocks described?  
    18.   What are the three categories of value types?  
    19.   Apart from the defi nition of a valid set of values, what can value types 

describe about their values?  
    20.   A block  “ Boat ” is described by its  “ length ” and  “ width ” in  “ Feet ” and a  “ weight ”

in “ Tons. ” Draw a block defi nition diagram describing  “ Boat, ” with defi nitions 
of the appropriate value types, including units and dimensions.  

    21.   What is a derived property?  
    22.   How are probability distributions, say an interval distribution, for a property 

represented in the values compartment on a block defi nition diagram? 
    23.   Which SysML concepts can be used to represent items (i.e., things that fl ow)? 
    24.   What does an item fl ow defi ne? 
    25.   What does a fl ow port specify?  
    26.   A block  “ Boat ” takes  “ fuel ” and  “cold water ” as inputs and produces  “ exhaust 

gases” and  “warm water ” as outputs. Show  “ Boat ” on a block defi nition dia-
gram with inputs and outputs as atomic fl ow ports. Demonstrate the use of 
both port icons and the  “ fl ow ports ” compartment.  

    27.   What is the difference between atomic and nonatomic fl ow ports? 
    28.   What is the rule for assessing the compatibility of an item fl ow on a connec-

tor between two atomic fl ow ports? 
    29.   What is a delegation port on a block used for?  
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    30.   Name all fi ve types of behavioral specifi cation supported by SysML. 
    31.   What are the behavioral features of blocks used for? 
    32.   What is a method? 
    33.   What is a standard port used to describe? 
    34.   What do the required interfaces of standard ports specify? 
    35.   What do the provided interfaces of standard ports specify? 
    36.   Describe the ball-and-socket representation for the interfaces of ports. 
    37.   Name four types of classifi er encountered in this chapter. 
    38.   Name three aspects of a redefi ned property that a redefi ning property can 

change. 
    39.   How is a generalization relationship represented on a block defi nition diagram? 
    40.   When specifying a generalization set, what is the coverage property used to 

defi ne? 
    41.   How are generalization sets represented on a block defi nition diagram? 
    42.   Where one property is defi ned to be a subset of another, what is the relation-

ship between the elements of the subsetted property and the elements of the 
subsetting property?    

    Discussion Topic 
   Discuss the benefits of enforcing encapsulation of block structure using the 
encapsulated properties.     

6.8 Questions
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   This chapter describes SysML support for modeling constraints on the perform-
ance and physical properties of systems and their environment to support a wide 
array of engineering analyses. 

    7.1   Overview 
   A typical design effort includes the need to perform many different types of 
engineering analyses to support trade-off studies, sensitivity analysis, and design 
optimization. It may include the analysis of performance, reliability, and physical 
properties to name a few. SysML supports this type of analysis through the use of 
parametric models. 

   Parametric models capture the constraints on the properties of the system, 
which can then be evaluated by an appropriate analysis tool. The constraints 
are expressed as equations whose parameters are bound to the properties of a 
system. Each parametric model can capture a particular engineering analysis of 
the design. Multiple engineering analyses can then be performed on each design 
alternative to support trade-off analysis. 

   SysML introduces a constraint block to support the construction of paramet-
ric models. A constraint block is a special kind of block used to defi ne equations 
so that they can be reused and interconnected. Constraint blocks have two main 
features: a set of parameters and an expression that constrains the parameters. 
Constraint blocks follow a similar pattern of defi nition and use that applies to 
blocks and parts as described in Chapter 6. A use of a constraint block is called a 
constraint property. The defi nition and use of constraint blocks is represented on 
a block defi nition diagram and parametric diagram, respectively. 

    7.1.1   Defi ning Constraints Using the Block Defi nition Diagram 
   Block definition diagrams are used to define constraint blocks in a similar way to 
which they are used to define blocks. An example of a block definition diagram 
containing constraint blocks is shown in  Figure 7.1   .

                           Modeling Constraints 
with Parametrics   7 
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    This fi gure  shows three constraint blocks.  Joule’s Law and Power Sum are 
leaf constraint blocks that each defi ne an equation and its parameters.  Power 
Distribution is a constraint block composed of  Joule’s Law and Power Sum to 
build a more complex equation. 

   The diagram elements for defi ning constraint blocks in the block defi nition 
diagram are shown in the Appendix, Table A.5.  

    7.1.2    The Parametric Diagram 
    Parametric diagrams are used to create systems of equations that can constrain 
the properties of blocks. The parametric diagram header is depicted as follows: 

  par  [model element type] model element name [diagram name]   

   The diagram kind is  par, short for parametric diagram. The diagram frame of 
a parametric diagram represents either a block or a constraint block. The diagram 
name as usual is user defi ned and is intended to emphasize the purpose of the 
diagram. 

    Figure 7.2    shows a parametric diagram for the constraint block  Power 
Distribution from  Figure 7.1 . The constraint properties  ps and pe are usages of 

bdd [Package] Power Analysis

«constraint»
Power Sum

parameters
component demands : W [0..*]
total power : W

«constraint»
Joule’s Law

parameters

pe ps

constraints
{power � current*voltage}

constraints
{total power � sum
(component demands)}

current : A
voltage : V
power : W

«constraint»
Power Distribution

parameters

constraints
pe : Joule’s Law
ps : Power Sum

component demands : W [0..*]
current : A
voltage : V

 FIGURE 7.1 

      Example block defi nition diagram with constraint blocks.    
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the constraint blocks  Power Sum and Joule’s Law, respectively. The parameters of 
the constraint properties  ps and pe are bound to each other and to the parameters 
of Power Distribution, which are shown fl ush with the diagram frame. The dia-
gram elements of the parametric diagram are shown in the Appendix, Table A.10. 

   Sections 7.2 through 7.7 describe the defi nition of constraint blocks and their 
use in constraining the properties of blocks. Section 7.8 deals with constraining 
time-dependent properties. Section 7.9 deals with the application of constraints 
to item fl ows. Sections 7.10 and 7.11 deal with more sophisticated analysis sce-
narios, including defi ning an analysis context and the application of parametrics 
to trade studies.   

    7.2    Using Constraint Expressions to Represent 
System Constraints 

   SysML includes a generic mechanism for expressing constraints on a system as 
text expressions that can be applied to any model element. SysML does not pro-
vide a built-in constraint language because it was expected that different con-
straint languages, such as OCL, Java, or MathML, would be used as appropriate 
to the domain. The definition of a  constraint can include the language used to 
enable the constraint to be evaluated. 

   Constraints may be owned by any element that is a namespace, such as a pack-
age or block. If the element that owns the constraint is shown as a symbol with 
compartments, such as a block, the constraint can be shown in a special com-
partment labeled  constraints. A constraint can also be shown as a note symbol 
attached to the model element(s) it constrains, with the text of the constraint 

par [Constraint Block] Power Distribution

component demands : W [0..*]

voltage : V

current : A

ps : Power Sum

component demands : W [0..*]

total power : W

pe: Joule’s Law
current : A

power: W

voltage : V

 FIGURE 7.2 

      A parametric diagram used to construct systems of equations.    
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shown in the body of the note. The constraint language is shown in braces before 
the text of the expression, although it may be and often is elided to reduce clutter. 

    Figure 7.3    shows examples of the different constraint notations used in SysML 
that constrain the properties of a block.  Block 1 has an explicit compartment for 
the constraint, which in this case is expressed using Java.  Block 2 has a constraint 
that is shown in an attached note and is expressed in the constraint language of a 
specialized analysis tool called MATLAB.  

    7.3     Encapsulating Constraints in Constraint Blocks 
to Enable Reuse 

   SysML also features a constraint block that extends the generic constraint con-
cept. A constraint block encapsulates a constraint to enable it to be defined 
once and then used in different contexts, similar to the way parts represent 
usages of blocks in different contexts. The equivalent concept to the part is called 
a constraint property.

   The constraint expression can be any mathematical expression and may have 
an explicit dependency on time, such as a time derivative in a differential equa-
tion. In addition to the constraint expression, a constraint block defi nes a set of 
constraint parameters—a special kind of property used in the constraint expres-
sion. Constraint parameters are bound to other parameters and properties of the 
blocks where they are used. Constraint parameters do not have direction to des-
ignate them as dependent or independent with respect to the constraint expres-
sion. The interpretation of the dependencies between parameters is based on the 
semantics of the language used to specify the constraint expression. So, for exam-
ple, in the C programming language, the expression  a     �     b     �     c implies that a is 
dependent on the value of  b and c, whereas the expression  a     �      � b     �     c does not. 

   Like other properties, each parameter has a type that defi nes the set of values 
that the parameter can take. Typically parameters are scalars, vectors, or a struc-
tured data type such as complex. Through its type, the parameter can also be 
constrained to have a specifi c unit and dimension. Parameters can also support 
probability distributions like other properties. 

Block 2

values
c : Real [*]
d : Real [*]
e : Real [*]

Block 1

values
a : Integer
b : Integer

{{MATLAB}c � d.*e}

constraints
{{java}a�b*2}

 FIGURE 7.3 

      Example of the two notations for showing constraints.    
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    7.3.1   Additional Parameter Characteristics 
   Properties have two characteristics that are useful when defining collections; that 
is, properties whose multiplicity has an upper bound greater than 1. Modelers can 
specify whether the collection is ordered and whether the values in the collec-
tion have to be  unique. Ordered in this case simply means that the members of 
the collection are mapped to the values of a positive integer: member 1, member 2, 
and so on. The means by which the order is to be determined would have to be 
specified by a constraint, or using a behavior that builds the collection. These two 
characteristics are useful in specifying constraint parameters. 

   Another useful characteristic of properties is that they can be marked as derived 
(see Derived Properties section in Chapter 6). If a property is marked as derived it 
means that its value is derived, typically from the values of other properties’ values. 
This characteristic has two obvious uses in specifying parametrics. First, where the 
calculation underlying an equation is known to be implemented as a function, a 
derived parameter can be used to indicate which value is calculated. An example 
of this can be seen in Figure 7.4   . Second, where the modeler wishes to guide the 
equation solver, derived properties can indicate which values in a given analysis 
need to be solved for. An example of this can be seen later in  Figure 7.18 .

   A constraint block is defi ned in a block defi nition diagram as shown in  Figure 7.4 .
The diagram header is the same as any other block defi nition diagram specifying 
the package or block that owns the constraint block. The name compartment of the 
constraint block includes the keyword «constraint» above the name to differenti-
ate it from other elements on a block defi nition diagram. The constraint expres-
sion is defi ned in the  constraints compartment of the constraint block and the 
constraint parameters are defi ned in the  parameters compartment using a string 
with the following format: 

 parameter name: type[multiplicity]   

«constraint»
Real Sum

parameters
operands : Real [*]
sum : Real

constraints

bdd [Package] Constraint Examples [Two Different Constraint Blocks]

{sum �� plus(operands)}

«constraint»
Rate Monotonic Model

parameters

constraints

{U � 2�1}(	Σ n
n

i�1
n

Ti

Ci

{size(T) � n & size(C) � n}

T : Real [*] {ordered, unique}
/U : Real
C : Real [*] {ordered}
n : Integer

 FIGURE 7.4 

      Two reusable constraint blocks expressed on a block defi nition diagram.    
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   Indications of ordering and uniqueness appear as keywords in braces after 
the multiplicity. The ordering indication is either  “ ordered ” or  “ unordered ” ; the 
uniqueness indication is either  “ unique ” or  “nonunique. ” In practice, unordered and 
nonunique are often indicated by the absence of a keyword. A derived property 
is shown with a forward slash   (/)   before its name. 

    Figure 7.4  shows two constraint blocks,  Real Sum and Rate Monotonic Model. 
Real Sum is a simple reusable constraint where one parameter,  sum, equals the 
sum of a set of operands, as expressed in the constraint in the constraints compart-
ment. Rate Monotonic Model is also reusable but more specialized; it describes the 
equations underlying the rate monotonic analysis approach to scheduling periodic 
tasks on a processing resource.  T represents the periods of the tasks,  C represents 
the computation load of the tasks, and U represents the utilization of the process-
ing resource. The constraint language is not shown in either case, but it can be 
seen that the constraint for  Real Sum is expressed in a  “ C ” -like syntax. The utiliza-
tion constraint for  Rate Monotonic Model is expressed using a more sophisticated 
equation language, which has the capability to be rendered using special symbols. 
Both mechanisms are equally acceptable in a SysML constraint block. 

   Both T and C are ordered collections, as indicated by the ordered keyword. The 
values of  T are required to be unique because each task must have a different rate 
for the analysis to be correct. Parameter  n specifi es the number of tasks and an addi-
tional constraint is used to constrain the size of both  T and C to be n. U is always 
the dependent variable in the underlying calculation and so is marked as derived.   

    7.4     Using Composition to Build Complex 
Constraint Blocks 

   Modelers can compose complex constraint blocks from existing constraint 
blocks on a block definition diagram. In this case, the composite constraint block 
describes an equation that binds the equations of its child constraints. This ena-
bles complex equations to be defined by reusing simpler equations. 

   The concept of defi nition and usage that was described for blocks in Chapter 
6 applies to constraint blocks as well. A block defi nition diagram is used to defi ne 
constraint blocks. The parametric diagram represents the usage of constraint blocks 
in a particular context. This is analogous to the usage of blocks as parts in an inter-
nal block diagram. The usages of constraint blocks are called constraint properties. 

   Composition of constraint blocks is described using composite associations 
between constraint blocks. The associations are depicted using the standard asso-
ciation notation introduced in Chapter 6 to represent composition hierarchies. A 
constraint block can also list its constraint properties in its  constraints compart-
ment using the following syntax: 

 constraint property : constraint block[multiplicity]   

    Figure 7.5    shows the decomposition of a  Power Distribution constraint block 
into two other constraint blocks,  Joule’s Law and Power Sum. The role names on
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the component end of the compositions correspond to constraint properties. 
Pe is a usage of the  Joule’s Law constraint block, which describes the standard 
power equation.  Ps is a usage of the  Power Sum constraint block, which equates 
the total power demand to a set of component demands. Power Distribution  
uses these equations to relate the demands of a set of components to the required 
current  and  voltage  of a power supply. 

   The Joule’s Law and Power Sum constraint blocks feature their equations in 
their constraints compartments, whereas  Power Distribution lists its constituent 
constraint properties. Note that, in this example, the constituent constraints of 
Power Distribution are represented both in its  constraints compartment and as 
association symbols. However, typically, in a given diagram, only one form of rep-
resentation is used. 

    7.5    Using a Parametric Diagram to Bind Parameters 
of Constraint Blocks 

   As with blocks and parts, the block definition diagram does not show all the 
required information needed to interconnect its constraint properties. Specifically, 
it does not show the relationship between the parameters of constraint properties 

bdd [Package] Power Analysis

«constraint»
Power Sum

parameters
component demands : W [0..*]
total power : W

«constraint»
Joule’s Law

parameters

pe ps

constraints constraints
{power � current*voltage} {total power � sum

(component demands)}

current : A
voltage : V
power : W

«constraint»
Power Distribution

parameters

constraints
pe : Joule’s Law
ps : Power Sum

component demands : W [0..*]
current : A
voltage : V

 FIGURE 7.5 

      A hierarchy of constraints on a block defi nition diagram.    
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and the parameters of their parent and siblings. This additional information is pro-
vided on the parametric diagram using  binding connectors. Binding connectors 
express equality relationships between their two ends. 

   Constraint properties show the same parameters as their types. Two constraint 
parameters can be bound directly to each other on a parametric diagram using a 
binding connector, which indicates that the values of the two bound elements 
must be the same. This enables a modeler to connect multiple equations to cre-
ate complex sets of equations where a parameter in one equation is bound to a 
parameter in another equation. 

   Just as the parameters of a constraint block say nothing about causality, sim-
ilarly binding connectors express an equality relationship between their bound 
elements, but say nothing about the causality of the equation network. When 
an equation is to be solved, it is assumed that the dependent and independent 
variables are identifi ed or deduced, including the specifi cation of initial values. 
This is typically addressed by a computational equation solver, which is generally 
provided in a separate analysis tool, as discussed in Chapter 17. As stated earlier, 
derived parameters or properties can be used to guide equation solvers where 
parts of the solution order are known. 

   Just as with the internal block diagram, the notation for constraint properties 
in a parametric diagram relates back to their defi nition on the block defi nition 
diagram as follows: 

      ■    A constraint block, or block on a block defi nition diagram that owns con-
straint properties, can be represented as the diagram frame of a parametric 
diagram with the constraint block or block name in the diagram header.  

      ■    A constraint property, or a constraint block on the component end of the 
composite association on the block defi nition diagram, may appear as a con-
straint property symbol within a frame representing the constraint block on 
the composition end. The name string of the symbol is composed of the 
constraint property name and its type. Where a composite association was 
used, the constraint property name corresponds to the role name on the 
component end of the association. The type name corresponds to the name 
of the constraint block on the component end of the association.    

   A simple example of constraint block composition is shown using        Figure 7.6 and 
Figure 7.7     .

    Figure 7.6  shows a block defi nition diagram with a constraint block  K composed from 
three other constraint blocks:  K1 with three parameters,  K1, a, and, b, and the con-
straint  { K1     �     a ∗ b } ; K2 with three parameters,  K2, c, and d, and the constraint  { K2     �       
c ∗ d } ; and fi nally constraint block  K1 ∗ K2 with three parameters,  K, K1, and K2, and 
constraint  {K     �     K1 ∗ K2 } . K itself has fi ve parameters,  K, a, b, c, and d, that will be 
bound to parameters of its constituents ’ constraint properties as shown in  Figure 7.7 .

   The frame of a parametric diagram corresponds to a constraint block or a block 
as described in the next section. If the parametric diagram represents a constraint 
block, then any parameters are shown as small rectangles fl ush with the inner 
surface of the frame. The name, type, and multiplicity of each parameter are 
shown in a textual label fl oating near the parameter symbol. 
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bdd [Package] Parametric Example

parameters
a : Real
b : Real
c : Real
d : Real
K : Real

{K � K1*K2}

K1 : Real
K2 : Real
K : Real

{K1 � a*b}

a : Real
b : Real
K1 : Real

{K2 � c*d}

parametersparametersparameters

c : Real
d : Real
K2 : Real

constraints constraints constraints

eq1 eq2 eq3

«constraint»
K

«constraint»
K1

«constraint»
K2

«constraint»
K1*K2

 FIGURE 7.6 

      A block defi nition diagram for a composite constraint block.    

par [ConstraintBlock] K

a

b

c

d

K

eq3 : K2
{K2 � c*d}

c

d

K2

eq1 : K1
{K1 � a*b}

a

b K1

{K � K1*K2}

K

K1

K2

eq2 : K1*K2

 FIGURE 7.7 

      Binding two equations to each other.    

1577.5 Using a Parametric Diagram to Bind Parameters of Constraint Blocks



   On a parametric diagram, a constraint property is shown as a round-cornered 
rectangle (round-angle) symbol with the name of the property and its type inside 
the box. Either the property name or the type name can be elided if desired. The 
constraint equation itself can be elided, but if shown, may appear either inside 
the round-angle or attached via a comment symbol to the round-angle. The param-
eters of the constraint property are shown fl ush with the inside surface of the 
constraint property symbol. 

   A binding connector is depicted as a restricted form of the connector used 
on an internal block diagram. It is simply a solid line with no arrows or other 
annotations. 

    Figure 7.7  shows the corresponding parametric diagram for constraint block  K  
in Figure 7.6 . As stated earlier, the names in the constraint property symbols are 
produced from the component ends of the associations on the block defi nition 
diagram. The bindings in this case connect parameters with similar names, which 
produces an equation for  K  that could be simplifi ed as   { K       �       a ∗ b ∗ c ∗ d }.

   It should be noted that although this is just a trivial example it does highlight 
an important point. Parametric diagrams can be quite bulky compared to textual 
expressions but are useful when constructing more complex equations from reus-
able constraint blocks. This is an artifi cial example to demonstrate the concept of 
composing constraint blocks. For an actual model using this simple example,  K  
would probably be expressed directly with the expression   { K       �       a ∗ b ∗ c ∗ d } and 
would have no internal structure. 

    Figure 7.8    shows an example from the Surveillance System, where the  Power 
Distribution composite constraint block, originally introduced in  Figure 7.5 , is 
depicted as the frame of a parametric diagram. 

par [ConstraintBlock] Power Distribution

component demands : W [0..*]

voltage : V

current : A

ps: Power Sum

component demands : W [0..*]

total power : W

pe: Joule’s Law
current : A

power : W

voltage : V

 FIGURE 7.8 

      Internal details of the power distribution equation using a parametric diagram.    
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   The diagram shows how the parameters of constraint properties  ps, a usage 
of Power Sum, and pe, a usage of  Joule’s Law, are bound together. The  voltage  
and current parameters of  pe are bound to the  voltage and current parameters of 
the block  Power Distribution (hence shown on the frame boundary). The  power  
parameter of  pe is bound to the total cumulative power of all the powered equip-
ment, calculated by  ps, from the set of  component demands (also a parameter of 
Power Distribution  and shown on the frame boundary). 

    7.6   Constraining Value Properties of a Block 
   The value properties of a block can be constrained using constraint blocks. This 
is achieved on a block definition diagram by drawing composite associations 
between the block whose values are being constrained and the required con-
straint blocks. In a parametric diagram, the block represents the enclosing frame 
and the constraint properties represent usages of the constraint blocks. The 
parameters of the constraint properties can be bound to the value properties of 
the block using binding connectors. For example, if the equation   { F       �       w ∗ a/g } is 
specified as the constraint of a constraint block with parameters  F, w, and a, the 
weight property of a block that is subject to the force can be bound to parameter 
w of a constraint property typed by that constraint block. This enables the equa-
tion to be used to explicitly constrain the properties of interest. 

   In a parametric diagram for a block, a value property is depicted as a rect-
angle displaying its name, type, and multiplicity. A nested value property within 
a part hierarchy can be shown nested within its containing part symbol or can 
be shown using the dot notation that was described in Chapter 6. An example 
of binding nested value properties using the part hierarchy notation is shown in 
 Figure 7.9   , and an example using the dot notation is shown in  Figure 7.10   .

    Figure 7.9  shows the constraints on the power supply for the  Mechanical
Power Subsystem described by the internal block diagram in Figure 6.11. 
The Power Distribution constraint block is used, via a constraint property 
demand equation, to relate the current and voltage of the power source for 
the Mechanical Power Subsystem to the load imposed on the power source by 
the various motors. An additional constraint block,  Collect, is used to collect the 
power demand values of all the powered devices into one collection for binding 
to the component demands  parameter of  demand equation.

    7.7   Capturing Values in Block Confi gurations 
   To allow an analysis tool to evaluate blocks containing constraint properties, at 
least some of the value properties of the block under analysis need to have specific 
values defined. Often, these values are provided during analysis using the inter-
face of the analysis tool, but they can be specified using block configurations—
that is, by creating a specialization of the block for a given analysis. 
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demand equation
: Power Distribution

component demands : W [0..*]

current : A

voltage : V

power source

: Collect

c1:W

c2:W

c3:W

c4:W

c:W[0..*]

iris motor

power : W

focus motor

power : W

altitude motor

power : W

azimuth motor

power : W

voltage : V

current : A

par [Block] Mechanical Power Subsystem [Power Distribution]

 FIGURE 7.9 

      Binding constraints to properties on a parametric diagram.    

par [Block] Mechanical Power Subsystem with 2W and 0.4W motors [All Values Supplied]

focus motor.power : W � 0.4

iris motor.power : W � 0.4

demand equation
: Power Distribution

: Collect

c1:W

c2:W

c3:W

c4:W

c:W[0.*]

power source.voltage : V � 12

power source.current : A � 0.4

azimuth motor.power : W � 2

altitude motor.power : W � 2

component demands : W [0..*]

current : A

voltage : V

 FIGURE 7.10 

      Describing a specifi c analysis confi guration.    
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   Although the block in  Figure 7.9  contains all the relationships required to 
perform an analysis of the  Mechanical Power Subsystem block, the related prop-
erties do not have values, and so no calculation of required power can be per-
formed.  Figure 7.10  shows a confi guration of the  Mechanical Power Subsystem  
block, specifi ed as a specialization of the original block and called  Mechanical
Power Subsystem with 2W and 0.4W motors.

   Even though there are no mandatory naming standards for confi gurations it is 
often useful to include information about the confi guration, as part of its name. 
Note that, in this case, all the values for the related properties are shown and so 
the demand equation constraint property simply acts as a check that the values 
are consistent. In other analysis scenarios, one or more properties may not have 
a value, in which case an equation-solving tool (often a human being) would be 
used to rearrange the constraint expression to compute the missing value or val-
ues, or to report an error if a value cannot be determined. 

    7.8    Constraining Time-Dependent Properties to Facilitate 
Time-Based Analysis 

   A value property is often a time-varying property that may be constrained by ordi-
nary differential equations with time derivatives, or other time-dependent equa-
tions. There are two approaches to representing these time-varying properties. 
The first, as illustrated in  Figure 7.11   , is to treat time as implicit in the expression. 
This can help reduce diagram clutter and is often an accurate representation of 
the analysis approach with time provided behind the scenes by the analysis tool. 

azimuth motor.angular velocity: Radian/s � 0.1

azimuth gimbal. angular position: Radian � 0.01

: Angle Eq
{pos � integral(velocity)}

pos: Radian

velocity: Radian/s

par [Block] Mount Assembly [Azimuth Gimbal Position]

 FIGURE 7.11 

      Using a time-dependent constraint.    
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    Figure 7.11  shows the calculation of the  angular position, in Radians, of the 
azimuth gimbal over time. The equation simply integrates the  angular velocity  
of the azimuth motor over time to establish the angular position,  pos. The initial 
values of  azimuth gimbal angular position and azimuth motor angular velocity  
in this case could be interpreted as initial or constant values depending on the 
semantics of the analysis. 

   Another approach to the representation of time is to include a separate time 
property that explicitly represents time in the constraint equations. The time 
property can be expressed as a property of a reference clock with specifi ed units 
and dimension. The time-varying parameters in the constraint equations can then 
be bound to the time property. Local clock errors, such as clock skew or time 
delay, can also be introduced by defi ning a clock with its own time property that 
is related to a reference clock through additional constraint equations. 

   In Figure 7.11 , time was implicit and initial conditions were defi ned by the 
default values of the  position and velocity properties.  Figure 7.12    shows an exam-
ple of the alternate approach of explicitly showing time, and uses constraints on 
values to express conditions at time zero. 

    The fi gure  shows the standard distance equation bound to the values of an 
object under acceleration. The block  Accelerating Object contains a reference 
to a Reference Clock, whose time property is bound to  t, a value property of 
Accelerating Object that records passage of time as experienced by the object. 
The acceleration  a, initial velocity  u, and distance traveled  s are bound to the 
Distance Equation along with time t. An additional constraint,  Distance at T0, is 
used to specify the initial distance of the object (i.e., at time zero), which in this 

par [Block] Accelerating Object [Distance Traveled]

: Distance at T0
{if (t��0) s�0}

s : mt : s

: Distance Equation
{s�u*t�(a*t2)/2}

a : ms�2

s: m

t : s

u : ms�1

: Reference Clock

time : s

u : ms�1 � 0

a : ms�2 � 9.8

s : m

t : s

 FIGURE 7.12 

      Explicitly representing time in a parametric diagram.    
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case is 0. The value of property  a is specifi ed with an initial value that represents 
the constant value of acceleration due to gravity. 

    7.9   Using Constraint Blocks to Constrain Item Flows 
   A powerful use of constraint blocks is to show how properties associated with 
the flow of matter, energy, or information is constrained. To achieve this, item 
flows (or more accurately the item properties corresponding to item flows) can 
be shown on parametric diagrams and bound to constraint parameters. 

    Figure 7.13    shows the amplitudes of the item fl ows shown on the internal 
block diagram in Figure 6.30.  Detector signal is the item fl ow from the image 
detector to the Imaging Electronics, and  boosted signal is the item fl ow from the 
Imaging Electronics to the boundary of the imaging assembly and therefore to 
the electronics assembly. The low-level electrical signal from the image detector 
must be amplifi ed before it leaves the camera module to reduce its sensitivity to 
noise. The required amplifi cation is specifi ed using a gain equation to constrain 
the amplitude of the input and output signals of the Imaging Electronics. The 
gain parameter in the gain equation,  Gain Eq, is bound to the gain property of 
the Imaging Electronics.

par [Block] Imaging Assembly [Signal Gain]

boosted signal : Image

amplitude
: Gain Eq

gain

signal
after

signal
before

detector signal : Image

amplitude

gain � 5.0

: Imaging Electronics

 FIGURE 7.13 

      Constraining item fl ows.    
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    7.10   Describing an Analysis Context 
   A constraint property that constrains the value properties of a block can, as dis-
cussed earlier, be part of a block’s definition and thus shown in its constraint 
compartment. This works well when the constrained properties are intrinsically 
related in this way in all contexts. What often occurs, however, is that the con-
straints on block properties may vary based either on current context or analysis 



requirements. For example, a different fidelity of analysis may be applied to the 
same system block depending on the required accuracy of the value of key prop-
erties. This type of scenario requires a more flexible approach where the prop-
erties of the block can be constrained without the constraint being part of the 
block’s definition. This approach effectively decouples the constraint equations 
from the block whose properties are being constrained, and thus enables the con-
straint equations to be modified without modifying the block whose properties 
are being constrained. 

   To follow the approach described earlier, a modeler creates an  analysis con-
text, which contains both the block whose properties are being analyzed and all 
constraint blocks required to perform the analysis. Libraries of constraint blocks 
may already exist for a particular analysis domain. These constraint blocks are 
often called analysis models and may be very complex and supported by sophis-
ticated tools. The general analysis models in these libraries may not precisely fi t a 
given scenario and the analysis context may contain other constraint blocks to 
handle transformations between the properties of the block and the parameters 
of the analysis model. 

   An analysis context is modeled as a block with associations to the block being 
analyzed, the chosen analysis model, and any intermediate transformations. 
By convention, the block being analyzed is referenced by the analysis context 
because it is really part of the system being built, rather than part of the analysis 
context. The choice of using a white diamond symbol or a simple association with 
no end adornment to represent a reference is arbitrary. Composite associations are 
used between the analysis context and the analysis model and any other constraint 
blocks, however. An example of an analysis context is shown in  Figure 7.14   .

Network Latency

values

«constraint»
Simple Queuing Model

4-Camera Wired
Surveillance System

parts
«constraint»
RealSum4

parameters

«constraint»
Compare

parameters parameters

system
under
analysisanalysis

model
load
computation

satisfaction
check

goal : Real
actual : Real
ok : Boolean

network: Wired Network
camera 1 : Wired Camera {subsets cameras}
camera 2 : Wired Camera {subsets cameras}
camera 3 : Wired Camera {subsets cameras}
camera 4 : Wired Camera {subsets cameras}

o1 : Real
sum : Real
o2 : Real
o3 : Real
o4 : Real

video latency : Mbps
/analysis result : Boolean

bdd [Package] Analysis [Network Latency Analysis]

load : Real
service rate : Real
response time : Real

 FIGURE 7.14 

      An analysis context shown on a bdd.    
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    Figure 7.14  shows the analysis of network throughput for a  4-Camera 
Wired Surveillance System. The analysis context is called  Network Latency, 
which references the  system under analysis, a 4-Camera Wired Surveillance 
System. The analysis context also contains an  analysis model, in this case a Simple
Queuing Model, and uses a couple of basic constraints,  Real Sum and Compare , 
to perform a  load computation and a satisfaction check, respectively.  Network 
Latency contains two value properties,  video latency, specifi ed in  Mbps, and  anal-
ysis result, which is intended to be a computed value and hence is derived. 

   In Figure 7.15   , the bindings needed to perform the analysis are shown. The 
parameters of the analysis model are bound to the properties of the block under 
analysis. The loads on the system from all four cameras in the  system under anal-
ysis are summed to establish the total  load using load computation. The network 
bandwidth of the system under analysis is used to establish the  service rate for 
the analysis model. The response time, calculated using the analysis model, is
then compared, using the  satisfaction check, to the required  video latency, itself 
a refi nement of a network throughput requirement, to establish the analysis result 
(see Chapter 12 for a discussion of requirements). If the  analysis result is true, 
then the network satisfi es the requirement. 

network.bandwidth : Mbps

camera 1.data rate : Mbps

camera 2.data rate : Mbps

camera 3.data rate : Mbps

camera 4.data rate : Mbps

/analysis result : Boolean

load : Real

response
time : Real

service rate : Real

o1 : Real
sum: Real

offered : Real

ok : Boolean

required : Real
video latency : Mbps

refines
«requirement» Required Network Throughput

system under analysis
: 4-Camera Wired

Surveillance System
analysis model

: Simple Queuing Model

load computation
: RealSum4

satisfaction check
: Compare

o2 : Real

o3 : Real

o4 : Real

par [Block] Network Latency

 FIGURE 7.15 

      Binding values in an analysis context.    
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    7.11     Modeling Evaluation of Alternatives 
and Trade Studies 

   A common use of constraint blocks is to support  “trade studies. ” A  trade study  
is used to compare a number of alternative solutions to see whether they satisfy 
a particular requirement. Each solution is characterized by a set of  measures of 
effectiveness (often abbreviated “moes”) that have a calculated value or value 
distributions. The moes for a given solution are then evaluated using an  objective
function (often called a cost function or utility function), and the results for each 
alternative are compared to select a preferred solution. 

   Annex C of the SysML specifi cation introduces some concepts to support 
the modeling of trade studies. A moe is a special type of property. An objective 
function is a special type of constraint block that expresses an objective function 
whose parameters can be bound to a set of moes using a parametric diagram. A 
set of solutions to a problem may be specifi ed as a set of blocks that each special-
ize a general block. The general block defi nes all the moes that are considered rel-
evant to evaluating the alternatives, and the specialized blocks provide different 
values or value distributions for the moes. 

   A moe is indicated by the keyword «moe» in a property string for a block 
property. An objective function is indicated by the keyword «objectiveFunction»
on a constraint block or constraint property. 

    Figure 7.16    shows two variants of a  Camera  intended to provide a solution to 
operate in low-light conditions. These variants are shown using specialization, as 
described in Chapter 6, and are called  Camera with Light and Low-Light Camera.

bdd [Package] Night Performance [Measures of Effectiveness]

Low-Light CameraCamera with Light

Camera

values values

values

«moe»power consumption : W � 20
«moe»environmental friendliness : Integer � 4
«moe»lightlevel : lux � 0.01
«moe»weight : kg � 0.3

«moe»power consumption : W � 10
«moe»environmental friendliness : Integer � 10
«moe»lightlevel : lux � 0.25
«moe»weight : kg � 0.2

«moe»power consumption : W
«moe»environmental friendliness : Integer
«moe»light level : lux
«moe»weight : kg

 FIGURE 7.16 

      Two variants of a camera for handling low-light conditions.    
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Four relevant measures of effectiveness, indicated by the keyword «moe», are 
used to conduct the trade studies. 

   A trade study is typically described as a type of analysis context, which ref-
erences the blocks that represent the different alternatives. It also contains con-
straint properties for the objective function (or functions) to be used to evaluate 
the alternatives, and a means to record the results of the evaluation, typically 
value properties that capture the score for each alternative. 

    Figure 7.17    shows the defi nition of  Night Performance Trade-off—a trade 
study for evaluating the nighttime performance of two camera variants. As indi-
cated by its associations,  Night Performance Trade-off contains two constraint 
properties, both typed by objective function  NP Cost Function and two reference 
properties, one typed by  Low-Light Camera and the other by  Camera with Light . 
It is intended in the analysis that the equations are solved for  option 1 and option
2 and so they are shown as derived. The bindings between the various properties 
of Night Performance Trade-off  are shown in  Figure 7.18   .

    Figure 7.18  shows the internal bindings of the trade-off study  Night
Performance Trade-off. One use of the objective function  NP Cost Function, cf1, 
is bound to the value properties of the  Low-Light Camera, and the other,  cf2, is 
bound to the Camera with Light. The  score parameters of  cf1 and cf2 are bound 
to two value properties of the context called  option 1 and option 2, which are 
the dependent variables in this particular analysis. In this case, using the values 
provided in  Figure 7.16  for the measures of effectiveness of the two solutions, the 
scores are 400 for option 1 and 450 for option 2, indicating that the  Low-Light 
Camera  is the preferred solution. 

parameters

Night Performance Trade-off

values
/option1 : Real
/option2 : Real

Low-Light Camera Camera with Light

cf2cf1

«objectiveFunction»
NP Cost Function

weight : kg{unit � Kilogram, dimension � Mass}
power : W{unit � Watt, dimension � Power}
level : lux{unit � Lux, dimension � Illuminance}
ef : Integer
score : Real

bdd [Package] Night Performance [Night Performance Trade-off]

 FIGURE 7.17 

      A trade study represented as an analysis context.    
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    7.12    Summary 
  Constraint blocks are  used to model constraints on the properties of blocks to 
support engineering analyses, such as performance, reliability, and mass proper-
ties analysis. The following are key aspects of constraint blocks and their usages. 

■     SysML includes the concept of a constraint that can correspond to any math-
ematical or logical expression, including time-varying expressions and differ-
ential equations. SysML does not specify a constraint language but enables the 
language to be specified as part of the definition of the constraint. 

■     SysML provides the ability to encapsulate a constraint in a constraint block so 
that it can be reused and bound with other constraints to represent complex sets 
of equations. A constraint block defines a set of parameters related to each other 
by the constraint expression. Parameters may have types, units, dimensions, and 
probability distributions. The block definition diagram is used to define constraint 

par [Block] Night Performance Trade-off

: Camera with Light

«objectiveFunction»
cf1 : NP Cost Function

ef : Integer

level : lux

power : W

weight : kg

score : Real
/option 1 : Real � 400

«moe»
power consumption : W � 20

«moe»
environmental friendliness : Integer � 4

«moe»
light level : lux � 0.01

«moe»
weight : kg � 0.3

: Low-Light Camera

«objectiveFunction»
cf2 : NP Cost Function

ef : Integer

level : lux

power : W

weight : kg

score : Real
/option 2 : Real � 450

«moe»
power consumption : W � 10

«moe»
environmental friendliness : Integer � 10

«moe»
light level : lux � 0.25

«moe»
weight : kg � 0.2

 FIGURE 7.18 

      Trade-off results between the two low-light camera variants.    
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blocks and their interrelationships. In particular, a composite association can 
be used to compose constraint blocks to create complex equations. Constraint 
blocks can be defined in model libraries to facilitate specific types of analysis 
(performance, mass properties, thermal, etc.). Constraint blocks can be used by 
blocks to constrain the values of their properties. 

■     Constraint properties are usages of constraint blocks. The parametric diagram 
shows how constraint properties bind to one another and to the value properties 
of blocks through their parameters. They are bound using binding connectors 
that express equality between the values of the parameters or properties at their 
ends. The specific values needed to support the evaluation of the constraints for 
a block are typically specified by a configuration of that block. 

■     An analysis context is a block that provides the context for a system or compo-
nent that is subject to analysis. The analysis context is composed of the con-
straint blocks that correspond to the analysis model and references the system 
being analyzed. A parametric diagram, whose frame represents the analysis con-
text, is used to bind the relevant properties of the block and the parameters of 
the analysis model. The analysis context can be passed to an engineering analy-
sis tool to perform the computational analysis, and the analytic results can be 
provided back as properties of the analysis context. 

■     A common and useful form of analysis used by systems engineers is the trade 
study, which is used to compare alternative solutions for a given problem based 
on some criteria. A moe (short for measure of effectiveness) is used to define a 
property that needs to be evaluated in a trade study and a specialization of con-
straint block, called an objective function, is used to define how the solutions 
are evaluated.     

    7.13   Questions 
     1.   What is the diagram kind of a parametric diagram? 
   2.   If a constraint parameter is ordered, what does that imply about its values? 
   3.   If a constraint parameter is unique, what does that imply about its values? 
   4.   How are constraint parameters represented on a block defi nition diagram? 
   5.   How is the composition of constraints represented on a block defi nition 

diagram? 
   6.   How are constraint properties represented on a parametric diagram? 
   7.   How are constraint parameters represented on a parametric diagram? 
   8.   What are the semantics of a binding connector? 
   9.   How can constraint blocks be used to constrain the value properties of blocks? 

    10.   A block  “Gas” has two value properties,  “pressure ” and  “volume, ” that vary 
inversely with respect to each other. Create an appropriate constraint block 
to represent the relationship and use it in a parametric diagram for  “Gas” to 
constrain  “pressure ” and  “volume. ”  

    11.   What are the two approaches to specifying parametric models that include 
time-varying properties? 

1697.13 Questions
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    12.   How are composite associations and reference associations typically used in 
an analysis context?  

    13.   What is a measure of effectiveness and what is it used for?  
    14.   What is an objective function and how is it represented on a block defi nition 

diagram and a parametric diagram?    

    Discussion Topics 
   Under what circumstances is it useful or necessary to use derived properties or 
parameters in parametric models? 

   What are the relative merits of making parametric equations part of the definition 
of blocks, or applying an externally defined parametric model to an existing block?     



   This chapter describes concepts needed to model behavior in terms of the flow 
of inputs, outputs, and control using an activity diagram. An activity diagram is 
similar to a traditional functional flow diagram with many additional features to 
precisely specify a behavior. 

    8.1   Overview 
   In SysML, an activity is a formalism for describing behavior that specifies the 
transformation of inputs to outputs through a controlled sequence of actions. The 
activity diagram is the primary representation for modeling flow-based behavior 
and is analogous to the functional flow diagram that has been widely used for mod-
eling systems. Activities provide enhanced capabilities over traditional functional
flow diagrams, such as the inherent capability to express their relationship to 
the structural aspects of the system (e.g., blocks, parts), and the ability to model 
continuous flow behaviors. The semantics of activities are precise enough to ena-
ble them to be mapped to executable constructs in an execution environment. 
However, the mapping itself has not been standardized as of this time, although 
there are current efforts under way to do this. 

   Actions are the building blocks of activities and describe how activities exe-
cute. Each action can accept inputs and produce outputs, called tokens, on their 
pins. These tokens can correspond to anything that fl ows such as information or a 
physical item (e.g., water). Although actions are the leaf or atomic level of activity 
behavior, a certain class of actions, termed call actions, can invoke other activities 
that can be further decomposed into other actions. In this way, call actions can be 
used to compose activities into activity hierarchies. 

   The concept of object fl ow specifi es how the input and output items trans-
formed by an activity fl ow between its constituent actions. Object fl ows can con-
nect the output pin of one action to the input pin of another action to enable the 
passage of tokens. Flows can be discrete or continuous, where continuous fl ow 
represents the situation when the time between tokens is effectively zero. Complex 
routing of object tokens between actions can be specifi ed by control nodes. 

                                    Modeling Flow-Based 
Behavior with Activities   8 

CHAPTER
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   The concept of control fl ow provides additional constraints on when, and in 
which order, the actions within an activity will execute. A control token on an 
incoming control fl ow enables an action to start execution, and a control token 
is offered on an outgoing control fl ow when an action completes its execution. 
When a control fl ow connects one action to another, the action at the target end 
of the control fl ow cannot start until the source action has completed. Control 
nodes, such as join, fork, decision, merge, initial, and fi nal nodes, can be used to 
control the routing of control tokens to further specify the sequence of actions. 

   The sending and receiving of signals is one mechanism for communicating 
between activities executing in the context of different blocks, and for handling 
events such as timeouts. Signals are sometimes used as an external control input 
to initiate an action within an activity that has already started. Activities also 
include more advanced modeling concepts, such as extensions to fl ow semantics 
to deal with interrupts, fl ow rates, and probabilities. 

   Activities can depict behavior without explicit reference to which elements 
are responsible for performing the behavior. Alternatively, activities can depict 
behavior performed by specifi c blocks or parts, such as a system or its compo-
nents. SysML provides several mechanisms to relate activities to the blocks that 
perform them. Activity partitions allow the modeler to partition actions in an 
activity according to the blocks that have responsibility for executing them. 

   An activity may be specifi ed as the main behavior of a block that describes 
how inputs and outputs of the block are processed. The activity can also be 
specifi ed as the method for an operation of the block that is invoked as a result 
of a service request for that operation. When the behavior of a block is speci-
fi ed using a state machine, activities are often used to describe what happens 
when the state machine transitions between states, or what happens when in 
a state. 

   Other traditional systems engineering functional representations are also sup-
ported in SysML. Activities can be represented on block defi nition diagrams to 
show activity hierarchies similar to functional hierarchies. Activity diagrams can 
also be used to represent Enhanced Functional Flow Block Diagrams (EFFBDs).  

    8.2    The Activity Diagram 
   The principal diagram used to describe activities is called an  activity diagram . 
On an activity diagram, the frame represents an activity, and the content of the 
diagram defines the actions along with the flow of input/output and control. The 
frame label for an activity diagram has the following form: 

    act  [Activity] activity name [diagram name]

   The diagram kind for an activity diagram is designated as  act (for activity). 
The frame always represents an activity, and therefore may be elided. The  activ-
ity name is the name of the represented activity, and the  diagram name is user 
defi ned and is intended to describe the purpose of the diagram.  Figure 8.1    shows 
an example activity diagram. 
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FIGURE 8.1 

      An example activity diagram.    

act Generate Video Outputs [Routing Flows]

composite out : Composite
{stream}

input signal : Video
{stream}

MPEG output : MPEG4
{stream}

a4:Convert to Composite

video in
composite
out

test signal

a2:Process Frame

processed
frames

raw
frames

a3:Encode MPEG

MPEG out

video ina1:Produce Test Signal
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    Figure 8.1  shows an activity diagram for the activity  Generate Video Outputs  
and some of the basic activity diagram symbols.  Generate Video Outputs includes 
call actions that invoke other activities, such as the action  a2 that invokes the 
Process Frame activity. Actions have input and output pins, shown as small rect-
angles, to accept tokens that may represent units of information, matter, or energy. 
Pins are connected using object fl ows. Actions can also be connected with con-
trol fl ows although none are shown in this fi gure. The notation for activity dia-
grams is shown in the Appendix, Tables A.11 through A.14. 

    Figure 8.2    shows an example of an activity hierarchy that can be represented 
on a block defi nition diagram. The activity hierarchy includes an alternative view 
of the actions and invoked activities included in the activity  Generate Video 
Outputs shown in  Figure 8.1 ; however, it does not include the fl ows between the 
actions and other activity constructs such as control nodes. The structure of the 
hierarchy is shown using composite associations from the parent activity to other 
activities such as  Process Frame. The role names on the associations, such as  a2,
correspond to the names of the actions used to invoke the activities. The notation 
required to show activity hierarchies on block defi nition diagrams is described in 
the Appendix, Table A.7. 

    8.3    Actions—The Foundation of Activities 
   As described previously, an activity decomposes into a set of  actions that describe 
how the activity executes and transforms its inputs to outputs. There are a number 
of different categories of action in SysML described during this chapter, but this sec-
tion provides a summary of the fundamental behavior of all actions. SysML activities 
are based on token-flow semantics related to Petri-Nets [31, 32].  Tokens corre-
spond to values of inputs, outputs, and control that flow from one action to another. 

   An action processes tokens placed on its  pins. Tokens on input pins are con-
sumed, processed by the action, and placed on output pins for other actions to 

bdd [Package] Behavior [Example of Activity Decomposition]

«activity»
Convert to Composite

«activity»
Generate Video Outputs

«activity»
Produce Test Signal

«activity»
Process Frame

«activity»
Encode MPEG

a2 a3a1a4

 FIGURE 8.2 

      An example of an activity hierarchy in a block defi nition diagram.    
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accept. Each pin has a multiplicity that describes the minimum and maximum 
number of tokens that the action consumes or produces in any one execution. 
A pin acts as a buffer where input and output tokens to an action can be stored 
prior to or during execution. If a pin has a minimum multiplicity of zero, then it is 
said to be optional, otherwise it is said to be required. 

   The action symbol varies depending on the type of action, but typically it is 
a rectangle with round corners. The pin symbols are small boxes fl ush with the 
outside surface of the action symbol and may contain arrows indicating whether 
the pin is an input or output. Typically once a pin is connected to a fl ow and the 
direction becomes obvious, arrow notation is discarded. 

    Figure 8.3    shows a typical action, called  a1, with a set of input and output 
pins. One input pin and one output pin are required; that is, they have a lower 
multiplicity bound greater than zero. The other two pins are optional; that is, they 
have a lower multiplicity bound of zero. The action also has one incoming con-
trol fl ow and one outgoing control fl ow; see Section 8.6 for a detailed description 
of control fl ows. An action will begin execution when tokens are available on all 
its required inputs, including its control inputs as described next. 

   The following rules summarize the requirements for actions to begin and end: 

      ■    The fi rst requirement is that the action’s owning activity must be executing. 
      ■    Given that, the basic rules for whether an action can execute are as follows: 

      –    The number of tokens available at each required input pin is equal to or 
greater than its lower multiplicity bound. 

–      A token is available on each of the action’s incoming control fl ows.     
      ■    Once these prerequisites are met, the action will start executing and the 

tokens at all its input pins are available for consumption. 
      ■    For an action to terminate, the number of tokens it has made available at 

each required output pin must be equal to or greater than its lower multi-
plicity bound. 

      ■    Once the action has terminated, the tokens at all its output pins are avail-
able to other actions connected to those pins. In addition, a control token is 
placed on each outgoing control fl ow. 

      ■    Regardless of whether an action is currently executing or not, it is termi-
nated when its owning activity terminates.    

optional output [0..*]

required input [1] required output [1..*]

optional input [0..1]

a1

 FIGURE 8.3 

      An action with input and output pins and input and output control fl ow.    

8.3 Actions—The Foundation of Activities
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   The preceding paragraphs describe the basic semantics of actions, but the follow-
ing additional semantics are discussed later in this chapter: 

      ■    Different types of actions perform different functions, and some, particularly 
the call actions discussed in Section 8.4.2, introduce additional semantics 
such as streaming.  

      ■    Object and control tokens are routed using control nodes that can buffer, 
copy, and remove tokens. For more information, see Section 8.5 for object 
fl ow and Section 8.6 for control fl ow. SysML allows control tokens to dis-
able as well as enable actions, but actions need control pins to support this, 
as described in Section 8.6.2.  

      ■    SysML also includes continuous fl ows that are addressed in Section 8.8.2.  
      ■    Actions can be contained inside an interruptible region, which when inter-

rupted will cause its constituent actions to terminate immediately. Interruptible 
regions are described in Section 8.8.1.    

   The relationship between the semantics of blocks and activities is discussed in 
Section 8.9.  

    8.4    The Basics of Modeling Activities 
    Activities provide the context in which actions execute. Activities are used, and 
more important reused, through call actions. Call actions allow the composition 
of activities into arbitrarily deep hierarchies that allows an activity model to scale 
from descriptions of simple functions through to very complex algorithms and 
processes. 

    8.4.1    Specifying Input and Output Parameters for an Activity 
   An activity may have multiple inputs and multiple outputs called  parameters . 
Note that these parameters are not the same as the constraint parameters 
described in Chapter 7. Each parameter may have a type such as a value type or 
block. Value types range from simple integers to complex vectors and may have 
corresponding units and dimensions. Parameters can also be typed by a block that 
may correspond to a structural entity such as water flow or an automobile part 
flowing through an assembly line. Parameters have a direction that may be in or 
out or both. 

   Parameters also have a multiplicity that indicates how many tokens for this 
parameter can be consumed as input or produced as output by each execution of 
the activity. The lower bound of the multiplicity indicates the minimum number 
of tokens that must be consumed or produced by each execution. As with pins, if 
the lower bound is greater than zero, then the parameter is said to be  required;
otherwise, it is said to be  optional. The upper bound of the multiplicity speci-
fi es the maximum number of tokens that may be consumed or produced by each 
execution of the activity. 
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   Activity parameters are represented on an activity diagram using  activity
parameter nodes. During execution an activity parameter node holds tokens 
that represent the arguments of its corresponding parameter. An activity param-
eter node is related to exactly one of the activity’s parameters and must have the 
same type as its corresponding parameter. If a parameter is marked as inout, then 
it needs at least two activity parameter nodes associated with it, one for input and 
the other for output. 

   A parameter may be designated as streaming or nonstreaming, which affects 
the behavior of the corresponding activity parameter node. An activity parame-
ter node for a  nonstreaming input parameter may only accept tokens when the 
activity fi rst starts executing, and the activity parameter node for a nonstreaming 
output parameter can only provide tokens once the activity has fi nished execut-
ing. This contrasts with a  streaming parameter, where the corresponding activ-
ity parameter node can continue to accept streaming input tokens or produce 
streaming output tokens throughout the activity execution. Streaming parameters 
add signifi cant fl exibility for representing certain types of behavior. Parameters have 
a number of other characteristics described later in this chapter. 

   Activity parameter node symbols are rectangles that straddle the activity frame 
boundary. Each symbol contains a name string, composed of the node name, 
parameter type, and parameter multiplicity, thus: 

     parameter name: parameter type[multiplicity]   

   If no multiplicity is shown, then the multiplicity  “1..1” is assumed. The node’s name 
is typically the same as the name of its related parameter. An optional parameter 
is shown by the keyword «optional» above the name string in the activity para-
meter node. Conversely, the absence of the keyword «optional» indicates that the 
parameter is required. 

   There is no specifi c graphical notation to indicate the direction of an activity 
parameter node, although the direction can be shown using property notation. 
Some methodologies suggest that input parameters are shown on the left of the 
activity and outputs on the right. Once activity parameter nodes have been con-
nected by fl ows to nodes inside the activity, the parameter direction is explicit. 

   Additional characteristics of the parameter, such as its direction and whether 
it is streaming, are shown in braces either inside the parameter node symbol after 
the name string or fl oating close to the symbol. 

    Figure 8.4    shows the inputs and outputs of the  Operate Camera activity that is 
the main behavior of the camera. As can be seen from the notation in the param-
eter nodes,  Light from the camera’s environment is available as input using the 
current image parameter and two types of video signal are produced as outputs 
using the composite out and MPEG output parameters. The input parameter, 
confi g , is used to provide confi guration data to the camera when it starts up. 

   The activity consumes and produces a stream of inputs and outputs as it exe-
cutes, as indicated by the  {stream } annotation on the main parameter nodes. The 
other parameter,  confi g, is not streaming because it has a single value that is read 
when the activity starts. As stated earlier, when the multiplicity is not shown, for 
instance, on parameter  confi g, this indicates a lower bound and upper bound of 

8.4 The Basics of Modeling Activities
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one. The other parameters are streaming and there is no requirement to consume 
or produce tokens, so they are shown as «optional».

    8.4.2    Composing Activities Using Call Behavior Actions 
   A significant type of action is a call behavior action, which invokes a behavior 
when it executes. The call behavior action owns a set of pins that must match, in 
number and type, the parameters of the invoked behavior. The called behavior is 
assumed to be an activity in this chapter, although it can be other types of SysML 
behavior. 

   A call behavior action has a pin for each parameter of the called behavior and 
the characteristics of those pins must match the multiplicity and type of their cor-
responding parameters on the invoked behavior. If an activity parameter on the 
invoked activity is streaming, then the corresponding pin on the call behavior 
action has streaming semantics. As stated earlier, tokens on normal or nonstream-
ing pins, such as those shown in  Figure 8.3 , can only be available to the action for 
processing at the start of (in the case of input pins) or at the end of (in the case 
of output pins) the action execution. By comparison, tokens continue to be avail-
able through streaming pins while their owning action is executing, although the 
number of tokens consumed or produced by each execution is still governed by 
its upper and lower multiplicity bounds. 

   The call behavior action symbol is a round-cornered box containing a name 
string, with the name of the action and the name of the called behavior (e.g., 
activity), separated by a colon as follows:  action name : behavior name. The default 
notation is to include only the action name and not the colon. When the action is 
shown but is not named, the colon is included to differentiate this notation from 
the default. 

   Different naming philosophies exist for call behavior actions. Names are 
almost always used to differentiate two calls to the same activity. They are also 
often used to provide a name for an action used in an allocation (see Chapter 13 
on allocations for more detail). 

act Operate Camera [Activity Frame]

«optional»
composite out : Composite[0..1]

{stream, direction � out}

«optional»
MPEG output : MPEG4[0..1]

{stream, direction � out}

«optional»
current image : Light[0..1]

{stream, direction � in}

config : Configuration Data
{direction � in}

 FIGURE 8.4 

      Specifying an activity using a frame on an activity diagram.    
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   The name string of a pin on a call behavior action has the same form as the 
name string for an activity parameter node symbol, but fl oats outside the pin 
symbol. The name may include characteristics, such as streaming, of the corre-
sponding parameter. A rake symbol in the bottom right corner of a call behavior 
action symbol indicates that the activity being invoked is described on another 
diagram. 

   To transform light into video signals, the  Operate Camera activity invokes 
other activities that perform various subtasks using call behavior actions, as shown 
in Figure 8.5   . The action name strings take the form  “: Activity Name, ” indicating 
that actions do not have names. This fi gure shows just activity parameter nodes 
and actions with their inputs and outputs. Figure 8.6    shows how their input and 
output pins are connected. Note that the types of the pins have been elided here 
to reduce clutter.  

   All the invoked activities consume and produce streams of input and output 
tokens, as indicated by the  {stream } annotation on the pins of the actions. Collect
Images is an analog process performed by the camera lens.  Capture Video is 
where the images from the outside world are digitized to a form of video output. 
Generate Video Outputs takes the internal video stream and produces MPEG and 
composite outputs for transmission to the camera’s users.   

    8.5    Using Object Flows to Describe the Flow 
of Items between Actions 

    Object flows are used to route input/output tokens that may represent informa-
tion and/or physical items between object nodes. Activity parameter nodes and 
pins are two examples of object nodes. Object flows can be used to route items 
from the parameters nodes on the boundary of an activity to/from the pins on 
its constituent actions, or to connect pins directly to other pins. In all cases, the 
direction of the object flow must be compatible with the direction of the object 
nodes at its ends (i.e., in or out), and the types of the object nodes on both ends 
of the object flow must be compatible with each other. 

   An object fl ow is shown as a line connecting the source of the fl ow to the des-
tination of the fl ow, with an arrowhead at the destination. When an object fl ow is 
between two pins that have the same characteristics, an alternative notation can 
be used where the pin symbols on the actions at both ends of the object fl ow are 
elided and replaced by a single rectangular symbol called an object node sym-
bol. In this case, the object fl ow connects the source action to the object node 
with an arrowhead on the object node end, and then connects the object node to 
the destination action, with an arrowhead at the destination end. The object node 
symbol can have the same annotations as a pin symbol. 

   In Figure 8.6 , the subactivities of  Operate Camera shown in  Figure 8.5  are 
now interconnected by object fl ows to establish the fl ow from light entering the 
camera to the output of video images in the two required formats. The incoming 
light on the parameter called  current image fl ows to the  Collect Images activity; 
its output,  captured image, is the input to  Capture Video (note the use of the 

8.5 Using Object Flows to Describe the Flow of Items between Actions
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«optional»
current image :

Light[0..1]
{stream, direction � in}

: Generate
Video Outputs

: Capture Video: Collect Images
«optional»
ext image
{stream}

«optional»
composite out :
Composite[0..1]

{stream, direction � out}

«optional»
MPEG output :
MPEG4[0..1]

{stream, direction � out}

«optional»
captured
image
{stream}

«optional»
video out
{stream}

«optional»
MPEG
output
{stream}

«optional»
composite
out {stream}

«optional»
input signal

{stream}

«optional»
captured

image
{stream}

act Operate Camera [Invocation Actions]

 FIGURE 8.5 

      Invocation actions on an activity diagram.    
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act Operate Camera [Object Flows]

: Generate
Video Outputs

: Collect Images
«optional»

ext image {stream}

: Capture Video

«optional»
video out

«optional»
composite
out {stream}

«optional»
composite out

{stream}

«optional»
MPEG output

{stream}

«optional»
input signal

{stream}

«optional»
captured image

{stream}

«optional»
current image

{stream}

«optional»
MPEG output
{stream}

 FIGURE 8.6 

      Connecting pins and parameters using object fl ows.    
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 “ object node ” notation). Capture Video produces video images, via its  video out  
pin, which in turn becomes the input for  Generate Video Outputs. Generate Video 
Outputs converts its input video signal into MPEG and composite outputs that are 
then routed to corresponding output parameter nodes of  Operate Camera.

   In  Figure 8.6 , the names of the actions have been elided, which is indicated by 
the absence of a colon in the name string of the action symbols. See  Figure 8.8 
later for an example where the actions are named. 

    8.5.1    Routing Object Flows 
   There are many situations where simply connecting object nodes using object 
flows does not allow an adequate description of the flow of tokens through the 
activity. SysML provides a number of mechanisms for more sophisticated expres-
sions of flow control. Each object flow may have a guard expression that specifies 
a rule to govern which tokens are valid for the object flow. 

   In addition, there are several constructs in SysML activities that provide more 
sophisticated fl ow mechanisms, including: 

■    A fork node has one input flow and more than one output flow—it replicates 
every input token it receives onto each of its output flows. The tokens on each 
output flow may be handled independently and concurrently. Note that the 
tokens merely represent the items flowing, and the replication of tokens does not 
imply that the represented items are replicated. In particular, if the represented 
item is physical, replication of that physical object may not even be possible. 

■    A join node has one output flow and more than one input flow—its default 
behavior for object flows is to produce output tokens only when an input token 
is available on each input flow. Once this occurs, it places all input object tokens 
on the output flow. This has the important characteristic of synchronizing the 
flow of tokens from many sources. Note that this applies to object flow, but the 
handling of control tokens is different, as described in Section 8.6. 

      The default behavior of join nodes can be overridden by providing a join 
specification that specifies a logical expression for matching token arrival on 
different flows. 

       Figure 8.7    shows an example of a join specification. The join node has three 
input flows— flow 1, flow 2, and  flow 3—and the join specification states that 
output tokens are produced if input tokens are received on both  flow 1 and 
flow 2, or on both  flow 2 and flow 3. The expression uses the names of flows, 
so the flows must be named in this situation. Another use of flow names is to 
support flow allo cation (see Chapter 13). 

■    A decision node has one input and more than one output flow—an input token 
can only traverse one output flow. The output flow is typically established by 
placing mutually exclusive guards on all outgoing flows and offering the token 
to the flow whose guard expression is satisfied. The guard expression  “ else ”  
can be used on one of the node’s outgoing flows to ensure that there is always 
one flow that can accept a token. If more than one outgoing object flow can 
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accept the token, then it cannot be determined which of the flows will receive 
the token. 

      A decision node can have an accompanying decision input behavior that is 
used to evaluate each incoming object token and whose result can be used in 
guard expressions. 

■    A merge node has one output and more than one input flow—it routes each input 
token received on any input flow to its output flow. Unlike a join node, a merge 
node does not require tokens on all its input flows before offering them on its 
output flow. Rather, it offers tokens on its output flow as soon as it receives them. 

   Fork and join symbols are shown as solid bars, typically aligned either horizon-
tally or vertically. Decision and merge symbols are shown as diamonds. Where 
forks and joins, or decisions and merges, are adjacent (i.e., would be connected by 
just a flow with no guards), they can be shown as a single symbol with the inputs 
and outputs of both connected to that symbol. Figure 8.12 , later in the chapter, 
contains an example of this. Join specifications and decision input behaviors are 
shown in notes attached to the relevant node. 

   In Figure 8.8   , the activity  Generate Video Outputs accepts an input video sig-
nal and outputs it in appropriate formats for external use, in this case,  Composite  
video and MPEG4. The Produce Test Signal activity allows  Generate Video Outputs  
to generate a test signal if desired. See the specifi cation of  Produce Test Signal  
later in Figure 8.14  to see how the activity knows when to generate the signal. 
The test signal, when generated, is merged into the stream of video frames using 
a merge node, and this merged stream is then converted into video frames by  Process 
Frame. Note that if tokens are produced on both the  input signal parameter node 
and the test signal pin, then they will be interleaved into the  raw frames pin by the 
merge node. In this case that is the desired behavior, but if not, then additional con-
trol would be needed to ensure that incoming token streams were exclusive. 

   Once processed, the tokens representing the processed frames are then forked 
and offered to two separate actions:  Convert to Composite that produces the 
composite out output and Encode MPEG that produces the  MPEG output. These 
two actions can continue in parallel, each consuming tokens representing frames 
and performing a suitable translation. Note that the fork node does not imply that 

flow 2

flow 3

flow 1

«joinSpecification»
{(flow 1 & flow 2) | (flow 2 & flow 3)}

 FIGURE 8.7 

      Example of a join specifi cation.    

8.5 Using Object Flows to Describe the Flow of Items between Actions
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act Generate Video Outputs [Routing Flows]

composite out : Composite
{stream}

input signal : Video
{stream}

MPEG output : MPEG4
{stream}

a4:Convert to Composite

video in
{stream} composite

out {stream}

test signal
{stream}

a2:Process Frame

processed
frames
{stream}

raw
frames

{stream}

a3:Encode MPEG

MPEG out
{stream}

video in
{stream}a1:Produce Test Signal

 FIGURE 8.8 

      Routing object fl ows between invocations.    
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the frame data are copied (although they may be), but merely that both  Encode
MPEG  and  Convert to Composite have access to the data via their input tokens. 

   In this example, the name strings of the call behavior actions include both the 
action name and activity name, when arguably the actions need not be named. 
This helps to demonstrate the mapping from activities on this activity diagram to 
the same activities represented on the block defi nition diagram in  Figure 8.25 in 
Section 8.10.1 .

    8.5.2   Routing Object Flows from Parameter Sets 
   The parameters of an activity can be grouped together into  parameter sets,
where a parameter set must have either all input or all output parameters as 
members. When an activity that has input parameter sets is invoked, the param-
eter nodes corresponding to at most one input parameter set can contain tokens. 
When an activity that has output parameter sets has completed, the parameter 
nodes corresponding to at most one output parameter set can contain tokens. 
A given parameter may be a member of multiple parameter sets. 

   Each set of parameters is shown by a rectangle, on the outer boundary of 
the activity, that partially encloses the set of parameter nodes that correspond 
to parameters in the set. These rectangles can overlap to refl ect the overlapping 
membership of parameter sets. 

    Figure 8.9    shows an activity called  Request Camera Status with two dis-
tinct sets of outputs. When presented with a  camera number as input,  Request
Camera Status will return an  error and a diagnostic if there is a problem with 
the camera, or a  power status  and  current mode  if the camera is operational. 

   If an invoked activity has parameter sets, then the groupings of pins corre-
sponding to the different parameter sets are shown on the call behavior action, 
using similar notation to parameter sets on activities. 

    Figure 8.10    shows the object fl ow for an activity  Handle Status Request that 
reads a  camera id and writes a  camera status. It invokes  Request Camera Status  
with a camera number and expects one of two sets of outputs that correspond 

act [Activity] Request Camera Status

camera number

diagnostic

error

current mode

power status

 FIGURE 8.9 

      An activity with parameter sets.    

8.5 Using Object Flows to Describe the Flow of Items between Actions
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to two parameter sets: an  error and a diagnostic, or a  power status and current 
mode. These two sets of outputs are used by two different string-formatting func-
tions,  Create Error String and Create Status String. Whichever formatting function 
receives inputs produces an output string that is then conveyed via a merge node 
to the camera status  output parameter node.  

    8.5.3    Buffers and Data Stores 
   Pins and activity parameter nodes are the two most common types of object node, 
but there are cases where additional constructs are required. A  central buffer 
node provides a store for object tokens outside of pins and parameter nodes. 
Tokens flow into a central buffer node and are stored there until they flow out 
again. It is needed when there are multiple producers and consumers of a single-
buffered stream of tokens at the same time; pins and activity parameter nodes 
have either a single producer or single consumer. 

   Sometimes activities require the same object tokens to be stored for access 
by a number of actions during execution. A type of object node called a  data
store node can be used for this. Unlike a central buffer node, a data store node 
provides a copy of a stored token rather than the original. When an input token 
represents an object that is already in the store, it overwrites the previous token. 
Data stores can provide tokens when a receiving action is enabled, thus support-
ing the pull semantics of traditional fl ow charts. 

   Data store nodes and central buffer nodes only store tokens while their parent 
activity is executing. If the values of the tokens need more permanent storage, 
then a property should be used. There are primitive actions, described in Section 
8.12.1, that can be used to read and write properties. 

   Both central buffer nodes and data store nodes are represented by a rectangle 
with a name string, with the keywords «centralBuffer» and «datastore» above the 
name string. Their names have the same form as pins, except without multiplicity:   
buffer or store name : buffer or store type. An example of a central buffer node 
is shown in  Figure 8.19 in Section 8.8.4 .

act Handle Status Request

: Request Camera Status

error
diagnostic

power status
current mode

camera number
: Create Status

String

status string
power
current status

: Create Error
String error string

error
diagnostic

camera id : Integer
camera

status : String

 FIGURE 8.10 

      Invoking an activity with parameters sets.    
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    Figure 8.11    describes the internal behavior of the  Capture Video activity. Light 
entering the camera lens is focused by the activity  Focus Light, which produces an 
image that is stored in a data store node called  current image. The image stored in 
current image is then used by two other activities:  Convert Light that samples the 
images to create video frames and  Adjust Focus that analyzes the current image 
for sharpness and provides a  focus position to Focus Light. The use of a data store 
node here facilitates the transition between the analog nature of the incoming 
light from the lens and the digital nature of the video stream. (See  Figure 8.17  in 
the Flow Rates subsection of 8.8.2 for an enhanced version of this diagram, includ-
ing fl ow rate information.) In this case, the data store may be allocated to the focal 
plane array of the camera (see Chapter 13 for a description of allocation). 

   The object node called focus position is input to Focus Light, whereas  Convert 
Light and Adjust Focus receive their input from a data store node. The notation 
for the object node representation of fl ows and the representation of buffer 
nodes is quite similar, but buffer nodes always have the keyword «datastore» or 
«centralBuffer» above their name. 

   Sections 8.8.2 and 8.8.3 discuss other mechanisms to specify the fl ow of 
tokens through data store and central buffers nodes, as well as other object nodes.   

    8.6    Using Control Flows to Specify the Order 
of Action Execution 

   As mentioned previously, there are control semantics associated with object flow, 
such as when an action waits for the minimum required number of tokens on all 
input pins before proceeding with its execution. However, sometimes the availabil-
ity of object tokens on required pins is not enough to specify all the execution con-
straints on an action, in which case  control flows are available to provide further 
control using control tokens. Although object flows have been described first in this 
chapter, the design of an activity need not necessarily start with the specification of 

act Capture Video

Convert Light

images
{stream}

light in
{stream}

Adjust Focus

light in
{stream}

Focus Light

light in
{stream}

«datastore»
current image

video out : Video
{stream}

focused light
{stream}

captured image : Image
{stream}

focus position
{stream}

 FIGURE 8.11 

      Using a data store node to capture incoming light.    

8.6 Using Control Flows to Specify the Order of Action Execution
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object flows. In traditional flow charts, it is often the control flows that are estab-
lished first and the routing of objects later. 

   In addition to any execution prerequisites established by required pins, an 
action also cannot start execution until it receives a control token on all input 
control fl ows. When an action has completed its execution, it places control 
tokens on all outgoing control fl ows. The sequencing of actions can thus be con-
trolled by the fl ow of control tokens between actions using control fl ows. 

   An action can have more than one control fl ow input. This has the same 
semantics as connecting the action to the outgoing control fl ow of a join with 
multiple incoming control fl ows. Similarly, if an action has more than one control 
fl ow output, it can be modeled by connecting the action via an outgoing control 
fl ow to a fork with multiple control fl ow outputs. As will be seen in Section 8.6.2, 
control tokens can be used to disable actions as well as enabling them. 

    8.6.1    Depicting Control Logic with Control Nodes 
   All the constructs used to route object flows can also be used to route control 
flows to represent control logic. A join node has special semantics with respect to 
control tokens. Even if it consumes multiple control tokens, it emits only one con-
trol token once its join specification is satisfied. Join nodes can also consume a mix-
ture of control and object tokens, in which case once all the required tokens have 
been offered at the join node, all the object tokens are offered on the outgoing flow 
along with one control token. In addition to the constructs described in Section 
8.5.1, there are some special constructs that provide additional control logic: 

    ■  Initial node—when an activity starts executing, a control token is placed on 
each initial node in the activity. The token can then trigger the execution of an 
action via an outgoing control fl ow. Note that although an initial node can have 
multiple outgoing fl ows, a control token will only be placed on one. Typically 
guards are used where there are multiple fl ows in order to ensure that only 
one is valid, but if this is not the case, then the choice of fl ow is arbitrary. 

    ■  Activity fi nal node—when a control or object token reaches an activity fi nal 
node during the execution of an activity, the execution terminates. 

    ■  Flow fi nal node—control or object tokens received at a fl ow fi nal node are con-
sumed but have no effect on the execution of the enclosing activity. Typically 
they are used to terminate a particular sequence of actions without terminating 
an activity. This may occur when processing in an activity is proceeding concur-
rently, after a fork node and only one processing route terminates the activity. 

   A control flow can be represented either by using a solid line with an arrowhead 
at the destination end like an object flow or, to more clearly distinguish it from 
object flow, by using a dashed line with an arrowhead at the destination end. 

   An initial node symbol is shown as a small solid black circle. The activity fi nal 
node symbol is shown as a  “ bulls-eye, ”  and the fl ow fi nal node symbol is a hollow 
circle containing a crosshair symbol, rotated 45° from the horizontal/vertical axis. 
Examples of the initial and activity fi nal nodes are shown in  Figure 8.12   . Figure 
8.20  in Section 8.9.1 contains an example of a fl ow fi nal node. 
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   The console software provides the capability to drive a camera through a pre-
set scan route, as shown in  Figure 8.12 . The activity Follow Scan Route will follow 
a route, that is a set of positions, for the camera defi ned in terms of pan-and-tilt 
angles. It has one input parameter, the  route as a fi xed-length stream of positions 
with size route size. When started, the activity resets its  count property, then iter-
ates over all points in the route—incrementing  count for every point—and fi nally 
terminates when the guard  [count    �      �      route size] is false, indicating that the last 
point in the route is reached. The  Position Camera activity is invoked for each 
position token offered on the  route parameter. Control fl ows dictate the order in 
which the activity executes. 

   Note that in this case there is a combined merge and decision symbol that 
accepts two input control fl ows and has two output control fl ows: one leads to 
an activity fi nal node and the other leads into another iteration of the algorithm. 
The property  count is initialized and incremented using actions  count       �       0 and 
count       �       count   �       1; these are opaque actions; that is, their function is expressed in 
some language (in this case the C programming language). As with constraints, the 
language used to specify the action can be added in braces before the expression. 

    8.6.2   Using Control Operators to Enable and Disable Actions 
   An action with nonstreaming inputs and outputs typically starts once it has the 
prerequisite incoming tokens and terminates execution when it completes the 

act Follow Scan Route

{C}count � 0

:Position Camera

position

[count��route
size]

{C}count � count �1

route
{stream}

[else]

 FIGURE 8.12 

      Control fl ow in activities.    

8.6 Using Control Flows to Specify the Order of Action Execution
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production of its outputs. However, particularly if the action is a call action with 
streaming inputs and/or outputs, the completion of the action execution may 
need to be controlled externally. To achieve this, a value can be sent via a control 
flow to the action to enable or disable its invoked activity. SysML provides a spe-
cific control enumeration for this called  ControlValue, with values  enable and 
disable. For an action to receive this control input, it needs to provide a control 
pin that can receive it. A control value of  enable  has the same semantics as the 
arrival of a control token, and a control value of  disable  will terminate the 
invoked activity.  

   A special behavior called a control operator produces control values via an 
output parameter, typed by ControlValue. A control operator can include complex 
control logic and can be reused, via a call behavior action, in many different activi-
ties. A control operator is also able to accept a control value on an appropriately 
typed input parameter and will treat it as an object token rather than a control 
token. 

   The control value type could be extended in a profi le (see Chapter 14) to 
include other control values in addition to  enable and disable. A control operator 
could then output these new values. A control value of  suspend might, for exam-
ple, not terminate execution of the action like  disable. The action would allow 
execution to resume where it left off when it received a  resume  control value. 

   The defi nition of a control operator is indicated by the presence of the key-
word  controlOperator  as the model element type in the diagram label on the 
activity diagram frame. 

    Figure 8.13    shows a simple control operator, called  Convert Bool to Control,
that takes in a Boolean parameter called  bool in and, depending on its value, 
either outputs an enable or disable value on its  control out output parameter. 
The values are created using primitive actions, called value specifi cation actions, 
whose purpose is to output a specifi ed value. By convention, the input and out-
put pins of these actions are elided. (See Section 8.12.1 for a discussion of primi-
tive actions.)  Convert Bool to Control is a generally useful control operator that 
can be reused in many situations. 

   A control operator is a kind of behavior and so may be invoked using a normal 
call behavior action. A call behavior action that invokes a control operator has 

control out:
ControlValuebool in : Boolean

«valueSpecification»
enable

«valueSpecification»
disable

[else]

[bool in]

act [controlOperator] Convert Bool to Control

 FIGURE 8.13 

      Using a control operator to generate a control value.    
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the keyword «controlOperator» above its name string. A control pin symbol is a 
standard pin symbol with the addition of the property name  “control ” in braces 
fl oating near the pin symbol. 

   A test signal, by defi nition, is not always wanted on the video output. A mecha-
nism to inhibit test signal production is shown in  Figure 8.14   . The Convert Bool to 
Control control operator shown in  Figure 8.13  reads a Boolean fl ag,  test in, from the 
activity Receive Test Messages and uses that to output an enable or disable value on 
a control pin called  control out. This pin in turn is connected via a control fl ow to 
the inhibit pin of the Generate Test Signal activity.  Generate Test Signal interprets 
this input as a control value because  inhibit is a control pin, as indicated by the 
annotation “{control }.” When  Generate Test Signal is enabled, it reads the time at 
2   Hz from the accept time event action (see Section 8.7 for a discussion of time 
events). The activity  Receive Test Messages is defi ned in  Figure 8.23 (see page 204) .  

    8.7   Handling Signals and Other Events 
   In addition to obtaining inputs and producing outputs using its parameters, an 
activity can accept signals using an accept event action for a signal event (com-
monly called an  accept signal action) and send signals using a send signal 
action. Communication can then be achieved between activities by including a 
send signal action in one activity and an accept signal action for a signal event 
representing the same signal in another activity. More typically signals are sent 
from or received by the instances of the blocks that own and execute the activi-
ties, as described in Section 8.9.2. Communication via signals takes place asyn-
chronously; that is, the sender does not wait for the signal to be accepted by the 
receiver before proceeding to other actions. 

   An accept signal action can output the received signal on an output pin. 
A send signal action has one input pin per attribute of the signal to be sent and one 
pin to specify the target for the signal. 

test
signal

{stream}

time
signal

{stream}

«controlOperator»
a12:Convert Bool

to Control

test in
{stream}

test value
{stream}

control out
{control}

inhibit {control}

act Produce Test Signal

a13:Receive
Test Messages

test signal : Video

after (0.5)

a11:Generate Test Signal

 FIGURE 8.14 

      Using a control operator to control the execution of an activity.    

8.7 Handling Signals and Other Events
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   The accept event action can accept others kinds of event, including: 

      ■    A time event, which corresponds to an expiration of an (implicit) timer. In 
this case the action has a single output pin that outputs a token containing 
the time of the accepted event occurrence. 

      ■    A change event, which corresponds to a certain condition expression (often 
involving values of properties) being satisfi ed. In this case there is no out-
put pin, but the action will generate a control token on all outgoing control 
fl ows when a change event has been accepted.    

   An accept event action with no incoming control flows is enabled as soon as its 
owning activity (or owning interruptible region, see Section 8.8.1) starts to exe-
cute. However, unlike other actions, it remains enabled after it has accepted an 
event and so is ready to accept others. 

   A send signal action is represented by a rectangle with a triangle attached on 
one end, and an accept event action is represented by a rectangle with a triangu-
lar section missing from one end. When the event accepted is a time event, the 
accept event action may be shown as an hourglass symbol (see  Figure 8.14 ). 

    Figure 8.15    shows how MPEG frames get transmitted over the surveillance 
camera network. The  Transmit MPEG activity fi rst sends a  Frame Header signal 
to indicate that a frame is to follow. It then executes  Send Frame Contents, which 
splits the frame into packets and sends them. When  Send Frame Contents fi n-
ishes, it outputs a  packet count and two signaling actions are performed, a 
Frame Footer signal is sent, and then an accept signal action waits for a  Frame 
Acknowledgment signal. Finally, the  Check Transmission activity is invoked once 
the Frame Acknowledgment signal has been received, to check the packet count 

act Transmit MPEG
MPEG Frame

Frame Acknowledgment

: Send Frame Contents
packet
count

MPEG Frame

: Check Transmission

packets
sent

frame
ack

Frame Header

«datastore»
frame store

[else]
[transmission OK]

Frame Footer

 FIGURE 8.15 

      Using signals to communicate between activities.    
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returned with the acknowledgment against the count provided as an output of 
Send Frame Contents. If the packet counts match, then transmission is deemed 
to have succeeded and the variable [ transmission OK] is set to true. This vari-
able is then tested on the outgoing guards of a decision node, and if true, then 
the activity terminates; otherwise, the frame is resent, having previously been 
stored. 

   Note that this description is incomplete because it does not provide a target 
object for the send signal actions. 

    8.8   Advanced Activity Modeling 
   This section addresses several advanced activity modeling concepts. 

    8.8.1   Interruptible Regions 
   All the action executions within an execution of an activity are terminated when 
the activity is terminated. However, there are some circumstances where the mod-
eler wants a subset of the action executions to be terminated but not all. 

   An interruptible region can be used to model this situation. An interruptible 
region groups a subset of actions within an activity and includes a mechanism 
for interrupting execution of those actions, called an  interrupting edge, whose 
source is a node inside the region and whose destination is a node outside it. Both 
control and object fl ows can be designated as interrupting edges. Normal (i.e., 
noninterrupting) fl ows may have a destination outside the region as well; tokens 
sent on these fl ows do not interrupt the execution of the region. 

   An interruptible region is entered when at least one action within the region 
starts to execute. An interruption of an interruptible region occurs whenever a 
token is accepted by an interrupting edge that leaves the region. This interrup-
tion causes the termination of all actions executing within the interruptible 
region, and execution continues with the activity node or nodes that accepted 
the token from the interrupting edge. (It can be more than one node because the 
interrupting edge can connect to a fork node.) 

   A token on an interrupting edge often results from the reception of a signal by 
the activity containing the interruptible region, or its context object, if it has one. 
In that case, the signal is received by an accept signal action within the interrupt-
ible region that offers a token on an outgoing interrupting edge to some activity 
node outside the region. Because this is a common case, there are special seman-
tics associated with accept event actions contained in interruptible regions. As 
long as they have no incoming edges, the accept event action does not start to 
execute until the interruptible region is entered, as opposed to the normal case 
where the accept event action starts when the enclosing activity starts. 

   An interruptible region is notated by drawing a dashed round-cornered box 
around a set of activity nodes. An interrupting edge is represented either by a 
lightning bolt symbol or by a normal fl ow line with a small lightning bolt annota-
tion fl oating near its middle. 

8.8 Advanced Activity Modeling
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    Figure 8.16    shows a more complete defi nition of the overall behavior of 
the camera,  Operate Camera, previously shown in  Figure 8.6 . After invoking the 
Initialize activity, the camera waits for a S tart Up signal to be received by an 
accept signal action before proceeding simultaneously with the primary activi-
ties that the camera performs:  Collect Images, Capture Video, and  Generate Video 
Outputs. These actions are triggered, following the acceptance of the  Start Up sig-
nal, using a fork node to copy the single control token emerging from the accept 
signal action into control fl ows terminating on each action. 

   The actions are enclosed in an interruptible region and continue to execute 
until a Shut Down signal is accepted by an accept event action. When a  Shut
Down signal has been accepted, an interrupting edge leaves the interruptible 
region, all the actions within it terminate, and control transitions to the action 
that invokes the  Shutdown activity. Once the  Shutdown activity has completed, 
a control token is sent to an activity fi nal node that terminates  Operate Camera . 
Note that there are other fl ows leaving the interruptible region, but because they 
are not interrupting edges, they do not cause its termination.  

    8.8.2    Modeling Flow Rates and Flow Order 
   There is a default assumption that tokens flow at the rate dictated by the exe-
cuting actions and that tokens flowing into an object node flow out in the same 
order. SysML offers constructs to deal with situations where these assumptions 
are not valid. 

    Flow Rates 
   Any streaming parameter may have a rate attached to it that specifies the expected 
rate at which tokens flow into or out of a related pin or parameter node. The 
expected rate at which tokens can arrive at or leave a pin or parameter node is 
specified by the rate property on a parameter. Note that this is only the statisti-
cally expected rate value. The actual value may vary over time, only averaging out 
to the expected value over long periods. Continuous flow is a special case that 
indicates that the expected rate of flow is infinite, or conversely the time between 
token arrivals is zero. In other words, there are always newly arriving tokens avail-
able at whatever rate the tokens are read. 

   When no rate information is displayed, an arbitrary discrete rate is assumed, 
which can be explicitly indicated by marking the parameter as discrete. In addi-
tion to parameters, fl ows can be notated as continuous or discrete or with a rate. 
When a rate is provided for a fl ow, it specifi es the expected number of objects 
and values that traverse the edge per time interval; that is, the expected rate at 
which they leave the source node and arrive at the target node. It does not refer 
to the rate at which a value changes over time. 

   Continuous and discrete rates are indicated by the appearance of the cor-
responding keywords «continuous» and «discrete» above the name string of 
the corresponding symbol, or if a specifi c expected rate is required, by the 
property pair,  rate    �      rate value, in braces either inside or fl oating alongside the 
corresponding symbol. 
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 FIGURE 8.16 

      An interruptible region.    
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   In Figure 8.17   , the object fl ows associated with light in the  Capture Video  
activity are continuous. The  Focus Light and Adjust Focus actions invoke analog 
processes with continuous inputs and outputs, as indicated by the appearance of the 
keyword «continuous» on object nodes associated with those actions, including the 
current image parameter node. However, the images generated by the  Convert Light  
action must be produced at a rate of 30 frames per second, as indicated on the  video 
out parameter node. 

    Flow Order 
   As described earlier in this chapter, tokens can be queued at pins or other object 
nodes as they await processing by the action, subject to a specified upper bound.
Where the upper bound of an object node is greater than one, the modeler can 
specify the order in which its tokens are read using the  ordering property of 
the node that can take values of ordered, First-In/First-Out (FIFO), Last-In/First-Out 
(LIFO), or unordered. Where the ordering property is specified as  ordered , the 
modeler must provide an explicit selection behavior that defines the ordering. This 
mechanism can be used to select the token based on some value, such as priority, of 
the represented object. 

   In the case where an offered token would cause the number of tokens to 
exceed the upper bound of the object node, a modeler can choose to  overwrite  
tokens already there, or to  discard  the newly arrived tokens. 

   The notation for ordering is the name value pair  ordering    �      ordering value,  
placed in braces near or inside the object node. If no ordering is shown, then the 
default  FIFO is assumed. The keyword «overwrite» is used to indicate that a token 
arriving at a full node replaces the last token in the queue according to the  “ order-
ing ”  property for the node. Alternatively, the keyword «noBuffer» can be used to 
discard newly arriving tokens that are not immediately processed by the action.   

    8.8.3    Modeling Probabilistic Flow 
   Where appropriate, a flow can be tagged with a probability to specify the likeli-
hood that a given token will traverse a particular flow among available alternative

Convert Light

images
{stream}

light in
{stream}

Adjust Focus

Focus Light

act Capture Video [with Rate Indication]

«continuous»
current image : Light

{stream}
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{rate � "30 per second"}

{stream}

«continuous»
light in

{stream}

«continuous»
focused light
{stream}

«continuous»
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«continuous»
light in
{stream}

«datastore»
current image

 FIGURE 8.17 

      Use of continuous fl ows and discrete fl ows with rate information.    
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flows. This is typically encountered in flows that emanate from a decision node, 
although probabilities can also be specified on multiple edges going out of 
the same object node (including pins). Each token can only traverse one edge, 
with the specified probability. If  probabilistic flows are used, then all alterna-
tive flows must have a probability and the sum of the probabilities of all flows 
must be 1. 

   Probabilities are shown either on activity fl ow symbols, or parameter set sym-
bols, as a property/value pair,   probability   �     probability value  enclosed in braces 
fl oating somewhere near the appropriate symbol. 

    Figure 8.18    shows the activity diagram for  Transmit MPEG, fi rst introduced in 
Figure 8.15 . In this example, the probability of successful transmission has been 
added. The two fl ows that correspond to successful and unsuccessful transmis-
sion have been labeled with their relative probability of occurrence. 

    8.8.4   Modeling Pre- and Postconditions and Input and Output States 
   An action is able to execute when all of the prerequisite tokens have been offered 
at its inputs, and similarly may terminate when it has offered the postrequisite 
tokens on its outputs. However, sometimes additional constraints apply, which are 
based on the values of those tokens or conditions currently holding in the execu-
tion environment. These constraints can be expressed using  pre- and postcondi-
tions on the actions, and in the case of call actions, on the behaviors they invoke. 
In the specific case when an object represented by a token has an associated

act Transmit MPEG [with probabilities]
MPEG Frame

Frame Acknowledgment

: Send Frame Contents

packet count

MPEG Frame

: Check Transmission
packets sent

frame ack

Frame Header

«datastore»
frame store

[else] {probability � "0.01"}
[transmission OK]

{probability � "0.99"}

Frame Footer

 FIGURE 8.18 

      Probabilistic fl ow.    

8.8 Advanced Activity Modeling
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state machine, an object node may explicitly specify the required current state or 
states of that object in a state constraint.

   The display of pre- and postconditions depends on whether they are speci-
fi ed against the behavior or the action. Pre- and postconditions on behaviors (in 
this case activities) are specifi ed as text strings placed inside the activity frame, 
preceded by either the keyword «precondition» or «postcondition». Pre- and post-
conditions on actions are placed in note symbols attached to the action, with the 
keyword «localPrecondition» or «localPostcondition» at the top of the note, pre-
ceding the text of the condition. 

   A state constraint on an object node is shown by including the state name in 
square brackets underneath the name string of the symbol for that object node. 
This is equivalent to a local precondition or postcondition on the owning action 
requiring the specifi ed state. 

   Although ACME Surveillance Systems Inc. does not manufacture the cameras, 
they do want to have some say in the production process.  Figure 8.19    shows 
their preferred process. The optimal path for the production process is through 
Assemble Cameras and Package Cameras. However, their experience is that 
some assembled cameras do not work properly but can be repaired, at reasonable 
cost, and sold as reconditioned. 

   The repair process is modeled as the activity  Repair Cameras. Some cameras 
are unfi xable, but even then the camera can be cannibalized (through activity 
Cannibalize Cameras) for spare parts that can be fed back into the assembly pro-
cess.  A camera in production progresses through a number of states (see Chapter 10 
for a description of state machines) as it moves through production, and different 
activities require or provide cameras in specifi c states.  Assemble Cameras may 
produce cameras faster than they can be packaged or repaired, so they are placed 
in a buffer called  assembled cameras. From there they either progress directly 
to Package Cameras if their state is operational; otherwise, they progress to 
Repair Cameras if their state is damaged. Repair Cameras accepts cameras in the 
damaged  state, and they are either  repaired or deemed unfi xable when the activ-
ity has fi nished with them. 

   Note that the activity Build Cameras merely models the process of building 
cameras, using tokens to represent cameras. In this example, the fl ow of tokens 
could mirror quite closely the fl ow of physical cameras through a production sys-
tem; the central buffer node might be allocated to a storage rack, for example. 
However, the physical production system may be quite different, and it’s only 
when these activities are allocated to physical processing nodes that the physical 
meaning of the token fl ow is understood. 

   The previous discussion described how the input and output states could be 
used to specify preconditions and postconditions, respectively. A constraint on 
the input and output relationship can also be specifi ed, in effect by combining 
a precondition and postcondition. These constraints might, for example, express 
the relationship between the pressure of some incoming gas and the tempera-
ture readings provided by some outgoing electrical signal. Alternatively, this could 
be used to express an accuracy or time constraint associated with the action or 
activity.   
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 FIGURE 8.19 

      Example of using states on pins.    
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    8.9    Relating Activities to Blocks and Other Behaviors 
   Activities are often specified independently of structure (i.e., blocks), and their 
execution semantics do not depend on the presence of blocks. However, as the 
system design progresses, the relationship between the behaviors of a system, 
expressed in this case using activities, and the structure of a system, expressed 
using blocks, does eventually need to be established. 

   Different methods approach this in different ways. A classical systems engi-
neering functional decomposition method allocates the functions to components, 
as discussed in Chapter 13. Other methods approach this somewhat differently by 
establishing a block hierarchy and driving out the scenarios between the blocks. 
Examples of these different methods are included in Chapters 15 and 16. 

   SysML also has two other mechanisms to relate blocks and activities. The fi rst 
is the use of an activity partition to assert that a given block (or part) is respon-
sible for the execution of a set of actions. The second is for a block to own an 
activity and use this as a basis for specifying the block’s behavior. 

    8.9.1    Linking Behavior to Structure Using Partitions 
   A set of activity nodes, and in particular call actions, can be grouped into an 
activity partition (also known as a  swimlane) that is used to indicate respon-
sibility for execution of those nodes. A typical case is where an activity par-
tition represents a block or a part and indicates that any behaviors invoked 
by call actions in that partition are the responsibility of the block or the block 
that types the part. The use of partitions to indicate which behaviors are the 
responsibilities of which blocks is an important communication mechanism 
to specify the functional requirements of a system or component defined by 
the block. 

   Activity partitions are depicted as rectangular symbols that physically encom-
pass the action symbols and other activity nodes within the partition. Each par-
tition symbol has a header containing the name string of the model element 
represented by the partition. In the case of a part or reference, the name string 
consists of the part or reference name followed by the type (block) name, sepa-
rated by a colon. In the case of a block, the name string simply consists of the 
block’s name. Partitions can be aligned horizontally or vertically to form rows or 
columns, or optionally can be represented by a combination of horizontal and 
vertical rows to form a grid pattern. An alternative representation for an activity 
partition for call actions is to include the name of the partition or partitions in 
parentheses inside the node above the action name. This can make the activity 
easier to lay out than when using the swimlane notation. 

    Figure 8.20    contains an example of partitions taken from the model of an 
ACME surveillance system. It shows how new intruder intelligence is analyzed 
and dealt with by the  security guard and the company security system within 
some overall system context. Once the security guard has received new intelli-
gence (signal  Intruder Intel ), he or she may need to address two concerns in 
parallel, so the token representing the signal is forked into two object fl ows. If the 
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intruder has moved, then a  Move Joystick action is performed to follow him or 
her. If the intruder is deemed to have moved out of range of the current camera, 
then a Select Camera activity is performed to select a more appropriate camera. 
In both cases, a fl ow fi nal node is used to handle the tokens referencing the signal 
data where no action is required. 

   The company security system stores the currently selected camera in a data 
store node. It uses this information when it reacts to joystick commands by send-
ing Pan Camera and Tilt Camera commands to the selected camera.  Security
guard and company security system are parts, as indicated by the name strings in 
the partition headers. Partitions themselves can have subpartitions that can repre-
sent further decomposition of the represented element. 

    Figure 8.21    shows the process for an  Operator ( security guard ) logging in to 
a Surveillance System ( company security system). The security guard enters his 
or her details that are read by the  User Interface, part of the  company security 
system, and validated by another part,  Controller, that then responds appropriately. 
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      Activity partitions.    
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The User Interface and the Controller are represented by nested partitions with 
company security system . In this case, the  security guard  and the  company secu-
rity system are themselves shown as nested partitions of a block representing the 
context for both the surveillance system and its users. 

   An allocate activity partition is a special type of partition that can be used to 
perform behavioral allocation, as described in Chapter 13. 

    8.9.2    Specifying an Activity in a Block Context 
   In SysML, activities can be owned by blocks in which case an instance of the own-
ing block executes the activity. For a block, an activity may either represent the 
implementation of some service, which is termed a method, or it may describe the 
behavior of the block over its lifetime, which is termed the classifier behavior or 
the main behavior. During execution of an activity, an instance of its owning block 
provides its execution context. The execution of the activity can access stored 
state information for the instance and has access to its queue of requests. 
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Read
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Data

Read User
Data

Respond with
Error
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[�3 Failures]
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System Context

[Logon Failed]

 FIGURE 8.21 

      Nested activity partitions.    
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    Activities as Block Behaviors 
   When an activity serves as a main behavior, parameters of the activity may be 
mapped to flow ports on the owning block. The mapped ports must be behav-
ior ports; that is, their inputs and/or outputs must be consumed and/or produced 
by the block behavior rather than being delegated to parts of the block. SysML 
does not explicitly say how flow ports are matched to parameters because there 
are many different approaches, depending on methodology and domain. An obvi-
ous strategy is to match parameters to ports based on at least type and direction, 
but where this still results in ambiguity, the names can also be used to confirm a 
match. Allocation can also be used to express the mapping. 

    Figure 8.22    shows a block called  Camera that describes the design for one of 
ACME’s surveillance cameras. It has four fl ow ports, three of which allow light to 
fl ow into the camera and video to fl ow out in either composite or MPEG4 format. 
The fourth allows confi guration data to be passed to the camera. It also has a stan-
dard (client/server) port with a provided interface that supports a set of control 
signals used to control the operation of the camera. The block behavior of the 
camera is the activity  Operate Camera that has appeared in a number of previous 
fi gures, most recently  Figure 8.16 . In Figure 8.22 , the parameters of the activity 
match the fl ow ports of the  Camera block in terms of their direction and type 
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mpeg out : MPEG4light in : Light
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ICameraSignals
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 FIGURE 8.22 

      A block with fl ow ports and a block behavior.    

8.9 Relating Activities to Blocks and Other Behaviors
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but not in all cases their names. However, in this case matching by type and direc-
tion is suffi cient to resolve any ambiguity. The parameters of  Operate Camera  can 
therefore be mapped one to one with the fl ow ports of  Camera.

   In  Figure 8.22 , there is no direct correspondence between the  control port on 
Camera and a parameter or parameters on its block behavior  Operate Camera . 
However, when an activity acts as the block behavior for a block, it can accept sig-
nals received through standard ports on the block. These signals can be accepted 
using an accept event action, and then used within the activity. 

    Figure 8.23    shows the specifi cation of the activity  Receive Test Messages that is 
invoked as part of  Produce Test Signal, as shown on  Figure 8.14 . Once the activ-
ity starts, it simply waits for a  Start Test Signal signal using an accept signal action, 
then a Stop Test Signal signal, and then repeats the sequence. The accept signal 
actions trigger value specifi cation actions via control fl ows that create the right 
Boolean value and these values are merged into a  test value output. Because 
Operate Camera executes  Receive Test Messages (albeit several levels deep in 
the activity hierarchy), the execution has access to signals received by the owning 
context that is, in this case, an instance of  Camera. The other two signals recog-
nized by the  control port in  Figure 8.22  are  Shutdown and Start Up, whose use is 
shown in  Figure 8.16 .

    Activities as Methods 
   When used as a method, an activity needs to have the same signature (i.e., same 
parameter names, types, multiplicities, and directions) as the associated service 
definition, called in SysML a behavioral feature. There are two types of behavio-
ral feature. An operation supports synchronous requests (i.e., the requester waits 
for a response) and asynchronous requests (i.e., the requester does not wait for 
a response). A reception only supports asynchronous requests. A reception indi-
cates that the object can receive signals of a particular kind, as the result of a 

test value:
Boolean

Start Test Signal

Stop Test Signal

«valueSpecification»
true

«valueSpecification»
false

act [Activity] Receive Test Messages

 FIGURE 8.23 

      Using signals to control activity fl ow.    
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send signal action (see Section 8.7). A method is invoked when the owning block 
instance (object) consumes a request for its associated behavioral feature. The activ-
ity executes until it reaches an activity final node, when the service is deemed to 
be handled, and if the request is synchronous, any output arguments are passed 
back to the initiator of the request. 

   SysML has a specifi c action to invoke methods via operations, called a  call
operation action. This has pins matching the parameters of the operation, and 
one additional input pin used to represent the target. When the action is exe-
cuted, it sends a request to the target object that handles the request by invoking 
the method for the feature, passing it the input arguments, and passing back any 
output arguments. 

   If an activity invoked as the result of a call operation action has streaming 
parameters, then the pins of the call operation action may consume and pro-
duce tokens during execution of the activity. However, in a typical client/server 
approach to system design, all parameters are nonstreaming to fi t more easily into 
a client/server paradigm. 

    Figure 8.24    shows the  Surveillance System block with one of its ports, called 
status. The status port provides an interface  Camera Status that includes an 
operation called  get camera status as shown, with an input parameter called 
camera id and an output parameter called  camera status. The activity Handle
Status Request, shown originally in  Figure 8.10 , is designated to be the method 
of get camera status, so it has the same parameters. A call operation action for 
get camera status will result in the invocation of  Handle Status Request with 
an argument for  camera id, and it will expect a response on  camera status. A 
call operation action for  get camera status is shown, with pins corresponding to 
the two parameters and also a pin to identify the  target; that is, the  Surveillance 
System to which the request must be sent.   

status

Camera
Status

act Handle Status Request

camera id : Integer camera status : String

Method OwnsDefines

«interface»
Camera Status

+get camera status (in camera id : Integer, 
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target:
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 FIGURE 8.24 

      A block with behavioral features and associated methods.    
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    8.9.3    Relationship between Activities and Other Behaviors 
   SysML has a generic concept of behavior that provides a common underlying base 
for its three specific behavioral formalisms: activities, state machines, and interac-
tions. This provides flexibility to select the preferred behavioral formalism for the 
modeling task. For example, a call behavior action or call operation action in an 
activity can be used to invoke any type of behavior. However, the design and anal-
ysis method must further specify the semantics and/or constraints for a call action 
to call a state machine or an interaction from an activity since this is not currently 
fully specified. We expect future versions of SysML, and perhaps domain-specific 
extensions, to provide more precise semantics. 

   State machines use the general SysML concept of behavior to describe what 
happens when a block is in certain states and when it transitions between states. 
In practice, activities are often used to describe these behaviors as follows: 

      ■    What happens when a state machine enters a state (called an entry behavior). 
      ■    What happens when a state machine exits a state (called an exit behavior).  
      ■    What happens while a state machine is in a state (called a do activity).  
      ■    What happens when a state machine makes a transition between states 

(called a transition effect).    

   State machines are discussed in Chapter 10.   

    8.10     Modeling Activity Hierarchies Using Block 
Defi nition Diagrams 

   Activities can be represented as hierarchies in a very similar way to blocks using 
a block definition diagram. When represented this way, the  activity hierarchies  
resemble traditional functional decomposition hierarchies. 

    8.10.1    Modeling Activity Invocation Using Composite Associations 
   Invocation of activities via call behavior actions is modeled using the standard com-
position association where the calling activity is shown at the black diamond end 
and the called activity is at the other end of the association. On a block definition 
diagram, activities are shown using a block symbol with the keyword «activity». The 
role name is the name of the call behavior action that performs the invocation. 

    Figure 8.25    shows the block defi nition diagram equivalent of the activity hier-
archy for  Generate Video Outputs, as described in        Figures 8.8 and 8.16 . The block 
defi nition diagram does not represent the fl ows on the activity diagram but can 
include the parameters and object nodes, as shown in  Figure 8.26   .

    8.10.2     Modeling Parameter and Other Object Nodes 
Using Associations 

   Parameters and other object nodes can also be represented on the block defini-
tion diagram. However, by convention, the relationship from activities to object 
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 FIGURE 8.25 

      An activity hierarchy modeled on a block defi nition diagram.    
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      Activity hierarchy with parameters.    

8.10 Modeling Activity Hierarchies Using Block Defi nition Diagrams
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nodes is represented with a reference association because the tokens contained 
within the object nodes are references to entities that are not  “ part ”  of the exe-
cuting activity, and they are not necessarily destroyed when the execution of the 
activity terminates. However, composition can be used when composition seman-
tics between the activity and the referenced objects apply. If the white diamond 
notation is used, then the activity is shown at the white diamond end and the 
object node type at the other end, and the role name at the part end is the name of 
the object node. Properties of the object node may be shown floating near the 
corresponding role name. 

    Figure 8.26  shows the hierarchy of activities for the  Capture Video activ-
ity, originally shown in  Figure 8.11 , including its own parameter nodes and the 
parameter nodes of its various subactivities. The data store,  current image, is also 
shown.   

    8.11    Enhanced Functional Flow Block Diagram 
   The Enhanced Functional Flow Block Diagram ( EFFBD) or variants of it have 
been widely used in systems engineering to represent behavior. A function in an 
EFFBD is analogous to an action in an activity. The EFFBD does not include the 
distinction between an invocation action and an activity. 

   Most of the functionality of an EFFBD can be represented as a constrained 
use of a SysML activity diagram. The constraints are documented in Annex C of 
the SysML specifi cation [1]. Using the keyword «effbd» in the diagram header of 
an activity indicates that the activity conforms to the EFFBD constraints. These 
constraints preclude the use of activity partitions and continuous and streaming 
fl ows, as well as many other features within activity diagrams. 

   Some EFFBD semantics are not explicitly addressed by the activity diagram. 
In particular, a function in an EFFBD can only be executed when all triggering 
inputs, the control input, and the specifi ed resources are available to the function. 
In addition, a  “ resource ”  is not an explicit construct in SysML but can be modeled 
using constraints. Triggering inputs in EFFBDs correspond to  “required inputs ” in 
activity diagrams, nontriggering inputs correspond to  “optional inputs, ” and con-
trol inputs correspond to control fl ow in activity diagrams. The detailed mapping 
between EFFBD and activity diagrams, along with an example of the mapping in 
use, is described in Bock [33].  

    8.12    Executing Activities 
   Models can be used to specify systems, as discussed in Chapter 2. Often these 
models are used simply to facilitate communication among project teams; but 
sometimes models are intended to be interpreted by machines or computer pro-
grams to simulate the system. This latter category of model is often called an 
executable specification because it contains all the information necessary for a 
machine to  “ execute. ”  The construction of executable specifications imposes a 
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burden of completeness on the modeler, but it also requires the modeling formal-
ism (SysML in this case) to have semantics defined precisely enough to allow exe-
cution of the model. This section describes how SysML supports the execution 
semantics of activities in the context of existing technologies. 

   To execute activities, the details of the processing must be specifi ed, such as 
the transformation of property values, using mathematical operations. SysML has 
a set of primitive actions that support basic object manipulation such as creation, 
deletion, access to properties, object communication, and others; some of them 
have already been described in this chapter. This section describes some of the 
primitive actions and their intended use. 

   SysML further depends on other executable formalisms for its execution 
semantics, either to provide an executable defi nition of its own primitives or as 
direct expressions of functionality defi ned in so-called  “opaque” constructs. These 
executable formalisms are normally accompanied by technologies for performing 
executions, as discussed in Chapter 17. 

    8.12.1   Primitive Actions 
   SysML includes a set of actions and a precise, although informal, definition of 
them. Some of these actions have been described previously in this chapter: 

      ■    Accept event actions respond to events in the environment of the activity. 
      ■    Send signal actions support communication between executing behaviors 

using messages. 
      ■    Call actions allow an activity to trigger the invocation of another behavior 

and to provide it with inputs and receive outputs from it.    

   In addition, there are a number of actions that have a more localized effect, 
such as updating properties and creating or destroying objects. These actions can 
be broadly categorized as: 

      ■    Object access actions allow properties of blocks and the variables of activi-
ties to be accessed. 

      ■    Object update actions allow those same elements to be updated or added to. 
      ■    Object manipulation actions allow objects themselves to be created or 

destroyed. 
      ■    Value actions allow the specifi cation of values.    

   Note that the set of actions in SysML does not include fundamental operations 
such as mathematical operators. These have to be provided as libraries of opaque 
behaviors, or more likely function behaviors, suitable for the domain. 

   Primitive actions do have a corresponding notation, although because they are so 
low level, it is often a very painstaking job to construct activities from them using 
graphical notation. The intention behind their inclusion in SysML is that different 
textual notations for specifying processing would be mapped to these primitive 
actions and a tool would translate the textual notation to actions. To date there 
is no standard textual notation, but  Figure 8.27    shows an example of how such a 
translation to actions might appear. 

8.12 Executing Activities
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    Figure 8.27  shows an alternate representation of the expression  count       �       
count       �   1 in the algorithm in  Figure 8.12 , but using primitive actions instead of 
an opaque action. The resulting activity fragment fi rst has to execute a read self 
action to obtain a reference to itself so that it can access its own internal struc-
tural features properties. The resulting object is passed to a read structural feature 
action that accesses the count property of the executing activity. The value of the 
count property is then passed to a call of the  Binary Add function behavior. The 
other input is provided by a value specifi cation action that outputs the value 1. 
The result of  Binary Add is then offered to an add structural feature value action 
that uses the identity of the activity, obtained from the read self action, to update 
its count property. Needless to say, most modelers prefer the short form! 

    8.12.2    Executing Continuous Activities 
   Where a model is used as a blueprint for a system, it is expected that continu-
ous activities will be implemented by physical devices such as motors, sensors, or 
humans. In this case the specification of the activity may be a set of equations, or it 
may simply be allocated to some component that is already known to provide the 
appropriate behavior. 

   However, sometimes it is important to simulate these continuous activities 
prior to building the system itself. There are simulation systems that can take 
physical equations and use those to construct a simulation of the implied system. 
Alternatively, there are other simulation systems that execute discrete activities 
at different execution rates, in the expectation that a suffi ciently fast rate will 
approximate the continuous behavior to serve the purposes of the modeler. 
These technologies impose restrictions on the constructs that can be used in the 

«addStructuralFeatureValue»
count

«readStructuralFeature»
count

«valueSpecification»
1 : Binary Add«readSelf»

 FIGURE 8.27 

      Example of primitive actions.    
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activity’s defi nition (no token buffering, for example) and have their own special-
ized libraries of functions that need to be integrated into the model. 

   Invariably, the use of technologies to simulate continuous activities requires 
additional constructs and semantics that have to be provided using a profi le. More 
information on profi les can be found in Chapter 14.   

    8.13   Summary 
   The concepts for flow-based behavior are based on activities, which are repre-
sented on both the activity diagram and the block definition diagram. 

■    An activity represents a controlled sequence of actions that transform its inputs 
to its outputs. The inputs and outputs of an activity are called parameters. 

■    Activities are composed of actions that represent the leaf level of behavior. An 
action consumes input tokens and produces output tokens via its pins. 

■    Actions are connected by flows. There are two types of flow: 

      –   Object fl ows route object tokens between the input and output pins of 
actions. On occasion, the fl owing tokens may need to be queued or stored 
for later processing. The input and output pins on actions can queue tokens 
along with specialized nodes capable of storing tokens. Depending on the 
domain, fl ows may be identifi ed as continuous, which is particularly useful 
for describing physical processes. 

      –   Control fl ows transfer control from one action to other actions using control 
tokens.    

■    Where the routing of flows is complex, intermediate constructs called control 
nodes, including join, fork, decision, and merge, allow flows to be split and 
merged in various ways. There are also specialized control nodes that describe 
what happens when an action starts and stops, called the initial node, activity 
final node, and flow final node, respectively. 

■    Actions come in many different categories from primitive actions, such as updating 
variables, to the invocation of entire behaviors. 

      –   Call actions are an important category of action because they allow one activ-
ity to invoke the execution of another (or in principle any type of behavior). 
The pins of call actions correspond to the parameters of the called entity. A call 
behavior action allows an activity to include the execution of another activity as 
part of its processing. A call operation action allows an activity to make a serv-
ice request on another object that can trigger the execution of some activity to 
handle the request. Oper ation calls make use of the dispatching mechanism of 
SysML blocks to decouple the caller from knowledge of the invoked behavior. 

      –   Send signal actions and accept event actions allow the activity to communi-
cate via signals rather than just through its parameters. When the activity is 
executing in the content of a block, the activity can accept signals sent either 
to the block or sent directly to the activity.    

8.13 Summary



212 CHAPTER 8 Modeling Flow-Based Behavior with Activities

■    Activity partitions provide the capability to assign responsibility for actions in 
an activity diagram to blocks or parts that the partitions represent. 

■    Block definition diagrams are used to describe the hierarchical relationship 
between activities, and the relationship of activities to their inputs and outputs. 
As such, only a limited form of the block definition diagram is used. The use of 
a block definition diagram for this purpose is similar to a traditional functional 
hierarchy diagram. 

■    Activity diagrams can be used to describe Enhanced Functional Flow Block 
Diagrams (EFFBDs), although special constraints on the semantics of activities 
must be imposed to ensure compliance with them. 

■    Activities may be described as stand-alone behaviors independent of any structure, 
but they often exist as the main behavior of a block. Activities within a block often 
communicate using signals, accepting signals that arrive at the block boundary 
and sending signals to other blocks. The parameters of a main behavior may also 
be mapped directly to the flow ports of its parent block. In this case flows to and 
from activity parameter nodes are routed directly through the flow ports. 

■    An activity can also be used to implement the response to a service request, 
where the arguments of the request are mapped to the activity’s parameters. 
As described in Chapter 10, activities are often used to describe the processing 
that occurs when a block is transitioning between states and what the block 
does while in a particular state.  

    8.14    Questions 
1.   What is the diagram kind of the activity diagram?

     2.   How are an action and its pins typically represented on an activity diagram?  
  3.   What does action a1 in  Figure 8.3  require to start executing?  
  4.   How are the parameters of activities shown on activity diagrams?  

     5.   What is the difference in semantics between a streaming and nonstreaming 
parameter?  

  6.   How are parameters with a lower-multiplicity bound of 0 identifi ed on an 
activity diagram?  

     7.   Draw an activity diagram for an activity  “Pump Water, ” which has a stream-
ing input parameter  “w in ” typed by block  “ Water ”  and a streaming output 
parameter  “ w out, ”  also typed by  “ Water. ”   

     8.   How are the set of pins for a call behavior action determined? 
     9.   What is an object fl ow used for and how is it represented?  
    10.   How does the behavior of a join node differ from that of a merge node?  
    11.   How does the behavior of a fork node differ from that of a decision node? 
    12.   What are parameter sets used for and how are they represented, both in the 

defi nition and invocation of an activity?  
    13.    Figure 8.10  only shows the object fl ows between the call behavior actions. 

What else does it need in order to perform as the method for the  get camera 
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request in  Figure 8.24 ? Draw a revised version of  Figure 8.10  with suitable 
additions. 

    14.   What is the difference between a data store node and a central buffer node? 
    15.   What is the difference in behavior between a fl ow fi nal and an activity fi nal 

node?
    16.   How is an initial node represented on an activity diagram, and what sort of 

fl ows can be connected to it? 
    17.   What special capability does a control operator have? 
    18.   An action  “pump” invokes the activity  “Pump Water ” from Question 7, and 

can be enabled and disabled by the output of a control operator. What addi-
tional features does  “pump” need in order to enable this? 

    19.   Another action  “controller ” calls a control operator called  “Control Pump ”
with a single output parameter of type  “Control Value. ” Draw an activity dia-
gram to show how the actions  “pump” and  “controller ” need to be connected 
in order for  “controller ” to control the behavior of   “pump. ”  

    20.   Name three kinds of event that can be accepted by an accept event action. 
    21.   How can an interruptible region be exited? 
    22. What does a fl ow rate of  “25 per second ” on an activity edge indicate about 

the fl ow of tokens along that edge? 
    23.   How would a modeler indicate that new tokens fl owing into a full object 

node should replace tokens that already exist in the object node? 
    24.   If a call behavior action is placed in an activity partition representing a block, 

what does this say about the relationship between the block and the called 
behavior?

    25.   Name the two different roles that an activity can play when owned by a block.   
   26. Describe the four ways in which activities can be used as part of state 

machines. 

    Discussion Topic 
   Discuss the various ways that activities with continuous flows may be executed. 

       

8.14 Questions
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   This chapter discusses the use of sequence diagrams to model how parts of a 
block interact by exchanging messages. 

    9.1   Overview 
   In Chapter 8, behavior was modeled in terms of activity diagrams to represent a 
controlled sequence of actions that transform inputs to outputs. In this chapter, 
an alternative approach to representing behavior is introduced; it uses sequence 
diagrams to represent the  interaction between structural elements of a block as 
a sequence of message exchanges. The interaction can be between the system 
and its environment or between the components of a system at any level of a sys-
tem hierarchy. A message can represent the invocation of a service on a system 
component or the sending of a signal. 

   This representation of behavior is useful when modeling service-oriented con-
cepts, where one part of a system requests services of another part. A service-
oriented approach can be useful for representing discrete interactions between 
software components, where one software component requests a service of another 
and where the service is specifi ed as a set of operations. However, the sequence dia-
gram is in no way limited to modeling interactions between software components 
and has found broad application in modeling system-level behaviors as well. An 
interaction can be written as a specifi cation of how parts of a system should inter-
act, but it can also be used as a record of how the parts of a system did interact. 

   The structural elements of a block are represented by lifelines on a sequence 
diagram. The sequence diagram describes the interaction between these lifelines 
as an ordered series of different types of events that can correspond to the send-
ing and receiving of messages, the creation and destruction of objects, or the start 
and end of behavior executions. 

   Many of the events described earlier are associated with the exchange of mes-
sages between instances represented by lifelines. There are many different types 
of messages, including both synchronous messages where the sender waits for a 
response, and asynchronous messages where the sender continues without waiting

                          Modeling Message-Based 
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for a response. A sending event marks when the message is sent by the sending 
instance, and a receiving event marks when the message is received by the receiv-
ing instance. On reception of a message, the receiving instance may start the exe-
cution of a behavior that implements the operation or signal reception referenced 
in the message. The receipt of a message may also trigger the creation or destruc-
tion of the instance represented by the receiving lifeline. 

   To model more complex event ordering than simple sequences, interactions 
can include specialized constructs called combined fragments. A combined frag-
ment has an operator and a set of operands, which themselves may contain inter-
action fragments such as messages or more combined fragments, thus forming a 
tree. There are a number of operators that provide different options such as paral-
lel, alternative, and iterative ordering of their operands. 

   Interactions themselves can also be composed to handle large scenarios or to 
allow reuse of common interaction patterns. An interaction may reference another 
interaction to abstract away the detail of some part of the interaction between mul-
tiple lifelines, or to reference an interaction between the parts of a particular lifeline. 

   An interaction executes in the context of an instance of its owning block, each 
lifeline in the interaction represents a single instance that is part of that instance. 
As behaviors execute on these instances, events occur as they send and receive 
requests corresponding to operation calls and signals, and also as they start and end 
their execution. The sequence of event occurrences for a given scenario of inter-
est, in this case the lifetime of the interaction, is called a trace. A trace is valid if the 
event occurrences are consistent with the event ordering defi ned by the interaction. 

    9.2    The Sequence Diagram 
  A given  sequence diagram represents an interaction. The frame label for a 
sequence diagram has the following form:

   sd  [Interaction] interaction name [diagram name]  

   The diagram kind for a sequence diagram is always  sd. Sequence diagrams can 
only describe interactions, and therefore the model element type (Interaction) 
does not need to be shown in the diagram header. The  interaction name  is the 
name of the represented interaction, and the  diagram name  is user defined and 
may be used to describe the purpose of the diagram. 

    Figure 9.1    shows a sequence diagram with examples of many of the symbols. 
It shows an interaction between an operator and the surveillance system during 
the handling of an intruder alert. The notation for the sequence diagram is shown 
in detail in the Appendix, Tables A.15 through A.17.  

    9.3 The Context for Interactions 
   Interactions take place in the context of a block between elements of its internal 
structure.  Figure 9.2    shows an internal block diagram of the  System Context block 
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that contains all the significant participants in the interactions that are included in 
the figures in this chapter. 

    Figure 9.2  features an internal block diagram of a block called  System Context , 
which is the context for a specifi c  Surveillance System called company security 
system. In addition to the company security system, the context contains other 
parts including a  Regional HQ, a set of Perimeter Sensors, an Alarm System, and 
a security guard, which may correspond to a number of physical actors. The dia-
gram also shows the internal parts of the  regional HQ and the company security 
system whose behavior is specifi ed in the following interactions. The interaction 

sd Handling Alert

opt

alt

company security system : Surveillance Systemsecurity guard[Elvis] : Advanced Operator

Intruder Alert(sensor id)
Raise Alarm()

Lost Track

Cancel Alarm()

Auto Track()

Pan Camera(strength)

Tilt Camera(strength)

Cancel Alert()

Illegal Entry Detected(id � sensor id)

loop par

{automatic mode
required}

{manual mode
required}

{lost contact}

 FIGURE 9.1 

      An example sequence diagram.    

9.3 The Context for Interactions
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lifelines can also represent reference properties, but this does not affect the nota-
tion or the semantics of the interaction. There are no lifelines that represent refer-
ence properties in the examples in this chapter.  

    9.4   Using Lifelines to Represent Participants in an Interaction 
   The principal structural feature of an interaction is the  lifeline. A lifeline repre-
sents the relevant lifetime of a member of the interaction’s owning block, which 
will be either a part property or a reference property, as described in Chapter 6.
As explained there, a part can be typed by an actor, which enables actors to par-
ticipate in interactions as well. However, since an actor cannot support opera-
tions, there are restrictions on its use. To avoid this restriction, an actor may 
be allocated to a block that is used to type the part. Lifelines can also represent 
standard ports, but because ports typically just relay messages they rarely contrib-
ute much to the understanding of an interaction. 

   When an interaction executes in an instance of its owning block, each life-
line denotes an instance of some part of the block (see Chapter 6 for a defi nition 
of block semantics). Thus, when the lifeline represents a member with multiplic-
ity greater than 1, an additional  selector expression can be used to explicitly 
identify one instance. Otherwise, the lifeline is taken to represent an arbitrarily 
selected instance. The selector expression can take many forms depending on 
how instances are identifi ed in this part. For example, it may be an index into an 
ordered collection, or a specifi c value of some attribute of the part’s block, or a 
more informal statement of identity. 

regional HQ : Command Center

: Alarm System

ibd [Block] System Context

alarm controller : Control System

: Emergency Comms System

internal PA : PA System

: Perimeter Sensor [1..*]

security guard : Advanced Operator [1..*]

company security system : Surveillance System

: Monitoring Station

user interface : UI

: Camera [1..*]

 FIGURE 9.2 

      Internal block diagram of the interaction context.    
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   A lifeline is shown using a rectangle (the head) with a dashed line descending 
from its base (the tail). The rectangle contains the name and type (if applicable) of 
the represented member, separated by a colon. The selector expression, if present, 
is shown in square brackets after the name. The head may indicate the kind of 
model element it represents using a special shape or icon. 

    Figure 9.3    shows a simple sequence diagram with a diagram frame and two 
lifelines. One represents the  Surveillance System under consideration, called  com-
pany security system, and the other lifeline represents an  Advanced Operator,
called security guard. Because, the  security guard from  Figure 9.2  has an upper 
bound greater than 1, the lifeline also contains a  selector called Elvis to specify 
exactly which instance is interacting. The  security guard is shown with a small 
actor icon to indicate that it is a user of the Surveillance System.

    9.4.1   Events and Occurrences 
   A lifeline is related to an ordered list of  events that describes things that happen 
to the instance represented by the lifeline during the interaction. (Actually the 
lifeline features occurrence specifications that reference events, but to simplify 
the description, we refer to the conflated concept as an event.) During execution 
of the interaction, instances of events (called  occurrences) are compared to the 
events expected on the lifeline. 

   Different types of events describe different types of occurrences. Three cat-
egories of events are relevant to interactions: 

      ■    The sending and receiving of messages 
      ■    The start and completion of execution of actions and behaviors 
      ■    Creation and destruction of instances    

   Constructs like messages and interaction operators, described later in this 
chapter, provide further order and structure to these occurrences. When an inter-
action is executed to validate an ordered set of occurrences in time, called a  trace  
the order and structure of these events is used to determine whether the trace is 
valid.   

sd Camera Control [Lifelines]

company security system : Surveillance Systemsecurity guard[Elvis] : Advanced Operator

 FIGURE 9.3 

      An interaction with lifelines.    

9.4 Using Lifelines to Represent Participants in an Interaction
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    9.5    Exchanging Messages between Lifelines 
    Messages can be exchanged between lifelines to achieve interactions. A message 
can be sent from a lifeline to itself to represent a message that is internal to a part. 

   A message often represents an invocation or request for service from the send-
ing lifeline to the receiving lifeline, or the sending of a signal from the sending life-
line to the receiving lifeline. A message is shown on a sequence diagram as a line 
with different arrow heads and annotations depending on the type of message. 

   Messages are sent by behaviors that are executing on the lifeline, or more pre-
cisely, invocation actions, such as send signal or call operation actions, within 
those behaviors. (See Chapter 8 for more information on invocation actions.) 
Receipt of a message by a lifeline often triggers the execution of a behavior, but 
may simply be accepted by a currently executing behavior. Note that there may 
be a delay between a message being received and handled. The execution of 
behaviors is shown by solid bars drawn on top of the lifeline tails. When the exe-
cution is nested, the bars may also be nested. 

   Although typically messages are used to model information passed between 
computer systems and their users, they may also indicate the passage of material or 
energy. An interaction in a radar-tracking system might represent the detection of a 
target and the response to that detection. In a production system, the request for man-
ufacture of a car and the subsequent delivery of that car to a dealer might be modeled 
as an interaction between the dealer and the manufacturer, as shown in  Figure 9.4   .

    9.5.1    Synchronous and Asynchronous Messages 
   The two basic types of messages are asynchronous and synchronous. A sender 
of an asynchronous message continues to execute immediately after sending the 
message, whereas a sender of a synchronous message waits until it receives a 
reply from the receiver that it has completed its processing of the message before 
continuing execution. 

   Asynchronous messages correspond to either the sending of a signal or to an 
asynchronous invocation (or call) of an operation. A signal is a defi nition of messages 
passed asynchronously between objects. Signals are handled by receptions that are 

sd Ordering an Automobile

: Manufacturing Plant

Automobile Delivered

Order("GSX")

: Dealer

 FIGURE 9.4 

      A simple example of message exchange.    
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part of the defi nition of a block or interface. A synchronous message corresponds 
to the synchronous invocation of an operation. In this case, the reply to the
sender is indicated using a separate (optional) message from the receiver back to the 
sender. See Chapter 6 for a description of the behavioral features of blocks. 

   Call and send messages can include arguments that correspond to the input 
parameters of the associated operation or attributes of the associated send signal. 
Arguments can be literal values, such as numbers or strings; attributes of the part 
represented by the lifeline; or parameters of the currently executing behavior. A 
reply message can include arguments that correspond to output parameters or 
the return value of the operation called. When an operation returns a value, the 
features to which the output parameters and return value is assigned can be indi-
cated. A feature can either be an attribute of the receiving lifeline or a local attri-
bute or parameter of the receiver’s current execution. 

   The actual sending of a message implies two occurrences: One is related to a 
send message event that happens to the instance corresponding to the send-
ing lifeline; the other is related to a  receive message event that happens to the 
instance corresponding to the receiving lifeline. As one might expect, the sending 
occurrence has to happen before the receiving occurrence. 

   Messages are represented by arrows between lifelines. The nonarrow (tail) 
end represents the occurrence corresponding to the sending of the message, and 
the arrow end represents the occurrence corresponding to the receipt of the 
message. The shape of the arrowhead and the line style of the arrow line indicate 
the nature of the message as follows: 

   ■ An open arrowhead means an  asynchronous message. Input arguments asso-
ciated with the message are shown in parentheses, as a comma-separated list, 
after the message name. The operation parameter or signal attribute name may 
be shown followed by an equal sign before an argument. If this notation is not 
used, then all the input arguments must be listed in the appropriate order. 

   ■  A closed arrowhead means a  synchronous message. The notation for 
arguments is the same as for asynchronous messages. 

   ■  An open arrowhead on a dashed line shows a  reply message. Output argu-
ments associated with the message are shown in parentheses after the mes-
sage name, and the return value, if any, is shown after the argument list. The 
feature to which the return value is assigned is shown before the message 
name, followed by an equal sign. As with input arguments, output argu-
ments can be preceded by their corresponding parameter followed by an 
equal sign. In the rare case that both the parameter name and assigned fea-
ture are required, then the following syntax is used:

feature name      �     parameter name: argument

    Figure 9.5    shows a sequence of messages exchanged between the two lifelines 
introduced in  Figure 9.3 . The  security guard fi rst selects camera  “CCC1” to inter-
act with. After the  company security system returns control and stores the guard’s 
selection, he gets that camera’s current status, which is  “OK. ”  The  company security

9.5 Exchanging Messages between Lifelines
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system obtains the status from the selected camera by issuing a subsidiary  get sta-
tus request. The  security guard wishes to move the camera a little, so he or she 
gives a  pan camera order (probably via a joystick), and without waiting for the 
camera to complete the move, asks for the status again, which this time is  “ Moving. ”   

    9.5.2    Lost and Found Messages 
   Normally message exchange is deemed complete; that is, it has both a sending 
and receiving event. However, it is also possible to describe lost messages, where 
there is no receiving event, and found messages, where there is no sending event. 
This capability is useful, for example, to model message traffic across an unreli-
able network and to model how message loss affects the interaction. 

   The notation for lost messages is an arrow with the tail on a lifeline and the head 
attached to a small black circle. The notation for found messages is the reverse—the 
tail of the arrow attached to a small black circle and the head attached to a lifeline. 
An example can be seen in this book’s Appendix. 

    9.5.3    Weak Sequencing 
   An interaction imposes the most basic form of order on the messages and occur-
rences that it contains, called  weak sequencing. Weak sequencing means that 

get current status()

get current status()

pan camera(strength � 2)

select camera(camera id � "CCC1")

get status():"OK"

get status():"Moving"
get current status():"Moving"

get status
(camera id � "CCC1")

get status
(camera id � "CCC1")

get current status():"OK"

sd Camera Control [Simple Sequence]

company security system : Surveillance Systemsecurity guard [Elvis] : Advanced Operator

 FIGURE 9.5 

      Synchronous and asynchronous messages exchanged between lifelines.    



223

the ordering of occurrences on a lifeline must be followed, but other than the 
constraint that message receive occurrences are ordered after message send 
occurrences, there is no ordering between occurrences on different lifelines. 

   The messages on the sequence diagram in  Figure 9.6    impose an order on 
send and receive occurrences; for example,  A.send happens before  A.receive and 
B.send happens before  B.receive. Lifelines also impose an order on occurrences, 
so lifeline 3 states that A.receive happens before  B.send. However, nothing is said 
about the ordering of  B.send and D.send. Note also that it is not the messages 
that are sequenced but their send and receive occurrences. For example,  B.send  
happens before  C.send but B.receive happens after C.receive. This phenomenon 
is sometimes referred to as  message overtaking and is dealt with in more detail 
in Section 9.6. 

    9.5.4   Executions 
   The arrival of a message at a lifeline may trigger the  execution of a behavior in 
the receiver. In this case the receiving lifeline executes the behavior (called the 
method) for the operation or reception that the message represents. Alternatively, 
the message arrival may simply trigger an executing behavior, for example, a state 
machine or activity to execute some additional actions. The arguments contained 
in a call or send message are passed to the behavior that handles it. If and when 
a reply message is sent, the output arguments are provided to the execution that 
sent the corresponding synchronous call message. 

   Lifelines can send messages to themselves. If the message is synchronous, it may 
cause a new execution to be started, nested within the current execution. 

   Lifelines are hosts to executions, either of single actions or entire behaviors. 
The extent to which executions are modeled is down to the modeler. Typically 
execution-start events are coincident with a message-receipt event, but do not 
have to be in all cases (i.e., the execution can occur later due to message schedul-
ing delays). When an execution is triggered by the receipt of a synchronous mes-
sage, its end event may be coincident with the sending of a reply message. 

lifeline 2 lifeline 3lifeline 1 lifeline 4

A

F

D

C
B

E

 FIGURE 9.6 

      Explanation of weak sequencing.    

9.5 Exchanging Messages between Lifelines
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    Focus of control bars or activations are overlaid on lifelines and cor-
respond to executions; they begin at the execution’s start event and end at the 
execution’s end event. When executions are nested, the focus of control bars are 
stacked from left to right. If an execution is triggered by the arrival of a message, 
the arrow is attached to the top of the activation. If an execution ends with the 
production of a reply message, then the tail of the reply arrow is attached to the 
bottom of the activation. An alternate notation for activations is a box symbol 
overlaid on the lifeline with the name of the behavior or action inside. 

    Figure 9.7    shows the same interaction as  Figure 9.5  but with activations added. 
The relevant behaviors and actions on the  company security system and security
guard lifelines are now explicit. The  select camera operation tells the  company 
security system to store a currently selected camera. In a change from  Figure 
9.5, the action executed to store the camera id,  current camera       �       camera id, is 
explicitly shown here using the box notation. The processing of  get current sta-
tus causes a new execution to start that is triggered by a  get status message with 
the previously stored camera id as an argument. This new execution ends with a 

get current status()

get current status()

pan camera(strength�"2")

select camera(camera id�"CCC1")

get status():"OK"

get status():"Moving"
get current status():"Moving"

get status
(current camera)

get status
(current camera)

get current status():"OK"

sd Camera Control [Simple Sequence with Activations]

company security system : Surveillance Systemsecurity guard [Elvis] : Advanced Operator

current camera�camera id

 FIGURE 9.7 

      Lifelines with activations.    
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status reply of   “ OK. ” After the  pan camera command, another get status message 
triggers a new execution that returns the result   “ Moving. ” The execution on the 
security guard’s lifeline continues throughout the interaction even while waiting 
for a response from the  company security system. There have been suggestions 
that a  “suspension” notation should be introduced to indicate when an execution 
is waiting but nothing has been standardized as yet. 

    9.5.5   Create and Destroy Messages 
   During an interaction, specialized message types, called  create messages and 
destroy messages, can be used to represent the creation and destruction of 
instances, which are represented by lifelines. These messages generally apply to 
the allocation and return of memory to execute software instances. However, this 
can also be used to add or remove a physical part of a system from a scenario. 

   The creation of an instance is indicated by a  creation occurrence and an 
instance’s destruction by a  destroy occurrence. Where they occur, they are, 
respectively, the fi rst and last occurrences on a lifeline. 

   The notation for a create message is a dashed line with an open arrow, termi-
nating on the header box of the lifeline being created; it is moved down in the 
sequence diagram to accommodate the notation. The dashed  “tail” of the lifeline is 
drawn as normal. The creation message name and input arguments are displayed 
in the same way as those of a call message. 

   The notation for a destroy message is a solid line with a fi lled arrow. Where 
the arrow terminates on the lifeline of the receiver, the lifeline ends with a cross 
symbol. 

   The sequence diagram in  Figure 9.8    shows how new routes are created and 
destroyed by a surveillance system. A  Route is a set of pan-and-tilt angle pairs that 
a surveillance camera follows when in an automated surveillance mode. In this 
case the user interface component communicates to the Monitoring Station to 
perform the route maintenance operations. First, the  user-interface calls the cre-
ate route service offered by the  Monitoring Station, which in turn creates a new 
route and returns a reference to the  user interface via the new route attribute. 
The user interface then interacts with this new route in order to add waypoints; 
fi nally, when the route is complete (only some of the waypoints are shown here), 
it uses the delete route service to delete  old route. Note that the execution of 
action verify waypoint  is shown using box notation.   

    9.6   Representing Time on a Sequence Diagram 
   In a sequence diagram, time progresses vertically down the diagram and, as stated 
earlier, events on a lifeline are correspondingly ordered. In addition, the send 
event and receive event for a single message are also ordered in time. However, 
particularly in distributed systems, a message may be overtaken by a subsequent 
message sent from the same lifeline; that is, the first message may arrive after 
receipt of the second message. Sequence diagrams allow this kind of situation to 

9.6 Representing Time on a Sequence Diagram
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be drawn using a downwards-slanting arrow between two lifelines, as shown in 
 Figure 9.9   .

   The sequence diagram in  Figure 9.9  shows what happens when an  Alert mes-
sage overtakes a regular  Status Report message. This may be because the  Status
Report message is queued waiting to be processed, or it may indicate a manual 
process for handling messages. Once the  Alert message has been received by the 
regional HQ, it defers handling of the  Status Report message until a  Stand Down  
message has been received. 

   In addition to relative ordering in time, time can be represented explicitly on 
sequence diagrams. A modeler can use a  time observation to note the time at 
some instant during the execution of the interaction, and a  duration observa-
tion to note the time taken between two instants during the execution of the 
interaction. A  time constraint and a duration constraint can use observations 
to express constraints involving the values of those observations. A time con-
straint identifi es a constraint that applies to a single event on the sequence dia-
gram. A duration constraint identifi es two events, called start and end events, and 
expresses a constraint on the duration between them. A duration constraint often 

sd Route Maintenance

: Monitoring Station

new route : Route

old route : Routeuser interface : UI

new route�create route()

create route()

delete route(r�old route)

verify waypoint(nwp)

verify waypoint(nwp)

add waypoint(nwp� (50,125))

add waypoint(nwp� (10,35))

 FIGURE 9.8 

      Create and destroy messages.    
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applies to any element, such as a message, deemed to have duration or an execu-
tion, in which case the constraint applies between the events that bracket the 
element’s duration. 

   SysML does not mandate a particular model of time. The expressions used in 
observations and time constraints may assume a single clock or may reference a 
more complex model of time with multiple clocks. 

   A time constraint is shown using a standard constraint expression in braces 
attached by a line to the constrained event. A duration constraint is shown by a 
double-headed arrow between the two constrained events with the constraint 
fl oating near it, also expressed in standard constraint notation (i.e., in braces). 
A duration constraint may also be shown as a standard constraint fl oating close 
to an element with duration, such as a message, or an interaction occurrence. 
Observations are shown in a similar way to constraints, but instead of an expres-
sion in braces, an observation has the name of the observation followed by an 
equal sign and then some expression indicating how the observation is taken. The 
actual language used to express observations and constraints, including default 
time units, and so on, must be stated as part of the observation or constraint. 

    Figure 9.10    shows a scenario where the  Monitoring Station is asked by the 
user interface to test the system’s cameras. The  Monitoring Station in turn 
requests each camera to perform a self-test and awaits the result. While wait-
ing for a response from each camera, the  controller component internal to the 
Monitoring Station needs to provide a progress indication to the  user interface , 
so it uses asynchronous messages to interleave communication. In this case the 

company security system : Surveillance
System regional HQ : Command Center

Alert

Stand Down

Status Ack

Status Report

sd Handling Surveillance Messages [Message Overtaking]

 FIGURE 9.9 

      Message overtaking scenario.    

9.6 Representing Time on a Sequence Diagram



228 CHAPTER 9 Modeling Message-Based Behavior with Interactions

communication between the  Monitoring Station and the cameras is over a net-
work, and the communication between the controller and the user interface is 
local. As a result of network delays, the  Monitoring Station receives the response 
from the camera after the progress message is sent. Note that although sloping 
lines are used here to indicate the passage of time, there is no formal semantic 
implication in the slope; the only timing implications are expressed using the time 
and duration constraints and the ordering of events. 

   Also, a number of observations and constraints on this interaction are 
expressed, in a time unit of seconds. A time observation,  t, is taken at the point 
when the fi rst self-test message is sent using the expression  t       �       now. A time con-
straint on the message receipt indicates that the time must be between 1 and 2 
seconds after t. The duration between sending and receipt of the fi rst self-test 
response message is observed via a duration observation  d, and there is a con-
straint on the second response message to not exceed 1.5 times the fi rst duration. 
The total time taken between the user interface requesting a test command and 
the completion of both camera self-tests should be between 5 and 10 seconds, as 
indicated by the duration constraint on the left of the diagram.  

: Monitoring Stationuser interface : UI [c2] : Camera[c1] : Camera

t � now

d � duration

{d..d*1.5}

{5
..1

0}

Test in Progress(1)
perform self test()

{t�1..t�2}

Test Complete(1, true)

perform self test()
Test in Progress(2)

Test Complete(2, true)

System OK

test cameras()

camera test complete
(OK � true)

camera test complete
(OK � true)

sd Successful Camera Test

 FIGURE 9.10 

      Representing time on a sequence diagram.    
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    9.7   Describing Complex Scenarios Using 
Combined Fragments 

   The most basic form of an interaction is, as stated earlier, a weak sequence of 
occurrences—broadly speaking, read from top to bottom of the sequence dia-
gram. However, more complex patterns of interaction are often needed and can 
be modeled using constructs called  combined fragments. Different combined 
fragments specify different rules for the ordering of messages and their associated 
occurrences such as parallel and alternative traces. 

   A combined fragment consists of an  interaction operator and its operands . 
The interaction operator defi nes the type of ordering logic, and its operands are 
all subject to that rule. Each operand has a  guard containing a constraint expres-
sion that indicates the conditions under which it is valid. Each guard is bound to 
a single lifeline and can only reference attributes of that lifeline in its constraint. 
The operands may themselves contain combined fragments, and thus can be com-
posed into a tree hierarchy. During execution of an interaction, all operands use 
weak sequencing semantics on their contents. 

   A combined fragment must specify which lifelines participate in the interac-
tion defi ned by the operands. Only the events on the participating lifelines are 
valid when considering the traces of the fragment. 

    9.7.1   Basic Interaction Operators 
   The following subset of interaction operators is used more frequently: 

■     Seq—weak sequencing, as described in Section 9.5.3. Weak sequencing is the 
default form of sequencing for all operands, so is rarely used explicitly. 

■     Par—an operator where operands can occur in parallel, each following weak 
sequencing rules. There is no implied order between occurrences in different 
operands. This operator has an alternate shorthand notation, when applied to 
a single lifeline called a  coregion, where instead of a frame the operands are 
bracketed by vertical square brackets. 

■     Alt/else—an operator where exactly one of its operands will be selected based 
on the value of its guard. The guard on each operand is evaluated before 
selection, and if the guard on one of the operands is valid, then that one is 
selected. If more than one operand has a valid guard then the selection is 
nondeterministic. An optional else fragment is valid only if none of the guards on 
the other operands are valid. A common situation is where the choice of operand 
is based on whether the next occurrence matches the first event in one of the 
operands. In this case there is no guard. 

■     Opt—a unary operator that is equivalent to an alt with only one operand. 
This implies that the operand is either executed or skipped depending on the 
validity of the guard. 

■     Loop—an operator where the trace represented by its operand repeats until 
its termination constraint is met. A loop may define lower and upper bounds 
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on the number of iterations as well as the guard expression. These bounds 
are documented in brackets after the loop keyword in the fragment label as: 
 “ (lower bound, upper bound), ” where the upper bound may have the value  “ * ”
indicating an infinite upper bound.    

   A combined fragment is shown using a frame whose label indicates the type of 
operator and potentially other information depending on the type of operator. 

    Alt and par operators have multiple horizontal partitions, separated by dashed 
lines, that correspond to their operands. Other operators have just a single par-
tition. Messages and possibly other combined fragments are nested within each 
operand. Where an operator has a single operand that is itself a combined frag-
ment, their frames can be merged into one, and the frame label for the merged 
frame is used to indicate all the contents such as  loop par.

   The frame symbol for the combined fragment must not obscure the lifelines 
that participate in its interaction, so the tails of the participating lifelines are vis-
ible on top of the frame. The frame does obscure the lifelines that do not partici-
pate in the fragment’s interaction. 

   In Figure 9.11   , lifelines 1 through 3 participate in the  opt fragment, but only 
lifelines 1 and 4 participate in the  loop fragment. So, to maintain the current lay-
out, lifelines 2 and 3 are obscured by the  loop frame to indicate that they do not 
participate. 

    Figure 9.12    shows what happens when an intruder is detected by the  com-
pany security system and tracked. The interaction is started when some lifeline 
external to this interaction detects a potentially illegal entry into the monitored 
areas. This triggers the system to alert the user (the  security guard) with the id 
of the sensor and raise the alarm. The  security guard then locates the sensor and 
attempts to fi nd and track the intruder and eventually (in this case) cancels the 
alert. 

loop

opt

msg 1

msg 2

msg 3

lifeline 2 lifeline 3lifeline 1 lifeline 4

 FIGURE 9.11 

      Example of overlapping and nonoverlapping lifelines.    
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   Within this sequence, the  alt operator indicates that the  security guard has a 
choice between using the system’s auto-track feature and manually tracking the 
intruder. In the automatic case, the system attempts to acquire and track a target. 
Failure to acquire a target, or loss of an acquired target, is indicated by a  Lost Track  
message. In the manual-tracking case, the  security guard uses an input device to 
repeatedly pan and tilt the cameras, as indicated by the  loop par fragment. 

   In all scenarios, the  security guard is responsible for canceling the alert, 
which prompts the  company security system to cancel the alarm. In this case 
the Raise Alarm and Cancel Alarm messages terminate at gates on the frame, 

sd Handling Alert

opt

alt

security guard [Elvis] : Advanced Operator

Intruder Alert (sensor id)

Raise Alarm()

Lost Track

Cancel Alarm()

Auto Track()

Pan Camera(strength)

Tilt Camera(strength)

Cancel Alert()

Illegal Entry Detected (id�sensor id)

loop par

company security system : Surveillance System

{manual mode
required}

{automatic mode
required}

{lost contact}

 FIGURE 9.12 

      Complex interaction described using interaction operators.    
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to interact with lifelines outside the current interaction (see Section 9.8 for a 
description of gates).  

    9.7.2    Additional Interaction Operators 
   The following are other interaction operators that are not as commonly used. 

■     Strict—like  “ seq ” except that the occurrences represented by its operands are 
sequenced in order across all participating lifelines. The strict rule does not 
apply to the operands of any nested combined fragments.  

■     Break—an operator whose operand is executed rather than the remainder 
of the enclosing fragment. This is often used to represent the handling of 
exceptional scenarios.  

■     Critical—an operator where the sequence of operands must take place with 
no interleaving of other occurrences, at least within the participating lifelines 
of the fragment. This may be used when some higher-level  par operator 
indicates that interleaving can occur, and this operator is used to constrain the 
interleaving. 

■     Neg—an operator where the traces described by its operand cannot occur.    

   There are cases in interaction modeling where covering all potential message 
occurrences is very onerous, such as a where there are a large number of occur-
rences related to messages that are not relevant to the scenario being described. 
For these cases, the following operators provide the ability to fi lter messages in 
their operand: 

     Consider—only consider messages for a specified set of operations and/or 
signals. All event occurrences corresponding to other messages are ignored; 
that is, they are not considered for validity. Only considered messages can 
appear in the operand.  

     Ignore—do not consider messages for a specified set of operations and/or signals. 
Event occurrences corresponding to ignore messages are not considered for 
validity. Ignored messages cannot appear in the operand.    

   Consider and ignore operators allow occurrences and messages that have 
been explicitly ignored (or not considered) to be interleaved with valid traces of 
their operand. The  assert operator provides a mechanism to assert that only the 
occurrences in its operand are valid, even if according to an enclosing consider or 
ignore fragment, ignored (not considered) events could occur. 

   The messages to be ignored or considered are shown in braces following the 
keyword in the fragment label. 

    Figure 9.13    describes the sequence of messages exchanged when the  com-
pany security system is communicating with the regional HQ in an emergency. 
There are always regular status updates and acknowledgments between any sur-
veillance system and the  regional HQ, but these are not of interest in this sce-
nario and so are ignored, as indicated by the ignore fragment. Alerts are only 
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going to happen while the surveillance system is on, so the  regional HQ can dis-
count any alerts apparently received when the system is off (although they may 
wish to investigate why they happened). However, when a valid  Alert message 
has been sent, there must be no other messages, including status messages, until 
a Stand Down message has been received. Given that status messages are being 
ignored, the only way to be explicit about their exclusion is to use an assert frag-
ment, making it explicit that no other messages will be sent between  Alert and 
Stand Down.

    9.7.3   State Invariants 
   It is often useful to augment the message-oriented expression of valid traces by 
adding constraints on the required state of a lifeline at a given point in a sequence 
of event occurrences. This can be achieved using a  state invariant on a lifeline. 
The invariant constraint can include the values of properties or parameters, or 
the state (of a state machine) that the lifeline is expected to be in. 

   The notation for state invariants is an expression in braces shown on top 
of the lifeline that is constrained. If the invariant specifi es the state of a state 
machine, then it is shown as a state symbol on the lifeline. 

    Figure 9.14    shows a scenario for shutting down the system. The state invariant 
on the security guard’s lifeline indicates that he or she has to be logged on for 

sd Emergency Communications

regional HQ : Command Center

System On

System Off

Alert

Stand Down

ignore {Status Report, Status Ack}

loop assert

company security system : Surveillance System

 FIGURE 9.13 

      Message-fi ltering scenario.    
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the Shutdown System message to be valid. The state invariant on the  company 
security system lifeline indicates, for a shutdown request to be valid, the number 
of users must be one; that is, there are no other users currently logged on. A valid 
trace ends with a  Shutdown Confi rmed  message reply to the  security guard.  

    9.8      Using Interaction References to Structure 
Complex Interactions 

   In most systems engineering projects, the size of systems and hence often the 
size of interactions becomes very large. There are also many patterns of interac-
tion, for example, initialization and shutdown, which are repeated many times as 
parts of different scenarios. 

   To support large-scale uses of interactions, any interaction may reference (the 
offi cial term is  interaction use) one or more existing interactions described on 
other sequence diagrams. Interactions can be nested such that one interaction 
can use an interaction that in turn uses still others. This capability signifi cantly 
enhances the scalability of interactions. It also facilitates reuse since an interac-
tion can be used by more than one interaction. The using interaction identifi es 
the participants in the used interaction. The interaction’s defi nition must have 
lifelines that represent all the identifi ed participants, but may include additional 
lifelines as well. 

   To allow messages to pass into and out of an interaction when it is being used 
by another, an interaction can have connection points, called  formal gates, at its 
boundary. There is a gate for every message that enters or leaves the interaction 
at its boundary. When the interaction is used, the using interaction has  actual
gates that correspond one-to-one with the formal gates of the used interaction.

{number of
users��1}

Shutdown Confirmed

Shutdown System

sd Shutdown System

company security system : Surveillance Systemsecurity guard [Elvis] : Advanced Operator

Logged On

 FIGURE 9.14 

      State invariants.    
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The messages arriving or leaving the actual gates must match those arriving 
or leaving at their corresponding gates in terms of direction, type, and cause 
(signal/operation). 

   In the defi nition of an interaction, messages can connect to the frame of the 
interaction. There is a formal gate at each connection point, although there is no 
symbol representing the gate itself. Gates can be named but the name is typically 
not shown. An example of such a defi nition appears in  Figure 9.12 .

   Interaction uses are shown as frames with the keyword  ref. The body of the 
frame contains the name of the used interaction. Messages that terminate/start at 
the boundary of the frame imply the presence of actual gates. Lifelines that partic-
ipate in the nested interaction are obscured by the frame symbol. Note that this 
is opposite of how participants are represented on combined fragments, where 
participants are not obscured. 

    Figure 9.15    shows an interaction that uses four other interactions, as indicated 
by  ref. The fi rst-used interaction describes the  company security system being set 
up by the  security guard. During the guard’s shift, one of two things are shown as 
potentially occurring. If things are quiet (normal status), the guard might perform 
some maintenance on the automated surveillance routes (the scenario in  Figure 9.8 ), 
or the guard and the system might handle an alert (the scenario from  Figure 9.12 ).
These two alternatives may occur repeatedly as indicated by the  loop alt fragment, 
until the guard shuts down the system. To use the  Handling Alert interaction, this 
interaction needs to attach compatible messages to all its gates. 

    9.9   Decomposing Lifelines to Represent Internal Behavior 
   A lifeline can represent a part that corresponds to a usage of a block for the speci-
fied interaction. The block can correspond to a system or component at any level 
of a system hierarchy. Each lifeline may be further decomposed based on the con-
stituent parts of the block. 

   A sequence diagram includes the provision to decompose the lifeline and 
further elaborate the interaction among its parts. If, for example, the lifeline 
represents a system, an interaction can be specifi ed between the system and its 
external environment. This is often referred to as a black-box interaction, where 
the internal behavior of the system is hidden and only external behavior is vis-
ible. The system lifeline can then be decomposed into its parts to specify a nested 
interaction that supports the black-box interaction. 

   The interaction among these parts is defi ned by a separate interaction that 
is used by the parent lifeline being decomposed. The used interaction includes 
gates that correspond to where it sends or receives its messages. The messages at 
the gates of this interaction must be compatible with the messages of the parent 
lifeline, and the message send and receive events must occur in the same order as 
on the parent lifeline. Only lifelines representing parts of the block that type the 
parent lifeline may appear in the used interaction. 

   The lifeline decomposition is shown by adding the name of the referenced 
interaction below the name of the lifeline, prefi xed by the keyword  ref. The same 
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loop alt

company security system
: Surveillance System

security guard{Elvis]
: Advanced Operator[gate1] : Perimeter Sensor

: Alarm System
ref During Alert

Shutdown System

Setup System

Handling Alert

ref

ref

sd End-to-End Scenario

Raise Alarm()

Cancel Alarm()

Route Maintenance

ref

ref

Illegal Entry
Detected (gate1)

{normal status}

{alert status}

 FIGURE 9.15 

      Reference to another interaction.    



237

name is used in the frame label of the referenced interaction. Gates are implied in 
the reference interaction by messages that start or terminate on its frame. 

    Figure 9.16    shows the decomposition of the black-box lifeline for the  Alarm
System from  Figure 9.15 . It shows how the  Alarm System handles alerts. When 
the alarm controller receives a  Raise Alarm message, it requests an announce-
ment on the internal PA, and then alerts all the registered emergency services 
through the  Emergency Comms System; it provides a  location and a passwor d 
to authenticate the alert. When the  Cancel Alarm message is received, the  alarm
controller requests another announcement and then sends a request to the emer-
gency services to stand down. At least one emergency service must be alerted, 
but the maximum number may depend on circumstances. 

   There is an alternative to using the reference sequence diagram for represent-
ing a nested interaction. This is accomplished by showing the lifeline with its 
nested parts on the same sequence diagram. This is depicted on the diagram by 
showing the black-box lifeline on top of the lifelines corresponding to the nested 
parts. The header boxes of the parts are attached to the underside of the parent 
lifeline’s header box. The nested lifelines can be used to show interactions that 
occur within the parent lifeline, or to send and receive messages directly to and 
from other external lifelines. 

alarm controller : Control System : Emergency Comms System internal PA : PA System

service � get next service()

loop (1,*)

loop (1,*)

sd During Alert

Announce(message � "alertmsg", repeat � "true")

Alert(location, password, service)

Announce(message � "standownmsg", repeat � "false")

Standown(location, password,
service)

Raise Alarm()

Cancel Alarm()

service � get next service()

{more services}

{more services}

 FIGURE 9.16 

      A decomposed lifeline.    
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    Figure 9.17    shows a white-box view of what happens when the  security guard  
wishes to log in to the company security system. The two signifi cant parts of the 
company security system—the user interface and the Monitoring Station—are 
shown underneath the lifeline of the  company security system. In this scenario 
a login message is received by the  user interface and requests the  Monitoring
Station—to verify it. The  user interface then checks that the maximum number 
of logins has not been exceeded and returns control to the  security guard.

    9.10    Summary 
   Sequence diagrams describe interactions used to capture system scenarios as a set 
of message exchanges between lifelines. An interaction is specified as an ordered 
sequence of events that result from the execution of behaviors by parts of the 
owning block represented by the lifelines. The most significant source of events 
is the exchange of messages between lifelines that may trigger executions and the 
creation of new instances in the system. The following list highlights key aspects 
of interactions. 

■     Lifelines represent parts (or references to parts) of the block that owns the 
interaction. During execution, a lifeline may represent only one instance; 
so where the part has an upper bound greater than 1, an additional selector 
expression is required to specify exactly one of the instances represented 
by the part. Lifelines may run from top to bottom of the sequence diagram 
indicating that the parts they represent exist before and after the execution of 

sd Logging In

security guard[Elvis] : Advanced
Operator

: Monitoring Stationuser interface : UI

login():"OK"

check capacity()

verify login details():true

check capacity():3

login("Fred Bloggs", "Squirrel007")
verify login details
(user name, pwd)

company security system : Surveillance System

{capacity�4}

 FIGURE 9.17 

      Inline nesting of lifeline decomposition.    
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the interaction. They also may start and/or end within the sequence diagram, 
indicating the creation or destruction of instances during execution. Lifelines 
may be physically nested on a diagram to show a white-box view of the 
interactions within that lifeline. State invariants on the lifelines assert conditions 
that must hold at that point for the interaction to be valid. 

■    Messages are exchanged between lifelines and typically represent an invocation 
of an operation or a sending of a signal. Messages do not represent data flows, 
but the flow of data (or other items such as matter or energy) can be captured 
via arguments of the message. Messages are sent and received by behaviors 
executing on the lifelines and can be either asynchronous (sender continues 
executing) or synchronous (sender waits for a response). 

■     The default ordering of events imposed by an interaction is weak sequencing, 
where unrelated event occurrences are sequenced within but not across 
lifelines. A combined fragment is a means for specifying different ordering 
semantics. A combined fragment includes an operator and operands, where 
the operator identifies the ordering of its operands that may themselves be 
combined fragments. Commonly used operators include  par, alt, and loop . 
Each operand may have a guard expression that must be satisfied in order for 
the operand to be executed. 

■     Interactions can use other interactions as part of their definition to enhance 
scalability, as denoted by the keyword  ref. An interaction can use another 
interaction to describe the internal interactions of one of its lifelines; this 
enables a black-box specification style. An interaction can also use another to 
specify part of its total behavior, which may involve a number of its lifelines. 
This decomposition is either done to reduce the size of a sequence diagram, 
or to reuse some common interaction pattern. Interaction frames can feature 
connection points on their perimeter, called gates, to enable messages to pass 
across interaction boundaries.     

    9.11   Questions 
   1.     What is the diagram kind for a sequence diagram, and which type of model element 

does it represent? 
    2.   What is the context for an executing interaction? 
    3.   Draw a sequence diagram with two lifelines: one representing a part with no 

name, typed by the actor  “Customer, ” and the other with the name  “m, ” typed 
by the block  “Vending Machine. ”  

    4.   What is a selector expression used for? 
    5.   Which kinds of event are relevant when specifying interactions? 
    6.   List the different types of messages that can be exchanged between lifelines. 
    7.   On the diagram from Question 3, add a message from the  “Customer” lifeline to 

the“Vending Machine ” lifeline representing the signal  “Select Product ” with the 
argument“C3. ”  

9.11 Questions
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     8.   What does the term  “ message overtaking ” mean?  
  9.   How is an action or behavior execution represented on a sequence diagram?  

    10.   What is an observation and how is it used?  
    11.   In the diagram from Question 7, observe the current time (provided by the 

 “ clock ” function) when the  “ Select Product ” message is sent?  
    12.   How is a combined fragment represented on a sequence diagram?  
    13.   Name four common interaction operators.  
    14.   In the diagram from Question 7, change  “Select Product ” from a signal to 

an operation on  “Vending Machine ” and show two different replies: If the 
machine has stock, then it replies with the return string  “Stock Available ”;
otherwise, it replies with the string  “ Sold Out. ”  

    15.   Messages M1 and M2 from lifeline L2 can occur in any order on lifeline L1. 
Show two different ways that this can be expressed on a sequence diagram.  

    16.   Are the lifelines that participate in a combined fragment shown in front of or 
behind the frame box for the combined fragment?  

    17.   Which messages are valid inside an ignore fragment?  
    18.   What does a state invariant specify? 
    19.   What are gates used for?  
    20.   Name two ways of showing the interaction between the children of a lifeline.  
    21.   Are the lifelines that participate in an interaction occurrence shown in front 

of or behind the frame box for the interaction occurrence?   

    Discussion Topic 
   Sequence diagrams can be used to capture test specifications or test results. What 
differences would you expect to see between sequence diagrams used for these 
two purposes?       



   This chapter describes how to model behavior in terms of the response of blocks 
to internal and external events, using state machines. 

    10.1   Overview 
   State machines typically are used in SysML to describe the state-dependent behav-
ior of a block throughout its life cycle in terms of its states and the transitions 
between them. A state machine for a block may be started, for example, when 
it initiates power up, transitions through multiple states in response to different 
stimuli, and terminates when it completes power down. In each state, the block 
may perform different sets of actions. Thus, the state machine defines how the 
block’s behavior changes as it transitions through different states. State machines 
in SysML can be used to describe a wide range of state-related behavior, from the 
behavior of a simple lamp switch, to the complex modes of an advanced aircraft. 

   Although a state machine is a behavior, and therefore can be called from an 
activity or referenced by an interaction, the semantics of these combinations are 
not completely clear, so they should be used with care. 

   State machines are normally owned by blocks and execute within the context 
of an instance of that block. (It is possible for a state machine to be owned by a 
package, but its usefulness is much restricted so that particular use will not be 
covered here.) The behavior of a state machine is specifi ed by a set of regions, 
each of which defi nes a set of states. The states in any one region are exclusive; 
that is, when the region is active, exactly one of its substates is active. A region 
normally has an initial pseudostate, which is the place where the region starts 
when it fi rst becomes active. When a state is entered, an (optional) entry behavior 
(e.g., an activity) is executed. Similarly on exit, an optional exit behavior is exe-
cuted. While in a state, a state machine can execute a behavior called a do activ-
ity. It also normally has a fi nal state that, when active, signifi es that the region has 
completed. Regions and states are described in Section 10.3. 
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   Change of state is effected by transitions that connect a source state to a tar-
get state. Transitions are defi ned by triggers, guards, and effects, where the trig-
ger indicates an event that can cause a transition to the target state, the guard is 
evaluated in order to test whether the transition is valid, and the effect is a behav-
ior executed once the transition is triggered. Triggers may be based on a variety 
of events such as the expiration of a timer, or the receipt of a signal by the state 
machine’s owning object. Junction and choice pseudostates support the construc-
tion of compound transitions between states, with multiple guards and effects. 
Transitions are described in Section 10.4. Operation calls on the owning block are 
also valid trigger events for transitions; these are described in Section 10.5. 

   State machines in different blocks may interact with one another by either 
sending signals or invoking operations. For example, the state machine of one 
block can send a signal to another block as part of a transition effect or state 
behavior. The event corresponding to the receipt of this signal by the receiving 
block can trigger a state transition in its state machine. Similarly, a state machine 
in one block may call an operation on another block that causes an event that 
triggers a transition. 

   The rest of the chapter covers more advanced state machine concepts. Section 
10.6 deals with state hierarchies that occur when a state contains its own regions. A 
state with just one region is the most common case and is called a composite state. 
A state with more than one region is called an orthogonal composite state. Finally, 
a kind of state called a submachine state, may reference another state machine. To 
model state hierarchies effectively, additional constructs are needed. Fork and join 
pseudostates are needed to specify transitions into and out of orthogonal compos-
ite states. Entry and exit point pseudostates can be used to add connection points 
for transitions on the boundary of a state or state machine. 

   State machines may also be used to defi ne continuous behaviors, as described 
in Section 10.7, where a set of discrete states of a block, and changes in that state, 
are defi ned in terms of the values of other continuous variables such as heat and 
pressure. 

   State machines can be used in conjunction with other behaviors. A state 
machine can use another behavior (e.g., an activity) to specify what happens on 
state entry and exit, or when a transition fi res. State machine states are also used 
within interactions (see Section 9.7.3) and activities (see Section 8.8.4) to con-
strain certain aspects of their behavior. 

    10.2    State Machine Diagram 
    State machine diagrams are sometimes referred to as  state charts or state 
diagrams, but the actual name in SysML is the state machine diagram. The frame 
label has the following form: 

  stm  [State-Machine] state machine name [diagram name]   

   The diagram kind for a state machine diagram is  stm. The diagram frame always 
represents a state machine, and therefore the type of the model element is 
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always  State Machine and is often elided. The state machine name is the name 
of the represented state machine, and the  diagram name is user defined and is 
intended to describe the purpose of the diagram.  Figure 10.1    shows many of the 
basic notational elements for describing state machines. 

    Figure 10.1  describes a state machine for an ACME  Surveillance System. It 
starts in the  idle state; runs through a series of states during its life cycle; and, 
fi nally, ends up at  idle again, from where it may receive a  Turn Off signal that 
causes it to complete its state machine behavior. The notation for the state 
machine diagrams is shown in the Appendix, Tables A.18 through A.20. 

    10.3   Specifying States in a State Machine 
   A state machine is a potentially reusable definition of some state-dependent 
behavior. State machines typically execute in the context of a block, and events 
experienced by the block may cause state transitions. 

    10.3.1   Region 
   A state machine can contain one or more regions, which together describe the 
state-related behavior of the state machine. Each  region is defined in terms of 
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 FIGURE 10.1 

      A state machine.    

10.3 Specifying States in a State Machine
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states and pseudostates, collectively termed vertices, and transitions between 
those vertices. An active region has exactly one active state within it. The differ-
ence between a state and a pseudostate is that a region can never rest in pseu-
dostate; it merely exists to help determine the next active state. 

   Where a state machine has multiple regions, they may be describing some 
concurrent behavior happening within the state machine’s owning block. This 
may in turn be an abstraction of the behavior of different parts within the block, 
as discussed in Section 6.5.1. For example, one part of a factory may be storing 
incoming material, another turning raw material into fi nished products, and yet 
another sending out fi nished goods. If the parts are ever specifi ed with behaviors 
of their own, the modeler has to be clear on the relationship between the state 
machine for the parent block and the behaviors of its parts. It may also be that 
the state machine needs to keep track of concurrent behavior in its environment 
such as a camera being panned and tilted at the same time. 

   States can also contain multiple regions, as described in Section 10.6.2, but 
this section confi nes itself to simple states with only a single region. Where a state 
machine or state contains a single region, it typically is not named, but where 
multiple regions are present, it often makes sense to name them. 

   The initialization and completion of a region are described using an initial pseu-
dostate and fi nal state, respectively. An  initial pseudostate specifi es the initial 
state of a region. The outgoing transition from an initial pseudostate may include an 
effect (see Section 10.4.1 for a detailed discussion of transition effects). Such effects 
are often used to set the initial values of value properties used by the state machine. 

   When the active state of a region is the  fi nal state, the region has completed 
and no more transitions take place within it. Hence, a fi nal state can have no out-
going transitions. 

   The terminate pseudostate is always associated with the state of an entire 
state machine. If a terminate pseudostate is reached, then the behavior of the state 
machine terminates. A terminate pseudostate has the same effect as reaching the fi nal 
states of all the state machine’s regions. The termination of the state machine does 
not imply the destruction of its owning object, but it does mean that the object will 
not respond to events via its state machine. 

   A single region is represented by the area inside the frame of the state machine 
diagram. The notation for the concepts introduced thus far is as follows: 

      ■    An initial pseudostate is shown as a fi lled circle. 
      ■    A fi nal state is shown as a  “ bulls-eye ” ; that is, a fi lled circle surrounded by a 

larger hollow circle. 
      ■    A terminate pseudostate is shown as an  “ X ”      .

    10.3.2    State 
   A state represents some significant condition in the life of a block, typically 
because it represents some change in how the block responds to events. This con-
dition can be specified in terms of the values of selected properties of the block, 
but typically the condition is expressed in terms of an implicit state variable 
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(or variables) corresponding to its regions. It is sometimes helpful to think of a state 
as corresponding to a switch position for the block, where the block can exhibit 
some specified behavior in each switch position. A state machine can define all 
valid switch positions (i.e., states) of the system. Switch positions can correspond 
to a truth table similar to how logic gates can be specified. 

   Each state may have  entry and exit behaviors that are performed whenever 
the state is entered or exited, respectively. In addition, the state may perform a 
do activity that executes once the entry behavior has completed and continues 
to execute until it completes or the state is exited. Although any SysML behavior 
can be used, typically entry and exit behaviors and do activities are activities or 
opaque behaviors. 

   A state is represented by a round-cornered box containing its name. Entry and 
exit behaviors and do activities are described as text expressions preceded by the 
keywords  “entry, ”“exit, ” or  “do” and a forward slash. There is some fl exibility in the 
content of the textual expression. The text expression typically is the name of the 
behavior, but where the behavior is an opaque behavior, the body of the opaque 
behavior can be used instead. 

    Figure 10.2    shows a simple state machine for the  Surveillance System, with 
a single operating state in its single region. A transition from the region’s initial 
pseudostate goes to the  operating state. On entry, the  Surveillance System dis-
plays the fact that it is operational on all operator consoles, and on exit, it displays 
a shutdown status. While the  Surveillance System is in the operating state, it per-
forms, via a do activity, its standard function of  Monitor Site; that is, monitoring the 
building where it is installed for any unauthorized entry. When in the  operating  
state, a Turn Off signal triggers a transition to the fi nal state, and then the region, 
and hence the state machine has completed.   

    10.4   Transitioning between States 
   A transition specifies how states change within a state machine. State machines 
always run to completion once a transition is triggered, which means that they 

stm Surveillance System

Turn Off

operating

entry/Display "Operating" Status
do/Monitor Site
exit/Display "Shutdown" Status

 FIGURE 10.2 

      A state machine containing a single state.    

10.4 Transitioning between States
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are not able to consume another trigger event until the state machine has com-
pleted the processing of the current event. 

    10.4.1    Transition Fundamentals 
   A transition may include one or more triggers, a guard, and an effect as described 
next. 

   Trigger 
        Triggers identify the possible stimuli that cause a transition to occur and are asso-
ciated with events. The four main types of events are: 

      ■     Signal events indicate that a new asynchronous message has arrived. A sig-
nal event may be accompanied by a number of arguments that can be used 
in the transition effect as described later.  

      ■     Time events indicate either that a given time interval has passed since the 
current state was entered (relative), or that a given instant of time has been 
reached (absolute).  

      ■     Change events indicate that some condition has been satisfi ed (normally 
that some specifi c set of attribute values hold). Change events are discussed 
in more detail in Section 10.7.  

      ■     Call events indicate that an operation on the state machine’s owning block 
has been requested. A call event may also be accompanied by a number of 
arguments. Call events are discussed in more detail in Section 10.5.    

   Once the entry behavior of a state has completed, transitions can be triggered by 
events irrespective of what is happening within the state. For example, a transi-
tion may be triggered while a do activity is executing, in which case the do activ-
ity is interrupted. 

   By default, events must be consumed as soon as they are presented to the state 
machine, even if they do not trigger transitions. However, events may be explicitly 
deferred while in a specifi c state for later handling. In that case, unless they actually 
do trigger a transition, they are not consumed as long as the state machine remains 
in that state. As soon as the state machine has entered a state where the event is not 
deferred, the event must be consumed immediately. It may be consumed to trigger 
a transition but, if not, then it is consumed anyway and has no effect. 

   Transitions can also be triggered by internally generated  completion events . 
For a simple state with no internal states, a completion event is generated when 
the entry behavior and the do activity have completed. 

    Guard 
   The transition guard contains an expression that must be true for the transition 
to occur. The guard is specified using a constraint, introduced in Chapter 7, that 
includes a textual expression to represent the guard condition. When an event 
satisfies a trigger, the guard on the transition, if present, is evaluated. If the guard 
evaluates to true, the transition is triggered, and if the guard evaluates to false, 
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then the event is consumed with no effect. Guards can test the state of the state 
machine using the operators  in  (state x) and  not in  (state x). 

    Effect 
   The third part of the transition is the  transition effect. The effect is a behavior, 
normally an activity or an opaque behavior, executed during the transition from 
one state to another. For a signal or call event, the arguments of the correspond-
ing signal or operation call can be used directly within the transition effect, or the 
arguments can be assigned to attributes of the block owning the state machine. 
The transition effect can be an arbitrarily complex behavior that may include send 
signal actions or operation calls used to interact with other blocks. 

   If the transition is triggered, then fi rst the exit behavior of the current (source) 
state is executed, then the transition effect is executed, and fi nally the entry 
behavior of the target state is executed. 

   A state machine can contain transitions, called internal transitions, that do not 
effect a change in state. An internal transition has the same source and destination 
and, if triggered, simply executes the transition effect. By contrast, an external tran-
sition with the same source and destination state—sometimes called a  “transition-
to-self ”—triggers the execution of that state’s entry and exit behaviors as well as the 
transition effect. One frequently overlooked consequence of internal transitions is 
that, because the state is not exited and entered, timers for relative time events are 
not reset. 

    Transition Notation 
   A transition is shown as an arrow between two states, with the arrow pointing 
to the target state. Transitions to self are shown with both ends of the arrow 
attached to the same state. Internal transitions are not shown as graphical paths 
but are listed within the state symbol. 

   The defi nition of the transition’s behavior is shown in a formatted string on 
the transition with the list of triggers fi rst, followed by a guard in square brack-
ets, and fi nally the transition effect preceded by a forward slash. Section 10.4.3 
describes an alternate graphical syntax for transitions. 

   The text for a trigger depends on the event, as follows: 

■      Signal and call events—the name of the signal or operation followed 
optionally by a list of attribute assignments in parentheses. Typically, call 
events are distinguished by including the parentheses even when there are 
no attribute assignments, although this is just a (useful) convention, not part 
of the standard notation. 

■      Time events—the term  “after” or  “at” followed by the time;  “after” indicates 
that the time is relative to the moment when the state is entered;  “at” indi-
cates that the time is an absolute time. 

■      Change events—the term   “when” followed by the condition that has to 
be met in parentheses. Like other constraint expressions, the condition is 
expressed in text with the expression language optionally in braces.    

10.4 Transitioning between States
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   The effect expression may either be the name of the invoked behavior or may 
contain the text of an opaque behavior. 

   When an event is deferred in a state, the event is shown inside the state sym-
bol for that state using the text for the trigger followed by a  “ / ” and the keyword 
defer. See  Figure 10.12  (page 260) for an example. 

   Transitions can also be named, in which case the name may appear alongside 
the transition instead of the transition expression. A name is sometimes a useful 
shorthand for a very long transition expression. 

    Figure 10.3    shows a more sophisticated state machine for the  Surveillance 
System than in Figure 10.2 , with all the principal states and the transitions 
between them. Compared to  Figure 10.2 , the initial pseudostate now indicates 
that the region starts at the  idle state. The fi nal state is also reached from the  idle  
state, but it is still triggered by the receipt of a  Turn Off signal. Having completed 
processing in the  initializing state (refer to  Figure 10.14  on page 262 to view 
inside the initializing state), a completion event for  initializing will be gener-
ated. If the condition variable  init OK is true, the system enters the  operating  
state. Otherwise, the system enters the  diagnosing state where an operator will 
look at the error logs and try to manually initialize the system. Just in case some-
thing happens and the test procedure does not complete, the system has a time-
out after 60 seconds, which returns the system to the  idle  state. 
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 FIGURE 10.3 

      Transitions between states.    
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   From the  diagnosing state, the operator indicates success using the signal 
System OK, which allows the system to enter the  operating state. The signal System
KO indicates that the system is beyond operator repair and causes a transition 
back to  idle. From the  operating state, a Shutdown signal will cause a transition to 
the shutting down state, as long as the operating state is in substate  logged on  
(refer to  Figure 10.9  for a view inside the  operating state). As part of shutting 
down, the system requests a confi rmation and will only exit the  shutting down  
state when it receives a  Shutdown Confi rmed signal, whereon it executes the 
Shut Down Cameras  activity. 

   Unless the graphical notation for transitions is being used, transition effects, 
with the exception of opaque behaviors, are specifi ed on separate diagrams 
appropriate to the type of behavior.  Figure 10.4    shows the activity diagram for 
the Shut Down Cameras  activity. 

   When invoked as a transition effect,  Shut Down Cameras loops over all known 
cameras and sends each a  Shutdown signal. Note that the activity does not include 
an accept event action; this would leave the invoking state machine in an ambigu-
ous (mid-transition) state when waiting for new events to occur.   

act [Activity] Shut Down Cameras

id � get next camera()

id

Shutdown

target

[else]

[more cameras()]

 FIGURE 10.4 

      Defi ning a transition effect using an activity.    

10.4 Transitioning between States

    10.4.2   Routing Transitions Using Pseudostates 
   There are a variety of situations where a simple transition directly between 
two states is not sufficient to express the required semantics. SysML includes a 
number of pseudostates to provide these additional semantics. This section intro-
duces junction and choice pseudostates, which support compound transitions 
between states. 
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   A junction pseudostate is used to construct a compound transition path 
between states. The compound transition contrasts with a simple transition by 
allowing more than one alternative transition path between states to be specifi ed, 
although only one path can be taken in response to any single event. Multiple 
transitions may either converge to or diverge from the junction pseudostate. 
When there are multiple outgoing transitions from a junction pseudostate, the 
selected transition will be one of those whose guard evaluates to true at the time 
the event was served up for processing. If more than one guard does evaluate to 
true, SysML does not defi ne which one of the valid transitions is chosen for exe-
cution. If a particular compound transition path includes more than one junction 
between two states, all the guards along that path must evaluate to true before 
the compound transition is taken. 

   The choice pseudostate also has multiple incoming transitions and outgo-
ing transitions and like the junction pseudostate is part of a compound transi-
tion between states. The behavior of the choice pseudostate is distinct from that 
of a junction pseudostate in that the guards on its outgoing transitions are not 
evaluated until the choice pseudostate has been reached. This allows effects exe-
cuted on the prior transition to affect the outcome of the choice. When a choice 
pseudostate is reached in the execution of a state machine, there must always be 
at least one valid outgoing transition. If not, the state machine is invalid. A tech-
nique that is often used to ensure the validity of a choice pseudostate is to use 
a catch-all guard on at most one outgoing transition. This is specifi ed using the 
keyword  “ else. ”   Whether a compound transition contains junction pseudostates, 
choice pseudostates, or both, any possible compound transition must contain 
only one trigger, normally on the fi rst transition in the path. 

The various routing pseudostates are represented as follows: 

      ■    A junction pseudostate is shown, like an initial pseudostate, as a fi lled circle. 
      ■    A choice pseudostate is shown as a diamond.    

    Figure 10.5    completes the state machine for the  Surveillance System shown 
in  Figure 10.3 . The handling of shutdown has been improved to describe what 
happens if the operator does not actually want to shut down the system after all. 
The argument of the Confi rmation Response signal, which takes values of   “ Yes ”   
or  “ No, ”  is mapped to attribute  r. The transition triggered by the  Confi rmation 
Response signal now ends at a junction, with two outgoing transitions with differ-
ent guards. If  r     �      �  “ Yes, ” then the system shutdown proceeds; if  r     �      �    “ No, ”  then 
the system returns to the operating state. 

   The transition from shutting down to idle/operating was able to be specifi ed 
using a junction pseudostate in Figure 10.5  because the value of  r, needed to 
determine the complete transition path, was available before the transition was 
triggered. However,  Figure 10.6    shows another approach to system shutdown with-
out a shutting down state. Here, the confi rmation request is made as an effect of 
the transition out of the  operating state, so the value of  r is not known before the 
fi rst leg of the compound transition has been taken. In this case a choice pseudo-
state is needed to allow the value of  r returned from  Confi rm Shutdown to be 
used in the guard conditions on its exit transitions. As noted earlier, the modeler 
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must ensure that there is always at least one valid path from a choice pseudostate, 
so the guard on the transition has been changed to  [else] in order to deal with any 
values other than   “ Yes. ” Then, even if  Confi rm Shutdown unexpectedly returns a 
value other than   “ Yes ”  or   “ No, ”  the state machine will still operate. 
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 FIGURE 10.5 

      Routing transitions.    

idle
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do/Monitor Site
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 FIGURE 10.6 

      Specifying shutdown using a choice pseudostate.    

10.4 Transitioning between States
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    10.4.3    Showing Transitions Graphically 
   Some modelers prefer to show transitions graphically on state machine diagrams. 
SysML introduces a set of special symbols that allow a modeler to graphically 
depict triggers, signal send actions, and other actions; their graphical syntax is as 
follows: 

      ■    A rectangle with a triangular notch removed from one side represents all 
the transition’s triggers, with descriptions of the triggering events and the 
transition guard inside the symbol.  

      ■    A rectangle with a triangle attached to one side represents the send sig-
nal action. The signal’s name, together with any arguments being sent, are 
shown within the symbol. There may be many send signal actions in a sin-
gle transition effect, each with their own symbol. Signals are very important 
when communicating between state machines, hence the separate treat-
ment of this action.  

      ■    Any other action in the transition effect is represented by a rectangle 
containing text that describes the action to be taken. There may be many 
actions as part of a transition effect, each with their own symbol.    

    Figure 10.7    shows the use of transition notation to provide an equivalent defi -
nition of the transitions between  operating, idle, and shutdown, originally shown 
on  Figure 10.5.    

    10.5    State Machines and Operation Calls 
   State machines can respond to operation calls on their parent block via call 
events. A call event may either be handled in a synchronous fashion—that is, 

Confirm Shutdown Request

Confirmation Response (r)

Shut Down Cameras

shutting down

Shutdown [in (logged on)]

operating idle

[r �� "Yes"][r �� "No"]

 FIGURE 10.7 

      Transition-oriented notation.    
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the caller is blocked while waiting for a response—or asynchronously, which 
results in similar behavior to the receipt of a signal. The state machine executes 
all actions triggered by the call event until it has reached another state, and then 
returns any outputs created by the actions to the caller. Note that the invocation 
of an operation or reception may also trigger the invocation of a method (see 
Section 6.5.5). If so, the method is invoked and completely executed before the 
transition enabled by the call event is triggered. 

   One of the components used by the surveillance system’s operators is a video 
player that allows them to review recorded surveillance data. The  Video Player  
block, shown in  Figure 10.8   , provides a set of operations in its interface to control 
playback. Although many of the operations do not return data, it makes sense for 
any client of  Video Camera to wait until a request for these operations has been 
processed; hence, it makes sense for the interface to be defi ned as operations. The 
response of the block to requests from these operations is defi ned using the state 
machine shown in  Figure 10.8 , where call events related to the operations are used 
as triggers on transitions. Calls to the  play, stop, pause, and resume operations 
cause call events that trigger transitions between the various states of  Video 
Player. Calls to the operations,  next chapter, previous chapter, and get play time  
cause call events that trigger transitions that are local to state  playing. To simplify 
the example,  Figure 10.8  does not show many of the transition effects, but it does 
show how a request on  get play time gets its return argument. 

Video Player

play()
pause()
stop()
next chapter()
previous chapter()
get play time() : Seconds
resume()

operations

values
play time : Seconds

stm Video Player

playing

next chapter() / 
previous chapter() / 
get play time() /
return play time; 

after (1 s)/play time��

paused

stopped

stop()

play()

pause()

resume()

/play time � 0

 FIGURE 10.8 

      A state machine driven by call events for operations on its owning block.    

10.5 State Machines and Operation Calls
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    10.6 State Hierarchies 
   Just as state machines can have regions, so can states; such states are called  com-
posite or hierarchical states. This capability allows state machines to scale to 
represent arbitrarily complex state-based behaviors. This section discusses com-
posite states with single and multiple regions, and also the reuse of an existing 
state machine to describe the behavior of a state. 

    10.6.1    Composite State with a Single Region 
   Arguably the most common situation is a composite state that has a single region. 
A state nested within a region can only be active when the state enclosing the 
region is active. Thus, the switch position analogy described earlier can apply to 
nested states by requiring that the switch position corresponding to the enclosing 
state be enabled in order to enable any of its nested states. 

   As stated earlier, a region typically will contain an initial pseudostate and a 
fi nal state, a set of pseudostates and substates, which may themselves be com-
posite states. If the region has a fi nal state, then a completion event is generated 
when that state is reached. 

   When an initial pseudostate is missing from a region in a composite state, the 
initial state of that region is undefi ned, although extensions to SysML are free 
to add their own semantics. However, a composite state may be porous; that is, 
transitions may cross the state boundary, starting or ending on states within its 
regions (see  Figure 10.10  later). In the case of a transition ending on a nested 
state, the entry behavior of the composite state, if any, is executed after the effect 
of the transition and before the execution of the entry behavior of the transition’s 
end state. In the opposite case, the exit behavior of the composite state is exe-
cuted after the exit behavior of the source state and before the transition effect. 
In the case of more deeply nested state hierarchies, the same rule can be applied 
recursively to all the composite states whose boundaries have been crossed. 

    Figure 10.9    shows the decomposition of the state  operating into its sub-
states. On entry to the  operating state, two entry behaviors are executed: the 
entry behavior of  operating, Display  “ Operating ” status; logged in       �       0, and then 
the entry behavior of  logged off, Display  “Logged Off. ” This is because on entry, as 
indicated by the initial pseudostate, the initial substate of  operating  is  logged off.

   When in state logged off, a Login signal will cause a transition to the 
logged on state and will increment the value of  logged in. While in the logged on  
state, repeated  Login and Logout signals will increment and decrement the value 
of logged off, often as internal transitions without a change of state. However, if a 
Logout signal is received when the value of  logged in is 1, then the signal will trig-
ger a transition back to  logged off. The entry behavior for  logged on records the 
time in the variable  time on, and its exit behavior uses that to display the session 
length. 

   State operating does not have a fi nal state, so a completion event is never gen-
erated. As can be seen in  Figure 10.5 , this state is exited when a  Shutdown signal 
is presented. 
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   The do activity Monitor Site executes as long as the state machine for the 
Surveillance System is in the operating state, irrespective of what substate of 
operating  is currently active. 

    10.6.2   Composite State with Multiple (Orthogonal) Regions 
   A composite state may have many regions, which may each contain substates. 
These regions are orthogonal to each other, so a composite state with more 
than one region is sometimes called an  orthogonal composite state. When 
an orthogonal composite state is active, each region has its own active state that 
is independent of the others and any incoming event is independently analyzed 
within each region. A transition that ends on the composite state will trigger 
transitions from the initial pseudostate of each region, so there must be an initial 
pseudostate in each region for such a transition to be valid. Similarly, a comple-
tion event will occur when all the regions are in their final state. 

   In addition to transitions that start or end on the composite state, transitions 
from outside the composite state may start or end on the nested states of its 
regions. In this case one state in each region must be the start or end of one of a 
coordinated set of transitions. This coordination is performed by a fork pseudostate 
in the case of incoming transitions and a join pseudostate for outgoing transitions. 

   A fork pseudostate has a single incoming transition and as many outgoing 
transitions as there are orthogonal regions in the target state. Unlike junction and 
choice pseudostates, all outgoing transitions of a fork are part of the compound 
transition. When an incoming transition is taken to the fork pseudostate, all the out-
going transitions are taken. Because all outgoing transitions of the fork pseudostate 
have to be taken, they may not have triggers or guards, but may have effects. 

operating

logged onlogged off

Logout [logged in �� 1]/
logged in � logged in � 1

Login/logged in �
logged in � 1

entry/Display "Logged
Off "

entry/Display "Operating" Status; logged in � 0
do/Monitor Site
exit /Display "Shutdown" Status

entry/Display "Logged On"; time on � now
exit/Display "Session Length:", now – time on
Logout [logged in �1]/logged in � logged in � 1
Login/logged in � logged in � 1

 FIGURE 10.9 

      States nested within a sequential state.    
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operating

logged on

Login/logged in �
logged in � 1

Logout [logged in �� 1]/logged
in � logged in � 1

/alert count � 0

/Display "Alerts: ", alert count

entry/Display "Logged On"; time on � now
exit/Display "Session Length:", now – time on
Logout [logged in �1]/logged in � logged in � 1
Login/logged in � logged in � 1

entry/Display "Operating" Status; logged in � 0
do/Monitor Site
exit/Display "Shutdown" Status

logged off

entry/Display "Logged
Off"

maintainingidle

Edit Routes

Store Routes

route maintenance

alertednormal

Alert/alert count � alert count � 1

Stand Down

alert management

 FIGURE 10.10 

      Entering and leaving a set of concurrent regions.    

   The coordination of outgoing transitions from an orthogonal composite state 
is performed using a  join pseudostate that has multiple incoming transitions and 
one outgoing transition. The rules on triggers and guards for join pseudostates 
are the opposite of those for fork pseudostates. Incoming transitions of the join 
pseudostate may not have triggers or a guard but may have an effect. The outgo-
ing transition may have triggers, a guard, and an effect. When all the incoming 
transitions can be taken and the join’s outgoing transition is valid, the compound 
transition can happen. Incoming transitions are taken fi rst and then the outgoing 
transition. An example of this can be seen in  Figure 10.10   .

   Note that a transition can never cross the boundary between two regions of 
the same composite state. Such a transition, if triggered, would leave one of the 
regions with no active state, which is not allowed. 

   When an event is associated with triggers in multiple orthogonal regions, 
the event may trigger a transition in each region, assuming the transition is valid 
based on the other usual criteria. A simple example of this scenario is shown later 
in  Figure 10.11   .
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   The presence of multiple regions within a composite state is indicated by 
multiple compartments within the state symbol, separated by dashed lines. The 
regions can optionally be named, in which case the name appears at the top of 
the corresponding compartment. All vertices within such a compartment are part 
of the same region. When an orthogonal composite state has no other compart-
ments, it is preferable to use an alternative notation for a state, where the name of 
the state is placed in a tab attached to the outside of the state symbol. An example 
of this can be seen in Figure 10.11 .

   Fork and join pseudostates are described by a vertical or horizontal bar, with 
transition edges either starting or ending on the bar. 

      Figure 10.10  shows an elaboration of the  operating state fi rst shown in  Figure 
10.9. In this elaboration, the  logged on state has two orthogonal regions. One 
region, called  alert management,  specifi es states and transitions for  normal and 
alerted modes of operation; the other region, called  route maintenance,  specifi es 
states and transitions for updating the route (i.e., pan-and-tilt angles) for when the 
automatic surveillance feature of the system is engaged. As before, in state  logged 
off, the receipt of a  Login signal triggers transition to  logged on. Based on the ini-
tial pseudostates in the two regions, the two initial substates of  logged on are  idle  
for region  route maintenance and normal for  alert management. The receipt 
of an Alert signal triggers the transition from  normal to alerted in alert manage-
ment. Similarly, the receipt of an  Edit Routes signal triggers the transition from 
idle  to  maintaining  in  route management.  

   To prevent dereliction of duty, the last operator can only log off if the  logged 
on state is in substates idle and normal. This constraint is specifi ed using a join 
pseudostate whose outgoing transition is triggered by a  Logout signal with a 
guard of  logged in     �      �  1. The two incoming transitions to the join pseudostate 
start on  idle and normal, so even if there is a  Logout signal and the number of 
logged on operators is one, the outgoing transition from the join pseudostate 
will be valid only if the two active substates of  logged on are  idle and normal . 
Because the transitions from  idle and normal cross the boundary of state  logged 
in, its exit behavior is executed before any effects on the transitions. The order of 
execution triggered by a valid  Logout  signal is thus: 

      ■    Exit behavior of logged in—Display  “Session Length:  ”, now–time on 
      ■    Incoming transition effect to join—Display  “Alerts:, ” alert count 
      ■    Outgoing transition effect from join— “logged in      �      logged in      �      1”  
      ■    Entry behavior of logged off—Display “Logged Off”     

   Having elaborated the  operating state, it is apparent that the transitions  Logout
[logged in      �     1] and Login are rightly internal transitions rather than transitions to 
self. Transitions to self always exit and reenter the state, which in this case would 
reset the substates of  route maintenance and alert management; obviously, this 
is not desirable in the middle of an intruder alert! 

    10.6.3   Transition Firing Order in Nested State Hierarchies 
   It is possible that the same event may trigger transitions at several levels in a state 
hierarchy, and with the exception of concurrent regions, only one of the transitions 
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can be taken. Priority is given to the transition whose source state is innermost in 
the state hierarchy. 

   Consider the state machine,  Machine 1, shown in  Figure 10.11 , in its initial 
state (i.e., in state 1.1.1 and 1.2.1). The signal sig1 is associated to the triggers of 
three transitions, each with guards based on the value of variable  x. Note that, in 
this case, the transitions have both a name and a transition expression, whereas 
a transition edge normally would show one or the other. This has been done to 
help explain the behavior of the state machine. The following list shows the tran-
sitions that will fi re based on values of  x  from    �     1 to 1: 

      ■     x equals   �     1—transition  t1 will be triggered because it is the only transition 
with a valid guard  

      ■     x equals 0—transition  t2 will be triggered because, although transition  t1
also has a valid guard,  state 1.1.1  is the innermost of the two source states  

      ■     x equals 1—both transitions  t2 and t3 will be triggered because both their 
guards are valid    

   The normal rules for execution of exit behaviors apply, so, for example, before 
the transition from  state 1 to state 2 can be taken, any exit behavior of the active 
nested states of state 1, as well as the exit behavior of  state 1, must be executed. 

   The example in  Figure 10.11  is fairly straightforward. Assessing transition pri-
ority is more complex when compound transitions and transitions from within 
orthogonal composite states are used. However, the same rules apply.  

    10.6.4     Using the History Pseudostate to Return to a Previously 
Interrupted State 

   In some design scenarios, it is desirable to handle an exception event by inter-
rupting the current state, responding to the event, and then returning back to the 
state that the system was in at the time of the interruption. This can be achieved 

state 1.1.1 state 1.1.2

state 1.2.1 state 1.2.2

state 2

sig1 [x �� 0]

sig1 [x �� 1]

sig1 [x �� 0]

stm Machine 1

t1

t2

t3

state 1

 FIGURE 10.11 

      Illustration of transition fi ring order.    
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by a type of pseudostate called a  history pseudostate. A history pseudostate 
represents the last active substate of its owning region, and a transition ending 
on a history pseudostate has the effect of returning the region to that state. An 
outgoing transition from a history pseudostate designates a default history pseudo-
state. This is used where the region has no previous history or its last active sub-
state was a final state. 

   The two kinds of history pseudostate are deep and shallow. A  deep history 
pseudostate records the states of all regions in the state hierarchy below and 
including the region that owns the deep history pseudostate. A  shallow history 
pseudostate only records the top-level state of the region that owns it. As a result, 
the deep history pseudostate will enable a return to a nested state, while a shallow 
history pseudostate will enable a return to only the top-level state. 

   A history pseudostate is described using the letter  “H” surrounded by a circle. 
The deep history pseudostate has a small asterisk in the top right corner of the 
circle. 

   The Surveillance System supports an emergency override mechanism, as 
shown in  Figure 10.12   . In a change from  Figure 10.10 , the reception of an 
Override signal, with a valid password, will always cause a transition from the 
operating state, even if there is an ongoing alert. However, once the emergency is 
over, a  Resume Operation signal needs to restore the  operating state completely 
to its previous state so that the system can continue with its interrupted activities. 
To achieve this, the transition triggered by the  Resume Operation signal ends 
on a deep history pseudostate, which will restore the complete previous state 
including substates of  operating. By comparison, if a shallow history pseudostate 
was used, and the previous substate of  operating was  logged on, then the initial 
rather than previously active substates of  logged on  would be used. 

    Alert events are deferred in the  emergency override activated state so that 
they can be handled, if appropriate, in the resumed  operating  state. 

    10.6.5   Reusing State Machines 
   A state machine may be reused to specify the behavior of a kind of state called a 
submachine state. A transition ending on a submachine state will start its refer-
enced state machine, and similarly, completion events trigger transitions whose 
source is the submachine state when the referenced state machine completes. 
However, modelers can also benefit from two additional types of pseudostates, 
called entry- and exit-point pseudostates, that allow the state machine to define 
additional entry and exit points that can be accessed from a submachine state. 

    Entry and Exit Points on State Machines 
   For a single-region state machine, entry- and exit-point pseudostates are similar to 
junctions; that is, they are part of a compound transition. Outgoing guards have 
to be evaluated before the compound transition is triggered, and only one out-
going transition will be taken. On state machines, entry-point pseudostates can 
only have outgoing transitions and exit-point pseudostates can only have incom-
ing transitions. 

10.6 State Hierarchies
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emergency
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Login/logged in �
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Resume Operation

Logout [logged
in �� 1]/ logged

in � logged in �1

logged on

maintainingidle

normal alerted

Edit Routes

Store Routes

Stand Down

route maintenance

alert management

Alert /defer entry/Display "Logged 
Off"

/Display "Alerts:" , alert count

/alert count � 0

entry/Display "Logged On"; time on � now 
exit/Display "Session Length:" , now – time on
Logout [logged in � 1]/logged in � logged in � 1
Login/logged in � logged in � 1

entry/Display "Operating" Status; logged in � 0
do/Monitor Site
exit /Display "Shutdown" Status

Alert/alert count � alert count � 1

 FIGURE 10.12 

      Recovering from an interruption using a history pseudostate.    
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   Entry- and exit-point pseudostates are described by small circles that overlap 
the boundary of a state machine or composite state. An entry-point symbol is 
hollow, whereas an exit-point symbol has a cross, rotated 45° from the vertical/
horizontal axis. 

    Figure 10.13    shows a state machine for testing cameras, called  Test Camera,
that uses the graphical form for specifying transitions. From the entry-point 
pseudostate, the fi rst transition simply sets the  failures variable to 0 and ends on 
a choice pseudostate. On fi rst entry, the state machine will always take the  [else]  
transition, which will result in the sending of a  Test Camera signal with the cur-
rent camera number ( ccount) as its argument. The state machine then stays in the 
await test result state until a Test Complete signal with argument test result has 
been received. The transition triggered by a  Test Complete signal ends on a junc-
tion that either leads to the exit-point pseudostate  pass, if the test passed, or back 
to the initial choice pseudostate, if the test failed, incrementing the  failures vari-
able on the way. If the camera has failed its self-test more than three times, then 
the transition with guard  [failures      �      3]  will be taken to exit-point  fail.

    Submachine States 
   A submachine state contains a reference to another state machine that is exe-
cuted as part of the execution of the submachine state’s parent. The entry- and 
exit-point pseudostates of the referenced state machine are represented on the 
boundary of the submachine state by special vertices called  connection points . 
Connection points can be the source or target of transitions connected to states 
outside the submachine state. A transition whose source or target is a connec-
tion point forms part of a compound transition that includes the transition to or 
from the corresponding entry- and exit-point pseudostate in the referenced state 
machine. An example of this can be seen in  Figure 10.14   . In any given use of a 
state machine by a submachine state, only a subset of its entry- and exit-point 
pseudostates may need to be externally connected. 

   A submachine state is represented by a state symbol showing the name of the 
state, along with the name of the referenced state machine, separated by a colon. 
A submachine state also includes an icon shown in the bottom right corner depict-
ing a state machine. Connection points may be placed on the boundary of the 

stm Test Camera

Test Complete

failures � failures � 1

Test Camera
(ccount)

failures � 0
await
test

result pass

fail

[test result �� fail]

[test result �� pass]

[failures � 3]

[else]

 FIGURE 10.13 

      A state machine with entry and exit points.    
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submachine state symbol. These symbols are identical to the entry- and exit-point 
pseudostate symbols used in the referenced state machine. Note that only those 
connection points that need to be attached to transition edges need be shown on 
the diagram. 

    Figure 10.14  shows the  initializing state of the Surveillance System. On entry, 
ccount (i.e., a property of the owning block that counts the number of cameras 
tested) and passed (i.e., a property that counts the number of cameras that passed 
their self-test) are initialized to 1 and 0, respectively. A junction pseudostate, 
which allows the algorithm to test as many cameras as required, follows. To test 
each camera, the  testing state uses the Test Camera state machine. The transition 
leaving the pass exit-point pseudostate has an effect that adds one to the  passed  
variable; the transition leaving its  fail exit-point pseudostate does not. Both transi-
tions end in a junction whose outgoing transition increments the count of cam-
eras tested. This transition ends on a choice, with one outgoing transition looping 

testing
: Test Camera

passfail

/passed � passed � 1

[ccount �� total
cameras]

/ccount � 1;
passed � 0;

[ccount � total
cameras]/init OK �
(passed � 0)

/ccount � ccount � 1

initializing

t1

 FIGURE 10.14 

      Invoking a substate machine.    



263

back to test another camera if  [ccount       ��     total cameras] and the other reaching 
the fi nal state of  initializing. On the transition to the fi nal state, the effect of the 
transition sets the  init OK variable to true if at least one camera passed its self-test, 
and false otherwise. 

   As stated earlier, entry- and exit-point pseudostates form part of a com-
pound transition, that in the case of submachine states, incorporates transitions 
(and their triggers, guards, and effects) from both containing and referenced 
state machines. Looking at both  Figures 10.13  and 10.14, it can be seen that the 
compound transition from the initial pseudostate of state  initializing will be as 
follows: 

    1.   Initial pseudostate of the (single) region owned by state  initializing  
    2.   Transition labeled with effect  ccount       �       1; passed       �       0   
    3.   Transition named  t1   
    4.   Transition with effect  failures       �       0   
    5.   Transition with guard  [else]  (at least this time) 
    6.   (Graphical) transition with effect send  Test Camera signal with argument 

ccount   
    7.   State  await test result      

    Entry- and Exit-Point Pseudostates on Composite States 
   Entry- and exit-point pseudostates can be used on the boundaries of composite 
states as well. Where the composite state has a single region, they behave like 
junctions. Where the composite state has multiple regions, they behave like forks 
in the case of entry-point pseudostates and joins in the case of exit-point pseu-
dostates. For entry-point pseudostates, the effects of their outgoing transitions exe-
cute after the entry behavior of the composite state. For exit-point pseudostates, 
their incoming transitions execute before the composite state’s exit behavior.    

    10.7   Contrasting Discrete versus Continuous States 
   The examples shown so far in this chapter have been based on discrete seman-
tics, and specifically state machines where the triggering event is a specific stim-
ulus (i.e., a signal, an operation call, or the expiration of a timer). SysML state 
machines can also be used to describe systems where transitions are driven by 
the values of either discrete or continuous properties. Such transitions are trig-
gered by change events. 

   A trigger on a transition may be associated with a change event whose change 
expression states the conditions, typically in terms of the values of properties, 
which will cause the event to occur and hence trigger the transition. The change 
expression has a body containing the expression, and an indication of the lan-
guage used, which allows a wide variety of possible expressions. 

    Figure 10.15    shows a very simple state machine, called  Lamp Switch, for con-
trolling a lamp with an unlatched button. It starts in state  off, which has an entry 
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behavior that turns the lamp off and a do activity that repeatedly polls an input 
line and places the value of the input into the variable  button value. A change 
event,  when (button value       �      �  1), triggers a transition to state  on, so as soon as 
the polled value changes to 1, the  off state is exited and the do activity is termi-
nated. On entry into the  on state, the lamp is turned on and the state machine 
again repeatedly polls the input line. The transition out of state  on to state off  
is again triggered by the change event  when (button value      �      � 1). This type of 
solution is suitable for describing digital systems that execute continuously moni-
toring inputs and writing outputs. 

   The transitions between states in the  Lamp Switch state machine are triggered 
by a change to the value of a discrete property,  button value. This is in contrast 
to the continuous state representation of a system in terms of continuous state 
variables (expressed as value properties). 

   The state machine for  H2 O, shown in  Figure 10.16   , defi nes the transitions 
between its  solid, liquid, and gas states. These represent discrete states of  H2 O , 
while the values of its properties, such as temperature and pressure, represent 
continuous state variables. Specifi c values for the variable  temp, plus other con-
ditions (e.g., the withdrawal or addition of energy), defi ne the expressions for 
the change events on the transitions. So implicitly, the values of its state variables 
determine the discrete state of  H2 O via the transitions between them. Similarly, 
the discrete state of other continuous systems can be defi ned in terms of values 
of selected continuous properties of the system. 

    10.8    Summary 
   State machines are used to describe behavior of a block in terms of its states and 
transitions. State machines can be composed hierarchically, like other SysML 
behavioral constructs, enabling arbitrarily complex representations of state-based 
behavior. 

   The signifi cant state machine concepts covered in this chapter include the 
following. 

■     A state machine describes a potentially reusable definition of the state-dependent 
behavior of a block. Each state machine is described using a state machine 
diagram. 

stm Lamp Switch

off

entry/Lamp Off 
do/loop
     button value � poll();

on

entry/Lamp On 
do/loop
     button value � poll();

when (button value �� 1)

when (button value �� 1)

 FIGURE 10.15 

      A discrete state machine driven by change events.    
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■     Each state machine contains at least one region, which itself can contain a 
number of substates, pseudostates (called collectively vertices), and transi-
tions between those vertices. During execution of a state machine, each of its 
regions has a single active state that determines the transitions that are cur-
rently viable in that region. A region can have an initial pseudostate and final 
state that correspond to its beginning and completion, respectively. 

■     A state is an abstraction of some significant condition in the life of a block, and 
specifies the effect of entering and leaving that condition, and what the block 
does while it is in that condition, using behaviors such as activities. 

■     Transitions describe valid state changes, and under what circumstances those 
changes will happen. A transition has one or more triggers, a guard, and an 
effect. A trigger is associated to an event, which may correspond either to the 
reception of a signal (signal event) or operation call (call event) by the own-
ing block; the expiration of a timer (time event); or the satisfaction of a condi-
tion specified in terms of properties of the block and its environment (change 
event). A transition can also be triggered by a completion event that occurs 
when the currently active state has completed. 

■     A guard expresses any additional constraints that need to be satisfied if the transi-
tion is to be triggered. If a valid event occurs, the guard is evaluated, and if true, 
the transition is triggered; otherwise, the event is consumed. A transition can 
include a transition effect that is described by a behavior such as an activity. If 
the transition is triggered, the transition effect is executed. 

■     A state may specify that certain events can be deferred, in which case they are 
only consumed if they trigger a transition. Deferred events are consumed on 
transition to a state that does not further defer them. 

stm H2O States

Liquid

Solid

Gas

when (temp �� 0 &
latent heat of liquification
removed)

when (temp �� 0 &
latent heat of 

liquification added)

when (temp �� 100 &
latent heat of vaporization
removed)

when (temp �� 100 &
latent heat of

vaporization added)

 FIGURE 10.16 

      State machine for H 2O.   
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■     There are a number of circumstances where simple transitions between states 
are not sufficient to specify the required behavior. Junction and choice pseu-
dostates allow several transitions to be combined into a compound transition. 
Although the compound transition can include only one transition with trig-
gers, it can have multiple transitions with guards and effects. Junction and 
choice pseudostates can have multiple incoming transitions and outgoing tran-
sitions. They are used to construct complex transitions that have more than 
one transition path, each potentially with its own guard and effect. History 
pseudostates allow a state to be interrupted and then subsequently resume its 
previously active state or states. 

■     States may be composite with nested states in one or more regions. Just like state 
machines, during execution an active state will have one active substate per 
region. Composite states are porous; that is, transitions can cross their bounda-
ries. Special pseudostates called fork and join pseudostates allow transitions to 
and from states in multiple regions at once. A given event may trigger transitions 
in multiple active regions. 

■     State machines may be reused via submachine states. Interactions with the 
reused state machine take place via transitions to and from the boundary of 
the corresponding submachine state, either directly or through entry- and exit-
point pseudostates.  

■     Change events are driven by the values of variables of the state machine or prop-
erties of its owning block. In addition to discrete systems, change events can be 
used to describe the state of continuous systems, where transitions between the 
system’s discrete states are triggered by changes in the values of other continu-
ous properties.     

    10.9    Questions 

         1.   What is the diagram kind for a state machine diagram?  
     2.   Which types of model element may a state machine region contain? 
     3.   What is the difference between a state and a pseudostate?  
     4.   A state machine has two states,  “ S1 ” and  “ S2 ” ; how do you show that the ini-

tial state for this machine is  “ S1 ” ?  
     5.   What is the difference between a fi nal state and a terminate pseudostate?  
     6.   A state has three behaviors associated with it; what are they called and when 

are they invoked? 
     7.   What are the three components of a transition?  
     8.   Under what circumstances does a completion event get generated for a state 

with a single region? 
     9.   What is the difference in behavior between an internal transition and an 

external transition with the same source and target state? 
    10.   What would the transition string for a transition look like if triggered by a sig-

nal event for signal  “ S1, ” with guard  “ a      �      1 ” and an effect  “ a    �      a    �      1 ” ?  
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    11.   Draw the same transition using the graphical notation for transitions. 
    12.   Where and how is a deferred event represented? 
    13.   What is the difference between a junction and a choice pseudostate? 
    14.   If a state has several orthogonal regions, how are they displayed? 
    15.   What is the difference between a shallow and deep history pseudostate? 
    16.   How can a state machine be reused within another state machine? 
    17.   How are entry- and exit-point pseudostates represented on a state machine? 
    18.   Under what circumstances will a given change event occur?    

    Discussion Topic 
   Discuss the relative benefits of using orthogonal regions in a single state machine, 
or creating a composition hierarchy of blocks, each with their own state machine.     

10.9 Questions
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   This chapter describes how to model the high-level functionality of a system with 
use cases. 

    11.1   Overview 
   Use cases describe the functionality of a system in terms of how its users use 
that system to achieve their goals. The users and other interested participants of a 
system are described by actors, which may represent external systems or humans 
who use the system. Use cases have a textual and graphical description that may 
be further elaborated with detailed descriptions of their behavior, using activi-
ties, interactions, or state machines. The relationships between the system under 
consideration, its actors, and use cases are described on a use case diagram that 
shares many characteristics with a block definition diagram. 

   Different methodologies apply use cases in different ways [34]. For example, 
some methods require a use case description for each use case captured in text, 
which may include pre- and postconditions, and primary, alternative, and/or 
exceptional fl ows. 

   Use cases have been viewed as a mechanism to capture system requirements 
in terms of the uses of the system. SysML requirements can be used to more 
explicitly capture text requirements and establish relationships with use cases 
and other model elements (refer to Chapter 12 for a discussion on requirements). 
The steps in a use case description can also be captured as SysML requirements. 

    11.2   Use Case Diagram 
   On a use case diagram, the frame represents a package or block, and the con-
tent of the diagram describes a set of actors and use cases and the relationships 
between them. The diagram header for a use case diagram has the following form: 

  uc  [model element type] model element name [diagram name]   
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   The diagram kind for a use case diagram is  uc. The model element type for a 
use case diagram may be either a package or a block.  Model element name is the 
name of the model element that contains the use cases and actors in the diagram, 
and the diagram name, as usual, is user specifi ed and may be used to describe 
the purpose of the diagram. 

    Figure 11.1    shows an example of a use case diagram containing the key dia-
gram elements, a system, a use case, and some actors. The diagram shows the 
main use case for the  Surveillance System and the participants in that use case. 
The notation for use case diagrams is shown in the Appendix, Table A.21.  

    11.3    Using Actors to Represent the Users of a System 
   An actor is used to represent the role of a human, an organization, or any exter-
nal system that participates in the use of some system being investigated. Actors 
may interact directly with the system or indirectly through other actors. 

   It should be noted that  “ actor ” is a relative term because an actor who is exter-
nal to one system may be internal to another. For example, assume individuals 
in an organization request services from an internal help desk department that 
provides IT support for the organization. The help desk is considered the system 
and the members of the organization who are requesting service are considered 
the actors. However, these same individuals may in turn be providing services to 
an external customer. In that context, the individuals who were previously con-
sidered actors relative to the help desk are considered part of the system relative 
to the  “ external ” customer. 

   Actors can be classifi ed using the standard generalization relationship. Actor 
classifi cation has a similar meaning to the classifi cation of other classifi able model 
elements. For example, a specialized actor participates in all the use cases that 
the more general actor participates in. 

   An actor is shown either as a stick fi gure with the actor’s name underneath, or 
as a rectangle containing the actor’s name below the keyword «actor». The choice 

pkg [Package] Use Cases [Main Use Case]

Surveillance System

Monitor Environment

Operator Intruder

0..*1..*

«actor»
Emergency

Services

 FIGURE 11.1 

      Example use case diagram.    
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of symbol is dependent on the tool and methodology being used. Actor classifi ca-
tion is represented using the standard SysML generalization symbol—a line with a 
hollow triangle at the general end. 

   The Use Cases package for the  Surveillance System contains descriptions of 
the system’s users. Five actors are shown in  Figure 11.2   . The actors include an 
Operator who operates the system and a  Supervisor who manages the system. 
There is also an  Advanced Operator whose role is a specialized version of the 
Operator because that role has additional specialized skills. Note that an  Intruder  
is also modeled as an actor. Although strictly speaking not a user, an intruder does 
interact with the system and is an important part of the external environment 
to consider. Also of interest are the  Emergency Services to whom incidents may 
need to be reported. This actor is not modeled using an actor stick-fi gure symbol 
because it is an organization composed of people, systems, and other equipment. 

    11.3.1   Further Descriptions of Actors 
   Although not defined in SysML, there are many methodologies that suggest addi-
tional descriptive properties that can apply to actors as users of a system. These 
may include the following: 

      ■    The organization that the actor is a part of (e.g., procurement) 
      ■    Physical location 
      ■    Skill level required to use the system 
      ■    Clearance level required to access the system      

    11.4   Using Use Cases to Describe System Functionality 
   A use case describes the functionality that some system must provide in order 
to achieve some user goals. Typically, the use case description identifies the goal 

pkg [Package] Use Cases [Actors]

«actor»
Emergency

Services

Advanced Operator

Operator Supervisor

Intruder

 FIGURE 11.2 

      Representing actors and their interrelationships on a use case diagram.    
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or goals of the use case, a main pattern of use, and a number of variant uses. The 
system that provides functionality in support of use cases is called the  system
under consideration and often represents a system that is being developed. 
The system under consideration is sometimes referred to as the  subject and is 
represented by a block. We will use the term system or subject interchangeably in 
reference to the system under consideration. 

   A use case typically covers many  scenarios that are different paths the actors 
can take through the use case under different circumstances. 

   Actors are related to use cases by associations, with some restrictions. The 
association ends can have multiplicities, where the multiplicity at the actor end 
describes the number of actors involved in each use case. The multiplicity at the 
use case end describes the number of instances of the use case in which the actor 
or actors can be involved at any one time. Composite associations in either direc-
tion are not permitted; actors and use cases are always regarded as peers. 

   Neither actors nor use cases may own properties, so role names on associa-
tions do not represent reference properties as they might do on block defi nition 
diagrams. The role name on an actor end can be used, literally, to describe the 
role an actor plays in the associated use case whenever it is not obvious from the 
actor’s name. The role name on the use case end can be used to describe how 
use case functionality is relevant to the associated actor. 

   A use case is shown as an oval with the use case name inside it. Associations 
between actors and use cases are shown using standard association notation. The 
default multiplicity of the association ends, if not shown, is  “ 0..1. ” Associations 
cannot have arrows in use case diagrams because neither actors nor use cases 
may own properties. The subject of a set of use cases can be shown as a rectangle 
enclosing the use cases, with the subject’s name centered at the top. 

    Figure 11.3    shows the central use case of the  Surveillance System , 
called Monitor Environment. The two main actors associated with  Monitor
Environment are the system’s  Operator and the Intruder. The multiplicities on 

pkg [Package] Use Cases [Main Use Case]

Surveillance System

Monitor Environment

Operator Intruder

0..*1..*

«actor»
Emergency

Services

 FIGURE 11.3 

      A use case and the actors that participate in it.    
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the associations indicate that there must be at least one  Operator and potentially 
many  Intruders. The Emergency Services are also associated with the  Monitor
Environment use case, although they may not be active participants unless an 
Intruder  is detected and reported. 

    11.4.1   Use Case Relationships 
   Use cases can be related to one another by specialization, inclusion, and extension. 

    Inclusion 
   The inclusion relationship allows one use case, referred to as the  base use 
case, to include the functionality of another use case, called the  included use 
case, as part of its functionality when performed. The included use case is always 
performed when the base use case is performed. A behavior that realizes the base 
use case often references the behavior of the included use case. 

   It is implicit in the defi nition of inclusion that any participants of a base 
use case may participate in an included use case, so an actor associated with 
a base use case need not be explicitly associated to any included use case. 
For example, as shown in  Figure 11.4   , the Operator implicitly takes part in 
Initialize System and Shutdown System through their association with  Monitor
Environment.

   Included use cases are not intended to represent a functional decomposition 
of the base use case, but rather are intended to describe common functional-
ity that may be included by other use cases. In a functional decomposition, the 
lower-level functions represent a complete decomposition of the higher-level 
function and contain the actual functionality. By contrast, a base use case often 
describes a signifi cant proportion of the overall functionality required. For exam-
ple, in the case of Monitor Environment in Figure 11.4 , the key monitoring func-
tion is described by the base use case, and additional functionality is described by 
the included use cases. 

    Extension 
   A use case can extend a base use case using the  extension relationship. The 
extending use case is a fragment of functionality that is not considered part of 
the normal base use case functionality. It often describes some exceptional behav-
ior in the interaction, such as error handling, between subject and actors that 
does not contribute directly to the goal of the base use case. 

   To support extensions, a (base) use case defi nes a set of  extension points  
that represent places where it can be extended. An extension point can be ref-
erenced as part of the use case description. For example, if the use case had a 
textual description of a sequence of steps, the extension point could be used to 
indicate at which step in the sequence an extending use case would be valid. An 
extension has to reference an extension point to indicate where in the base use 
case it can occur. The conditions under which an extension is valid can be further 
described by a constraint that is evaluated when the extension point is reached to 
determine whether the extending use case occurs on this occasion. The presence 
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of an extension point does not imply that there will be an extension related to it, 
and the base use case is unaware of whether there is an extension. 

   Unlike an included use case, the base use case does not depend on an extend-
ing use case. However, an extending use case may be dependent on what is 
happening in its base use case; for example, it is likely to assume that some excep-
tional circumstance in the base use case has arisen. There is no implication that 
an actor associated with the base use case participates in the extending use case, 
and the extended use case in fact may have entirely different participants, as dem-
onstrated by the use case  Handle Camera Fault  in  Figure 11.4 .

    Classifi cation 
   Use cases can be classified using the standard SysML generalization relation-
ship. The meaning of classification is similar to that for other classifiable model 
elements. One implication, for example, is that the scenarios for the general use 
case are also scenarios of the specialized use case. It also means that the actors 
associated with a general use case do not participate in any scenarios solely 
described by a specialized use case. Classification of use cases is shown using the 
standard SysML generalization symbol. 

   Inclusion and extension are shown using dashed lines with an open arrow 
at the included and extended ends, respectively. An inclusion line has the key-
word «include» and an extension line has the keyword «extend». The direction of 
the arrows should be read as tail end includes or extends arrow end. Thus, a base 
use case includes an included use case, and an extending use case extends a base 
use case. 

   A use case may have an additional compartment under its name compartment 
that lists all its extension points. The extension line can have a call-out that names 
its extension point and shows the condition under which the extending use case 
occurs. 

    Figure 11.4  shows a use case diagram containing the complete set of use 
cases for the  Surveillance System. As part of  Monitor Environment, normal 
Operators are only allowed to oversee the automatic tracking of suspicious move-
ments—that is, where the system controls the cameras. This allows the company 
to employ untrained people and avoid issues with health and safety legislation. 
Advanced Operators can participate in the  Manually Monitor Environment  
use case, where they control the cameras manually using a joystick.  Advanced 
Operators also have the option to set up surveillance tracks for the cameras to 
follow. 

   The complete specifi cation for  Monitor Environment also includes system 
initialization and shutdown as indicated by the include relationships between 
Monitor Environment  and  Initialize System  and  Shutdown System.

   The Fault extension point represents a place in the  Monitor Environment  
use case where camera fault might be handled. The  Handle Camera Fault  
use case extends  Monitor Environment at the Fault extension point. It is an 
exceptional task that will only be triggered when camera faults are detected, 
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as indicated by its associated condition, and may only be performed by the 
Supervisor.  

    11.4.2   Use Case Descriptions 
   A text-based  use case description should be used to provide additional informa-
tion to support the use case definition. This description contributes significantly to 
the use case’s value. The description text can be captured in the model as a single 
or multiple comments. It is also possible to treat each step in a use case description 
as a SysML requirement. A typical use case description may include the following: 

      ■     Preconditions —the conditions that must hold for the use case to begin. 

      ■     Postconditions—the conditions that must hold once the use case has 
completed. 

      ■     Primary fl ow —the most frequent scenario or scenarios of the use case. 

      ■     Alternate and/or exception fl ows—the scenarios that are less frequent or 
off nominal. The exception fl ows may reference extension points and gen-
erally represent fl ows that are not directly in support of the goals of the pri-
mary fl ow. 
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 FIGURE 11.4 

      A set of use cases for the  Surveillance System.     



      ■     Other information may augment the basic use case description to further 
elaborate the interaction between the actors and the subject.    

   Here is an extract from the use case description for  Monitor Environment:

Precondition
 The  Surveillance System  is powered down. 

 Primary Flow 
The Operator or Operators will use the Surveillance System to monitor 
the environment of the facility under surveillance. An  Operator  will 
initialize the system (see Initialize System) before operation and shut 
the system down (see  Shutdown System ). During normal operation, the 
system’s cameras will automatically follow preset routes that have been set 
to optimize the likelihood of detection. 
  If an  Intruder is detected, an alarm will be raised both internally and 
with a central monitoring station, whose responsibility it is to summon 
any required assistance. If fi tted, an intelligent intruder tracking system, 
which will override the standard camera search paths, will be engaged at 
this point to track the suspected intruder. If not fi tted then it is expected 
that Operators will keep visual track of the suspected intruder and pass 
this knowledge onto the  Emergency Services  if and when they arrive. 

 Alternate Flow 
Immediately after system initialization but before normal operation begins, 
it is possible that a fault will arise in which case it can be handled (c.f. 
Fault  extension point), but faults will not be handled thereafter. 

 Postcondition 
 The  Surveillance System  is powered down.     

    11.5    Elaborating Use Cases with Behaviors 
   The textual definition for a use case, together with the use case models described 
previously, can describe the functionality of a system. However, if desired, a more 
detailed definition of the use case may be modeled with interactions, activities, 
or state machines, described in Chapters 8 through 10. Typically these additional 
definitions are added after the use case definition has been reviewed and agreed 
on and may represent the first step toward design. The choice of behavioral for-
malism is often a personal or project preference, but in general: 

      ■    Interactions are useful where a scenario is largely message-based. 

      ■    Activities are useful where the scenario includes considerable control logic, 
fl ow of inputs and outputs, and/or algorithms that transform data.  

      ■    State machines are useful when the interaction between the actors and the 
subject is asynchronous and not easily represented by an ordered sequence 
of events.    
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    11.5.1   Context Diagrams 
   When using interactions or activities, the lifelines and/or partitions represent par-
ticipants in the interaction. It is useful to create an internal block diagram where 
the enclosing frame corresponds to the  system context, and the subject and 
participating actors correspond to parts in the internal block diagram. To support 
this technique, actors can appear on a block definition diagram, and a part on 
an internal block diagram can be typed by the actor. Alternatively, the actors can 
be allocated to blocks using the allocation relationship described in Chapter 13, 
and then the parts representing actors can be typed by the block. 

    Figure 11.5    shows an internal block diagram that describes the internal 
structure of the block  System Context, which represents the context for the 
Surveillance System and its associated use cases. The system under consider-
ation, Surveillance System, is represented as part of the  System Context, called 
company security system. Two of the actors,  Advanced Operator and Intruder,
who participate in the use cases are also represented as parts  security guard and 
suspected thief , respectively. 

    11.5.2   Sequence Diagrams 
   A use case, in addition to being described in a use case description, can be elabo-
rated by one or more interactions described by sequence diagrams. The different 
interactions may correspond to the (base) use case, any included use cases, and 
any extending use cases. The block that owns the interactions must have parts 
that correspond to the subject and participants, which can then be represented 
by lifelines in the interactions. 

   As stated earlier, an included use case must always occur as part of its base use 
case. As a result, the use of an interaction describing an included scenario will typ-
ically be a mandatory part of the interaction representing a base scenario. This is 
typically indicated by the use of mandatory operators, such as seq, strict, or loop. 

   Strictly speaking, an interaction representing a base use case should be speci-
fi ed without reference to extending use cases, simply noting the extension points. 

ibd [Block] System Context [Use Case Participants]

company security system : Surveillance System

security guard : Advanced Operator [1..*]

suspected thief : Intruder [0..*]

 FIGURE 11.5 

      Context for use case scenarios.    
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However, a popular approach is to reference extending use cases as optional con-
structs in the interaction representing the base scenario. In this approach, an inter -
action corresponding to an extending use case is typically contained in an operand 
of a conditional operator, such as break, opt, or alt. The operand should be guarded 
using the constraint on the extension, if one is specifi ed. 

   The block  System Context, whose internal block diagram was shown in  Figure 
11.5, owns a number of interactions. The interaction for the primary scenario of the 
Manually Monitor Environment use case, Handling Alert, is shown in  Figure 11.6   .
In Figure 11.4 , the  Manually Monitor Environment use case included the 
Initialize System use case and the Shutdown System use case. The Handling Alert  

sd Handling Alert

opt

alt

Intruder Alert()

Lost Track

Auto Track()

[lost contact]

loop par

Standard Initializationref

Pan Camera(angle)

Tilt Camera(angle)

Cancel Alert()

company security system : Surveillance System
security guard[Honoria] : Advanced

Operator

Standard System Shutdownref

[automatic mode
required]

[manual mode
required]

 FIGURE 11.6 

      Scenario for a use case represented by a sequence diagram.    

278 CHAPTER 11 Modeling Functionality with Use Cases



interaction includes corresponding uses of the interaction  Standard Initialization  
that is a scenario for the  Initialize System use case, and the interaction  Standard 
Shutdown that is a scenario for the  Shutdown System use case. 

   In between these two interactions, the scenario describes how the secu-
rity guard,  Honoria, deals with an intruder alert. Because she is an  Advanced 
Operator, she can manually control the cameras if she wishes, or she can elect to 
allow the system to automatically track the suspected intruder. 

    11.5.3   Activity Diagrams 
   As mentioned previously, a use case scenario can also be represented by an activ-
ity diagram, where the participants are represented as activity partitions. As with 
interactions, an activity can elaborate a base use case, included use cases, and 
extending use cases. 

    Figure 11.7    shows an alternate description of how manual tracking of sus-
pected intruders is handled. Two activity partitions, representing the  security
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      Using an activity to describe a scenario.    



guard and the company security system, are used to indicate which use case par-
ticipant takes responsibility for which actions. 

   New intruder intelligence (from what source we are not told) is analyzed. The 
control fl ow initiated by the reception of the intelligence is forked to address two con-
cerns. If the intruder has moved, then a  Move Joystick action is performed to follow 
the intruder. If the intruder appears to have moved out of range of the current cam-
era, then a  Select Camera action is performed to select a more appropriate camera. In 
both cases, a fl ow fi nal node is used to handle situations where no action is required. 
Meanwhile, this stream of inputs is turned into  Pan Camera and Tilt Camera mes-
sages to the appropriate camera by the  Issue Camera Commands action. 

    11.5.4    State Machine Diagrams 
   State machines can also be used to represent scenarios, although some methods 
encourage the use of a single state machine to represent all possible scenarios of 
the use case, including exception cases. Note that when using a state machine, 
there are no constructs, such as interaction lifelines or activity partitions, to 
explicitly identify the parties responsible for taking actions. However, a state 
machine may have a number of regions that can informally be related to the par-
ticipants involved in the use case. 

    Figure 11.8    shows part of a state machine describing the  Manually Monitor 
Environment use case. It shows three states,  operator idle, intruder present, and 

stm Manually Monitor Environment

Auto Track

operator idle

Lost Track

Intruder Alert /
Raise Alarm

Cancel Alert /
Cancel Alarm

intruder present

do / Manually Track Intruder

automatic tracking
enabled

 FIGURE 11.8 

      Using a state machine to describe the  Manually Monitor Environment  use case.    
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automatic tracking enabled. When in the operator idle state, an Intruder Alert  
event causes the  Raise Alarm message to be sent, and a transition taken to the 
intruder present state. Once in the intruder present state, the intruder can be 
manually tracked, but an  Auto Track event will trigger a transition to  automatic
tracking enabled and prohibit manual tracking until a  Lost Track event happens. 

   This description shares many of the signals with  Figure 11.6 , but it focuses on 
states rather than messages.   

    11.6   Summary 
   Use cases are used to capture the functionality of a system needed to achieve user 
goals. The use case is often used as a means to describe the required functionality 
for a system and can augment SysML requirements to further refine the defini-
tion of text-based functional requirements. The way in which use cases are used 
is highly methodology dependent. The following are the key use case concepts 
introduced in this chapter. 

■    The system under consideration (also known as the subject) provides the func-
tionality required by actors, expressed by use cases. 

■    Use cases describe a particular use of a system to achieve a desired user goal. Use 
case relationships for inclusion, extension, and specialization are useful for fac-
toring out common functionality into use cases that can be reused by other use 
cases. The included use case is always performed as part of the base use case. A 
use case that extends the base use case is usually performed by exception, and 
generally is not in direct support of the goals of the base use case. 

■    Actors describe a role played by an entity external to the system and may rep-
resent humans, organizations, or external systems. Generalization relationships 
may be used to represent the relationships between different categories of 
users. Associations relate actors to the use cases in which they participate. 

■    The functionality described by a use case is often elaborated in more detail 
using interactions, activities, and state machines. Although these behaviors ’ dif-
ferent formalisms do make them more suitable in some situations than others, 
the choice of which to use is often based on personal or project preference.     

    11.7   Questions     
    1.   What is the diagram kind for a use case diagram? 
    2.   Which types of model elements can a use case diagram represent? 
    3.   What does an actor represent? 
    4.   How are actors represented on a use case diagram? 
    5.   If one actor specializes another, what does that imply? 
    6.   What does a use case represent? 
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     7.   What is another term for the system under consideration?  
     8.   How does a scenario differ from a use case?  
     9.   How is an inclusion relationship represented?  
    10.   Apart from a base and extending use case which two other pieces of infor-

mation might an extension relationship have? 
    11.   If a use case specializes another, what does that imply about its scenarios?  
    12.   How may use case participants and the system under consideration repre-

sented on an internal block diagram?  
    13.   How are use case participants and the system under consideration repre-

sented in interactions?  
    14.   How are use case participants and the system under consideration repre-

sented in activities?    

    Discussion Topics 
   Apart from those listed discuss two additional descriptive properties that would 
be useful for describing actors. 

   Apart from those listed discuss two additional descriptive properties that would 
be useful for describing use cases.       



   This chapter describes how text-based requirements are captured in the model 
and related to other model elements. This chapter also describes the diagram-
matic representations and special notations used to represent requirements and 
other cross-cutting relationships, such as allocations, in a SysML model. 

    12.1   Overview 
   A requirement specifies a capability or condition that must (or should) be satis-
fied, a function that a system must perform, or a performance condition a system 
must achieve. 

   Requirements come from many sources. Sometimes requirements are provided 
directly by the person or organization paying for the system, such as a customer 
who hires a contractor to build his or her house. Other times, requirements are 
generated by the organization that is developing the system, such as an automo-
bile manufacturer that must determine the consumer preferences for its product. 
The source of requirements often refl ects multiple stakeholders. In the case of the 
automobile manufacturer, the requirements will include government regulations 
for emissions control and safety as well as the direct preferences of the consumer. 

   Regardless of the source, it is common practice to group similar requirements 
into a specifi cation. The individual requirements should be expressed in clear 
and unambiguous terms, suffi cient for the developing organization to implement 
a system that meets stakeholder needs. However, the classic systems engineer-
ing challenge is to ensure that requirements are consistent (not contradictory) 
and feasible, have been validated to adequately refl ect real stakeholder needs, and 
have been verifi ed to ensure that they are satisfi ed by the system design. 

   Requirements management tools are also widely used to manage both require-
ments and the relationships between them. Requirements are typically maintained 
in some kind of digital repository. SysML has introduced a requirements modeling 
capability to provide a bridge between the text-based requirements that may be 
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maintained in a requirements management tool and the system model, using the 
requirements and confi guration management processes defi ne how to keep the 
requirements in sync with the model. This capability is intended to signifi cantly 
improve requirements management throughout the life cycle of a system by enabling 
rigorous traceability between text-based requirements and model elements that 
represent the system design, implementation, and test cases. 

   The individual text requirements may be imported from a requirements man-
agement tool or text specifi cation, or created directly in the system modeling 
tool. The specifi cations are typically organized into a hierarchical package struc-
ture that corresponds to a specifi cation tree. Each specifi cation contains multi-
ple requirements, such as a systems specifi cation that contains the requirements 
for the system, or the component specifi cations that contain the requirements 
for each component. The requirements contained in each specifi cation are mod-
eled in a containment hierarchy partitioning them into a tree structure that corre-
sponds to how the specifi cation is organized. 

The individual or aggregate requirements within the containment hierarchy 
can then be linked to other requirements in other specifi cations and to model ele-
ments that represent the system design, implementation, or test cases. The deriva-
tion, satisfaction, verifi cation, refi nement, trace, and copy relationships supports 
a robust capability for relating requirements to one another and to other model 
elements. In addition to capturing the requirements and their relationships, a 
capability is provided to capture the rationale, or basis for a particular decision 
and for linking it directly to the relationship or other model element. 

   SysML provides multiple ways for capturing requirements and their relation-
ships, in both graphical and tabular notations. A requirement diagram can 
be used to represent many of these relationships. In addition, compact graphi-
cal notations are available to depict the requirements relationships on any other 
SysML diagrams. The browser view of the requirements that is generally provided 
by the tool implementer also provides an important mechanism for visualizing 
requirements and their relationships. 

   Use cases have been used to support requirements analysis in many of the 
model-based approaches using UML and SysML. Different development methods 
may choose to leverage use cases in conjunction with SysML requirements. Use 
cases are typically effective for capturing the functional requirements, but are not 
as well suited for capturing a wide array of other requirements, such as physical 
requirements (e.g., weight, size, vibration); availability requirements; or other so-
called nonfunctional requirements. The incorporation of text-based requirements 
into SysML effectively accommodates the broadest possible range of requirements 
that a systems engineer will face.

Use cases, like any other model element, can be related to requirements using 
the various relationships (e.g., the refi ne relationship). In addition, use cases are 
often accompanied by a use case description (see the example in Chapter 11). 
The steps in the use case description can be captured as individual text require-
ments, and then related to other model elements, to provide more granular trace-
ability between the use cases and the model. Many other techniques with varying 
degrees of formalism can be used in addition to the examples cited here.  
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    12.2   Requirement Diagram 
   Requirements captured in SysML can be depicted on a requirement diagram as 
well as other diagrams. The requirement diagram is generally used to graphi-
cally depict hierarchies of requirements or to depict an individual requirement 
and its relationship to other model elements. The requirement diagram header is 
depicted as follows: 

    req [package or requirement] Model Element Name [diagram name]     

   The diagram frame for a requirement diagram designates a model element 
type that can be a package or a requirement. The model element name is the 
name of the package or requirement containing the requirements, and the dia-
gram name is user defi ned and often used to describe the purpose of the dia-
gram. Figure 12.1    shows a generic example of a requirement diagram that 
contains some of the most common symbols. 

   This example highlights a number of different requirements relationships 
and alternative notations. For example, Camera satisfi es the requirement called 
Sensor Decision. It also includes three different representations of containment,
deriveReqt, Verify, and satisfy relationships (shown as direct relationships, in 
compartment notation, and in callout notation). In practice, only one of these 
representations would be used. Each of the symbols depicted on this diagram are 
discussed later in this chapter. Tables A.22 through A.24 in the Appendix contain 
a complete description of the SysML notation for requirements. 

   The requirements construct can be directly shown on block defi nition dia-
grams, package diagrams, and use case diagrams. The relationships between 
requirements and other model elements can be represented on other diagrams 
(e.g., block defi nition diagrams, internal block diagrams, and others) using com-
partment and callout notations; see Sections 12.5.2 and 12.5.3 for examples. 
Alternative ways to view requirements are discussed in Section 12.7 (tabular 
views) and Section 12.9.1 (browser view). 

    12.3   Representing a Text Requirement in the Model 
   A requirement that is captured in text represented in SysML using the 
«requirement» model element. Once captured, it can be related to other require-
ments and to other model elements through a specific set of relationships. Each 
requirement includes predefined properties for a unique identifier, and for a text 
string.

    Figure 12.2    is an example of a text-based requirement called Operating Envir-
onment as represented in SysML. It is distinguished by the keyword «requirement»
and will always contain, as a minimum, properties for id and text. This same infor-
mation can be displayed in a tabular format that is described later in this chapter. 

   Requirements can be customized by adding additional properties such as verifi ca-
tion status, criticality, risk, and requirements category. The verifi cation status prop-
erty, for example, may include values such as not verifi ed, verifi ed by inspection,

12.3 Representing a Text Requirement in the Model
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verifi ed by analysis, verifi ed by demonstration, and verifi ed by test. A risk or criti-
cality property may include the values high, medium, and low. A requirements cat-
egory property may include values such as functional, performance, or physical. 

   An alternative method for creating requirements categories is to defi ne addi-
tional subclasses of the requirement stereotype (see Chapter 14 for discussion on 

req [Package] Customer Specification [example requirement diagram]

«requirement»
Operating Environment

«requirement»
All Weather Operation

id � "S1.1"
text � "The system shall be capable of detecting
intruders under all weather conditions." 

derivedFrom
«requirement» Sensor Decision

verifiedBy
«interaction» Water Spray Test

refinedBy
«useCase» Detection Scenario
«stateMachine» Weather Model

id � "S1"
text � "The system shall be capable of
detecting intruders 24 hours per day,
7 days per week, under all weather
conditions."

id � "S1.2"
text � "The system shall be capable
of detecting intruders 24 hours per
day, 7 days per week." 

«requirement»
24/7 Operation

«requirement»
Sensor Decision

«testCase»
Water Spray Test

«block»
Camera

satisfies
«requirement» Sensor Decision

«satisfy»

derived
«requirement» All Weather Operation
«requirement» 24/7 Operation
satisfiedBy
«requirement» Camera

id � "D1"
text � "The system shall use cameras
to detect intruders."

«deriveReqt»

«deriveReqt»

«verify»

 FIGURE 12.1 

      Generic example of a requirement diagram.    
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subclassing stereotypes). The stereotype enables the modeler to add constraints 
that restrict the types of model elements that may be assigned to satisfy the 
requirement. For example, a functional requirement may be constrained so that 
it can only be satisfi ed by a behavioral model element such as an activity, state 
machine, or interaction. Annex C of the SysML specifi cation [1] includes some 
nonnormative requirement subclasses, which are also shown in Table 12.1   . 

   As shown in the table, each category is represented as a stereotype of the generic 
SysML «requirement». Table 12.1  also includes a brief description of the category. 
Additional stereotype properties or constraints can be added as deemed appropriate 
for the application. 

   Other examples of requirements categories may include operational require-
ments, specialized requirements for reliability and maintainability, store require-
ments, activation and deactivation requirements, and a high-level category for 
stakeholder needs. Some guidance for applying a requirements profi le follows. 
(General guidance on defi ning a profi le is included in Chapter 14.) 

      ■    The categories should be adapted for the specifi c application or organiza-
tion and refl ected in the table. This includes agreement on the categories 
and their associated descriptions, stereotype properties, and constraints. 
Additional categories can be added by further stereotyping the categories 
shown in Table 12.1   , or adding additional categories at the peer level of 
these categories. 

      ■    Apply the more specialized requirement stereotype (functional, interface, 
performance, physical, design constraint) as applicable and ensure consis-
tency with the description, stereotype properties, and constraints of these 
requirements.

      ■    A specifi c text requirement can include the application of more than one 
requirement category, in which case each stereotype should be shown in 
guillemets (« ») or in a comma-separated list.     

    12.4   Types of Requirements Relationships 
   SysML includes specific relationships to relate requirements to other require-
ments as well as to other model elements. These include relationships for defin-
ing a requirements hierarchy, deriving requirements, satisfying requirements, 
verifying requirements, refining requirements, and copying requirements. 

«requirement»
Operating Environment

id � "S1"
text � "The system shall be capable of
detecting intruders 24 hours per day, 7
days per week, under all weather conditions."

 FIGURE 12.2 

      Example of a requirement as depicted in SysML.    

12.4 Types of Requirements Relationships
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Table 12.1        Optional Requirements Stereotypes from SysML 1.0 Annex C.2  

   Stereotype Base Class Properties Constraints Description

   «extendedRequirement»   «requirement»  source: String 
risk: RiskKind 
verifyMethod:
VerifyMethodKind 

N/A A mix-in stereotype that contains 
generally useful attributes for 
requirements.

   «functionalRequirement» «extendedrequirement» N/A Satisfi ed by an 
operation or 
behavior

 Requirement that specifi es an 
operation or behavior that a system, 
or part of a system, must perform. 

   «interfaceRequirement» «extendedrequirement» N/A Satisfi ed 
by a port, 
connector, 
item fl ow, and/
or constraint 
property

 Requirement that specifi es the 
ports for connecting systems and 
system parts and that optionally 
may include the item fl ows across 
the connector and/or interface 
constraints.

   «performanceRequirement» «extendedrequirement» N/A Satisfi ed by 
a value 
property. 

 Requirement that quantitatively 
measures the extent to which a 
system, or a system part, satisfi es a 
required capability or condition. 

   «physicalRequirement» «extendedrequirement» N/A Satisfi ed by 
a structural 
element.

 Requirement that specifi es physical 
characteristics and/or physical 
constraints of the system, or a 
system part. 

   «designConstraint» «extendedrequirement» N/A Satisfi ed by 
a block or 
a part. 

 Requirement that specifi es a 
constraint on the implementation of 
the system or system part, such as 
“the system must use a commercial 
off-the-shelf component”.
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Table 12.2       Requirement Relationships and Compartment Notation 

   Relationship 
Name

 Keyword 
Depicted on 
Relation

 Requirement 
(arrow) End 
Callout/
Compartment

 Client (no arrow) End 
Callout/Compartment

   Satisfy «satisfy» Satisfi ed by 
«model element»

Satisfi es «requirement»

   Verify «verify» Verifi ed by 
«model element»

Verifi es «requirement»

   Refi ne «refi ne» Refi ned by 
«model element»

Refi nes «requirement»

   Derive 
Requirement

«deriveReqt»  Derived 
«requirement»

 Derived from 
«requirement»

   Copy «copy»  (None)  Master «requirement»

   Trace «trace»  Traced 
«model element»

 Traced from 
«requirement»

   Containment 
(Requirement
decomposition)

 (Crosshair 
icon)

 (No callout)  (No callout) 

    Table 12.2  summarizes the specifi c relationships, which are discussed later in 
this chapter. The containment, derive, and copy relationships can only relate one 
requirement to another. The satisfy, verify, refi ne , and trace relationships can 
relate requirements to other model elements. 

    12.5    Representing Cross-Cutting Relationships 
in SysML Diagrams 

   Requirements can be related to model elements, even if they may appear in differ-
ent hierarchies or on different diagrams. These relationships can be shown directly 
if the related model elements happen to appear on the same diagram. If the model 
elements do not appear on the same diagram, they can still be shown by using the 
compartment or callout notation. Direct notation may be used, for example, to 
show a derive requirement relationship between requirements on a requirement 
diagram. The compartment or callout notation is used when requirements do not 
appear on other kinds of diagrams, or when other model elements do not appear 
on a requirement diagram. An example is a block definition diagram showing a 
block that satisfies one or more requirements. In addition to these graphical repre-
sentations, SysML provides for a flexible tabular notation for representing require-
ments and their relationships. Note that the allocation relationship, described in 
Chapter 13, is represented using the same notational approaches as those used here 
to represent the relationship between requirements and other model elements. 

12.5 Representing Cross-Cutting Relationships
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    12.5.1    Depicting Requirements Relationships Directly 
   When the requirement and the model element it relates to are shown on the same 
diagram, this relation may be depicted directly. Direct notation depicts this rela-
tionship as a dashed arrow with the name of the relationship displayed as a key-
word (e.g., «satisfy», «verify», «refine», «derive requirement», «copy», and «trace»).

    Figure 12.3    provides an example of a «satisfy» relationship between a Camera  
and a requirement, Sensor Decision, where the camera is part of the design that 
is asserted to satisfy the requirement. Note that the arrowhead points to the 
requirement.

   It is important to recognize the signifi cance of the arrow direction. Since most 
requirement relationships in SysML are based on the UML dependency relation-
ship, the arrow points from the dependent model element (called the client) to the 
independent model element (called the supplier). The interpretation of this rela-
tionship is that the camera design is dependent on the requirement, meaning that 
if the requirement changes, the design must change. Similarly, a derived require-
ment will be dependent on the requirement that it is derived from. In SysML, 
the arrowhead direction is opposite of what has typically been used for require-
ments fl ow-down or requirements allocation, in which the requirement points to 
the design element intended to satisfy it, or the higher-level requirement points
to the lower-level requirement.  

    12.5.2     Depicting Requirements Relationships 
Using Compartment Notation 

    Compartment notation is an alternative method for displaying a requirement 
relationship between a requirement and another model element, such as a block, 
part, or another requirement, that supports compartments. This is a compact 
notation that can be used instead of displaying a direct relationship. It also can 
be used for diagrams that preclude display of a requirement directly, such as an 
internal block diagram. In  Figure 12.4   , compartment notation is used to show 
the same satisfy relationship to the requirement from  Figure 12.3 . This should be 
interpreted as “the requirement is satisfied by the Camera.  ”  The compartment 
notation explicitly displays the relationship and direction ( satisfiedBy), the model 
element type ( «block» ), and the model element name ( Camera ).  

«block»
Camera

id � "D1"
text � "The system shall use
cameras to detect intruders."

«requirement»
Sensor Decision

«satisfy»

 FIGURE 12.3 

      Example of direct notation depicting a satisfy relationship.    
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    12.5.3   Depicting Requirements Relationships Using Callout Notation 
    Callout notation is an alternative notation for depicting requirements relation-
ships. It is the least restrictive notation in that it can be used to represent a rela-
tionship between any requirement and any other model element on any diagram 
type. This includes relationships between requirements and model elements, 
such as pins, ports, and connectors, that do not support compartments and there-
fore cannot use compartment notation. 

   A callout is depicted as a comment symbol that is graphically connected to 
a model element. The callout symbol represents the model element at the other 
end of the relationship. The callout notation depicted in Figure 12.5    shows the 
same information as the compartment notation in Figure 12.4 , and it should be 
interpreted as “the requirement is satisfi ed by the  Camera.  ”    

    12.6   Depicting Rationale for Requirements Relationships 
   A rationale is a SysML model element that can be associated with either a require-
ment or a relationship between requirements. As the name implies, the rationale 
is intended to capture the reason for a particular design decision. Although ration-
ale is described here for requirements, it is a model element that can be applied 
throughout the model to capture the reason for any type of decision. A problem is 
like a rationale, but is used instead to specifically identify a particular problem 
that needs to be solved. 

   As shown in Figure 12.6   , the rationale is expressed using a comment nota-
tion with the keyword «rationale». The problem is likewise identifi ed with the 

«requirement»
Sensor Decision

id � "D1"
text � "The system shall use
cameras to detect intruders."

satisfiedBy
«block» Camera

 FIGURE 12.4 

      Example of compartment notation depicting a satisfy relationship.    

satisfiedBy
«block» Camera

id � "D1"
text � "The system shall use
cameras to detect intruders."

«requirement»
Sensor Decision

 FIGURE 12.5 

      Example of callout notation depicting a satisfy relationship.    

12.6 Depicting Rationale for Requirements Relationships
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«problem» keyword. The text in the comment can either provide the rationale 
directly or reference an external document (e.g., a trade study or analysis report) 
or another model part such as a parametric diagram. The reference may include a 
hyperlink, although this is not explicit in the language. In this particular example, 
there is a reference to a trade study, T.1. The context of this particular rationale is 
shown in  Figure 12.14  later in this chapter. 

   A rationale or problem can be attached to any requirements relationship or to 
the requirement. For example, a rationale or problem can be attached to a satisfy 
relationship, and refer to an analysis report or trade study that provides the sup-
porting rationale for why the particular design satisfi es the requirement. Similarly, 
the rationale can be used with other relationships such as the derive relationship. 
It also provides an alternative mechanism to the verify relationship by attaching a 
rationale to a satisfy relationship that references a test case.  

    12.7     Depicting Requirements and Their Relationships 
in Tables 

   The requirement diagram has a distinct disadvantage when viewing large num-
bers of requirements. Large amounts of real estate are needed to depict and relate 
all the requirements needed to specify a system of even moderate complexity. 
The traditional method of viewing requirements in textual documents is a more 
compact representation than viewing them in a diagram. Modern requirements 
management tools typically maintain requirements in a database, and the results 
of queries to the database can be displayed clearly and succinctly in tables or 
matrices. SysML embraces the concept of displaying results of model queries in 
tables, but the specifics of generating tables is left to the tool implementer. 

    Figure 12.7    provides an example of a simple requirements table. In this 
example, the table lists the requirements in the System Specifi cation package. 
Depending on its capability, a tool may also apply query and fi lter criteria to gen-
erate requirements reports from a query of the model. This report can represent 
a view of the model, as described in Chapter 5. In addition, the tool may support 
editing requirements and their properties directly in the table view. 

    12.7.1    Depicting Requirement Relationships in Tables 
   A relationship path can be formed by selecting one or more requirements (or other 
model elements), and navigating the relationships from the selected requirement.

«rationale»
Using a camera is the most cost-effective
way of meeting these requirements.
See trade study T.1.

 FIGURE 12.6 

      Example of rationale as depicted on any SysML diagram.    
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This can be represented in tabular form, as shown in Figure 12.8   . In this exam-
ple, D1 is the selected requirement, and the path includes a  derivedFrom  relation-
ship and the rationale associated with the relationship. 

   The relationship paths can be arbitrarily deep; that is, navigates a single kind 
of relationship from one model element to the next, or navigates different types of 
relationships from one model element to the next. This can be particularly useful 
when analyzing the impact of requirements changes across the model. This query 
mechanism could also be used as a method to construct a view, as described in 
Chapter 5. Depending on tool capability, it may also be possible to edit require-
ment relationships and properties directly in the tabular view. 

    12.7.2   Depicting Requirement Relationships as Matrices 
   The tabular notation can also be used to represent multiple complex interrelation-
ships between requirements and other model elements in the form of matrices. 
Figure 12.9    shows the result of a query in tabular ( matrix) form; it depicts the 
satisfy and derive relationships. In this example, the requirements are shown in 
the left column, and the model elements that have a derive or satisfy relationship 
are shown in the other columns. Filtering criteria can be applied to limit the size 
of the matrix. In this example, the requirements properties have been excluded, 
and only the derive and satisfy relationships have been included. These relation-
ships are discussed later in this chapter. Again, this is an example of a mechanism 
that a tool vendor might use to construct a view of the model.   

id name text
S1 Operating Environment The system shall be capable of detecting intruders 24 hours per day.. .

S1.1 Weather Operation The system shall be capable of detecting intruders under all weather. . .

S1.2 24/7 Operation The system shall detect intruders 24 hours per day, 7 days per week

S2 Availability The system shall exhibit an operational availability (Ao) of 0.999.. .

table [Package] System Specification [Decomposition of top-level requirements]

 FIGURE 12.7 

      Example of requirements table.    

id name relation id name Rationale

S1.1 24/7 Operation
Using a camera is the most cost-effective way of
meeting these requirements. See trade study T1.

derivedFrom

derivedFrom S1.2
Weather 
Operation

Using a camera is the most cost-effective way of
meeting these requirements. See trade study T1. 

D1 Sensor
Decision

table [Requirement] Camera Decision [Requirements Tree]

 FIGURE 12.8 

      Example of table following the   derivedFrom  relationship.    

12.7 Depicting Requirements and Their Relationships in Tables
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    12.8    Modeling Requirement Hierarchies in Packages 
   Requirements can be organized into a package structure. A typical structure may 
include a top-level package for all requirements relative to this model. Each pack-
age within this package structure may correspond to a different specification, 
such as the system specification, subsystem specifications, and component speci-
fications. Each specification package contains the text-based requirements for 
that specification. This package structure corresponds to a typical specification 
tree that is a useful artifact for describing the scope of requirements for a project. 

   An example of a requirements package structure, or specifi cation tree, is 
shown in the package diagram in  Figure 12.10   . The containment relationship with 
the crosshairs symbol at the owning end is used to indicate that the Customer
Specifi cation package, the System Specifi cation, and the Camera Specifi cation  
are contained in the Requirements  package. 

   Organizing requirements into packages corresponding to various specifi ca-
tions provides familiarity and consistency with document-based approaches and 
facilitates confi guration management of individual specifi cations at the package 
level. Also, a specifi cation report can be generated directly from the contents of 
the appropriate package.  

    12.9    Modeling a Requirements Containment Hierarchy 
   The containment relationship is used to represent how a complex requirement 
can be partitioned into a set of simpler requirements without adding meaning or 
other implications. A containment relationship can be viewed as a logical and-
ing (conjunction) of the contained requirements with the container requirement. 
The partitioning of complex requirements into simpler requirements is essential 

 FIGURE 12.9 

      Example of tabular view of requirements as matrices tracing satisfy and derive requirement 
relationships, respectively.    
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to establish full traceability and show how individual requirements are the basis 
for further derivation, and how they are satisfied and verified. 

    Figure 12.11    shows a requirement diagram with a simple containment hierar-
chy. The Customer Specifi cation package from Figure 12.10  represents a top-level 
specifi cation that serves as a container for all other customer-generated require-
ments. In this example, the Customer Specifi cation package contains two other 
requirements, as depicted by the crosshairs symbol. Note that instead of using a 
package, a specifi cation may be modeled as a «requirement» that contains a hier-
archy of other requirements. A typical specifi cation may contain from hundreds 
to thousands of individual requirements, but they generally can be organized into 
a hierarchy that corresponds to the organization of a specifi cation document. 

    Figure 12.12    shows how containment hierarchies can be used to create multi-
ple levels of nested requirements. In this example, the Operating Environ ment  
requirement contains two additional requirements for All Weather Operation and 
24/7 Operation . 

    12.9.1   The Browser View of a Containment Hierarchy 
   A typical modeling tool will include a browser view of the model that includes the 
requirements hierarchy. In Figure 12.13   , the specification packages corresponding 
to the package diagram in Figure 12.10  are shown along with the requirements cor-
responding to the containment hierarchy in Figure 12.12 . This representation is a 
compact way to view the requirements containment hierarchy.   

Customer Specification

Camera Specification

System Specification

Requirements

pkg [Package] Requirement Example [req pkg structure]

 FIGURE 12.10 

      Example of a package structure for organizing requirements.    

12.9 Modeling a Requirements Containment Hierarchy
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req [Package] Requirement Example [containment example 1]

Customer Specification

req [Package] Customer Specification [containment example 2]

«requirement»
Operating Environment

id � "S2"
text � "The system shall exhibit an operational
availability (Ao) of 0.999 over its installed lifetime."

id � "S1"
text � "The system shall be capable of detecting
intruders 24 hours per day, 7 days per week,
under all weather conditions."

«requirement»
Availability

«requirement»
Operating Environment

«requirement»
Availability

id � "S1"
text � "The system shall be capable of detecting
intruders 24 hours per day, 7 days per week,
under all weather conditions."

id � "S2"
text � "The system shall exhibit an operational
availability (Ao) of 0.999 over its installed
lifetime."

 FIGURE 12.11 

      Two equivalent examples of requirements contained in a package.    

    12.10    Modeling Requirement Derivation 
   Deriving requirements from source, customer, or other high-level requirements 
is fundamentally different from the containment relationship described in the 
previous section. A derive relationship between a derived requirement and a 
source requirement is based on an analysis. The analysis can be associated with 
the derived relationship by a «rationale».

   An example of the derive relationship is represented in the requirement dia-
gram in  Figure 12.14   . The relationship is shown with a dashed line with the 
keyword «deriveReqt» with the arrowhead pointing to the source requirement. 
Note that the «rationale» has been associated with the derivation relationship and 
includes a reference to trade study documentation. 
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«requirement»
All Weather Operation

verifiedBy
«interaction» Water Spray Test

«requirement»
24/7 Operation

«requirement»
Operating Environment

id � "S1"
text � "The system shall be capable of
detecting intruders 24 hours per day,
7 days per week, under all weather
conditions."

id � "S1.1"
text � "The system shall be capable of
detecting intruders under all weather
conditions."

id � "S1.2"
text � "The system shall be capable of
detecting intruders 24 hours per day,
7 days per week."

req [Package] Customer Specification [containment example 3]

 FIGURE 12.12 

      Example of requirements containment hierarchy.    

 FIGURE 12.13 

      Example of requirements containment in a tool browser/explorer.    

   The requirements traceability matrix, included in traditional specifi cation doc-
uments, often shows relationships between requirements in one specifi cation to 
requirements in other higher- or lower-level specifi cations. This relationship is 
semantically equivalent to a set of SysML derive relationships. A derive relationship 
often shows relationships between requirements at different levels of the specifi ca-
tion hierarchy. It is also used to represent a relationship between requirements at 
the peer level of the hierarchy, but at different levels of abstraction. For example, 
the analysis of hardware or software requirements, which are originally specifi ed by 

12.10 Modeling Requirement Derivation
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the systems engineering team, may result in more detailed requirements that refl ect 
additional implementation considerations or constraints. The more detailed require-
ments may be related to the original requirements through a derive relationship. 

    12.11    Asserting That a Requirement Is Satisfi ed 
   The satisfy relationship is used to assert that a model element corresponding to 
the design or implementation satisfies a particular requirement. The actual proof 
that the assertion is correct is accomplished by the verify relationship described 
in the next section.  Figure 12.15    provides examples of the satisfy relationship. 

   The satisfy relationship is shown with a dashed line with the keyword «satisfy»
with the arrowhead pointing to the requirement to assert that the Camera satis-
fi es the requirement. An alternative callout notation is also shown to represent 
this relationship. The «rationale» is associated with the satisfy relationship to indi-
cate why this design is asserted to satisfy the requirement. In  Figure 12.16   , the 
same satisfy relationship from  Figure 12.15  is shown on the block defi nition dia-
gram using the compartment notation.  

    12.12    Verifying That a Requirement Is Satisfi ed 
   The verify relationship is a relationship between a requirement and a test case 
that is used to verify that the requirement is satisfied. As stated in the previous 

req [Package] System Specification [sensor decision derivation rationale]

«requirement»
All Weather Operation

id � "S1.1"
text � "The system shall be capable of
detecting intruders under all weather
conditions."

«requirement»
Sensor Decision

id � "D1"
text � "The system shall use
cameras to detect intruders."

satisfiedBy
«block» Camera

«requirement»
24/7 Operation

id � "S1.2"
text � "The system shall be capable of
detecting intruders 24 hours per day,
7 days per week."

«rationale»
Using a camera is the most cost-effective
way of meeting these requirements. See
trade study T.1.

«deriveReqt»«deriveReqt»

 FIGURE 12.14 

      Example of «deriveReqt» relationship, with rationale attached.    
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satisfies
«requirement» Sensor Decision

«block»
Camera

bdd [Package] Requirement Example [satisfy compartment]

 FIGURE 12.16 

      Example of satisfy relationship using compartment notation.    

«block»
Camera

derived
«requirement» All Weather Operation
«requirement» 24/7 Operation

satisfiedBy
«block» Camera

satisfies
«requirement» Sensor Decision

«satisfy»

req [Package] Requirement Example [direct relationship with callouts]

«rationale»
Camera is a logical block
to be realized later by a
specific camera type.«requirement»

Sensor Decision

id � "D1"
text � " The system shall use cameras
to detect intruders."

 FIGURE 12.15 

      Example of requirement satisfy relationship and associated callout notation.    

section, the satisfy relationship is an assertion that the model elements represent-
ing the design or implementation satisfy the requirement, but the verify relation-
ship is used to prove the assertion is true (or false). A test case can represent 
any method for performing the verification, including the standard verification 
methods of inspection, analysis, demonstration, and testing. Additional stereo-
types can be defined by the user if required to represent the different verifica-
tion methods. The test case can reference a documented verification procedure, 
or it can represent a model of the verification method, such as an interaction 
(sequence diagram). The results of performing the test case is called the verdict, 
which can include a value of pass or fail or a specific value. 

    Figure 12.17    provides an example of the use of the verify relationship. The 
verify relationship is shown with a dashed line with the keyword «verify» with 
the arrowhead pointing from the Water Spray Test test case to the All Weather 

12.12 Verifying That a Requirement Is Satisfi ed
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Operation requirement that is being verifi ed. An alternative compartment nota-
tion is also shown to represent this relationship. 

   A test case keyword can be applied to other behaviors, including a sequence 
diagram, activity diagram, and state machine diagram, to specify the test case 
method. An example of applying the test case keyword to a sequence diagram 
is shown in  Figure 12.18   . In this case the test case shows an emulator represent-
ing the verifi cation system, providing a stimulus to the system under test, and the 
interaction represents the expected system in response. The expected response 
can be compared with the actual response from running the test to assess 
whether the system actually satisfi es the requirement. 

   A test case that is modeled as a behavior, in general, can represent a mea-
surement of almost any characteristic, including structural characteristics. For 
example, the test case could represent a behavior that measures system weight. 
In this sense, a test case is a general-purpose mechanism for verifying require-
ments. In addition, other model elements can be used to verify a requirement. An 
example may include using a constraint block as an analysis method to verify a 
requirement.

   The test case in SysML is defi ned consistent with the UML Testing Profi le [35] 
to facilitate its integration. The test profi le provides additional semantics for rep-
resenting many other aspects of a test environment. The integration with the test-
ing profi le is covered briefl y in Chapter 17 as part of the discussion on integrated 
system development environments.  

    12.13     Reducing Requirements Ambiguity Using 
the Refi ne Relationship 

   The refine relationship provides a capability to reduce ambiguity in a require-
ment by relating a SysML requirement to another model element that clarifies the 
requirement. This relationship is typically used to refine a text-based requirement
with a model, but it can also be used to refine a model with a text-based require-
ment. For example, a text-based functional requirement may be refined with 

req [Package] Testing [verification example]

«requirement»
All Weather Operation

«verify»

verifiedBy
«interaction» Water Spray Test

«testCase»
Water Spray Test

verifies
«requirement» All Weather Operation

verdict: VerdictKind
.. .

 FIGURE 12.17 

      Example of verify relationship.    
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a more precise representation, such as a use case and its realizing activity dia-
gram. Alternatively, the model element or elements may include a fairly abstract 
representation of required system interfaces that can be refined by an interface’s 
text specification that includes a detailed description of an interface protocol or 
a physical layout of an interface envelope. 

   Refi nement of requirements should clarify only the requirement meaning or 
context. It is distinguished from a derive relationship in that a refi ne relationship 
can exist between a requirement and any other model element, whereas a derive 
relationship is only between requirements. In addition, a derive relationship is 
not limited to a reexpression or clarifi cation, but rather imposes additional con-
straints based on analysis. 

sd [Interaction] Water Spray Test [example test case sequence]

alt

: Camera: Test Jig: Arbiter

no leak {verdict � pass}

leak {verdict � fail}

Spray Done

Water

Spray Water()

Check for Leaks

[no leakage]

[leakage]

 FIGURE 12.18 

      Example of a test case interaction, depicted as a sequence diagram.    

12.13 Reducing Requirements Ambiguity Using the Refi ne Relationship
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   An example of the refi ne relationship is provided in  Figure 12.19   ; it shows 
how the All Weather Operation requirement is refi ned by a state machine that 
models weather conditions and transitions. The refi ne relationship is shown with 
a dashed line with the keyword «refi ne» with the arrowhead pointing from the 
element that represents the more precise representation to the element being 
refi ned. An alternative callout and compartment notation is also shown to repre-
sent this relationship. Note that the Weather Model state machine only partially 
refi nes the requirement. The  Detection Scenario use case might address, for 
example, specifi c detection expectations in each weather condition.  

req [Package] Customer Specification [refinement example]

derivedFrom

«requirement» Sensor Decision

refinedBy

«useCase» Detection Scenario
«stateMachine» Weather Model

«requirement»
All Weather Operation

Detection Scenario

«statemachine»
Weather Model«refine»

«refine»

verifiedBy

«interaction» Water Spray Test

id � "S1.1"
text � "The system shall be capable of detecting
intruders under all weather conditions. "

stm Weather Model [refinement using state machine]

SnowyRainy Foggy

[precip, T � 0] [no precip, T � dewpoint]

[high pressure][low pressure]

[precip, T ��0]

Cloudy

Clear

 FIGURE 12.19 

      Example of refi ne relationship applied to requirement.    
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    12.14   Using the General-Purpose Trace Relationship 
   A trace relationship provides a general-purpose relationship between a require-
ment and any other model element. The trace semantics do not include any con-
straints and therefore are quite weak. However, the trace relationship can be 
useful for relating requirements to source documentation or for establishing a 
relationship between specifications in a specification tree. 

   As shown in Figure 12.20   , the trace relationship is used to relate a particular 
requirement to a Market Survey that was conducted as part of the needs analy-
ses. The trace relationship is shown with a dashed line with the keyword «trace»
with the arrowhead pointing to the source document. The survey is represented 
as a user-defi ned model element with the keyword «document».

«requirement»
Operating Environment

«document»
Market Survey«trace»

id � "S1"
text � "The system shall be capable of
detecting intruders 24 hours per day,
7 days per week, under all weather
conditions."

req [Package] Customer Specification [trace example]

 FIGURE 12.20 

      Example of trace relationship linking a requirement to an element representing an external 
document.   

12.14 Using the General-Purpose Trace Relationship

    12.14.1   Reusing Requirements with the Copy Relationship 
   Requirements in SysML are not like blocks in that they cannot have subclasses, or 
be generalized or specialized. As in specification documents, SysML requirements 
are simply textual imperatives, and they cannot have multiple usages, but they 
can be copied. The copy relationship relates a copy of a requirement to its origi-
nal to support reuse of requirements. A requirement exists in one namespace or 
containment hierarchy and has specific meaning in its containing context. To sup-
port reuse of the requirement, the copied requirement is a requirement whose 
text property is a read-only copy of the text property of the source requirement, 
but with a different id. 

   An example of a copy relationship is shown in Figure 12.21   . The copy rela-
tionship is shown with a dashed line with the keyword «copy» with the arrow-
head pointing from the copied requirement to the source requirement. In this 
example, the source requirement being copied is a requirement from a technical 
standard that is reused in many different requirements specifi cations.   
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    12.15    Summary 
   SysML can be used to model text-based requirements and relate them to other 
requirements and to other model elements. The following are some of the key 
requirements modeling concepts. 

■     The SysML requirements modeling capability serves as a bridge between traditional 
text-based requirements and the modeling environment. The requirements can be 
imported from a requirements management tool, or text specification, or created 
directly in the modeling tool. 

■     Each specification is generally captured in a package. The package structure 
can correspond to a traditional specification tree. Each specification in turn 
includes a containment hierarchy of the requirements contained within 
the specification. The browser view in most tools can be used to view the 
requirements containment hierarchy.  

■     The individual or aggregate requirements can then be related to other require-
ments in other specifications as well as model elements that represent the 
design, implementation, or test cases. The requirements relationships include 
derive, satisfy, verify, refine, trace, and copy. These relationships provide a robust 
capability for managing requirements and supporting requirements validation 
and verification so that the design satisfies the requirements. 

■     There are multiple notational representations to enable requirements to be 
related to other model elements on other diagrams; they include direct notation, 
compartment notation, and callout notation. The requirement diagram is 
generally used to represent a containment hierarchy or to represent the relation-
ships for a particular requirement. Tabular notations are also used to efficiently 
report requirements and their relationships.     

«copy»

req [Package] Requirements [copy example]

«requirement»
Requirements::IEEE Standards::802.11g Power-Bandwidth

id � "802.11g.214"
text � "The maximum power bandwidth shall not exceed .. ."

«requirement»
Requirements::Camera Specification::WiFi Power-Bandwidth

id � "C4.1"
text � "The maximum power bandwidth shall not exceed .. ."

 FIGURE 12.21 

      Example of a requirement copy relationship.    
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    12.16   Questions 
        1.   What is the abbreviation for a requirement diagram that appears in the dia-

gram header? 
     2.   Which kind of model element can the frame of a requirement diagram 

represent?
     3.   Which standard properties are expressed in a SysML requirement? 
   4.   Can you add additional properties and constraints to a requirement? 

     5.   What type of requirement relationships can only exist between requirements? 
     6.   How do you read  Figure 12.3 ?
     7.   How do you express the requirement relationship in Question 6 using callout 

notation?
     8.   How do you express the requirement relationship in Question 6 using com-

partment notation? 
     9.   How do you represent a «deriveReqt» relationship between Reqt A and Reqt 

B in a matrix? 
    10.   How do you represent the rationale for the derived requirement in Figure

12.14 that the derivation is based on the xyz analysis? 
    11.   What is a satisfy relationship used for? (Select from answers a–c.) 

   a.   to ensure a requirement is met 
   b.   to assert a requirement is met 
   c.   to more clearly express a requirement     

    12.   What are the elements found on either end of a verify relationship? 
    13.   What is used as a basis for a derived relationship? (Select from answers a–c.) 

   a.   analysis 
   b.   design 
   c.   test case     

    14.   How would you decompose the requirement A into two requirements A.1 
and A.2 using the containment relationship? 

    15.   Which relationship would you use to relate a requirement to a document? 
(Select from answers a–d.) 
   a.   deriveReqt 
   b.   satisfy 
   c.   verify 
   d.   trace     

    16.   Why are requirements included in SysML? (This can be a discussion topic 
rather than a question.)   

    Discussion Topics 
   What are different uses of a requirement diagram? 

   When would you use a requirement diagram versus a table? 

   How can requirements and use cases be used together?      

12.16 Questions
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   This chapter describes how allocation relationships are used to map from one 
model element to other model elements to support behavioral, structural, and 
other forms of allocation. 

    13.1   Overview 
   Beginning early in systems development, the modeler may need to associate vari-
ous elements in the system model in abstract, preliminary, and sometimes tentative 
ways. It may be inappropriate to impose detailed constraints on the solution too 
early in the development of a system’s architecture. Allocation is a mechanism 
to relate model elements that is typically a prelude to more rigorous relationships 
that are established through follow-on model refinement. Additional user-defined 
constraints can augment the allocation relationship to add the necessary rigor as 
the design progresses. For example, an allocation of functions (e.g., activities) to 
components may be done early in the design. As the design progresses, additional 
constraints are defined to ensure that the activity inputs, outputs, and controls are 
explicitly allocated to component interfaces. With appropriate user-defined con-
straints, allocation can be used to help enforce specific system development meth-
ods to ensure the model’s integrity. 

   Allocation may be appropriate when modeling a system of systems (SoS), 
knowing that detailed system development and model refi nement may be con-
ducted by different teams, and perhaps even different companies. It also provides 
a mechanism for dealing with legacy system elements that have not been devel-
oped using rigorous modeling techniques. In both cases, allocation can be used to 
formalize constraints, expectations, or assumptions about that particular system 
element within the context of a broader system model. 

   The allocation relationship is used to support many forms of allocation 
including allocation of behavior, structure, and properties. A typical example of 
behavioral allocation is the allocation of activities to blocks (traditionally called 
functional allocation), where each system component is assigned responsibility 
for implementing a particular activity. An important distinction is made between 

                                Modeling Cross-Cutting 
Relationships with 
Allocations   13 

CHAPTER
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allocation of defi nition and allocation of usage. For functional allocation, allo-
cating activities to blocks is an allocation of defi nition, and allocating actions to 
parts is an allocation of usage. 

   SysML includes several notational options to provide fl exibility for representing 
allocations of model elements across the system model. The options include both 
graphical and tabular representations, similar to those used for relating require-
ments.  Figure 13.1    shows some of the graphical representations of allocation on 
an activity diagram, on an internal block diagram, and on a block defi nition dia-
gram. A complete description of the SysML notation for allocations can be found 
in the Appendix, Table A.23. 

    13.2    Allocation Relationship 
   An  allocation relationship may be established between any two named model 
elements. Every SysML allocation relationship has one  “from ” end and one or more 
“to ” or arrow ends. Model element  A is said to be  “allocated to ” model element 
B, when the  “from ” end of the allocation relationship relates to  A and the  “to ”
(arrow) end relates to  B. Additional constraints may be placed on allocations in 
special cases; for example, functional allocation may be constrained to occur only 
between blocks and activities. Section 13.4 discusses various types of allocation. 

    13.3    Allocation Notation 
   There are several types of notation to represent allocation of one model element 
to another. The notations used to represent allocation relationships are similar 
to the graphical and tabular notations used to represent requirements relation-
ships, as described in Section 12.5 in Chapter 12. Graphical notations include 
the direct notation, compartment notation, and callout notation. 

   When the model elements at both ends of the allocation relationship can be 
shown on the same diagram, the allocation relationship can be depicted directly, 
as indicated in  Figure 13.2   , using the keyword «allocate» on the relationship. 
Here, the  Adjust Focus Motor activity is allocated to the  Focus Optimizer, and 
the arrowhead represents the  “allocatedTo ” end of the relationship. Although 
functional allocation is depicted in this example, this representation is equally 
valid for other types of allocations. 

   As with requirements relationships, it is often the case that the model elements 
at either end of the allocation relationship are on different diagrams. For these 
cases, compartment notation and callout notation can be used to identify the 
model element at the other end of the allocation relationship as described later. 

   The compartment notation identifi es the element at the opposite end of the 
allocation relationship in a compartment of the model element, as shown in 
Figure 13.3   . However, this can only be used when the model element can include 
compartments such as blocks and parts. It cannot be used for model elements 
that do not have compartments such as connectors. 



3
0

9

a2 : Optimize Focusof2

allocatedTo
«connector» c1

f2 : Focus Optimizer

c1
allocatedFrom

«objectFlow» of2
«block»
«logical»

Focus Optimizer

allocatedFrom

«activity» Adjust Focus Motor 
«activity» Optimize Focus

«activity»
Adjust Focus Motor

«allocate»
f1 : Sharpness Detector

allocatedTo
«block» Focus Optimizer

ibd [Block] Focus Controller [objflw to cnktr 2]

act [Activity] Simplified Adjust Focus [objflw to cnktr 1]

bdd [Package] Allocation Example [allocation compartment]

allocatedFrom

«action» a1 : 
Measure Pixel Contrast

f1 : Sharpness Detector

a1 : Measure Pixel Contrast

 FIGURE 13.1 

      Examples of allocation on activity, block defi nition, and internal block diagrams.    



310 CHAPTER 13 Modeling Cross-Cutting Relationships with Allocations

   The callout notation shown in  Figure 13.4    can be used to represent the oppo-
site end of the allocation relationship for any model element whether it has com-
partments or not. Callout notation is represented as a note symbol that specifi es 
the type and name of the model element at the other end of the allocation rela-
tionship. It also identifi es which end of the allocation relationship applies to the 
model element as indicated by the  allocatedTo or allocatedFrom. The callout 
notation is read by starting with the name of the model element that the callout 
notation attaches to, then reading the  allocatedTo or allocatedFrom, and then 
reading the model element name in the callout symbol. For example, the allocation 

«block»
«logical»

Focus Optimizer

allocatedFrom

«activity» Adjust Focus Motor 
«activity» Optimize Focus

«activity»
Adjust Focus Motor

allocatedTo
«block» Focus Optimizer

bdd [Package] Allocation Example [allocation compartment]

 FIGURE 13.3 

      Example depicting an allocation relationship in compartment notation.    

«block»
«logical»

Focus Optimizer

allocatedFrom
«activity» Adjust Focus Motor 
«activity» Optimize Focus

«activity»
Adjust Focus Motor

«block» Focus Optimizer
allocatedTo

bdd [Package] Allocation Example [allocation callout]

 FIGURE 13.4 

      Example depicting an allocation relationship in callout notation.    

«activity»
Adjust Focus Motor

«allocate» «block»
«logical»

Focus Optimizer

 FIGURE 13.2 

      Example directly depicting an allocation relationship, when both model elements appear on 
the same diagram.    
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relationship in  Figure 13.4  is read:  “The activity  Adjust Focus Motor is allocated 
to the block  Focus Optimizer. ”  

   A tabular or matrix notation is also used to depict multiple allocation relation-
ships as shown in  Figure 13.5   . In this example, activities are in the left column 
and blocks are displayed in the top row. This format is not specifi cally pre-
scribed by the SysML specifi cation and will vary from tool to tool. The arrows in 
the matrix indicate the direction of the allocation relationships, consistent with 
those shown in        Figures 13.3 and 13.4 .

   This matrix form of representing allocations is particularly useful when a 
concise, compact representation is needed, and it is used often in this chapter to 
illustrate allocation concepts. Allocations to or from some model elements, such 
as item fl ows, cannot be unambiguously depicted on any diagram, and thus can 
only be shown in a matrix or tabular form. 

    13.4   Types of Allocation 
   The following section describes different types of allocations including alloca-
tion of requirements, behavior, flow, structure, and properties. 

    13.4.1   Allocation of Requirements 
   The term  requirement allocation represents a mechanism for mapping source 
requirements to other derived requirements, or mapping requirements to other 
model elements that satisfy the requirement. (See Chapter 12 for more informa-
tion on these kinds of relationships.) SysML does not use the «allocate» relation-
ship to represent this form of allocation, but instead uses specific requirements 
relationships that are described in Chapter 12. 

 FIGURE 13.5 

      Example depicting allocation relationships in tabular matrix form.    

13.4 Types of Allocation
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    13.4.2    Allocation of Behavior or Function 
   The term  behavioral allocation generally refers to a technique for segregating 
behavior from structure. A common systems engineering practice is to separate 
models of structure (sometimes referred to as  “models of form ”) from models of 
behavior (sometimes referred to as  “models of function ”) so that designs can be 
optimized by considering several different structures that provide the desired 
emergent behavior and properties. This approach provides the required degrees 
of freedom—in particular, how to decompose structure, how to decompose 
behavior, and how to relate the two—to optimize designs based on trade studies 
among alternatives. The implication is that an explicit set of relationships must 
be maintained between behavior and structure for each alternative. 

   The behavior of a block can be represented in different ways. On a block 
defi nition diagram, the operations of a block explicitly defi ne the responsibility 
the block has for providing the associated behavior (see Section 6.5 in Chapter 6 
for more on specifying operations for blocks). In a sequence diagram, a mes-
sage sent to a lifeline invokes the operation on the receiving lifeline to provide 
the behavior (see Chapter 9 for more on interactions). In activity diagrams, the 
placement of an action in an activity partition implicitly defi nes that the part 
represented by the partition provides the associated behavior (see Chapter 8 for 
more on activities). 

   In this chapter, the term behavioral allocation refers to the general concept 
of allocating elements of behavioral models (activities, actions, states, object 
fl ow, control fl ow, transitions, messages, etc.) to elements of structural models 
(blocks, properties, parts, ports, connectors, etc.). The term  functional alloca-
tion is a subset of behavioral allocation, and it refers specifi cally to the alloca-
tion of activities (also known as functions) or actions to blocks or parts.  

    13.4.3    Allocation of Flow 
   Flow represents the transfer of energy, mass, and/or information from one 
model element to another. Flows are typically depicted as object flows between 
action nodes on activity diagrams, as described in Chapter 8, and as item flows 
between ports or parts on an internal block diagram, as described in Chapter 6. 
Flow allocation is often used to allocate flows between activity diagrams and 
internal block diagrams. 

    13.4.4    Allocation of Structure 
    Structural allocation refers to allocating elements of one structural model to 
elements of another structural model. A typical example is a  logical–physical 
allocation, where a logical block hierarchy is often built and maintained at an 
abstract level, and in turn is mapped to another physical block hierarchy at a 
more concrete level.  Software–hardware allocation is another example of 
structural allocation. In SysML, allocation is often used to allocate abstract soft-
ware elements to hardware elements. UML uses the concept of deployment to 
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specify a more detailed level of allocation that requires software artifacts to be 
deployed to platforms or processing nodes. The transition from a SysML alloca-
tion to a UML deployment may be accomplished through model refinement and 
more detailed modeling and design of the software. 

    13.4.5   Allocation of Properties 
   Allocation can also be used to allocate performance or physical properties to 
various elements in the system model. This often supports the budgeting of sys-
tem performance or physical property values to property values of the system 
components. A typical example is a weight budget in which system weight is 
allocated to the weights of the system’s components. Once again, the initial allo-
cation can be specified in more detail as part of model refinement using para-
metric constraints, as discussed in Chapter 7. 

    13.4.6    Summary of Relationships Associated with the 
Term  “Allocation”

    Table 13.1    is a partial list of some uses of the term  “allocation ” for systems mod-
eling, along with proposed SysML relationships to meet usages’ purpose.   

Table 13.1       Various Uses of  “Allocation” and How to Represent in SysML 

   Kind of Allocation  Reference Relationship From To 

   Requirement allocation  Section 12.11 

 Section 12.10 
 Section 12.13 

 Satisfy 

 DeriveReqt 
Refi ne 

 requirement 

 requirement 
 named element 

 named 
element
 requirement 
 requirement 

   Functional allocation  Section 13.6  Allocate  activity 
 action 

 block 
 part 

   Structural allocation 
(e.g., logical to physical, 
hardware to software) 

 Section 13.9 
 Section 13.10 
 Section 13.9 

 Allocate  block 
 port 
 item fl ow 
 connector 

 block 
 port 
 item fl ow 
 parts and 
connectors

   Flow allocation  Section 13.7  Allocate  object fl ow 
 object fl ow 
 object fl ow 

 connector 
 item fl ow 
 item property 

   Property decomposition/ 
allocation

 Section 7.7  Binding
connector

 value property  parameter

13.4 Types of Allocation



314 CHAPTER 13 Modeling Cross-Cutting Relationships with Allocations

    13.5     Planning for Reuse: Specifying Defi nition 
and Usage in Allocation 

   The terms definition and usage were discussed in Chapter 6. The term definition 
refers to a model element that is a classifier or type such as a block. The element 
is defined by specifying its features such as the properties and operations of a 
block. The term usage identifies a defined element in a particular context. For 
example, a part is a usage of a block in the context of a composite block, and the 
part is defined by the block that types it. The parts connection with other parts 
on an internal block diagram, and its interaction with other parts on an activity 
or a sequence diagram, describes how the part is used. Leveraging the concepts 
of definition and use is a significant strength of SysML, but it also requires care-
ful consideration to maintain consistency across different potential usages. 

   The concept of defi nition and usage is not restricted to structure. Chapter 
10 discusses a similar depiction of activity composition on a block defi nition 
diagram and depicting that same composition as actions on an activity diagram. 
Similarly, constraint blocks are defi ned on a block defi nition diagram, and their 
usage is represented on a parametric diagram.  Table 13.2    shows the different 
kinds of diagrams, the model elements that represent usages on the diagrams, 
and the model elements that can be used to type or defi ne them. 

   The model element’s defi nition is generally shown on a block defi nition 
diagram. However, the usage name can refer to the defi nition by its type—for 
example,  action name : Activity Name. A common convention is that usage 
names are all lowercase and defi nition names start with leading uppercase. 

   Allocation can be used to relate elements of defi nition (blocks, activities, etc.) 
and elements of usage (actions, parts, etc.) in various combinations to provide 
considerable fl exibility in how allocations are employed. As shown in  Figure 13.6   , 
activities and actions are allocated to both blocks and parts. While this fi gure 

Table 13.2        Contextualized Elements Representing Usages and Their Defi nition  

   Diagram Kind  Model Element/Usage  Model Element/Defi nition 

   Activity diagram  action 
 object node/action pin 
 activity edge (object 
fl ow, control fl ow) 

 activity 
 block (optional) 
 (none) 

   Internal block diagram  Part 
 connector 
 item fl ow 
 item property 
 value property 

 block (optional) 
 association (optional) 
 (none) 
 block (optional) 
 value type 

   Parametric diagram  Constraint property  constraint block (optional) 
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explicitly depicts functional allocation, the concept applies equally to structural 
allocation (block to block, part to part, etc.). 

    13.5.1   Allocating Usage 
   As shown in  Figure 13.6 , allocation of usage applies when both the  “from ” and 
“to ” ends of the allocation relationship relate to usage elements (parts, actions, 
connectors, etc.). When allocating usage, nothing is inferred about the corre-
sponding allocation of definition (blocks, activities, etc.). Only the specific usage 
is affected by the allocation. For example, if an action is allocated to a part on an 
internal block diagram, the allocation is only specific to that part, not to any 
other similar parts, even if they are typed by the same block. 

   Allocation of usage does not impact anything at the defi nition level, thus it does 
not impact other uses of similar parts. If there are a large number of similar parts 
with similar allocated characteristics or functions, it may be more appropriate 

actionName
«allocate»

Allocation of
Definition«activity»

ActivityName

«activity»
Composite-

ActivityName

bdd [Package] PackageName
[Example Behavioral Definition]

«allocate»
Allocation of 

Definition to Usage«allocate»
Allocation of 

Usage to Definition

partName

«block»
BlockName

«block»
Composite-
BlockName

bdd [Package] PackageName 
[Example Structural Definition]

ibd [Block] Composite-BlockName
[Example Structural Usage]

«allocate»
Allocation of

Usage
partName: BlockName

act Composite-ActivityName
[Example Behavioral Usage]

actionName: ActivityName

 FIGURE 13.6 

      Allocation of defi nition and usage. Functional allocation is shown here, but structural 
allocation is similar. Flow allocation will be discussed separately.    

13.5 Planning for Reuse: Specifying Defi nition and Usage in Allocation
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to allocate and provide these characteristics at the defi nition level to each of its 
parts as described next. 

    13.5.2    Allocating Defi nition 
    Allocation of definition applies when both  “from ” and  “to ” (arrow) ends of the 
allocation relationship relate to elements of definition (blocks, activities, asso-
ciations, etc.). When allocating definition, every usage of the defining element 
retains the allocation. For example, if a block were used to define several parts, 
an allocation to the block would apply to all its parts (i.e., usages of the block). 

    13.5.3    Allocating Asymmetrically 
    Asymmetric allocation is when one end of the allocation relationship relates 
to an element of definition, and the other end relates to an element of usage. 
Asymmetric allocation is used by exception; that is, it is not generally recom-
mended since it can introduce notational ambiguity. Allocation of usage or allo-
cation of definition are the preferred allocation approaches. 

    13.5.4    Guidelines for Allocating Defi nition and Usage 
   The significance of using allocation of usage and allocation of definition rela-
tionships is discussed in  Table 13.3   . By examining these two approaches to 
allocation with respect to functional allocation, flow allocation, and structural 
allocation, the following conclusions can be drawn: 

■    Allocation of usage is localized to the fewest model elements and has no inferred 
allocations. It can be directly represented on diagrams of usage (e.g., internal block 
diagram or activity diagram), which establishes the context for the allocation. 

Table 13.3        Allocation Guidelines Table  

   Allocation of Usage  Allocation of Defi nition 

   Example: part to part, action to part, 
connector to connector, property to 
property

 Example: block to block or activity to 
block

   Applicability: when the allocation is not 
intended to be reused 

 Applicability: when the allocation is 
intended to apply to all usages 

   Discussion 
    –   Most localized with least implication 

on other diagrams and elements  
    –   Only way to allocate flows and 

connectors that have no definition  
    –   Possible redundancy or inconsistency 

as parts/actions used in multiple 
places  

 Discussion 
    –   Allocation inferred to all usages  
    –   Can result in overallocation (more 

activities allocated to a part than 
really necessary)  

    –   Not directly represented on an activ-
ity diagram with allocate activity 
partition (see Section 13.6.3)  
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It is appropriate to start with allocation of usage and consider allocation of defi-
nition after each of the uses has been examined. 

■    Allocation of definition is a more complete form of allocation because it applies 
(is inferred) to every usage. Allocation of definition follows from allocation of 
usage, as it typically requires blocks or activities to be specialized to the point, 
where the allocation of definition is unique, and overallocation (more allocations 
than really desired) is avoided. If a part requires a unique allocation, using alloca-
tion of definition requires the additional step of creating an additional block to 
define the part uniquely, and then allocating to (or from) that specialized block 
instead of to the part. This extra attention to refine the definition should facili-
tate future reuse of definition hierarchies.   

    13.6    Allocating Behavior to Structure Using 
Functional Allocation 

   Functional allocation is used to allocate functions to system components.  Figure 13.7    
defines a suitably complex behavioral hierarchy and a structural hierarchy to be 
used for the following functional allocation examples. 

«activity»
Measure Pixel

Contrast

«activity»
Adjust Focus

Motor

«activity»
Adjust Focus

«activity»
Optimize Focus

«activity»
Detect Edges

a1a2 d1a3

bdd [Package] Behavior [example activity hierarchy]

f2 v1f1

bdd [Package] Logical Structure [example structural hierarchy]

«block»
«logical»

Focus Optimizer

«block»
«logical»

Focus Controller

«block»
«logical»

Sharpness Detector

«block»
«logical»

Video Quality Checker

 FIGURE 13.7 

      Example behavioral and structural hierarchy defi nition.    

13.6 Allocating Behavior to Structure Using Functional Allocation
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   Note that in this example,  Measure Pixel Contrast is used by more than one 
activity, and  Sharpness Detector is used by more than one block. See Section 8.10 
in Chapter 8 for modeling activity hierarchies on block defi nition diagrams and 
Section 6.2 in Chapter 6 for modeling composition hierarchies on block defi nition 
diagrams. 

   This example of the autofocus portion of a surveillance camera will be used 
throughout the remainder of this chapter. Assume that the surveillance camera 
will use a passive autofocus system that uses pixel-to-pixel contrast as a way of 
determining how well the optics are focused, and then it generates a signal to 
adjust the focus motor accordingly. The  Adjust Focus activity, then, can be com-
posed of actions defi ned by three other activities:  a1 : Measure Pixel Contrast, 
a2 : Optimize Focus, and  a3 : Adjust Focus Motor. An activity diagram describ-
ing the behavior of  Adjust Focus is presented in Section 13.6.1. Consider, hypo-
thetically, that a separate activity to detect edges of objects in the video frame 
may also want to use the  Measure Pixel Contrast activity. 

   A logical structure for the auto-focus portion of the camera is also provided. 
The  Focus Controller block is composed of parts  f1 : Sharpness Detector and 
f2 : Focus Optimizer. Assume, hypothetically, that the block  Sharpness Detector  
may also defi ne a part used by some other logical block whose purpose is to 
check video quality. 

    13.6.1    Modeling Functional Allocation of Usage 
   As discussed in an earlier section, functional allocation of usage (e.g., action 
to part) should be used over functional allocation of definition (e.g., activity to 
block) when each action is allocated to parts that are typed by different blocks. 
Allocation of usage should also be considered if the action uses different inputs/
outputs (i.e., pins) that may result in different interfaces on the associated block. 

    Figure 13.8    depicts functional allocation of usage. This example shows the use 
of the callout notation for representing allocations from the actions on the activ-
ity diagram, and the use of the compartment notation for representing allocation 
to the parts on the internal block diagram. Note that action  a1 : Measure Pixel 
Contrast on the activity diagram is allocated to part  f1 : Sharpness Detector , 
but that none of the other actions are allocated. This is because their defi ning 
activities are allocated in Section 13.6.2, so it is not appropriate to also allocate 
the usage. Also, notice that object fl ow  of2 is allocated to connector  c1. This 
kind of fl ow allocation can only be allocation of usage; it is described in more 
detail in Section 13.7.2. 

   On the internal block diagrams, the allocation callouts are the reciprocal of 
the allocation callouts on the activity diagram. An allocation matrix is also pro-
vided as a concise alternative representation of the allocation relationships in the 
other diagrams. 

    13.6.2    Modeling Functional Allocation of Defi nition 
   Allocation of definition is used when each action is allocated to a part that is 
typed by the same block and can be depicted on block definition diagrams. The 
allocation must be to or from activities or blocks. 
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 FIGURE 13.8 

      Example of functional allocation of usage.        

13.6 Allocating Behavior to Structure Using Functional Allocation

focus : Command

a1 : Measure Pixel Contrast

a2 : Optimize Focus

a3 : Adjust Focus Motor

current : Image

current1 : Image
contrast1 : Information

delta1 : Information

focus1 : Command

contrast1 : Information

delta1 : Information

of2

of4

of3

of1

allocatedTo
«part» f1 : Sharpness Detector

allocatedTo
«connector» c1

act [Activity] Adjust Focus [funct/flow alloc of usage 1]

allocatedFrom
«actionNode» a1 :
Measure Pixel Contrast

allocatedFrom
«objectFlow» of2

ibd [Block] Focus Controller [funct/flow alloc of usage 2]

p1 : Information

p1 : Information

c1

f1 : Sharpness Detector

f2 : Focus Optimizer
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    Figure 13.9    shows an example of functional allocation of defi nition using the 
allocation relationship, along with the alternative callout and compartment nota-
tion. Note that the activities  Optimize Focus and  Adjust Focus Motor are allo-
cated to the block  Focus Optimizer. The use of  Focus Optimizer in the block 
Focus Controller, and everywhere else it is used, has an inferred allocation of 
these two activities. This allocation can later be realized by creating two oper-
ations for  Focus Optimizer that would call  Optimize Focus and  Adjust Focus 
Motor as their methods. These new operations would then be available to every 
instance typed by  Focus Optimizer . 

   Note that the activity  Measure Pixel Contrast is  not allocated to the block 
Sharpness Detector, even though from previous discussions there is a concep-
tual relationship between them. In this particular example,  Measure Pixel 
Contrast is also used by the activity  Detect Edges, which is a processing tech-
nique not associated with picture sharpness.  Measure Pixel Contrast should 
not have any inferred allocation to  Sharpness Detector when it is used in  Detect 
Edges, thus allocation of defi nition is inappropriate. Allocation of usage is the 
correct technique in this case. 

    Figure 13.10    is a block defi nition diagram of a system similar to the water 
distiller example in Chapter 15. Note that the  Meter Flow activity has been allo-
cated to the block  Valve, which infers that the  Meter Flow  activity applies to 

«activity»
Optimize Focus

«activity»
Adjust Focus Motor

«activity»
Adjust Focus

«activity»
Measure Pixel

Contrast

«activity»
Detect Edges

«block»
«logical»

Focus Optimizer

«block»
«logical»

Focus Controller

«block»
«logical»

Sharpness Detector

a1 d1a2 a3

«allocate» «allocate»

f2 f1

bdd [Package] Behavior [functional allocation of definition]

Note: Allocation of
definition from Measure
Pixel Contrast to Sharpness
Detector is inappropriate,
since Detect Edges
would then be dependent
on Sharpness Detector.

 FIGURE 13.9 

      Example of functional allocation of defi nition.    
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each usage of the  Valve  block. This is appropriate because every valve performs 
an activity to meter fl uid fl ow. 

   Note also that the activity  Boil Water has been allocated to the block  Boiler . 
This infers that all the usages of the  Boiler can perform the activity  Boil Water . 

    Figure 13.11    is a block defi nition diagram representing a  Power Station, and 
it uses many of the blocks previously defi ned for the  Distiller. The allocation of 
defi nition to the  Boiler and  Valve referred to in  Figure 13.10  is still valid. The 
part  stm gen : Boiler has an inferred allocation from the  Boil Water activity, and 

«block»
Heat Exchanger

«block»
Valve

«block»
Boiler

«block»
Distiller

«activity»
Meter Flow

«activity»
Boil Water

draincondenser

«allocate»«allocate»

evaporator

bdd [Package] Initial Distiller [distiller allocation of definition]

 FIGURE 13.10 

      Functional allocation of defi nition from distiller example.    

bdd [Package] Power Station Structure [power station allocation of definition]

«block»
Boiler

allocatedFrom
«activity» Boil Water

«block»
Valve

allocatedFrom
«activity» Meter Flow

«block»
Heat Exchanger

«block»
Power Station

«block»
Generator

«block»
Turbine

«block»
Pump

throttlefeed

t1g1

stm gen main condenser

feed

 FIGURE 13.11 

      Implications of functional allocation of defi nition as seen in the power station example.    

13.6 Allocating Behavior to Structure Using Functional Allocation
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both the  feed and  throttle usages of  Valve include an inferred allocation from 
the  Meter Flow activity. 

    13.6.3     Notational Simplicity: Modeling Functional Allocation 
Using Allocate Activity Partitions (Swimlanes) 

   Allocate activity partitions are a special type of activity partitions that are distin-
guished by the keyword «allocate». The presence of an allocate activity partition 
on an activity diagram implies an allocate relationship between any action node 
within the partition and the part represented by the partition (which appears as 
the name of the partition), as depicted in  Figure 13.12   . Note that allocate activity 
partitions can only explicitly depict allocation of usage because the activities (defi-
nition) are not directly represented on activity diagrams. If allocation of definition 
is desired, the activity must be allocated to the block that can be directly depicted 
on a block definition diagram or by using compartment or callout notation. 

   Functional allocation using allocate activity partitions (a.k.a. swimlanes) 
is depicted in  Figure 13.13   . This is a subset of the example previously shown in 
Figure 13.8 , where action node  a1 (a usage of activity  Measure Pixel Contrast) has 
been allocated to part  f1 (a usage of block  Sharpness Detector). This allocation is 
depicted graphically by the allocate activity partition on the activity diagram. 

   Allocate activity partitions are distinguished from other activity partitions 
by the keyword «allocate». If a standard activity partition is used without that 
keyword, the allocation implications for the actions are different: If an action is 
a call behavior action, then the activity called by the action must be a behavior of 

«allocate»
part name : Block Name

action name : Activity Name

 FIGURE 13.12 

      Allocate activity partition.    

act [Activity] Simplified Adjust Focus [allocate swimlane]

«allocate»
f1 : Sharpness Detector

a1 : Measure Pixel Contrast a2 : Optimize Focus

 FIGURE 13.13 

      Simple example of functional allocation using an allocate activity partition (swimlanes).    
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the block that represents the partition. In particular, a block’s operation can be 
defi ned in a way that calls this activity as its method, as described in Section 6.5
in Chapter 6. This does not employ the SysML allocate relationship, but instead 
tightly couples the behavior defi nition to the structural defi nition.   

    13.7    Connecting Functional Flow with Structural 
Flow Using Functional Flow Allocation 

   Flow between activities can either be control or object flow as described in 
Chapter 8. The following sections address allocating object flow as represented 
on activity diagrams. Allocation of control flow may be depicted in a similar way 
as allocation of object flow. Flow allocation is typically an allocation of usage 
because items that flow between model elements are usually specified in the 
context of their usage. 

    13.7.1   Options for Functionally Allocating Flow 
   Item flows are used to depict flow between parts on internal block diagrams, as 
described in Section 6.4.2 in Chapter 6. Item flows can have an associated item 
property. The item flow represents the direction of flow, and the item property 
is the usage of the item that flows. Item properties can be defined (i.e., typed) 
by blocks just like parts can be typed by blocks. 

   Chapter 8 discusses the equivalent depiction of object fl ows (solid arrows on 
activity diagrams) in either action pin notation (small squares on the edges of 
action nodes) or object node notation (larger rectangles between action nodes). 
Due to constraints in the underlying UML metamodel, object nodes on activity 
diagrams cannot be directly allocated either to item fl ows or their respective item 
properties. To avoid ambiguity of the allocation relationship, it is recommended 
that action pin notation be used when performing behavioral fl ow allocation. 

   The following sections discuss allocating an object fl ow to a connector, allo-
cating an object fl ow to an item fl ow, and allocating item properties between dia-
grams. Other kinds of fl ow allocation can be used as well, such as allocating an 
action pin to an item fl ow or an activity parameter node to a port. These additional 
allocations are an advanced topic that is a function of the specifi c design method 
used and are not discussed here. 

    13.7.2   Allocating an Object Flow to a Connector 
    Figure 13.14    extends the example shown in  Figure 13.13  and is also a subset of the 
example shown in  Figure 13.8 . The object flow  of2 is allocated to the connector 
c1. This is a convenient preliminary form of allocation to use before item flows 
have been defined, or if item flows are not modeled. It can be ambiguous, how-
ever, if more than one item flow or item property is associated with the connector. 

   Control fl ows can also be allocated to connectors, but the semantics and 
physical implications of allocating control fl ows are also highly dependent on the 

13.7 Connecting Functional Flow with Structural Flow
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act [Activity] Simplified Adjust Focus [objflw to cnktr 1]

«allocate»
f1 : Sharpness Detector

a1 : Measure Pixel Contrast a2 : Optimize Focus
of2

allocatedTo
«connector» c1

«actionNode» a1 :
Measure Pixel Contrast

allocatedFrom

allocatedFrom
«objectFlow» of2

ibd [Block] Focus Controller [objflw to cnktr 2]

c1

f1 : Sharpness Detector

f2 : Focus Optimizer

 FIGURE 13.14 

      Object fl ow to connector allocation.    
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design method. Additional model refi nement may be required before unambiguous 
control fl ow allocation can be achieved. 

    13.7.3   Allocating Object Flow to Item Flow 
    Figure 13.15    provides an alternative method of flow allocation from  Figure 13.14 .
In this case object flow  of2 has been allocated to the item flow  if1. While this 
can be easily depicted on the activity diagram using callout notation, it cannot 
be unambiguously depicted on an internal block diagram since the name of the 
item flow may not be visible. An allocation matrix is provided to explicitly show 
the allocation relationships. This is a more specific form of allocation than object 
flow to connector, and it will remain unambiguous even if more than one item 
flow is associated with the connector. In general, activity edges that represent 
control flow or object flow can be allocated to item flows. 

   Allocating an object fl ow or control fl ow to an item fl ow does not affect the 
behavior represented on the activity diagram. If the modeling tool animates or 
executes the activity diagram, it is the object fl ow that will be part of that execu-
tion semantic, not the item fl ow. 

act [Activity] Simplified Adjust Focus [objflw to itemflw]

«allocate»
f1 : Sharpness Detector

a1 : Measure Pixel Contrast a2 : Optimize Focus

of2

allocatedTo
«itemFlow» if1

 FIGURE 13.15 

      Object fl ow to item fl ow allocation.      

13.7 Connecting Functional Flow with Structural Flow
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   When allocating object fl ows to item fl ows, it is important to ensure consistent 
typing. Action pins may be typed by blocks, but item fl ows are not typed directly. 
The item properties that are related to the item fl ows are typed by blocks. The 
built-in constraints on object fl ows ensure that the action pins on each end of the 
object fl ow are typed by the same (or at least consistent) blocks. When allocating 
the object fl ow to an item fl ow, the type of the action pins associated with the 
object fl ow should be consistent with the type of the item properties associated 
with the item fl ow. This is an example of what might be expected from a model 
checker provided by the tool to reduce the likelihood of error as well as the work-
load of the modeler. 

   Rather than allocate the object fl ow to the item fl ow, it may be appropriate 
to allocate the object fl ow to the item property associated with the item fl ow. 
Figure 13.16    shows the results of this kind of allocation; it is used in the water 
distiller example in Chapter 15 because it ties the object fl ows in the functional 
model to specifi c properties of the water fl owing through the system. The values 
of these properties are used for subsequent engineering analysis.   

act [Activity] Simplified Adjust Focus [objflw to itemprop]

«allocate»
f1 : Sharpness Detector

a1 : Measure Pixel Contrast a2 : Optimize Focus

of2

allocatedTo
«itemProperty» sharpness

 FIGURE 13.16 

      Object fl ow to item property allocation.      
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    13.8    Modeling Allocation between Independent 
Structural Hierarchies 

   There are times to consider more than one model of structure (e.g., logical–
physical). For example, it is a common practice to group capabilities, functions, 
or operations into an abstract, or  logical structure, while maintaining a separate 
implementation-specific  physical structure. Chapter 16 includes an example of 
developing a logical architecture. 

   A particular method for logical architecture development must include a way 
to relate elements of logical structure with elements of physical structure. SysML 
allocation provides an abstract vehicle to perform and analyze this mapping. 
Implementation of the physical structure may require further model develop-
ment to realize the logical structure, such as inheritance of owned behaviors or 
fl ow specifi cations, but this development should wait until the logical-to-physical 
allocation is stable and consistent across the system model. 

   The physical structure may itself be divided into software structures and 
hardware structures. UML software modelers typically use deployment relation-
ships to map software structures on to hardware structures. SysML allocation 
provides a more abstract mechanism for this kind of mapping, which does not 
have to consider host–target environment, compiler, or other more detailed 
implementation considerations. These considerations may be deferred until after 
preliminary hardware and software allocation has been performed and analyzed. 

    13.8.1   Modeling Structural Allocation of Usage 
   An example of a structural allocation of usage is shown in  Figure 13.17    using a 
block definition diagram. The diagram shows both ends of the structural allocation 
of the blocks ’ internal structure. The structure compartment of a block on a block 
definition diagram corresponds to what is depicted on the internal block diagram 
of that block. 

«block»
«logical»

Focus Controller

«allocate»

«allocate»

«allocate»

c1 j1

f1 : Sharpness Detector

f2 : Focus Optimizer

bdd [Package] Physical Structure [structural allocation of usage]

«block»
«physical»

Mother Board

mb1 : ADC Chipset

mb4 : Control Processor

 FIGURE 13.17 

      Structural allocation of usage example.    

13.8 Modeling Allocation between Independent Structural Hierarchies
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   Allocation between parts in different structure compartments, as shown, can 
only depict allocation of usage. Likewise, allocation shown between connectors 
on internal block diagrams or structure compartments can only represent alloca-
tion of usage.  

    13.8.2    Allocating a Logical Connector to a Physical Structure 
   A connector depicted in an abstract, or logical structure, may need to be allo-
cated to multiple elements in an implementation or physical structure. A con-
nector binds parts or ports together, and it does not necessarily represent an 
interfacing part, such as a wiring harness or a network. 

   The example in  Figure 13.18    depicts the allocation of a connector in a logical 
structure, where implementation details are not considered, to a physical part 
(ea5 : PWB Backplane) and associated connectors at the appropriate ends of the 
cable. The use of allocation is an appropriate way to show the refi nement of the 

p18 : SM pin

p27 : SM pin

p052 : PWB pad

p325 : PWB pad

j01

j02

«allocate»

«allocate»

«allocate»

«block»
«logical»

Focus Controller

c1

f1 : Sharpness Detector

«actionNode» a1 : 
Measure Pixel Contrast 

allocatedFrom

«part» mb1 : ADC Chipset
allocatedTo

ea5 : PWB Backplane

«part» mb4 : Control
Processor

allocatedTo

f2 : Focus Optimizer

bdd [Package] Physical Structure [physical connector allocation]

«block»
«physical»

Mother Board

mb1 : ADC Chipset

«part» f1 : Sharpness
Detector

allocatedFrom

«part» f2 : Focus
Optimizer

allocatedFrom

mb4 : Control Processor

 FIGURE 13.18 

      Refi ning a connector using allocation.    
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logical connector, without requiring undue extension of the logical architecture 
into implementation details. Any item fl ow on the logical connector should be 
allocated to multiple item fl ows in the physical structure, corresponding to fl ow 
entering and exiting the cable. 

    13.8.3   Modeling Structural Allocation of Defi nition 
    Figure 13.19    shows structural allocation of definition for the autofocus portion 
of the surveillance camera. This is different from the allocation represented 
previously in  Figure 13.17 , which depicted allocation of usage. If a structural 
allocation is meant to apply to all its usages, then allocation of definition is 
appropriate. In this example, wherever the block  Vector Processor is used, it 
will include the inferred allocation from  Image Processor, even if it is not used 
in an  Mother Board .   

    13.9   Modeling Structural Flow Allocation 
   An item flow can be a common item to both an abstract (e.g., logical) internal 
block diagram and a concrete (e.g., physical) internal block diagram. This ena-
bles a common structural data model to be maintained between logical and 
physical hierarchies. 

   There may be good reasons, however, to establish separate abstract (e.g., logi-
cal) and concrete (e.g., physical) data models. For example, a standard logical data 
model may be required, but the data-level implementation may need to be opti-
mized. In the case in which an item fl ow depicted at an abstract level needs to 
be allocated to structures at a more concrete level, it may be necessary to decom-
pose the abstract item fl ow so that it may be uniquely allocated. If a block is used 
to represent the item that fl ows at the abstract level, it should be decomposed 
into a set of blocks that can be used to represent the items that fl ow at the more 
concrete level. The abstract item fl ow can then be allocated to the more concrete 
item fl ows that use the appropriate blocks to type item properties. 

    Figure 13.20    shows how an item fl ow at an abstract level can be allocated to an 
item fl ow at a more concrete level. The name of the item fl ow in  Focus Controller  
is  if1, but this name doesn’t appear next to the item fl ow symbol. This is because 
if1 has an item property,  sharpness, that is typed by a block,  Information, and 
this name supersedes the name of the item fl ow when represented on the inter-
nal block diagram. Likewise, the name of item fl ow  if6 in  Electronics Assembly  
has been superseded by item property  pixel contrast and its type called  Data . 
Because of this naming convention, the allocation of  if1 to if6 is not directly 
shown on the diagram and must be represented in an allocation matrix. 

   It is possible to allocate from an item property on one diagram directly to an 
item property on another diagram, such as from  sharpness : Information to pixel 
contrast : Data. Allocation between item properties cannot be directly repre-
sented on any diagram because it would look like allocation between item fl ows. 
Allocation between item properties is best represented on an allocation matrix. 
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 FIGURE 13.19 

      Depicting structural allocation of defi nition.    
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In most cases of allocation between item properties, the defi ning type (conveyed 
classifi er) will be the same for both item properties. In the  Figure 13.20  example, 
note that the logical data model is independent of the physical data model, and 
thus the types (conveyed classifi ers) of each item property are different. 

   It is certainly possible to allocate the logical conveyed classifi er to the physi-
cal. This would be allocation of defi nition, and thus should be done paying spe-
cial attention to avoiding unwanted inferred allocation. 

    13.10   Evaluating Allocation across a User Model 
   An assessment of the integrity and completeness of the allocation relationships is 
largely dependent on the system’s stage of development. Since allocation is used 

«block»
«logical»

Focus Controller

c1 j1

f1 : Sharpness Detector

f2 : Focus Optimizer

bdd [Package] Physical Structure [logical & phys flow]

«block»
«physical»

Mother Board

mb1 : ADC Chipset

mb4 : Control Processor

p18 : SM pin

p27 : SM pin

sharpness : Information

p1 : Information

p1 : Information

pixel contrast : Data

 FIGURE 13.20 

      Example of structural fl ow allocation.      

13.10 Evaluating Allocation across a User Model
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as an abstract prelude to more concrete relationships, the quality of allocation at 
a given point in time can only be assessed with respect to the system develop-
ment method or strategy being employed. 

    13.10.1    Establishing Balance and Consistency 
   The quality of the model can be assessed in terms of the completeness and con-
sistency of the allocation relationships and the overall balance of the allocation 
as described next. 

   Completeness and consistency are evaluated using rules or constraints. In 
functional allocation, for example, allocation of a package of activities is said to be 
complete when each activity has an allocation relationship to a block elsewhere 
in the model. It may not be judged to be consistent, for example, until the action 
nodes defi ned by the activities are depicted in a valid activity diagram; the 
inferred allocation to parts are depicted on a valid internal block diagram; and 
any object fl ows on the activity diagram are allocated to appropriate connectors 
on the internal block diagram. Consistency can also involve checking for circular 
allocations, redundant allocations, and what the modeler may defi ne as inappro-
priate allocations (e.g., allocating an activity to another activity). Again, automated 
model checking is expected to assist with this. 

   Evaluating balance is more subjective and likely to require experience and 
judgment on the part of the modeler. One aspect of balance may involve assess-
ing the level of detail represented by the model element at each end of the allo-
cation relationship. It may be inappropriate for the element at the  “from ” end 
to be more detailed than the element at the  “to ” end if one is allocating from 
a more abstract model part to a more concrete model part. A similar aspect of 
balance might involve examining portions of the model that are rich in alloca-
tion, and determining whether the level of detail is too high, or whether the 
allocation-poor portions of the model need further refi nement. When evaluating 
functional allocation, for example, if a large number of activities are allocated 
to a single block and other blocks have few or no activities allocated, the mod-
eler may ask: (1) Have the activities of the system been completely modeled? or 
(2) Has the structural design incorporated too much functionality into a single 
block? The answers to these questions will help determine the direction for the 
future modeling effort. For question 1, it might be fl eshing out the activity model 
in other areas; for question 2, it might be decomposing the overallocated block 
into lower-level blocks.   

    13.11    Taking Allocation to the Next Step 
   Allocation is a means, not an end point. Once allocation across the model is bal-
anced and complete, each allocation may be refined by a more formal relation-
ship that preserves and elaborates the constraints from the  “from ” end to the  “to ”
end of the allocation. In this way, allocation is used to direct the system design 
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activity through the model without prematurely deciding how the relationship 
between model elements will be refined. Of course, this is very dependent on 
the modeling method. 

   SysML allocations allow the modeler to keep model refi nement options open. 
For example, functional allocations can be refi ned by: (1) Designating activities 
allocated to a block as methods called by operations of the block; this, of course, 
requires the additional step of creating the operations. (2) Designating the activi-
ties as owned behaviors of the block. Each approach has merits for downstream 
development; deferring the decision allows the modeler to work at a consistent 
level of abstraction, and not to get prematurely drawn into modeling details or 
methodological trade-offs. 

   Even after the model is refi ned, it is appropriate to retain the allocation rela-
tionships, possibly capturing supporting «rationale» in the model to provide a 
history of how the model was developed. This can be very important informa-
tion when considering reuse of the model on a different program or product. 

    13.12   Summary 
   The allocation relationship provides significant flexibility for relating model ele-
ments to one another beginning early in the development process. Key concepts 
for modeling allocations include the following. 

■    How allocation can be used to support system modeling is discussed in this 
chapter, including examples. Also included is a brief discussion of how to assess 
allocations in terms of their completeness, consistency, balance, and flexibility 
in directing further model development efforts. 

■    A system model can be developed without using allocation. Use of allocation, 
however, enables certain implementation decisions to be deferred by specify-
ing the model at higher levels of abstraction and then using allocations as a 
basis for further model refinement. 

■    There are many different types of allocation, including allocation of behavior, 
structure, and properties. Allocation supports traditional systems engineering con-
cepts, such as allocating behavior to structure by allocating activities to blocks. 
Also supported is allocation of logical elements to physical elements, including 
logical connectors to physical interfaces, software to hardware, object flows to 
item flows, and many others. 

■    A key distinction must be made between the allocation of definition and the 
allocation of usage. In the former, defined elements (e.g., activities) are allocated 
to other defined elements (e.g., blocks). For allocation of definition, all usages of 
the activity are allocated to all usages of the block. For allocation of usage, only 
specific usages are allocated without impacting other usages, such as the case 
when an action is allocated to a part. 

■    An allocate activity partition provides an explicit graphical mechanism to allo-
cate responsibility of an action to a part. 

13.12 Summary
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■    There are multiple graphical and tabular representations for representing alloca-
tions similar to those used for representing requirements relationships. Graphical 
representations include direct notation, compartment notation, and callout nota-
tion. Tabular representations often include a compact form for representing mul-
tiple allocation relationships. 

    13.13    Questions 
     1.   List four ways that allocations can be represented on SysML diagrams.  
     2.   Which kinds of model elements can participate in an allocation relationship 

in SysML?  
     3.   Is the allocate relationship appropriate to use when allocating requirements?  
     4.   List and describe three uses of allocation in SysML that rely on the allocate 

relationship.  
     5.   For each of the following kinds of diagrams, indicate whether they are dia-

grams of usage or diagrams of defi nition: 
   a.   activity diagram  
   b.   block defi nition diagram 
   c.   internal block diagram  
   d.   parametric diagram     

     6.   For each of the following allocation relationships, indicate whether they are 
allocation of defi nition or allocation of usage: 
   a.   action node (on activity diagram) to part (on internal block diagram)  
   b.     activity to block  
   c.     object fl ow to connector 
   d.     activity parameter to fl ow specifi cation     

     7.   What is the signifi cance of choosing an allocation of defi nition instead of an 
allocation of usage?  

     8.   Should an object fl ow ever be allocated to a block? Explain your answer. 
     9. Should an activity ever be allocated to a part? A connector to a block? Explain 

your answers.  
    10.   The following questions apply to  Figure 13.20 :

   a    Are the item fl ow names shown on the block defi nition diagram? Explain.  
   b.   Why is there no direct allocation shown on the block defi nition diagram?     

    Discussion Topics 
   What is the purpose of allocation? What role does it play in system develop-
ment? How can good or poor allocation impact the overall quality of the system 
design? 

   Describe an appropriate next step after completing functional allocation. Which 
mechanisms are available to implement functionality in blocks?     



   This chapter describes how to customize SysML using profiles and model librar-
ies. These types of customization support the wide range of domains that systems 
modeling can be applied to. A number of advanced metamodeling concepts that 
are typically of interest to language designers and others who may be responsible 
for customizing the language to meet domain-specific needs are also addressed. 
Some of the metamodeling concepts were introduced in Chapter 4. 

    14.1 Overview 
   SysML is a general-purpose systems modeling language that is intended to support 
a wide range of domain-specific applications such as the modeling of automotive 
or aerospace systems. SysML has been designed to enable extensions that support 
these specialized domains. An example may be a customization of SysML for the 
automotive domain that includes specific automotive concepts and representa-
tions of standard domain elements such as engines, chassis, and brakes. 

   To accomplish this, SysML includes its own extension mechanisms, called 
stereotypes, that are grouped into special kinds of packages called profi les. 
Stereotypes extend existing SysML language concepts with additional proper-
ties and constraints. SysML also supports model libraries—collections of reus-
able model elements commonly used in a particular domain. Profi les and model 
libraries are themselves contained in models, but they typically are authored 
by language designers rather than the general system modeler. The term “user
model” refers to a model authored by a system modeler to describe a system or 
systems.

   Model libraries provide constructs that can be used to describe real-world 
instances represented by a model, be they blocks specifying reusable components 
or value types defi ning valid units and dimensions for block properties. Profi les, 
on the other hand, provide constructs that extend the modeling language itself; 
for example, stating that there is such a thing as a value type with units and 
dimensions in the fi rst place. 

                       Customizing SysML for 
Specifi c Domains   14 

CHAPTER



336 CHAPTER 14 Customizing SysML for Specifi c Domains

   Profi les and model libraries are represented on package diagrams, as described 
in Chapter 5, with additional notations described in this chapter. Figure 14.1   
shows a package diagram with much of the notation used for defi ning stereotypes. 

   The diagram in  Figure 14.1  shows the defi nitions of three stereotypes and their 
properties to support simulations. Flow-Based Simulation and Flow Simulation 
Element both extend the SysML Activity metaclass and add information about the 
type of simulation and how it executes. Probe extends both the ObjectFlow and 
ObjectNode metaclasses—part of the activity specifi cation—and is used to tell the 
simulation system which data to monitor. 

   Table A.2 in the Appendix shows the additional notation needed to represent 
the extensions to the package diagram for model libraries and profi les. 

    Figure 14.2    shows a model library of elements that are themselves extended 
using the stereotypes shown in  Figure 14.1 . The model elements in the  Flow
Simulation Elements model library are intended for use in building fl ow-based 
simulations. They are activities (i.e., model elements whose type is the metaclass 
Activity shown in  Figure 14.1 ) with the stereotype  Flow Simulation Element  
applied. Note that when stereotypes are applied, the keyword for a stereotype 
by convention has a different typographic style than the style of the stereotype’s 
name. This convention is described later in this chapter. These activities can be 
invoked from actions owned by a fl ow-based simulation. The values for the stereo-
type’s properties allow the simulation tool to determine their validity based on 
the type of simulation required. 

«stereotype»
Flow-Based Simulation

«stereotype»
Flow Simulation Element«stereotype»

Probe

«metaclass»
ObjectNode

«metaclass»
Activity

«metaclass»
ObjectFlow

0..*
probes

simulation type : Simulation Kind
step type : Step Kind
solver : Solver Kind
version : String

compatibility : Simulation Kind
version : String

pkg [Profile] Simulations

action : Probe Action Kind

 FIGURE 14.1 

      Example of a profi le defi ned on a package diagram.    
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   Table A.24 in the Appendix shows the additional notation needed on SysML 
diagrams to represent model elements that have been extended by stereotypes. 

    14.1.1   A Brief Review of Metamodeling Concepts 
   Although the topic of metamodeling is discussed in Chapter 4, the main concepts 
are reprized here for convenience. A modeling language has three parts: 

■     Abstract syntax describes the concepts in the language, the relationships between 
the concepts, and a set of rules about how the concepts can be put together. The 
abstract syntax for a modeling language is described using a  metamodel. SysML 
is based on OMG standards for both modeling and metamodeling. The OMG 
defines a metamodeling mechanism, called the Meta Object Facility (MOF) [20], 
that is used to define metamodels such as UML and SysML. 

■     Notation describes how the concepts in the language are visualized. In the 
case of SysML, the notation is described in notation tables that map language 
concepts to graphical symbols on diagrams. 

bdd [modelLibrary] Flow Simulation Elements [A Selection of Flow Simulation Elements]

«activity»
«flowSimulationElement»

Derivative

«activity»
«flowSimulationElement»

Integrator

compatibility � continuous
version � "7.5"

compatibility � continuous
version � "7.5"

compatibility � discrete
version � "7.5"

compatibility � discrete
version � "7.5"

compatibility � discrete
version � "7.6"

«activity»
«flowSimulationElement»

Signal Generator

compatibility � discrete
version � "7.5"

«activity»
«flowSimulationElement»

Divide

«activity»
«flowSimulationElement»

Sum

«activity»
«flowSimulationElement»

Saturation

 FIGURE 14.2 

      Example of the application of stereotypes to model elements.    

14.1 Overview



338 CHAPTER 14 Customizing SysML for Specifi c Domains

■     Semantics describe the meaning of the concepts by mapping them to concepts 
in the domain of the language—for example, systems engineering. Sometimes 
the semantics are defined using formal techniques, such as mathematics, but 
in SysML the semantics are described in English text. Efforts are under way to 
provide a more formal definition of SysML semantics and many tools implicitly 
define the semantics by building simulators. 

   The individual concepts in the metamodel are described by metaclasses that 
are related to each other using generalizations and associations in a similar fash-
ion to the way blocks can be related to one another on a block defi nition dia-
gram. Each metaclass has a description and a set of properties that characterize 
the concept it represents, and also a set of constraints that impose rules on those 
properties ’  values. 

   The package diagram in  Figure 14.3    shows a small fragment of UML4SysML —
the metamodel on which SysML is based. It shows one of the fundamental con-
cepts of UML, called Class, and some of its most important relationships. Class  
specializes Classifi er through which it gains the capability of forming classifi ca-
tion hierarchies. The fi gure also shows associations to  Property and Operation , 
which between them defi ne most of the important features of a  Class . 

   A model of a system contains model elements that are instances of the meta-
classes in the metamodel for the language. These instances have values and 
references to other instances based on the properties and relationships defi ned in 

aggregation : AggregationKind

isQuery : Boolean

isAbstract : Boolean none
shared
composite

class

0..1

ownedOperation
0..*

ownedAttribute

0..*

class

0..1

general
1 0..*

specific

1

generalization

0..*

«metaclass»
Operation

«metaclass»
Property

«metaclass»
Classifier

«metaclass»
Class

«metaclass»
Generalization

«enumeration»
AggregationKind

«metamodel diagram»
pkg [Model] UML4SysML

 FIGURE 14.3 

      Fragment of UML4SysML, the underlying metamodel for SysML.    
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the metamodel. Some of these model elements just capture details of the model’s 
internal structure, such as how the model elements are organized into packages 
(the equivalent of folders in Windows). However, the majority of the elements in 
a model describe entities in the world of the system. 

   The two SysML concepts presented in this chapter, model libraries and pro-
fi les, are used to add new capabilities to the modeling language. Model libraries 
contain normal model elements, described by metaclasses in the metamodel. 
Profi les extend a metamodel, called a reference metamodel, with additional con-
cepts that have their own properties, rules, and relationships; thus, they allow the 
language defi ned by the metamodel (in this case SysML) to be augmented with 
concepts for domains not covered directly by SysML. 

   Modeling tools are normally specially engineered to support a specifi c 
metamodel and will only understand models that use that metamodel. Extending 
the language by adding to the metamodel is something typically done by a tool 
vendor. The benefi t of a profi le is that many UML tools are engineered to support 
not just the core metamodel but also any user-defi ned profi les. This means that 
a profi le for a specifi c domain can be loaded into a UML tool and the tool will 
understand how to edit, display, load, and store elements of that profi le without 
the need for a tool extension. So, a modeler can make use of a set of modeling 
elements for a specialized modeling domain without needing to change the mod-
eling tool. 

   As discussed in Chapter 4, SysML is based very closely on a subset of the con-
cepts in UML, so it is defi ned as a UML profi le. This allows UML tools to support 
SysML simply by loading the SysML profi le, although many UML tool vendors have 
extended their UML tools to make the SysML profi le more usable. 

   The rest of this chapter discusses model libraries and profi les in detail. Section 
14.2 describes model libraries and their use in defi ning reusable components. 
Sections 14.3 and 14.4 cover the defi nition of stereotypes and the use of profi les 
to describe a set of stereotypes and supporting defi nitions. Sections 14.5 and 
14.6 focus on the use of profi les and model libraries to build domain-specifi c user 
models.  

    14.2    Defi ning Model Libraries to Provide 
Reusable Constructs 

   A model library is a special type of package that is intended to contain a set 
of reusable model elements for a given domain. Model libraries are not used to 
extend the language concepts of SysML, although model elements in the library 
may have stereotypes applied if they support a specialized domain, as shown 
in Figure 14.2 . Model libraries can contain very specialized elements similar to 
parts catalogs containing the specifications of off-the-shelf components, or they 
can contain elements with wider applicability, such as the SI Definitions model 
library provided in the SysML specification. 

   Any packageable model element (see Chapter 5), such as blocks, value types, 
activities, and constraint blocks, can be included in a model library. Elements in 
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a model library may be contained directly in that library, or they may have been 
defi ned in other models or packages and imported. In the latter case, the model 
library acts as a mechanism to gather elements from disparate sources into a con-
venient unit for reuse. 

   The contents of a model library may be shown on a package diagram or block 
defi nition diagram using the standard symbols for those diagrams. When a model 
library is shown on a package diagram, it is designated by a package symbol with 
the keyword «modelLibrary» appearing before the name of the model library in 
the name compartment or tab of the package. See  Figure 14.9  in Section 14.5 
for an example of the former notation. When a model library corresponds to the 
frame of a diagram, the type modelLibrary is shown in square brackets in the dia-
gram header as the model element type. 

   The model library in  Figure 14.4    defi nes a set of blocks to represent some very 
basic physical concepts intended to be specialized by domain-specifi c blocks. 
Physical Thing describes things with mass and density and provides a constraint, 
via the constraint block Mass Equation, that defi nes the mass of a physical entity 
in terms of the mass of its components. The block Moving Thing specializes 
Physical Thing with properties of motion (e.g., acceleration and velocity). It also 
has a property, force, that allows force to be applied to get a Moving Thing mov-
ing, or to stop it. Instead of a set of equations, the properties of Moving Thing are 
calculated using a simulation, as shown later in  Figure 14.11 .  

«constraint»
Mass Equation

{total�sum(components)}

parameters

Thermal Thing

constraints
ee : Energy Equation

values

Moving Thing

values

Physical Thing

values
componentsmeconstraints

bdd [modelLibrary] Physical Elements

total : kg
components : kg [*]

acceleration : ms�2

velocity : ms�1

initial velocity : ms�1

force : N
temperature : K
energy : J

mass : kg
density : kgm�3

 FIGURE 14.4 

      A model library defi ning some basic physical concepts.    
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    14.3    Defi ning Stereotypes to Extend Existing 
SysML Concepts 

   Whereas the elements of model libraries use existing language concepts to 
describe reusable constructs, stereotypes add new language concepts, typically 
in support of a specific systems engineering domain. Stereotypes are grouped 
together in special packages called profiles. SysML itself is defined as a profile of 
UML and uses stereotypes to define systems engineering concepts such as block 
and requirement. Just as models can contain instances of metaclasses, they can 
also contain instances of stereotypes, although instances of stereotypes have spe-
cial rules along with different conventions for how they are displayed. 

   A stereotype is based on one or more metaclasses in a reference metamodel. 
In the case of SysML this is a subset of UML called UML4SysML. (See Chapter 4 
for a description of metamodeling and in particular UML4SysML.) The relation-
ship between the metaclass and the stereotype is called an extension, which is 
a kind of association that is conceptually closer to a generalization. The choice of 
the base metaclass or metaclasses for a stereotype depends on the kind of con-
cepts that need to be described. A language designer will look for a metaclass 
with some of the characteristics needed to represent the new concept and then 
add others and, if necessary, remove characteristics that are not required. 

   Metamodels, including UML4SysML, contain abstract metaclasses that cannot 
be instantiated directly in the user model, but exist to provide a set of common 
characteristics that are specialized by concrete metaclasses instantiated in the 
user model. This is a powerful reuse mechanism that is widely used by metamod-
elers. A stereotype may extend an abstract metaclass, in which case it is equiva-
lent to the stereotype extending all the concrete specializations of that metaclass. 

   Profi les are specifi ed using an extension to package diagrams that allows them 
to show stereotypes, metaclasses, and their interrelationships. A metaclass is rep-
resented by a rectangle with the keyword «metaclass» centered at the top, fol-
lowed by the name of the metaclass. A stereotype is represented by a rectangle 
with the keyword «stereotype» centered at the top, followed by the name of the 
stereotype. An extension relationship is depicted as a line with a fi lled triangle at 
the metaclass end. 

    Figure 14.5    shows a set of stereotypes that describe new concepts for rep-
resenting fl ow-based simulation artifacts. The stereotype  Flow-Based Simulation  
allows modelers to defi ne simulations of system fl ow.  Flow-Based Simulation  
extends Activity because activities already have a fl ow-based semantic and so 
have many of the right characteristics. The stereotype Flow Simulation Element  
is used to model a specialized form of activity that can be added to a fl ow-based 
simulation.

   A very useful capability of simulations is to monitor the values of certain ele-
ments as the simulation runs. The Probe stereotype allows the modeler to desig-
nate that certain elements of the simulation should be monitored. Probe extends 
both ObjectFlow and ObjectNode because these are both constructs through which 
values (as tokens) fl ow.  Probe extends ObjectNode, which is an abstract metaclass 
as indicated by the use of italic font for its name. This means that all the concrete 
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subclasses of ObjectNode (e.g., DataStoreNode and ActivityParameterNode among 
many others) are implicitly extended as well. Note that this is an example of how 
extension and generalization differ. Probe is not a specialization of both ObjectFlow  
and ObjectNode; rather an instance of Probe may extend an instance of ObjectFlow , 
or an instance of ObjectNode (or concrete subclass thereof), but not both. 

   A stereotype can be defi ned by specializing an existing stereotype, or stereo-
types, using the generalization mechanism described in Chapter 6. In this case 
the new stereotype inherits all the characteristics of the stereotypes it special-
izes, including extensions. The new stereotype can then add more characteristics, 
including new extensions, which are relevant to the new concept. Stereotypes 
may be abstract, which means they cannot be used directly in a user model, but 
can be specialized and their characteristics inherited. Stereotype specialization is 
shown using the standard generalization notation—a line with a hollow triangle 
at the general end. 

    Figure 14.6    shows an example from SysML. Block extends the UML metaclass 
Class and ConstraintBlock specializes Block. It inherits the property isEncapsu-
lated, which indicates whether a connector can cross its boundary, from Block . 
Here is a snippet of the description for ConstraintBlock in the SysML specifi cation: 

    “A constraint block is a block that packages the statement of a constraint so 
it may be applied in a reusable way to constrain properties of other blocks. ”

   SysML also borrows a stereotype from StandardProfileL2 of UML, called Trace,  
and specializes it to represent relationships in the Requirements  profile. 

    14.3.1    Adding Properties and Constraints to Stereotypes 
   Sometimes stereotypes are defined to add a concept that is significant in terms of 
some domain but does not have any additional characteristics. For more sophisti-
cated definitions of a new concept, the stereotype mechanism includes the ability 
to add both properties and constraints to the stereotype definition. Stereotypes 

«stereotype»
Flow Simulation Element

«stereotype»
Flow-Based Simulation

«stereotype»
Probe

«metaclass»
ObjectFlow

«metaclass»
ObjectNode

«metaclass»
Activity

pkg [Profile] Simulations [Just Stereotypes]

 FIGURE 14.5 

      A package diagram containing stereotypes that support fl ow-based simulations.    
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that specialize other stereotypes will inherit the properties and constraints of their 
general stereotype. Stereotype properties represent information about the stere-
otype and have a type just like any other property. SysML defines a set of basic 
types—String, Integer, Boolean, and Real—but profiles can add their own types, 
or use types defined in model libraries. Constraints can be added to the stereotype 
to specify rules about valid use of new properties or to restrict the capabilities of 
an existing concept by further constraining the extended metaclasses’ properties. 
Constraints are specified using a textual expression in a specified language. The 
language OCL is often used for expressing constraints in profiles. 

   A stereotype may also defi ne properties that are typed by either stereotypes 
or metaclasses. This allows instances of the stereotype to contain references in 
the user model to instances of other stereotypes and metaclasses. These proper-
ties can be defi ned in the metamodel using associations or simply as attributes 
of the stereotype defi nition. Metaclasses in the reference metamodel cannot be 
modifi ed; so, any association between a stereotype and metaclass can only defi ne 
properties on the stereotype, not on the metaclass. 

   Stereotype properties and constraints are shown in a similar way to the prop-
erties and constraints of blocks. Properties and constraints are shown in compart-
ments below the name compartment. Constraints can also be shown in notes 
attached to the constrained stereotype. In addition to properties and constraints, 
a stereotype defi nition may contain an image that can optionally be displayed 
when the stereotype is applied to a model element. 

    Figure 14.7    shows the properties and constraints of the stereotypes fi rst 
shown in Figure 14.5 , and also some enumerations that are needed to defi ne 
some of those properties. The defi nition of  Flow-Based Simulation includes 
three properties that govern the type of simulation performed. Simulation type  
is typed by an enumeration, Simulation Kind, that has two values, discrete and 

«stereotype»
StandardProfileL2::Trace

«metaclass»
Abstraction

«stereotype»
DeriveReqt

«stereotype»
Copy

«stereotype»
Verify

pkg [Profile] Requirements [Subtypes of Trace]

«stereotype»
ConstraintBlock

«stereotype»
Blocks::Block

«metaclass»
Class

isEncapsulated : Boolean

pkg [Profile] Constraint Blocks

 FIGURE 14.6 

      Specialization example from SysML.    
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«stereotype»
Flow Simulation Element

compatibility : Simulation Kind
version : String

«stereotype»
Flow-Based Simulation

simulation type : Simulation Kind
step type : Step Kind
solver : Solver Kind
version : String

«stereotype»
Probe

action : Probe Action Kind

«enumeration»
Probe Action Kind

log
display
both

«enumeration»
Solver Kind

ode45
ode23

...

«enumeration»
Simulation Kind

continuous
discrete

«enumeration»
Step Kind

variable
fixed

«metaclass»
ObjectNode

«metaclass»
Activity

«metaclass»
ObjectFlow

0..*
probes

ode1
ode2

pkg [Profile] Simulations [with Properties and Constraints]

{owned actions must only invoke
Flow Simulation Elements}
{if step type is variable then the solver
must be one of ode45 or ode12}
{the version of all invoked activities must
be greater than the simulation version}

{if compatibility is continuous then the
simulation type of the owning
Flow-Based Simulation
must be continuous}

 FIGURE 14.7 

      Providing additional detail for the fl ow-based simulation stereotypes.    
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continuous, stating whether a continuous or discrete solution is required. Step
type says whether the simulation steps are fi xed in size or can vary.  Solver  
defi nes the type of solver to be used. The defi nition of  Flow Simulation Element  
includes a property called compatibility, which says what types of simulation it is 
compatible with. A value of continuous means that this element can be used only 
in continuous simulations; a value of discrete  means it can be used in both. 

   These stereotypes also defi ne constraints that affect activities with the vari-
ous stereotypes applied. A constraint on Flow Simulation Element states that 
an element whose compatibility property has the value continuous can be used 
only if the simulation type of their owning activity has the value continuous . 
Another constraint states that a Flow Simulation Element may be invoked only 
by an action contained in a Flow-Based Simulation. A constraint on Flow-Based
Simulation states that a variable step solver ( ode45 or ode23) must be used if the 
value for step type  is  variable . 

    Probe has a property action that indicates the action to take place for values 
on the monitored element. Its type, Probe Action Kind, has three values: display  
means display values in a simulation window; log means log these values to a 
log fi le;  both means do both. A Flow-Based Simulation has a property probes  
that references all the probes defi ned within it, as indicated by the association 
between Flow-Based Simulation  and  Probe . 

   As stated earlier, for practical reasons of tool implementation, stereotypes are 
not metaclasses, but rather defi ne additional elements that are created along with 
instances of metaclasses. However, some stereotypes act more like metaclasses 
and others act more like ancillary constructs. The two cases can be understood 
intuitively by considering whether the modeler will think in terms of creating an 
instance of the stereotype in the user model rather than an instance of the meta-
class, or whether he or she will think more in terms of adding an instance of the 
stereotype to an existing metaclass instance. 

   For example, a modeler probably intends to create a Flow-Based Simulation  
(see Figure 14.7 ) rather than create an Activity, and then apply the Flow-Based
Simulation stereotype to it. Quite apart from the previously stated intuitive under-
standing of the situation, a Flow-Based Simulation has constraints placed on it 
that an arbitrarily selected activity is unlikely to satisfy. On the other hand, the 
stereotype Audited Item in Figure 14.13  is an example of the other intuitive use 
of stereotypes as providers of ancillary information. Audited Item adds auditing 
information to a model element and is only needed once auditing of the element 
has begun. It is therefore natural in this scenario to imagine creating an instance 
of Classifi er (like a block) and only applying Audited Item at some later date.   

   In a user model, a stereotype can be applied to any model element that has 
the same metaclass that the stereotype extends. Typically, it is the modeler who 
dictates whether a stereotype is used or not, but occasionally the profi le designer 
may wish to enforce that every model element of a particular metaclass must 
have a specifi c stereotype applied. The extension is then said to be required. 
Required extensions can be useful when the use of the model depends on all 
model elements of a certain metaclass having some special characteristics. If the 
stereotype is required, then the property keyword {required} is shown near the 
stereotype end of the extension. Figure 14.13  in Section 14.6.1 shows an example 
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of a required extension that adds confi guration data, perhaps in conjunction with 
some confi guration management tool, to all model elements of metaclasses that 
are deemed worthy of confi guration control. 

    14.4    Extending the SysML Language Using Profi les 
   A profile is a kind of package used as the container for a set of stereotypes and 
supporting definitions. Typically a profile will contain a set of stereotypes that 
represent a cohesive set of concepts for a given modeling domain. More complex 
profiles often contain subprofiles that further subdivide the overall domain into 
subsets of related domain concepts. 

   Profi les typically serve one of two potential uses: Either the profi le defi nes a 
set of concepts that support a new domain, or it defi nes a set of concepts that 
add new information to a model in a domain that is already supported. It is often 
useful to bear this distinction in mind when creating a profi le. 

   The former use is sometimes called a domain-specifi c language and offers a 
new set of language concepts that a modeler might use when building a new 
model in that domain. The Simulations profi le shown in  Figure 14.8    is an exam-
ple of this use. A modeler will set out to build a simulation using language con-
cepts in the Simulations profi le and will think in terms of those concepts. In 
this type of use, the stereotypes in the profi le will predominantly resemble meta-
classes, as described in the previous section. 

   The latter use is a set of additional data that can be stored about existing 
model elements. A process or confi guration management profi le, such as the 
Quality Assurance profi le shown later in  Figure 14.13 , is a good example of this 
use. Stereotypes from the Quality Assurance profi le will be added to existing 
model elements, when quality-assurance information about them is required, and 
removed if and when the information is no longer relevant. 

«metamodel»
UML4SysML

«profile»
Simulations

«profile»
SysML «import»

«reference»

pkg [Model] System [Dependencies of Simulations Profile]

 FIGURE 14.8 

      Defi ning the inputs required to specify the  Simulations  profi le.    
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    14.4.1    Specifying a Profi le’s Reference Metamodel 
and Other Inputs 

   Section 14.3 described how stereotypes are defined by either extending a meta-
class or subclassing a stereotype. For a stereotype to extend a metaclass, the pro-
file that contains the stereotype must include a reference to the metaclass, or a 
reference to the metamodel that contains the metaclass, using a special type of 
import relationship (see Chapter 5 for a discussion on the import relationship) 
called a reference relationship. To specialize a stereotype contained in another 
profile, the profile must import the stereotype, or import the profile that contains 
the stereotype. When a profile is importing an existing profile, references of the 
imported profile are the basis for its reference metamodel, although it may refer-
ence additional metaclasses as well. 

   The notation for the reference relationship is a dashed arrow, annotated with 
the keyword «reference», with its head pointing at the referenced metaclass or 
metamodel. The import relationship is also shown as a dashed arrow with its 
head pointing toward the imported stereotype or profi le, but it is annotated with 
the keyword «import».

   In Figure 14.8 , the SysML profi le references the  UML4SysML metamodel (the 
subset of UML used by SysML) to extend its metaclasses. The metamodel keyword 
is used, and the triangle indicates that this is a model. The Simulations profi le 
imports the SysML profi le and hence its reference metamodel is also  UML4SysML . 
Stereotypes inside the Simulations profi le can now extend metaclasses in 
UML4SysML  (e.g.,  Activity ) and subclass SysML stereotypes (e.g.,  Block ).   

    14.5    Applying Profi les to User Models in Order 
to Use Stereotypes 

   The two previous sections in this chapter have described how to define a profile 
and the stereotypes contained within the profile. For modelers to use constructs 
from the profile in their model, they need to apply the profile to their model, 
or to a subpackage of their model. Once the profile has been applied, the stere-
otypes and other model elements in the profile, and the metaclasses from its ref-
erence metamodel, may be used anywhere within the containment hierarchy of 
the model or package. 

   A profi le is applied to a model or package using a  profi le application rela-
tionship. The modeler can choose whether to apply the profi le  strictly by using 
the strict property of the profi le application relationship. A strict application 
implies that only metaclasses from the profi le’s reference metamodel can be used 
within the model or package applying the profi le. If the strict property is not set 
on the profi le application, there is no restriction on which metaclasses can be 
used. A modeler can add or remove a profi le application relationship at any time. 
However, when a profi le application is removed, any instances of stereotypes from 
the profi le are also removed from the model; so, any such removal should be under-
taken with care and a backup copy of the model should be made. 

14.5 Applying Profi les to User Models in Order to Use Stereotypes
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   Whenever possible, it is recommended that the reference model for a profi le be 
constructed in such a way that the profi le can be applied strictly (i.e., that it has all 
the constructs required to support the profi le domain). If users need to use meta-
classes other than those referenced by the profi le, it is likely that the impact of using 
them in combination with profi le concepts may not have been fully considered. 
The SysML profi le has been defi ned to be applied strictly, but this restriction can 
be removed to use additional software-related concepts from the UML metamodel if 
supported by a well–thought out systems and software development methodology. 

   The notation for applying a profi le to a user model or subpackage is a dashed 
arrow, labeled with the keyword «apply», whose head points toward the profi le 
that is applied. 

    Figure 14.9    shows a package diagram that contains the Physical Elements  
model library. Physical Elements applies the Simulations profi le so that elements 
within it can have simulation extensions applied. Note that the Simulations  
profi le is applied strictly, which means that only metaclasses from its reference 
metamodel ( UML4SysML via its import of SysML shown on  Figure 14.8 ) can be 
used in the Physical Elements model library. Physical Elements also imports a 
model library called Flow Simulation Element so that it can use the simulation 
elements it contains.  

    14.6    Applying Stereotypes when Building a Model 
   Once a user model has a profile applied to it, the stereotypes from the profile 
may be applied to model elements within that model. How stereotypes are used 

«modelLibrary»

Flow Simulation Elements

«modelLibrary»

Physical Elements

«profile»

Simulations

«apply»

{strict}

«import»

pkg [Model] System [Dependencies of Physical Elements]

 FIGURE 14.9 

      Applying the  Simulations  profi le to a model and importing elements to support fl ow-based 
simulations.    
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depends on whether the intended purpose of the profile is a domain-specific lan-
guage, or as a source of ancillary data and rules to support a particular aspect of 
the model. Although there is nothing in the specification of a profile to differen-
tiate the two cases, often tool vendors will add custom support tailored to the 
intended use when building the profile. 

   For a given stereotype, its extension relationships defi ne the model elements 
that it can validly extend, subject to the model element satisfying any additional 
constraints that the stereotype specifi es. A model element may have any number 
of valid stereotypes applied to it, in which case it must satisfy the constraints of 
each stereotype. 

   Although the intention of the SysML graphical notation for stereotypes, and 
many tool vendor implementations of profi les, is to hide these details and to pro-
vide a visualization that matches the modeler’s expectation, the mechanics of 
how stereotypes are applied is worthy of some explanation. When a stereotype is 
applied to a model element (i.e., a metaclass instance), an instance of the stereo-
type is created and is related to the model element. Once an instance of the ste-
reotype exists, the modeler can then add values, which are stored in the instance, 
for the stereotype’s properties. An instance of a stereotype cannot exist without a 
related metaclass instance to extend, and in consequence, when a model element 
is deleted, all its related stereotype instances are also deleted. 

   Subject to these basic rules, how the modeler actually applies stereotypes is 
often governed by a modeling tool based on the intended use of the stereotype. For 
example, the tool may create an instance of the stereotype and an instance of the 
base metaclass at the same time, or it may allow the modeler to create a model ele-
ment fi rst and then add and potentially remove the stereotype as separate actions. 

   Information from a stereotype is shown as part of, or attached in a callout to, 
the symbol of the model element to which it is applied. A stereotyped model ele-
ment is shown with the name of the stereotype in guillemets (e.g., «stereotype-
Name»), followed by the name of the model element. Whereas the stereotype 
name may be capitalized, and may contain spaces in its defi nition, the convention 
is for the stereotype name to be shown as a single word using camel case (fi rst 
letter lowercase, second and subsequent words in the original name have their 
fi rst letter capitalized) when applied to a model element in a user model. 

   If a model element is represented by a node symbol (i.e., rectangle), the ste-
reotype name is shown in the name compartment of the symbol. If the model 
element is represented by an path symbol (e.g., a line), the stereotype name is 
shown in a label next to the line and near the name of the element. Stereotype 
keywords can also be shown for elements in compartments when they are shown 
before the element name. 

   If a model element has more than one stereotype applied, then each stereo-
type name is, by default, shown on a separate line in a name compartment. If 
no stereotype properties are shown, multiple stereotype names can appear in a 
comma-separated list within one set of guillemets. See Figure 14.13  in Section 
14.6.1 for an example of the application of multiple stereotypes. Whenever ste-
reotypes are applied to a model element whose symbol normally has a keyword, 
its standard keyword is displayed before/above the stereotype keywords. The 

14.6 Applying Stereotypes when Building a Model
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properties for a stereotype may be displayed in braces after the stereotype label, 
or if the symbol supports compartments, in a separate compartment. 

   A stereotyped model element may also be shown with a special image that is 
part of the stereotype defi nition. For node symbols, that image may appear in the 
top right corner of the symbol, in which case it is often shown instead of the ste-
reotype keyword. Alternatively, the image may replace the entire symbol. 

    Figure 14.10    shows some of the elements in the Flow Simulation Element’s
model library. They all have the fl owSimulationElement stereotype applied so 
that their version and compatibility properties can be specifi ed. In this case 
Derivative and Integrator are only compatible with continuous simulations; 
the rest are compatible with discrete and continuous simulations. They all have 
version  “ 7.5 ”  except the Signal Generator, which has version  “ 7.6.  ” Note that 
because the underlying model elements are all activities, the keyword « activity» is 
shown, as described in Section 8.10. These elements can be used in the construc-
tion of fl ow-based simulations. 

   The activity diagram in Figure 14.11    shows a simulation model of the motion 
of the Moving Thing block, fi rst shown in  Figure 14.4 . The activity  Motion 
Simulation is the classifi er behavior of  Moving Thing, so the model shows what 
happens to it over its lifetime. The simulation calculates the values of acceleration,
velocity, and distance over time. The algorithm fi rst calculates the acceleration from 

bdd [modelLibrary] Flow Simulation Elements [A Selection of Flow Simulation Elements]

«activity»
«flowSimulationElement»

Derivative

«activity»
«flowSimulationElement»

Integrator

compatibility � continuous
version � "7.5"

compatibility � continuous
version � "7.5"

compatibility � discrete
version � "7.5"

compatibility � discrete
version � "7.5"

compatibility � discrete
version � "7.6"

«activity»
«flowSimulationElement»

Signal Generator

compatibility � discrete
version � "7.5"

«activity»
«flowSimulationElement»

Divide

«activity»
«flowSimulationElement»

Sum

«activity»
«flowSimulationElement»

Saturation

 FIGURE 14.10 

      Defi ning a library of fl ow-based simulation elements using stereotypes to add simulation 
details.    
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«addStructuralFeatureValue»
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acceleration

«readStructuralFeature»
force

«readStructuralFeature»
mass

«readStructuralFeature»
initial velocity

s : Integrator

state
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{action � display}
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 FIGURE 14.11 

      Using fl ow-based simulation stereotypes and library elements in the defi nition of a simulation.    
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the mass of the object (inherited from Physical Thing) and the force applied; then 
it integrates the acceleration to get the velocity. Finally, it integrates the sum of the 
velocity due to acceleration and the initial velocity to get the distance traveled, 
which is stored in data store distance. The current values of acceleration and veloc-
ity from the simulation are used to update the relevant properties of Moving Thing . 

   Three probes are used over time to display the values of acceleration, velocity, 
and distance. The fi rst two values are obtained via probes on object fl ows, and 
the third by a probe on a data store. 

    Figure 14.12    shows Motion Simulation as an activity hierarchy. This view 
is useful because it shows the properties of the simulation elements. Motion
Simulation and its children in the activity hierarchy satisfy all the constraints 
imposed by the stereotypes Flow-Based Simulation and Flow Simulation 
Element,  as defi ned in  Figure 14.7 : 

      ■    All the invoked activities of Motion Simulation are stereotyped by Flow
Simulation Element   .

      ■    All the invoked activities have version numbers at least as high as Motion
Simulation  itself  .

      ■    The  ode45  solver is appropriate for a variable step continuous simulation  .

bdd [Block] Moving Thing [Activity Hierarchy for Motion Simulation Activity]

«activity»
Motion Simulation

probes �

distance,
accel out,
vel out

simulation type � continuous
solver � ode45
step type � variable
version � "7.5"

compatibility � continuous
version � "7.5"

«activity»
«flowSimulationElement»

Divide

compatibility � discrete
version � "7.5"

compatibility � discrete
version � "7.5"

«valueType»
m

a total v

distance

sv

«activity»
«flowSimulationElement»

Integrator

«activity»
«flowSimulationElement»

Sum

p

t

x

 FIGURE 14.12 

      Block defi nition diagram showing the activity hierarchy for  Motion Simulation .    
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      ■     Motion Simulation is a continuous simulation, so both discrete and con-
tinuous Flow Simulation Elements  are allowed.    

   Instead of showing the keyword «flowBasedSimulation» for Motion Simulation  
to illustrate the use of stereotype images, this figure shows the stereotype’s image 
in the top right corner of the symbol. 

    14.6.1    What Happens When Model Elements with Applied 
Stereotypes Are Specialized? 

   A potential area of confusion when using stereotypes is the effect of subclassing a 
classifier—a model element that can be classified (i.e., have subclasses)—that has 
a stereotype applied to it in the user model. Application of a stereotype to a model 
element does not  imply that the stereotype is applied to subclasses of the model 
element. Whenever such an outcome is desired, its stereotype definition should 
include a specific constraint to ensure this. Even when a constraint forces subclasses 
to have the same stereotype as their superclasses, they do not inherit values for ster-
eotype properties. When this is desired, the stereotype should include an additional 
constraint that every subclass has the stereotype applied and also inherits the values 
of the stereotype’s properties. Figures 14.13  and 14.14 show an example where nei-
ther applied stereotypes nor the values of their properties are inherited. 

    Figure 14.13    shows two stereotypes from the profi le  Quality Assurance. The 
stereotype Audited Item, which extends the metaclass Classifi er and can be applied 
to blocks among other model elements, is used when a classifi er has been audited 
for quality—typically, when it reaches a certain level of maturity. It has properties 
to capture the audit date, the auditor, and the quality level that may take values 
from high to low. The stereotype Confi gured Item contains properties that must be 
applied to every classifi er, hence the presence of the  {  required  } property. 

pkg [Profile] Quality Assurance

«stereotype»
Configured Item

version : Dewey Decimal
configuration date : Date

audit date : Date
quality level : Level Kind
auditor : String

«stereotype»
Audited Item

«enumeration»
Level Kind

high
medium
low

«metaclass»
Classifier

{required}

 FIGURE 14.13 

      Defi nitions of two stereotypes used as part of quality assurance on a model.    

14.6 Applying Stereotypes when Building a Model
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    Figure 14.14    shows the Audited Item and Confi gured Item stereotypes in use. 
In this case the block Baselined Block has been audited and so has values for 
audit date, auditor, and quality level. Its subclass Prebaselined Block is still in 
early design, so it has not yet been audited. It clearly does not make sense to 
assume, just because Baselined Block has the Audited Item stereotype applied to 
it, that Prebaselined Block  will also have it. 

   Even when a stereotype, such as Confi gured Item, is required and therefore 
applied to all blocks, it clearly is not the case that the confi guration properties of 
a block (e.g., Baselined Block) will be inherited by a subclass like Prebaselined
Block. The information stored in the properties of Confi gured Item is specifi c to 
the model element to which it is applied. 

   Note that Baselined Block has two stereotypes applied to it, demonstrating 
the notations that are used where multiple stereotypes are applied. The keywords 
representing the two applied stereotypes both appear separated by a comma 
inside a single set of guillemets. The properties of the two stereotypes appear in 
separate compartments, labeled using the keyword of their owning stereotype.   

    14.7    Summary 
   SysML is a general-purpose systems modeling language that includes built-in mech-
anisms, called model libraries and profiles, to further customize the language.

bdd [Package] Configuration Example

«configuredItem»
Prebaselined Block

«auditedItem,configuredItem»
Baselined Block

«auditedItem»
audit date � "03-03-07"
auditor � "Alan"
quality level � high

«configuredItem»
configuration date � "02-03-07"
version � "2.1"

«configuredItem»
configuration date � "07-07-07"
version � "1.1"

 FIGURE 14.14 

      Application of quality-assurance stereotypes to two blocks, one of which specializes the other.    
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When used properly, model libraries and profiles can be used to support domain-
specific modeling for many different domains. The following are some of the key 
concepts for domain-specific modeling. 

■    A modeling language is defined using a metamodel and contains a number of 
distinct language concepts, represented by metaclasses. Metaclasses have a set 
of properties and constraints on them. Metaclasses can also be associated with 
each other, thus allowing the language concepts to be related to one another. 
The underlying metamodel for SysML is called UML4SysML and is based on 
UML—an existing modeling language. UML4SysML contains the subset of UML 
concepts that are needed for systems modeling. SysML defines a graphical 
notation, based on UML, to represent the concepts in the metamodel. 

■    User models contain model elements, which are instances of metaclasses 
contained in the metamodel. These model elements have values for the 
properties of their metaclasses and can be related according to the associations 
defined between their metaclasses. 

■    A model library is a special type of package that contains model elements 
intended for reuse in multiple models.  They can vary from very specific, such 
as representing a set of electronic components, to general, such as a definition 
of a common set of units and dimensions for representing quantities. 

■    A profile adds new concepts to a language (in this case SysML) by means of 
stereotypes. A profile extends a reference metamodel, which for SysML profiles 
is always its reference metamodel—UML4SysML. SysML itself is defined as a set 
of profiles that extend UML4SysML, but it also makes the profile mechanism 
available to SysML modelers so that they may further extend the language. 
A profile can import an existing profile in order to reuse the stereotypes it 
contains. 

■    Stereotypes extend one or more metaclasses in the reference metamodel. 
A stereotype can contain properties and also constraints that may constrain 
both the values of its own properties and the property values of its base 
metaclasses. 

■    To use a profile, a modeler must apply it to his or her model or some sub-
package of the model using a profile application relationship. A profile may be 
applied strictly, which means that model elements that apply to the profile may 
only be instances of metaclasses in the profile’s reference metamodel. 

■    When a profile has been applied, stereotypes from that profile may be applied 
to appropriate model elements within it. Once a stereotype has been applied, 
modelers may provide values based on the stereotype’s properties, and the 
constraints of the stereotype are applied to the model element. SysML includes 
a graphical notation that describes how a stereotyped model element appears 
in a diagram. 

14.7 Summary
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         14.8 Questions
         1.   Which type of diagram is used to defi ne model libraries and profi les? 
     2.   List the three parts of a modeling language like UML.  
     3.   What are metaclasses used for?  
     4.   What is the relationship between metaclasses and model elements?  
     5.   What is a model library used for?  
     6.   What is the relationship between a stereotype and its base metaclass called 

and how is it represented on a diagram?  
     7.   Which rule applies to an association between a stereotype and a metaclass 

and why?  
     8.   Which model elements can a profi le contain? 
     9.   What is the reference relationship used for?  
    10.   What must modelers do before they can apply stereotypes to elements in 

their models?  
    11.   On a diagram, how can a modeler tell that a stereotype has been applied to a 

model element?  
    12.   How can the applied stereotype and stereotype property values for a graphi-

cal path (line) symbol be shown?  
    13.   How can the applied stereotype and stereotype property values for a block 

symbol be shown?  
    14.   When a block subclasses a block with a stereotype applied to it, which of the 

following describes the effect? 
   a.    The subclass automatically inherits the stereotypes applied to its 

superclass.  
   b.    The subclass automatically inherits the stereotypes applied to its super-

class and also inherits the values of any stereotype properties.  
  c.    The subclass cannot inherit either applied stereotypes or the values of ste-

reotype properties.  
   d.    The subclass can inherit applied stereotypes and the values of stereotype 

properties but the stereotype has to be explicitly specifi ed to allow that.        

    Discussion Topics 
   When adding new concepts to a language, when does it make sense to use a pro-
file and when to use a model library? 

   What is the difference in meaning and use between a property of a stereotype 
and the property of a block?      
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   This chapter contains an example that describes the application of SysML to the 
design of a water distiller system using a traditional functional analysis method. 
This method is familiar and intuitive to many practicing systems engineers. 
The example was originally developed by the International Council on Systems 
Engineering (INCOSE) to support the initial evaluation of the SysML specification. 
Chapter 16 demonstrates the application of SysML to a more complex problem 
using the object-oriented systems engineering method. The following approach is 
used to address the problem: 

      ■    Stating the problem 
      ■    Defi ning the model-based systems engineering approach 
      ■    Organizing the model 
      ■    Establishing requirements 
      ■    Modeling behavior 
      ■    Modeling structure 
      ■    Analyzing performance 
      ■    Modifying the original design    

    15.1   Stating the Problem 
   Eliciting and analyzing stakeholder requirements is a critical initial step in the sys-
tems engineering process. When this is done, stakeholder requirements are often 
revealed to contain ambiguity and contradictions. The ability to model the speci-
fication of a system provides a mechanism to better understand the requirements, 
reduce the ambiguity, and validate the requirements with the stakeholders to 
ensure the right problem is being solved. 

    In this example, the initial stakeholder requirements were provided as follows: 

    Describe a system for purifying dirty water 
    Heat dirty water and condense steam are performed by Counter Flow Heat Exchanger 
    Boil dirty water is performed by a Boiler 

                                         Water Distiller Example 
Using Functional 
Analysis   15 

CHAPTER
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    Drain residue is performed by a Drain  
    Water has the following properties: vol      �      1 liter, density      �      1     gm/cm 3, temp      �      20 °C, 

specific heat      �      1     cal/gm °C, heat of vaporization      �      540     cal/gm    

   These statements are elaborated in the diagram in  Figure 15.1   , which was provided 
by the customer to help communicate the requirements. 

   Although the diagram lacks formalism, it does emphasize certain features that 
appear to be important to the stakeholder specifying this problem. The diagram iden-
tifi es the primary functions that the system is expected to perform—heating water, 
boiling water, condensing steam, and draining residue—along with the expected 
fl ows between system functions and expected sequence for the functional fl ow. 

   The system modeler must interpret and analyze the stakeholder requirements to 
develop a precise and complete specifi cation and to remove potential ambiguities. 
For example, the diagram seems to imply that the distillation is a discrete process 
that produces purifi ed water in batches, versus a distillation process where water 
continuously fl ows into the distiller and produces a continuous stream of purifi ed 
water. 

    Figure 15.2    shows an example of a batch distiller that includes a boiler and a 
condenser. The boiler is fi lled with water. A heat source is used to heat the water 
in the boiler, steam is then generated, and the distilled water is collected from the 
condenser. The process stops when there is no more water in the boiler; purify-
ing more requires refi lling the boiler with water. 

    Figure 15.3    shows an example of a continuous distiller that can have water 
fl ow through it continually. It includes a boiler with an internal heating element 
and a counterfl ow heat exchanger that has cool liquid fl owing in the coils and 
steam condensing around them. These terms are consistent with the original 
problem statement, indicating that a continuous distiller may be the preferred 
approach to address the total set of requirements, but this must be validated to 
ensure that customer needs are being satisfi ed. 

Heat dirty water
to 100 deg C

Boil dirty water and

Condense
steam

Drain
residue

Heat to dirty
water

Dirty water
@ 20 deg C

Dirty water
@ 100 deg C

Heat to boil
water

Residue
Disposed
residue

Pure
water

Energy to
condense

Steam

and

 FIGURE 15.1 

      Informal,  Non-SysML  behavior diagram provided with distiller problem statement.    
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    15.2    Defi ning the Model-Based Systems 
Engineering Approach 

   The model-based systems engineering approach taken to address this problem is 
outlined next. Note that while the steps are shown as a sequence, they are often 
performed in parallel and iteratively. 

      ■    Organize the model and identify reuse libraries 

      ■    Capture requirements and assumptions 

 FIGURE 15.2 

      Representation of a batch distiller.    
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 FIGURE 15.3 

      Representation of a continuous distiller.    

15.2 Defi ning the Model-Based Systems Engineering Approach
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      ■    Model behavior 
           – In similar form to problem statement  
     –    Elaborate as necessary     

      ■    Model structure 
      –     Capture implied inputs and outputs, and things fl owing through the system 
      –     Identify structural components and their interconnections  
      –     Allocate behavior onto components and behavioral fl ow onto inter-

connections     

      ■    Capture and evaluate parametric constraints 
      –     Derive and represent the heat balance equation  
      –     Perform the analysis to assess feasibility of the solution     

      ■    Modify design as required to meet constraints    

    Organize the model The initial step in any model-based approach is to establish 
a model organization. In particular, the organization should include a package 
structure based on the concepts presented in Chapter 5. Model organization also 
includes the identification and incorporation of existing libraries of components 
or other elements that may be leveraged to support the model development. 

    Capture requirements and assumptions The next step is to capture the 
requirements and assumptions. This lays the necessary foundation for further 
development.

    Model behavior Modeling behavior and structure can be done concurrently. In 
this example, behavior modeling is discussed first. Since the customer provided 
an initial behavior diagram, behavioral modeling focuses first on formalizing the 
behavior that was provided and reconciling it with the other requirements. 

    Model structure Modeling structure is discussed next. The customer has indi-
cated a partial identification of system components. As with the behavior 
model, the structural model is formalized and reconciled, both with require-
ments and behavior. Part of this reconciliation involves assessment of how the 
behavior model is supported by the structure model. 

    Capture and evaluate parametric constraints and modify design as required  
This step is used to model the distiller performance in the form of a heat bal-
ance equation. The customer provided some of the information necessary to per-
form the analysis, so it is used to determine whether this system will perform as 
expected. If not, the design is modified as necessary to develop a feasible solu-
tion that addresses the requirements. 

    15.3    Organizing the Model 
   A critical step prior to initiating significant effort in specifying model elements 
and developing diagrams is to establish the initial organization of the model. 
This is done by defining the model’s overall package structure. The organization 
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should also consider what model libraries may be leveraged for the development. 
Chapter 5 provided a number of approaches that can be used to organize the 
model. Caution must be exercised when organizing the model to avoid prema-
turely constraining or biasing the design. 

   The package diagram in Figure 15.4    describes the organization for this model. 
The packages are primarily organized based on the types of artifacts developed 
using the selected process, including requirements, use cases, and structural and 
behavioral models. The Engineering Analysis package includes the constraint 
blocks and parametric models used to analyze the performance. 

   Note that the Value Types package imports from the SI Defi nitions package—
a reusable library package available to multiple models. The Value Types pack-
age uses the imported defi nitions of units and dimensions to create specifi c value 
types as indicated in Figure 15.5   . The value types are then applied to value prop-
erties with consistent units throughout the model. 

   A package for Item Types is included to separately capture the types of things 
that fl ow in the system. Segregating item types into its own package allows the mod-
eler to concentrate on defi ning the things that fl ow and leverage reuse libraries that 
may exist independent of where they fl ow or how they are used. This segregation is 
similar to establishing a reusable library of components, and has proved effective in 
the past. For this example, water and heat fl ow through the system. Putting the 
item types in a separate package allows the modeler to consolidate all the relevant 
information about water, heat, and the other Item Types  used in this model. 

   The browser structure of the modeling tool typically provides a view of these 
packages in a folderlike structure that is populated as the model is developed. 

Distiller Requirements Distiller Use Cases

«modelLibrary»
SI DefinitionsEngineering Analysis

Distiller Behavior Distiller Structure

Item Types Value Types

«import»

pkg Distiller [model organization]

 FIGURE 15.4 

      Package diagram documenting the organization of the distiller model.    

15.3 Organizing the Model
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It may be convenient to revise the organization of the model over time as the 
model is refi ned and updated. For example, after an initial design has been estab-
lished, packages may be established for each component that is subject to further 
design and analysis.  

    15.4    Establishing Requirements 
   The system requirements for this example were provided by the stakeholder in the 
form of the problem statement described in  Figure 15.1 . The problem statement is 
captured in the requirement diagram in  Figure 15.6   . The diagram’s header indi-
cates that the frame represents a package called Distiller Requirements . 

   The original requirements statement is designated with requirement id 
S0.0. This diagram shows the containment relationship: how requirement S0.0  
is decomposed into individual atomic requirements S.1 through S.5. Requirement 
decomposition indicates that nothing was added or subtracted from the statements 
in the source requirement S.0, but that the compound statement was replaced by a 
set of atomic statements, each of which can be individually analyzed and verifi ed. 

   It often becomes necessary to derive more explicit requirements from an exist-
ing set of requirements. For example, requirement S1.0 states that “The system shall 
purify dirty water.  ” It does not say that the system shall boil water, but that it 

pkg Value Types [value types for distiller]

«valueType»
cal/sec

dimension � heat flow
rate
unit � calories per second

«valueType»
cal/(gm*�C)

dimension � specific heat
unit � calories per gram
degree Celsius

«valueType»
cal/gm

dimension � latent heat
unit � calories per gram

«valueType»
�C

dimension � temperature
unit � degrees Celsius

«valueType»
N/m^2

dimension � pressure
unit � newtons per
square meter

«valueType»
gm/sec

dimension � mass flow
rate
unit � grams per second

«valueType»
efficiency

{0��n��1}

«valueType»
Real

 FIGURE 15.5 

      Block defi nition diagram documenting the valueTypes used in analyzing distiller performance.    
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shall purify water. To explicitly understand that the system needs to purify water 
by boiling it, we have to derive a new requirement, as follows: requirement S2.0  
states that the system must “Heat dirty water  …,” and requirement S3.0 states that 
the system must “Boil dirty water.…” It is merely necessary to show the derivation 

Source

«rationale»
The requirement
for a boiling
function and a
boiler implies
that the water
must be purified
by distillation.

«d
er

iv
eR

eq
t»

«requirement»
OriginalStatement

id � S0.0
text � Describe a system for purifying dirty water. 
–Heat dirty water and condense steam are performed by a Counterflow Heat Exchanger. 
–Boil dirty water is performed by a Boiler. Drain residue is performed by a Drain. 
The water has properties: vol � 1 liter, density � 1 gm/cm3, temp � 20 deg C,
specific heat � 1 cal/gm deg C, heat of vaporization � 540 cal/gm.

«requirement»
WaterProperties

id � S5.0
text � Water has properties:
density � 1 gm/cm3,
temp � 20 deg C,
specific heat � 1 cal/gm
deg C, heat of vaporiza-
tion � 540 cal/gm.

«requirement»
WaterInitialTemp

id � S5.1
text � Water has an
initial temp � 20 deg C.

«requirement»
HeatExchanger

id � S2.0
text � Heat dirty water and
condense steam are
performed by a Counterflow
Heat Exchanger.

«requirement»
Boiler

id � S3.0
text � Boil dirty water is
performed by a Boiler.

«requirement»
Drain

id � S4.0
text � Drain residue is
performed by a Drain.

«requirement»
PurifyWater

id � S1.0
text � The system shall
purify dirty water.

«requirement»
DistillWater

id � D1.0
text � The system shall
purify water by boiling it.

req [package] DistillerRequirements

 FIGURE 15.6 

      Requirement diagram with top-level distiller requirements from the problem statement.    

15.4 Estabilishing Requirements
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relationships between purify, heat, and boil. This provides the rationale for the 
derivation of requirement D1.0 . 

   Requirement S2.0 states that “Heat dirty water and condense steam are per-
formed by a Counterfl ow Heat Exchanger.  ” Requirements can be derived from 
S2.0 that state “The system shall contain a Counterfl ow Heat Exchanger  ” and “The 
system shall heat dirty water  ” and “The system shall condense steam. ”  It should 
also be noted that these statements were provided as requirements, yet they impose 
a design solution. It is generally undesirable to have requirements that overcon-
strain the solution space; however, this may not be within the control of the system 
designer. It is the responsibility of the systems engineer to establish a dialog with 
the customer and sort the true requirements from assumptions about the solution. 

   This process for capturing requirements has resulted in a more granular set of 
requirements statements and rationale than the source requirement that was pro-
vided by the customer. The source requirement has been broken up into require-
ments related to heat exchangers, boilers, and drains. The source statement about 
water properties has also been broken out separately and then further broken down 
into initial water temperature, density, specifi c heat, and heat of vaporization. The 
added granularity of the requirements statements will now enable each of them to 
be uniquely traced to the parameters used in the distiller performance analysis. 

   It may seem surprising to see properties of water tracked as requirements that 
show up on a requirement diagram. The point of doing this is to have complete 
traceability from the customer’s problem statement through the design. If the 
properties of water were somehow assessed to be incorrect, documenting them 
in this way would provide a rationale for why they were changed, or at least pro-
vide a dialog with the customer to assist in the requirements validation process. 

   In this example, all source requirements, both original and decomposed, 
start with S. All derived requirements start with D. It is expected that the project 
establishes a convention for requirements numbering, and that tools can assist in 
enforcing the convention. The requirements numbers may correspond to specifi c 
paragraph numbers in a specifi cation. 

    Figure 15.7    includes the requirements in a tabular format, which is an allow-
able notation in SysML. This is a traditional way to view the requirements. The 
table in the fi gure is a report out from the model and contains some of the same 
information shown in the requirement diagram; it provides requirement id, 
name, and text. In this case the table relies on the numbering to indicate the 
hierarchy or containment relationships, but this could have been shown by level 
of indenture or on another mechanism. 

    Figure 15.8    also shows a tabular format for requirements, but it includes the 
relationships between requirements. In addition to id and name, the table cap-
tures the derive relationship, which shows how one requirement is derived from 
another, along with the rationale for the relationship. When multiple relation-
ships are to follow, this generates a requirements tree. This information is also 
shown graphically on the requirement diagram, which is a useful way to enter 
the relationships; however, it is often more compact to view the information in 
tabular format. Tools are expected to provide the tabular format for requirements 
and other types of modeling information, as described in Chapter 4. 
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   Note that Appendix C of the OMG SysML specifi cation lists nonnormative 
requirement types that may be used. Users may want to leverage these types 
and/or create user-defi ned extensions using the profi le mechanism described in 
Chapter 14. 

    15.5   Modeling Behavior 
   This section describes techniques used for modeling distiller behavior and flow 
and introduces behavioral allocation. 

    15.5.1   Simple Behavior 
   The first step in analyzing the system behavior is to recast the customer’s origi-
nal behavior diagram as an activity diagram in SysML. This initial version uses the 
Enhanced Functional Flow Block Diagram (EFFBD) format, which is a nonnorma-
tive profile included the SysML 1.0 specification [1]. 

   The diagram in Figure 15.9    characterizes the behavior of the Distill Water activ-
ity. The enclosing frame designates an enclosing activity called Distill Water as 
shown in the diagram header. As described in Chapter 8, round-cornered boxes 
represent actions (usages) that are typed by activities (defi nitions). The dashed lines 

id name text

S5.1 WaterInitialTemp Water has an initial temp of 20 deg C

S5.0 WaterProperties Water has properties: density � 1 gm/cm3, temp � 20 deg C, . . .

S4.0 Drain Drain residue is performed by a Drain.

S3.0 Boiler Boil dirty water is performed by a Boiler.

S2.0 HeatExchanger Heat dirty water and condense steam are performed by a . . .

S1.0 PurifyWater The system shall purify dirty water.

S0.0 OriginalStatement Describe a system for purifying dirty water. . . .

table [Package] DistillerRequirements [Decomposition of OriginalStatement]

 FIGURE 15.7 

      Requirements decomposition table.    

S1.0

id

D1.0

id

table [Package] DistillerRequirements [Requirements Trace from S1.0]

name Rationale

PurifyWater

name

DistillWater

relation

deriveReqt

The requirement for a boiling function
and a boiler implies that the water must
be purified by distillation.

 FIGURE 15.8 

      Requirement trace in tabular format.    

15.5 Modeling Behavior
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are control fl ows that defi ne the sequence of actions; dashed lines are optional but 
help to more clearly distinguish control fl ow from object fl ow. The things that fl ow 
are represented as object nodes, in this case drawn as square-cornered boxes con-
nected to actions via object fl ows. The actions and object nodes include their role 
names (usages) and types (defi nitions) using the role name : Type Name notation. 

   Note that the object node recovered : Heat fl ows into action  a1 : Heat Water . 
This begs the question: Where does that heat come from? On the customer’s 
original behavior diagram in  Figure 15.1 ,  Energy to condense was shown fl ow-
ing into the activity Condense steam. This energy is actually heat that must be 
removed in order for the steam to condense. Hence, in recasting this diagram 
into SysML in  Figure 15.9 , the object node  recovered : Heat is shown fl owing out 
of a3 : Condense Steam. This is consistent with the operation of a counterfl ow 
heat exchanger. Although this diagram accurately represents all the elements on 
the customer’s original diagram, it still does not adequately describe the desired 
distiller behavior and needs further refi nement. 

   Note too that this model considers heat to be provided from a source external 
to the distiller. For both the batch and continuous distillers shown in       Figures 15.2 
and 15.3 , one could consider the heat source to be internal to the distiller system, 
in one case consisting of an oil lamp, and in the other, an electric heating coil. 
Here, the heat source is initially modeled as an external component, but later in 
the example it is introduced as an electrical heater that is part of the boiler. 

    Figure 15.10    shows a refi ned version of the activity diagram. Note that action 
pins are necessary when object nodes send or receive object fl ows from activity 

act [Activity] Distill Water [1. simple starting point]

«block»
cold dirty : H2O

[Liquid]

«block»
pure : H2O

[Liquid]

«block»
recovered :

Heat

«block»
steam : H2O

[Gas]

«block»
hot dirty : H2O

[Liquid]

«block»
recovered :

Heat

«block»
discharge :

Residue

«block»
predischarge :

Residue

«block»
external : Heat

a1 : Heat Water a2 : Boil Water

a3 : Condense Steam

a4 : Drain Residue

 FIGURE 15.9 

      Original problem statement diagram captured as a SysML activity diagram.    
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parameter nodes (on the diagram frame). The use of action pins will be impor-
tant when considering fl ow allocation. In this version, the  recovered : Heat from 
a3 : Condense Steam is connected directly to a1 : Heat Water, thus eliminating 
redundancy in the previous diagram. It is also appropriate at this point to rechar-
acterize those object nodes that fl ow outside the distiller as activity parameter 
nodes, thus graphically moving them to the boundary of the Distill Water activity 
diagram. This more clearly defi nes the activity inputs and outputs and enables 
Distill Water  to fi t into a larger behavioral context. 

   Note the operational implications of the control fl ow on the model. When the 
distiller stops heating water, it initiates the action Boil Water. When it stops boil-
ing water, it initiates the parallel actions— Condense Steam and Drain Residue . 
When these actions are complete, the Distill Water activity is complete. This is 
consistent with the defi nition of a batch distiller shown in  Figure 15.2 .

   The decomposition of the Distill Water activity is represented in a block defi ni-
tion diagram in Figure 15.11   . This functional decomposition concept is discussed in 
Section 8.14 in Chapter 8. Note that the composition relationships use role names 
on the part end of the associations that are consistent with action names shown on 
the activity diagram in Figure 15.10 . The actions represent the usage of these 
activities.

   The control fl ows and object fl ows from the activity diagram are not shown on 
a block defi nition diagram. The blocks used to type the object nodes can be shown 

act [Activity] Distill Water [2. parameter nodes]

cold dirty : H2O

cold
dirty : H2O

pure : H2O

«block»
steam : H2O

[Gas]

«block»
hot dirty : H2O

[Liquid]

discharge : Residuedischarge : Residue

pure : H2O

«block»
predischarge : Residue

external : Heat

external : Heat

a2 : Boil Water

a4 : Drain Residue

«block»
recovered : Heat

a1 : Heat Water

a3 : Condense Steam

 FIGURE 15.10 

      Elaborating the original diagram with activity parameter nodes and a feedback loop.    

15.5 Modeling Behavior
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on the block defi nition diagram to provide the defi nition of the items fl owing
into the activity diagram. In this case the items include water, residue, and heat, 
but are not shown. 

   It should also be noted that water changes state between gas (i.e., steam) and 
liquid as it proceeds through the Distill Water process.  Figure 15.12    shows a state 
machine diagram for the change in state of water that includes solid, liquid, and 
gas states. The transitions are shown, along with the guard condition. Latent heat 
of vaporization must be added to transition from liquid to gas. The same latent 

bdd [Package] Initial Behavior [behavior breakdown]

«activity»
Condense Steam

«activity»
Boil Water

«activity»
Distill Water

«activity»
Heat Water

«activity»
Drain Residue

a4a1 a2 a3

 FIGURE 15.11 

       Distill Water  functional hierarchy.    

stm States of H2O [example state machine diagram] 

Solid

Gas

Liquid

when (water temp��100 and
latent heat of vaporization added) when (water temp��100 and

latent heat of vaporization removed)

when (water temp��0 and
latent heat of fusion removed) 

when (water temp��0 and
latent heat of fusion added)

 FIGURE 15.12 

      Representing states of H 2O.   
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heat of vaporization must be removed when transitioning from gas to liquid. The 
state machine provides useful information for analyzing the distiller system’s heat 
balance since removing the latent heat turns out to be a driving factor. 

    15.5.2   Parallel Flow 
   Up to this point, activity diagrams have represented a highly sequential flow that 
adequately represents a simple batch distillation process. However, as pointed 
out in the requirements analysis earlier, customer requirements require further 
validation to determine whether this is truly what is desired. As a result, the activ-
ity diagram will be modified to represent continuous and parallel behavior that is 
consistent with a continuous distiller. 

    Figure 15.13    is an initial modifi cation of the activity diagram that represents 
a parallel-versus-sequential fl ow of actions triggered by inputs and outputs. Note 
that the inputs and outputs to the Distill Water activity (activity parameter nodes) 
are the same. The control fl ow has been reoriented so that all the activities are 
enabled simultaneously when a token is placed on the initial node. 

    15.5.3   Continuous Flow 
   In Figure 15.14   , the object flows have been stereotyped as continuous to more 
accurately represent the continuous distiller process. As described in Chapter 8, 
continuous flows mean that the delta time between inputs approaches zero, as is 
the case with many physical flows such as water and heat. In addition, the con-
tinuous flows are streaming, which means that the action can consume inputs 
and produce outputs while it is processing. The implications of an action with 
continuous and streaming inputs and outputs are that it does not automatically 
terminate when it produces an output. As a result, another mechanism is required 
to indicate when the actions complete their execution. 

   In Figure 15.15   , an interruptible region, indicated by the dashed line, encloses 
the actions. All the actions in this interruptible region terminate when the region 
is exited, which occurs when the shutdown signal is received by the accept event 
action. This behavior model now represents the steady-state behavior for a con-
tinuous distiller. It does not address how the distiller is started up or shut down, 
but it is adequate to proceed with the initial design. The details of startup and 
shutdown are addressed later. The next step is to formalize how this functionality 
is implemented in terms of distiller structure (e.g., the blocks in the block defi ni-
tion diagram and parts in the internal block diagram). 

    15.5.4   Allocated Flow 
   The initial allocation of behavior to structure can be specified through the use 
of activity partitions (i.e., swimlanes). In Figure 15.16   , the initial allocation of 
actions is specified by the use of partitions to represent the parts condenser : 
Heat Exchanger, evaporator : Boiler, and drain : Valve. The use of the keyword 

15.5 Modeling Behavior
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act [Activity] Distill Water [3. parallel]

external : Heat

pure : H2Oa3 : Condense Steam

a1 : Heat Water a2 : Boil Water a4 : Drain Residue discharge : Residue

cold dirty : H2O

pure :
H2O

predischarge :
Residue

predischarge :
Residue

discharge
: Residue

cold dirty :
H2O

recovered :
Heat

external :
Heat

steam :
H2O

hot dirty :
H2O

hot dirty :
H2O

steam :
H2O

recovered :
Heat

 FIGURE 15.13 

      Depicting parallel fl ow in the distiller.    
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act [Activity] Distill Water [4. parallel continuous]

«continuous»
external : Heat

{stream}

«continuous»
pure : H2O

{stream}
a3 : Condense Steam

a1 : Heat Water a2 : Boil Water a4 : Drain Residue
«continuous»

discharge : Residue
{stream}

«continuous»
cold dirty : H2O

{stream}

pure : H2O
{stream}

discharge :
Residue
{stream}

predischarge :
Residue
{stream}

predischarge :
Residue
{stream}

cold dirty : H2O
{stream}

recovered :
Heat

{stream}

external : Heat
{stream}

hot dirty : H2O
{stream}

hot dirty : H2O
{stream}

steam :
H2O
{stream}

steam :
H2O

{stream}

recovered :
Heat
{stream}

 FIGURE 15.14 

      Depicting continuous fl ow in the distiller.    
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act [Activity] Distill Water [5. interruptable]

«continuous»
external : Heat

{stream}

«continuous»
pure : H2O

{stream}

shutdown

a3 : Condense Steam

a1 : Heat Water a2 : Boil Water a4 : Drain Residue
«continuous»

discharge : Residue
{stream}

«continuous»
cold dirty : H2O

{stream}

pure : H2O
{stream}

recovered :
Heat
{stream}

hot dirty : H2O
{stream}

hot dirty : H2O
{stream}

predischarge :
Residue
{stream}

Steam : H2O
{stream}

external :
Heat

{stream}

recovered :
Heat

{stream}
steam : H2O

{stream}

cold dirty :
H2O

{stream}

discharge :
Residue
{stream}

predischarge :
Residue
{stream}

 FIGURE 15.15 

      Using an interruptible region to simplify control fl ow.    
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act [Activity] Distill Water [6. swimlanes]

«continuous»
external : Heat

{stream}

«continuous»
pure : H2O

{stream}

shutdown

a3 : Condense Steam

a1 : Heat Water a2 : Boil Water a4 : Drain Residue

«allocate»
condenser : Heat Exchanger

«allocate»
drain : Valve

«allocate»
evaporator : Boiler

of4

of8

of2

of3

of5

of6

of7

«continuous»
discharge : Residue

{stream}

«continuous»
cold dirty : H2O

{stream}

pure : H2O
{stream}

steam dirty :
H2O
{stream}

external :
Heat

{stream}

recovered : Heat
{stream}

discharge :
Residue
{stream}

predischarge :
Residue
{stream}

of1

recovered :
Heat

{stream}
Stream : H2O

{stream}

cold dirty : H2O
{stream}

hot dirty :
H2O
{stream}

hot dirty : H2O
{stream}

predischarge :
Residue
{stream}

 FIGURE 15.16 

      Using allocate activity partitions (swimlanes) for functional allocation.    
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«allocate» in the partition means that the partition is an allocate activity partition 
that has an explicit allocation relationship to the part that represents the partition,
as described in Chapter 8. This in turn specifies that the part is responsible for 
performing the actions within the partition. 

   As an example, the part evaporator is a usage of the block Boiler, and the 
action a2 : Boil Water is allocated to evaporator : Boiler. Note that we have 
defi ned role names for each part, and typed each part by a block. For example, 
the role drain is a part of type Valve. This distinction is important because other 
valves with the same defi nition may have different roles, as will be evident later 
in the example. The specifi cation of the parts and blocks are described next as 
part of the distiller structure.   

    15.6    Modeling Structure 
   This section describes the use of blocks, parts, and ports for the modeling of a 
distiller’s structure, and it completes the example of behavioral allocation. 

    15.6.1    Defi ning Distiller’s Blocks in the Block Defi nition Diagram 
    Figure 15.17    is a block definition diagram for the distiller system. This diagram 
frame designates the Initial Distiller Structure package. Use of packages for organ-
izing models was discussed in Chapter 5. Each block on the diagram is contained 
within this package unless it includes a qualified name that indicates that it is con-
tained in a different package. 

satisfies

«requirement» Heat Exchanger

«block»
Heat Exchanger

«requirement» Boiler

«block»
Boiler

«block»
Valve

«requirement» Drain

condenser drainevaporator

satisfies satisfies

bdd [Package] Initial Distiller Structure [distiller breakdown]

«block»
Distiller

 FIGURE 15.17 

      Initial structural hierarchy of the distiller.    
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   The user-defi ned diagram name for this block defi nition diagram is  distiller
breakdown, to differentiate it from any other block defi nition diagram that des-
ignates the same Distiller Structure package for its diagram frame. This diagram 
shows the block named Distiller, which is composed of a block named Heat
Exchanger, a block named Boiler, and a block named Valve. The composition 
relationship shows that the Distiller is composed of one Heat Exchanger that 
fulfi lls the role  condenser, one Boiler that fulfi lls the role  evaporator, and one 
Valve  that fulfi lls the role  drain . 

   The requirements described in Section 15.4 included requirements that were 
to be satisfi ed by various  Distiller components. In particular, the requirement 
id S2.0 Heat Exchanger, id S3.0 Boiler, and id S4.0 Drain clearly state the cus-
tomer’s requirements for these elements of the distiller system. Since the blocks 
Heat Exchanger, Boiler, and Drain are intended to satisfy these requirements, 
a satisfy relationship can be established between the blocks and the require-
ment as shown using the requirements compartment notation (refer to Chapter 
12 for details on the requirements compartment notation). As an example, 
the compartment notation can be read as “Boiler satisfi es the «requirement»
Boiler . ”  

    15.6.2   Defi ning the Ports on the Blocks 
   An internal block diagram can be developed based on the block definition dia-
gram to show how parts are connected to one another. However, before doing 
this, the blocks on the block definition diagram are further elaborated by identi-
fying the ports on the blocks and their definitions so that the ports can be con-
nected in the internal block diagram. 

   The ports are identifi ed on the blocks on the block defi nition diagram in 
Figure 15.18   . In this case all the ports are defi ned as unidirectional atomic fl ow 
ports, meaning that only one type of item fl ows through the port, and in only 
one direction. The fl ow port labels describe the fl ows from the perspective of 
the block rather than the perspective of the Distiller. For example, the Valve has 
fl ow ports for  in : Fluid and out : Fluid, which generally apply to all uses of a 
two-port valve. The Heat Exchanger has a cold loop ( c in and c out) and a hot 
loop ( h in and h out); both features are common to all counterfl ow heat exchang-
ers. Thinking through the port confi gurations and labels facilitates the interface 
defi nitions that are further specifi ed on the internal block diagram. 

   In Figure 15.18 , the constraints compartment in the Heat Exchanger speci-
fi es a set of constraints on the temperature of items fl owing through each port. 
This further defi nes the  Heat Exchanger. Alternatively, these constraints could 
have been applied to local usage by using property-specifi c types, as described in 
Chapter 6, in which case the constraints would not apply to the defi nition but to 
the use. The constraints of temperature and pressure can be validated against the 
results of the performance analysis to ensure the heat exchanger is fi t for use in 
this application. In addition, an engineer can assess whether a particular off-the-
shelf heat exchanger, which meets these constraints, can be procured. 

15.6 Modeling Structure
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bdd [Package] Initial Distiller Structure [distiller breakdown (ports)]

«block»
Heat Exchanger

{h out.temp��120,
c in.temp��60,
h in.temp��120,
c out.temp��90}

c in : Fluid

c out : Fluid

h in : Fluid middle : Fluid

h out : Fluid bottom : Fluid

«block»
Boiler

bottom : Heat

top : Fluid

«block»
Distiller

«block»
Valve

in : Fluid out : Fluid

condenser drainevaporator

constraints

 FIGURE 15.18 

      Distiller hierarchy with fl ow ports defi ned.    
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   The next step is to show usage of these Blocks in the context of the dis-
tiller system on an internal block diagram, including the connections and fl ows 
between them. 

    15.6.3    Creating the Internal Block Diagram with Parts, 
Connectors, and Item Flows 

    Figure 15.19    is an internal block diagram for the Distiller system. The diagram 
header identifies the enclosing block as the Distiller. The user-defined diagram 
name is 1. distiller block diagram (initial). The parts represent how the blocks 
are used in the Distiller context and have the same role names as were shown on 
the block definition diagram. The flow ports are consistent with their definition 
on the block definition diagram. 

   The additional information on the internal block diagram that was not on the 
block defi nition diagram is the representation of the connectors between the 
parts and the item fl ows on the connectors. The connectors connect the ports 
and refl ect the distiller’s internal structure. The item fl ows represent what items 
fl ow across the connector and in and out of the ports. 

   As discussed in Chapter 6, item fl ows have associated properties (item prop-
erties). The item fl ow defi nes the direction of a fl ow on the connector, and the 
item property represents the thing that is fl owing in the context of the enclosing 
block (i.e., the Distiller ). The item property is typed by a block in this case. 

   In this example, a naming convention for item properties has been used to 
identify the items fl owing through the system. The main H2O fl ow has been des-
ignated starting with main: main1 is the fl ow of H2O into the system and into the 
cold loop of the heat exchanger; main2 is the fl ow of H2O out of the cold loop 
of the heat exchanger and into the boiler; main3 is the fl ow of H2O (steam) out of 
the boiler and into the hot loop of the heat exchanger; and main4 is the fl ow 
of H2O (condensate, or pure water) out of the heat exchanger and out of the 
system. The fl ow of sludge has been similarly designated:  sludge1 out of the boiler 
and into the drain valve, and sludge2 out of the drain valve and out of the system. 
The only additional fl ow is q1, which represents heat fl owing into the system and 
into the boiler. 

   At this point, the distiller system’s structure has been expressed in defi nition 
on the block defi nition diagram and in usage on the internal block diagram, along 
with the physical fl ows. It is now appropriate to further elaborate the allocation 
of behavior to structure that was initially specifi ed in the Figure 15.16  activity dia-
gram with swimlanes. 

    15.6.4   Allocation of Actions and Flows 
    Figure 15.20    is an internal block diagram, identical to what was previously cre-
ated, but enhanced to include an allocation compartment on each part. The 
information in the allocation compartments is consistent with the allocation rela-
tionship from the activity diagram in Figure 15.16 . As previously discussed, plac-
ing an action in an allocate activity partition on the activity diagram resulted in 

15.6 Modeling Structure
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ibd [Block] Distiller [1. distiller block diagram (initial)]

dirty water : H2O

q in : Heat 

purified : H2O

sludge : Residue

condenser : Heat Exchanger

c in : Fluid c out : Fluid

h in : Fluidh out : Fluid

drain : Valve

in : Fluid out : Fluid

evaporator : Boiler

middle : Fluid

top : Fluid

bottom : Fluid

bottom : Heat

main4 : H2O

q1 : Heat

main3 : H2O

sludge1 : Residuemain2 : H2Omain1 : H2O sludge 2 : Residue

 FIGURE 15.19 

      Distiller internal structure with item fl ows.    
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ibd [Block] Distiller [2. distiller block diagram (initial allocated)]

dirty water : H2O

q in : Heat 

purified : H2O

sludge : Residue

condenser

c in : Fluid c out : Fluid

h in : Fluidh out : Fluid

drain : Valve

in : Fluid out : Fluid

evaporator : Boiler

middle : Fluid

top : Fluid

bottom : Fluid

bottom : Heat

main4 : H2O

q1 : Heat

main3 : H2O

sludge1 : Residuemain2 : H2Omain1 : H2O sludge2 : Residue

allocatedFrom allocatedFrom allocatedFrom

«action» a1 : Heat Water
«action» a3 : Condense Steam

«action» a2 : Boil Water «action» a4 : Drain Residue

 FIGURE 15.20 

      Distiller internal structure showing allocation of actions.    
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an allocate relationship between the action and the part represented by the parti-
tion. These allocation relationships are explicitly depicted in the allocation com-
partments; allocatedFrom indicates the direction of the relationship—namely, 
from  the elements specified in the compartment  to  the part. 

   In addition to allocating actions to parts, it is also appropriate to reconcile the 
fl ow in the behavior model with the fl ow in the structural model. In this particu-
lar example, it was decided to allocate the object fl ows from the activity model to 
the item properties of the item fl ows in the structural model. This is in anticipa-
tion that the heat balance analysis will focus on these item properties. As shown 
in  Figure 15.21   , each object fl ow on the activity diagram is allocated to specifi c 
item properties. To avoid ambiguity, both object fl ows and item properties are 
uniquely named. For example,  Figure 15.21  shows that object fl ow  of1 has been 
allocated to item property main1, of2 to main2, of3 to main3, and so on, with 
each allocation being uniquely identifi able. 

   As discussed in Section 13.8 in Chapter 13, allocation of object fl ow to item 
fl ow/item property cannot be unambiguously represented on internal block dia-
grams. If a callout were used to show the object fl ow allocated to a black triangle 
on an internal block diagram, it is not clear whether this is meant to represent 
allocation to the item fl ow, the item property, or the type of the item property. 
To avoid this ambiguity, the example uses a matrix to depict both functional and 
fl ow allocation, as shown in  Figure 15.22   . The arrows in the matrix represent the 
direction of the allocation relationship.   

    15.7    Analyzing Performance 
   Now that system behavior has been allocated to system structure, the implica-
tions on system performance are considered next. 

    15.7.1    Item Flow Heat Balance Analysis 
   The key aspect of distiller performance is the appropriate balance of water and 
heat flow through the system. To evaluate the flow balance, the analysis focuses 
on the physical flow of water and heat, as expressed by item flows on the inter-
nal block diagram. An alternative approach may have been to analyze the object 
flows on the activity diagram, but the object flows have been uniquely allocated 
to the item flows, so the approach is equivalent. The feasibility of the design 
can be assessed by analyzing the mass flow rate of the H2O through the system, 
and analyzing the heat flow required to heat the H2O and the associated phase 
changes. This analysis is simplified by the fact that the entire system is isobaric; 
that is, the pressure throughout the system is assumed to be atmospheric.   

    Figure 15.23    is a parametric diagram of the Distiller block, representing sim-
ple mathematical relationships between the physical fl ows. In this simple exam-
ple, it was decided to apply the constraints directly to the Distiller block rather 
than creating a separate analysis context block, as described in Chapter 7. The 
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act [Activity] Distill Water [7. swimlanes and callouts]

«continuous»
external : Heat

{stream}

«continuous»
pure : H2O

{stream}

shutdown

a3 : Condense Steam

a1 : Heat Water a2 : Boil Water a4 : Drain Residue

«allocate»
condenser : Heat Exchanger

«allocate»
drain : Valve

«allocate»
evaporator : Boiler

of4

of8

of2

of3

of5

of6

of7

of1

allocatedTo
«itemProperty»
main4 : H2O

allocatedTo
«itemProperty»
main3 : H2O

allocatedTo
«itemProperty»
main1 : H2O

allocatedTo
«itemProperty»
main2 : H2O

allocatedTo
«itemProperty»
sludge1 : Residue

«continuous»
discharge : Residue

{stream}

«continuous»
cold dirty : H2O

{stream}

allocatedTo
«itemProperty» q1 : Heat

allocatedTo
«itemProperty» sludge2 : Residue

 FIGURE 15.21 

      Initiating functional fl ow allocation  (pin names have been elided) .    
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 FIGURE 15.22 

      Functional and fl ow allocation from behavior to structure.    

six square boxes around the outside of the diagram ( main1 : H2O, main2 : H2O , 
and so on) represent the item properties previously identifi ed on the internal 
block diagram. Each item property can have associated value properties unique 
to its usage, such as temperature and mass fl ow rate. Specifi c heat and latent heat 
are common, invariant properties of water that also need to be considered in 
the analysis. The three round-cornered boxes in the center of the diagram rep-
resent constraint properties of the Distiller; each has a corresponding constraint 
expressed as a mathematical formula. This constraint is identifi ed by curly brack-
ets ( {  } ), and can either be displayed on the constraint property directly or shown 
in a separate constraint callout. 

   Based on the topology of the distiller, the mass fl ow rate of the water input 
(main1) has to be equal to the mass fl ow rate of the water output of the heat 
exchanger ( main2) because there is nowhere else for it to go. This equivalence 
is depicted in  Figure 15.23  by directly binding the  mass fl ow rate value property 
of the main1 : H2O item property and the mass fl ow rate value property of the 
main2 : H2O item property. Likewise, the mass fl ow rate of the steam output 
from the boiler ( main3) must equal the mass fl ow rate of the water output from 
the Distiller  ( main4 ), and the same kind of binding is used. 

   The system needs to heat water and condense steam at the same time as spec-
ifi ed in the activity diagram. The single-phase heat transfer equation, which is 
applied when heating liquid water, relates mass fl ow rate, change in temperature, 
and specifi c heat to heat fl ow ( q rate). Note that the constraint s1 : Single Phase 
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par Distiller Isobaric Heat Balance [composition of equations]

q1 : Heat

dQ/dt : calories per second

main1 : H2O

mass flow rate : gm/sec

water temp : �C

main2 : H2O

mass flow rate : gm/sec

water temp : �C

main3 : H2O

mass flow rate : gm/sec

main4 : H2O

mass flow rate : gm/sec

 : Distiller

«constraint»
condensing : Phase Change Heat Xfer Equation

{q rate�m rate*l heat}

l heat :
cal/gm

m rate :
gm/sec

q rate :
cal/sec

«constraint»
s1 : Single Phase Heat Xfer Equation

{q rate�(th�tc)*m rate/s heat}
m rate :
gm/sec q rate :

cal/sec

s heat :
cal/(gm*�C)tc : �C

th : �C

«constraint»
boiling : Phase Change Heat Xfer Equation

{q rate�m rate*l heat}

l heat :
cal/gm

m rate :
gm/sec

q rate :
cal/sec

 : H2O

latent heat : cal/(gm*�C)

specific heat : cal/gm

 FIGURE 15.23 

      Defi ning parametric relationships as a prelude to analysis.    
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Heat Xfer Equation shows each of these parameters in small square boxes. 
Binding connectors are used to bind the value properties associated with the 
main1 and main2 mass fl ow rate and temperature and the specifi c heat of water 
to the parameters of this constraint. The q rate parameters in different constraints 
are bound directly to one another, as opposed to being bound to value properties 
of the item properties. The q rate from condensing : Phase Change Heat Xfer 
Equation is bound to the q rate for s1 : Single Phase Heat Xfer Equation, since 
the energy used to heat the water comes from condensing steam. 

   A simple phase change equation is used to determine how much heat needs to 
be extracted for a given mass fl ow rate of steam. In this example, the constraint 
block, Phase Change Heat Xfer Equation, is used both for condensing steam and 
for boiling water. For convenience, this equation is defi ned only once as a con-
straint block, and it used to type the two constraints: condensing and boiling . 
Note how both condensing and boiling constraints have identical parameters but 
are bound to different properties. Also note that specifi c heat and latent heat are 
invariant properties of H2O  and are thus shown underlined. 

   This parametric diagram defi nes the mathematical relationships between prop-
erties, but it does not specifi cally defi ne the analysis to be performed. It explicitly 
relates properties of the items that fl ow through the distiller. The next step is to 
perform the analysis by evaluating the equations.  

    15.7.2    Resolving Heat Balance 
   The equations and value properties expressed in the parametric diagram were 
manually entered into a spreadsheet to perform the computation.  Figure 15.24    
is a table captured from this analysis. The analysis started by assuming unity flow 
rate into the evaporator ( main2 : H2O into evap) and then determining how 
much water is required to flow through the condenser. The conclusions indicate 
that to remove enough heat to condense the steam, almost seven times more 
water mass needs to flow into the system than flows out of it! In the current 
design, there is no place for that water to go except into the boiler, which will 
then overflow. This is not a feasible steady-state solution and requires modifica-
tion to the design.   

    15.8    Modifying the Original Design 
   Since analysis has revealed a fundamental flaw in the original distiller design, this 
section will describe modifications to the design to achieve adequate performance. 

    15.8.1    Updating Behavior 
   As shown in the modified activity diagram in  Figure 15.25   , the design is modified 
by adding another part called diverter assembly:, represented as an allocate activ-
ity partition, with the action to divert the water called a5 : Divert Feed .  
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    15.8.2   Updating Allocation and Structure 
   The allocate activity partition corresponds to a new part, which includes another 
usage of the previously defined Valve block, that has been added to the system. 
This new part, its internal structure, and the associated flows are shown in the 
internal block diagram in Figure 15.26   . This assembly is decomposed into a 
tee fitting to divert most of the flow out of the system, and a valve to throttle the 
water going into the boiler. The diverter assembly: is an untyped part that is a 
simple collection of parts; it is not defined by a block. Note also the use of nested 
connectors to avoid the need to use flow ports on the diverter assembly.

table[Package]IsobaricHeatBalance 1 [Results of Isobaric Heat Balance]

specific heat cal/gm-°C

latent heat cal/cm

1

540

m
ai

n1
 : 

H
2O

m
ai

n3
 : 

H
2O

m
ai

n4
 : 

H
2O

mass flow rate gm/sec

temp °C

6.8 1 1 1

100 100 100 100

dQ/dt cooling water cal/sec

dQ/dt steam condensate cal/sec

condenser efficiency

heat deficit

dQ/dt condensate steam cal/sec

boiler efficiency

dQ/dt in boiler cal/sec

6.8

20

540

540

1

0

540

1

540

m
ai

n2
 : 

H
2O

 fr
m
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on

de
ns

er

m
ai

n2
 : 

H
2O

 in
to

 e
va

p

Note: Cooling water
needs to have 6.75x
flow of steam!
Need bypass between
hx_water_out and
bx_water_in!

satisfies «requirement» 
WaterSpecificHeat

satisfies «requirement» 
WaterHeatOfVaporization

satisfies «requirement» 
WaterInitialTemp

 FIGURE 15.24 

      Analysis reveals heat imbalance in initial design.    

15.8 Modifying the Original Design
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act [Activity] Distill Water [8.revised]

«allocate»
diverter assembly

«allocate»
condenser : Heat Exchanger

«allocate»
drain : Valve

«allocate»
evaporator : Boiler

a3 : Condense Steam«continuous»
cold dirty : H2O

{stream}

a1 : Heat Water a2 : Boil Water

a5 : Divert Feed

a4 : Drain
Residue

«continuous»
external : Heat

{stream} shutdown

«continuous»
pure : H2O

{stream}

«continuous»
bypass : H2O

{stream}

«continuous»
discharge : Residue

{stream}

predischarge :
Residue {stream}

Steam : H2O
{stream}

of7

of2b

feed : H2O
{stream}

of1 of8

of2

of3

of4

of2a

of5

recovered : Heat
{stream}

cold dirty : H2O
{stream}

Stream :
H2O

{stream}

recovered : Heat
{stream}

hot dirty : H2O
{stream} external : Heat

{stream}

hot dirty
{stream}

predischarge:
Residue {stream}

discharge : Residue
{stream}

hot dirty : H2O
{stream}

pure : H2O
{stream}

bypass : H2O
{stream}

of6

 FIGURE 15.25 

      Revising behavior to accommodate diverting feed water.    
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dirty water : H2O

q in : Heat

purified : H2O

sludge : Residue

bypass : H2O

diverter assembly

evaporator : Boiler

middle : Fluid

top : Fluid

bottom : Fluid

bottom 1 : Heat

condenser : Heat Exchanger

c in : Fluid c out : Fluid

h in : Fluidh out : Fluid

drain : Valve

in : Fluid out : Fluid

splitter : Tee Fitting

port1 : Fluid

port2 : Fluid

feed : Valve

in : Fluid

out : Fluid

main4 : H2O

m2.2 : H2O

q1 : Heat

main2 : H2O

main3 : H2O

sludge1 : Residue sludge2 : Residuemain1 : H2O

m2.1 : H2O

m2.1 : H2O

ibd [Block] Distiller [distiller block diagram (revised)]

port3 : Fluid

 FIGURE 15.26 

      Revised distiller internal structure with fl ow diverter.    
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This modifi ed design enables the  feed : Valve to be throttled so that the 
boiler does not overfl ow, and yet retain enough water fl owing through the heat 
exchanger to condense the steam. Note also the reuse of the block Valve. The 
drain : Valve and the feed :Valve each have two ports, both of which are defi ned 
the same but connected differently. Although not shown here, the block defi ni-
tion diagram is also updated to refl ect another composite association between 
Distiller  and  Valve  with the new part name.  

Distiller

Operate Distiller

uc [Package] Distiller Use Cases [use case example]

«actor»
Operator

 FIGURE 15.27 

      Defi ning operator interface using a use case.    

    15.8.3    Controlling the Distiller and the User Interaction 
   Up to this point, the design has not considered how or if a user interacts with the 
Distiller. The following steps update the model to reflect how the operator inter-
acts with Distiller, along with other considerations for startup and shutdown of 
the system. 

    Figure 15.27    shows a use case diagram that includes model elements con-
tained within the Distiller Use Cases  package. 

   It may be appropriate at this point to develop a textual use case description to 
describe Operate Distiller, but the example here does not include this step. The 
sequence diagram that realizes the use case is shown in  Figure 15.28   ; it describes 
the expected interaction between the user and Distiller when operating the dis-
tiller system. 

The Operator starts by turning the Distiller on and observes a Power Lamp 
On. When the Distiller reaches operating temperature, the Operator observes 
the Operating Lamp On; then the distiller cycles as it produces distilled water. 
The Operator turns the Distiller off, and the Power Lamp Off signal is returned 
by the Distiller. This interaction indicates that further changes to the design must 
be made to include the parts needed for the user to provide inputs to the system, 
the lamps, and the mechanism for automatically controlling the distiller.  
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alt

loop

1: Turn On 

7: Turn Off

2: Power Lamp On 

4: High-Level Lamp On 

5: Low-Level Lamp On

6: Draining Lamp On

3: Operating Lamp On 

8: Power Lamp Off

«block»
: Distiller

sd [Interaction] Operational Sequence [simple sequence]

: Operator

[while state � Operating]

[state � draining residue]

[level � low]

[level � high]

 FIGURE 15.28 

      Defi ning operator interaction using a sequence diagram.    

    15.8.4   Developing a User Interface and a Controller 
    Figure 15.29    is a block definition diagram, and Figure 15.30    is an internal block 
diagram that reflects the update to the design to realize the use case. A control 
panel has been added with the lamps that the operator observes. A controller has 

15.8 Modifying the Original Design
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been added to ensure that the valves are operated in the proper sequence and 
that the lamps are turned on and off. 

   Power input is provided to the heaters in the Boiler to convert electrical 
power to heat. It makes sense to use the controller to provide power to the 
Boiler. A fl ow specifi cation can now be used to describe the kind of signals 
expected to pass between the Controller and the Boiler. The fl ow specifi cation 
may include the position of fl oat switches in the boiler to indicate whether the 
level is high or low. 

    Figure 15.31    shows the fl ow specifi cation  Boiler Signals. Note that it uses two 
fl ow properties,  control and status, and the direction is appropriate for the heat  
and valve : Controller in  Figure 15.30 . The  evaporator : Boiler uses a conjugate 
fl ow port with the same fl ow specifi cation as the fl ow port on the Controller. The 
conjugate reverses the direction of the fl ow properties and makes the connection 
compatible.  

    15.8.5    Startup and Shutdown Considerations 
   Since the system now uses a controller, the startup and shutdown and other 
aspects of system control can be represented as a state machine diagram for the 
Controller, as shown in  Figure 15.32   . The states and transitions in the diagram 
were identified by examining the sequence diagram associated with the Operate
Distiller  use case. 

bdd [Package] Revised Elaborated Distiller Structure [distiller breakdown revised and elaborated] 

«block»
Heat Exchanger

«block»
Control Panel

«block»
Tee Fitting

«block»
Controller

«block»
Valve

«block»
Distiller

splitter

user heat and valve

feedcondenser drain

«block»
Boiler

evaporator

 FIGURE 15.29 

      Distiller structural hierarchy with controller and user interface.    
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ibd [Block] Distiller [block diagram revised and elaborated]

pwr in : Elec Power

heat and valve : Controller

pwr : Elec Power

b : Boiler Signals v1 : V Ctrlv2 : V Ctrl bp : Elec Power

diverter assembly

condenser : Heat Exchanger

iPanel

evaporator : Boiler

p in : Elec
Power

drain : Valve

v : V Ctrl

user : Control Panel

splitter : Tee Fitting

feed : Valve

v : V Ctrl

main4 : H2O

m2.2 : H2O

distiller pwr : Elec Power

feed ctl : V Ctrl

htr pwr : Elec Power

drain ctl : V Ctrl

blr status : Blr Sig

blr ctl : Blr Sig

sludge1 : Residue sludge2 : Residuemain1 : H2O

m2.1 : H2O

m2.1 : H2O

iPanel

main2 :
H2O

c : Boiler
Signals

main3 :
H2O

 FIGURE 15.30 

      Distiller internal structure with controller and user interface.    
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flowProperties

«flowSpecification»
Boiler Signals

out control : Signals
in status : Signals

bdd [Package] New Item Types [flow spec development]

 FIGURE 15.31 

      Flow specifi cation for boiler signals.    

   Starting with the Distiller in the Off state, in which it is cold and dry, a num-
ber of things will have to happen before it begins distilling and producing water. 
The fi rst step is to fi ll the boiler. While in the Filling state, the feed : Valve opens. 
As soon as the water level in the Boiler is adequate to cover the heater coils, 
the heater can be turned on without damage. The system can now enter the 
Warming Up state, where the boiler heaters are turned on and the boiler begins 
warming up. 

   Once the boiler temperature reaches 100°C, the system enters the Operating  
state. In this state, the boiler heaters are still on, but two substates, Controlling
Boiler Level and Controlling Residue, occur in parallel. In this example, control 
of residue relies on a simple timer to transition between the Building Up Residue  
substate when the drain : Valve is closed and the Purging Residue substate 
when the drain : Valve is open and dumping the residue. In essence, this state 
machine periodically blows down the boiler to make sure that not too much 
sludge builds up. 

   When controlling the water level in the Boiler, one of three substates exist: 
either Level OK, in which case the drain : Valve and feed : Valve need to both 
be closed; Level Low, which requires more water, so the feed : Valve needs to be 
open; or Level High,  where the  drain : Valve  needs to be open. 

   To turn off the Distiller, the operator should not just cut the power and walk 
away. It is necessary to go through a shutdown procedure; otherwise, corrosion 
will severely limit the lifespan of the Distiller. The fi rst step in this procedure is 
to cool off the system. In the Cooling Off state, the heaters are turned off and the 
feed : Valve and the drain : Valve opened, allowing cool water to fl ow freely through 
the entire system. Once the boiler temperature reaches a safe level, the Boiler  
needs to be drained. In the Draining state, the feed : Valve is shut while the drain : 
Valve remains open, and all water is drained out of the Boiler. Once the Boiler  
is empty, the Distiller  system can safely be turned off.   
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stm Controller State Machine [simple diagram]

Operating

do /bx heater on

Building Up Residue

do /close drain : Valve

Purging Residue

do /open drain : Valve

[bx1 level high]

[NOT bx1 level high]

[bx1 level low]

[NOT bx1 level low]

[residue timer]

[drain timer]

[bx level low][power � on]

[shutdown command][bx1 temp � 100]

entry /bx1 heater OFF
do /open feed : Valve, open drain : Valve

do /open drain : Valvedo/open feed : Valve

do /bx1 heater on

Warming Up Cooling Off

DrainingFilling

do /Power Light Off

Off

do /open drain : Valve

Level HighLevel OK

do /shut all Valves

Level Low

do /open feed : Valve [bx1 temp � 30]
[NOT  bx1
level low]

 FIGURE 15.32 

      Controller state machine for distiller.    



396 CHAPTER 15 Water Distiller Example Using Functional Analysis

    15.9    Summary 
   This example shows how SysML can be used to model a system with a traditional 
functional analysis approach. The problem also illustrates the application of mod-
eling physical systems with limited software functionality. Examples of each 
SysML diagram are used to support the specification, design, and analysis, along 
with fundamental SysML language concepts such as the distinction between defi-
nition and use.  

    15.10    Questions 
   The following questions may best be addressed in a classroom or group project 
environment.

    1.   The customer has introduced this new requirement: “The water distiller shall 
be able to operate at least 2 meters vertically above the source of dirty water. ”  
Show the impact of this new requirement on the system design, as expressed 
in each of the following modeling artifacts. 
   a.   Requirement diagram (relate new requirement to existing requirements)  
   b.    Activity diagram (defi ne and incorporate new activities to support the new 

requirement)  
   c.    Block defi nition diagram (defi ne and incorporate new blocks to support the 

new requirement)  
   d.    Internal block diagram (defi ne fl ows and interfaces to any new parts neces-

sary to support the new requirement, and any functional and fl ow alloca-
tions from the activity diagram)  

   e.    Parametric diagram (describe how the heat balance is affected by this new 
requirement)  

   f.   Use case diagram (describe any changes to the operational scenario)  
   g.   Sequence diagram (elaborate any changes to the  Operate Distiller  use case)  
   h.    State machine diagram (describe how the Controller state machine would 

be affected by the preceding design changes)     
    2.   Discuss the applicability and physical signifi cance of control fl ows in the dis-

tiller activity model, as shown on         Figures 15.9, 15.10, and 15.13 . In which situ-
ations are control fl ows useful representations of behavior, and in which ways 
can they be misleading?       



    The example in this chapter describes the application of SysML to the development 
of a residential security system using the Object-Oriented Systems Engineering 
Method (OOSEM). It demonstrates how SysML can be used with a top-down, 
scenario-driven process to analyze, specify, design, and verify the system. A scaled-
down version of this method was introduced as part of the automobile design 
example in Chapter 3. 

The application of OOSEM, along with the functional analysis method in 
Chapter 15, are examples of how SysML is applied; but SysML can be applied 
with other methods as well. The intent of this chapter is, however, to provide a 
method that readers can adapt to their application to meet their needs. 

   This chapter begins with a brief introduction to the method and how it fi ts 
into the context of the overall development process, and then it shows how 
OOSEM is applied to the residential security example. The reader should refer to 
the language description in Part II for the foundational language concepts. 

    16.1   Method Overview 
   This section provides an introduction to OOSEM including the motivation and 
background for the method, a high-level summary of the development process 
that provides the context for OOSEM, and a summary of the OOSEM system spec-
ification and design process within the development process. 

    16.1.1   Motivation and Background 
   OOSEM is a top-down, scenario-driven process that uses SysML to support the 
analysis, specification, design, and verification of systems. The process leverages 
object-oriented concepts and other modeling techniques to help architect more 
flexible and extensible systems that can accommodate evolving technology and 
changing requirements. OOSEM is also intended to ease integration with object-
oriented software development, hardware development, and test processes. 

   In OOSEM and other model-based systems engineering approaches, the sys-
tem model is a primary output of the design process. The system model artifacts 
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represent the system’s multiple facets such as its behavior, structure, and proper-
ties. For a model to have integrity, the various facets must provide a consistent 
representation of the system, as described in Chapter 2. 

   OOSEM includes fundamental systems engineering activities such as needs 
analysis, requirements analysis, architecture, trade studies and analysis, and 
verifi cation. It has similarities with other methods such as the Harmony process 
[6, 7] and the Rational Unifi ed Process for Systems Engineering (RUP SE) [9, 10], 
which also apply a top-down, scenario-driven approach that leverages SysML as 
the modeling language. OOSEM includes various modeling techniques, such as 
causal analysis, logical decomposition, partitioning criteria, node distribution 
analysis, control strategies, and parametrics, to deal with a wide array of system 
concerns.

   OOSEM was developed in 1998 [36, 37] and further evolved as part of a joint 
effort between Lockheed Martin Corporation and the Systems and Software 
Consortium (SSCI), which previously was the Software Productivity Consortium 
[8]. Early pilots were conducted to assess the feasibility of the method [38], and 
then it was further refi ned by the INCOSE OOSEM Working Group beginning in 
2002. Tool support has been substantially improved for OOSEM with the adop-
tion of the SysML specifi cation beginning in 2006.  

    16.1.2    System Development Process Overview 
   The system life-cycle process includes processes for developing, producing, 
deploying, operating, supporting, and disposing the system. The successful out-
put of the development process is a verified and validated system that satisfies 
operational requirements and capabilities and the other life-cycle requirements 
for production, deployment, support, and disposal. 

   OOSEM is part of a higher-level development process that was originally based 
on the Integrated Systems and Software Engineering Process (ISSEP) [39]. A modi-
fi ed version of this process, as it applies to OOSEM, is highlighted in  Figure 16.1   , 
and includes the management process, the system specifi cation and design pro-
cess, the next level development processes, and the system integration and veri-
fi cation process. This process can be applied recursively to multiple levels of a 
system’s hierarchy that is similar to a Vee development process [40], where the 
specifi cation and design process is applied to successively lower levels of the sys-
tem hierarchy down the left side of the Vee, and the integration and test process 
is applied to successfully higher levels of the system hierarchy up the right side of 
the Vee. This development process is different from a typical Vee process in that 
it includes both management processes and technical processes at each level of 
the hierarchy. 

   Applying the specifi cation and design process at each level results in the spec-
ifi cation of elements at the next lower level of the system hierarchy. For example, 
applying the process at the system-of-systems (SoS) level results in the specifi ca-
tion of one or more systems. Applying the process at the system level results in 
the specifi cation of the system elements, and applying the process at the system-
element level results in the specifi cation of the components. The hardware and 
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  software development processes are then applied at the component level to ana-
lyze component requirements and design, implement, and test them. 

   The leaf level of the process is the level at which an element or component 
is procured or implemented. In the automobile design example in Chapter 3, if 
the automotive design team procures the engine, the team specifi es the engine 
requirements and verifi es that the engine satisfi es the requirements. On the other 
hand, if the engine is subject to further design, the process is applied to the next 
level of engine design to specify the engine components. 

   The following subsections contain a high-level summary of each process 
shown in Figure 16.1 .
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     Manage System Development 
   This process includes project planning, and controlling the execution of the work 
in accordance with the plan. Project control includes monitoring cost, schedule, 
and performance metrics to assess progress against the plan, managing risk, and 
controlling changes to the technical baseline. 

   The management process also includes selection of the life-cycle model, such 
as waterfall, incremental, or spiral, that defi nes the ordering of the activities. Use 
cases that are defi ned in the model provide units of functionality that can serve as 
an effective organizing principle for planning and controlling the scope of work 
to be accomplished for a particular development spiral or increment. 

   The management process also includes tailoring the standard process activities 
and artifacts to meet the project’s needs. Tailoring depends on a variety of factors 
that may include the extent to which the system is a new design (i.e., unprec-
edented), the system size and complexity, the available time and resources, and 
the level of experience of the development team. As an example, a system design 
that is based on a prior design is generally constrained to include signifi cant leg-
acy or predefi ned commercial off-the-shelf (COTS) components. This can signifi -
cantly impact which activities are performed and the ordering of the activities. 
The activities may include early characterization of the COTS components in par-
allel with other system specifi cation and design activities. The design emphasis 
is placed on how the COTS components interact to achieve the system require-
ments, and which additional components are required to interface with the COTS 
components.

   Additional tailoring of the process and its artifacts may be required for spe-
cifi c domains at each level of the system’s hierarchy. For the automobile design 
example, the intermediate element level may require tailoring of the processes 
and artifacts to develop the power train, body, and steering assembly, including 
unique types of analysis.  

    Specify and Design System 
   This process is implemented by OOSEM, as summarized later in Section 16.1.3. 
The system speficiation and design process include activities to analyze the 
system requirements, define the system architecture, and allocate the system 
requirements to the next level of design. The next level of design implements the 
allocated requirements and verifies that the design satisfies the requirements and/
or requests updates to the system design to reallocate the requirements as needed. 
In the residential security example in Section 16.2, the next level of design is 
assumed to be the component level, where the hardware, software, database, and 
operational procedures are developed. However, as stated previously, there may 
be intermediate  “ element ”  levels of the system hierarchy.  

    Develop Hardware, Software, Database, and Operational Procedures 
   This process includes analysis, specification, design, implementation, and verifi-
cation of the components. For hardware components, implementation is accom-
plished by fabricating and/or constructing the component, and for software 
components, implementation includes coding the software. If there are multiple 
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intermediate levels of the system hierarchy prior to the component level, the 
development process in Figure 16.1  is applied recursively to each intermediate 
level.

    Integrate and Verify System 
   This process integrates the next lower level of system elements or components 
and verifies that the system design satisfies its requirements. The process includes 
developing verification plans, procedures, and methods (e.g., inspection, demon-
stration, analysis, testing), conducting the verification, analyzing the results, and 
generating the verification reports. OOSEM supports the right side of the Vee by 
specifying the test cases at each level of design and by integrating the design mod-
els into the next higher level of the Vee. Referring to the automobile design exam-
ple in Chapter 3, the engine component design models are integrated into the 
engine design model, which in turn is integrated into the automobile system design 
model as part of the upside of the Vee process. This integrated model can be used 
to verify that the component designs satisfy their requirements, the engine design 
satisfies its requirements, and the automobile design satisfies its requirements.   

    16.1.3   OOSEM System Specifi cation and Design Process 
    Figure 16.2    is a high-level summary of the OOSEM Specify and Design System  
process. The section in which each activity is addressed is also shown in the dia-
gram. To simplify the process, it does not include the potential loops to reflect the 
process iterations, nor does it include the inputs and outputs from each activity. 

   The Analyze Stakeholder Needs activity characterizes the as-is system, its limi-
tations and potential improvement areas, and specifi es the mission requirements 
that the to-be system must support. The Analyze System Requirements activity 
specifi es the system requirements in terms of its input and output responses and 
other black-box characteristics. The Defi ne Logical Architecture activity decom-
poses the system into logical components and defi nes how the logical compo-
nents interact to realize system requirements. The Synthesize Candidate Physical 
Architectures activity allocates the logical components to physical components 
that are implemented in hardware, software, data, and procedures. The Optimize
and Evaluate Alternatives activity is invoked throughout the process to perform 
engineering analysis that supports system design trade studies and design optimi-
zation. The Manage Requirements Traceability activity is used to manage trace-
ability from the mission-level requirements to the component requirements. Each 
of these activities is further elaborated later as part of the example. 

   The level of detail of the process documentation is tailored according to orga-
nizational and project needs. The next level of decomposition for each of the 
preceding activities is included in the residential security example in the next 
section. The documentation can be further elaborated to describe the detailed 
process description for creating each modeling artifact, such as a use case. In 
addition, the process fl ows can be further refi ned to refl ect the design iterations 
and the fl ow of inputs and outputs. This level of detail is not included in any of 
the process fl ows in this example to simplify the process description.   

16.1 Method Overview



402 CHAPTER 16 Residential Security System Example Using OOSEM

    16.2     Residential Security Example Overview 
and Project Setup 

   The remainder of this chapter describes how OOSEM is applied to the residential 
security example. 

    16.2.1    Problem Background 
   A company called Security Systems Inc. has been providing residential security 
systems to the local area for many years. Their security systems are installed at 
local residences and are monitored by a central monitoring station (CMS). The 
system is intended to detect potential intruders. When an intruder is detected by 
the security system, operators at the CMS contact the local emergency dispatcher 
to dispatch police to the residence to intercept the intruder. 

   Security Systems Inc. had a successful business for many years. In the past sev-
eral years, however, their sales have signifi cantly dropped and many of their existing 
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      OOSEM  Specify and Design System  process.    
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customers have terminated their contracts in favor of competitors. It has become 
evident to the management of the company that their current system is becom-
ing obsolete in terms of its capabilities, and that they must reestablish their market 
position. In particular, they have decided to launch a major initiative to develop an 
enhanced security system (ESS) that is intended to help regain their market share. 

   The Systems Engineering Integrated Team (SEIT) is responsible for providing 
technical management for the system development, including technical planning, 
risk management, managing the technical baseline, and conducting technical 
reviews. In addition, the SEIT includes team members who are responsible for the 
system requirements analysis, system architecture design, engineering analysis, and 
integration and verifi cation of the ESS, as described in Section 1.4 in Chapter 1. 
The implementation teams are responsible for the system components. This includes 
analyzing the requirements allocated to the components by the SEIT, and designing, 
implementing, and verifying that the ESS components satisfy their requirements. 

   The SEIT selected an incremental development process as its life-cycle model. 
During the fi rst increment, the SEIT established the incremental project plan and 
project infrastructure. The plan for the modeling effort included defi ning the 
modeling objectives; scoping the model to meet the objectives; selecting and tai-
loring the method and modeling conventions; selecting, acquiring, and installing 
the tools; defi ning the detailed schedule for the modeling activities; staffi ng the 
effort; and providing the necessary training. 

   The SEIT selected OOSEM as their model-based systems engineering method 
in conjunction with SysML as their graphical modeling language. This was based 
on the results of an earlier pilot project to assess how well the method and tools 
would support their needs (refer to discussion on deploying SysML in Chapter 18). 
They selected tools based on the tool selection criteria described in Chapter 17. 
The systems development environment includes SysML modeling tools, a UML-based 
software development environment; hardware design tools; performance analysis 
tools; testing tools; confi guration management tools; a requirements management 
tool; and other project management tools for planning, scheduling, and risk 
management. The SEIT and selected members of other implementation teams 
received rigorous training in SysML, OOSEM, and the use of their selected tools. 

   The second increment focuses on a breadth-fi rst design approach, which 
includes analysis of stakeholder needs, specifying the black-box system require-
ments, and evaluating and selecting the preferred system architecture for the pro-
posed ESS solution. The follow-on increments focus on architecture refi nement 
and implementing the components needed to achieve incremental capabilities 
that correspond to selected ESS use cases. 

   The example in this chapter is intended to describe the modeling activities for 
the second increment. During this increment, the ESS model is used to specify and 
validate system requirements, architect the solution, and allocate requirements 
to the ESS hardware, software, and data components, which are either developed 
by the implementation teams, or procured as COTS products. It is anticipated 
that there will be signifi cant software and database development, but the hard-
ware components, such as sensors, cameras, processors, and network devices, are 
primarily COTS. The ESS also requires development of new operational procedures 
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for the customer and central monitoring station operators that defi ne how to 
interact with the system. 

   Only selected diagrams are included to illustrate the approach. In particular, 
the selected diagrams primarily relate to the intruder-monitoring thread.  

    16.2.2    Modeling Conventions and Standards 
   Modeling conventions and standards are required to ensure consistent represen-
tation and style across the model. This includes establishing naming conventions 
for each type of model element, such as packages, blocks, and activities, and for 
the diagram names. The conventions and standards also identify other stylistic 
aspects of the language, such as when to use uppercase versus lowercase and 
when to use spaces in the names. The conventions and standards should also 
account for tool-imposed constraints, such as limitations on the use of alphanu-
meric and special characters. It is also recommended that a template be estab-
lished for each diagram type. 

    Table 16.1    contains a list of user-defi ned stereotypes for an OOSEM-specifi c 
profi le of SysML that is used in this example. The approach for defi ning a profi le 
is described in Chapter 14. 

Further information is detailed in the following list. 

     Use of Upper- and Lowercase—Uppercase is used for the first letter of each word 
for all definitions/types, such as blocks and value types, and for packages and 
requirements, with a space between compound names that have more than 
one word. Example: Surveillance Camera: Lowercase is used for the first letter 
for parts, properties, item properties, actions, and states with a space between 
compound names that have more than one word. All other letters are lower-
case. Example:  surveillance camera.  

     Verb/Noun Form: The verb/noun form is used to name activities, actions, and 
use cases. Example:    “  Monitor Intruder. ”   

     Pin Names on Activity Diagrams—in:Type Name  and  out:Type Name  are often 
used. Examples:    “  in:Alert Status ”  and  “ out: Dispatch Request. ”   

     Flow Port Names —Flow ports start with  fp  and standard ports start with  sp .  

     Tool-Specific Notation—This chapter’s diagrams are generated from a modeling 
tool. Some of the notation may differ somewhat from the SysML specification 
that is described in Part II.     

    16.2.3    Model Organization 
   The model organization is recognized as a critical aspect of MBSE. The com-
plexity of the system model can quickly overwhelm the users of the model and 
become intractable, particularly for large teams. This in turn can impact the abil-
ity of model developers to maintain a consistent model and the ability to maintain 
configuration management control of the model. Refer to Chapter 5 for consid-
erations for how to organize the model with packages. 



405

     The OOSEM process includes a standard approach for how to organize the 
model that is defi ned by the package structure. Model organization includes a recur-
sive package structure that mirrors the system hierarchy. A package is defi ned for 
each block, which is further decomposed to contain the model elements for the 
next level of decomposition. This package contains the block defi nition diagram and 
internal block diagram for the next level of decomposition, and a behavior package 
that specifi es the collaboration among the parts at the next level of decomposition. 

   The model organization also includes other packages that are not nested within 
the system hierarchy packages. These packages include requirements, parametrics, 
input/output defi nitions, value types, and other model aspects that may be reused 
at multiple levels of the system hierarchy. 

   The model organization for this example is highlighted by the package struc-
ture shown in the browser view in Figure 16.3   . The model shown at the top 
level of the browser contains three top-level packages called Process Guidance , 
Security Domain Life Cycle as-is,  and  Security Domain Life Cycle to-be . 

   The Process Guidance package provides a convenient mechanism to capture 
process issues, tool issues, and other process information that is identifi ed by the 
systems engineering team throughout the modeling process. This information

Table 16.1       OOSEM-Specifi c Profi le of SysML User-Defi ned Stereotypes 

   OOSEM Stereotype  Base Class 

   «composite state»  Block, Property 

   «confi guration item»  Block, Property 

   «document»  Block, Part 

   «element»  Block, Part 

   «fi le»  Block, Part 

   «hardware»  Block, Part 

   «logical»  Block, Part 

   «node»  Block, Part 

   «node logical»  Block, Part 

   «node physical»  Block, Part 

   «operator»  Block, Part 

   «procedure»  Block, Part 

   «mop»  Property 

   «moe»  Property 

   «software»  Block, Part 

   «state»  Block, Property 

   «status»  Property 

   «store»  Property 

   «system of interest»  Block, Part 
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406 CHAPTER 16 Residential Security System Example Using OOSEM

  should ultimately be refl ected in updates to the organizational standard processes 
if the information is relevant across projects. For this example, the package also 
includes the process fl ows that describe the methodology, such as  Figure 16.2 .
Alternatively, other process-modeling tools may be used to capture process 
information.

   The Security Domain Life Cycle as-is package contains the parts of the model 
that characterize the current system and enterprise in suffi cient detail to aid in 
understanding the limitations to be addressed by the to-be system. Parts of the as-
is model may be reused in the to-be model. 

   The Security Domain Life Cycle to-be package contains elements of the model 
for the to-be enterprise and system. Several nested packages are contained within 
this package. The Viewpoints package contains the viewpoints and associated 
views for different ESS stakeholders. (Note: Viewpoints and views are described 

 FIGURE 16.3 

       ESS model organization  (browser view).    
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in Chapter 5.) The Life-Cycle Use Cases package contains the use cases that span 
the systems life cycle. The SI Defi nitions package is an imported library that con-
tains standard units and dimensions. 

   The Value Types package contains additional value types with units and dimen-
sions that are added for use throughout the model. The Requirements package 
contains the requirements for the ESS system from mission-level requirements 
down to hardware and software component requirements. The requirements are 
often imported from a requirements management tool. The Parametrics package 
contains the parametric diagrams and associated model elements to support engi-
neering analysis and trade studies. 

   There are also packages that correspond to other parts of the system ’s life cycle, 
including Development, Installation, Operational, and Support (not shown). Most 
of the elaboration of this model is contained within the Operational package, since 
the focus of this example is on the operational system design. The Operational  
package contains nested packages for Item & Interface Defi nitions, Enterprise Use 
Cases, and the Enterprise. The Item & Interface Defi nitions elaborate the inputs 
and outputs and the port defi nitions used throughout the model. The  Enterprise 
Use Cases contain the primary mission use cases for the security system. 

   The Enterprise package is further nested to mirror the hierarchy of the system 
as described in the beginning of this section. The Enterprise package contains 
the Scenarios package, which describes how the enterprise use cases are real-
ized, and the ESS package, which contains the ESS system design model. The ESS 
is the system that is being specifi ed and designed in this example. 

   The ESS package contains nested packages for the Logical Architecture , Node 
Logical Architecture , Node Physical Architecture , and Physical Architecture . The
Physical Architecture  package in turn contains packages for the Software Archi-
tecture, Data Architecture , Hardware Architecture , Operational Procedures ,
and Operators of the ESS  system (all not shown). Each of the preceding packages 
contains model elements that are created by applying OOSEM. The contents of 
each of these packages are described in the following sections. 

   Diagrams contained in particular packages are highlighted in the browser with 
special symbols that are unique to each tool. The symbol in Figure 16.3  for the 
Operational Domain BDD within the Operational package, represents a block 
defi nition diagram in this tool. 

   As described in Chapter 5, model elements contained in one package can be 
related to model elements contained in another package. When a model element 
from another package appears on a diagram, its fully qualifi ed name identifi es 
the package it is contained in. This enables each model element on a diagram to 
be uniquely identifi ed. The fully qualifi ed name can be shown with the double-
colon notation described in Chapter 5, but this is mostly elided in this example to 
reduce diagram clutter. 

   The package structure from Figure 16.3  is partially represented in the package 
diagram in Figure 16.4   . The package diagram is called Model Organization. As 
described in Chapter 4, the diagram header includes the type of diagram ( pkg), the 
type of diagram element the frame represents (package), the name of the package 
that is represented by the frame ( Security Domain Life Cycle to-be), and the 
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  name of the diagram ( Model Organization ). Based on the diagram header inform-
ation, the diagram frame represents the Security Domain Life Cycle to-be pack-
age and the diagram contents represent its nested packages.   

    16.3     Applying the Method to Specify 
and Design the System 

   The following subsections elaborate the Specify and Design System process and 
artifacts that were summarized in Section 16.1.3. The subsections correspond to 
the actions in  Figure 16.2 . The activities— Manage Requirements Traceability and 
Optimize and Evaluate Alternatives—are included toward the end of this sec-
tion even though they occur as supporting activities throughout this process. 

pkg Security Domain Life Cycle to-be [Model Organization]

This top-level package includes
the Security Domain Life-Cycle
BDD and Domain Blocks

Separate model for as-is
with a similar package
structure

Name:     Model Organization
Author:    28894 
Version:  1.0 
Created:  2/17/2008 2:57:00 PM
Updated: 2/17/2008 5:21:37 PM

Software Architecture Data Architecture Operational Procedures Hardware Architecture

Logical Architecture Node Logical Architecture Node Physical Architecture Physical Architecture

Scenarios ESS

Enterprise Use Cases Enterprise Item and Interface Definitions

Installation SupportOperational

Parametrics Life-Cycle Use Cases Value Types

Requirements Viewpoints SI Definitions

«import»

 FIGURE 16.4 

      ESS Model Organization (package diagram).    
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     16.3.1   Analyze Stakeholder Needs 
   The Analyze Stakeholder Needs activity is shown in Figure 16.5   . As mentioned 
previously, this simplified process flow does not include inputs/outputs and iter-
ation. This activity is intended to provide the analysis to understand the stake-
holder problems to be solved, and to specify the mission-level requirements that 
must be satisfied to solve the problem. 

   This analysis includes assessing the limitations of the current systems by charac-
terizing the as-is system and enterprise and by performing causal analysis to deter-
mine the limitations and potential improvement areas from the perspective of each 
stakeholder. Analysis results are used to derive mission requirements and overall 
objectives for the to-be system and enterprise, which address the limitations of the 
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       Analyze Stakeholder Needs  activity to specify mission requirements.    
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current system and enterprise. The to-be model of the domain, the enterprise use 
cases, and measures of effectiveness are used to specify mission requirements. 

   For this example, OOSEM is applied to the design of a single system called 
ESS. As a result, there is little emphasis on architecting at the SoS or enterprise 
levels. If this is required, then the additional architecting activities can be applied 
at the enterprise level [41]. In particular, the OOSEM activities that correspond to 
defi ne logical architecture and synthesize candidate physical architectures are 
inserted between analyze stakeholder needs and analyze system requirements  
in  Figure 16.2 . 

    Characterize As-Is System and Enterprise 
   The as-is system, users, and enterprise are characterized at a level sufficient to 
understand the stakeholder concerns. This involves modeling the current system 
and enterprise only as required to provide insight into the problem and avoiding 
excessive modeling of the current system. Causal analysis is performed to deter-
mine the limitations and potential improvement areas of the current system. If 
an as-is solution does not exist, there is obviously nothing to characterize, and 
one can proceed directly to specifying the mission requirements. However, there 
is often an as-is solution to the problem that represents a starting point for the 
analysis.

   The as-is domain is shown in the block defi nition diagram in  Figure 16.6   . It 
includes a top-level block called the Operational Domain as-is, which provides 
the context for the other blocks in the domain. This block is decomposed into 
the Security Enterprise as-is  and multiple  Sites . 

   In OOSEM, an enterprise block is established to represent an aggregation of 
blocks that collaborate to achieve a set of mission objectives. In this example, 
the as-is enterprise includes the as-is security system, which is stereotyped as the 
«system of interest »; the Emergency Services, which includes the Dispatcher and 
the Police; and the Communication Network, which enables communication 
between the as-is security system and the emergency services. These blocks col-
laborate to monitor a residence for potential intruders. 

   The domain block is also composed of multiple sites that are being protected 
that are external to the enterprise. Each site is composed of a single residence 
with one or more occupants and may include zero to n  intruders. 

   The domain model helps establish the boundary between the system of interest 
and the external systems and users that the system either directly or indirectly inter-
acts with. The as-is security system includes multiple site installations, as indicated 
by the multiplicity on the association end, and a single central monitoring station. 
Note that the site installation is owned (i.e., black diamond) by the Security System 
as-is and is a reference part (i.e., white diamond) of the Single-Family Residence . 
The reference part provides a mechanism to represent a more complex system 
boundary, where the part is owned by one block and referenced by another. 

   An alternative depiction of the as-is domain is shown in  Figure 16.7   , where 
the system and external systems are shown in iconic form. This provides a means 
to communicate a simplifi ed depiction of the as-is domain that can be annotated 
to informally represent selected interactions and relationships among the entities. 
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    The relationships between the entities could be represented as associations, but 
for the purpose of this example, it is assumed that they are merely annotations on 
the block defi nition diagram; they are represented later as connectors with item 
fl ows on the internal block diagram.  

    Perform Causal Analysis 
   The as-is system and enterprise are analyzed to assess their capabilities and limita-
tions and to identify potential improvement areas. Other sources of data may be 
required to support this analysis, including marketing data such as customer sur-
veys and competitive data. 

   A useful technique for structuring the causal analysis is to use a fi shbone dia-
gram to represent a tree of cause–effect dependencies. A fi shbone diagram for 
the Security Enterprise as-is is shown in Figure 16.8   . The root of the tree repre-
sents measures of effectiveness ( moe) that can refl ect value from the perspective 
of each stakeholder. The nodes of the tree represent dependent properties that 
can impact the moes. 

   Business sales is a moe of particular importance to the company owner, as well 
as to the investors of Security Systems Inc. The cause–effect dependencies show 
that sales are impacted by Customer Satisfaction  and the Market Size . Customer
Satisfaction is measured in terms of System Cost and Security Effectiveness . 
System Cost  is measured in terms of its Installation Cost  and ongoing Service Cost .
Security Effectiveness is measured in terms of response time, false alarm, missed
detections, and other parameters. Moes for other ESS stakeholders—including 
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 FIGURE 16.7 

      ESS as-is domain (iconic representation).    
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  the customer, the police department, and internal stakeholders such as central 
monitoring station operators and system installers—should also be considered. 
One example is the police department’s concern regarding false alarms and the 
associated cost to the city that can be represented by the cause–effect relation-
ship. Although this is not represented as a SysML diagram, an equivalent of a 
fi shbone diagram can be represented by capturing the relationship between the 
parameters on a parametric diagram. 

   A weighted value can be assigned to quantify the impact of each cause on the 
effect similar to a risk or fault tree analysis. Additional engineering analysis is per-
formed to identify the root cause and associated impact on the moes. This analy-
sis may include timeline analysis, reliability analysis, and life-cycle cost analysis; 
and it may be captured in parametrics diagrams as discussed later. 

   A primary defi ciency identifi ed during the causal analysis in this example is 
the limited functionality of the current security system relative to the competi-
tive systems. A stakeholder need is identifi ed to extend the functionality beyond 
intruder detection to include emergency protection for fi re and medical emergen-
cies. In addition, it is determined that there is a need to expand the market size 
for the security systems to protect multifamily residences and small businesses in 
addition to single-family residences. 
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      Causal analysis of the Security Enterprise as-is.   
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      Specify Mission Requirements 
   Based on the preceding analysis, a prioritized set of mission requirements is 
defined that address the limitations of the as-is domain. The mission require-
ments are captured as text requirements, as shown in the requirements diagram 
in  Figure 16.9   . The top-level mission requirement for the ESS includes the text 
statement to “Enhance security of life and property by providing emergency 
response to theft, burglary, fire, and health and safety. ” The mission requirements 
are contained in the Requirements package. The traceability between the mission 
requirements and lower-level requirements is discussed in Section 16.3.6.  

    Capture Measures of Effectiveness 
   Moes reflect mission-level performance requirements and value to the cus-
tomer and other stakeholders, and they are derived from the causal analysis and 
related stakeholder needs analysis. The measures of effectiveness are the emer-
gency response time, false alarm rate, operational availability, and total cost of 
ownership. The target value for each moe is established to achieve a competitive 
advantage.

   Engineering analysis is performed throughout the development effort to sup-
port evaluation, selection, and optimization of the design solution. moes are 
captured in the top-level parametric diagram in  Figure 16.10   . The moes are repre-
sented using the dot notation, described in Chapter 6, to capture the path name 
to the properties based on the system hierarchy shown in  Figure 16.11   . An opti-
mization function defi nes the overall cost effectiveness of the design solution in 
terms of a weighted sum of the utility associated with each moe. Additional analy-
sis models can be established for each moe and captured in a parametric diagram. 
This provides a mechanism to fl ow down the top-level moes to critical system 
parameters (also known as technical performance measures) as the model is fur-
ther elaborated. This is discussed further in Section 16.3.5.  
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requirements

«requirement»
Intruder Emergency

Response

«requirement»
Fire Emergency

Response

«requirement»
Health and Safety Emergency

Response

Text: Enhance security of life and property by providing . . .

 FIGURE 16.9 

      ESS mission requirements.    
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      Defi ne To-Be Domain Model 
   Based on the preceding analysis, we can establish the scope for the to-be system and 
enterprise. The block definition diagram for the to-be operational domain is shown 
in Figure 16.11 . This diagram is shown in the browser view in Figure 16.3  under 
the Operational package. The diagram represents the hierarchy of blocks with the 
Operational Domain as the top-level block. The to-be operational domain includes 
significant changes from the as-is operational domain in Figure 16.6 , and it reflects 
the broader set of mission requirements that resulted from the causal analysis. 

   The Emergency Services includes the Firefi ghter and Paramedic in addi-
tion to the Police and Dispatcher that were included in the as-is domain. The 
Multifamily Residence and small Business have been added as specializations 
of Property along with the Single-Family Residence from the as-is domain. The 
Physical Environment has been added since the system must now monitor the 
environment for fi re. In addition, the as-is security system has been replaced by 
the ESS black box, which is the «system of interest» for this development effort. 

   The Security Enterprise, which includes the ESS, Emergency Services, and 
Communications Network, is responsible for satisfying the mission requirements 
and providing services to the customer and Occupants. The moes are captured as 
stereotyped value properties (« moe») of the Security Enterprise  block along with 
their corresponding units. Specifi c target values and/or value distributions can be 
specifi ed as well. 

   In this example, the Police, Firefi ghter, and Paramedic are all a subclass of 
Responder. As complexity increases, it may be necessary to create a separate block 
defi nition diagram for the specialization hierarchies for the external systems. 
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      ESS top-level parametric diagram.    
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       Defi ne Enterprise Use Cases 
   Enterprise use cases are defined to represent each mission objective that corre-
sponds to the mission requirements in Figure 16.9 . The objectives are to provide 
responses to intruders, fire, and medical emergencies, as shown in the use case 
diagram in Figure 16.12   . Each use case is specialized from a more general use 
case called Provide Emergency Response. An additional use case, called Provide
Validated Data, supports postemergency response actions, such as providing evi-
dence to convict an intruder. 

   This use case includes two additional use cases— Assign User Access and 
Provide Query Response. The Security Enterprise is the subject in the use case 
diagram and is used by the actors to achieve the use case goals (i.e., mission 
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      ESS  Enterprise Use Cases .   
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objectives). The blocks that are external to the enterprise in the operational
domain block defi nition diagram are allocated to the actors in the use case dia-
gram. Exception use cases can also be defi ned; they do not support the mission 
objectives and are often used to help specify fault-tolerant solutions. 

   The use cases in this example refi ne the mission requirements using the refi ne 
relationship. An example of the refi ne relationship is shown in  Figure 16.58    in 
Section 16.3.6. The use cases may also trace to other source documentation such 
as a concept of operations or marketing data. The enterprise use cases are real-
ized by enterprise scenarios that elaborate the interaction between the actors and 
parts of the enterprise. This analysis is used to help specify the ESS black-box 
requirements, as described in the next section. 

   Each use case may be augmented with a use case description that includes a 
textual description of each step in the use case scenario. There are many books 
on how to write and model use cases [34]. The individual steps can be captured 
as SysML requirements that can be traced to other model elements, such as spe-
cifi c actions in an activity diagram. The use case description may include addi-
tional information such as alternative paths and pre- and postconditions, which 
may be used to express the moes associated with the mission objectives. In this 
example, the relationship between pre- and postconditions can be used to specify 
the mission response time. The modeling of use cases is described in Chapter 11.   

    16.3.2    Analyze System Requirements 
   The Analyze System Requirements activity is shown in  Figure 16.13   . This activity 
specifies the requirements for the system as a black box in terms of its input and out-
put behavior and other externally observable characteristics. Scenario analyses for 
each of the enterprise use cases describe how the system interacts with the external 
systems and users identified in the domain model to achieve the mission objectives. 

   The scenarios are modeled using either activity diagrams with activity parti-
tions or sequence diagrams. A system context diagram using an internal block 
diagram is generated to represent the interfaces between the system and the 
external systems and users. Critical system properties, which can impact the mea-
sures of effectiveness, are identifi ed. Based on the analysis, the black-box system 
requirements can be specifi ed in terms of the system functionality, interface, con-
trol, store, and performance requirements. The system state machine augments 
the system black-box requirements by specifying when system functions or oper-
ations are performed. Requirements variation analysis is evaluated in terms of the 
probability that a requirement will change, and it is input into the design process 
to ensure that the design can accommodate the change. Design constraints, such 
as the required use of a COTS component, are also identifi ed and captured, and 
later imposed on the architecture. 

    Defi ne Enterprise Scenarios 
   In this activity, one or more enterprise scenarios are defined for each enterprise 
use case to specify the interaction between the system and the external systems 
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       Analyze System Requirements  activity to specify black-box system requirements.    
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   to achieve the use case goals (i.e., mission objectives). The enterprise scenarios 
provide the basis for specifying the system behavioral requirements. A complete 
set of scenarios, which correspond to each primary and alternative path for the 
use cases, are needed to completely specify the system requirements. This may 
involve additional refactoring of the use cases to identify common functionality. 
The modeler should also ensure that the following are addressed: 

      ■    High likelihood scenarios  
      ■    Performance stressing scenarios and scenarios that signifi cantly impact the 

moes  
      ■    Failure scenarios  
      ■    Critical system functionality  
      ■    New system functionality  
      ■    Interactions that include all external systems and users    

   The enterprise scenarios are modeled with activity or sequence diagrams. The 
activity partitions (also known as swimlanes) in the activity diagram, or the life-
lines in the sequence diagram, represent the system and external systems. For 
this example, the enterprise scenarios are represented with activity diagrams. By 
applying the «allocate» stereotype to each activity partition, the actions in the 
activity partition are automatically allocated to the part that is represented by the 
activity partition. The inputs and outputs of the activity are shown as parameter 
nodes on the boundary of the activity. 

   A representative scenario for the enterprise use case, called Intruder Emer-
gency Response Scenario, is shown in  Figure 16.14   . The scenario is represented 
by an activity diagram with activity partitions for the ESS, Emergency Services , 
Occupant, and Intruder. The actions in each activity partition specify what the 
corresponding part must do. The ESS must activate and deactivate the system in 
response to the Occupant input and must monitor the environment to detect an 
Intruder . 

   The pre- and postconditions for each action can be specifi ed in terms of con-
straints. As an example, the postcondition on the intruder alert status must be that 
the alert has to be validated, {validated      �       true}, when the input exceeds a thres-
hold defi ned by a precondition. The pre- and postcondition constraints can be cap-
tured in a parametric diagram to support engineering analysis, such as the analysis 
of the probability of detection. 

   The streaming pins on the monitor action (i.e., shaded pins) indicate that the 
action continues to accept inputs and/or provide outputs as it executes. In this 
example, the monitor intruder action continues to execute as it receives stream-
ing inputs from the Intruder. The output control fl ow from  deactivate system  
terminates on a fl ow fi nal and does not cause the entire activity to terminate. 

   In addition to the activity or sequence diagram that captures the scenario for 
the enterprise use case, other artifacts can be created to more completely spec-
ify collaboration among the parts. This is called a collaboration process pattern 
in OOSEM, and it is reused in the logical and physical architecture as well. The 
pattern includes creation of a block defi nition diagram, which defi nes the parts 
that interact based on the activity partitions; an internal block diagram to capture 
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       Intruder Emergency Response Scenario  realizes the enterprise use case.    
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   the interfaces between the interacting parts; a block defi nition diagram, which 
captures the input and output defi nitions (i.e., item defi nitions); a parametric dia-
gram to capture the input/output constraints including pre- and postconditions; 
and test cases, which verify that the input/output relation is satisfi ed. The preced-
ing modeling artifacts can be implemented for each use case scenario to aid in 
verifi cation, requirements traceability, engineering analysis, and the ability to cre-
ate executable specifi cations, as described in Chapter 17.  

    Defi ne System Context 
   The system context diagram is shown as an internal block diagram in Figure
16.15   . This diagram depicts the ESS and its interfaces to all external systems and 
users that participate in the enterprise scenarios. The frame of the internal block 
diagram represents the Operational Domain block. The parts of the Operational
Domain correspond to the Security Enterprise and the enterprise actors from 
the block definition diagram in  Figure 16.11 . The  ESS and Emergency Services are 
nested within the Security Enterprise. The inputs/outputs in the activity diagram 
are allocated to item flows that flow across the connectors between the parts. 

   Flow ports are defi ned for each interface on each part. The fl ow port is typed 
by a block or fl ow specifi cation that specifi es the type of input/output that can 
fl ow through the port. For an item fl ow to fl ow in or out of a fl ow port, the type 
of the fl ow port must be the same type or a super class of the item that is fl ow-
ing. The type of fl ow port should then represent the most general classifi cation of 
the input or output item that fl ows. For a fl ow specifi cation, this also applies to 
the type of its fl ow properties. 

   To represent the most general classifi cation, the port may be typed by the phys-
ical nature of the item that fl ows, such as material, fl uid, video, or an analog or 
discrete signal, rather than typing the port by the logical content of the item that 
fl ows. The type of port may also correspond to a specifi cation of the physical inter-
face such as a USB port on a computer. In that case, any fl ow that is compatible 
with the physical nature of the USB specifi cation can fl ow in or out of the port. 

   An interface taxonomy, which specifi es both a logical and physical classifi ca-
tion of interfaces, can be defi ned. The type of fl ow port is based on the physical 
taxonomy. The type of item that fl ows in or out of the port can subclass from 
both the logical and physical classifi cation. This enables the item that fl ows to 
capture the logical content and have a compatible type with the fl ow port. A sim-
ilar approach is used to type the inputs and outputs of the behavior that is bound 
to the port. 

   An example of an ESS fl ow port, shown in  Figure 16.15 , is  fp external sensor 
in, which is typed by Electromagnetic Signal. The type of fl ow port can later be 
subclassed if it is desired to further constrain what fl ows in or out of the port. If 
the external sensor is determined to be a surveillance camera that accepts an opti-
cal or an infrared signal input, the type of fp external sensor in can be subclassed 
as an optical signal or an infrared signal, respectively. The item fl ow is typed 
by Target Signature, which corresponds to the logical content of the item that 
fl ows. The  Target Signature is a subclass of Electromagnetic Signal to ensure 
that its type is compatible with the ESS fl ow port. The type of the  Intruder fl ow 
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      ESS context diagram showing the interfaces between the ESS and the external systems, users, and physical 
environment.   

  port on the other end of the connector must also have a compatible type with 
the item fl ow and the ESS fl ow port. An interface specifi cation may also include 
parametrics to constrain the properties of the connecting ports, such as the sum 
of the energy input and output fl ow must equal zero. 

16.3 Applying the Method to Specify and Design the System
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     Sometimes additional physical encoding of the item that fl ows needs to be 
specifi ed. An example of an item that fl ows is a fi le that fl ows from a computer 
port to a printer port. Assume the logical content of the item is a report and the 
format of the report is rich text format (RTF). The RTF is the physical encoding 
of the report and should be refl ected in the type of the item. In this case, the item 
type is RTF, and the report is allocated either to the item type or to item prop-
erty. Modeling the physical interface characteristics of the ports and fl ows can be 
deferred until interface design decisions are made. 

   The standard port on ES, called sp network if, specifi es an interface to pro-
vide a Query Response when a Query is requested by Law Enforcement on the 
required interface. The Query and Query Response are the required and provided 
interfaces, respectively, for the standard ports.  

    Capture Critical System Properties and Constraints 
   Critical performance requirements can be captured as a value property of the ESS 
block or an activity. The performance requirements are derived based on engi-
neering analysis. 

   One example of a performance analysis is a timeline analysis. The timing dia-
gram in  Figure 16.16    specifi es the mission timeline for the  Intruder Emergency 
Response Scenario in  Figure 16.14 . The actions from the activity diagram are 
shown on the y-axis and the required time to perform the actions are shown on 
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the x-axis. The timeline is used to allocate time to each action in the scenario in 
order to satisfy the mission response time that was identifi ed as a moe. In this 
example, the intruder detection response time is the time from the intruder 
entering the property until the ESS reports the alert to the dispatcher. This is 
viewed as a critical system property, referred to as a measure of performance, 
represented as «mop» in the model. The value for this property can be budgeted 
based on its impact on overall security effectiveness. 

   Other critical system properties that require analysis to satisfy requirements 
may include probability of detection and probability of false alarm. The con-
straints on these properties are captured in parametric diagrams as part of the 
engineering analysis described in Section 16.3.5. 

    Specify Black-Box System Requirements 
   The application of OOSEM results in the specification of the system based on the 
scenario analysis, interface definitions, and other engineering analyses performed, 
as described earlier. The specification is often called a black-box specification in 
that it defines the system’s externally observable behavior and physical character-
istics. The black-box specification does not specify the internal characterization, 
or white-box specification, of the system in terms of how it achieves the black-
box specification. Design constraints may augment the black-box specification to 
constrain how the requirements are implemented, such as the constraint to use a 
particular COTS component or a particular algorithm in the design. 

   The specifi cation features of a black box that is represented as a block include 
the following: 

      ■    The required functions it must perform and the associated inputs and out-
puts. The required functions are modeled as activities that are allocated to 
the block, or as operations of a block whose methods can be activities. The 
associated inputs and outputs are the inputs and outputs to the activity and 
the signature of the operation. 

      ■    The required external interfaces that enable it to interact with other external 
systems and users. The interfaces are specifi ed by the ports on the block. 

      ■    The required performance, physical, and quality characteristics that impact 
how well the functions must be performed or a physical characteristic (e.g., 
weight). These characteristics are specifi ed as value properties with units 
and dimensions. The value properties may have specifi c values or probability 
distributions associated with their values. Constraints on value properties 
are captured as parametric constraints. OOSEM stereotypes these properties 
as «mop».

      ■    The required control in terms of input events and preconditions that deter-
mine when the functions are performed. The control can be specifi ed in 
terms of a state machine for the block that specifi es which activities are per-
formed in response to different input events and associated preconditions. 

      ■    The required items that the system must store including data, energy, 
and mass. The required stores can be modeled as properties of the block. 
OOSEM stereotypes these properties as «store».   

16.3 Applying the Method to Specify and Design the System
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     The specifi cation features for the  ESS block are shown in  Figure 16.17   . In this 
example, an operation is defi ned for the ESS for each action in the  ESS activity 
partition from each scenario that was analyzed. The method of the operation is 
the corresponding activity. Alternatively, an allocated compartment can be used 
to show the activities allocated to the block directly. The performance properties,
such as probability of intruder detection, intruder detection response time, and 
availability, are stereotyped as measures of performance «mop». Parametric con-
straints on these properties can constrain the value properties of the block and/
or constrain the inputs and outputs on an activity or operation (i.e., pre- and post-
conditions). The ports specify the system interfaces, but are not shown in the 
fi gure. The items that are stored, such as the event log and auxilliary power, are 
stereotyped as «store» properties. 
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      ESS black-box specifi cation.    
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    The black-box specifi cation can be traced to the mission requirements as part 
of the requirements management, described in Section 16.3.6, using the appropri-
ate requirements relationship. Traceability can be defi ned at a fi ne-grained feature 
level or at a less granular level depending on the need. 

   The black-box specifi cation can be applied at any level of design, including 
system, element, and component levels. As a result, this approach is used later in 
the chapter to specify component requirements. 

    Defi ne System State Machine 
   Each scenario defines actions that the ESS system must perform. The ESS state 
machine specifies the ESS behavior from all scenarios that it participates in. The 
ESS evaluates the guard conditions in response to an input event to determine 
whether a transition to a next state is triggered. The guard conditions specify 
conditions on the input values, current state, and resource availability. If the 
transition is triggered, the block executes the exit action from the current state, 
executes the transition behavior (i.e., effect), and enters the next state. It then 
executes the entry action of the next state followed by its do/behavior, which is 
defined by an activity. The transition behavior may include a send signal action 
that can trigger a transition in another system’s state machine. The system’s logi-
cal and physical design must implement the control requirements imposed by the 
system state machine. 

   A simplistic state machine specifi es the control requirements as a series of 
statements as follows. If an input event occurs while in the current state and the 
guard conditions are satisfi ed, then transition to the next state and execute the 
selected actions. 

   A selected portion of the ESS state machine is shown in Figure 16.18   . The 
state machine includes regions for intruder monitoring, fi re monitoring, medical 
emergency monitoring, and fault monitoring to specify that monitoring of these 
different events can be concurrent. The behavior in the orthogonal regions can 
result in contention for system resources, such as processor capacity, that must 
be reconciled through the design process. 

   As shown in the intruder monitoring region, when ESS power up is complete , 
it initially transitions to the intruder nonalert state. If an intruder is detected, it 
transitions to the intruder alert state. If the system is in the activated state at 
the time of the transition, it sets an alarm. In the alert state, the alert is initially 
unvalidated. Once the alert has been validated, the system transitions to a val-
idated state and sends the validated intruder alert to Emergency Services. The 
specifi c approach used for developing this state machine is based on an analy-
sis of the enterprise scenarios, but it is not included here for brevity. Alternative 
approaches can be used to specify the system state machine as well. 

   A property of the ESS block in Figure 16.17 , called ess state, is stereotyped as 
«composite state » and is typed by a block called ESS State, which has the same 
stereotype applied. The value of this property represents the state of the system at 
any point in time and is determined by the ESS state machine behavior. One can 
think of the value of this property as the position of a set of switches, where each 
switch sets a particular system state to true or false. The allowable concurrent,
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 FIGURE 16.18 

       ESS State Machine.     
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   sequential, and nested states are defi ned by the state machine diagram. This prop-
erty can be used in parametrics to capture state-dependent constraints. 

    Analyze System Requirements Variation 
   Requirements variation analysis is intended to define the potential change in 
requirements that can result from different sources, such as a likely change to an 
external interface, a possible increase in the number of system users, or possible 
new functionality to stay competitive. For the ESS, potential requirements change 
can result from an increase in the number of expected site installations, or adding 
new functionality to monitor carbon monoxide, or to integrate with an automatic 
sprinkler system to extinguish fires. 

   Requirements variation is evaluated in terms of the probability that a require-
ment will change. The results of the analysis are input to the risk analysis to 
assess the impact of the change and to develop mitigation strategies. The strategy 
is refl ected in the architecture and design approach, such as isolating the source 
of the changing requirement on the design. A similar strategy can be applied to 
likely technology changes. 

    Identify System Design Constraints 
   Design constraints are those constraints that are imposed on the solution space 
or ESS white box. These constraints are typically imposed by the customer, by 
the development organization, or by external regulations. The constraints may be 
imposed on the hardware, software, data, operational procedures, interfaces, or 
any other part of the system. Examples may include a constraint that the system 
must use predefined COTS hardware or software or a specific interface protocol. 
For the ESS system, much of the legacy central monitoring station hardware con-
strains the solution, as well as the communications network between the central 
monitoring station and the legacy site installations. 

   Design constraints can have a signifi cant impact on the design and should be 
validated prior to imposing them on the solution. A straightforward approach to 
address design constraints is to categorize the type of constraints (e.g., hardware, 
software, procedure, algorithm), identify the specifi c constraints for each cate-
gory, and capture them as system requirements in the Requirements package, 
along with the corresponding rationale. The design constraints are then imposed 
on the physical architecture, as discussed later.   

    16.3.3   Defi ne Logical Architecture 
   The Define Logical Architecture activity is shown in Figure 16.19   . This activity is 
part of the system architecture design that includes decomposing the system into 
logical components that interact to satisfy system requirements. The logical com-
ponents are abstractions of the components that implement the system, which 
perform the system functionality without imposing implementation constraints. An 
example of a logical component is a user interface that may be realized by a Web 
browser or display console, or an entry/exit sensor that may be realized by an opti-
cal sensor. The logical architecture serves as an intermediate level of abstraction 
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  between the system requirements and the physical architecture that can reduce 
the impact of both requirements and technology changes on the physical design. 

   The logical architecture defi nition activity includes decomposing the system 
into logical components, as described earlier. For each operation the system is 

act Activities [Define Logical Architecture]

define logical decomposition

define interaction between
logical components to

realize each system activity
and/or operation

define logical ibd

specify logical components
Logical component
functions, states, stores,
properties, and ports
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State machine
for selected
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state behavior
such as a system
controller

This includes the
logical scenarios and
other collaboration
artifacts

[next system activity]

[system activities analyzed]

 FIGURE 16.19 

       Defi ne Logical Architecture  activity decomposes the system into logical components, and 
describes their interactions such that they satisfy the system requirements.    
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required to perform, a scenario is defi ned to describe the interaction among the 
logical components, along with other collaboration artifacts that realize the oper-
ation, such as an internal block diagram that shows the interconnection between 
the logical components. The logical components identifi ed from the initial logical 
decomposition are subject to refi nement based on repartitioning of their function-
ality and properties. Each logical component is then specifi ed in a similar way, as 
described for the ESS black-box specifi cation. A logical component may include a 
state machine as part of its specifi cation if it has signifi cant state-based behavior. 
The logical components are allocated to the physical architecture, as described in 
Section 16.3.4. 

    Defi ne Logical Decomposition 
   The ESS block is specified as part of the system requirements analysis described 
in the previous section. In OOSEM, the ESS block is decomposed into both a log-
ical and a physical hierarchy. To maintain separate logical and physical system 
design hierarchies, a subclass of the ESS block is created for each decomposition 
of the system hierarchy. In Figure 16.20   , the ESS Logical block is a subclass of the 
ESS block that inherits all the ESS features, including its operations (or allocated 
activities), stores, properties, and ports. The ESS Logical block is decomposed 
into logical components. 

   The Logical Subsystem Composite is a subclass of the ESS Logical block. It is 
used to decompose the ESS into subsystems. In OOSEM, a subsystem corresponds 
to an aggregate of components that realize an individual ESS operation or activity. 
The Logical Subsystem Composite represents an aggregate of logical subsystems, 
each of which realizes a particular ESS operation. 

   The ESS Node Logical and ESS Node Physical are also subclasses of the ESS
block, as shown in the fi gure. These blocks are used to decompose the ESS sys-
tem into logical and physical nodes, as described in Section 16.3.4. The nodes 
represent an aggregate of components at a particular location. For the ESS, the 
locations correspond to the site installation and the central monitoring station. A 
logical node aggregates the logical components at a particular location, and the 
physical nodes aggregate the physical components at a particular location. Using 
this approach, the system can have multiple decomposition hierarchies, which 
can be related to one another. 

   The other blocks in the fi gure represent composites for other decompositions 
that are discussed later in this chapter. In particular, the Node Logical Subsystem 
Composite and the Node Physical Subsystem Composite aggregate subsystems 
in a similar manner as described for the Logical Subsystem Composite. The soft-
ware, hardware, and data composites represent aggregates for the hardware, 
software, and data components of the system, respectively, and the operational 
procedure is further classifi ed into the types of procedures required to operate 
the system. 

   The ESS Logical block is decomposed into logical components, as shown in 
the ESS Logical block defi nition diagram in  Figure 16.21   . The system is decom-
posed into three classes of logical components, including External Interface 
Components to manage the interface to each external system or user; Application
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 FIGURE 16.20 

      ESS subclasses for logical and physical decomposition.    
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  Components, which are responsible for providing the business logic and process-
ing each external item fl ow from the ESS context diagram in  Figure 16.15 ; and 
Infrastructure Components , which provide internal system support services. 

   In the ESS logical decomposition, a User If is an example of an External
Interface Component, the Fault Manager is an example of an Infrastructure
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      ESS logical decomposition into logical components including  External Interface Components, Application 
Components , and  Infrastructure Components.     
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Component, and the Event Manager and System Controller are examples of 
Application Components . This approach ensures that the system logical architec-
ture includes components with the functionality to communicate with external 
systems, process the inputs and outputs, and provide internal support services. 
The part names and multiplicities on the component ends of the composition 
relationships are also refl ected in the  ESS Logical  internal block diagram.  

    Defi ne Interaction between Logical Components to Realize 
System Activity and/or Operation 
   Activity diagrams are defined for each operation or each activity allocated to the 
ESS Logical block. This ensures that each action from the enterprise scenarios that 
is allocated to the system is realized in the logical design. 

    Figure 16.22    shows the Monitor Intruder Activity Diagram that realizes the 
Monitor intruder operation of the ESS Logical block. An enclosing activity is cre-
ated with the same name as the operation called monitor intruder. The inputs 
and outputs of the enclosing activity match the pins from the monitor intruder  
action in the Intruder Emergency Response Scenario in  Figure 16.14 . The activ-
ity partitions represent the parts of the system that are typed by the logical com-
ponents from the ESS Logical Block Defi nition Diagram  in  Figure 16.21 . 

   The External Sensor, Entry Sensor, Exit Sensor, and Internal Sensor generate 
Detections. The Event Manager processes the Detections and stores them in the 
Event Log. The System Controller then controls the system actions in response 
to the Event. The control actions request the Status Manager to provide a status 
update. If the system has been activated, the controller sends a signal to trigger 
the alarm, to record the high-bandwidth sensor data, and to request validation of 
the alert. If the alert is validated, the alert status is communicated to Emergency
Services . 

   The logic of this activity diagram is consistent with the system-level behavior 
defi ned in the ESS state machine in  Figure 16.18 . The pattern of behavior for the 
sensors, event manager, and controller applies to the fi re and medical emergency 
response scenarios as well. 

   Some of the actions in the activity diagram include streaming inputs and out-
puts. The control intruder action includes a process constraint, which constrains 
the values of the inputs and outputs that can be captured and used in a paramet-
ric diagram for further engineering analysis. The Event Log is stored by the Event
Manager and the external sensor data that are stored by the High-Bandwidth
Data Recorder  as indicated by the data stores in the activity partitions. 

   A similar set of collaboration artifacts, which can be developed at the ESS sys-
tem level for each enterprise scenario, can also be developed to further specify the 
collaboration among logical components. The process for developing the artifacts 
applies the same collaboration process pattern referred to in Section 16.3.2 to each 
operation of the ESS Logical block. The collaboration artifacts include a block defi -
nition diagram, activity diagram, internal block diagram, updates to the item defi ni-
tions on the block defi nition diagram, parametric diagram, and test cases. 

   For each ESS logical operation, a block defi nition diagram is defi ned, which 
aggregates the logical components that interact to realize the system operation. 



435

The logical components correspond directly to the activity partitions on the activ-
ity diagram. The block that aggregates the components is referred to as a subsys-
tem. The Monitor Intruder Subsystem Block Defi nition Diagram is shown in 
Figure 16.23   . ( Note: The Monitor Intruder Subsystem block is a component of 
the Logical Subsystem Composite  block shown in  Figure 16.20 .)

   The Monitor Intruder Subsystem Internal Block Diagram in Figure 16.24    
specifi es the structural interconnection between the logical components that inter-
act in the activity diagram. The ports on the enclosing block are the external ESS 
system interfaces. The parts on the internal block diagram correspond to the part 
names on the Monitor Intruder Subsystem Block Defi nition Diagram, and to the 
names of the activity partitions in the activity diagram. The connectors defi ne 
the interconnection between the parts. The ports on the logical parts and the item 
fl ows on the connectors have not been included for brevity. If included, the 
item fl ows are allocated from the pins on the actions in the activity diagram using 
the allocation relationship (refer to Chapter 13 for details). The item properties 
have the same type as the pins on the activity diagrams. The input and output 
defi nitions are specifi ed on the item block defi nition diagrams. 

    Defi ne System Logical Internal Block Diagram 
   The internal block diagram for the Monitor Intruder Subsystem showed only the 
interconnection among parts that participated in the Monitor Intruder Activity 
Diagram. However, there are additional activity diagrams that correspond to 
each operation of the ESS Logical block. Each activity diagram may have different 
sets of interacting components. 

   The ESS Logical Internal Block Diagram in Figure 16.25    represents the inter-
connection of all the parts from all the activity diagrams and corresponds to a tra-
ditional system block diagram (see page 440). Each subsystem corresponds to a 
subset of the parts and interconnections on this internal block diagram. The enclos-
ing block represents the ESS Logical block. The ports on the ESS Logical block are 
consistent with the ports defi ned on the ESS in  Figure 16.15 , enabling the external 
interfaces to be delegated to the logical parts of the system. 

    Specify Logical Components 
   The specification of each logical component includes the specification features 
that are captured in their respective block in the same way that was described for 
specifying the ESS system block. The actions from the activity diagrams are cap-
tured as allocated activities or operations; the logical interfaces can be captured 
as the component ports; persistent stores are captured as store properties; and 
performance properties are captured as value properties of the block, or proper-
ties of the activity allocated to the block. 

    Defi ne Logical Component State Machine 
   A component specification can include a state machine if it has state behavior that 
is dependent on input events and preconditions. A simple state-dependent behav-
ior for a component may include a wait state, where the component waits until it 
receives an input event. The component then transitions to another state to execute 
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act Monitor Intruder Subsystem [Monitor Intruder Activity Diagram]

Monitor intruder

external :
Source
Signature

entry :
Window–Door
State

internal :
Source
Signature

exit :
Window–Door
State

intr :
Site
Status

:Monitor Intruder Subsystem

«allocateActivityPartition»

«allocateActivityPartition»

ev mgr i :Event Mgr

«allocateActivityPartition»

data recorder i :High bw
Data Recorder

«allocateActivityPartition»

external sensor i :
External Sensor

«allocateActivityPartition»

«allocateActivityPartition»

«allocateActivityPartition»

sense entry

entry :
Detection

entry :
Window–Door
State

sense
exit

exit :
Window–Door
State

sense
external

external :
Detection

external :Source
Signature

out :
Sensed
Output

sense
internal

internal :
Detection

internal :
Source
Signature

process intr
detection

in :Detection

out :Event

intruder
:Event

Timer is set as part
of the Activate
System Activity.

record data

ext_sens :
Record
Request

in :
Sensed
Output

use to capture sensor
data, etc. for data
validation

store intr
event

in :Event

communicate
status

in :Site
Status

out :Site
Status

«Postcondition»
{activation_time_out � true}

«datastore»
sensor data :

External Sensor
Data Store

«datastore»
intr log :Event Log

entry sensor i :Entry Sensor

«allocateActivityPartition»

internal sensor i :Internal
Sensor

exit sensor i :Exit Sensor

exit :
Detection

user if mgr i :User If

sensor_data
:Sensed
Output

 FIGURE 16.22 

      ESS  Monitor Intruder Activity Diagram  is a thread through the logical system design that realizes 
the Monitor intruder  operation of the  ESS Logical block.    
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       Monitor Intruder Subsystem Internal Block Diagram  showing the interconnection of the parts that interact on 
the Monitor Intruder Activity Diagram  in  Figure 16.22 . (Note: The parts are references that are not owned by 
the subsystem.)      

      a particular do/behavior that is defined by an activity. It then transitions back to its 
wait state when the activity is complete and waits for the next triggering event. 

   For this example, the Event Manager and the System Controller are logi-
cal components that have more complex state-dependent behavior. The System
Controller is a logical component that is responsible for controlling actions in 
response to events from the Event Manager. Since the controller must respond 
differently to different events, and its behavior is also dependent on the current 
state of the system, it is appropriate to represent the controller’s behavior with a 
state machine, as shown in a partial view of its state machine in Figure 16.26   . 
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       System Controller State Machine .    
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        The system controller includes multiple regions to support concurrent states. 
As shown in the intruder monitor region, when powerup is complete, the 
System Controller transitions to an intruder nonalert state. If an intruder event is 
received, the controller sends a status update and then transitions to the intruder
alert state. If the system is in the activated state, the System Controller sends 
signals to other logical components as indicated on the transition actions. These 
include a request alarm to the Alarm, a request alert validation to the Alert
Validation Manager, and a request data record to the High-Bandwidth Data 
Recorder . The signals are not sent if the system is not in the  activated  state. 

   The state machine augments the specifi cation of the logical components. The 
traceability between the system-level requirements and the logical components is 
maintained, as discussed in Section 16.3.6.   

    16.3.4    Synthesize Candidate Physical Architectures 
   The Synthesize Candidate Physical Architectures activity is shown in  Figure 16.27   . 
This activity synthesizes the system’s alternative physical architectures to satisfy 
the system requirements. The architecture is defined in terms of its physical com-
ponents and relationships, and their distribution across system nodes. The physical 
components of the system include hardware, software, persistent data, and oper-
ational procedures. The system nodes represent a partitioning of components 
based on their physical location or other distribution criteria. If it is not distrib-
uted, the system is assumed to consist of a single node. 

   The partitioning criteria are defi ned and used to partition the physical com-
ponents and address concerns such as performance, reliability, and security. A 
node logical architecture is defi ned to determine how the logical components, 
and their associated functionality, persistent data, and control, are distributed 
across system nodes. A node physical architecture is defi ned where each logical 
component in each node is allocated to physical components that may include a 
combination of hardware, software, and persistent data components, as well as 
operational procedures performed by operators. System design constraints that 
were identifi ed in Section 16.3.2 are imposed on the physical architecture. 

   The software, hardware, and data architecture are established to further par-
tition the physical components based on additional physical domain-specifi c 
implementation concerns. The requirements are then specifi ed for each physical 
component and traced to the system requirements. Engineering analysis and trade 
studies are performed to evaluate, select, and refi ne the preferred architecture. It 
should be noted that trade studies are performed throughout the OOSEM process 
beginning with Analyze Stakeholder Needs . 

    Defi ne Partitioning Criteria 
   Partitioning is a fundamental aspect of systems architecting. Partitioning criteria 
are established to partition functionality, persistent data, and control among the 
logical and physical components, and to partition the components among subsys-
tems, nodes, and layers of the architecture. Applying partitioning criteria through-
out the design process should result in component designs that exhibit maximum 
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  cohesion and minimum coupling to reduce interface complexity. Applying the cri-
teria should also reduce the impact of requirements and technology changes and 
more effectively address key requirements such as performance, reliability, main-
tainability, and security. Some examples of partitioning include the following: 

      ■    Refactoring common functionality into shared components 
      ■    Partitioning components and functionality based on having the same update 

rate, or partitioning components with high update rates versus those with 
low update rates 

act Activities [Synthesize Candidate Physical Architectures]

define
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architecture

define data
architecture

define
hardware

architecture

define
operational
procedures

allocates logical
components to
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allocates logical
components in each
node to one or more
physical components

define partitioning
criteria

define logical node
architecture

capture criticial node and
component properties

define physical node
architecture

specify component
requirements

conduct system design
review

 FIGURE 16.27 

       Synthesize Candidate Physical Architectures activity to specify the components of the system.    
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      ■    Partitioning software components into architecture layers based on the level 
of dependency of the functionality or services they provide  

      ■    Partitioning data into separate repositories based on their security classifi ca-
tion level  

      ■    Physical partitioning such that lower reliability components are more acces-
sible to ease maintainability  

      ■    Physical partitioning of components to reduce the number of moving parts 
for assembly and disassembly  

      ■    Partitioning components based on reuse of common patterns  
      ■    Partitioning components based on their likelihood to change  
      ■    Partitioning functionality and components based on development consider-

ations such as whether they are part of a particular incremental delivery     

    Defi ne Logical Node Architecture 
   Up to this point, there has been no discussion of how the functionality is dis-
tributed across system nodes. A node typically represents a partitioning of com-
ponents and associated functionality, control, and persistent data based on the 
geographic location of the components. The node may include a fixed facility or a 
moving platform such as an aircraft. Many modern systems are distributed across 
multiple system nodes. Nodes may also be defined based on other criteria such as 
organizational responsibility (e.g., the people and resources in a particular depart-
ment). In OOSEM, a logical node represents an aggregation of logical components 
at a particular location. A physical node represents an aggregation of physical com-
ponents at a particular location. The logical components at a logical node are allo-
cated to physical components at a physical node, as described later in this section. 

   Functionality, control, and persistent data can be distributed in many ways. 
A system can be highly distributed such that each node has complete functional-
ity, control, and data and can operate autonomously. Alternatively, the distribu-
tion may be highly centralized where most of the functionality, control, and data 
are within a central node, and the local nodes primarily provide an interface 
to external systems and users at a particular location. This can provide a cost-
effective solution to minimize the required resources across the system. Between 
a fully distributed solution and fully centralized distribution, functionality, control, 
and data can be partially distributed across regional and local nodes, where each 
node performs a subset of the total functionality, control, and data. 

   Distribution options can include any combination of a central node, multiple 
regional nodes, and multiple local nodes in each region. Trade studies are typi-
cally performed to optimize the distribution approach based on considerations 
such as performance, reliability, security, and cost. Many types of systems are 
distributed including information systems with networked communications, elec-
trical power distribution systems, and complex SoS applications such as transpor-
tation systems. 

   The ESS Node Logical Block Defi nition Diagram defi nes the logical compo-
nents in a node hierarchy as shown in  Figure 16.28   . The top block in the block 
defi nition diagram is a subclass of the  ESS block called the ESS Node Logical , 
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bdd Node Logical Architecture [ESS Node Logical BDD]
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 FIGURE 16.28 

       ESS Node Logical Block Defi nition Diagram  showing the logical components allocated to the  Site Installation  
and Central Monitoring Station nodes.   
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   which was shown previously in  Figure 16.20 . This block is composed of the 
system logical nodes and stereotyped as « node logical ». For the  ESS, the nodes 
represent the Central Monitoring Station  (CMS), and the Site Installa tions that 
are installed at Single-Family Residences, Multifamily Residences, and small 
Businesses. Although not included in this example, a CMS backup facility may be 
an additional required node to provide disaster recovery and satisfy the system 
availability requirement. 

   Each logical node is composed of logical components. A logical component 
can be distributed to more than one node. However, the logical component may 
have different requirements in each node, as is the case for the high-bandwidth 
data recorder that is a component of both the Site Installation and the Central
Monitoring Station. In this case a subclass of the High-Bandwidth Data Recorder 
logical component is defi ned for each node with its unique characteristics. 

   A similar set of modeling artifacts used for defi ning the  ESS Logical archi-
tecture in the previous section can also be developed for the ESS Node Logical  
architecture. This includes the node logical activity diagrams and internal block 
diagram. An elaboration of each activity diagram that was created for the ESS
Logical architecture in the previous section should be created for the ESS Node 
Logical architecture to specify how the activity is executed by the logical compo-
nents that are distributed across the nodes. 

   The node logical activity diagrams show the interaction of the components 
within each node and across nodes. The Monitor Intruder Activity Diagram-nl  
is shown in       Figures 16.29 and 16.30     . The nodes are represented as activity parti-
tions, and the logical components are nested within their respective node. New 
logical components are required to support the interaction between nodes that 
are also included on the Node Logical Block Defi nition Diagram. This activ-
ity diagram is consistent with the behavior that was originally specifi ed in the 
Monitor Intruder Activity Diagram as part of the undistributed logical design in 
the activity diagram in  Figure 16.22 . 

   The ESS Node Logical Internal Block Diagram-nl in       Figures 16.31 and 16.32      
shows how the logical components are interconnected within each node and 
across nodes. This includes the interconnection of parts that are interacting in 
the Monitor Intruder Activity Diagram. Once again, the system external inter-
faces are maintained on the ports of the enclosing block. The other collaboration 
artifacts referred to in the previous section can be created for each scenario as 
well, depending on the process tailoring.  

    Defi ne Physical Node Architecture 
   The functionality for the ESS Logical architecture is first distributed among the 
logical nodes and captured in the ESS Node Logical architecture as described 
in the previous section. This was accomplished by distributing the logical com-
ponents to each of the logical nodes based on partitioning concerns that are 
somewhat independent of how the components are implemented. For example, 
it made sense to distribute the Entry Sensor to the Site Installation node inde-
pendent of what technology is used to implement the Entry Sensor. The logi-
cal components in each node are then allocated to physical components in each 
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  node to constitute the ESS Node Physical architecture. The supporting trade-off 
analysis, which addresses technology and implementation concerns related to 
performance, reliability, security, and other quality attributes, is addressed as part 
of this allocation decision. For this example, the Entry Sensor is allocated to an 
Optical Sensor. A partial allocation of the logical components to physical compo-
nents for the Site Installation node and the Central Monitoring Station node are 
shown in the allocation tables in       Figures 16.33 and 16.34     , respectively (see pages 
451–452).

«allocateActivityPartition»

:Modem

«allocateActivityPartition»
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«datastore»
intr log :Event Log

A

B

act Monitor Intruder Subsystem-nl [Monitor Intruder Activity Diagram-nl]
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 FIGURE 16.29 

       Monitor Intruder Activity Diagram-nl  showing the interaction of components within the  Site Installation  
node. Additional components have been added to interface between the nodes.    
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     The design constraints that were identifi ed during the system requirements 
analysis in Section 16.3.2 are imposed on the physical architecture as part of the 
logical-to-physical allocation. For example, a logical component may be allocated 
to a particular COTS component that has been imposed as a design constraint. 
A reference architecture may also constrain the solution space with preselected 

act Monitor Intruder Subsystem-nl [Monitor Intruder Activity Diagram-nl (two-of-two)]
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 FIGURE 16.30 

       Monitor Intruder Activity Diagram-nl  showing the interaction of components within the  Central Monitoring 
System  node. Additional components have been added to interface between the nodes. This behavior also 
partially supports the behavior that was specifi ed in the  Monitor Intruder Activity Diagram  in  Figure 16.22 .    
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ibd Node Logical Architecture [ESS Node Logical IBD (one of two)]
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 FIGURE 16.31 

       ESS Node Logical Internal Block Diagram  showing the interconnection between the parts within and across 
nodes, focused on the Site Installation . The parts are represented as activity partitions in the  Monitor Intruder 
Activity Diagram-nl  in  Figure 16.29 .   
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ibd Node Logical Architecture [ESS Node Logical IBD (two of two)]
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 FIGURE 16.32 

       ESS Node Logical Internal Block Diagram  showing the interconnection between the parts 
within and across nodes, focused on the Central Monitoring Station . The parts are represented 
as activity partitions in the Monitor Intruder Activity Diagram-nl  in  Figure 16.30 .    
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     or legacy components. An example of a reference architecture is briefl y described 
later in this section as a multilayered architecture that includes specifi c types 
of components associated with each architecture layer—that is, presentation, 
mission application, infrastructure, and operating system layers. 

   Alternative physical architectures are identifi ed by allocations of logical com-
ponents to alternative physical components. The logical-to-physical component 

table [Package] Site [Logical to Physical]

From Type To Name
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 FIGURE 16.33 

      Allocation of logical components to physical components in  Site Installation node.   
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  allocations may be based on patterns. The architectural patterns may repre-
sent common solutions with associated technologies. For example, the Event
Manager and System Controller constitute a design pattern in the logical design 
that can be implemented in a selected software design pattern. 

   Trade studies are performed to select the preferred physical architecture 
based on selection criteria that optimize the measures of effeciveness and associ-
ated measures of performance. In this example, the probability of intruder detec-
tion and false alarm may drive the Site Installation performance requirements, 
and the number and type of Site Insallations that are monitored may drive the 
Central Monitoring Station performance requirements. Performance requirements 

table [Package] CMS  [Logical to Physical]
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 FIGURE 16.34 

      Allocation of logical components to physical components in  Central Monitoring Station node.    
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must be balanced against availability, cost, and other critical requirements to arrive 
at a balanced solution based on the trade-off analysis. 

   When a logical component is allocated to software, the software component 
must also be allocated to a corresponding hardware component to execute it. This 
can also be refl ected in the allocation tables in        Figures 16.33 and 16.34 , although 
they are not shown. Sometimes, the allocation decision is made at run time. For 
allocations of software to hardware at run time, the run-time allocation decision 
process is also modeled as part of the activity diagram or sequence diagram. The 
run-time allocation methods may require algorithms, such as load balancing, to 
implement the decision process. In addition to software allocation, persistent data 
are allocated to hardware components that store the data, and operational proce-
dures are allocated to operators that execute the procedures. 

   The ESS Node Physical Block Defi nition Diagrams for the Site Installation  
and Central Monitoring Station are shown in       Figures 16.35 and 16.36     , respec-
tively. They are similar to the ESS Node Logical Block Defi nition Diagram in 
Figure 16.28  except the logical components have been replaced by the physical 
components to which they were allocated, and the Site Installation and Central
Monitoring Station  nodes are physical nodes instead of logical nodes. 

   Similar modeling artifacts that were created for the ESS node logical architec-
ture in the previous section are created for the ESS node physical architecture, 
including the collaboration artifacts. This includes the node physical activity 
diagrams and the node physical internal block diagram. A node physical activity 
diagram is created for each node logical activity diagram, which in turn rep-
resents a realization of a required black-box system behavior. Node physical 
activity diagrams must support the behavior specifi ed by node logical activity 
diagrams. 

   The Monitor Intruder Activity Diagram-np for the Site Installation and the 
Central Monitoring Station are shown in       Figures 16.37 and 16.38     , respectively. 
The activity partitions represent the components of the system’s physical architec-
ture. The activity diagram captures the interaction between the hardware and soft-
ware components, as well as the operators of the system. The activity partitions 
for the site installation software components are nested within a partition that rep-
resents a site installation software confi guration item. The software executes on a 
processing platform, although this is not shown as an activity partition in the activ-
ity diagram. Similarly, other activity partitions represent the hardware components 
and operators. 

   The activity diagram must support the behavior from the corresponding node 
logical activity diagram, and also support the original behavior specifi ed for the 
Monitor intruder action of the Intruder Emergency Response Scenario in Figure
16.14, including its inputs, outputs, and pre- and postconditions. Supporting the 
behavior of the higher-level abstraction means that the logical behavior described 
previously is maintained in terms of the inputs, outputs, and fl ow of control, but 
that more detail is added to show how this behavior is accomplished when the 
logical behavior is distributed across nodes. In this example, the control intruder 
actions is accomplished at the Site Installation node and the validate intruder 
alert  is accomplished at the  Central Monitoring Station  node. 

16.3 Applying the Method to Specify and Design the System
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bdd Site [Site Installation Physical BDD]
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 FIGURE 16.35 

       Site Installation Physical Block Defi nition Diagram  showing the hierarchy of physical components in the 
 Site Installation  node.    

     As a result, this activity diagram includes communication actions to commu-
nicate the control actions from the Site Installation to the Central Monitoring 
Station. The communication actions represent the added detail that was not 
included in the ESS logical activity diagram in  Figure 16.22 . However, the overall 
behavior of the logical activity diagram is maintained. 

   The ESS Node Physical Internal Block Diagram in       Figures 16.39 and 16.40      
(see pages 458–459) show how the physical parts are interconnected within each 
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bdd CMS [CMS Physical BDD]
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 FIGURE 16.36 

       Central Monitoring Station Physical Block Defi nition Diagram  showing the hierarchy of physical components in 
the Central Monitoring Station  node.    
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456 CHAPTER 16 Residential Security System Example Using OOSEM

act Monitor Intruder Subsystem-np [Monitor Intruder Activity Diagram-np (one of two)]
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 FIGURE 16.37 

       Monitor Intruder Activity Diagram-np  for the  Site Installation Node Physical  supports the behavior of  Site
Installation  in the node logical activity diagram in  Figure 16.29 .    

    node and across nodes. Similar to the ESS Logical Internal Block Diagram and 
the ESS Node Logical Internal Block Diagram, the enclosing block represents 
a subclass of the ESS block and retains the original ESS external interfaces. The 
external ports on the ESS Node Physical can be further subclassed from the ESS  
port defi nitions to specify the physical interface defi nition such as a USB port on 
a computer, as described in Section 16.3.2. 
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act Monitor Intruder Subsystem-np [Monitor Intruder Activity Diagram-np (two of two)]
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       Monitor Intruder Activity Diagram-np  for the  Central Monitoring Station Node Physical 
supports the behavior of Central Monitoring Station  from the node logical activity diagram 
in Figure 16.30 .   
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ibd Node Physical Architecture [ESS Node Physical IBD (one of two)]
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 FIGURE 16.39 

      ESS Node Physical Internal Block Diagram for site i:Site Installation.     

       The internal block diagram defi nes the interconnection between the parts based 
on their interaction from all the activity diagrams. The defi nition of the ports has 
been deferred pending the detailed interface specifi cations on the parts. An individ-
ual activity diagram, such as the Monitor Intruder Activity Diagram, can be viewed 
as exercising specifi c interconnection paths through the internal block diagram. 
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     The node physical architecture defi nes the physical components of the sys-
tem, including hardware, software, persistent data, and other stored items (e.g., 
fl uid, energy) and operational procedures that are performed by operators. The 
software components and persistent data stores are nested within the hard-
ware component that they are allocated to. The software allocation to hardware 

ibd Node Physical Architecture [ESS Node Physical IBD (two of two)]
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 FIGURE 16.40 

      ESS Node Physical Internal Block Diagram for  cms:Central Monitoring Station.     
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is an abstraction of a UML deployment of a software component to a hardware 
processor.

   The node physical architecture serves as the integrating framework for all 
components to work together. The following activities support architecting the 
software, data, and hardware; specialty views of the architecture such as security; 
and the specifi cation of operational procedures to address their domain-specifi c 
concerns.  

    Defi ne Software Architecture 
   The software architecture is a view of the overall system architecture that 
includes the software components and their interrelationships. Software archi-
tecting is critical to effectively specify the software components. 

   The ESS Software Block Defi nition Diagram is shown in  Figure 16.41   . The 
Software Composite  block aggregates all the software and is composed of the 
Site Software Composite and CMS Software Composite. The Software Composite  
may be a container rather than a run-time entity that calls other components. This 
is subject to further refi nement through the software architecture process. 

   The Site Software Composite and CMS Software Composite in turn aggre-
gate the components that were allocated to the Site Installation and the Central 
Monitoring Station software. The hierarchies are shown in the respective software 
block defi nition diagrams in        Figures 16.42 and 16.43     . The initial allocation from the 
logical-to-physical components may not include the allocation to infrastructure and 
operating system components that are required to support the application compo-
nents, but it must be addressed as part of the software architecture design. 

   These software block defi nition diagrams, along with the internal block dia-
gram and activity diagrams from the node physical architecture, provide a foun-
dation for defi ning the software architecture at the system level. The software 
components may require considerable refi nement to address the software-specifi c 
concerns and fully specify the software requirements. For example, the software 

bdd Software architecture [ESS Software BDD]
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 FIGURE 16.41 

       ESS Software Block Defi nition Diagram  aggregates the  Site Installation  software and Central
Monitoring Station  software.    
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bdd Site Software [Site Installation Software BDD]
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 FIGURE 16.42 

       Site Installation Software Block Defi nition Diagram  showing the software components in a typical  Site
Installation.     

16.3 Applying the Method to Specify and Design the System



462 CHAPTER 16 Residential Security System Example Using OOSEM

bdd CMS Software [CMS Software BDD]

«block»
CMS Software Composite

«software»
Alert Mgr

«software»
DBMS

«software»
Data Access Mgr

«software»
Data Access Request Mgr

«software»
Firewall

«software»
Generator If

«software»
Power Mgr-cms

«software»
Video If

 FIGURE 16.43 

       CMS Software Block Defi nition Diagram  showing the software components in the  Central
Monitoring Station.     
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      architecture may include sequence diagrams to refi ne the interaction between the 
software components, as shown in the Monitor Intruder Sequence Diagram in 
Figure 16.44   . In addition, an internal block diagram, which represents the inter-
connection of software parts, may be generated for the Site Software Composite  
and CMS Software Composite. The interfaces may include standard ports that are 
typed by required and provided interfaces. Both the sequence diagrams and the 
internal block diagrams should be consistent with the behavior and structural 
requirements specifi ed by the node physical architecture activity diagrams and 
internal block diagrams. The software architecture refi nement may be expressed 
in UML as described later in this section. 

   Some of the software architecture concerns depend on the application domain. 
For information systems, the software architecture is often a layered architecture, 
where each layer includes software components that may depend on a lower layer 

sd Scenarios [Monitor Intruder Sequence Diagram-software1]
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 FIGURE 16.44 

       Monitor Intruder Sequence Diagram  showing the interaction among the software components.    
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  for the services it provides. This may include a presentation layer, mission appli-
cation layer, infrastructure layer, operating system layer, and data layer, as shown 
in the package diagram in  Figure 16.45   . The software components from the node 
physical architecture are further elaborated and partitioned into the different layers. 

pkg Architecture Layers [SW Architecture Layers]

Mission Application
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Operating System

Software Components
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Architecture Layers

Data Interface

 FIGURE 16.45 

      Layered software architecture on a package diagram showing dependencies between layers.    
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     A reference architecture may be imposed as a design constraint that includes 
reusable components that provide much of the infrastructure layer, such as mes-
saging, access control services, and database interfaces. For embedded real-time 
software design, the architecture must also address concerns related to schedul-
ing algorithms and how to address concurrency, prioritization, and contention 
for bus, memory, and processor resources. It should be noted that the partition-
ing of software components into packages does not capture all the relationships 
between the run-time entities that must be addressed to adequately represent the 
software architecture. 

    Defi ne Data Architecture 
   The data architecture is a view of the physical architecture that represents the 
persistent data, how the data are used, and where the data are stored. The node 
physical architecture provides the integration framework to ensure that the data 
architecture is consistent with the overall system design. The persistent data 
requirements can be derived from the scenario analysis. Persistent data are stored 
by a logical or physical component and are represented as a property of the 
component with the «store» stereotype applied. As part of the logical design, 
the persistent data are encapsulated in the logical component that operates on 
them. In the physical architecture, the physical data stores, such as a database, 
are identified. 

   The data defi nition types are specifi ed on an  ESS Data Defi nition Block 
Defi nition Diagram as shown in Figure 16.46   . The Data Composite aggregates 
the persistent data defi nitions, which type the data properties stored by physi-
cal components. The Event Log Data File, Camera Video File, and User Access 

bdd Data Architecture [ESS Data Definition BDD]
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 FIGURE 16.46 

       ESS Data Defi nition Block Defi nition Diagram  showing persistent data stored by the system at the  Site
Installation  and  Central Monitoring Station.     
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Account Database are examples of types of persistent data that are stored by ESS 
components. The data defi nitions can be complex data structures. For example, 
the Event Log Data File includes records of many different types of events, such 
as intruder power-up events, system activation events, intruder detection events, 
and others, that were derived from the scenario analysis. 

   The composition relationship is used as a common pattern within OOSEM to 
represent different hierarchies. This type of grouping in software is represented 
by packaging rather than by composition because composition represents run-
time composition. The implication from a software perspective is that an instance 
of a data item of the type Data Composite  contains one or more instances of the 
data type Site Data Composite , which is not an accurate run-time representation. 
An alternative modeling approach is to include a package called Data Composite ,
which contains three packages called Site Data Composite , CMS Data Composite ,
and Shared Data Composite  that have the appropriate data types defi ned within 
them.

   The data architecture may include domain-specifi c artifacts to refi ne the data 
specifi cations. The data relationships may be specifi ed by an entity relation attribute 
(ERA) diagram or directly on the data defi nition block defi nition diagram using 
associations among the data defi nitions. This description can be viewed as the con-
ceptual data model that represents the requirements for implementing the data-
base. The implementation of the conceptual data model is dependent on the tech-
nology employed, such as fl at fi le, relational database, and/or an object-oriented 
database.

   There are many other domain-specifi c aspects of the data architecture that 
must be considered, such as data normalization, data synchronization, data 
backup and recovery, and data migration strategies. The selection of the data 
architecture and the specifi c technology is determined through trade studies and 
analyses, as described in Section 16.3.5.  

    Defi ne Hardware Architecture 
   The hardware architecture is a view of the physical architecture, which repre-
sents the hardware components and their interrelationships. The ESS Hardware 
Block Definition Diagram is shown in  Figure 16.47   . It aggregates the hardware 
in a similar way to the ESS Software Block Definition Diagram  in  Figure 16.41 . 

   The Site Installation Hardware Block Defi nition Diagram captures the 
hardware components in a hierarchical structure, as shown in  Figure 16.48   . 
The hardware components are allocated from the logical components in Figure
16.33. The ESS Node Physical Internal Block Diagram in       Figures 16.39 and 
16.40 showed the interconnection of the hardware components. This can be 
more fully elaborated with more detailed hardware interfaces, including commu-
nication protocols and the details of the communications network. The specifi c 
selection of the hardware architecture and component technology results from 
the engineering analysis and trade studies, as described in Section 16.3.5. This 
includes the performance analysis to support sizing of the hardware components, 
and reliability, maintainability, and availability analysis to evaluate supportability 
requirements.  
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bdd Hardware Architecture [ESS Hardware BDD]
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 FIGURE 16.47 

       ESS Hardware Block Defi nition Diagram  aggregates the hardware for the  Site Installation  and 
Central Monitoring Station .    

      Defi ne Operational Procedures 
   Operators can be external or internal to the system, depending on how the sys-
tem boundary is established. For the ESS, the Occupants of the property are 
external to the system, as defined in the Operational Domain in Figure 16.11 .
On the other hand, the CMS Security Operator and CMS Administrator in Figure
16.49   are considered internal to the ESS. Some logical components are allocated 
to internal operators to perform selected tasks. Both internal and external oper-
ators/users of the system are represented on activity diagrams to describe how 
they interact with the rest of the system. They are also included in other diagrams 
like any other external system or system component. 

   The requirements for what an Operator must do to operate the system can be 
specifi ed in terms of operational procedures, which defi ne the tasks required of 
each Operator. The task analysis, timeline analyses, cognitive analysis, and other 
supporting analysis are performed to determine levels of task performance that 
are consistent with the specifi ed skill levels. The ESS  Operational Procedures  
are identifi ed in the  ESS Operational Procedures Block Defi nition Diagram in 
 Figure 16.50   . 

    Specify Component Requirements 
   The node physical architecture, which includes the elaboration of the software 
architecture, data architecture, hardware architecture, and operational procedures, 
results in the specification of the components of the system architecture to be 
implemented in software, data, hardware, and operational procedures, respectively.

16.3 Applying the Method to Specify and Design the System
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bdd Site Hardware [Site Installation Hardware BDD]
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 FIGURE 16.48 

       Site Installation Hardware Block Defi nition Diagram  showing the hardware components within 
the Site Installation  that were allocated from the logical components in  Figure 16.33 .    

  The component specifications are a primary output from systems specifica-
tion and design process. The component specifications are typically captured 
as blocks with the appropriate black-box specification features, as described in 
Section 16.3.2. Examples of a software component specification and hardware 
component specification model are shown in  Figure 16.51   . 
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bdd Operators [ESS Operators BDD]

«operator»
ESS Operator

«operator»
CMS Administrator

«operator»
CMS Security Operator

 FIGURE 16.49 

       ESS Operators Block Defi nition Diagram  showing the internal  ESS Operators.     

bdd Operational Procedures [ESS Operational Procedures BDD]
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 FIGURE 16.50 

       ESS Operational Procedures Block Defi nition Diagram.    

     The software component in the fi gure is the  System Controller that is part 
of the Site Software Composite, with the OOSEM «software» stereotype applied. 
The fl ow ports show the  event in port and the request out port. Standard ports 
with required and provided interfaces could have been used instead of fl ow ports. 
The controller operations are also specifi ed as features of the block. The state 
machine for the controller derived from the logical state machine in Figure 16.26 
defi nes the events that trigger the operations. The state machine provides a speci-
fi cation approximately equivalent to a series of statements as follows:  {if (input i    
   �      X j  and current state      �      S m ), then (next state      �      S n ) and do/activity A m  } .

   The develop software process referred to in Figure 16.1  is used to perform 
software requirements analysis to derive more detailed requirements, perform 

16.3 Applying the Method to Specify and Design the System
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  software design, and implement and test software components. The Unifi ed 
Modeling Language [28] is used to support this process. Classes can be sub-
classes of the software component specifi cations or allocated from the software 
component specifi cations and represented on class diagrams. The UML compos-
ite structure diagram is used to refi ne the internal block diagram from the node 
physical architecture in       Figures 16.39 and 16.40  to refl ect the interconnection 
and interfaces between the software components. The software design realizes 
the software component interfaces, operations, and state machine behavior by 
introducing more detailed structures and behaviors. The software sequence dia-
grams, such as the one shown in  Figure 16.44 , are further elaborated to show the 
interaction between the lower-level software design components. The UML com-
ponent diagram and deployment diagram can also be used for software design to 
show more explicitly how the software is deployed beyond the abstract alloca-
tion of software to hardware in        Figures 16.39 and 16.40 . 

   The hardware component specifi cation in  Figure 16.51  is the  Surveillance 
Camera that is part of the Site Hardware Composite with the OOSEM «hardware»
stereotype applied. The black-box component specifi cation includes functional 
requirements derived from the scenario analysis, and performance properties with 
stereotype «mop» whose values are determined through engineering analysis and 
trade studies, as described in Section 16.3.5. The fl ow ports are used to specify the 
interfaces. The development status indicates this is a COTS component. 

   If software components are allocated to the hardware, they can be repre-
sented in an allocation compartment. In addition, a property can also be added 

bdd Physical Architecture [Example Component Specifications]
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 FIGURE 16.51 

      Example of hardware and software component specifi cations.    
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to the hardware component that references a geometric drawing of the compo-
nent, or customized port types can be defi ned to represent mechanical interfaces. 
Additional specifi cation features can be added to address the needs. 

    Defi ning Other Architecture Views 
   There may be other architectural views of the system that address specific stake-
holder perspectives, such as a security architecture. The security architecture 
can be represented as a subset of the node physical architecture, which includes 
hardware, software, data, and procedures that address security requirements. In 
this sense, the security architecture is a subset of the overall system architecture. 

   A viewpoint represents a stakeholder perspective, such as a security architect 
viewpoint. The viewpoint is used to specify a subset of the model that is of inter-
est to the stakeholder. As described in Chapter 5, a viewpoint includes rules that 
specify how a particular view is constructed to refl ect the stakeholder perspec-
tive. The rules can be defi ned in terms of criteria for querying the model. A view 
provides a fi ltered portion of the model that conforms to the viewpoint by return-
ing the model elements in response to the model query. 

   If the query criteria defi ne all components needed to satisfy the system secu-
rity requirements, such as the confi dentiality, integrity, and availability require-
ments, the security architecture view includes the model elements that satisfy 
these requirements. Refer to Section 16.3.6 for an example of how viewpoints 
and views can satisfy requirements.   

    16.3.5   Optimize and Evaluate Alternatives 
   The Optimize and Evaluate Alternatives activity is shown in Figure 16.52   . This 
activity is invoked throughout all other OOSEM activities to support engineering 
analysis and trade studies. This activity includes identifying the analysis that is 
needed, defining the analysis context, capturing the constraints in a parametric 
diagram, and performing the engineering analysis. 

   Chapter 7 describes how to model constraints with parametrics. Chapter 17 
includes a discussion of engineering analysis and simulation models and how they 
fi t into the overall modeling environment. SysML enables critical system character-
istics in the model to be captured so that they can be analyzed, and it provides a 
mechanism to integrate the system design models with the multitude of engineer-
ing analysis models, such as performance, reliability, and mass properties analysis. 

    Identify Analyses to Be Performed 
   The analyses to be performed should support specific analysis objectives, which 
may include the following: 

      ■    Characterize or predict some aspect of the system, such as its performance, 
reliability, mass properties, or cost 

      ■    Optimize the design through sensitivity analysis 
      ■    Evaluate and select a preferred solution among alternative design approaches 
      ■    Verify a design using analysis 
      ■    Support other analyses, such as a risk analysis and mitigation planning    

16.3 Applying the Method to Specify and Design the System
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     Different types and fidelity of engineering analyses are identified throughout the 
design process to meet the range of analysis objectives.  

    Defi ne the Analysis Context 
   The analysis context is a block definition diagram that defines the constraint 
blocks that are used in the analysis. The constraint block specifies an equation, 
such as { F    �      m * a } , along with its parameters, which in this case would be “ F, ”  
 “ m,”  and  “ a. ”  

    Figure 16.53    shows the ESS Analysis Context. The Analysis Context block is 
composed of constraint blocks that are used to analyze the system. In this exam-
ple, the constraint block defi nes an objective function that is used as a basis for 
evaluating the overall value of the system. The objective function specifi es an 
equation that relates system cost effectiveness to the measures of effectiveness 
for availability, emergency response time, probability of intruder detection , 
and probability of false alarm . 

   The ESS Analysis Context also includes a reference to the Operational
Domain block, which is the top block in the system hierarchy. By referencing 
this block, the analysis equations can be related to any of the properties of the 

act Activities [Optimize and Evaluate Alternatives]
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captured in
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 FIGURE 16.52 

       Optimize and Evaluate Alternatives  activity to support trade studies and analysis.    
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 FIGURE 16.53 

       ESS Analysis Context  defi nes the objective function as the top-level constraint block and other analysis models for each  moe.     
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    operational system being analyzed. The context also references the operational
domain to support trade-off analysis of ESS alternatives that are part of the opera-
tional domain.  

    Capture Constraints in Parametric Diagram 
   The parametric diagram enables the integration between the design and analysis 
models. It does this by binding the parameters of the analysis equations that are 
defined in the Analysis Context  to the properties of the system being analyzed. 

   The top-level parametric diagram for the ESS is discussed in Section 16.3.1 
and shown in  Figure 16.10 . The parametric diagram uses the equations defi ned 
in the ESS Analysis Context in Figure 16.53 . The parametric diagram binds the 
parameters of the objective function to the moes in the Security Enterprise  
shown in  Figure 16.11 .

   The top-level parametric diagram is used to identify other engineering analyses 
to be performed. As the system design evolves, additional engineering analysis is 
needed to evaluate the system design against top-level moes.  Figure 16.54    shows 
a parametric diagram for the availability model that binds the parameters of the 
availability equation to specifi c properties of the ESS. The availability property in 
the fi gure is also shown in the top-level parametric diagram in  Figure 16.10  and 
represents a moe. The parametric diagrams provide the mechanism to maintain 
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 FIGURE 16.54 

       Availability Analysis  model captured in a parametric diagram.    
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explicit relationships between the moes and their fl ow down to critical system, 
element, and component properties. 

   Parametrics can also be used to constrain inputs, outputs, and the input/out-
put relationship associated with the behavior of a system or component. In the 
Intruder Emergency Response Scenario in Figure 16.14 , the Monitor intruder  
action includes pre- and postconditions on the inputs and outputs. A correspond-
ing constraint block can be defi ned to specify the mathematical relation between 
the probability of detection of the signal output and the signal-to-noise ratio of 
the signal input. The constraint block can then be used on a parametric diagram 
to bind to the system’s specifi c properties to analyze the detection performance. 

   As described in Section 16.3.2, the state of the system is also shown as a prop-
erty of the ESS block that is stereotyped as «composite state ». The value of this 
property represents the state of the system at any point in time and is determined 
by the ESS state machine behavior. This property can be used in parametrics 
by binding a state-dependent constraint to the composite state property. For a 
bouncing ball example, the constraints that apply to the forces on the ball depend 
on the state of the ball in terms of whether it is in contact with the ground or not. 
The state-dependent constraint can be conditioned on the state of the ball. For this 
example, the state-dependent constraint would specify whether the state of the 
ball is “contact with ground, ” then one constraint applies; and if the state of 
the ball is “not in contact with the ground, ” then another constraint would apply. 

    Perform Engineering Analysis 
   A computational capability is required to execute the equations in the parametric 
diagram. This can be done manually or with the aid of engineering analysis tools, 
as described in Chapter 17. The analysis results determine the specific values or 
range of values of the system properties that satisfy the constraints. The values can 
be incorporated back into the system design model. As an example, the availabil-
ity analysis results can show the extent to which the system satisfies its availability 
requirement. The timeline in Figure 16.16  is another example of analysis results.   

    16.3.6   Manage Requirements Traceability 
   The Manage Requirements Traceability activity is shown in Figure 16.55   . This 
activity is invoked throughout all other OOSEM activities to establish require-
ments traceability between the stakeholder requirements and the system specifi-
cation and design model. This includes defining the specification tree; capturing 
the text-based requirements in the model; establishing relationships between the 
text-based requirements and the model elements using derive, satisfy, verify, and 
refine relationships; and generating the traceability reports. The language con-
cepts for requirements modeling are described in Chapter 12. 

    Defi ne Specifi cation Tree 
   The ESS Specification Tree is shown in Figure 16.56   . The specification tree shows 
the specifications at each level of the system hierarchy. A requirement is created 
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  to represent a container for all the requirements contained in each text specifica-
tion. The specification tree includes the ESS Mission Requirements, ESS System 
Requirements, Site Installation Requirements, Central Monitoring Station 
Requirements, and Site and CMS Hardware and Software Requirements . 

act Activities [Manage Requirements Traceability]

establish requirements
relationships and rationale

capture text-based
requirements in model

manage
requirements

updates

analyze
traceability

gaps

define
specification

tree

derive, satisfy,
verify, refine

 FIGURE 16.55 

       Manage Requirements Traceability  activity, intended to maintain traceability between 
stakeholder requirements and the system specifi cation and design model.    
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req Requirements [ESS Specification Tree]

Security Enterprise
Capabilities as-is

Stakeholder Needs
Assessment

Competitive System
Capabilities

«requirement»
CMS Hardware
Requirements

«requirement»
CMS Software
Requirements

«requirement»
Site Installation
Requirements

«requirement»
ESS Test Procedure
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 FIGURE 16.56 

       ESS Specifi cation Tree  on a requirements diagram showing the hierarchy of specifi cations.    

     The trace relationship shows the traceability between the specifi cations at 
each level. The specifi cation tree also shows traceability from the  ESS Mission 
Requirements to a Stakeholder Needs Assessment document. A document icon is 
shown in the upper right corner rather than the stereotype symbol «document»,
which is an example of a user-defi ned icon. 

   The trace relationship is used for coarse-grained traceability that does not 
include the fi ne-grained traceability between individual design elements and indi-
vidual requirements. The fi ne-grained traceability uses other requirements rela-
tionships, as described later in this section. 
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     Capture Text-Based Requirements in Model 
   The stakeholder requirements are often captured in text specifications external 
to the modeling environment. The text-based requirements are captured in the 
model by creating a SysML requirement for each text requirement. Many of the 
SysML modeling tools provide a mechanism to import text requirements directly 
into the modeling tool and to maintain synchronization between the source 
requirements and the requirements in the SysML modeling tool. 

   The Requirements package, which was briefl y discussed in Section 16.3.1 and 
shown in  Figure 16.3 , contains the requirements. A nested package is created for 
each specifi cation in the ESS Specifi cation Tree, which contains the requirements 
in the specifi cation. 

   As an example, the ESS System Specifi cation is shown in the requirements dia-
gram in  Figure 16.57   . The top-level requirement is the ESS System Requirements . 
As mentioned before, this requirement serves as a container for the other require-
ments in the specifi cation. The containment hierarchy of requirements in each 
individual specifi cation generally corresponds to the organization of the text-
based specifi cation. Each requirement has a name, an id, and text, and may also 
include additional requirement properties, such as criticality, uncertainty, prob-
ability of change, and verifi cation method. 

    Establish Requirements Relationships and Rationale 
   Requirements traceability is maintained by establishing relationships between the 
text-based requirements in the model, and other model elements that correspond 
to other requirements, design elements, and test cases. The rationale for the rela-
tionship can also be captured in the model. 

   An example of requirements traceability can be seen in the requirements dia-
gram in  Figure 16.58 , which shows traceability from the mission requirement for 
Intruder Emergency Response to the Surveillance Camera component specifi ca-
tion. The Provide Emergency Response use case refi nes the requirement by add-
ing a use case description (not shown). The steps in the use case description can 
also be captured as text requirements that can be related to other requirements, 
design elements, and test cases as part of the traceability. 

   The ESS system requirement for Intruder Detection and  False Alarm Rate  
is derived from the mission-level requirements. The requirement for Perimeter
Detection is contained by the Intruder Detection and False Alarm Rate require-
ment. The Surveillance Camera Requirements are derived from the Perimeter
Detection and Data Validation requirement. The Surveillance Camera is 
asserted to satisfy the Surveillance Camera Requirements. The Monitor Intruder  
test case verifi es that the  Intruder Detection and False Alarm Rate require-
ment is satisfi ed. The rationale for storing video at both the  Site Installation and 
Central Monitoring Station to satisfy the Video Storage requirement is shown 
using the «rationale» stereotype. 

   The level of granularity at which the traceability is maintained is determined as 
part of the process tailoring. For example, it may be suffi cient to assert that a par-
ticular component satisfi es a requirement, such as the Surveillance Camera in the 



479

req ESS System Specification [ESS System Specification]

«requirement»
Intrusion Detection

and False Alarm Rate

«requirement»
Perimeter Detection

«requirement»
Internal Detection

«requirement»
Medical Alert

and False
Alarm Rate

«requirement»
Fire Detection

and False
Alarm Rate

«requirement»
Security System

Capabilities

«requirement»
Reliability,

Maintainability,
Availability

«requirement»
Availability

«requirement»
Physical and
Installation

«requirement»
Wireless

«requirement»
Interface

«requirement»
Internet Access

«requirement»
Backup Power

«requirement»
System Vulnerability

«requirement»
User Interface

«requirement»
Wireless

Activation and
Deactivation

(optional)

«requirement»
Cost

«requirement»
Installation Cost

«requirement»
Recurring Cost

«requirement»
Environment

«requirement»
Fault Detection
and Isolation

«requirement»
Data Validation

«requirement»
ESS System Requirements

«requirement»
Detect Loss of

Power

«requirement»
Web Interface

«requirement»
Displays and

Controls
Interface

«requirement»
Power Surge
and Lightning

Protection

«requirement»
Sprinkler System

«view»
RMA

«view»
Security

This can be a
view of the
security
architecture.

«rationale»
This imposes specific requirements
for capturing evidence to support
prosecution.

«satisfy»

«satisfy»

«requirement»
Entry–exit Detection

«rationale»
Reference RMA
analysis report.

RMA parametrics
provided as input
to this analysis.

This should
attach to satisfy
relationship.

 FIGURE 16.57 

       ESS System Specifi cation showing the requirements contained in the system specifi cation on a requirements 
diagram.   
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req Requirements [Requirements Flowdown for Intruder Emergency Response]
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 FIGURE 16.58 

      Requirement diagram showing traceability from the  Intruder Emergency Response  mission requirement to 
component-level requirements and design.    

    earlier example. Alternatively, it may be necessary to show that a particular feature 
of a component, such as one of its operations, satisfi es a particular requirement. 
The fi ner granularity adds precision to the traceability, which may assist in change 
impact assessment, for example; but it is done at the price of increased effort to 
establish and maintain the traceability relationships. 
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     Analyze Traceability Gaps 
   Traceability reports are generated and used to analyze traceability gaps and assess 
how the system design satisfies the system requirements. Metrics can also be 
used to determine requirements coverage in terms of both satisfy and verify rela-
tionships. The results from this analysis are used to drive updates to the system 
design and verification and to update the traceability. 

   The Viewpoints package was introduced in Section 16.3.1 and shown in 
Figure 16.3 . Viewpoints and their corresponding views can aid in requirements 
traceability analysis by providing a means to query the model for the model ele-
ments that satisfy a particular set of requirements. This was discussed at the end 
of Section 16.3.4 as it relates to defi ning architecture views. A package diagram 
of viewpoints and conforming views is shown in Figure 16.59   . The viewpoints 
represent different stakeholder perspectives, which include Emergency Services , 
the Company Owner, the Customer, and selected members of the develop-
ment team, including the RMA Analyst and the Security Architect. If selected 
requirements are used as the basis for defi ning the view query criteria, each 
view is essentially a report of the model elements that satisfy the selected set of 
requirements.

    Managing Requirements Updates 
   The requirements management activity may result in proposed updates to exist-
ing requirements and the generation of new requirements. The model helps to 
uncover ambiguous, inconsistent, and incomplete requirements that can then be 
refined by proposing changes to requirements and managing the change through 
the project change management process. 

   On larger projects, a requirements management tool is generally used in con-
junction with the systems modeling tool. Integration between the two tools is 
important to ensure that the requirements and their relationships are synchro-
nized between both tools. The change process must determine how changes to 
requirements are handled. One approach is to make changes to requirements text 
in the requirements management tool, and to establish the relationships to the 
model elements and text requirements in the modeling tool. Chapter 17 includes 
additional discussion on integrating the system modeling tools with the require-
ments management tool.   

    16.3.7   Integrate and Verify System 
   The Integrate and Verify System process is part of the system development proc-
ess described in Section 16.1.2. The goal of this process is to verify that the sys-
tem satisfies its requirements. System, element, and component verification is 
typically accomplished by a combination of inspection, analysis, demonstration, 
and testing. The process includes developing verification plans and procedures, 
conducting verifications per the procedures, analyzing verification results, and 
generating verification reports. 

   OOSEM supports this process in several ways. The system-level use cases, sce-
narios, and associated requirements are used as a basis for developing test cases 
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 FIGURE 16.59 

      ESS  Stakeholder Viewpoints  can be used to augment the requirements traceability.    

  and associated verifi cation procedures. The  Monitor Intruder test case verifi es 
the Intrusion Detection and False Alarm Rate requirement shown in Figure 
16.60  . The test case is represented as a stereotype of a sequence diagram. The ESS 
NodePhysical is the system under test. In this example, an Emulator represents 
the ESS external environment that generates the stimulus for a specifi c thread 
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  through the system and monitors the response to the stimulus. A tester initiates 
the test. 

   The ESS components interact in response to the test stimulus. The results 
can then be recorded to determine whether the system provides the desired 
response. An executable system model or the operational hardware and soft-
ware can be used to generate the response, or some combination of the two. 
The test case includes a specifi cation of the stimulus and the expected response, 
which provides the basis for comparison with the verifi cation result to determine 
whether the system passes or fails. The parametric diagrams used to specify the 
input/output relations are used to specify the stimulus and expected response 
values for the test case. The requirements management database is updated to 
refl ect the verifi cation results. 

    16.3.8   Develop Enabling Systems 
   To develop a complete capability that supports the entire system life cycle, sev-
eral enabling systems may need to be developed and/or modified. The enabling 

sd [TestCase] Monitor Intruder [Intruder Detection Test Case]

system under test
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 FIGURE 16.60 

       Monitor Intruder  test case.    
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  systems include the manufacturing system to produce the system, support sys-
tems such as support equipment to maintain the system, and verification systems 
to test the system. The practice of concurrent engineering demands that these 
life-cycle considerations be addressed early and in a coordinated fashion. As a 
result, the enabling systems are developed concurrently with the operational sys-
tem so that specific concerns, which may impact other parts of the life cycle, are 
addressed early in the development process. 

    Figure 16.61    shows the processes for concurrent development of the ESS 
operational system with the ESS enabling systems for verifi cation and installation. 
The OOSEM method was applied to the development of the operational system 
in this example. However, the method and associated artifacts can be tailored 
and applied to specify and design the enabling systems as well. For very complex 
enabling systems, the entire method may be applied. For simpler systems, only 
selected aspects of the method may apply. 

   As an example, the verifi cation system may be quite complex, such as when 
precision measurement equipment is required to verify the system. The require-
ments on the measurement equipment may be more stringent than the require-
ments on the operational system under test. For this case, a rigorous application of 
OOSEM may be required. In  Figure 16.60 , a part of the verifi cation system included 
the Emulator for stimulating the system under testing and monitoring the results. 
The emulation development may require an application of OOSEM. 

act Activities [Develop Operational and Enabling Systems]
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 FIGURE 16.61 

      Concurrent development process of the operational system and enabling systems.    
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     The ESS Installation System may be complex as well and may warrant the 
application of OOSEM to its specifi cation and design. The block defi nition dia-
gram for the ESS installation domain is shown in Figure 16.62   . The Installation
Enterprise includes the ESS Installation System and external Suppliers that 
support the installation objectives, as defi ned by the installation use cases. The 
ESS Installation System includes Installation Equipment, such as Installation
Trucks and Installation Tools, and the Installers. This serves as a starting point 
for specifying and designing the ESS Installation System in a similar way to the 
Operational Domain Block Defi nition Diagram in Figure 16.11 , which was a 
starting point for the specifi cation and design of the  ESS  operational system.   

    16.4   Summary 
   The example described in this chapter illustrates how SysML is used as part of a 
model-based systems engineering method, called OOSEM, to solve a systems engi-
neering problem. The top-down scenario-driven method flows the requirements 
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 FIGURE 16.62 

      Installation domain block defi nition diagram, a starting point for the specifi cation and design 
of the ESS Installation System .    
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down from stakeholder needs to component-level specifications, which include 
hardware, software, persistent data, and operational procedures. The OOSEM 
approach includes analysis of stakeholder needs, analysis of black-box system 
requirements, defining the logical architecture, synthesizing candidate physical 
architectures, and supporting activities to optimize and evaluate alternatives and 
manage requirements traceability. 

   The method also supports the verifi cation process in the up side of the Vee 
development process. The approach illustrates how different aspects of the sys-
tem are analyzed to address a multitude of concerns related to system functional-
ity, interfaces, performance, distribution, and life-cycle considerations. 

   OOSEM should be tailored to the particular project objectives and constraints 
and associated modeling objectives, scope, and tool and resource constraints. The 
tailoring includes selecting the level of rigor that is applied to each of the OOSEM 
activities, which modeling artifacts are generated, and to what level of detail.  

    16.5    Questions 
        1.   Develop the following artifacts for the Provide Fire Emergency Response use 

case shown in  Figure 16.12 . 
    a.   Fire Emergency Response Scenario (equivalent to  Figure 16.14 )  
   b.   Monitor Fire Activity Diagram—Logical (equivalent to  Figure 16.22 )     

    2.   The customer has introduced the following new requirement: “The ESS shall 
provide the ability to integrate with a fi re-suppression system to extinguish 
fi res when detected with minimal adverse impact to the property. ” Describe 
the impact of this new requirement on the system design by identifying the 
changes to each of the following modeling artifacts. 
   a.   Requirement diagram ( Figure 16.57 )  
   b.   Use Case Diagram ( Figure 16.12 )  
   c.   Fire Emergency Response Scenario (refer to response to Question 1a)  
   d.   ESS Context Diagram ( Figure 16.15 )  
   e.   ESS Black-Box Specifi cation ( Figure 16.17 )  
   f.   ESS Logical Decomposition ( Figure 16.21 )  
   g.   Monitor Fire Activity Diagram—Logical (refer to response to Question 1b)  
   h.   ESS Logical Internal Block Diagram ( Figure 16.25 )  
   i.   ESS Node Logical Block Defi nition Diagram ( Figure 16.28 )  
   j.   ESS Node Logical Internal Block Diagram ( Figure 16.32 )  

   k.   Allocation Table for Site Installation ( Figure 16.33 )  
   l.   ESS Node Physical Internal Block Diagram—Site Installation ( Figure 16.39 )     

    3.   Discuss how the preceding requirements change impacts the analyses to be 
performed.  

    4.   How are the measures of effectiveness impacted by this requirements change?  
    5.   How does this impact the top-level parametric diagram in  Figure 16.10 ?  
    6.   What additional types of analysis are required, and how can this be refl ected in 

parametric diagrams?       
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   This chapter describes an approach to and considerations for integrating SysML 
into a systems development environment. The considerations include the role of 
the SysML model in the development environment, the logical interfaces between 
systems modeling tools and other tools in the environment, the specific data 
exchange mechanisms, and the criteria for selecting a SysML tool. Other aspects 
of deploying SysML in an organization are discussed in Chapter 18. 

    17.1    Understanding the System Model’s Role in a Systems 
Development Environment 

   This section describes how the system model must be supported by the system 
development environment, how it provides an integrating framework for system 
development, and how it relates to understanding system dynamics via model 
execution.

    17.1.1   Systems Development Environment 
   A systems development environment refers to the tools and repositories used 
for system development. Typical tools may include the system modeling tools; 
engineering analysis tools, hardware, software, and test tools; project manage-
ment tools; and others. Tools and repositories are expected to be computer-
based, multiuser, networked applications supported by a computing and network 
infrastructure. The term integrated systems development environment implies 
some logical connectivity between these tools and repositories to support col-
laborative engineering. 

    17.1.2   The System Model as an Integrating Framework 
   As discussed in Chapter 2 and shown in Figure 17.1   , the system model is a pri-
mary product of a model-based systems engineering (MBSE) approach. As such, 
the application of the specific MBSE approach determines the scope and integrity
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of the model, and how it relates to other artifacts of the system development 
process. A system model, represented in SysML, is shown in  Figure 17.1 . The sys-
tem model can serve as an integrating framework for other models and devel-
opment artifacts including external requirements, engineering analysis models, 
hardware and software design models, and verification models. In particular, it 
relates the text requirements to the design, provides the design information 
needed to support the analysis, serves as a specification for the subsystem and 
component design models, and provides the test case information needed to sup-
port verification.  

    17.1.3    Relation of a System Model to an Executable System Model 
   As described in previous chapters, the system model captures the requirements, 
structure, behavior, and parametric constraints associated with a system and its 
environment. This information can then be queried and analyzed for consistency 
across the model. The system model information can be used as a basis for build-
ing an executable system model to understand and analyze the dynamics of the 
system. To support this, the static system modeling environment must be aug-
mented by an execution environment. Executable system models can include a 
dynamic system model, a performance simulation model, and other ana-
lytical models . 
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   A dynamic system model can be a discrete event simulation that provides 
a means for dynamic verifi cation and consistency checking of the model. This 
abstract-level model execution can signifi cantly enhance understanding of sys-
tem operation. Dynamic system behavior, such as the sequencing of actions, 
input/output and message fl ow, and state changes, are often diffi cult to under-
stand through a static graphical view of the behavior, such as an activity diagram, 
sequence diagram, or state machine diagram. 

   Execution of the dynamic system model can be augmented by animation and 
other visualizations to step through the behavior. Animation can rely on pre-
scripted execution of defi ned scenarios, or it can rely on specifi c user interac-
tion (e.g., “toggle this input and see what happens ”). This capability can help 
validate functional and interface requirements, validate data types, perform what-
if behavior analysis, and explore user interaction concepts. To accomplish this, 
the dynamic system modeling environment must be able to interpret or compile the
semantic information from the SysML model, and extend it into executable code. 
The primary SysML modeling artifacts that support creation of a dynamic system 
model are the behavior and structure models. 

   As stated before, a dynamic system model generally focuses on the sequenc-
ing of actions and consistency of inputs and outputs. A performance simula-
tion, or continuous stimulation, extends this capability to capture the underlying 
mathematical relationships associated with resource modeling and physics-based 
modeling, which is necessary to analyze system performance. The performance 
simulation may also include the capability to evaluate the stochastic nature of sys-
tem performance, such as providing a Monte Carlo capability. These simulations 
are sometimes accompanied by data-analysis tools and sophisticated visualization 
tools that enable performance to be visualized, much like a video game. The exe-
cution environment for this capability must extend beyond the dynamic system 
model execution environment by providing the ability to simulate the underlying 
mathematics, such as numerical solutions to differential equations. In addition to 
the behavior and structure models in SysML, the performance simulation models 
can leverage SysML parametric models. 

   A further extension to performance simulation is the distributed simulation 
capability that enables multiple simulations to be integrated across a network. 
The High-Level Architecture (HLA) standard supports a distributed simulation 
capability. A simulation based on HLA requires development of Federated Object 
Models (FOM), which represent individual simulation modules that can commu-
nicate with one another. The Run-Time Infrastructure (RTI) provides the run-time 
environment for time management, publish/subscribe, messaging, and other fea-
tures necessary to coordinate the distributed simulation execution. 

   An analytic model is a general class of model used to address a specifi c type 
of analysis. Analytic models can be static or dynamic and can include models of 
reliability, mass properties, and thermal characteristics. Performance simulation 
can be viewed as a type of analytic model that evaluates performance. The exe-
cutable analytic model drives either a dynamic simulation or a static constraint 
solver that solves a set of simultaneous equations. The execution environment 
must include some computational engine to support this. SysML parametrics, 
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along with the values of related properties captured in the system model, are 
intended to be a key input to analysis models.   

    17.2    Integrating the Systems Modeling Tool with Other Tools 
   This section discusses integrating the systems modeling tool with other tools, 
including tool interface definition and interchange standards. 

    17.2.1    Classes of Tools in a Systems Development Environment 
   A systems development environment includes a wide spectrum of tools to sup-
port the various types of models and other artifacts resulting from the system 
development process.  Figure 17.2    depicts an environment that integrates mul-
tiple types of tools to support a development process, which includes systems, 
hardware, software, verification, engineering analysis, and simulation, along with 
configuration management and other project management tools. Each class of 
tool implements specific parts of the overall development process. The tools are 
briefly summarized next. 

     Project management tools support planning and control of the overall develop-
ment effort to ensure effective cost, schedule, and technical performance. These 
tools may also include workflow engines to control the whole process. 

     System-of-systems modeling tools support the SoS and enterprise modeling. 
A typical tool may include support for DoD Architecture Framework (DoDAF) 
modeling.  
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     System modeling tools support development of the system model as described 
earlier. This is assumed to be the primary SysML tool. 

     Performance simulation tools support dynamic performance analysis and 
trade-off analysis from the SoS level down to the component level. 

     Requirements management tools generate, trace, track, and report text-based 
requirements, and assemble them into specification documents. 

     Configuration management and data management tools ensure that models 
and other development artifacts (e.g., specifications, plans, analyses, test 
results) are maintained in a controlled fashion. 

     Verification tools are used to verify compliance with requirements. The verifica-
tion environment can vary from simple test tools to complex verification facilities 
and equipment. 

     Engineering analysis tools support analysis of the system design from multiple 
aspects, and often are specialized tools for different disciplines (e.g., reliability, 
safety, security, cost, and mass properties analysis). 

     Hardware development tools are used to design, implement, and test hardware 
components and may include 3D modeling tools, electrical design tools, and 
so on. 

     Software development tools are used to design, implement, and test software 
components and may include UML modeling tools, compilers, debuggers, and 
so on. 

     Document generation tools are used to prepare and manage formal documentation 
of the system design, either as text files or queries, that can be run on demand to 
collect and format data from the other tools.     

    17.2.2   An Interconnected Set of Tools 
   Establishing an integrated systems development environment requires a systems 
engineering approach in its own right. The full life cycle of the systems devel-
opment environment should be considered when engineering the environment 
from its initial procurement, through installation and configuration, operating the 
environment, and maintaining the environment. Architecting of the environment 
should include a definition of its interfaces and the standards required to support 
them. The following discussion focuses on the structure and information flow 
within the systems development environment. 

    Figure 17.3    is a notional example of an integrated systems development envi-
ronment, depicted as an internal block diagram. Note that each class of tool 
from Figure 17.2  is represented, but that some of the tools, such as the System
Analysis Tool and Engineering Development Tool, include further subclasses; 
they are abstracted to simplify this diagram. 

   This example assumes that each class of tool has generic capabilities. A specifi c 
tool may fi ll more than one of these roles, and a specifi c systems development
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environment may include multiple tools for the same role, depending on user pref-
erences and previous vendor arrangements. Not every class of tool needs to be 
included for the systems development environment to be useful. In many cases 
simple offi ce tools (e.g., spreadsheets, word processing, scheduling) may be used. 
Each of these kinds of tools may have their own fi le structure or internal database. 
It is assumed that the confi guration management tool is able to capture these 
fi les or databases in a managed repository throughout the development process. 

   The following summarizes the logical fl ow of data between the system model-
ing tool and the other classes of tools, and it provides a general approach for ana-
lyzing the interface requirements for the system modeling tool.  

    17.2.3 Interface with Requirements Management Tool 
   Figure 17.4 shows the interface between the System Modeling Tool and a Require-
ments Management Tool, which includes the exchange of requirements and their 
relationships. This can be a two-way exchange of information, but it is highly proc-
ess dependent, and is a function of which tool is responsible for updating which 
aspect of the requirements database. 

   A typical approach to synchronize updates in the Requirements Management 
Tool and the model is to assume that the Requirements Management Tool con-
tains all textual requirements in the requirements baseline, and that this baseline 
is maintained in the Requirements Management Tool. The System Modeling Tool  
typically addresses a subset of the total requirements depending on the scope of 
the model. As a result, the System Modeling Tool can be used to propose updates 
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      Notional interfaces between tools in a systems development environment.    
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to the requirements baseline, but they are formally updated and controlled in the 
Requirements Management Tool . 

   The derive relationship between the text requirements may be maintained in 
the Requirements Management Tool, as well, because they only involve relation-
ships between text-based requirements. Other requirements relationships, such 
as the satisfy, verify, and refi ne relationships between the requirements and the 
model elements, may be more easily maintained in the System Modeling Tool . 
The responsibility for maintaining the data in each tool must be well defi ned, and 
the repositories must be synchronized. 

   Many modeling tools also interface with other third-party tools that provide an 
interface between the modeling tool and requirements management tools to sup-
port traceability analysis and requirements coverage analysis. 

    17.2.4     Interface with Performance Analysis and Other 
Engineering Analysis Tools 

   The system model expressed in SysML captures the system design model in terms 
of behavior, structure, and parametrics. Parametrics are a key feature of SysML 
that can enhance the integration between design and analysis models. The design 
model is analyzed in terms of performance analysis and other engineering analysis. 
As shown in Figure 17.5   , the System Modeling Tool provides design information 
to the System Analysis Tool. The analysis tool performs the analysis and may pro-
vide the analysis results back to the System Modeling Tool in terms of property 
values that can be captured in the system model. For example, the system model 
may describe a particular network configuration connecting system elements. 
An analytical model may be derived from the model of system structure and con-
straints and provide a prediction of overall network performance. Similar types of 
relationships apply to other executable models, as described in Section 17.1.3. 

    17.2.5   Interface with Documentation Generation Tool 
   The specification and design information derived from the system model must 
be made available in a format that is easily comprehensible by a broad range of 
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      Interface between  System Modeling Tool  and  Requirements Management Tool .    
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stakeholders (e.g., customers, managers, design engineers, test engineers). Docu-
ments are an effective way to organize and communicate system design information 
to some of the stakeholder community. Document generation should report the 
model information in a standard and tailorable format. Note that many SysML tools 
include some document-generation capability.  Figure 17.6    depicts the notional rela-
tionship between the System Modeling Tool and the Document Generation Tool .  

    17.2.6    Interface with Confi guration Management Tool 
   Successful systems engineering on large projects requires disciplined management 
of technical baselines. Incremental updates to the system model, requirements,
analyses, and other artifacts can be easily overlooked and not properly considered 
in the design process, resulting in inefficiencies and design quality issues. The 
development and ongoing update of the technical baseline spans all the informa-
tion in the systems development environment. 
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      Interface between  System Modeling Tool  and  System Analysis Tool .    
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   The interface between the System Modeling Tool and the Confi guration 
Management Tool can be described as follows: The System Modeling Tool pro-
vides packages or other controlled model elements based on the model organiza-
tion, and the model elements they contain to the Confi guration Management 
Tool. The Confi guration Management Tool in turn controls access to these 
model elements in the System Modeling Tool (or potentially other tools) and the 
ability to update the model elements either on a check-out or read-only basis. This 
is depicted in Figure 17.7   . 

   The update of the model requires a disciplined process to ensure that the 
updates to the technical baseline are properly reviewed to eliminate redundancy 
and inconsistency with other model elements, requirements, analysis results, 
plans, constraints, and so on, and to fully understand the impact of the change 
on the rest of the baseline. The System Modeling Tool can be used as a vehicle 
to check for these inconsistencies and redundancies by using queries and metrics 
that help reveal them. 

   The organization of the system model is briefl y discussed in Chapter 4. 
Packages are often used to partition the model and as the unit of confi guration 
control. Typical model organizations are also included in the example problems 
in Chapters 15 and 16. For large projects, it is usually appropriate to partition the 
model so that each development team will access and update work in a dedicated 
part of the model that it controls. Confi guration management ensures that each 
package is appropriately versioned as model elements are updated, and which 
versions of the constituent packages apply. 

   Views and viewpoints were described in Chapter 4 and may play an increas-
ingly important role in providing access to the model and for enabling the sharing 
of current model data between tools and teams. 

    17.2.7   Interface with Project Management Tool 
   Project management can leverage information from the system model to assist in 
planning and control. The model-based metrics described in Chapter 2 are exam-
ples of metrics that can be extracted from the model to assess design quality and 
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      Interface between  System Modeling Tool  and  Confi guration Management Tool .    
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design progress and to estimate the level of effort required. The following addi-
tional data can easily be provided from the system model: 

      ■    Number of model elements created or updated within a specifi c time period 
      ■    Number of requirements linked by satisfi ed or verifi ed relationship within a 

time period  
      ■    Number of use cases realized  
      ■    Number of activities allocated to blocks  
      ■    Number of analysis results (value properties) identifi ed versus number 

updated  
      ■    And so on    

   These metrics can be automatically reported from the model, typically by 
using the scripting capability of a given tool, providing concrete information to 
assist in managing the development effort. 

   As shown in  Figure 17.8   , the Program Management Tool can be used to 
establish metrics in the form of SysML constraints, and the System Modeling Tool  
can then evaluate those expressions and provide model status back to the Program 
Management Tool in the form of computed value properties from the model. 

    17.2.8    Interface with Verifi cation Tool 
   Verification planning and conduct is often facilitated by a unique set of tools within 
a verification environment. This environment is used to verify that each require-
ment is satisfied, generally by providing a stimulus to the system and monitoring 
its response to determine whether the requirement is met. Other verification tools 
are used to support other verification techniques, such as inspection. The verifica-
tion system environment can be modeled in the system modeling tool along with 
the operational system it is designed to test, as briefly discussed in Chapter 16. 

   As shown in  Figure 17.9   , the System Modeling Tool can provide the specifi c 
system confi guration under test, and a set of test cases to the  Verifi cation Tool . 
Once tests have been conducted, test results can be passed back into the System
Modeling Tool and reconciled with the rest of the model. The results are also 
passed to the requirements management tool to update the verifi cation status. 
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      Interface between  System Modeling Tool  and  Program Management Tool .    
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    17.2.9   Interface with Development Tool 
   A principal reason for developing system models is to specify the requirements 
and constraints for the system’s components, which typically include hardware
and software. The interface between the System Modeling Tool and hardware and
software development tools is a critical one. In particular, the System Modeling 
Tool provides the component specifications to hardware and software develop-
ment tools , which in turn provide design verification data that the hardware and 
software design models satisfy the specifications. As the state of practice matures, 
the goal will be to fully integrate the hardware and software component design 
models back into the system model to verify that the design meets the system 
requirements.

    Figure 17.10    depicts the kinds of information potentially fl owing between a 
System Modeling Tool and various hardware and software development tools .
In each case, the System Modeling Tool provides component requirements spe-
cifi c to that domain, as well as model structure (packages and model elements) 
that provides system context for those requirements. The component black-box 
specifi cation may be in the form of the component blocks with their features 
specifi ed, including their interfaces, state machine, behavioral requirements, and 
value properties. In response, hardware and software development tools  provide 
the satisfy relationships to parts of the detailed design with rationale, along with 
issues that need to be addressed by the system model. 

   For software design environments using UML, the interface between the 
System Modeling Tool and the UML modeling tool is more a function of the model-
based methods because the underlying language concepts have the same roots. 
In this case the SysML model can be extended and refi ned in the UML modeling 
tool to evolve the software design from the specifi cations. For  hardware devel-
opment tools , the interface is more complex since the language structures are 
different. For these cases, component specifi cations need to be transformed into 
the domain of the hardware language. There are mechanisms that are intended to 
assist in the transformation, such as the ISO STEP standards described in the next 
section, but this is still work in progress.   
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      Interface between  System Modeling Tool  and  Verifi cation Tool .    
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    17.3     Data Exchange Mechanisms in an Integrated 
Systems Development Environment 

   This section discusses the mechanisms and standards for data exchange between 
tools.

    17.3.1    Data Exchange Mechanisms 
   Exchange of data between tools in a systems development environment may be 
accomplished in the following ways: 

      ■    Manually (e.g., re-keying the data from one tool into another tool)  
      ■    File-based exchange: neutral fi le format (e.g., csv), native fi le format (e.g., mdl),

or exchange format (e.g., XMI)  
      ■    Interaction-based exchange (using APIs or queries to draw data from tools 

only when required)  
      ■    Repository-based exchange (using exchange format fi les and packaging 

schemes to manage data independent of the tool)    

   Selecting which of these approaches to implement between any two tools 
must take into account the cost of implementing them versus the long-term value 
tool integration will provide. The following considerations are recommended: 

■      How often will data be exchanged between these tools and over what 
duration? If it is known in advance that the data need only be exchanged once, 
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a less sophisticated and lower-cost data exchange may be appropriate. On the 
other hand, even a simple data exchange, if expected to occur on a frequent 
basis over an extended period of time, may justify the cost of developing some 
kind of automated data transfer. 

■      How complete or reliable must the data be that are transferred? For particu-
larly large data transfers, or where transfer errors cannot be tolerated, it may be 
appropriate to invest in automated data transfer to minimize the possibility of 
manual error. 

■      Is the subject system a single one-off product or the basis for an ongoing 
product line? The value of investing in a robust systems development environ-
ment with automated data exchange between tools, which facilitates reuse 
development data, may not be fully realized until the rapid update or development 
of a follow-on system.    

   Automation of fi le-based exchanges between two tools may be accomplished 
using a “bridge, ”  or purpose-developed software application. In this case some 
amount of redundant data exist in each tool. The appropriate synchronization of 
these data is the responsibility of manual procedures, constraints, or the opera-
tion of the bridge software, or it can be addressed by model transformations. 

   An exchange of data between tools may also occur on an as-needed, or inter-
action basis. This is facilitated by the use of a tool’s application programming 
interface (API) to access and fi lter data in that tool, and to make them available 
to another tool or database. This method can be very rapid, repeatable, and reli-
able, but it is important to understand how the development process anticipates 
using each tool, the data dependencies between tools, and how often these inter-
actions must occur. Otherwise, tool users may end up competing over various 
design parameters or characteristics. 

   A repository is a confi guration-managed database, accessible to two or more 
tools that contain the data fi les the tools share. Repositories generally support 
multiple tools that fi le and categorize systems engineering data in a database 
rather than just lists of data exchange fi les. Maintaining systems engineering data 
in this manner enables the use of consistency checkers on the entirety of the 
repository data rather than relying on consistency checkers in individual tools. 
Repositories that maintain this kind of systems engineering data can publish a 
metadata catalog, allowing other tools access to both the data and their meaning. 

    17.3.2   Role of Data Exchange Standards 
   The exchange of data between modeling tools has traditionally been accom-
plished by creating a point-to-point exchange between individual tools using the 
mechanisms described earlier. This can be costly because each tool requires its 
own interface mechanism. Implementing point-to-point interfaces can require the 
development of n  2 interfaces for n tools. In addition, the interface mechanism 
must be updated as each tool changes. The emphasis for an Integrated Systems 
Development Environment is on the use of data exchange and other modeling 
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standards to support tool and model interoperability. Some of the relevant stand-
ards related to SysML are briefly discussed next. 

    XML Metadata Interchange 
   XMI is short for eXtensible Markup Language (or XML) Metadata Interchange 
[21] and provides a standard format for interchanging UML and SysML models 
between tools. XMI is based on three industry standards: the eXtensible Markup 
Language, the Meta Object Facility (MOF), and the Unified Modeling Language 
(UML). MOF and UML are modeling and metadata repository standards from the 
Object Management Group (OMG). XML is a text-based language from the World 
Wide Web Consortium (W3C) that supports the use of tags to describe structured 
data. XMI is in essence a set of rules for converting a metamodel, expressed using 
MOF, UML, and UML profiles into a set of custom tags in XML. Hence SysML, 
which is a UML profile, also has implicit interchange standards using XMI. 
However, there may be tool limitations, as well as issues with how the models 
are used, that can impact the quality of the exchange. 

    Figure 17.11    shows a simple SysML diagram, where Block1 is composed of 
Block2, both of which have properties.  Figure 17.12    is the equivalent XMI gen-
erated from the model. The XMI fragment in  Figure 17.12  identifi es each model 
element in terms of its UML metaclass type, unique id, and other information 
depending on its metaclass. 

   Note that the id’s in  Figure 17.12  have been simplifi ed for ease of drawing 
because globally unique id’s would have been very cumbersome for this fi gure. 
The diagram frame denotes a package with the name Parent that is also captured 
in the XMI as the owner of both Block1 and Block2. However, the diagram kind, 
user-defi ned diagram name, and other diagram information (e.g., symbol posi-
tions) are not included in the exchange. 

   Where the model elements represent SysML concepts, they are extended 
by instances of SysML’s stereotypes, as described in Chapter 14. In this case 
instances of block reference back to the UML element it extends.  

    Application Protocol 233 
   STEP, or the Standard for the Exchange of Product Model Data (more formally 
known as ISO 10303 [22]), is an international standard for the computer-
interpretable representation and exchange of product data. The objective is to 
provide a mechanism that is capable of describing product data throughout the 
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 FIGURE 17.11 

      Simple SysML diagram, as an example for illustrating XMI.    
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life cycle of a product, independent of any particular system. The nature of this 
description makes it suitable not only for neutral file exchange but also as a basis 
for implementing and sharing product databases and archiving. 

   Application Protocol 233 (AP233) is a STEP-based data exchange standard tar-
geted to support the needs of the systems engineering community; it is consistent 
with emerging standards in CAD; structural, electrical, and engineering analysis; 
and support domains. SysML was developed in coordination with the develop-
ment of the AP233 standard, which has resulted in shared systems engineering 
domain concepts. It is anticipated that over time SysML tools will be able to lever-
age AP233 as a neutral format for exchanging SysML models. 

    Diagram Interchange Standards 
   An important distinction is made between data interchange and diagram inter-
change. The preceding standards can exchange model data, but do not explicitly 
exchange diagram layout information in terms of where the symbols belong and 
where they appear on a diagram. There is a diagram interchange standard specifi-
cation from the OMG [42], but it is not widely used. However, if the model infor-
mation is exchanged and the tool repository is populated with the data, some 
tools provide a capability to autogenerate the diagram from the model repository. 
The resultant diagram will not reflect the original diagram layout because that 
information is not part of the exchange. 

    Model Transformation 
   There are clearly many different modeling languages for systems, hardware, and 
software development as well as domain-specific languages for real-time analysis, 

-�ownedMember xmi:type�"uml:Package" xmi:id�"ID0" name�"Parent" visibility�"public"� 
         -�ownedMember xmi:type�"uml:Class" xmi:id�"ID1" name�"Block1" visibility�"public"� 
                   �ownedAttribute xmi:type�"uml:Property" xmi:id�"ID2" name�"Property1" visibility�"private" /� 
                   �ownedAttribute xmi:type�"uml:Property" xmi:id�"ID3" name�"b2" visibility�"private"
                 aggregation�"composite" type�"ID5" association�"ID4" /� 
         �/ownedMember� 
        -�ownedMember xmi:type�"uml:Class" xmi:id�"ID5" name�"Block2" visibility�"public"� 
                   �ownedAttribute xmi:type�"uml:Property" xmi:id�"ID6" name�"Property2" visibility�"private" /� 
         �/ownedMember� 
        -�ownedMember xmi:type�"uml:Association" xmi:id�"ID4" visibility�"public"� 
                   �memberEnd xmi:idref�"ID3" /� 
                   �memberEnd xmi:idref�"ID7" /�
                   �ownedEnd xmi:type�"uml:Property" xmi:id�"ID7" visibility�"private" type�"ID1" association�"ID4" /� 
         �/ownedMember� 
�/ownedMember� 
…
�SysML:Block xmi:id�"ID8" base_Class�"ID1" /� 
�SysML:Block xmi:id�"ID9" base_Class�"ID5" /�
�SysML:BlockProperty xmi:id�"ID10" base_Property�"ID2" /�
�SysML:BlockProperty xmi:id�"ID11" base_Property�"ID3" /�
�SysML:BlockProperty xmi:id�"ID12" base_Property�"ID6" /�

 FIGURE 17.12 

      Equivalent XMI (fragment) for  Figure 17.11 .   
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business process modeling, and so on. When the desire is to move data from one 
modeling language to another, a model transformation is required; this involves 
mapping of the concepts from one language to the concepts in another language. 
The transformation may result in data loss or ambiguity. There are standards 
based on the OMG Meta Object Facility [20] that provide a foundation for these 
transformations if the metamodel for the language is expressed in a standard MOF 
format. There are many other approaches to model transformation, and this area 
will become increasingly important as model-based approaches and domain-
specific languages are used more often.    

    17.4    Selecting a System Modeling Tool 
   This section focuses on selection of a SysML modeling tool for the systems devel-
opment environment. A system modeling tool may support SysML to a greater or 
lesser extent, in accordance with the strengths and weaknesses offered by the 
tool.

    17.4.1    Tool Selection Criteria 
   The following criteria can form the basis for evaluating and selecting a SysML 
modeling tool: 

      ■    Conformance to SysML specifi cation (latest version)  
      ■    Usability  
      ■    Document generation capability  
      ■    Model execution capability  
      ■    Conformance to XMI  
      ■    Conformance to AP233  
      ■    Integration with other engineering tools (including legacy tools within an 

existing system development environment) 
      –     Requirements management  
      –     Confi guration management 
      –     Engineering analysis tools 
      –     Performance simulation tools 
      –     Software modeling tool  
      –     Electrical modeling tool  
      –     Mechanical CAD tool  
      –     Testing and verifi cation tool 
–      Project management tools     

      ■    Performance (maximum number of users, model size)  
      ■    Model checking to verify model conformance (well-formedness rules)  
      ■    Training, online help, and support  
      ■    Availability of model libraries (e.g., SI units)  
      ■    Life-cycle cost (acquisition, training, support)  
      ■    Vendor viability  



505

      ■    Previous experience with the tool 
      ■    Support for selected model-based method (e.g., scripts that automate cer-

tain parts of the method, standard reports, etc.)     

    17.4.2   Specifi c Tool Support for the MBSE Method 
   The specific MBSE method employed may leverage specific SysML features but 
may not require other features. It is appropriate to ask the following questions to 
emphasize the features of SysML that a successful tool deployment will need to 
support.

■      Which behavior representations are the most important? Activity diagrams? 
State machines? Sequence diagrams? 

■      Will there be a need for item flow representation?   

■      What kind of need will there be for detailed performance analysis and para-
metric modeling? Expression of mathematical equations relating parameters of 
system elements may be a very important part of the system development process 
and/or method employed. 

■      Will there be a need for algorithm specification and development? It may be 
important to express information processing algorithms explicitly in mathematical 
form, using constraint blocks and eventually relating them to specific blocks 
representing software code. 

■      Which architecting principles need to be supported by the tool?   

■      How will allocation be used? The manner in which allocation is used to guide 
the development process may dictate a set of constraints and rules associated 
with allocation relationships. By enforcing or enabling these rules, a tool set 
can improve the efficiency of the modeling process.     

    17.4.3   SysML Compliance 
   According to the SysML specification, a tool can claim its compliance with SysML 
in terms of compliance to the common subset of UML and the language exten-
sions described by the SysML profile, as described in Chapter 4. Table 17.1   
contains an example of a compliance matrix for a notional SysML tool, the form 
of which is defined in the SysML specification. 

   This matrix can be used by modeling tool vendors and others to defi ne a given 
tool’s level of compliance with the standard. For each unit of the language, com-
pliance with abstract syntax—underlying language constructs, like metaclasses, 
stereotypes, constraints, and ability to generate XMI—and compliance with con-
crete syntax (e.g., graphical notation) are stated. 

    UML4SysML is the portion of UML that is reused in SysML. The three levels 
referenced are described in Table 17.2   . The matrix can be used as part of the 
tool-selection process to determine whether critical SysML features and capabili-
ties are included in the tool. For example, if activity modeling with probability 

17.4 Selecting a System Modeling Tool
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Table 17.1        Example SysML Compliance Matrix Summary for a Notional Tool  

   Compliance Level  Abstract Syntax  Concrete Syntax 

   UML4SysML Level 1 YES YES

   UML4SysML Level 2 PARTIAL  YES

   UML4SysML Level 3 NO NO

   Activities (without Probability) YES YES

   Activities (with Probability) NO NO

   Allocations PARTIAL  PARTIAL 

   Blocks YES YES

   Constraint Blocks YES YES

   Model Elements (without Views)  YES YES

   Model Elements (with Views) NO NO

   Ports and Flows (without Item Flow)  YES YES

   Ports and Flows (with Item Flow)  NO NO

   Requirements YES YES

   Source:  OMG Systems Modeling Language (OMG SysML), V1.0, OMG document number formal/2007-09-01,
Table 5.5.  

Table 17.2        UML4SysML Compliance  

   SysML Package  UML4SysML Compliance Level 

   Activities (without Probability)  Level 2 

   Activities (with Probability)  Level 3 

   Allocations Level 2 

   Blocks Level 2 

   Constraint Blocks  Level 2 

   Model Elements (without View)  Level 1 

   Model Elements (with View)  Level 3 

   Ports and Flows (without Item Flow)  Level 2 

   Ports and Flows (with Item Flow)  Level 3 

   Requirements Level 1 

   Source:  OMG SysML, V1.0, OMG document number formal/2007-09-01, Table 5.5.  

is important to a user’s systems engineering approach, along with the ability to 
export the resulting model in XMI format, then the system modeling tool selected 
should demonstrate full UML4SysML compliance at Level 3 and activities (with 
probability) both for abstract and concrete syntax. 
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   After understanding the language features needed and comparing vendors ’
self-evaluation of their tools compliance with SysML, an evaluation of the tool 
should be performed based on actual usage. The tool features should be evalu-
ated in the systems development environment envisioned using the methods on 
typical problems relevant to the domain.   

    17.5   Summary 
   Integrating SysML into a systems development environment includes some of the 
following considerations. 

■     The system model in SysML is an integral part of the overall system development 
used to relate text requirements to the design, provide design information 
needed to support the analysis, serve as a specification for the subsystem and 
component design models, and provide the test case information needed to 
support verification. 

■     System modeling tools do not stand alone but must be integrated into a system 
development environment that includes many other tools that support require-
ments management, engineering analysis, hardware and software development, 
verification, configuration management, and project management. 

■     A systems engineering approach should be applied to specify the requirements 
and interfaces for the integrated system development environment  .

■     Data exchange between tools can be accomplished by manual, file-based, 
interaction-based, and repository-based mechanisms. 

■     A standards approach to data and model interchange is the preferred approach 
to reduce the cost and improve the quality of the data exchange. XMI is a 
primary data exchange mechanism, but this does not include diagram layout 
information.

■     SysML tool selection should be based on an evaluation against a defined set of 
criteria that includes both review of vendor information and hands-on use of the 
tool in the expected environment. Tool compliance to the SysML standard is 
one critical criterion.     

    17.6   Questions 
    1.   Why does SysML facilitate establishing a model-based system development 

environment?
    2.   Describe how XMI and AP233 are used with SysML. 
    3.   What are fi ve criteria for selecting a SysML tool? 
    4.   What conditions might lead someone to choose a SysML tool with strong struc-

tural modeling capability and internal consistency checking over one with 
probabilistic activity modeling capability? Which level of UML4SysML compli-
ance (Level 1, Level 2, or Level 3) would this preferred tool exhibit? 

17.6 Questions
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    5.   Under which conditions would a tool’s capability to model ports, fl ows, and 
item fl ows be important? Which level of UML4SysML compliance (Level 1, 
Level 2, or Level 3) would this tool exhibit?  

    6.   What can a person do to limit the impact of future tool changes or upgrades 
on the cost of their system development environment?  

    Discussion Topics 
   Describe the role of the system model in the system development environment. 

   Describe the meaning of the term “executable model ” and two different purposes 
for developing executable models. 

   Describe how the use of a system model can potentially increase the effective-
ness of a system development environment. 

   Build a matrix listing eight types of tools that can benefit from sharing data with 
a system modeling tool. In one column, list beneficial information that can flow 
from the system modeling tool, and in another list information that can flow to 
the system modeling tool. 

   Describe four different ways of exchanging data between tools in a system 
development environment. For each method, describe when it might be most 
appropriate.     



   Introducing the use of SysML to an organization and projects should be planned as 
part of an improvement initiative that addresses the impact on the systems engineer-
ing process, methods, tools, and training. This chapter describes how to implement 
an improvement process to facilitate a smooth and successful transition to SysML. 

    18.1   Improvement Process 
   Introducing any significant change into an organization requires a well–thought 
out plan and disciplined implementation to be successful. The introduction of 
SysML is part of a model-based systems engineering (MBSE) approach. The change 
to SysML should be implemented using the organization’s improvement proc-
ess that includes changes to the model-based method, tools, and training. Clear 
responsibility for the improvement should be established, and the expected ben-
efits of the change should be understood and agreed on with stakeholders. 

   A typical improvement process is shown in Figure 18.1   . The process includes 
monitoring and assessing projects to determine issues and improvement goals; 
developing the improvement plan; defi ning proposed changes to the process, 
methods, tools, and training; piloting the approach; and incrementally deploying 
the improvement. The process should be applied in increments to improve the 
organization’s capability. The steps to implement SysML as part of an improvement 
initiative are described next. 

    18.1.1   Monitor and Assess 
   To introduce a change to improve the organization’s capability, a baseline for 
measuring the improvement should be established. In particular, with respect 
to introducing SysML and MBSE, the organization should establish how systems 
engineering is currently being practiced and identify the issues and improvement 
goals expected from transitioning to SysML/MBSE. The MBSE benefits described 
in Chapter 2 represent possible motivations for the change. The issues to be 
addressed and the improvement goals can be used to derive metrics that can be 
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monitored over time. Metrics in turn can be used to determine the effectiveness 
of the change and to provide an input for follow-up improvement planning. 

   The maturity of MBSE will vary from project to project in a large organization; 
it may range from a totally document-based approach on some projects, to some 
limited use of functional analysis, architecture, and performance simulation mod-
eling on other projects, to pockets of advanced systems modeling that may be 
integrated across the project. The state-of-practice assessment can provide infor-
mation about what is working and what is not. The assessment results can be 
used to identify preferred practices to be shared, and the issues to be addressed 
by the improvement plan. The results can also be used to identify and select can-
didate pilot projects and potential target projects for deployment. 

   An assessment questionnaire can be prepared to support the assessment 
and may include questions regarding the purpose and scope of MBSE on proj-
ects, methods, tools, and training that are being used; how well they are work-
ing; and issues and lessons learned. The questionnaire can be administered to 
organizational and project representatives remotely or through face-to-face meet-
ings. Representation from multiple projects and disciplines should be suffi ciently 
diverse to provide a comprehensive assessment. 

   Metrics are defi ned to measure how broadly SysML/MBSE is deployed, and the 
effectiveness of the improvement. The deployment metrics can include the number 
and percentage of people trained in SysML/MBSE and the number and type of target 
projects that are applying SysML/MBSE. The effectiveness metrics measure progress 
against expected benefi ts and improvement goals, and how well the issues are being 
addressed. They should provide quantitative data to help assess the MBSE benefi ts and 
the impact on productivity, quality, innovation, and other business objectives. 

    18.1.2    Plan the Improvement 
   The improvement plan defines how to accomplish the improvement goals. It should 
include the activities from the improvement process in  Figure 18.1  and a phased 
approach to develop and deploy changes incrementally into the organization.

Plan the
Improvement

Pilot the
Approach

Monitor
and Assess

Define the
Changes

Incrementally
Deploy the Changes

 FIGURE 18.1 

      Improvement process for deploying SysML.    
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The plan should detail the necessary resources and schedule and a commitment 
to provide the resources. 

   As with any plan, stakeholder participation is essential in both its formulation 
and its execution. The stakeholders for MBSE include members of the improve-
ment team responsible for defi ning the change, as well as the project stakeholders 
who are expected to implement SysML/MBSE. The stakeholders representation 
should come from project management, systems engineering, and the develop-
ment teams including software, hardware, and testing; this group could also 
include customers and subcontractors. It is important to get representation from 
all the “communities” early in the process to ensure that their concerns are being 
addressed, and that there is buy-in to the improvement goals and plan. 

    18.1.3    Defi ne Changes to Process, Methods, Tools, 
Metrics, and Training 

   The improvement will require changes to the organization’s process, meth-
ods, tools, metrics, and training. The changes should be defined, documented, 
reviewed, and approved by the affected stakeholders to ensure that the change is 
implementable and will achieve the desired results. 

    Process Changes 
   It is assumed that the baseline systems engineering process for the organization 
and/or project is defined. If not, establishing a baseline that reflects the current 
process is an important first step. The process standards referred to in Chapter 1 
provide a starting point for defining the systems engineering process. Sometimes 
there is a significant disparity between the documented processes for an organi-
zation and the way that processes are actually implemented on projects. This is a 
separate issue that should be addressed, but it is not the focus for this discussion. 

   The systems engineering processes should be evaluated to determine the impact 
of SysML/MBSE. This includes impact on both the technical processes and the 
management processes such as confi guration management, review processes, and 
measurement.

    Method Changes 
   An MBSE method should be evaluated and selected to support the technical proc-
esses. There may be methods that are practiced internal to the organization as well 
as others that are available across industry, as described in Chapter 2. Two example 
methods are described in Chapters 15 and 16. The criteria for selecting a method 
may include how well it addresses the concerns of the project, the level of tool 
support, and the training requirements. The methods should be documented along 
with an example problem to show how it is applied. The documentation should 
also include general modeling conventions (e.g., naming conventions and style 
guidelines) and recommended model organization (refer to Chapter 5 and the 
examples in Chapters 15 and 16). 

    Tool Changes 
   The MBSE tools also need to be evaluated and selected. Criteria for SysML tool 
selection are included in Chapter 17. The evaluation should also include trial use 

18.1 Improvement Process
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of the tool to see how well it addresses the criteria. Documentation should be pro-
vided for how the tools are acquired, installed, configured, used, and maintained. 

   The documentation of the MBSE method should be updated to provide tool-
specifi c guidance on how the selected method is used with the selected tools. 
This may include general information on the how to create the modeling artifacts 
in the tool, as well as very detailed practices such as how to specify an interface.  

    MBSE Metrics 
   The MBSE metrics should be defined to support the overall goals of the project, 
as described in Chapter 2. The data-collection approach and reporting should also 
be defined.  

    Training Changes 
   Training is needed to support the language, method, and tools and may require 
different training courses. SysML training should focus on the language concepts 
described in Part II. The method documentation referred to earlier can be used to 
support the method training with examples included such as those in Part III. The 
introductory tool training may best be provided by the tool vendor to show how 
the tool is used. However, this may be augmented to include additional training 
on how the tool is used with the selected method and as part of the specific tool 
environment, as discussed in Chapter 17.   

    18.1.4    Pilot the Approach 
   As with any significant change, the recommendation is to walk before you run. 
This involves piloting the changes described earlier to validate and refine the 
approach. Undoubtedly, there will be modifications to the approach based on the 
results of the pilot project. 

   A pilot project also requires careful planning, willing participants, neces-
sary resources, and management support. A typical plan for a pilot includes the 
following:

      ■    Pilot objectives and metrics  
      ■    Pilot scope  
      ■    Pilot deliverables  
      ■    Pilot schedule  
      ■    Responsibilities and staffi ng 
      ■    Process and method guidance 

      –     High-level process fl ow 
      –     Model artifact checklist  
–       Tool-specifi c guidance     

      ■    Tool support  
      ■    Training    

   The pilot’s objectives may include validating that the proposed MBSE method, 
tools, and training meet the needs of the organization and projects. The scope of 
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a pilot should support these objectives. A small team should be identified to work 
on the pilot with a team lead. It is important to maintain continuity among the 
team members as they work through the pilot. 

   The selected tools must be acquired, installed, and confi gured. The pilot team 
should receive training in the language, method, and tools. The documented 
method and tool guidance should be provided to the team. In addition, it is pref-
erable that the pilot team includes a member who is skilled in the method and/or 
tools to provide guidance to other team members. 

   The pilot project should adequately exercise the method and tools. It is often 
useful to select a thread through the system and generate at least one artifact for 
each of the artifacts in the method. The pilot schedule should include milestones 
for creating the modeling artifacts. The team should also establish a peer-review 
process to review the artifacts and propose changes to the method, and then use 
this to help refi ne the MBSE approach. 

   The results are captured in a report that includes how well the pilot achieved 
the objectives, what modifi cations were made to the proposed approach, and les-
sons learned, including quantitative data where practical. The OOSEM method 
described in Chapter 16 was piloted and documented in a reference paper [38] 
and provides an example of how a pilot was conducted and its results. 

   Based on a pilot’s results, the process, methods, tools, metrics, and train-
ing should be updated to refl ect the new baseline MBSE approach. The results 
can serve as training material to be used as part of the broader SysML/MBSE roll-
out. Some pilot participants can become advocates to help deploy the change to 
projects. 

    18.1.5   Deploy Changes Incrementally 
   The pilot results help to determine the requirements for deploying the SysML/
MBSE capability on projects. The pilot provides a more realistic assessment of the 
type of training required, how long it takes for people to get up to speed, experi-
ence in adapting the method and tools, and more realistic expectations of the 
modeling results. 

   Project-selection criteria should be established to select a project or projects 
targeted for the deployment. The criteria may include the project’s phase, longev-
ity, size, level of internal and customer support, and the extent to which MBSE 
benefi ts can provide recognized value to the project. In addition, the state-of-
practice assessment should have helped to identify potential opportunities based 
on business need and other considerations. Different projects may introduce dif-
ferent scopes for MBSE depending on their current state of practice, their experi-
ence level in modeling, and the particular project needs. Ideally, SysML/MBSE is 
introduced at the start-up phase of a project or at a point in its life cycle that is 
appropriate to introduce change, for example, at the start of a new development 
increment. It is important for the project’s leadership and customers to be willing 
advocates for the change. 

   Realistic expectations should be established in terms of the time, effort, deliv-
erables, and expected results from the modeling effort. The purpose and scope of 

18.1 Improvement Process
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the effort should be defi ned and balanced with project resources, as described in 
Chapter 2. The MBSE deliverables should be refl ected in the project plan, along 
with milestones for establishing the MBSE infrastructure, including documenta-
tion, tools, staffi ng, and training. 

   MBSE metrics should be identifi ed to support project objectives. The MBSE 
metrics in Chapter 2 can serve as a guide along with the lessons learned from 
the pilot. The approach for data collection should also be defi ned, including how 
the data are to be captured from the tools. The reporting of the metrics should 
be detailed in the project plan, including which metrics, how often they are col-
lected, and how they are used. 

   The selected tools are acquired, installed, and confi gured for use. On a 
larger project, the tools will need to be confi gured for a multiuser environment. 
Additional levels of tool integration may be required, as described in Chapter 17. 
The confi guration management approach for controlling a model baseline will 
need to be clearly defi ned. The right expertise should be made available to help 
establish and maintain this environment. 

   The deployment should include start-up training in the process, methods, and 
tools. The training should encompass SysML training, MBSE method training, and 
tool training. The training should use the pilot’s documentation and results as part 
of the training material. Different levels of training may be appropriate for differ-
ent stakeholders. For example, some of the systems engineering team, which is 
designated as the core modeling team, may require detailed SysML, MBSE meth-
ods, and tool training, whereas other systems engineers and some hardware and 
software developers may require limited SysML training, which includes the 
impact on their particular tasks or methods. For example, some of the testers 
may need to understand how to derive detailed test cases from the model, or the 
individual who is responsible for requirements management will need to under-
stand how the SysML modeling tool is used with the requirements management 
tool.

   A successful deployment will also require ongoing support from individuals 
who have expertise in the methods and tools. The improvement metrics should 
be monitored to assess the MBSE effort. Lessons learned should be captured 
to further refi ne the process, methods, and tools and to help further drive the 
improvement process.   

    18.2    Summary 
   SysML is deployed as part of an MBSE approach using the organization’s improve-
ment process. Deploying SysML as part of MBSE should consider impacts on the 
systems engineering process, methods, tools, and training. A successful deploy-
ment must be planned, piloted, and incrementally deployed. The success is a key 
ingredient to motivate other projects to follow. The results should be quantified, 
where practical, and used as a basis for future improvements.  
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    18.3   Questions 
      1. When SysML is being deployed, which other aspects of MBSE should be 

considered?
   2.  What are the activities in the improvement process?
   3.  Who are some of the stakeholders in the improvement process?
   4.  What is the purpose of the monitor and assessment activity?
   5.  What is the purpose of piloting the MBSE approach?
    6.   What are some of the up-front project activities that must be planned when 

deploying SysML to a project?           

18.3 Questions
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    A.1 Overview 
   This appendix provides a reference guide to the graphical notation for SysML as 
a set of notation tables. It is organized by diagram kind in the following order: 

      ■    Package Diagram 
      ■    Block Defi nition Diagram 
      ■    Internal Block Diagram 
      ■    Parametric Diagram 
      ■    Activity Diagram 
      ■    Sequence Diagram 
      ■    State Machine Diagram 
      ■    Use Case Diagram 
      ■    Requirement Diagram    

   There are also notation tables for the use of allocations and stereotypes, which are 
used across a number of different diagrams. 

   It is recommended that you read Section 4.3 in Chapter 4 for an overview of 
SysML diagrams and their contents before reading this appendix. 

    A.2 Notational Conventions 
   Each diagram is described by at least one notation table. For diagrams with many 
symbols, there are separate tables for nodes and paths, where node symbols are 
typically rectangles and ovals and path symbols are lines. Package diagrams and 
block definition diagrams have several subsections to describe different uses 
of the diagram with corresponding notation tables. The rows in each table are 
ordered so that their references are encountered in ascending order within the 
relevant chapter or chapters. 

   SysML Reference Guide 

APPENDIX
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   The notation tables have four columns: 

      ■    Diagram Element—the name of the diagram element represented in this 
row, generally identifi ed as a node or path. The term symbol is used when it 
is neither a node nor a path, such as a text expression in brackets.  

      ■    Notation—the graphical notation for the diagram element.  

      ■    Description—a description of the SysML concept represented by the dia-
gram element.  

      ■    Section—a reference to the section(s) in Part II that contains further expla-
nation of the relevant SysML concept. 

           The following conventions are used in the tables:  

      ■         �     Name     �     —the name of the model element represented by the symbol.  

      ■         �     Element     �     —the name of some model element.  

      ■         �     Type     �     —the name of some type (Block, ValueType, etc.).  

      ■         �     String     �     —any arbitrary text string.  

      ■          �     Expression     �     , � ValueSpecifi cation     �     —a text string intended to represent 
some kind of regular expression.  

      ■         �     ElementType     �     —the keyword representing some kind of model element.  

      ■         �     Multiplicity     �     —a representation of multiplicity, thus:  � LowerBound �. . .   
�UpperBound    �     , where LowerBound is any natural number and UpperBound 
is any natural number or   “ *. ”    

   The names inside the angled brackets are intended to be self-explanatory refer-
ences to SysML model elements, but occasionally extra explanation is provided in 
the Description column of a symbol. 

   It should be noted that various parts of the graphical and textual notation may 
be elided by a modeler, and the tables do not provide guidance on what can be 
elided and when. In addition, certain model elements have additional keywords 
and properties that are listed in the Description column of the relevant symbol.  
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   Table A.1 Package Diagram Nodes and Paths

              

Section
Diagram
Element

Notation Description

Package
Node

Containment
Path

Model Node

Packageable
Element
Node

Viewpoint
Node

View Node

Import Path

Dependency
Path

A package is a container for other model elements.
Any model element is contained in exactly one
container, and when that container is deleted or
copied, the contained model element is deleted or
copied along with it.

5.3

A model in SysML is a top-level package in a nested
package hierarchy. In a package hierarchy, models
may contain other models, packages, and views.

5.3

Model elements that can be contained in packages
are called packageable elements and include blocks,
activities, and value types among others.

5.5

A view is a type of package that conforms to a
viewpoint. The view imports a set of model
elements according to the viewpoint methods and is
expressed in the viewpoint languages to present the
relevant information to its stakeholders.

A viewpoint describes a perspective of interest to a
set of stakeholders that is used to specify a view of
a model.

The containment relationship relates parents to
children within a package hierarchy.

An import relationship is used to bring an element 
or collection of elements into a namespace. Private
import is marked by the keyword «access».

A dependency relationship indicates that a change to
the supplier (arrow) end of the dependency may
result in a change to the other end of the dependency.

5.9

5.7

5.9

5.4

5.8

Conform
Path

Used to assert that a view conforms to a
viewpoint.

5.9

<Name>

<Name>

<Name>

<Name>

«<ElementType>»
<Name>

«view»
{viewpoint=<Viewpoint>}

<Name>

«view»
{viewpoint=<Viewpoint>}

<Name>

stakeholders=<String>
purpose=<String>
languages=<String>
methods=<String>
concerns=<String>

«viewpoint»
<Name>

«access»

«import»

«<ElementType>»

«conform»

         

A.3 Package Diagram

    A.3 Package Diagram 
   Package diagrams are used principally to describe model organization. They are 
also used to define SysML language extensions called profiles. 
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   Table A.2 Notation for Describing SysML Extensions on Package Diagrams

              

Section
Diagram
Element

Notation Description

«metamodel»
<Name>

«metamodel»
<Name>

Metamodel
Node

A metamodel describes the concepts in a modeling
language, their characteristics and interrelationships.

4.2.2,
14.1.1

«metaclass»
<Name>

Metaclass
Node

The individual concepts in a metamodel are described
by metaclasses.

4.2.2,
14.1.1

«modelLibrary»
<Name>

«modelLibrary»
<Name>

Model
Library Node

A model library is a special type of package that is
intended to contain a set of reusable model elements
for a given domain.

14.2

<Property>:<Type>=<Expression>

constraints

{<Constraint>}

«stereotype»
<Name>

Stereotype
Node

Stereotypes are used to add new language concepts,
typically in support of a specific system engineering
domain.

14.3

«profile»
<Name>

«profile»
<Name>

Profile Node A profile is a kind of package used as the container
for set of stereotypes and supporting definitions.

14.4

<Multiplicity>
{required}

<Multiplicity>Extension
Path

The relationship between the metaclass and the
stereotype is called an extension, and is a kind of
association.

14.3

Profile
Application
Path

<End><End>

<Multiplicity> <Multiplicity>

<Name>

«reference»

«apply» {strict}

Association
Path

Stereotype properties can be defined using
associations.

14.3.1

Reference
Path

A reference is special type of import relationship,
used to import the metaclasses required by a
profile.

A profile is applied to a model or package using a
profile application relationship.

14.4.1

14.5

<GeneralizationSet><GeneralizationSet>

Generalization
Path

A stereotype can be defined by specializing an
existing stereotype or stereotypes, using the
generalization mechanism.

14.3
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    A.4 Block Defi nition Diagram 
   The block definition diagram is used to define the characteristics of blocks in 
terms of structural and behavioral features, and the relationships between the 
blocks, such as their hierarchical relationship. Extensions to the block definition 
diagram are used to define parametric constraints and also to show a hierarchical 
view of activities. 

              

receptions

operations

values

references

parts

«signal»<Signal>(<Parameter>,..)

<Operation>(<Parameter>,…):<Type>

<ValueProperty>:<ValueType>=<ValueExpression>

<Reference>:<Block>[<Multiplicity>]

<Part>:<Block>[<Multiplicity>]

«block»
<Name>

operations

dimension=<Dimension>
unit=<Unit>

<Operation>(<Parameter>,…):<Type>

values
<ValueProperty>:<ValueType>=<ValueExpression>

«valueType»
<Name>

<EnumerationLiteral>

«enumeration»
<Name>

The block is the fundamental modular unit for
describing system structure in SysML.

Compartments are used to show structural features
(parts, references, values) and  behavioral features
(operations, receptions) of the block. See the following
tables in this section for more block compartments.

Additional properties on blocks are {encapsulated,
abstract}. Abstract may also be indicated by
italicizing the <Name>.

Additional properties on structural features
include: {ordered, unordered, unique, nonunique,
subsets <Property>, redefines <Property>}.

A forward slash (/) before a property name
indicates that it is derived.

Section
Diagram
Element

Notation Description

Block Node 6.2, 6.3,
6.5.2

dimension =<Dimension>

«unit»
<Name> «dimension»

<Name>

Dimension
and Unit
Nodes

A dimension identifies a physical quantity such as
length, whose value may be stated in terms of defined
units, such as meters or feet. A unit must always be
related to a dimension.

6.3.3

Value Type
Node

A value type is used to provide a uniform definition
of a quantity with units that can be shared by many
value properties.

6.3.3

Enumeration
Node

An enumeration defines a set of named values called
literals.

6.3.3

«actor»
<Name>

<Name>

Actor Node An actor is used represent the role of a human, an
organization, or any external system that participates
in the use of some system being investigated.

11.3

         

A.4 Block Defi nition Diagram

   Table A.3 Block Defi nition Diagram Nodes for Representing Block Structure and Values
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   Blocks have two additional compartments: 

      ■    Structure, which has the same symbols as an internal block diagram.  
      ■    Namespace, which has the same symbols as a block defi nition diagram.    

   Table A.4 Block Defi nition Diagram Nodes for Representing Interfaces

    

receptions

operations

«signal»<Signal>(<Parameter>,…)

<Operation>(<Parameters>,…):<Type>

«interface»
<Name>

An interface is used to specify the set of behavioral
features either required or provided by a standard
(service-based) port.

Interface
Node

6.5.3

flowProperties
<Direction> <FlowProperty>:<Item>

«flowSpecification»
<Name>

Flow
Specification
Node

A flow specification defines the set of input and/or
output flows for a noncomposite flow port.
<Direction> may be one of: in, out, or inout.

6.4.3

Section
Diagram
Element

Notation Description

flowPorts

standardPorts

<Direction> <Port>:<Type>

<Port>:<Interface>

«block»
<Name>

Port
Compartments
for Block
Node

Ports can be shown in separate compartments
labeled flow ports and standard ports.

<Direction> may be one of: in, out, or inout. Non-
atomic flow ports do not have a direction but may
have the keyword {conjugated}.

6.4.3, 6.5.2

Interface
Realization
Path

A realization dependency asserts that a block will
declare a behavioral feature for each behavioral
feature in an interface.

6.5.3

<Name>[<Multiplicity>]<Interface>

<Interface> <Name>[<Multiplicity>]

Standard Port
Node

A standard port defines the service-based interaction
points on the interface to a block. The shape of the
<Interface> symbol indicates whether services are
required (socket) by or provided by (ball) the block.

6.5.2

<Name>:<Item>[<Multiplicity>]

<Name>:<Item>[<Multiplicity>]

<Name>:<Item>[<Multiplicity>]

Atomic Flow
Port Node

An atomic flow port describes an interaction point
where an item can flow into or out of a block, or
both, as indicated by the direction of the arrow in the
Atomic Flow Port Node.

6.4.3

<Name>:<FlowSpecification>[<Multiplicity>]

<Name>:<FlowSpecification>[<Multiplicity>]

Nonatomic
Flow Port
Node

A nonatomic flow port describes an interaction point
where multiple different items may flow into or out
of a block. A shaded symbol implies a conjugate port.

6.4.3

Usage
Dependency
Path

A uses dependency asserts that a block requires a
set of behavioral features defined by an interface.

6.5.3
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   Table A.5 Block Defi nition Diagram Paths

              

<Reference><Reference>

<Multiplicity> <Multiplicity>

«participant»{end=<Reference>}<Participant>: <Block>

<Name>

An association block, as the name implies, is a
combination of an association and a block, so it
can relate two blocks together but can also have
internal structure and other features of its own.

Participants are placeholders that represent the
blocks at each end of the association block, and
are used when it is desired to decompose a
connector.

Association
Block Path and
Node

6.3.2

Generalization
Path

A generalization describes the relationship
between the general classifier and specialized
classifier. A set of generalizations may either be
{disjoint} or {overlapping}. They may also be 
{complete} or {incomplete}.

6.6

<GeneralizationSet><GeneralizationSet>

A reference association can be used to specify a
relationship between two blocks. A reference
association can specify a reference property on
the blocks at one or both ends.

The white diamond is the same as no diamond,
but profiles can be used to differentiate them by
specifying additional constraints.

Reference
Association
Path

6.3.2

<Reference>
<Multiplicity>

<End>
<Multiplicity>

<Reference>
<Multiplicity>

<Reference>

<Reference><End>

<Multiplicity> <Multiplicity>
<Name>

<Reference><Reference>

<Multiplicity> <Multiplicity>
<Name>

<Reference><End>

<Multiplicity> <Multiplicity>
<Name>

<Reference>

<Multiplicity> <Multiplicity>
<Name>

Section
Diagram
Element

Notation Description

Composite
Association
Path

Where there is no arrow on the nondiamond end
of the association it also specifies a reference
property to the whole in the part (indicated by
<Reference>).

Otherwise when there is an arrow, the name at
the whole end simply gives a name to the associ-
ation end (indicated by <End>).

A composite association relates a whole to its
parts showing the relative multiplicity at both
whole and part ends. A composite association
always defines a part property in the whole
(indicated by <Part>).

6.3.1

<Reference>
<Multiplicity>

<End>
<Multiplicity>

<Reference>
<Multiplicity>

<Reference>

<Multiplicity>

<Part>

<Multiplicity>

<Name>

<End>

<Multiplicity>

<Part>

<Multiplicity>

<Name>

         

A.4 Block Defi nition Diagram
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   Table A.6 Additional Notation to Defi ne Parametric Models on Block Defi nition Diagrams

              

parameters

constraints
{{<Language>}<Constraint>}
<ConstraintProperty>:<ConstraintBlock>[<Multiplicity>]

<Parameter>:<Type>[<Multiplicity>]=<ValueExpression>

«constraint»
<Name>

constraints
{{<Language>}<Constraint>}

«block»
<Name>

The constraints on a block can be shown in a 
special compartment labeled constraints.

<Constraint> contains an expression preceded by
an indication of the language used to express the
constraint.

Section
Diagram
Element

Notation Description

Block Node
with
Constraint
Compartment

7.2

Constraint
Block Node

A constraint block encapsulates a constraint to
enable it to be defined once and then used in
different contexts.

7.3

         
   Table A.7 Additional Notation to Defi ne Activity Models on Block Defi nition Diagrams

              

«activity»
<Name>

<Action>
<Multiplicity>

<End>
<Multiplicity>

<End>

<Multiplicity>

<Action>

<Multiplicity>

<Name>

<ObjectNode>
<Multiplicity>

<End>
<Multiplicity>

<End>

<Multiplicity>

<ObjectNode>

<Multiplicity>

<Name>

<End>

<Multiplicity>

<ObjectNode>

<Multiplicity>

<Name>

Parameters and other object nodes can also be represented on
the block definition diagram. By convention, the relationship
from activities to object nodes is represented with a reference
association.

Object Node
Composition
Path

8.10.2

Invocation of activities via call behavior actions is modeled
using the standard composition association where the calling
activity is shown at the black diamond end and the called
activity is at the other end of the association.

Activity
Composition
Path

8.10.1

Section
Diagram
Element

Notation Description

Activity Node On a block definition diagram, activities are shown using a
block symbol with the keyword “activity.” 

8.10.1
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    A.5 Internal Block Diagram 
   The internal block diagram is used to describe the internal structure of a block in 
terms of how its parts are interconnected. 

              

A standard port describes a service-based
interaction point on a block. A standard port is
defined by its interface. The shape of the
<Interface> symbol indicates whether services
are required by or provided by the block.

initialValues

<Name>:[<Block>][<Multiplicity>]

<Multiplicity>

<Property>=<ValueExpression> Note that a Part Node may have the same
compartments as a Block Node. [<Block>]
represents a property-specific type.

A part is a property of an owning block that is
defined (typed) by another block. The part
represents a usage of the defined block in the
context of the owning block.

Section
Diagram
Element

Notation Description

Part Node 6.3.1, 6.6.5

<Name>:<Actor>[<Multiplicity>]

Actor Part
Node

An actor part is a property of a owning block that
is defined (typed) by an actor.

11.5

initialValues

<Name>:[<Block>][<Multiplicity>]

<Multiplicity>

<Property>=<ValueExpression>

Reference
Node

Note that a Reference Property Node may have
the same compartments as a Block Node.
[<Block>] represents a property-specific type.

A reference property of a block is a reference to
another block.

6.3.2

<Name>:<Item>[<Multiplicity>]

<Name>:<Item>[<Multiplicity>]

<Name>:<Item>[<Multiplicity>]

Atomic Flow
Port Node

An atomic flow port describes an interaction
point where an item can flow into or out of a
block, or both, as indicated by the direction of
the arrow in the Atomic Flow Port Node.

6.4.3

<Name>:<FlowSpecification>[<Multiplicity>]

<Name>:<FlowSpecification>[<Multiplicity>]

Nonatomic
Flow Port
Node

A nonatomic flow port describes an interaction
point that allows multiple different items to
flow into or out of a block. A nonatomic flow
port is typed by a flow specification. A shaded
symbol implies a conjugate port that reverses the
items’ allowable in and out flow direction.

6.4.3

initialValues
<Property>=<ValueExpression>

<Name>:[<ValueType>][<Multiplicity>]=<Expression>
Value
Property Node

Note that a Value Property Node may have the
same compartments as a Value Type Node.
[<ValueType>] represents a property-specific type.

A value property describes the quantitative
characteristics of a block.

6.3.3

«participant»
{end=<Reference>}

<Participant>:<Block>

Participant
Property
Node

A participant property represents one end of an
association block. Using a participant property, a
modeler can show the relationship between the
internal structure of the association block and the
internal structure of its related ends.

6.3.2

<Name>[<Multiplicity>]<Interface>

<Interface> <Name>[<Multiplicity>]

Standard Port
Node

6.5.3

         

A.5 Internal Block Diagram

   Table A.8 Internal Block Diagram Nodes
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   Table A.9 Internal Block Diagram Paths

              

<Name>:<Item>, ...

<Name>:<Item>, ...

An item flow is used to specify the items that flow
across a connector in a particular context. An item
flow specifies the type of the item that is flowing
and the direction of flow. It may also be associated
to a property, called an item property, of the
enclosing block to identify a specific usage of an
item in the context of the enclosing block.

Item Flow
Node

6.4.2

<End>

<Multiplicity>

<End>

<Multiplicity>

<Name>:<Association>

More detail can be specified for connectors by
typing them with association blocks. An association
block, as the name implies, is a combination of an
association and a block, so it can relate two blocks
together but can also have internal structure and
other features of its own.

Connector
Property Path
and Node

6.3.2

<End>

<Multiplicity>

<End>

<Multiplicity>

<Name>:<Association>

<End>

<Multiplicity>

<End>

<Multiplicity>

<Name>:<Association>

Section
Diagram
Element

Notation Description

Connector
Path

A connector is used to bind two parts (or ports) and
provides the opportunity for those parts to interact,
although the connector says nothing about the nature
of the interaction.

6.3.1

          

    A.6 Parametric Diagram 
   Parametric diagrams are used to create systems of equations that can be used to 
constrain the properties of blocks. 

   Table A.10 Parametric Diagram Notation

              
<Multiplicity><Multiplicity> «equal»

<Multiplicity><Multiplicity> Binding connectors connect constraint parameters
to each other and to value properties. They
express an equality relationship between their
bound elements.

Value Binding
Path

7.5

«constraint»
<Name>:<ConstraintBlock>[<Multiplicity>]

{<Constraint>}

<Name>:<ConstraintBlock>[<Multiplicity>]
{<Constraint>}

Constraint properties are defined by constraint
blocks and used to bind (i.e., connect) parameters.
This enables complex systems of equations to be
composed from more primitive equations, and
for the parameters of the equations to explicilty
constrain properties of blocks.

Constraint
Property Node

7.4

<Name>: <Type>[<Multiplicity>]

Section
Diagram
Element

Notation Description

Constraint
Parameter
Node

A constraint parameter is a special kind of
property that is used in the constraint expression
of a constraint block. Constraint parameters do
not have direction.

7.3
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    A.7 Activity Diagram 
   The activity diagram is used to model behavior in terms of the flow of inputs, 
outputs, and control. An activity diagram is similar to a traditional functional flow 
diagram. 

              

(<Partition>,..)

<Name>:<Behavior>

An alternative representation for an activity
partition for call actions is to include the name of
the partition or partitions in parentheses inside the
node above the action name. This can make the
activity easier to layout than when using the
swimlane notation.

Activity
Partition in
Action Node

8.9.1

An interruptible region groups a subset of the
actions within an activity and includes a
mechanism for stopping their execution. Stopping
the execution of these actions does not effect other
actions in the activity.

Interruptible
Region Node

8.8.1

<Partition>

<
P

ar
tit

io
n>

A set of activity nodes can be grouped into an
activity partition (also known as a swimlane) that
is used to indicate responsibility for execution of
those nodes. <Partition> may be the name of a
block or name and type of a part/reference.
Partitions may overlap in a grid pattern.

Activity
Partition Node

8.9.1

Activity parameter node symbols are rectangles
that straddle the boundary of the activity frame.

Other annotations include: «noBuffer»,
«optional», «overwrite», «continuous», «discrete»,
{rate=<Expression>}.

Parameters can be organized into parameter sets,
indicated by a bounding box around the
parameters in the set. Parameter sets may overlap,
and may have an annotation:
{probability=<Expression>}.

act <Activity>

<Parameter>:<Type>:<Multiplicity>

<Parameter>:<Type>:<Multiplicity>

Section
Diagram
Element

Notation Description

Activity
Parameter
Node

8.4.1

         

A.7 Activity Diagram

   Table A.11 Activity Diagram Structural Nodes
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   Table A.12 Activity Diagram Control Nodes

              

A fork node has one input flow and multiple output 
flows—it replicates every input token it receives onto each
of its output flows. The tokens on each output flow may be
handled independently and concurrently.

Fork Node 8.5.1,
8.6.1

When an activity starts executing a control token is placed
on each initial node in the activity. The token can then
trigger the execution of an action via an outgoing control
flow.

Initial Node 8.6.1

When a control or object token reaches an activity final
node during the execution of an activity, the execution
terminates.

Activity Final
Node

8.6.1

Control or object tokens received at a flow final node are
consumed but have no effect on the execution of the
enclosing activity. Typically they are used to terminate a
particular sequence of actions without terminating an
activity.

Flow Final
Node

8.6.1

«decisionInput»
<Behavior>

[<Expression>]

[<Expression>]

[<Expression>]

A decision node has one input flow and multiple output
flows—an input token can only traverse one output flow.
The output flow is typically established by placing mutually
exclusive guards on all outgoing flows and offering the
token to the flow whose guard expression is satisfied. A
decision node can have an accompanying decision input
behavior, which is used to evaluate each incoming object
token and whose result can be used in guard expressions.

Decision
Node

8.5.1,
8.6.1

{join-spec=
<Expression>}

A join node has one output flow and multiple input
flows—it has the important characteristic of synchronizing
the flow of tokens from many sources. Its default behavior
can be overridden by providing a join specification, which
can specify additional control logic.

Join Node 8.5.1,
8.6.1

A merge node has one output flow and multiple input
flows—it routes each input token received on any input
flow to its output flow. Unlike a join node, a merge node
does not require tokens on all its input flows before
offering them on its output flow. Rather it offers tokens
on its output flow as soon as it receives them.

Section
Diagram
Element

Notation Description

Merge Node 8.5.1,
8.6.1
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   Table A.13 Activity Diagram Object and Action Nodes

              

«controlOperator»
<Name>:<ControlOperator>

{control}

A control operator produces control
values on an output parameter, and is able
to accept a control value on an input
parameter (treated as an object token). It
is used to specify logic for enabling and
disabling other actions.

Control
Operator
Action Node

8.6.2

<Event>,. . .

An activity can accept events using an
accept event action. The action has
(sometimes hidden) output pins for
received data.

Accept Event
Action Node

8.7

<TimeExpression>
A time event corresponds to an expiration
of an (implicit) timer. In this case the
action has a single (typically hidden)
output pin that outputs a token containing
the time of the accepted event occurrence.

Accept Time
Event Node

8.7

<Signal>
target

signal
An activity can send signals using a send
signal action. It typically has pins
corresponding to the signal data to be
sent and the target for the signal.

Send Signal
Action

8.7

«centralBufferNode»
<Name>:<Type>

[<State>,. . .]

A central buffer node provides a store for
object tokens outside of pins and
parameter nodes. Tokens flow into a
central buffer node and are stored there
until they flow out again.

Central Buffer
Node

8.5.3

«dataStore»
<Name>:<Type>

[<State>,. . .]

A datastore node provides a copy of a
stored token rather than the original.
When an input token represents an object
that is already in the store, it overwrites
the previous token.

Datastore
Node

8.5.3

<Name>:<Behavior>
<Name>:<Type>[<State>,. . .]

<Name>:<Operation>

target
«localPrecondition»
<Constraint>
«localPostcondition»
<Constraint>

Call actions can invoke other behaviors
either directly or through an operation, and
are referred to as call behavior actions and
call operation actions, respectively. A call
action must own a set of pins that match in
number and type of the parameters of the
invoked behavior/operation. A called
operation requires a target.
Streaming pins may be marked as {stream}
or filled (as shown). 
Where the parameters of the called entity
are grouped into sets, the corresponding
pins are as well. Pre- and postconditions
can be specified that constrain the action
such that it cannot begin to execute unless
the precondition is satisfied, and must
satisfy the postcondition to successfully
complete execution.

Section
Diagram
Element

Notation Description

Call Action
Node

8.1, 8.3,
8.4.2

«<ActionType>»
<Expression>

Primitive actions include: object access/
update/manipulation actions, which
involve properties and variables, and value
actions, which allow the specification of
values. The <Expression> will depend on
the nature of the action.

Primitive
Action Node

8.12.1

         

A.7 Activity Diagram
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   Table A.14 Activity Diagram Paths

              

[<Expression>]

[<Expression>]

An interrupting edge interrupts the execution of
the actions in an interruptible region. Its source is
a node inside the region and its destination is a
node outside it.

Interrupting
Edge Path

8.8.1

[<Expression>] Additional annotations include «continuous»,
«discrete», {rate=<Expression>},
{probability=<Expression>}.

Object flows connect inputs and outputs. Object Flow
Path

8.1, 8.5

Section
Diagram
Element

Notation Description

[<Expression>]

[<Expression>]

Control Flow
Path

Control flows provide constraints on when, and in
what order, the actions within an activity will
execute. A control flow can be represented using a
solid line, or using a dashed line to more clearly
distinguish it from object flow.

8.1, 8.6

<Name>:<Type>
[<State>,...]

When an object flow is between two pins that
have the same characteristics, an alternative
notation can be used where the pin symbols are
elided and replaced by a single rectangular symbol
called an object node symbol.

Object Flow
Node

8.5
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    A.8 Sequence Diagram 
   The sequence diagram is used to represent the interaction between structural ele-
ments of a block, as a sequence of message exchanges. 

              

Two combined fragments have operators with a
compartment per operand, shown as <N-aryOp>. These are
par and alt.

The lifelines that participate in the fragment overlay on top
of the fragment (i.e., are visible) and lifelines that don’t
particiapte are obscured behind the fragment. (Note: This is
also true of Single-Compartment Fragment Nodes.)

[<Constraint>]

[<Constraint>]

<N-aryOp>Multi-
compartment
Fragment
Node

9.7.1

<FilterOp> {<Message>,...} There are two combined fragments with filter operators:
consider and ignore, shown as <FilterOp>. Inside such a
construct, messages that have been explicitly ignored (or not
considered) may be interleaved with valid traces.

Filtering
Fragment
Node

9.7.2

<State>

{<Constraint>}

A state invariant on a lifeline is used to add a constraint on
the required state of a lifeline at a given point in a sequence
of event occurrences. The invariant constraint can include
the values of properties or parameters, or the state of a state
machine.

State
Invariant
Symbol

9.7.3

ref
<Interaction>

An interaction use allows one interaction to reference
another as part of its definition. The lifelines that participate
in the interaction are obscured behind the fragment, and
lifelines that don’t participate overlay on top of the
fragement (i.e., are visible).

Interaction
Use Node

9.8

<UnaryOp>

[<Constraint>]

A combined fragment can be used to model complex
sequences of messages. A number of combined fragments
have operators with only a single compartment for all
operands, shown as <UnaryOp>. These are: seq, opt, break,
strict, loop, neg, assert, critical.

Single-
compartment
Fragment
Node

9.7.1,
9.7.2

<Name>:<Type>
[<ValueSpecification>]

ref <Interaction>

Section
Diagram
Element

Notation Description

Lifeline
Node

A lifeline represents the relevant lifetime of an instance that
is part of the interaction’s owning block, which will either
be represented by a part property or a reference property.

9.4

         

A.8 Sequence Diagram

   Table A.15 Sequence Diagram Structural Nodes
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   Table A.16 Sequence Diagram Paths and Activation Nodes

              

<Attribute>=<Name>
(<Attribute>=<Argument>,. . .)
:<Argument>

A reply message shows a reply to a synchronous
operation call, together with any return arguments.

Reply
Message

9.5.1

<Name>(<Argument>,. . .)
A lost message describes the case where there is sending
event for the message but no receiving event.

Lost
Message
Path

9.5.2

<Name>(<Argument>,. . .)
Asynchronous messages correspond to either the sending
of a signal or to an asynchronous invocation (or call) of
an operation, and do not require a reply message.

Asynchronous
Message

9.5.1

<Name>

Focus of control bars or activations are overlaid on
lifelines and correspond to executions; they begin at the
execution's start event, and end at the execution's end
event. When executions are nested, the focus of control
bars are stacked from left to right. An alternate notation
for activations is a box symbol overlaid on the lifeline with
the name of the behavior or action inside.

Focus of
Control
(Activation)
Node

9.5.4

<Name>(<Argument>,. . .) The creation of an instance is indicated by the receipt of a
create message.

Create
Message
Path

9.5.5

An instance's destruction is indicated by the ocurrence of
a destroy event.

Destroy
Event Node

9.5.5

Within a coregion, there is no implied order between any
messages sent or received by the lifeline.

Coregion
Symbol

9.7.1

<Name>(<Argument>,. . .)
A found message describes the case where there is
receiving event for the message but no sending event.

Found
Message
Path

9.5.2

<Name>(<Argument>,. . .)

Section
Diagram
Element

Notation Description

Synchronous
Message

A synchronous message corresponds to the synchronous
invocation of an operation, and is generally accompanied
by a reply message.

9.5.1
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   Table A.17 Sequence Diagram Temporal Observation and Constraint Nodes

              

<Name>=<TimeExpression> A time observation is used to note the time at some
instant during the execution of an interaction.

Time
Observation
Symbol

9.6

{<TimeConstraint>} A time constraint identifies a constraint that
applies to the time of occurrence of a single event
in the interaction execution. A time constraint can
use a time observation in its definition.

Time
Constraint
Symbol

9.6

{<DurationConstraint>}

{<DurationConstraint>}

{<DurationConstraint>}

A duration constraint identifies two events, called
the start and end events, and expresses a constraint
on the duration between them. A duration constraint
can use a duration observation in its definition.

Duration
Constraint
Symbol

9.6

<Name>=<DurationExpression>

<Name>=<DurationExpression>

Section
Diagram
Element

Notation Description

Duration
Observation
Symbol

A duration observation can be used to note the time
taken between two instants that represent the
occurrence of events during the execution of an
interaction.

9.6

          

A.8 Sequence Diagram
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    A.9 State Machine Diagram 
   State machine diagram are used in SysML to describe the state-dependent behav-
ior of a block throughout its life cycle in terms of its states and the transitions 
between them. 

              

<State>

<Name>

<Name>

<Name>

<Name>

A composite state is a state with nested regions;
the most common case is a single region. A
composite state may have entry- and exit-point
pseudostates that act like junction pseudostates.
Entry points have incoming transitions from
outside the state and exit points have the opposite.

Composite
State with
Entry- and
Exit-Point
Pseudostate
Nodes

10.6.1

<State>:<StateMachine>

<Name> <Name>

A state machine may be reused using a kind of
state called a submachine state. A transition
ending on a submachine state will start its
referenced state machine. Transitions may also be
connected to connection points on the boundary
of the state.

Sub–
State Machine
Node with
Connection
Points

10.6.5

<State><State>
A composite state may have many regions, which
may each contain substates. These regions are
orthogonal to each other and so a composite state
with more than one region is sometimes called an
orthogonal composite state.

Composite
State Node
with Multiple
Regions

10.6.2

Entry/<Behavior>
Exit/<Behavior>
Do/<Behavior>
<Event>[<Constraint>]/<Behavior>
<Event>/defer

<State>

A state represents some significant condition in
the life of a block, typically because it represents
some change in how the block responds to events.
Each state may have entry and exit behaviors that
are performed whenever the state is entered or
exited, respectively. In addition, the state may
perform a do activity that executes once the entry
behavior has completed and continues to execute
until it completes or the state is exited.

Atomic State
Node

10.3

stm <StateMachine>

Section
Diagram
Element

Notation Description

State Machine
with Entry-
and Exit-Point
Pseudostate
Nodes

A state machine may have entry- and exit-point 
pseudostates, which are similar to junctions. On
state machines, entry-point pseudostates can only
have outgoing transitions and exit-point
pseudostates can only have incoming transitions.

10.6.5

         

   Table A.18 State Machine Diagram State Nodes
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   Table A.19 State Machine Diagram Pseudostate and Transition Nodes

              

The final state indicates that a region has completed execution.Final State
Node

10.3

The outgoing transitions of a choice pseudostate are evaluated once it has
been reached.

Choice
Pseudostate
Node

10.4.2

An initial pseudostate specifies the initial state of a region.Initial
Pseudostate
Node

10.3

<Event>,. . . [<Constraint>]
This node represents all the transition’s triggers, with the descriptions of
the triggering events and the transition guard inside the symbol.

Trigger Node 10.4.3

<EffectExpression>
<EffectExpression> describes the effect of the transition, either the name
of a behavior or the body of an opaque behavior. 

Action Node 10.4.3

A junction pseudostate is used to construct a compound transition path
between states.

Junction
Pseudostate
Node

10.4.2

A join pseudostate has a single outgoing transition and many incoming
transitions. When all of the incoming transitions can be taken, and the
join’s outgoing transition is valid, then all the transitions happen.

Join
Pseudostate
Node

10.6.2

A fork pseudostate has a single incoming transition and many outgoing
transitions. When an incoming transition is taken to the fork pseudostate,
all of the outgoing transitions are taken.

Fork
Pseudostate
Node

10.6.2

<Signal>(<Argument>,. . .)
This node represents a send signal action. The signal’s name, together
with any arguments that are being sent, are shown within the symbol.

Send Signal
Node

10.4.3

H*H
A history pseudostate represents the last state of its owning region, and a
transition ending on a history pseudostate has the effect of returning the
region to the state it was last in.

History
Pseudostate
Node

10.6.4

Section
Diagram
Element

Notation Description

Terminate
Pseudostate
Node

If a terminate pseudostate is reached, then the behavior of the state
machine terminates.

10.3

         

A.9 State Machine Diagram
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   Table A.20 State Machine Diagram Paths

              

<Operation>(<Attribute>, . . .)[<Constraint>]/<Behavior>

Call events indicate that an operation on the state
machine’s owning block has been requested. A call
event may also be accompanied by a number of
arguments, which may be assigned to attributes.
The transition can also include a guard and effect.

Call Event
Transition
Path

10.5

when <Expression>[<Constraint>]/<Behavior>

Change events indicate that some condition has
been satisfied (normally that some specific set of
attribute values hold). The transition can also
include a guard and behavior/effect.

Change Event
Transition
Path

10.7

<Signal>(<Attribute>, . . .)[<Constraint>]/<Behavior>

Signal events indicate that a new asynchronous
message has arrived. A signal event may be
accompanied by a number of arguments, which
may be assigned to attributes. The transition can
also include a guard and effect.

Signal Event
Transition
Path

10.4.1

after <TimeExpression>[<Constraint>]/<Behavior>

at <TimeExpression>[<Constraint>]/<Behavior>

Section
Diagram
Element

Notation Description

Time Event
Transition
Path

Time events indicate either that a given time
interval has passed since the current state was
entered (after), or that a given instant of time has
been reached (at). The transition can also include
a guard and effect.

10.4.1
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    A.10 Use Case Diagram 
   The use case diagram is used to model the relationships between the system 
under consideration or subject, its actors, and use cases. 

              

«include»

The inclusion relationship allows a base use case to
include the functionality of an included use case as part of
its functionality. The included use case is always performed
when the base use case is performed. The arrow end of the
include relationship points to the included use case.

Inclusion Path 11.4.1

<GeneralizationSet><GeneralizationSet>

Use cases and actors can be classified using the
generalization relationships. Scenarios and actor
associations from the general use case are inherited by
the specialized use case.

Generalization
Path

11.4.1

The extending use case is a fragment of functionality that
extends the base use case and is not considered part of the
normal base use case functionality. It often describes some
exceptional behavior in the interaction between subject and
actors, such as error handling, which does not contribute
directly to the goal of the base use case. The arrow end of
the extension relationship points to the base use case that is
extended.

<Name>

<Use Case>

The entity that provides functionality in support of the
use cases is called the system under consideration, or
subject, and is represented by a rectangle. It often
represents a system that is being developed.

Subject Node 11.4

<End><End>

<Multiplicity> <Multiplicity>

<Name>

Actors are related to use cases by associations. The
multiplicity at the actor end describes the number of
actors involved, and the multiplicity at the use case end
describes the number of instances in which the actor or
actors can be involved.

Association
Path

11.4

Condition: {<Constraint>}
extension points: <ExtensionPoint>,...

«extend»

Extension Path 11.4.1

<Name>

extension points

<ExtensionPoint>,...

Use cases describe the functionality of some system in
terms of how its users use that system to achieve their
goals. A use case may define a set of extension points,
that represent places where it can be extended.

Use Case
Node

11.1, 11.4

«actor»
<Name>

<Name>

Section
Diagram
Element

Notation Description

Actor Node The users and other external participants in an interaction
with a subject are described by actors. An actor represents
the role of a human, an organization, or any external
system that participates in the use of some subject. Actors
may interact directly with the suject or indirectly with the
system through other actors.

11.1, 11.3

          

A.10 Use Case Diagram

   Table A.21 Use Case Diagram Notation
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    A.11 Requirement Diagram 
   The requirement diagram is used to graphically depict hierarchies of require-
ments or to depict an individual requirement and its relationship to other model 
elements. 

   Table A.22 Requirement Diagram Nodes

              

tracedTo
«ElementType»<Element>

tracedFrom
«ElementType»<Element>

The trace relationship can be shown using
compartment notation when the requirements and
related model elements do not appear on the same
diagram.

Trace
Compartment

12.5,
12.14

<Name>

<Name>

Requirements can be organized into a package
structure. Each package within this package
structure may correspond to a different
specification, each containing the text-based
requirements for that specification.

Package
Node

12.8

verifies
«requirement»<Requirement>

«testCase»
<Name>

A test case can represent any method for
performing the verification, including the
standard verification methods of inspection,
analysis, demonstration, and testing.

Test Case
Node

12.12

satisfies
«requirement»<Requirement>

refines
«requirement»<Requirement>

«<ElementType>»
<Name>

Requirements can be related to model elements
that may appear in different hierarchies or on
different diagrams. These relationships can be
shown using the compartment notation when the
requirements and related model elements do not
appear on the same diagram.

Requirement
Related–Type
Node

12.5,
12.11,
12.13

verifiedBy

master

refinedBy

derivedfrom

derived

satsifiedBy

«<testCase>»<TestCase>

«requirement»<Requirement>

«ElementType»<Element>

«requirement»<Requirement>

«requirement»<Requirement>

«<ElementType>»<Element>

id = “<String>”
text = “<String>”

«requirement»
<Name>

Section
Diagram
Element

Notation Description

Requirement
Node

A requirement specifies a capability or condition
that must (or should) be satisfied, a function that
a system must perform, or a performance
condition a system must achieve. Each
requirement includes predefined properties for
its identification and textual description. SysML
includes specific relationships to relate
requirements to other requirements as well as to
other model elements, which include deriving
requirements, satisfying requirements, verifying
requirements, refining requirements, and copying
requirements. The compartment notation is one
method for displaying a requirement relationship
between a requirement and another model
element.

12.1, 12.3,
12.4,
12.5.2
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   Table A.23 Requirement Diagram Paths

              

«satisfy»
A satisfy relationship is used to assert that a model element
corresponding to the design or implementation satisfies a particular
requirement.

Satisfaction
Path

12.11

«verify»
A verify relationship is used between a requirement and a test case or
other named element to indicate how to verify that the requirement is
satisfied.

Verification
Path

12.12

«deriveReqt» A derive relationship occurs between a source requirement and a derived
requirement, based on analysis of the source requirement.

Derivation
Path

12.10

«trace»
A trace relationship is a general-purpose way to relate a requirement and
any other model element, useful for relating requirements to documents,
etc.

Trace Path 12.14

«copy» The copy relationship relates a copy of a requirement to the original
requirement, to support reuse of requirements.

Copy Path 12.14.1

«refine» The refine relationship is used to reduce ambiguity in a requirement by
relating it to another model element that clarifies the requirement.

Refinement
Path

12.13

Section
Diagram
Element

Notation Description

Containment
Path The containment relationship is used to represent how requirements are

contained in specifications (packages), or how a complex requirement
can be partitioned into a set of simpler requirements without adding or
changing their meaning.

12.9

         

A.11 Requirement Diagram
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   Table A.24 Requirement Diagram Callouts

              

verifiedBy
«testCase»<TestCase>

verifies
«requirement»<Requirement>

This callout notation is an alternative notation for
depicting verify relationships.

Verification
Callout

12.5.3,
12.12

satisfies
«requirement»<Requirement>

satisfiedBy
«<ElementType>»<Element>

This callout notation is an alternative notation for
depicting satisfy relationships.

Satisfaction
Callout

12.5.3,
12.11

refinedBy
«<ElementType>»<Element>

refines
«requirement»<Requirement>

This callout notation is an alternative notation for
depicting refine relationships.

Refinement
Callout

12.5.3,
12.13

master
«requirement»<Requirement>

This callout notation is an alternative notation for
depicting copy relationships.

Master
Requirement
Callout

12.5.3,
12.14.1

«rationale»
<Text>

A rationale is typically  associated with either a
requirement, or a relationship between requirements.
It can also be applied throughout the model to capture
the reason for any type of decision.

Rationale
Callout

12.6

«problem»
<Text>

A problem is a particular kind of comment used to
identify or flag design issues in the model.

Problem
Callout

12.6

derivedFrom
«requirement»<Requirement>

derived
«requirement»<Requirement>

This callout notation is an alternative notation for
depicting derive relationships.

Derivation
Callout

12.5.3,
12.11

tracedFrom
«<ElementType>»<Element>

tracedTo
«<ElementType>»<Element>

Section
Diagram
Element

Notation Description

Trace
Callout

This callout notation is an alternative notation for
depicting trace relationships. It is the least restrictive
notation in that it can be used to represent a
relationship between any requirement and any other
model element on any diagram type.

12.5.3,
12.14
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    A.12 Allocation 
   SysML includes several notational options to provide flexibility for representing 
allocations of model elements across the system model. The graphical representa-
tions are similar to those used for relating requirements to other model elements. 

              

allocatedTo

allocatedFrom

«block»
<Name>

The compartment notation identifies the element at the opposite end of
the allocation relationship in a compartment of the model element. When
used on a block, it explicitly indicates allocation of definition to/from the
block.

Block Node
with
Allocation
Compartments

13.3

allocatedTo

allocatedFrom

<Name>:<Block>[<Multiplicity>]
The compartment notation identifies the element at the opposite end of
the allocation relationship in a compartment of the model element. When
used on a part, it explicitly indicates allocation of usage to/from the part.
An inferred allocation (part typed by a block, which in turn has an
activity allocated to it) should not be depicted by a compartment on
the part.

Part Node
with
Allocation
Compartments

13.3

<Name>:<Behavior>

allocatedFrom

allocatedTo

«<ElementType>»<Element>

«<ElementType>»<Element>

«<ElementType>»<Element>

«<ElementType>»<Element>

«<ElementType>»<Element>

«<ElementType>»<Element>

When an allocation compartment is used on an action, it explicitly
indicates allocation of usage to/from the action. An inferred allocation
(action typed by an activity, which in turn is allocated to a block) should
not be depicted by a compartment on the action.

Call Action
Node with
Allocated To
Compartment

13.3

«allocate»
This allocation relationship can be depicted directly when both ends of
the allocation relationship are shown on the same diagram. The
arrowhead represents the “allocatedTo” end.

Allocation
Path

13.3

«allocate»
<Partition>

The presence of an allocate activity partition on an activity diagram
implies an allocate relationship between any action node within the
partition and the part represented by the partition. This provides
allocation of usage (action to part), but not allocation of definition
(activity to block). The alternative activity partition notation (Activity
Partition in Action Node in Table A.11) can also be used.

Allocate
Activity
Partition Node

13.7

allocatedFrom
«<ElementType>»<Element>

The callout notation can be used to represent the opposite end of the
allocation relationship for any model element. In this case the callout
box is anchored to an element that is allocated from the element name in
the callout box.

Allocated
From Callout 

13.3

allocatedTo
«<ElementType>»<Element>

Section
Diagram
Element

Notation Description

Allocated To
Callout

The callout notation can be used to represent the opposite end of the
allocation relationship for any model element. In this case the callout
box is anchored to an element that is allocated to the element name in
the callout box.

13.3

          

A.12 Allocation

   Table A.25 Notation for Allocations
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   A.13 Stereotypes 
   Stereotypes may be applied to elements on any diagram, and SysML has a generic 
notation across all diagrams. Information about applied stereotypes can be shown 
either inside node symbols, as part of name strings, or using callout notation. 

  Table A.26 Notation for Stereotyped Elements

        

«<Stereotype>»{<Property>=<Value>,. . .}<Name>

label

If the model element is represented by path
symbol (e.g., a line), the stereotype name and
properties are shown in a label next to the line and
before the name of the element.

Stereotype keywords and properties can also be
shown for elements in compartments, when they are
shown before the element name.

Name
String with
Keywords and
Properties

14.6

<Property>=<Value>
...

Irrespective of the symbol representing a model
element, the values for applied stereotypes properties
can always be shown using callout notation. Property
values from multiple sterotypes can be shown in a
single note symbol.

Stereotype
Callout

14.6

«<Stereotype>,...»
<Name>

Where a symbol supports compartments, the values
for the properties of an applied stereotype can be
shown in a compartment specific to that stereotype.

Node with
Stereotype
Compartment

14.6

«<Stereotype>,. . .»
<Name>

If no stereotype properties are shown, then multiple
stereotype names can appear in a comma-separated
list within one set of guillemets.

Name
Compartment
with
Keywords

14.6

«<Stereotype>»

<Name>

<Stereotype>»{<Property>=<Value>,. . .}<Name>
...

{<Property>=<Value>,. . .}

Section
Diagram
Element

Notation Description

Name
Compartment
with
Keywords and
Properties

A stereotyped model element is shown with the name
of the stereotype in guillemets, followed by any
values for the stereotypes properties and then the
name of the model element. Multiple stereotypes and
their properties may be shown before the model
element name.

14.6

«<Stereotype>»

<Property>=<Value>
...

«<Stereotype>»
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 purpose of  ,  85   
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 description of ,  123–124   
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 to connector ,  323–325 ,  324 f    
 to item fl ow ,  325–326    
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 rates of ,  194 ,  196   
 routing ,  182–186    

 Objective function ,  166, 415, 472–473   
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 description of ,  179   
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 defi nition of ,  219   
destroy ,  225    
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 description of ,  12 ,  397   
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model organization ,  404–408   
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 residential security example of . See    Residential 
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system development 
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 management process ,  400   
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Opaque behavior ,  128   
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 Opt ,  229   
 Ordered constraint parameters ,  153   
 Ordering property ,  196   
 Orthogonal composite state ,  242 ,  255   
 Overlapping lifelines ,  230 f    
 Overlap property ,  138    

 P 
 Package(s) 

 components ,  85   
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 defi nition of ,  81   
 dependencies between ,  89–90 ,  93   
 in model library ,  339–340   
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 dependencies on ,  90   
 description of ,  29 ,  336   



554 Index

 Package diagram (continued)       
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 purpose of  ,  91    
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 description of  ,  30  ,  30 f    
model organization using ,  57–59   
 nodes  ,  526 f    
 power distribution equation using  ,  158 f    
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 Profi le application 
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defi nition of ,  339 ,  341 ,  343   
 for profi le , 347   

 Reference node ,  525 f    
 Reference path ,  520 f    
 Reference properties 
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 allocation of ,  311   
 criticality property of ,  286   
 deriving ,  296–298   
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 trace ,  303   
 types of ,  287–289   
 verifying of ,  298–300    

 Requirements table ,  292 ,  293 f    
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 physical node architecture  ,  446–460   
 requirements relationships  ,  478  ,  480   
  Requirements Variation  analysis  ,  429   
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 sequence diagrams  ,  463  ,  463 f    
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 description of ,  5–9   
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  132–133   
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 description of ,  45   
 interfaces added to , 131–132  
 node ,  522 f   ,  525 f     

 Standards 
 architectural frameworks ,  12–13   
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 transitioning between . See  Transition    

 State analysis method ,  12   
 State charts ,  242   
 State constraint ,  198   
 State hierarchies 

 composite states ,  254–258   
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 model elements ,  336 ,  337 f   ,  349   
 node ,  520 f    
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 in user model ,  345    

 Streaming activity parameter ,  177   
 Strict ,  232   
 Strict property of profi le application 

relationship ,  347   
 Structural allocation 
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 SysML specifi cation ,  13   
 System(s)  

 complexity of  ,  11   
 design of  ,  7  ,  8 f   ,  9   
 hierarchy of  ,  65   
 requirements  ,  6   
 use case for describing functionality of  ,

  271–276   
 users of  ,  270–271    
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 defi nition of ,  271   
 description of ,  38–39 ,  269   
 enterprise ,  417–418   
 exception ,  418   
 extension relationship ,  273–274   
 included ,  273   
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