

A Practical Guide
to SysML

 Morgan Kaufmann Publishers and the Object Management Group ™ (OMG) have joined
forces to publish a line of books addressing business and technical topics related to
OMG’s large suite of software standards.

 OMG is an international, open membership, not-for-profi t computer industry consortium
that was founded in 1989. The OMG creates standards for software used in government
and corporate environments to enable interoperability and to forge common development
environments that encourage the adoption and evolution of new technology. OMG members
and its board of directors consist of representatives from a majority of the organizations
that shape enterprise and Internet computing today.

 OMG’s modeling standards, including the Unifi ed Modeling Language ™ (UML ®) and Model
Driven Architecture ® (MDA), enable powerful visual design, execution and maintenance
of software, and other processes — for example, IT Systems Modeling and Business Process
Management. The middleware standards and profi les of the Object Management Group are
based on the Common Object Request Broker Architecture ® (CORBA) and support a wide
variety of industries.

 More information about OMG can be found at http://www.omg.org/.

 Related Morgan Kaufmann OMG Press Titles

 UML 2 Certifi cation Guide: Fundamental and Intermediate Exams
 Tim Weilkiens and Bernd Oestereich

 Real-Life MDA: Solving Business Problems with Model Driven Architecture
 Michael Guttman and John Parodi

 Systems Engineering with SysML/UML: Modeling, Analysis, Design
 Tim Weilkiens

 A Practical Guide to SysML: The Systems Modeling Language
 Sanford Friedenthal, Alan Moore, and Rick Steiner

 Building the Agile Enterprise: With SOA, BPM and MBM
 Fred Cummins

 Business Modeling: A Practical Guide to Realizing Business Value
 Dave Bridgeland and Ron Zahavi

 Architecture Driven Modernization: A Series of Industry Case Studies
 Bill Ulrich

Morgan Kaufmann OMG Press

A Practical Guide
to SysML

The Systems Modeling
Language

Sanford Friedenthal
Alan Moore

Rick Steiner

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Morgan Kaufmann Publishers is an imprint of Elsevier

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803

This book is printed on acid-free paper.

Copyright © 2008 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan Kaufmann
Publishers is aware of a claim, the product names appear in initial capital or all capital
letters. Readers, however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, scanning, or otherwise,
without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail:
permissions@elsevier.com. You may also complete your request on-line via the Elsevier
homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and
Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data

Friedenthal, Sanford.
 A practical guide to SysML : The Systems Modeling Language / Sanford Friedenthal,
Alan Moore, Rick Steiner.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-12-374379-4 (alk. paper)
 1. Systems engineering. 2. SysML I. Moore, Alan. II. Steiner, Rick. III. Title.
TA168.F745 2008
620.001'171—dc22 2008024882

For information on all Morgan Kaufmann publications, visit
our Web site at www.mkp.com or www.books.elsevier.com.

Printed in the United States

08 09 10 11 12 10 9 8 7 6 5 4 3 2 1

 Contents

 Preface xi
 About the Authors xv

 PART I Introduction 1

 CHAPTER 1 Systems Engineering Overview3
 1.1 Motivation for Systems Engineering .. 3
 1.2 The Systems Engineering Process.. 4
 1.3 Typical Application of the Systems Engineering Process........................... 5
 1.4 Multidisciplinary Systems Engineering Team ... 9
 1.5 Codifying Systems Engineering Practice through Standards 11
 1.6 Summary .. 13
 1.7 Questions ... 14

 CHAPTER 2 Model-Based Systems Engineering15
 2.1 Contrasting the Document-Based and

Model-Based Approach ... 15
 2.2 Modeling Principles .. 21
 2.3 Summary ... 27
 2.4 Questions .. 27

 CHAPTER 3 SysML Language Overview ..29
 3.1 SysML Purpose and Key Features .. 29
 3.2 SysML Diagram Overview ... 29
 3.3 Using SysML in Support of MBSE .. 31
 3.4 A Simple Example Using SysML for an Automobile Design 32
 3.5 Summary ... 60
 3.6 Questions .. 60

 PART II Language Description 61

 CHAPTER 4 SysML Language Architecture63
 4.1 The OMG SysML Language Specifi cation .. 63
 4.2 The Architecture of the SysML Language ... 65
 4.3 SysML Diagrams ... 69
 4.4 The Surveillance System Case Study .. 76
 4.5 Chapter Organization for Part II .. 77
 4.6 Questions ... 78

vi Contents

 CHAPTER 5 Organizing the Model with Packages79
 5.1 Overview ... 79
 5.2 The Package Diagram .. 80
 5.3 Defi ning Packages Using a Package Diagram .. 80
 5.4 Organizing a Package Hierarchy .. 82
 5.5 Showing Packageable Elements on a Package Diagram 85
 5.6 Packages as Namespaces ... 85
 5.7 Importing Model Elements into Packages ... 87
 5.8 Showing Dependencies between Packageable Elements...................... 89
 5.9 Specifying Views and Viewpoints .. 91
 5.10 Summary ... 92
 5.11 Questions .. 93

 CHAPTER 6 Modeling Structure with Blocks95
 6.1 Overview ... 95
 6.2 Modeling Blocks on a Block Defi nition Diagram 97
 6.3 Modeling the Structure and Characteristics of Blocks

Using Properties .. 99
 6.4 Modeling Interfaces Using Ports and Flows .. 120
 6.5 Modeling Block Behavior .. 128
 6.6 Modeling Classifi cation Hierarchies Using Generalization 134
 6.7 Summary ... 144
 6.8 Questions .. 145

 CHAPTER 7 Modeling Constraints with Parametrics149
 7.1 Overview ... 149
 7.2 Using Constraint Expressions to Represent System Constraints 151
 7.3 Encapsulating Constraints in Constraint Blocks to Enable Reuse 152
 7.4 Using Composition to Build Complex Constraint Blocks 154
 7.5 Using a Parametric Diagram to Bind Parameters of

Constraint Blocks ... 155
 7.6 Constraining Value Properties of a Block .. 159
 7.7 Capturing Values in Block Confi gurations ... 159
 7.8 Constraining Time-Dependent Properties to Facilitate

Time-Based Analysis ... 161
 7.9 Using Constraint Blocks to Constrain Item Flows 163
 7.10 Describing an Analysis Context ... 163
 7.11 Modeling Evaluation of Alternatives and Trade Studies 166
 7.12 Summary ... 168
 7.13 Questions .. 169

 CHAPTER 8 Modeling Flow-Based Behavior with Activities171
 8.1 Overview ... 171
 8.2 The Activity Diagram ... 172
 8.3 Actions—The Foundation of Activities ... 174

viiContents

 8.4 The Basics of Modeling Activities .. 176
 8.5 Using Object Flows to Describe the Flow of Items

between Actions ... 179
 8.6 Using Control Flows to Specify the Order of Action Execution 187
 8.7 Handling Signals and Other Events ... 191
 8.8 Advanced Activity Modeling .. 193
 8.9 Relating Activities to Blocks and Other Behaviors 200
 8.10 Modeling Activity Hierarchies Using Block Defi nition Diagrams 206
 8.11 Enhanced Functional Flow Block Diagram ... 208
 8.12 Executing Activities ... 208
 8.13 Summary ... 211
 8.14 Questions .. 212

 CHAPTER 9 Modeling Message-Based Behavior
with Interactions ...215

 9.1 Overview ... 215
 9.2 The Sequence Diagram ... 216
 9.3 The Context for Interactions ... 216
 9.4 Using Lifelines to Represent Participants in an Interaction 218
 9.5 Exchanging Messages between Lifelines ... 220
 9.6 Representing Time on a Sequence Diagram .. 225
 9.7 Describing Complex Scenarios Using Combined Fragments 229
 9.8 Using Interaction References to Structure Complex Interactions 234
 9.9 Decomposing Lifelines to Represent Internal Behavior 235
 9.10 Summary ... 238
 9.11 Questions .. 239

 CHAPTER 10 Modeling Event-Based Behavior
with State Machines ..241

 10.1 Overview ... 241
 10.2 State Machine Diagram .. 242
 10.3 Specifying States in a State Machine ... 243
 10.4 Transitioning between States .. 245
 10.5 State Machines and Operation Calls .. 252
 10.6 State Hierarchies .. 254
 10.7 Contrasting Discrete versus Continuous States 263
 10.8 Summary ... 264
 10.9 Questions .. 266

 CHAPTER 11 Modeling Functionality with Use Cases269
 11.1 Overview ... 269
 11.2 Use Case Diagram .. 269
 11.3 Using Actors to Represent the Users of a System 270
 11.4 Using Use Cases to Describe System Functionality 271

viii Contents

 11.5 Elaborating Use Cases with Behaviors .. 276
 11.6 Summary ... 281
 11.7 Questions .. 281

 CHAPTER 12 Modeling Text-Based Requirements and Their
Relationship to Design ...283

 12.1 Overview .. 283
 12.2 Requirement Diagram ... 285
 12.3 Representing a Text Requirement in the Model 285
 12.4 Types of Requirements Relationships... 287
 12.5 Representing Cross-Cutting Relationships in SysML Diagrams 289
 12.6 Depicting Rationale for Requirements Relationships 291
 12.7 Depicting Requirements and Their Relationships in Tables 292
 12.8 Modeling Requirement Hierarchies in Packages 294
 12.9 Modeling a Requirements Containment Hierarchy 294
 12.10 Modeling Requirement Derivation ... 296
 12.11 Asserting That a Requirement Is Satisfi ed ... 298
 12.12 Verifying That a Requirement Is Satisfi ed ... 298
 12.13 Reducing Requirements Ambiguity Using the Refi ne

Relationship ... 300
 12.14 Using the General-Purpose Trace Relationship 303
 12.15 Summary ... 304
 12.16 Questions .. 305

 CHAPTER 13 Modeling Cross-Cutting Relationships
with Allocations ..307

 13.1 Overview .. 307
 13.2 Allocation Relationship ... 308
 13.3 Allocation Notation... 308
 13.4 Types of Allocation ... 311
 13.5 Planning for Reuse: Specifying Defi nition and

Usage in Allocation ... 314
 13.6 Allocating Behavior to Structure Using Functional Allocation 317
 13.7 Connecting Functional Flow with Structural Flow
 Using Functional Flow Allocation .. 323
 13.8 Modeling Allocation between Independent

Structural Hierarchies .. 327
 13.9 Modeling Structural Flow Allocation .. 329
 13.10 Evaluating Allocation across a User Model .. 331
 13.11 Taking Allocation to the Next Step ... 332
 13.12 Summary ... 333
 13.13 Questions .. 334

 CHAPTER 14 Customizing SysML for Specifi c Domains335
 14.1 Overview .. 335
 14.2 Defi ning Model Libraries to Provide Reusable Constructs 339

ixContents

 14.3 Defi ning Stereotypes to Extend Existing SysML Concepts 341
 14.4 Extending the SysML Language Using Profi les 346
 14.5 Applying Profi les to User Models in Order to Use Stereotypes......... 347
 14.6 Applying Stereotypes when Building a Model 348
 14.7 Summary ... 354
 14.8 Questions .. 356

 PART III Modeling Examples 357

 CHAPTER 15 Water Distiller Example Using
Functional Analysis ..359

 15.1 Stating the Problem ... 359
 15.2 Defi ning the Model-Based Systems Engineering Approach 361
 15.3 Organizing the Model ... 362
 15.4 Establishing Requirements .. 364
 15.5 Modeling Behavior .. 367
 15.6 Modeling Structure ... 376
 15.7 Analyzing Performance ... 382
 15.8 Modifying the Original Design .. 386
 15.9 Summary ... 396
 15.10 Questions .. 396

 CHAPTER 16 Residential Security System Example Using the
Object-Oriented Systems Engineering Method397

 16.1 Method Overview ... 397
 16.2 Residential Security Example Overview and Project Setup 402
 16.3 Applying the Method to Specify and Design the System 408
 16.4 Summary ... 485
 16.5 Questions .. 486

 PART IV Transitioning to Model-Based
Systems Engineering 487

 CHAPTER 17 Integrating SysML into a Systems
Development Environment489

 17.1 Understanding the System Model ’s Role in a Systems
Development Environment ... 489

 17.2 Integrating the Systems Modeling Tool with Other Tools 492
 17.3 Data Exchange Mechanisms in an Integrated Systems

Development Environment ... 500
 17.4 Selecting a System Modeling Tool ... 504
 17.5 Summary ... 507
 17.6 Questions .. 507

x Contents

 CHAPTER 18 Deploying SysML into an Organization509
 18.1 Improvement Process ... 509
 18.2 Summary ... 514
 18.3 Questions .. 515

 APPENDIX SysML Reference Guide ...517
A.1 Overview ..517
A.2 Notational Conventions ...517
A.3 Package Diagram ..519
A.4 Block Defi nition Diagram ...521
A.5 Internal Block Diagram ..525
A.6 Parametric Diagram ..526
A.7 Activity Diagram ...527
A.8 Sequence Diagram ..531
A.9 State Machine Diagram ...534
A.10 Use Case Diagram ...537
A.11 Requirement Diagram ..538
A.12 Allocation ...541
A.13 Stereotypes ...542

 References ...543

 Index ...545

 Preface

 Systems engineering is a multidisciplinary approach for developing solutions to
complex problems. The increase in system complexity is demanding more rigor-
ous and formalized systems engineering practices. In response to this demand,
along with advancements in computer technology, the practice of systems engi-
neering is undergoing a fundamental transition from a document-based approach
to a model-based approach. In the model-based approach, the emphasis shifts
from producing and controlling documentation to producing and controlling a
coherent model of the system. Model-based systems engineering (MBSE) can help
to manage complexity, while at the same time improve design quality and cycle
time, improve communications among a diverse development team, and facilitate
knowledge capture and design evolution.

 A standardized and robust modeling language is considered a critical enabler
for MBSE. The Systems Modeling Language (OMG SysML™) is a general-purpose
modeling language that supports the specification, design, analysis, and verifica-
tion of systems. These systems may include hardware, software, data, personnel,
procedures, and facilities. SysML is a graphical modeling language with a seman-
tic foundation for representing requirements, behavior, structure, and properties
of the system and its components. The modeling language is intended to model
systems from a broad range of industry domains such as aerospace, automotive,
health care, and so on.

 SysML is an extension of the Unified Modeling Language (UML), version 2,
which has become the de facto standard software modeling language. Require-
ments were issued by the Object Management Group (OMG) in March 2003 to
extend UML to support systems modeling. UML 2 was selected as the basis for
SysML because it is a robust language that addresses many of the systems engin-
eering needs, while at the same time, the systems engineering community is able
to leverage the broad base of experience and tool vendors that support UML. This
approach also facilitates the integration of systems and software modeling, which
is becoming increasingly important for today’s software-intensive systems.

 The development of the language specification was a collaborative effort
between members of the OMG, the International Council on Systems Engineering
(INCOSE), and the AP233 Working Group of the International Standards Organiza-
tion (ISO). Following three years of development, the OMG SysML specification
was adopted by the OMG in May 2006 and the formal version 1.0 language speci-
fication was released in September 2007. Several vendors have now implemented
SysML in their tools. It is expected that OMG SysML will continue to evolve
through further revisions to the specification based on feedback from end users,
tool vendors, and research activities. Information on SysML is available on the offi-
cial OMG SysML Web site at http://www.omgsysml.org .

xii Preface

 This book provides the foundation for understanding and applying SysML to
model systems as part of a model-based systems engineering approach. The book
is organized into four parts including the Introduction, Language Description,
Modeling Examples, and Transitioning to Model-Based Systems Engineering.

Part I, Introduction, contains an overview of systems engineering, a summary
of key MBSE concepts, followed by an overview of SysML. The systems engineer-
ing overview and MBSE concepts in Chapters 1 and 2 set the context for SysML,
and the language overview in Chapter 3 illustrates how the language is applied to
a simple example.

 Part II, Language Description, provides the detailed description of the language.
Chapter 4 provides an overview of the language architecture, and Chapters 5
through 14 describe key concepts related to model organization, blocks, paramet-
rics, activities, interactions, states, use cases, requirements, allocations, and pro-
files. The ordering of the chapters and the concepts are not based on the ordering
of activities in the systems engineering process, but are based on the dependen-
cies between the language concepts. Each chapter builds the readers’ understand-
ing of the concepts by introducing language constructs: their meaning, notation,
and examples of how they are used. The example used to demonstrate the lan-
guage throughout Part II is a security surveillance system. This example should
be understandable to most readers and has sufficient complexity to demonstrate
the language concepts.

 Part III, Modeling Examples, includes two examples to illustrate how SysML can
support different model-based methods. The first example in Chapter 15 applies
to the design of a water distiller system. It uses a simplified version of a classic
functional analysis and allocation method that is applied to the design of a system
that primarily controls physical processes. The second example in Chapter 16
applies to the design of a residential security system. It uses a comprehensive
object-oriented systems engineering method (OOSEM) and emphasizes how
the language is used to address a wide variety of systems engineering concerns,
including black-box versus white-box design, logical versus physical design, and
system distribution. While these two methods are considered representative of
how systems engineering can be applied, SysML is intended to support a variety
of other systems engineering methods.

 Part IV, Transitioning to Model-Based Systems Engineering, addresses how to
transition SysML into an organization. Chapter 17 is about how to integrate SysML
into a systems development environment. It describes the type of data that are
exchanged between a SysML tool and other classes of tools, and some of the types
of data exchange mechanisms that can be used. The chapter also includes a dis-
cussion on the criteria for selecting a SysML tool. Chapter 18 in this part, and the
last chapter of the book, describes how to deploy SysML into an organization.
SysML is introduced into the organization along with model-based methods, tools,
and training as part of a carefully planned and implemented improvement process.

 Questions are included at the end of each chapter to test readers ’ understand-
ing of the material. The answers to the questions can be found on the following
Web site at http://www.elsevierdirect.com/companions/9780123743794.

xiiiPrefeace

 The Appendix contains the SysML notation tables. These tables provide a ref-
erence guide for SysML notation along with a cross reference to the applicable
sections in Part II of the book.

 This book is a “practical guide ” targeted to a broad spectrum of industry prac-
titioners and students. It can serve as an introduction and reference for practi-
tioners, as well as an introductory text for courses in systems modeling and its
application to model-based systems engineering. In addition, because SysML reuses
many UML concepts, software engineers familiar with UML can use this informa-
tion as a basis for understanding systems engineering concepts. This will also help
to bridge gaps in understanding between team members who have diverse exper-
tise, such as is often the case with integrated systems and software engineering
teams. Finally, many systems engineering concepts come to light when using an
expressive language, and as such, this book can be used to help teach systems
engineering concepts.

 A first-time reader should pay close attention to the introductory chapters,
may choose to do a cursory reading of Part II, and then review the simplified dis-
tiller example in Part III. A more advanced reader may choose to read the intro-
ductory chapters, do a more comprehensive review of Part II, and then review
the residential security example in Part III. Part IV is of general interest to those
interested in trying to introduce SysML and MBSE into their organization or
project.

 Acknowledgments
 The authors wish to acknowledge the many individuals and their supporting
organizations who participated in the development of SysML and provided valu-
able insights throughout the language development process. The individuals are
too numerous to mention here but are listed in the OMG SysML specification.
The authors wish to especially thank the reviewers of this book for their valuable
feedback; they include Conrad Bock, Roger Burkhart, Jeff Estefan, Doug Ferguson,
Dr. Kathy Laskey, Dr. Leon McGinnis, Dr. Øystein Haugen, Dr. Chris Paredis,
Dr. Russell Peak, and Bran Selic.

 SysML is implemented in many different tools. For this book, we selected cer-
tain tools for representing the examples but are not endorsing them over other
tools. We do wish, however, to acknowledge some vendors for the use of their
tools, including Enterprise Architect by Sparx Systems, No Magic by Magic Draw,
and the Microsoft Visio SysML template provided by Pavel Hruby.

The authors would also like to acknowledge the patience, steadfast support,
and devotion of their wives throughout the development of this book: Linda
Friedenthal, Emma Moore, and Sharon Steiner.

This page intentionally left blank

 Sanford Friedenthal is a Principal System Engineer for Lockheed Martin
Corporation. His experience includes the system life cycle from conceptual design,
through development and production on a broad range of systems. He has also
been a systems engineering department manager responsible for ensuring that
systems engineering is implemented on programs. He has been a lead developer
of advanced systems engineering processes and methods, including the Lockheed
Martin Integrated Engineering Process and the Object-Oriented Systems Engineer-
ing Method (OOSEM). Sandy also was a leader of the industry team that developed
SysML from its inception through its adoption by the OMG.

 Mr. Friedenthal is well known within the systems engineering community for
his role in leading the SysML effort and for his expertise in model-based systems
engineering methods. He has been recognized as an INCOSE Fellow for these con-
tributions. He has given many presentations on these topics to a wide range of
professional and academic audiences both within and outside the US.

 Alan Moore is an Architecture Modeling Specialist at The MathWorks and has
extensive experience in the development of real-time and object-oriented meth-
odologies and their application in a variety of problem domains. Previously at
ARTiSAN Software Tools, he was responsible for the development and evolution of
Real-time Perspective, ARTiSAN’s process for real-time systems development. Alan
has been a user and developer of modeling tools throughout his career, from early
structured programming tools to UML-based modeling environments.

 Mr. Moore is an active member of the Object Management Group and chaired
both the fi nalization and revision task forces for the UML Profi le for Schedulability
and Performance and Time, and was a co-chair of the OMG’s Real-time Analysis
and Design Working Group. Alan also served as the language architect for the
SysML Development Team.

 Rick Steiner is an Engineering Fellow at Raytheon. He has focused on pragmatic
application of systems engineering modeling techniques since 1993 and has par-
ticipated in the International Council On Systems Engineering (INCOSE) Model
Driven System Design Working Group since its inception.

 He has been an internal advocate, consultant, and instructor of model-driven
systems development within Raytheon. Rick has served as chief engineer, archi-
tect, or lead system modeler for several large-scale electronics programs, incor-
porating the practical application of the Object-Oriented Systems Engineering
Method (OOSEM), and generation of Department of Defense Architecture Frame-
work (DoDAF) artifacts from complex system models.

 About the Authors

xvi About the Authors

 Mr. Steiner was a key contributor to the original requirements for SysML and
also the development of the SysML specifi cation. His main contribution to this
specifi cation was in the area of allocations, sample problems, and updates to
requirements. He has provided frequent tutorials and presentations on SysML and
model-driven system development at INCOSE symposia and meetings, NDIA con-
ferences, and internal to Raytheon.

PART

Introduction I

This page intentionally left blank

 The Object Management Group’s OMG SysML™ [1] is a general-purpose graphi-
cal modeling language for representing systems that may include combinations of
hardware, software, data, people, facilities, and natural objects. SysML supports the
practice of model-based systems engineering (MBSE) that is used to develop system
solutions in response to complex and often technologically challenging problems.

 This chapter introduces the systems engineering approach independent of
modeling concepts to set the context for how SysML is used. It describes the
motiv ation for systems engineering, introduces the systems engineering process,
and then describes a simplifi ed automobile design example to highlight how com-
plexity is addressed by the process. This chapter also summarizes the role of stan-
dards, such as SysML, to help codify the practice of systems engineering.

 The next two chapters in Part I introduce model-based systems engineering
and provide an overview of SysML. The language overview includes a simplifi ed
SysML model of the automobile design example introduced in this chapter.

 1.1 Motivation for Systems Engineering
 Whether it is an advanced military aircraft, a hybrid vehicle, a cell phone, or a
distributed information system, these systems are expected to perform at levels
undreamed of a generation ago. Competitive pressures demand that the systems
leverage technological advances to provide continuously increasing capability at
reduced costs and within shorter delivery cycles. The increased capability drives
requirements for increased functionality, interoperability, performance, reliability,
and smaller size.

 The interconnectivity among systems also places increased demands on sys-
tems. Systems can no longer be treated as stand-alone, but behave as part of a
larger whole that includes other systems as well as humans. Systems are expected
to support many different uses as part of an interconnected system of systems
(SoS). These uses drive evolving requirements that may not have been anticipated
when the system was originally developed. An analogy can be made by looking
at how the interconnectivity provided by email impacts the requirements on

 Systems Engineering
Overview 1

CHAPTER

4 CHAPTER 1 Systems Engineering Overview

day-to-day activities. Clearly, email can result in unanticipated requirements that
affect who we communicate with, how often, and how we respond. The same is
true for interconnected systems.

 The practices to develop these systems must support these increasing
demands. Systems engineering is an approach that has been dominant in the
aerospace and defense industry to provide system solutions to technologically
challenging and mission-critical problems. The solutions often include hardware,
software, data, people, and facilities. Systems engineering practices have con-
tinued to evolve to address the added complexity of the interconnected SoS
challenges, which are no longer limited to aerospace and defense systems. As a
result, the systems engineering approach has been gaining broader recognition and
acceptance across other industries such as automotive, telecommunications, and
medical equipment, to name a few.

 1.2 The Systems Engineering Process
 Systems engineering is a multidisciplinary approach to develop balanced sys-
tem solutions in response to diverse stakeholder needs. Systems engineering
includes the application of both management and technical processes to achieve
this balance and mitigate risks that can impact the success of the project. The
management process is applied to ensure that development cost, schedule, and
technical performance objectives are met. Typical management activities include
planning the technical effort, monitoring technical performance, managing risk,
and controlling the system technical baseline. The technical processes are applied
to specify, design, and verify the system to be built. The practice of systems engi-
neering is not static, but continues to evolve to deal with increasing demands.

 A simplifi ed view of the systems engineering technical processes is shown in
Figure 1.1 . The System Specifi cation and Design process is used to specify the
system and component requirements to meet stakeholder needs. The components
are then designed, implemented, and tested to ensure that they conform with their
requirements. The System Integration and Test process includes activities to inte-
grate the components into the system and verify that the system requirements are

System
Specification and

Design

Component Design,
Implementation,

and Test

Component
Requirements

Verified
Components

System Integration
and Test

Design Feedback

I&T Feedback

Stakeholder
Needs

System
Solution

System Requirements

 FIGURE 1.1

 Simplifi ed systems engineering technical processes.

5

satisfi ed. These processes are applied iteratively throughout the development of
the system, with ongoing feedback between the different processes. In more com-
plex applications, there are multiple levels of system decomposition beginning at
an enterprise or SoS level. In those cases, variants of this process are applied recur-
sively to each intermediate level of the design down to the level at which the com-
ponents are purchased or built.

 The System Specifi cation and Design process includes the following activities
to provide a balanced system solution that satisfi es the diverse stakeholders ’ needs:

■ Elicit and analyze stakeholder needs to understand the problem to be
solved, the goals the system is intended to support, and the effectiveness
measures needed to evaluate how well the system supports the goals

■ Specify system functionality, interfaces, physical and performance character-
istics, and other quality characteristics required of the system to support the
goals and effectiveness measures

■ Synthesize alternative system solutions by partitioning the system design
into components that can satisfy the system requirements

■ Perform trade-off analysis to evaluate and select a preferred solution that
satisfies system requirements and provides optimum balance to achieve the
overall effectiveness measures

■ Maintain traceability from the system goals to the system and component
requirements and verification results to ensure that requirements and stake-
holder needs are addressed

 1.3 Typical Application of the Systems Engineering Process
 The System Specification and Design process can be illustrated by applying this
process to an automobile design. A multidisciplinary systems engineering team is
responsible for executing this process. The participants and roles of a typical sys-
tems engineering team are discussed in Section 1.4.

 The team must fi rst identify the stakeholders and analyze their needs. Stake-
holders include the purchaser of the car and the users of the car. In this example,
the user includes the driver and the passengers. Each of their needs must be
addressed. Stakeholder needs further depend on the particular market segment,
such as a family car versus a sports car versus a utility vehicle. For this example, we
assume the automobile is targeted toward a typical mid-career individual who uses
the car for his or her daily transportation needs.

 In addition, a key tenet of systems engineering is to address the needs of other
stakeholders who may be impacted throughout the system life cycle, so additional
stakeholders include the manufacturers that produce the automobile and those
who maintain the automobile. Each of their concerns must be addressed to ensure
a balanced life-cycle solution. Less obvious stakeholders are governments that
express their needs via laws and regulations. Clearly, each stakeholder’s concern
is not of equal importance, and therefore stakeholder concerns must be properly

1.3 Typical Application of the Systems Engineering Process

6 CHAPTER 1 Systems Engineering Overview

weighted. Analysis is performed to understand the needs of each stakeholder and
defi ne effectiveness measures with target values. Target values are used to bound
the solution space, to evaluate the alternatives, and to discriminate the solution
from competitor solutions. In this example, the effectiveness measures may relate
to aesthetics, performance, fuel economy, safety, reliability, repair time, and produc-
tion cost.

 The system requirements are specifi ed to address stakeholder needs and associ-
ated effectiveness measures. This begins with a defi nition of the system boundary
so that clear interfaces can be established between the system and external sys-
tems and users as shown in Figure 1.2 . In this example, the driver and passengers
are external users who interact with the automobile. The gas pump and mainte-
nance equipment are examples of external systems that the vehicle interacts with.
In addition, the vehicle interacts with the physical environment such as the road.
All of these external systems, users, and the physical environment must be speci-
fi ed to clearly demarcate the system boundary and its associated interfaces.

 The functional requirements for the automobile are specifi ed by analyzing
what the system must do to support its overall goals. This vehicle must perform
functions related to accelerating, braking, and steering, and many additional func-
tions to address driver and passenger needs. The functional analysis identifi es the
inputs and outputs for each function. As shown in the example in Figure 1.3 ,
the functional requirement to accelerate the automobile requires an acceleration
input from the driver and produces outputs that correspond to the automobile
forces and the speedometer reading for the driver. The functional requirements
analysis also includes specifying the sequence and ordering of the functions.

AutomobileDriver

Road

Pump

 FIGURE 1.2

 Defi ning the system boundary.

Driver

Acceleration
Input

Speedometer
Feedback

Automobile
Force

Accelerate

 FIGURE 1.3

 Specifying the functional requirements.

7

 Functional requirements must also be evaluated to determine the required level
of performance. As indicated in Figure 1.4 , the automobile is required to accelerate
from 0 to 60 miles per hour (mph) in less than 8 seconds under specifi ed con-
ditions. Similar performance requirements can be specifi ed for stopping distance
from 60 to 0 mph and for steering requirements such as the turning radius.

 Additional requirements are specifi ed to address the concerns of each stake-
holder. Example requirements include specifying riding comfort, fuel effi ciency,
reliability, maintainability, safety, and emissions. Physical characteristics, such as
maximum vehicle weight, may be derived from the performance requirements,
or maximum vehicle length may be dictated by other concerns such as standard
parking space dimensions. The system requirements must be clearly traceable
to stakeholder needs and validated to ensure that the requirements address their
needs. The early and ongoing involvement of representative stakeholders in this
process is a critical success factor to the overall development effort.

 The system design involves identifying system components and specifying
requirements for the components needed to satisfy system-level requirements.
This may involve fi rst developing a logical system design independent of the tech-
nology used, and then a physical system design that refl ects specifi c technology
selections. In the example shown in Figure 1.5, the system’s physical components
include the Engine, Transmission, Differential, Chassis, Body, Brakes, and so on.
This system includes a single level of decomposition from the system to compo-
nent level. However, as indicated earlier, more complex systems may include mul-
tiple levels of system decomposition.

 Design constraints are often imposed on the solution. A common kind of con-
straint is to reuse a particular component. For example, there might be a require-
ment to reuse the engine from the inventory of existing engines. This constraint
implies that no additional engine development is to be performed. Although
design constraints are typically imposed to save time and money, sometimes anal-
ysis reveals that relaxing the constraint would be less expensive and faster. For
example, if the engine is reused, expensive fi ltering equipment might be needed
to satisfy newly imposed pollution regulations. On the other hand, the cost of a

V
eh

ic
le

 S
pe

ed
 (

m
ph

)

10

20

30

40

50

60

70

80

Time (seconds)
1 2 3 4 5 6 7 8 9 10

Acceleration
Requirement

 FIGURE 1.4

 Automobile performance requirements.

1.3 Typical Application of the Systems Engineering Process

8 CHAPTER 1 Systems Engineering Overview

redesign to incorporate newer technology might be easily recovered over the auto-
mobile’s life cycle. Systems engineers should examine the rationale behind design
constraints and inform stakeholders whether the analysis validates the assump-
tions behind the constraints.

 The components are specifi ed such that if their requirements are satisfi ed, the
system requirements are also satisfi ed. The power subsystem shown in Figure 1.6
includes the Engine, Transmission, and Differential components, and must pro-
vide the power to accelerate the automobile. Similarly, the steering subsystem must
control the direction of the vehicle, and the braking subsystem must decelerate
the vehicle.

 The system performance and physical requirements are allocated to the com-
ponent requirements. This involves engineering analysis to determine how the
system performance requirements, such as the vehicle acceleration, must be allo-
cated to the component performance requirements such as engine horsepower,
coeffi cient of drag of the body, and the weight of each component. Similar analysis
must be performed to allocate the other system performance requirements related
to fuel economy, fuel emissions, reliability, and cost. The requirements for riding
comfort may require multiple analysis that address human factors considerations

Fuel

Accelerate
Command

Accelerating
Force

Engine Differential Drive
Wheels

Transmission

 FIGURE 1.6

 Interaction among components to achieve the functional and performance requirements.

Wheels Engine Transmission Differential Body/
Chassis

Brakes Suspension Interior

 FIGURE 1.5

 Automobile system decomposes into its components.

9

related to road vibration, acoustic noise propagation to the vehicle’s interior space–
volume analysis, and placement of displays and controls, to name a few.

 The system design alternatives are evaluated to determine the preferred system
solution that achieves a balanced design that addresses multiple competing require-
ments. In this example, the acceleration and fuel economy requirement may result
in evaluating alternative engine design confi gurations, such as a 4-cylinder versus a
6-cylinder engine. The alternative designs are then evaluated based on criteria that
are traceable to the system requirements and effectiveness measures. The preferred
solution is validated with the stakeholders to ensure that it addresses their needs.

 The component requirements are input to the Component Design, Implemen-
tation, and Test process from Figure 1.1 . The component developers provide feed-
back to the systems engineering team to ensure that component requirements can
be satisfi ed by their designs, or they may request that the component requirements
be reallocated. This is an iterative process throughout development that is often
required to achieve a balanced design solution. The system and component require-
ments are also provided to the System Integration and Test Team to develop the
necessary test procedures to verify that the system satisfi es its requirements.

 As indicated in Figure 1.7 , requirements traceability is maintained between the
Stakeholder Needs , the System Requirements , and the Component Requirements
to ensure design integrity. For this example, the system and component require-
ments, such as vehicle acceleration, vehicle weight, and engine horsepower, can be
traced to the stakeholder needs associated with performance and fuel economy.

 A systematic process to develop a balanced system solution that satisfi es
diverse stakeholder needs becomes essential as system complexity increases. An
effective application of systems engineering requires maintaining a broad system
perspective that focuses on the overall system goals and the needs of each stake-
holder, while at the same time maintaining attention to detail and rigor that will
ensure the integrity of the system design. The expressiveness and level of pre-
cision of SysML is intended to enable this process.

 1.4 Multidisciplinary Systems Engineering Team
 To represent the broad set of stakeholder perspectives, systems engineering
requires participation from many engineering and nonengineering disciplines. The

Stakeholder
Needs

System
Requirements

Component
Requirements

 FIGURE 1.7

 Stakeholder needs fl ow down to system
and component requirements.

1.4 Multidisciplinary Systems Engineering Team

10 CHAPTER 1 Systems Engineering Overview

participants must have an understanding of the end-user domain, such as the drivers
of the car, and the domains that span the system life cycle such as manufacturing
and maintenance. The participants must also have knowledge of the system’s tech-
nical domains such as the power and steering subsystems. The participants must
also include understanding of the specialty engineering domains, such as reliabil-
ity, safety, and human factors, to support the system design trade-offs. In addition,
they must have sufficient participation from the component developers and test-
ers to ensure the specifications are implementable and verifiable.

 A typical multidisciplinary systems engineering team should include rep-
resentation from each of these perspectives. The extent of participation depends
on the complexity of the system and the knowledge of the team members. A sys-
tems engineering team on a small project may include a single systems engineer,
who has broad knowledge of the domain and can work closely with the hardware
and software development team and the test team. On the other hand, the devel-
opment of a large system may involve a systems engineering team led by a systems
engineering manager who plans and controls the systems engineering effort. This
project may include tens or hundreds of systems engineers with varying expertise.

 A typical multidisciplinary systems engineering team is shown in Figure 1.8 .
The Systems Engineering Management Team is responsible for the management
activities related to planning and control of the technical effort. The Require-
ments Team analyzes stakeholder needs, develops the concept of operations, and
specifi es and validates system requirements. The Architecture Team is responsible
for developing the system architecture design in terms of system components
and their interactions and interconnections. This includes allocating the system
requirements to the components that may include hardware and software specifi -
cations. The Systems Analysis Team is responsible for performing the engineering
analysis on different aspects of the system, such as performance and physical char-
acteristics, reliability, maintainability, and cost. The Integration and Test Team is
responsible for developing test plans and procedures and conducting tests. There
are many different organizational structures to accomplish similar roles, and indi-
viduals may participate in different roles on different teams.

Systems Engineering
Management Team

Systems Analysis
Team

Integration and
Test Team

Requirements
Team

Architecture
Team

Stakeholder requirements
analysis and concept of
operations

Management of the overall
technical effort including planning
and control (e.g., risk management,
metrics, baseline management)

Verification plans,
procedures, and test
conduct

Analysis of performance,
physical, reliability, cost
...

System, hardware, and
software architecture

 FIGURE 1.8

 A typical multidisciplinary systems engineering team needed to represent diverse stakeholder perspectives.

11

 1.5 Codifying Systems Engineering Practice through Standards
 As mentioned earlier, systems engineering has been a dominant practice within
the aerospace and defense industries to engineer complex, mission-critical systems
that leverage advanced technology. These systems include land-, sea-, air-, and space-
based platforms; weapon systems; command, control, and communications systems;
and logistics systems, to name a few. The emphasis has shifted to treat a system as
part of a larger whole, which is sometimes referred to as a system of systems
(SoS) or an enterprise.

 The complexity of systems being developed in other industry sectors has dra-
matically increased due to the competitive demands and technological advances
discussed earlier in this chapter. Specifi cally, many commercial products incor-
porate the latest processing and networking technology that have signifi cant
software content with substantially increased functionality and are more intercon-
nected with increasingly complex interfaces. The products are being used in new
ways, such as the integration of cell phones with cameras and the use of global
positioning systems in automobiles, that were not previously envisioned. The prac-
tice of systems engineering is evolving to other industries to help deal with this
complexity. The need to establish standards for systems engineering concepts, ter-
minology, processes, and methods has become increasingly important to advance
and institutionalize the practice of systems engineering across industry sectors.

 Systems engineering standards have evolved over the last several years.
Figure 1.9 shows a partial taxonomy of standards that includes systems engineer-
ing process standards, architecture frameworks, methods, modeling standards, and
data exchange standards. A comprehensive standards-based approach to systems
engineering may implement at least one standard from each layer of this taxonomy.

SADT

Process
Standards

Modeling and
Simulation
Standards

Modeling
Methods

FEAF Zachman FWDoDAF

HP

Architecture
Frameworks

Other

UPDMIDEF0

Interchange and
Metamodeling
Standards

STEP/AP233XMI

MODAF

MathMLHLA

System Modeling Simulation and Analysis

EIA 632 CMMIISO 15288 IEEE 1220

OOSE

MOF

SysML

 FIGURE 1.9

 A partial systems engineering standards taxonomy.

1.5 Codifying Systems Engineering Practice through Standards

12 CHAPTER 1 Systems Engineering Overview

 A primary emphasis for systems engineering standards has been on develop-
ing process standards that include EIA 632 [2], IEEE 1220 [3], and ISO 15288 [4].
These standards address broad industry needs and refl ect the fundamental tenets
of systems engineering that provide a foundation for establishing a systems engi-
neering approach.

 The systems engineering process standards share much with software engi-
neering practices. Management practices for planning, as an example, are similar
whether it is for complex software development or systems development. As a
result, there has been signifi cant emphasis in the standards community on aligning
the systems and software standards where practical.

 The systems engineering process defi nes what activities are performed, but does
not generally give details on how they are performed. A systems engineering
method describes how the activities are performed in terms of the types of arti-
facts that are produced and how they are developed. For example, an important
systems engineering artifact is the concept of operations. As its name implies, the
concept of operations defi nes what the system is intended to do from the stake-
holders ’ perspective. It depicts the interaction of the system with its external sys-
tems, but may not show any of the system’s internal operations. Different methods
may use different techniques and representations for developing a concept of oper-
ations. The same is true for many other systems engineering artifacts.

 Examples of systems engineering methods are identifi ed in a Survey of Model-
Based Systems Engineering Methods [5] and include Harmony [6, 7], the Object-
Oriented Systems Engineering Method (OOSEM) [8], the Rational Unifi ed Process
for Systems Engineering (RUP SE) [9, 10], the State Analysis method [11], and the
Vitech Model-Based Systems Engineering Method [12]. Many organizations have
internally developed processes and methods as well. The methods are not offi cial
industry standards, but de facto standards may emerge as they prove their value
over time. Criteria for selecting a method include its ease of use, its ability to
address the range of systems engineering concerns, and the level of tool support.
The two example problems in Part III include the use of SysML with a functional
analysis and allocation method and a use case driven method (OOSEM). SysML is
intended to support many different systems engineering methods.

 In addition to systems engineering process standards and methods, several stan-
dard frameworks have emerged to support system architecting. An architecture
framework includes specifi c concepts, terminology, artifacts, and taxonomies for
describing the architecture of a system. The Zachman framework [13] was intro-
duced in the 1980s to defi ne enterprise architectures; it defi nes a standard set of
stakeholder perspectives and a set of artifacts that address fundamental questions
associated with each stakeholder group. The C4ISR framework [14] was intro-
duced in 1996 to provide a framework for architecting information systems for
the U.S. Department of Defense (DoD). The Department of Defense Architecture
Framework (DoDAF) [15] evolved from the C4ISR framework to support architect-
ing a SoS for the defense industry by defi ning the architecture’s operational, system,
and technical views.

 The United Kingdom introduced a variant of DoDAF called the Ministry
of Defence Architecture Framework (MODAF) [16] that added the strategic

13

and acquisition view. The IEEE 1471-2000 standard was approved in 2000 as a
 “ Recommended Practice for Architectural Description of Software-Intensive
Systems” [17]. This practice provides additional fundamental concepts, such as the
concept of view and viewpoint that applies to both software and systems archi-
tecting. The Open Group Architecture Framework (TOGAF) [18] was originally
approved in the 1990s as a method for developing architectures.

 Modeling standards is another class of systems engineering standards that
provide a common language for describing systems. Behavioral models and func-
tional fl ow diagrams have been de facto modeling standards for many years and
have been broadly used by the systems engineering community. The Integration
Defi nition for Functional Modeling (IDEF0) [19] was issued by the National
Institute of Standards and Technology in 1993. The OMG SysML specifi cation was
adopted in 2006 by the Object Management Group as a general-purpose graphi-
cal systems modeling language that extends the Unifi ed Modeling Language (UML)
and is the subject of this book. Several other extensions of UML have been devel-
oped for specifi c domains. The Unifi ed Profi le for DoDAF/MODAF (UPDM) is being
developed to describe system of systems and enterprise architectures that are com-
pliant with DoDAF and MODAF requirements. The foundation for the UML-based
modeling languages is the OMG Meta Object Facility (MOF) [20], which is a lan-
guage that is used to specify other modeling languages.

 Model and data interchange standards is a critical class of standards that sup-
ports model and data exchange among tools. Within the OMG, the XML Metadata
Interchange (XMI) specifi cation [21] supports interchange of model data when
using a MOF-based language such as UML, SysML, or another UML profi le. XMI
is summarized in Chapter 17. Another data exchange standard for interchange of
systems engineering data is ISO 10303 (AP233) [22], which is also briefl y
described in Chapter 17.

 Additional modeling standards from the Object Management Group relate to
the Model Driven Architecture (MDA®) [23]. MDA includes a set of concepts that
include creating both technology-independent and technology-dependent models.
The MDA standards enable transformation between the models and different mod-
eling languages. MDA encompasses OMG standards in both the modeling language
and data exchange layers of Figure 1.9 .

 The development and evolution of these standards are all part of a trend
toward a standards-based approach to the practice of systems engineering. Such
an approach enables common training, tool interoperability, and reuse of system
specifi cation and design artifacts. It is expected that this trend will continue as
systems engineering becomes prevalent across a broader range of industries.

 1.6 Summary
 Systems engineering is a multidisciplinary approach to transform a set of stake-
holder needs into a balanced system solution that meets those needs. Systems engi-
neering is a key practice to address complex and often technologically challenging

1.6 Summary

14 CHAPTER 1 Systems Engineering Overview

problems. The process includes activities to establish top-level goals that a system
must support, specify system requirements, synthesize alternative system designs,
evaluate the alternatives, allocate requirements to the components, integrate the
components into the system, and verify that the system requirements are satis-
fied. It also includes essential planning and control processes needed to manage a
technical effort.

 Multidisciplinary teams are an essential element of systems engineering to
address the diverse stakeholder perspectives and technical domains to achieve a
balanced system solution. The practice of systems engineering continues to evolve
with an emphasis on dealing with systems as part of a larger whole. Systems engi-
neering practices are becoming codifi ed in various standards, which is essential to
advancing and institutionalizing the practice across industry domains.

 1.7 Questions
 1. What are some of the demands that are driving system development?
 2. What is the purpose of systems engineering?
 3. What are the key activities in the system specifi cation and design process?
 4. Who are the typical stakeholders that span a system’s life cycle?
 5. What are different types of requirements?
 6. Why is it important to have a multidisciplinary systems engineering team?
 7. What are some of the roles on a typical systems engineering team?
 8. What role do standards play in systems engineering?

 Model-based systems engineering (MBSE) applies systems modeling as part of the
systems engineering process described in Chapter 1 to support analysis, speci-
fication, design, and verification of the system being developed. A primary arti-
fact of MBSE is a coherent model of the system being developed. This approach
enhances communications, specification and design precision, design integration,
and reuse of system specification and design artifacts.

 This chapter summarizes MBSE concepts to provide further context for SysML
without emphasizing the specifi c modeling language, method, or tools. MBSE is
contrasted with the more traditional document-based approach to motivate the
use of MBSE and highlight its benefi ts. Principles for effective modeling are also
discussed.

 2.1 Contrasting the Document-Based
and Model-Based Approach

 The following sections contrast the document-based approach and the model-
based approach to systems engineering.

 2.1.1 Document-Based Systems Engineering Approach
 Traditionally, large projects have employed a document-based systems engi-
neering approach. This approach is characterized by the generation of textual
specifications and design documents, in hard-copy or electronic file format, that
are then exchanged between customers, users, developers, and testers. System
requirements and design information are expressed in these documents and draw-
ings. The systems engineering emphasis is placed on controlling the documenta-
tion and ensuring the documents and drawings are valid, complete, and consistent,
and that the developed system complies with the documentation.

 In the document-based approach, specifi cations for a particular system, its
subsystems, and its hardware and software components are usually depicted in a

 Model-Based Systems
Engineering 2

CHAPTER

16 CHAPTER 2 Model-Based Systems Engineering

hierarchical tree, called a specifi cation tree. A systems engineering management
plan (SEMP) documents how the systems engineering process is employed on the
project, and how the engineering disciplines work together to develop the docu-
mentation needed to satisfy the requirements in the specifi cation tree. Systems
engineering activities are planned by estimating the time and effort required to
generate documentation, and progress is then measured by the state of comple-
tion of the documents.

 Document-based systems engineering typically relies on a concept of operation
document to defi ne how the system is used to support the required mission or
objective. Functional analysis is performed to allocate the top-level system func-
tions to the components of the system. Drawing tools are used to capture the
system design, such as the functional fl ow diagrams or schematic block diagrams.
These diagrams are stored as separate fi les and included in the system design docu-
mentation. Engineering trade studies and analyses are performed and documented
by many different disciplines to evaluate and optimize alternative designs and allo-
cate performance requirements. The analysis may be supported by individual analy-
sis models for performance, reliability, safety, mass properties, and other aspects of
the system.

 Requirements traceability is established and maintained in the document-based
approach by tracing requirements between the specifi cations at different levels
of the specifi cation hierarchy. Requirements management tools are used to parse
requirements contained in the specifi cation documents and capture them in a
requirements database. The traceability between requirements and design is main-
tained by identifying the part of the system or subsystem that satisfi es the require-
ment, and/or the verifi cation procedures used to verify the requirement, and then
refl ecting this in the requirements database.

 The document-based approach can be rigorous but has some fundamental lim-
itations. The completeness, consistency, and relationships between requirements,
design, engineering analysis, and test information are diffi cult to assess since this
information is spread across several documents. This makes it diffi cult to under-
stand a particular aspect of the system and to perform the necessary traceabil-
ity and change impact assessments. This, in turn, leads to poor synchronization
between system-level requirements and design and lower-level hardware and soft-
ware design. It also makes it diffi cult to maintain or reuse the system requirements
and design information for an evolving or variant system design. Also, progress of
the systems engineering effort is based on the documentation status that may not
adequately refl ect the system requirements and design quality. These limitations
can result in ineffi ciencies and potential quality issues that often show up during
integration and testing, or worse, after the system is delivered to the customer.

 2.1.2 Model-Based Systems Engineering Approach
 A model-based approach has been standard practice in electrical and mechanical
design and other disciplines for many years. Mechanical engineering transitioned
from the drawing board to increasingly more sophisticated two-dimensional (2D)
and then three-dimensional (3D) computer-aided design tools beginning in the

17

1980s. Electrical engineering transitioned from manual circuit design to automated
schematic capture and circuit analysis in a similar time frame. Computer-aided
software engineering became popular in the 1980s for using graphical models to
represent software at abstraction levels above the programming language. The use
of modeling for software development is becoming more widely adopted, particu-
larly since the advent of the Unified Modeling Language in the 1990s.

 The model-based approach is becoming more prevalent in systems engineering.
A mathematical formalism for MBSE was introduced in 1993 [24]. The increas-
ing capability of computer processing, storage, and network technology along with
emphasis on systems engineering standards has created an opportunity to signifi -
cantly advance the state of the practice of MBSE. It is expected that MBSE will become
standard practice in a similar way that it has with other engineering disciplines.

 “ Model-based systems engineering (MBSE) is the formalized application of
modeling to support system requirements, design, analysis, verifi cation, and valida-
tion activities beginning in the conceptual design phase and continuing through-
out development and later life cycle phases ” [25]. MBSE is intended to facilitate
systems engineering activities that have traditionally been performed using the
document-based approach and result in enhanced communications, specifi cation
and design precision, system design integration, and reuse of system artifacts. The
output of the systems engineering activities is a coherent model of the system
(i.e., system model), where the emphasis is placed on evolving and refi ning the
model using model-based methods and tools.

 The System Model
 The system model is generally created using a modeling tool and contained in
a model repository. The system model includes system specification, design, anal-
ysis, and verification information. The model consists of elements that represent
requirements, design elements, test cases, design rationale, and their interrelation-
ships. Figure 2.1 shows the system model as an interconnected set of model
elements that represent key system aspects as defined in SysML, including its
structure, behavior, parametrics, and requirements.

 A primary use of the system model is to design a system that satisfi es system
requirements and allocates the requirements to the system’s components. Figure 2.2
depicts how the system model is used to specify the components of the system.
The system model includes component interconnections and interfaces, compo-
nent interactions and related functions components must perform, and component
performance and physical characteristics. The textual requirements for the compo-
nents may also be captured in the model and traced to system requirements.

 In this regard, the system model is used to specify the component require-
ments and can be used as an agreement between the system designer and the
subsystem and �or component developer. The component developers receive
the component requirements in a way that is meaningful to them either through a
model data exchange mechanism or by providing documentation that is automatic-
ally generated from the model. The component developer can provide informa-
tion about how the component design complies with its requirements in a similar
way. The use of a system model provides a mechanism to specify and integrate

2.1 Contrasting the Document-Based and Model-Based Approach

18 CHAPTER 2 Model-Based Systems Engineering

subsystems and components into the system and maintain traceability to higher-
level requirements.

 The system model can also be integrated with engineering analysis and simula-
tion models to perform computation and dynamic execution. If the system model
is executed directly, the system modeling environment must be augmented with
an execution environment. A brief discussion of executable models is included in
Chapter 17.

 The Model Repository
 The model elements are stored in a model repository and depicted on diagrams
by graphical symbols. The tool enables the modeler to create, modify, and delete
individual model elements and their relationships in the model repository. The
modeler uses the symbols on the diagrams to enter the information into the
model repository and to view model repository information. The specification,
design, analysis, and verification information previously captured in documents is
now captured in the model repository. The model can be viewed in diagrams or
tables or in reports generated by querying the model repository. The views enable
understanding and analysis of different aspects of the same system model. The doc-
uments can continue to serve as an effective means for reporting the information,

req

actibd

par

Structure Behavior

Requirements Parametrics

 FIGURE 2.1

 Representative system model example in SysML. (Specifi c model elements have been
deliberately obscured and will be discussed in subsequent chapters.)

19

but in MBSE, the information contained in documentation is generated from the
model. In fact, many of the modeling tools have flexible and automated document-
generation capability that can significantly reduce the time and cost of building
and maintaining the system specification and design documentation.

 Model elements corresponding to requirements, design, analysis, and verifi cation
information are traceable to one another through their relationships, even if they are
represented on different diagrams. For example, an engine component in an automo-
bile system model may have many relationships to other elements in the model. The
engine, which is part of the automobile system, is connected to the trans mission,
satisfi es a power requirement, performs a function to convert fuel to mechanical
energy, and has a weight property that contributes to the vehicle’s weight.

 The static semantics of the model impose rules that constrain which relation-
ships can exist. For example, the model should not allow a requirement to contain
a system component or an activity to produce inputs instead of outputs. Additional
model constraints may be imposed based on the method being employed. An
example of a method-imposed constraint may be that all system functions must

SW Component
Requirement
Specifications

HW Component
Requirement
Specifications

SW Design
Integration

HW Design
Integration

Software Models Hardware Models

System Models

 FIGURE 2.2

 The system model is used to specify the components of the system.

2.1 Contrasting the Document-Based and Model-Based Approach

20 CHAPTER 2 Model-Based Systems Engineering

be decomposed and allocated to a component of the system. Modeling tools are
expected to enforce constraints at the time the model is constructed, or by run-
ning a model-checker routine at the modeler’s convenience and providing a report
of the constraint violations.

 The model provides much fi ner-grain control of the information than is avail-
able in a document-based approach, where this information may be spread across
many documents and the relationships may not be explicitly defi ned. The model-
based approach promotes rigor in the specifi cation, design, analysis, and verifi ca-
tion process. It also signifi cantly enhances the quality and timeliness of traceability
and impact assessment over the document-based approach.

 Transitioning to MBSE
 Models have been used as part of the document-based systems engineering
approach for many years, and include functional flow diagrams, behavior diagrams,
schematic block diagrams, N2 charts, performance simulations, and reliability mod-
els, to name a few. However, the use of models has generally been limited in scope
to support specific types of analysis or selected aspects of system design. The
individual models have not been integrated into a coherent model of the overall
system, and the modeling activities have not been integrated into the systems engin-
eering process. The transition from document-based systems engineering to MBSE
is a shift in emphasis from controlling the documentation about the system to
controlling the model of the system. MBSE integrates system requirements, design,
analysis, and verification models to address multiple aspects of the system in a
cohesive manner, rather than a disparate collection of individual models.

 MBSE provides an opportunity to address many of the limitations of the
document-based approach by providing a more rigorous means for capturing and
integrating system requirements, design, analysis, and verifi cation information, and
facilitating the maintenance, assessment, and communication of this information
across the system’s life cycle. Some of the MBSE potential benefi ts include the
following:

 ■ Enhanced communications
– Shared understanding of the system across the development team and

other stakeholders
 – Ability to integrate views of the system from multiple perspectives

 ■ Reduced development risk
 – Ongoing requirements validation and design verifi cation
 – More accurate cost estimates to develop the system

 ■ Improved quality
 – More complete, unambiguous, and verifi able requirements
 – More rigorous traceability between requirements, design, analysis, and

testing
 – Enhanced design integrity

 ■ Increased productivity
 – Faster impact analysis of requirements and design changes
 – Reuse of existing models to support design evolution

21

 – Reduced errors and time during integration and testing
 – Automated document generation

 ■ Enhanced knowledge transfer
 – Specifi cation and design information captured in a standard format that

can be accessed via query and retrieval

 MBSE can provide additional rigor in the specifi cation and design process when
implemented using appropriate methods and tools. However, this rigor does not
come without a price. Clearly, transitioning to MBSE underscores the need for
up-front investment in processes, methods, tools, and training. It is expected that
during the transition, MBSE is performed in combination with document-based
approaches. For example, the upgrade of a large, complex legacy system still relies
heavily on the legacy documentation, and only parts of the system may be mod-
eled. Careful tailoring of the approach and scoping of the modeling effort is essen-
tial to meet the needs of a particular project. The considerations for transitioning
to MBSE are discussed in Chapter 18.

 2.2 Modeling Principles
 The following sections provide a brief overview of some of the key modeling
principles.

 2.2.1 Model and MBSE Method Defi nition
 A model is a representation of one or more concepts that may be realized in
the physical world. It generally describes a domain of interest. A key feature of
a model is that it is an abstraction that does not contain all the detail of the mod-
eled entities within the domain of interest. Models are represented in many forms
including graphical, mathematical, and logical representations, and physical pro-
totypes. For example, a model of a building may include a blueprint and a scaled
prototype physical model. The building blueprint is a specification for one or
more buildings that are built. The blueprint is an abstraction that does not contain
all the building’s detail such as the characteristics of its materials.

 A SysML model is analogous to a building blueprint that specifi es a system to be
implemented. Instead of a geometric representation of the system, the SysML model
represents the behavior, structure, properties, constraints, and requirements of the
system. SysML has a semantic foundation that specifi es the types of model elements
and the relationships that can appear in the system model. The model elements
that comprise the system model are stored in a model repository and can be rep-
resented graphically. A SysML model can also be simulated if it is supported by an
execution environment.

 A method is a set of related activities, techniques, and conventions that imple-
ment one or more processes and is generally supported by a set of tools. A model-
based systems engineering method can be characterized as a method that
implements all or part of the systems engineering process, and it produces a sys-
tem model as one of its primary artifacts.

2.2 Modeling Principles

22 CHAPTER 2 Model-Based Systems Engineering

 2.2.2 The Purpose for Modeling a System
 The purpose for modeling a system for a particular project must be clearly
defined in terms of the expected results of the modeling effort, the stakeholders
who use the results, and how the results are intended to be used. The model pur-
pose is used to determine the scope of the modeling effort in terms of model
breadth, depth, and fidelity. This scope should be balanced with the available sched-
ule, budget, skill levels, and other resources. Understanding the purpose and scope
provides the basis for establishing realistic expectations for the modeling effort. The
purposes for modeling a system may emphasize different aspects of the systems
engineering process or support other life-cycle uses, including the following:

 ■ Characterize an existing system
 ■ Specify and design a new or modifi ed system

 – Represent a system concept
 – Specify and validate system requirements
 – Synthesize system designs
 – Specify component requirements
– Maintain requirements traceability

 ■ Evaluate the system
 – Conduct system design trade-offs
 – Analyze system performance requirements or other quality attributes
– Verify that the system design satisfi es its requirements
 – Assess the impact of requirements and design changes

 ■ Train users on how to operate or maintain a system

 2.2.3 Establishing Criteria to Meet the Model Purpose
 Criteria can be established to assess how well a model can meet its modeling
purpose. However, one must first distinguish between a good model and a good
design. One can have a good model of a poor design or a poor model of a good
design. A good model meets its intended purpose. A good design is based on how
well the design satisfies its requirements and the extent to which it incorporates
quality design principles. As an example, one could have a good model of a chair
that meets its intended purpose by providing an accurate representation of the
modeled system. However, the chair’s design may be a poor design if it does not
have structural integrity. A good model provides visibility to aid the design team in
identifying issues and assessing design quality. The selected MBSE method and tools
should facilitate a skilled team to develop both a good model and a good design.

 The answers to the following questions can be used to assess the goodness of
the model and derive quality attributes of it. The quality attributes in turn can be
used to establish preferred modeling practices.

 Is the model’s scope suffi cient to meet its purpose?
 Assuming the purpose is clearly defined as described earlier, the scope of the
model is defined in terms of its breadth, depth, and fidelity. The model scope sig-
nificantly impacts the level of resources required to support the modeling effort.

23

 Model breadth. The breadth of the model must be sufficient for the purpose by
determining which parts of the system need to be modeled. This question is
particularly relevant to large systems where one may not need to model the
entire system to meet project needs. If new functionality is being added to an
existing system, one may choose to focus on modeling only those portions
needed to support the new functionality. In an automobile design, for example,
if the emphasis is on new requirements for fuel economy and acceleration,
the model may focus on elements related to the power train, with less focus on
the braking and steering subsystems.

 Model depth. The depth of the model must be sufficient for the purpose by deter-
mining the level of the system design hierarchy that the model must encompass.
For a conceptual design or initial design iteration, the model may only address
a fairly high level of the design. In the automobile example, the initial iterations
may only model to the engine level, where a future design iteration may model
the engine parts if it is subject to further development.

 Model fidelity. The fidelity of the model must be sufficient for the purpose by
determining the required level of detail for different modeling constructs. For
example, a low-fidelity behavioral model may be sufficient to communicate a
simple ordering of actions in an activity diagram. Additional detail is required
if the behavioral model is intended to be executed to validate the logic. When
modeling interfaces, a low-fidelity model may only include the logical interface
description, where as a higher-fidelity model may model the communication
protocol. Additional detail is required to model system performance.

 Is the model complete relative to its scope?
 A necessary condition for the model to be complete is that its breadth, depth, and
fidelity must match its defined scope. Other completion criteria may relate to
other quality attributes of the model (e.g., whether the naming conventions have
been properly applied) and design completion criteria (e.g., whether all design
elements are traced to a requirement). The MBSE metrics discussed in Section
2.2.4 can be used to establish additional completion criteria.

 Is the model well formed such that model constraints are adhered to?
 A well-formed model conforms to its static semantics. For example, the static seman-
tics in SysML do not allow a requirement to contain a system component, although
other relationships are allowed between components and requirements such as the
satisfy relationship. The modeling tool should enforce the constraints imposed by
the static semantics or provide a report of violations.

 Is the model consistent?
 In SysML, some rules are built into the language to ensure model consistency. For
example, compatibility rules can support type checking to determine whether
interfaces are compatible or whether units are consistent on different properties.
Additional constraints can be imposed by the method used. For example, a method
may impose a constraint that logical components can only be allocated to hardware,

2.2 Modeling Principles

24 CHAPTER 2 Model-Based Systems Engineering

software, or operational procedures. These constraints can be expressed in the
object constraint language (OCL) [26] and enforced by the modeling tool.

 Enforcing constraints assists in maintaining consistency across the model, but
it does not prevent inconsistencies. A simple example may be that a modeler inad-
vertently gives a component two different names that are interpreted by a model
checker as different components. The likelihood of inconsistencies increases when
multiple people are working on the model. A combination of well-defi ned model
conventions and a disciplined process can limit this from happening.

 Is the model understandable?
 There are many factors driven by the model-based method and modeling style that
can contribute to understandability. A key contributing factor to enhance under-
standability is the effective use of model abstraction. For example, when describ-
ing the functionality of an automobile, one could describe a top-level function as
 “ drive car ” or provide a more detailed functional description such as “turn igni-
tion on, put gear into drive, push accelerator pedal, ” and so on. An understandable
model should include multiple levels of abstraction that represent different levels
of detail but relate to one another. As will be described in later chapters, the use of
decomposition, specialization, allocations, views, and other modeling approaches
in SysML can be used to represent different levels of abstraction.

 Another factor that impacts understandability relates to the presentation of
information on the diagrams themselves. Often, there is a lot of detail in the model,
but only selected information is relevant to communicate a particular design
aspect. The information on the diagram can be controlled by using the tool capa-
bility to elide (hide) nonessential information and display only the information rel-
evant to the diagram’s purpose. Again, the goal is to avoid information overload
for the reviewer of the model.

 Other factors that contribute to understandability are the use of modeling con-
ventions and the extent to which the model is self-documenting as described next.

 Are modeling conventions documented and used consistently?
 Modeling conventions and standards are critical to ensure consistent representa-
tion and style across the model. This includes establishing naming conventions for
each type of model element, diagram names, and diagram content. Naming conven-
tions may include stylistic aspects of the language, such as when to use uppercase
versus lowercase, and when to use spaces in names. The conventions and stand-
ards should also account for tool-imposed constraints, such as limitations in the use
of alphanumeric and special characters. It is also recommended that a template be
established for each diagram type so that consistent style can be applied.

 Is the model self-documenting in terms of providing suffi cient
supporting information?
 The use of annotations and descriptions throughout the model can help to pro-
vide value-added information if applied consistently. This can include the rationale
for design decisions, flagging issues or problem areas for resolution, and providing

25

additional textual descriptions for model elements. This enables longer-term main-
tenance of the model and enables it to be more effectively communicated to others.

 Does the model integrate with other models?
 The system model may need to be integrated with electrical, mechanical, software,
test, and engineering analysis models. This capability is determined by the spe-
cific method, tool implementation, and modeling languages used. For example, the
approach for passing information from the system model using SysML to a soft-
ware model using UML can be defined for specific methods and tools. In general,
this is addressed by establishing an agreed-on expression of the modeling informa-
tion so that it can be best communicated to the user of the information, such as
hardware and software developers, testers, and engineering analysts.

 2.2.4 Model-Based Metrics
 Measurement data collection, analysis, and reporting can be used as a manage-
ment technique throughout the development process to assess design quality
and progress. This in turn is used to assess status and risk and to support ongoing
project planning and control. Model-based metrics can provide useful data that
can be derived from the model and can help answer the following questions. This
discussion refers to metrics that can be derived from a typical SysML model.

 What is the quality of the design?
 Metrics can be defined to measure the quality of a model-based system design
based on metrics that have been traditionally used in document-centric designs.
This includes metrics for assessing requirements satisfaction, critical performance
properties, and how well the design is partitioned.

 A SysML model can provide explicit relationships that can be used to measure
the extent that the requirements are satisfi ed. The model can provide granular-
ity by identifying model elements that satisfy specifi c requirements. The require-
ments traceability can be established from mission-level requirements down to
component-level requirements. Other SysML relationships can be used in a similar
way to measure which requirements have been verifi ed. These data can be cap-
tured directly from the model or indirectly from a requirements management tool
that is integrated with the SysML modeling tool.

 A SysML model can include critical properties that are monitored throughout
the design process. Typical properties may include performance properties, such
as latency, physical properties (e.g., weight), and other properties (e.g., reliability
and cost). These properties can be monitored using standard technical perfor-
mance measurement (TPM) techniques. The model can also include relationships
among the properties that indicate how they may be impacted as a result of design
decisions.

 Design partitioning can be measured in terms of the level of cohesion and cou-
pling of the design. Coupling can be measured in terms of the number of inter-
faces or in terms of more complex measures of dependencies between different
model parts. Cohesion metrics are more diffi cult to defi ne, but measure the extent to

2.2 Modeling Principles

26 CHAPTER 2 Model-Based Systems Engineering

which a component can perform its functions without requiring access to exter-
nal data. The object-oriented concept of encapsulation refl ects this concept.

 What is the progress of the design and development effort?
 Model-based metrics can be defined to assess design progress by establishing
completion criteria for the design. The quality attributes in the previous section
referred to whether the model is complete relative to the defined scope of the
modeling effort. This is necessary, but not sufficient, to assess design complete-
ness. The requirements satisfaction described to measure design quality can also
be used to assess design completeness. Other intermediate metrics may include
the number of use case scenarios that have been completed or the percent of
logical components that have been allocated to physical components. From a
systems engineering perspective, a key measure of system design completeness is
the extent to which components have been specified. This metric can be measured
in terms of the completeness of the specification of component interfaces, behav-
ior, and properties.

 Other metrics for assessing progress include the extent to which components
have been verifi ed and integrated into the system, and the extent to which the
system has been verifi ed to satisfy its requirements. Test cases and verifi cation sta-
tus can be captured in the model and used as a basis for this assessment.

 What is the estimated effort to complete design and development?
 The Constructive Systems Engineering Cost Model (COSYSMO) is used for esti-
mating the cost and effort to perform systems engineering activities. This model
includes both sizing and productivity parameters, where the size estimates the
magnitude of the effort, and productivity factors are applied to come up with an
actual labor estimate to do the work.

 When using model-based approaches, sizing parameters can be identifi ed in
the model in terms of numbers of different modeling constructs that may include the
following:

 # Requirements
 # Use cases
 # Scenarios
 # States
 # System and component interfaces
 # System and component activities or operations
 # System and component properties
 # Components by type (e.g., hardware, software, data, operational procedures)
 # Test cases

 The MBSE sizing parameters will need to be integrated into the cost model.
Data will need to be collected and validated over time to establish statistically
meaningful data. However, early users of MBSE can identify sizing parameters that
contribute most signifi cantly to the modeling effort, and use this data for local
estimates and to assess productivity improvements over time.

27

 2.2.5 Other Model-Based Metrics
 The previous discussion is a sampling of some of the model-based metrics that can
be defined. Many other metrics can also be derived from the model, such as the
stability of the number of requirements and design changes over time, or potential
defect rates. The metrics can also be derived to establish benchmarks from which
to measure the MBSE benefits as described in Section 2.1.2, such as the productiv-
ity improvements resulting from MBSE over time. Chapter 18 includes a discussion
of additional organizational metrics related to deploying MBSE in an organization.

 2.3 Summary
 The practice of systems engineering is transitioning from a document-based
approach to a model-based approach like many of the other engineering disciplines,
such as mechanical and electrical engineering, have already done. MBSE offers sig-
nificant potential benefits to enhance communications, specification and design
precision, design integration, and reuse that can improve design quality, productiv-
ity, and reduce development risk. The emphasis in MBSE is on producing and con-
trolling a coherent system model, and using this model to specify and design the
system. Quality attributes of a model such as model consistency, understandability,
and well formedness, and the use of modeling conventions, can be used to assess
the goodness of a model and to derive preferred modeling practices. MBSE metrics
can be used to assess design quality, progress and risk, and support management of
the development effort.

 2.4 Questions
 1. What are some of the primary distinctions between MBSE and a document-

based approach?
 2. What are some of the benefi ts of MBSE over the document-based approach?
 3. Where are the model elements of a system model stored?
 4. Which aspects of the model can be used to defi ne the scope of the model?
 5. What constitutes a good model?
 6. What are some of the quality attributes of a good model?
 7. What is the difference between a good model and a good design?
 8. What are examples of questions that MBSE metrics can help answer?
 9. What are possible sizing parameters that could be used to estimate an MBSE

effort?

2.4 Questions

This page intentionally left blank

 This chapter provides an overview of SysML that includes a simple example
showing how the language is applied to the system design of an automobile that
was introduced in Chapter 1. The example includes references to chapters in
Part II that provide a detailed description of the diagrams and language concepts.
Part III includes two more detailed examples of how MBSE methods can be used
with SysML to specify and design a system.

 3.1 SysML Purpose and Key Features
 SysML is a general-purpose graphical modeling language that supports the analy-
sis, specification, design, verification, and validation of complex systems. These
systems may include hardware, software, data, personnel, procedures, facilities,
and other elements of man-made and natural systems. The language is intended
to help specify and architect systems and specify its components that can then be
designed using other domain-specific languages such as UML for software design
and VHDL for hardware design.

 SysML can represent systems, components, and other entities as follows:

 ■ Structural composition, interconnection, and classifi cation
 ■ Function-based, message-based, and state-based behavior
 ■ Constraints on the physical and performance properties
 ■ Allocations between behavior, structure, and constraints (e.g., functions allo-

cated to components)
 ■ Requirements and their relationship to other requirements, design elements,

and test cases

 3.2 SysML Diagram Overview
 SysML includes nine diagrams as shown in the diagram taxonomy in Figure 3.1 .
Each diagram type is summarized here, along with its relationship to UML diagrams:

 ■ Requirement diagram represents text-based requirements and their rela-
tionship with other requirements, design elements, and test cases to support
requirements traceability (not in UML)

 SysML Language Overview 3
CHAPTER

30 CHAPTER 3 SysML Language Overview

 ■ Activity diagram represents behavior in terms of the ordering of actions
based on the availability of inputs, outputs, and control, and how the actions
transform the inputs to outputs (modifi cation of UML activity diagram)

 ■ Sequence diagram represents behavior in terms of a sequence of messages
exchanged between parts (same as UML sequence diagram)

 ■ State machine diagram represents behavior of an entity in terms of its
transitions between states triggered by events (same as UML state machine
diagram)

 ■ Use case diagram represents functionality in terms of how a system or
other entity is used by external entities (i.e., actors) to accomplish a set of
goals (same as UML use case diagram)

 ■ Block defi nition diagram represents structural elements called blocks, and
their composition and classifi cation (modifi cation of UML class diagram)

 ■ Internal block diagram represents interconnection and interfaces between
the parts of a block (modifi cation of UML composite structure diagram)

 ■ Parametric diagram represents constraints on property values, such as
F � m*a, used to support engineering analysis (not in UML)

 ■ Package diagram represents the organization of a model in terms of pack-
ages that contain model elements (same as UML package diagram)

 A diagram graphically represents a particular aspect of the system model as
described in Section 2.1.2. The diagram type constrains the type of model elements
and associated symbols that can appear on a diagram. For example, an activity

SysML
Diagram

Structure
Diagram

Behavior
Diagram

Requirement
Diagram

Sequence
Diagram

State
Machine
Diagram

Use Case
Diagram

Block
Definition
Diagram

Internal
Block

Diagram

Parametric
Diagram

Package
Diagram

Activity
Diagram

 FIGURE 3.1

 SysML diagram taxonomy.

31

diagram can include diagram elements that represent actions, control fl ow, and
input/output fl ow, but not diagram elements for connectors and ports. As a result,
a diagram represents a subset of the underlying model repository, as described in
Chapter 2. Tabular representations are also supported in SysML as a complement
to diagram representations to capture model information such as allocation tables.

 3.3 Using SysML in Support of MBSE
 SysML provides a means to capture the system modeling information as part of an
MBSE approach without imposing a specific method on how this is performed.
The selected method determines which activities are performed, the ordering of
the activities, and which modeling artifacts are created to represent the system.
For example, traditional structured analysis methods can be used to decompose
the functions and allocate the functions to components. Alternatively, one can
apply a use case driven approach that derives functionality based on scenario
analysis and associated interactions among parts. The two methods may produce
different combinations of diagrams in different ways to represent the system spec-
ification and design.

 A typical use of the language may include one or more iterations of the follow-
ing activities to specify and design the system:

 ■ Capture and analyze black box system requirements
 – Capture text-based requirements in a requirements management tool
 – Import requirements into the SysML modeling tool
 – Identify top-level functionality in terms of system use cases
 – Capture the traceability between the use cases and requirements
 – Model the use case scenarios as activity diagrams, sequence diagrams,

and/or state machine diagrams
 – Create the system context diagram
 – Identify system test cases to support system verifi cation

 ■ Develop one or more candidate system architectures to satisfy the
requirements
 – Decompose the system using the block defi nition diagram
 – Defi ne the interaction among the parts using activity or sequence

diagrams
 – Defi ne the interconnection among the parts using the internal block

diagram
 ■ Perform engineering and trade-off analysis to evaluate and select the

preferred architecture
 – Capture the constraints on system properties using the parametric

diagram to support analysis of performance, reliability, cost, and other
critical properties

 – Perform the engineering analysis to determine the budgeted values of the
system properties (typically done in separate engineering analysis tools)

3.3 Using SysML in Support of MBSE

32 CHAPTER 3 SysML Language Overview

 ■ Specify component requirements and their traceability to system
requirements
 – Capture the functional, interface, and performance requirements for

each component (block) in the architecture
 – Trace component requirements to the system requirements

 ■ Verify that the system design satisfi es the requirements by executing
system-level test cases

 Other systems engineering activities are performed in conjunction with the
preceding modeling activities such as confi guration management and risk man-
agement. Detailed examples of how SysML can be used to support two different
MBSE methods are included in the modeling examples in Part III. A simplifi ed
example is described next.

 3.4 A Simple Example Using SysML for an Automobile Design
 The following example was introduced in Chapter 1 without introducing the
model-based approach. It is a simplified example that illustrates how SysML can
be applied to specify and design a system.

 3.4.1 Example Background and Scope
 The example includes at least one diagram for each SysML diagram type, but only
highlights selected features of the language. It includes multiple references to the
chapters in Part II for the detailed language description. The way the diagrams
are used to represent the system and the ordering of the diagrams is intended to
be representative of applying a typical model-based approach. However, this will
vary depending on the specific process and method used.

 3.4.2 Problem Summary
 The sample problem describes the use of SysML as it applies to the design of an
automobile. A marketing analysis that was done indicated the need to increase
the automobile’s acceleration and fuel efficiency from its current capability. A var-
iant of the process described in Section 3.3 is used to design the system to satisfy
the requirements. In this simplified example, selected aspects of the design are
considered to support an initial trade-off analysis. The trade-off analysis included
evaluation of alternative vehicle configurations that included a 4-cylinder engine
and a 6-cylinder engine to determine whether they can satisfy the acceleration
and fuel efficiency requirement.

 In addition, the proposed vehicle design includes a vehicle controller and
associated software to control the fuel – air mixture and maximize fuel effi ciency
and engine performance. Only a small subset of the design is addressed to

33

highlight the use of the language. The diagrams used in this example are shown in
 Table 3.1 .

 SysML diagrams include a diagram frame. The diagram header in the dia-
gram frame describes the kind of diagram, the diagram name, and some additional
information that provides context for the diagram content. Detailed information
on diagram frames, diagram headers, and other common diagram elements that
apply to all SysML diagrams is described in Chapter 4.

 The example includes the following user-defi ned notations, called a stereotype,
that are added for this example. Chapter 14 describes how stereotypes are used to
further customize the language for domain-specifi c applications.

 «hardware »
 « software »
 « store »
 « system of interest »

Table 3.1 Diagrams Used in the Automobile Example

 Figure Diagram Kind Diagram Name

 3.2 Requirement diagram Automobile System Requirements

 3.3 Block defi nition diagram Automobile Domain

 3.4 Use case diagram Operate Vehicle

 3.5 Sequence diagram Drive Vehicle

 3.6 Sequence diagram Start Vehicle

 3.7 Activity diagram Control Power

 3.8 State machine diagram Drive Vehicle States

 3.9 Internal block diagram Vehicle Context

 3.10 Block defi nition diagram Vehicle Hierarchy

 3.11 Activity diagram Provide Power

 3.12 Internal block diagram Power Subsystem

 3.13 Block defi nition diagram Analysis Context

 3.14 Parametric diagram Vehicle Acceleration Analysis

 3.15 Timing diagram (not SysML) Vehicle Performance Timeline

 3.16 Activity diagram Control Engine Performance

 3.17 Block defi nition diagram Engine Specifi cation

 3.18 Requirement diagram Max Acceleration Requirement
Traceability

 3.19 Package diagram Model Organization

3.4 A Simple Example Using SysML for an Automobile Design

34 CHAPTER 3 SysML Language Overview

 3.4.3 Capturing the Automobile Specifi cation in a Requirement Diagram
 The requirement diagram for the Automobile System Requirements is shown
in Figure 3.2 . The kind of diagram (e.g., req) and the diagram name are shown in
the diagram header at the upper left. The diagram depicts the requirements that
are typically captured in a text specification. The requirements are shown in a
containment hierarchy to depict the hierarchical relationship among them. The
Automobile Specification is the top-level requirement that contains the lower-
level requirements. The line with the crosshairs symbol at the top is the contain-
ment relationship.

 The specifi cation contains requirements for Passenger and Baggage Load ,
Vehicle Performance , Riding Comfort , Emissions, Fuel Effi ciency , Production Cost ,
Vehicle Reliability , and Occupant Safety . The Vehicle Performance requirement
contains requirements for Maximum Acceleration , Top Speed, Braking Distance ,
and Turning Radius . Each requirement includes a unique identifi cation, its text,
and can include other user-defi ned properties, such as verifi cation status and
risk, that are typically associated with requirements. The text for the Maximum
Acceleration requirement is “the vehicle shall accelerate from 0 to 60 mph in less
than 8 seconds ” and the text for the Fuel Effi ciency requirement is “the vehicle
shall achieve at least 25 miles per gallon under the stated driving conditions. ”

 The requirements may have been created in the modeling tool, or alternatively,
they may have been imported from a requirements management tool or a text
document. The requirements can be related to other requirements, design ele-
ments, and test cases using derive, satisfy, verify, refi ne, trace, and copy rela-
tionships. These relationships can be used to establish requirements traceability
with a high degree of granularity. Some of these relationships are highlighted in
Section 3.4.19. Chapter 12 provides a detailed description of how requirements
are modeled in SysML. Requirements can be represented using multiple display
options to view the requirements, their properties, and their relationships, which
includes a tabular representation.

 3.4.4 Defi ning the Vehicle and Its External Environment
Using a Block Defi nition Diagram

 In system design, it is important to identify what is external to the system that may
either directly or indirectly interact with it. The block definition diagram for the
Automobile Domain in Figure 3.3 defines the Vehicle and the external systems,
users, and other entities that the vehicle may directly or indirectly interact with.

 A block is a very general modeling concept in SysML that is used to model
a wide variety of entities that have structure such as systems, hardware, soft-
ware, physical objects, and abstract entities. That is, a block can represent any
real or abstract entity that can be conceptualized as a structural unit with one or
more distinguishing features. The block defi nition diagram captures the relation
between blocks such as a block hierarchy.

 The Automobile Domain is the top-level block in the block defi nition diagram
in Figure 3.3 . It is composed of other blocks as indicated by the black diamond

3
5

«requirement»
Automobile

Specification

«requirement»
Vehicle Performance

«requirement»
Passenger and
Baggage Load

«requirement»
Riding Comfort

«requirement»
Emissions

«requirement»
Fuel Efficiency

id � 3.3
text � The vehicle shall achieve at least 25 miles per...

«requirement»
Maximum Acceleration

id � 3.2.1
text � The vehicle shall accelerate from 0 to 60 mph i . . .

«requirement»
Braking Distance

«requirement»
Top Speed

«requirement»
Space

«requirement»
Vibration

«requirement»
Noise

«requirement»
Vehicle Reliability

«requirement»
Vehicle Production

Cost

«requirement»
Occupant Safety

«requirement»
Turning Radius

req Requirements [Automobile System Requirements]

 FIGURE 3.2

 Requirement diagram showing the system requirements contained in the Automobile Specifi cation.

3
6

bdd Structure [Automobile Domain]

«block»
Automobile

Domain

«system of interest»
Vehicle

«block»
Physical

Environment

«block»
Road

friction : Real
incline : Radians

«block»
External Entity

Driver Passenger

«block»
Baggage

«block»
Atmosphere

temperature : Deg C
air density : Mass/Volume

Vehicle Occupant

atmee 0..*r

pevbag0..4

values values

 FIGURE 3.3

 Block defi nition diagram of the Automobile Domain showing the Vehicle and its external users and physical environment.

37

symbol and line with the arrowhead pointing to the blocks that compose it. The
differences between the composition hierarchy (i.e., black diamond) and the con-
tainment hierarchy (i.e., crosshairs symbol) shown in Figure 3.2 are explained
in Part II. The name next to the arrow identifi es a particular usage of a block as
described later in this section. The Vehicle block is referred to as the «system of
interest » using the bracket symbol called guillemet. The other blocks are exter-
nal to the vehicle. These include the Driver, Passenger, Baggage, and Physical
Environment. The Driver and Passenger are shown using stick-fi gure symbols.
Notice that even though the Driver, Passenger, and Baggage are assumed to be
physically inside the Vehicle, they are not part of the Vehicle structure, and there-
fore are external to it.

 The Driver and Passenger are subclasses of Vehicle Occupant as indicated by
the hollow triangle symbol. This means that they are kinds of vehicle occupants
that inherit common features from Vehicle Occupant . In this way, a classifi cation
can be created by specializing blocks from more generalized blocks.

 The Physical Environment is composed of the Road, Atmosphere, and multi-
ple External Entities. The External Entity can represent any physical object, such
as a traffi c light or another vehicle, that the Driver interacts with. The interaction
between the Driver and an External Entity can impact how the Driver interacts
with the Vehicle, such as when the traffi c light changes color. The multiplicity
symbol 0..* represents an undetermined maximum number of external entities.
The multiplicity symbol can also represent a single number or a range, such as the
multiplicity of 0..4, for the number of Passengers.

 Each block defi nes a structural unit, such as a system, hardware, software, data
element, or other conceptual entity, as described earlier. A block can have a set
of features that further defi ne it. The features of the block defi ne its proper-
ties (e.g., weight), its behavior in terms of activities allocated to the block or
operations of the block, and its interfaces as defi ned by its ports. Together, these
features enable a modeler to specify each block at the level of detail that is appro-
priate for the application.

 The Road is a block that has a property called incline with units of Radians
and a property called friction that is defi ned as a real number. Similarly, Atmos-
phere is a block that has two properties for temperature and air density. These
properties are used along with other properties to support analysis of vehicle
acceleration and fuel effi ciency, which are discussed in Sections 3.4.12 and 3.4.13.

 The block defi nition diagram specifi es the blocks and their interrelationships.
It is often used in systems modeling to depict multiple levels of the system hierar-
chy from the top-level domain block (e.g., Automobile Domain) down to vehicle
components. Chapter 6 provides a detailed description of how blocks are mod-
eled in SysML, including their features and relationships.

 3.4.5 Use Case Diagram for Operate Vehicle
 The use case diagram for Operate Vehicle in Figure 3.4 depicts the major func-
tionality for operating the vehicle. The use cases include Enter Vehicle, Exit
Vehicle, Control Vehicle Accessory, and Drive Vehicle. The Vehicle is the subject

3.4 A Simple Example Using SysML for an Automobile Design

38 CHAPTER 3 SysML Language Overview

of the use cases and is represented by the rectangle. The Vehicle Occupant is an
actor who is external to the vehicle and is represented as the stick figure. The
subject and actors correspond to the blocks in Figure 3.3 . In a use case diagram,
the subject (e.g., Vehicle) is used by the actors (e.g., Vehicle Occupant) to achieve
the goals defined by the use cases (e.g., Drive Vehicle).

 The Passenger and Driver are both kinds of vehicle occupants as described
in the previous section. All vehicle occupants participate in entering and exiting
the vehicle and controlling vehicle accessories, but only the driver participates
in Drive Vehicle. There are several other relationships between use cases that are
not shown here. Chapter 11 provides a detailed description of how use cases are
modeled in SysML.

 Use cases defi ne how the system is used to achieve a user goal. Other use
cases can represent how the system is used across its life cycle, such as when

uc Use Cases [Operate Vehicle]

Vehicle

Enter Vehicle

Drive Vehicle

Exit Vehicle

Control Vehicle
Accessory

Vehicle Occupant

Passenger

Driver

 FIGURE 3.4

 Use case diagram describes the major functionality in terms of how the Vehicle is used by
the actors to Operate Vehicle . The actors are defi ned on the block defi nition diagram in
 Figure 3.3 .

39

manufacturing, operating, and maintaining the vehicle. The primary emphasis for
this example is on the Drive Vehicle use case to address the acceleration and fuel
effi ciency requirements.

 The requirements are often related to use cases since use cases represent
the high-level functionality or goals for the system. Sometimes, use case textual
descriptions are defi ned to accompany the use case defi nition. One approach to
relate requirements to use cases is to capture the use case descriptions as SysML
requirements and relate them to the use case using a refi ne relationship.

 The use cases describe the high-level goals of the system as described previ-
ously. The goals are accomplished by the interactions between the actors (e.g.,
Driver) and the subject (e.g., Vehicle). These interactions are realized through
more detailed descriptions of behavior as described in the next section.

 3.4.6 Representing Drive Vehicle Behavior
with a Sequence Diagram

 The behavior for the Drive Vehicle use case in Figure 3.4 is represented by the
sequence diagram in Figure 3.5 . The sequence diagram specifies the interac-
tion between the Driver and the Vehicle as indicated by the names at the top of
the lifelines. Time proceeds vertically down the diagram. The first interaction is
Start Vehicle. This is followed by the Driver and Vehicle interactions to Control
Power, Control Brake, and Control Direction. These three interactions occur in
parallel as indicated by par. The alt on the Control Power interaction stands for
alternative, and indicates that the Control Neutral Power,Control Forward Power,
or Control Reverse Power interaction occurs as a condition of the vehicle state
shown in brackets. The state machine diagram in Section 3.4.9 specifies the vehi-
cle state. The Turn-off Vehicle interaction occurs following these interactions.

 The interaction occurrences in the fi gure each reference a more detailed
interaction as indicated by ref. The referenced interaction for Start Vehicle is
another sequence diagram that is illustrated in Section 3.4.7. The remaining inter-
action occurrences are references allocated to activity diagrams as described in
Section 3.4.8.

 3.4.7 Referenced Sequence Diagram to Start Vehicle
 The Start Vehicle sequence diagram in Figure 3.6 is an interaction that is referenced
in the sequence diagram in Figure 3.5 . As stated previously, time proceeds vertically
down the diagram. In this example, the more detailed interaction shows the driver
sending a message requesting the vehicle to start. The vehicle responds with
the vehicle on reply message shown as a dashed line. Once the reply has been
received, the driver and vehicle can proceed to the next interaction.

 The sequence diagram can include multiple types of messages. In this example,
the message is synchronous as indicated by the fi lled arrowhead on the message.
The messages can also be asynchronous represented by an open arrowhead,
where the sender does not wait for a reply. The synchronous messages represent

3.4 A Simple Example Using SysML for an Automobile Design

40 CHAPTER 3 SysML Language Overview

an operation call that specifi es a request for service. The arguments of the opera-
tion call represent the input data and return.

 Sequence diagrams can include multiple message exchanges between multiple
lifelines that represent interacting entities. The sequence diagram also provides
considerable additional capability to express behavior that includes other mes-
sage types, timing constraints, additional control logic, and the ability to decom-
pose the behavior of a lifeline into the interaction of its parts. Chapter 9 provides
a detailed description of how interactions are modeled with sequence diagrams.

sd Drive Vehicle

:Vehicle

par

alt

ref
Start Vehicle

ref
Turn Off Vehicle

ref
Control Neutral Power

ref
Control Forward Power

ref
Control Reverse Power

ref
Control Brake

ref
Control Direction

{vehicle state � neutral}

{vehicle state � forward}

{vehicle state � reverse}

:Driver
«Actor»

 FIGURE 3.5

 Drive Vehicle sequence diagram describes the interactions between the Driver and the Vehicle
to realize the Drive Vehicle use case in Figure 3.4 .

41

 3.4.8 Control Power Activity Diagram
 The sequence diagram is effective for communicating discrete types of behav-
ior as indicated with the Start Vehicle sequence diagram in Figure 3.6 . However,
continuous types of behaviors associated with the interactions to Control Power,
Control Brake, and Control Direction can sometimes be more effectively repre-
sented with activity diagrams.

 The Drive Vehicle sequence diagram in Figure 3.5 includes the control power
interactions that we would like to represent with an activity diagram instead
of a sequence diagram. To accomplish this, the Control Neutral Power, Control
Forward Power, and Control Reverse Power interactions in Figure 3.5 are allo-
cated to a corresponding Control Power activity diagram using the SysML alloca-
tion relationship (not shown).

 The activity diagram in Figure 3.7 shows the actions required of the Driver
and the Vehicle to Control Power. The activity partitions (or swimlanes) rep-
resent the Driver and the Vehicle. The actions in the activity partitions specify
functional requirements that the Driver and Vehicle must perform.

 When the activity is initiated, it starts execution at the Initial Node and
transitions to the Control Accelerator Position action that is performed by the
Driver. The output of this action is the Accelerator Cmd, which is a continuous
input to the Provide Power action that the Vehicle must perform. The output
of the Provide Power action is the Torque generated by the wheels to the road
to produce the force that accelerates the Vehicle. When the ignition off signal
is received by the Vehicle, the activity terminates at the Activity Final. Based

sd Start Vehicle

:Vehicle

start vehicle ()

vehicle on

:Driver
«Actor»

 FIGURE 3.6

 Sequence diagram for the Start Vehicle interaction that was referenced in the Drive Vehicle
sequence diagram, showing the message from Driver requesting Vehicle to start and the
vehicle on reply from the Vehicle .

3.4 A Simple Example Using SysML for an Automobile Design

42 CHAPTER 3 SysML Language Overview

on this scenario, the Driver is required to Control Accelerator Position and the
Vehicle is required to Provide Power.

 Activity diagrams include semantics for precisely specifying the behavior in
terms of the fl ow of control and inputs and outputs. Chapter 8 provides a detailed
description of how activities are modeled.

 3.4.9 State Machine Diagram for Drive Vehicle States
 The state machine diagram for the Drive Vehicle States is shown in Figure 3.8 .
This diagram shows the states of the Vehicle and the events that can trigger a
transition between the states.

 When the Vehicle is ready to be driven, it starts in the vehicle off state. The
ignition on event triggers a transition to the vehicle on state. The text on the
transition indicates that the Start Vehicle behavior is executed prior to entering
the vehicle on state. After entry to the vehicle on state, the Vehicle immediately
transitions to the neutral state. A forward select event triggers a transition to the
forward state if the guard condition [speed � � 0] is true. While in the forward
state, the Vehicle performs the Provide Power behavior that was referred to in the
activity diagram in Figure 3.7 . The neutral select event triggers the transition from

act Control Power

«allocateActivityPartition»
:Driver

«allocateActivityPartition»
:Vehicle

Control
Accelerator

Position

Provide
Power

{stream}
:Torque

ignition off

{stream}
:Torque

«continuous»
{stream}
:Accelerator Cmd

{stream}
:Accelerator Cmd

«continuous»

 FIGURE 3.7

 Activity diagram allocated from the Control Power interaction that was referenced in the Drive
Vehicle sequence diagram in Figure 3.5 . It shows the continuous Accelerator Cmd input from
the Driver to the provide power action that the Vehicle must perform.

43

the forward state back to the neutral state. The state machine diagram shows
the additional transitions between the neutral and reverse states. An ignition off
event triggers the transition back to the vehicle off state. The Vehicle can reenter
the vehicle on state when an ignition on event occurs.

 A state machine can specify the life-cycle behavior of a block in terms of its
states and transitions, and are often used with sequence and activity diagrams, as
shown in this example. State machines have many other features including ortho-
gonal regions and additional transition semantics that are described in Chapter 10.

 3.4.10 Vehicle Context Using an Internal Block Diagram
 The Vehicle Context Diagram is shown in Figure 3.9 . The diagram shows the
interfaces between the Vehicle, the Driver, and the Physical Environment (i.e.,
Road, Atmosphere, and External Entity) that were defined in the block definition
diagram in Figure 3.3 . The Vehicle has interfaces with the Driver, the Atmosphere,

stm Drive Vehicle States

vehicle on

forward

do/provide power

neutral

reverse

do/provide power

neutral select reverse select [speed��0]

neutral select

forward select [speed��0]

vehicle off

ignition off
/turn Off vehicle

ignition on
/start vehicle

 FIGURE 3.8

 State machine diagram that shows the Drive Vehicle States and the transitions between them.

3.4 A Simple Example Using SysML for an Automobile Design

44 CHAPTER 3 SysML Language Overview

and the Road. The Driver has interfaces with the External Entities such as a traf-
fic light or another vehicle, via the driver sensor inputs (e.g., seeing, hearing).
However, the Vehicle does not directly interface with the External Entities. The
multiplicity on the External Entity is consistent with the multiplicity shown in
the block definition diagram in Figure 3.3 .

 This context diagram is an internal block diagram that shows how the
parts of the Automobile Domain block from Figure 3.3 are connected. It is called
an internal block diagram because it represents the internal structure of a higher-
level block, which in this case is the Automobile Domain block. The Vehicle
ports specify interaction points with other parts and are represented as the small
squares on the boundary of the parts. Connectors defi ne how the parts connect
to one another via their ports and are represented as the lines between the ports.
Parts can also be connected without ports as indicated by some of the interfaces
in the fi gure when the details of the interface are not of interest to the modeler.

 In Figure 3.9 , only the external interfaces needed for the Vehicle to provide
power are shown. For example, the interfaces between the rear tires and the road
are shown. It is assumed to be a rear wheel –drive vehicle where power can be
distributed differently to the rear wheels depending on tire-to-road traction and
other factors. The interface between the front tires and the road is not shown in
this diagram, but it would be shown when representing the external interfaces
for the steering subsystem where the front tires would play a signifi cant role. It is
common modeling practice to only represent the aspects of interest on a particu-
lar diagram, even though additional information is included in the model.

ibd Automobile Domain [Vehicle Context Diagram]

:Physical Environment

:Driver

foot if

hand if

driver sensor in

:Vehicle

road if right rear

road if left rear

throttle in

air in

fuel in

gear in

:Atmosphere:External Entity [0..*] :Road

road if-1 road if-2

Gear Select

Sensor Input
Air

Accelerator Cmd

Wheel Force

Wheel Force

 FIGURE 3.9

 Internal block diagram for the Vehicle Context shows the Vehicle and its external interfaces with the Driver
and Physical Environment that were defi ned in Figure 3.3 .

45

 The black-fi lled arrowheads on the connector are called item fl ows that rep-
resent the items fl owing between parts and may include mass, energy, and/or
information. In this example, the Accelerator Cmd that was previously defi ned in
the activity diagram in Figure 3.8 fl ows from the Driver port to the throttle in
port of the Vehicle, and the Gear Select fl ows from another Driver port to the
gear in port on the Vehicle. The inputs and outputs from the activity diagram
are allocated to the item fl ows on the connectors. Allocations are discussed as
a general-purpose relationship for mapping one model element to another in
Chapter 13.

 In SysML, there are two different kinds of ports. The fl ow port specifi es the
kind of item that can fl ow in or out of an interaction point, and a standard port
specifi es the services that either are required or provided by the part. The port
provides the mechanism to integrate the behavior of the system with its structure.

 The internal block diagram enables the modeler to specify both external and
internal interfaces of a system or component. An internal block diagram shows
how parts are connected, as distinct from a block defi nition diagram that does not
show connectors. Details of how to model internal block diagrams are described
in Chapter 6.

 3.4.11 Vehicle Hierarchy Represented on a Block Defi nition Diagram
 The example to this point has focused on specifying the vehicle in terms of its
external interactions and interfaces. The Vehicle Hierarchy in Figure 3.10 is a
block definition diagram that shows the decomposition of the Vehicle into its com-
ponents. The Vehicle is composed of the Body, Chassis, Interior, Power Train, and
other types of components. Each component type is designated as «hardware ».

 The Power Train is further decomposed into the Engine, Transmission,
Differential, and Wheel. Note that the right rear and left rear indicate different
usages of a Wheel in the context of the Power Train. Thus, each rear wheel has a
different role and may be subject to different forces, such as is the case when one
wheel looses traction. The front wheels are not shown, but could be part of the
chassis or part of the steering assembly and would have different roles as well.

 The engine may be either 4 or 6 cylinders as indicated by the specialization
relationship. The 4- and 6-cylinder vehicle confi guration alternatives are being
considered to satisfy the acceleration and fuel effi ciency requirements. Only one
engine type is part of a particular Vehicle as indicated by the { complete, disjoint }
constraint. This implies that the 4- and 6-cylinder engines represent a complete set
of subclasses and are mutually exclusive or disjoint.

 The vehicle:Controller «software » has been allocated to the Vehicle Processor
as indicated by the allocation compartment. The Vehicle Processor is the execu-
tion platform for the vehicle control software. The software is being enhanced to
control many of the automobile engine and transmission functions to optimize
engine performance and fuel effi ciency.

 The interaction and interconnection between these components is analyzed
in a similar way to what was done at the Vehicle black box level, and is used to
specify the components of the Vehicle system as described in the next sections.

3.4 A Simple Example Using SysML for an Automobile Design

4
6

bdd Vehicle Structure [Vehicle Hierarchy]

«system of interest»
Vehicle

«hardware»
Power Train

«hardware»
Chassis

«hardware»
Body

«hardware»
Suspension

«hardware»
Braking Assembly

«hardware»
Steering

Assembly

«hardware»
Engine

«hardware»
Transmission

«hardware»
Differential

«hardware»
Wheel

«hardware»
Interior

«hardware»
Electrical
Assembly

«hardware»
6-Cylinder Engine

«hardware»
4-Cylinder Engine

«hardware»
Fuel Tank

«hardware»
Vehicle Processor

diff

c i pt ba sa sb

trans left rear

ea

Engine Size
{complete, disjoint}

right rearft

vp

eng

allocatedFrom
«software»Vehicle Controller

 FIGURE 3.10

 Block defi nition diagram of the Vehicle Hierarchy shows the Vehicle and its components. The Power Train is further decomposed into its
components and the Vehicle Processor includes the Controller software.

47

 3.4.12 Activity Diagram for Provide Power
 The activity diagram in Figure 3.7 showed that the vehicle must provide power in
response to the driver accelerator command and generate wheel � tire torque at
the road surface. The Provide Power activity diagram in Figure 3.11 shows how
the vehicle components generate this torque.

 The external inputs to the activity include the Accelerator Cmd and Gear
Select from the Driver, and Air from the Atmosphere to support engine combus-
tion. The outputs are the torque from the right and left rear wheels to the road
that provides the force to accelerate the Vehicle. Some of the other inputs and out-
puts, such as exhaust from the engine, are not included for simplicity. The activity
partitions represent the vehicle components shown in the block defi nition dia-
gram in Figure 3.10 .

 The fuel tank stores and dispenses the fuel to the Engine. The accelerator
command and air and fuel are input to the generate torque action. The engine
torque is input to the amplify torque action performed by the Transmission .
The amplifi ed torque is input to the distribute torque action performed by the
Differential that distributes torque to the right and left rear wheels to provide
traction to the road surface to generate the force to accelerate the Vehicle.

 The actions that are allocated to the Vehicle components realize the provide
power action that the Vehicle performs, as shown in Figure 3.7 . This approach is
used to decompose the system behavior.

 A few other items are worth noting in this example. The fl ows are shown to
be continuous for all but the Gear Select. The inputs and outputs continuously
fl ow in and out of the actions. Continuous means that the delta time between
arrival of the inputs or outputs approaches zero. Continuous fl ows build on the
concept of streaming inputs and outputs, which means that inputs are accepted
and outputs are produced while the action is executing. Conversely, nonstreaming
inputs are only available prior to the start of the action execution, and nonstream-
ing outputs are produced only at the completion of the action execution. The
ability to represent streaming and continuous fl ows adds a signifi cant capability
to classic behavioral modeling associated with functional fl ow diagrams. The con-
tinuous fl ows are assumed to be streaming.

 Many other activity diagram features are explained in Chapter 8; they provide
a capability to precisely specify behavior in terms of the fl ow of control and data,
and the ability to reuse and decompose behavior.

 3.4.13 Internal Block Diagram for the Power Subsystem
 The previous activity diagram described how the parts of the system interact to
provide power. The parts of the system are represented by the activity partitions
in the activity diagram. The internal block diagram for the vehicle in Figure 3.12
shows how the parts are interconnected to achieve this functionality and is used
to specify the interfaces between the parts. This is a structural view of the system
versus the behavioral view that was expressed in the activity diagram.

3.4 A Simple Example Using SysML for an Automobile Design

4
8

act Provide Power

:Air

«allocateActivityPartition»
right rear:Wheel

«allocateActivityPartition»
:Engine

Generate
Torque

out
:Fuel

:Air

«allocateActivityPartition»
:Transmission

«allocateActivityPartition»
:Differential

Amplify
Torque

outin

:Gear
Select

Distribute
Torque

in

out
right

out
left

Provide
Traction

in out

«allocateActivityPartition»
left rear:Wheel

Provide
Tractionin

out

«allocateActivityPartition»
:Fuel Tank

:Fuel

«continuous»

«continuous»

«continuous»

«continuous»

«continuous»Store and
Dispense Fuel

right rear:
Torque

left rear:
Torque

:Accelerator Cmd

«continuous» «continuous»

«continuous»

«continuous»

:Gear Select

:Accelerator Cmd

 FIGURE 3.11

 Activity diagram for Provide Power shows how the Vehicle components generate the torque to move the vehicle. This activity diagram realizes the
provide power action in Figure 3.7 with activity partitions that correspond to the components in Figure 3.10 .

4
9

ibd Vehicle [Power Subsystem]

air in

gear in

fuel in

:Power Train

:Engine

air in

fuel in

control if

torque
out

:Transmission

gear in

torque
in

out

:Differential

in

out-rt

out left

right rear :Wheel

road ifin

:Fuel Tank

fuel out

fuel in

«store»
:Fuel

left rear :Wheel

road ifin

:Vehicle
Processor

transmission control if

engine control if

gear in

throttle in

road if right rear

road if left rear

throttle in

 FIGURE 3.12

 Internal block diagram for the Power Subsystem shows how the parts that provide power are interconnected. The parts are represented as the
activity partitions in Figure 3.11 .

50 CHAPTER 3 SysML Language Overview

 The internal block diagram represents the Power Subsystem that only includes
the parts of the Vehicle that collaborate to provide power. The frame of the dia-
gram represents the Vehicle black box. The ports on the diagram frame corre-
spond to the same ports shown on the Vehicle in the Vehicle Context diagram
in Figure 3.9 . This enables the external interfaces to be preserved as the internal
structure of the Vehicle is further specifi ed.

 The Engine, Transmission, Differential, right rear and left rear Wheel, Vehicle
Processor, and Fuel Tank are interconnected via their ports. The Fuel is stored in
the Fuel Tank as indicated by « store » . The item fl ows on the connectors are not
shown, but represent the items that fl ow through the system and are allocated
from the inputs and outputs on the Provide Power activity diagram in Figure 3.11 .

 Additional subsystems can be created in a similar way to realize specifi c func-
tionality such as provide braking and provide steering. A composite view of all of
the interconnected parts across all subsystems can also be created in a composite
Vehicle internal block diagram. An example of this is included in the residential
security example in Chapter 16.

 It is appropriate to elaborate on the usage concept that was fi rst introduced in
Section 3.4.11 when discussing the right rear and left rear wheels. A part in an
internal block diagram represents a particular usage of a block. The block repre-
sents the generic defi nition, whereas the part represents a usage of a block defi ni-
tion in a particular context. Thus, the right rear and left rear are different usages
of the Wheel block in the context of the Vehicle. A usage (or part) is the same
as a role. The parts in the diagram are indicated by the colon (:) notation. A part
enables the same block to be reused in many different contexts and be uniquely
identifi ed by its usage. Each part may have unique behaviors, properties, and con-
straints that apply to its particular usage.

 The concept of defi nition and usage is applied to many other SysML language
constructs as well. One example is that the item fl ows themselves can have a defi -
nition and usage. For example, an item fl ow entering the fuel tank can be in : Fuel
and the item fl ow exiting the fuel tank can be out : Fuel. Both fl ows are defi ned by
fuel, but “ in ” and “ out ” represent different usages of Fuel in the Vehicle context.

 As mentioned previously, Chapter 6 provides the detailed language description
for both block defi nition diagrams and internal block diagrams, and includes the
concept of role, references, and many other key concepts for modeling blocks and
parts.

 3.4.14 Defi ning the Equations to Analyze
Vehicle Performance

 Critical requirements for the design of this automobile are to accelerate from 0 to
60 mph in less than 8 seconds, while achieving a fuel efficiency of greater than
25 miles per gallon. These two requirements impose conflicting requirements on
the design space, such that increasing the acceleration capability can result in a
design with lower fuel efficiency. Two alternative configurations, including a 4- and
6-cylinder engine, are evaluated to determine which configuration is the preferred
solution to meet the acceleration and fuel efficiency requirements.

51

 The 4- and 6-cylinder engine alternatives are shown in the Vehicle Hierarchy
in Figure 3.10 . There are other design impacts that may result from the automo-
bile confi gurations with different engines, such as the vehicle weight, body shape,
and electrical power. This simplifi ed example only considers the impact on the
Power Subsystem. The vehicle controller is assumed to control the fuel and air
mixture, and control when the gear changes the automatic transmission to opti-
mize engine and overall performance.

 The block defi nition diagram in Figure 3.13 introduces a new type of block
called a constraint block. Instead of defi ning systems and components, the con-
straint block defi nes constraints in terms of equations and their parameters.

 In this example, the Analysis Context block is composed of a series of con-
straint blocks to analyze the vehicle acceleration to determine whether either the
4- or 6-cylinder vehicle confi guration can satisfy its requirement. The constraint
blocks defi ne generic equations for Gravitational Force, Drag Force, Power Train

bdd Parametrics [Analysis Context]

«block»
Analysis
Context

a

«constraintBlock»
Gravitational Force

w: Pounds
fg: Pounds
theta: Radians

constraints
{fg � w/g * sin(theta)}

parameters

«constraintBlock»
Drag Force

fd: Pounds
rho: Mass/Volume
v: Ft/sec
Cd: Real

constraints
{fd � 0.5*rho*v*v*Cd}

parameters

«constraintBlock»
Power Train Force

fp: Pounds

constraints
{fp(Teng, Ttrans, Tdiff, fw)}

parameters

«constraintBlock»
Total Force

fi: Pounds
fk: Pounds
ft: Pounds
fj: Pounds

constraints
{ft � fi�fj�fk}

parameters

«constraintBlock»
Acceleration

f: Pounds
a: Ft/sec2
w: Pounds

constraints
{f � (w/g) *a}

parameters

«constraintBlock»
Integrator

y: Ft/sec
y0: Ft/sec
x: Ft/sec2

constraints
{y � integral{xdt}�y0}

parameters

«constraintBlock»
Transmission Torque

torque in: Foot pounds
gear ratio: Integer
Ttrans: Foot pounds
eff tm: Percent

constraints
{Ttrans (torque in, gear ratio, eff tm)}

parameters

«constraintBlock»
Differential Torque

Tdiff: Foot pounds
eff ta: Percent
torque in: Foot pounds
k: Integer

constraints
{Tdiff (torque in, k, eff ta)}

parameters

«constraintBlock»
Engine Torque

Teng: Foot pounds
fuel flow rate: Mass/Volume
Ncyl: Integer
displ: Cubic Inches
eff eng: Percent
rpm: Real

constraints
{Teng (fuel flow rate, Ncyl, displ, eff eng, rpm)}

parameters

«block»
Automobile

Domain

«constraintBlock»
Wheel Force

fw: Pounds
torque in: Foot pounds
wheel dia: Inches
tire friction: Real

constraints
{fw (torque in, wheel dia,

tire friction)}

parameters

 FIGURE 3.13

 Block defi nition diagram for the Analysis Context that defi ned the equations for analyzing the vehicle
acceleration requirement. The equations and their parameters are specifi ed using constraint blocks. The
Automobile Domain block from Figure 3.3 is referenced since it is the subject of the analysis.

3.4 A Simple Example Using SysML for an Automobile Design

52 CHAPTER 3 SysML Language Overview

Force, Total Force, Acceleration, and an Integrator. The Total Force equation, as
an example, shows that ft is the sum of fi , fj, and fk. Note that the parameters are
defi ned along with their units and/or dimensions in the constraint block.

 The Power Train Force is further decomposed into other constraint blocks that
represent the equations for torque from the Engine, Transmission, Differential,
and Wheels. The equations are not explicitly defi ned, but the critical parameters
of the equations are. This is important since it may be of value to identify the criti-
cal parameters, and to defer defi nition of the equations until the detailed analysis
is performed.

 The Analysis Context block also references the Automobile Domain block
that was originally shown in the block defi nition diagram in Figure 3.3 . The intent
of this diagram is to identify both the equations for the analysis and the subject of
the analysis. Referencing the Automobile Domain enables the equations to con-
strain the properties of the Vehicle , its components, and the physical environment.
The parameters of the generic equations are bound to the properties of the sys-
tem and the environment that is being analyzed, as described in the next section.

 3.4.15 Analyzing Vehicle Acceleration Using the Parametric Diagram
 The previous block definition diagram defined the equations and associated para-
meters needed to analyze the system. The parametric diagram in Figure 3.14
shows how these equations are used to analyze the vehicle acceleration to deter-
mine the time for the Vehicle to accelerate from 0 to 60 mph.

 The parametric diagram shows a network of constraints (equations). Each con-
straint is a usage of a constraint block defi ned in the block defi nition diagram in
Figure 3.13 . The parameters of the equation are shown as small rectangles fl ush
with the inside boundary of the constraint.

 A parameter in one equation can be bound to a parameter in another equation
by a binding connector. An example of this is the parameter ft in the Total Force
equation that is bound to the parameter f in the Acceleration equation. This means
that ft in the Total Force equation is equal to f in in the Acceleration equation.

 The parameters can also be bound to properties of blocks to make the param-
eter equal to the property. The properties of blocks are shown as the rectangles
in the diagram. An example is the binding of the coeffi cient of drag parameter
cd in the Drag Force equation to the drag property called drag, which is a prop-
erty of the vehicle Body. The dot notation “ a.v.b. ” that precedes the drag property
specifi es that this is a property of the body, which is part of the vehicle that is part
of the Automobile Domain. Another example is the binding of the road incline
angle to the angle theta in the gravity force equation. This binding enables param-
eters of generic equations to be set equal to specifi c properties of the blocks. In
this way, generic equations can be used to analyze many different designs.

 The parametric diagram and related modeling information can be provided to
the appropriate simulation and/or analysis tools to support execution. This engi-
neering analysis is used to perform sensitivity analysis and determine which prop-
erty values are required to satisfy the acceleration requirement.

 Other analysis can be performed to determine the required property values for
the system components (e.g., Body, Chassis, Engine, Transmission, Differential,

53

Brakes, Steering Assembly) to satisfy the overall system requirements. In addition to
the acceleration and fuel effi ciency requirements, other analyses may address require-
ments for braking distance, vehicle handling, vibration, noise, safety, reliability, produc-
tion cost, and so on. The parametrics enable the critical properties of the system to
be identifi ed and integrated with analysis models. Details of how to model constraint
blocks and their usages in parametric diagrams are described in Chapter 7.

 3.4.16 Analysis Results from Analyzing Vehicle Acceleration
 As mentioned in the previous section, the parametric diagram is expected to be
executed in an engineering analysis tool to provide the results of the analysis.
This may be a separate specialized analysis tool that is not provided by the SysML
modeling tool, such as a simple spreadsheet or a high-fidelity performance simula-
tion depending on the need. The analysis results from the execution then provide
values that can be incorporated back into the SysML model.

 The analysis results from executing the constraints in the parametric diagram
are shown in Figure 3.15 . This example uses the UML timing diagram to display
the results. Although the timing diagram is not currently one of the SysML diagram

par [block]Analysis Context [Vehicle Acceleration Analysis]

:Gravitational Force

theta w

fg

:Drag Force
fd

rho cd v

:Power Train
Force

fp
:Total Force

fifj

fk

ft
:Acceleration

f

w

a
:Integrator

yx(t) y0

a.v.wta.pe.r.incline

a.v.b.drag

a.v.speed

 FIGURE 3.14

 Parametric diagram that uses the equations defi ned in Figure 3.13 to analyze Vehicle Acceleration . The
parameters of the equations are bound to parameters of other constraints and to properties of the Vehicle
and its environment.

3.4 A Simple Example Using SysML for an Automobile Design

54 CHAPTER 3 SysML Language Overview

types, it can be used in conjunction with SysML if it is useful for the analysis,
along with other more robust visualization methods. The vehicle speed property
is shown as a function of time, and the Vehicle state is shown as a function of
time. The Vehicle states correspond to nested states within the forward state in
Figure 3.8 . Based on the analysis performed, the 6-cylinder (V6) vehicle confi gura-
tion is able to satisfy its acceleration requirement but a similar analysis showed
that the 4-cylinder (V4) vehicle confi guration does not satisfy the requirement.

 3.4.17 Using the Vehicle Controller to Optimize Engine Performance
 The analysis results showed that the V6 configuration is needed to satisfy the vehi-
cle acceleration requirement. Additional analysis is needed to assess whether the
V6 configuration can satisfy the fuel efficiency requirement for a minimum of
25 miles per gallon under the stated driving conditions as specified in the Fuel
Efficiency requirement in Figure 3.2 .

 The activity diagram in Figure 3.16 is a refi nement of a portion of the Provide
Power activity diagram in Figure 3.11 . In this fi gure, the vehicle controller software
has been added as an activity partition to support the analysis needed to optimize

V
eh

ic
le

 S
ta

te

V
eh

ic
le

 S
pe

ed
 (

m
ph

)

Neutral

10

20

30

40

50

60

70

80

Time (seconds)
1 2 3 4 5 6 7 8 9 10

Requirement

X

Estimated
Performance

Gear 3

Gear 2

Gear 1

Gear 4

Alternative � V6

tim Vehicle Performance Timeline

 FIGURE 3.15

 Analysis results from executing the constraints in the parametric diagram in Figure 3.14
showing the vehicle speed property and Vehicle state as a function of time. This is captured
in a UML timing diagram.

5
5

act Control Engine Performance

Gear
Select

«allocateActivityPartition»
:Engine

Generate
Torque

out

:Fuel

:Air

«allocateActivityPartition»
:Transmission

Amplify
Torque

transmission
out

in

:Gear
Select

«allocateActivityPartition»
:Fuel Tank

Store and
Dispense

Fuel :Fuel

«allocateActivityPartition»
vehicle:Controller

Control Gear

Control Fuel
Air Mixture

in out

engine
parameters
include RPM,
Temperature

«continuous»

«continuous»

«continuous» out1 :Engine
Parameters

eng :Accelerator Cmd

«continuous»

:Air

«continuous»

in :Gear Select

«continuous»

«continuous»

:Accelerator Cmd

in :Engine
Parameters

out :Gear Select

out2 :Engine
Parameters

in :Engine
Parameters

 FIGURE 3.16

 Activity diagram used to analyze the vehicle controller software interaction with the engine and transmission to optimize fuel effi ciency and engine
performance. This diagram is a refi nement of a portion of the activity diagram in Figure 3.11 .

56 CHAPTER 3 SysML Language Overview

fuel effi ciency and engine performance. The vehicle Controller includes an action to
control fuel –air mixture that in turn produces the engine accelerator command. The
inputs to this action include the Accelerator Cmd from the Driver and Engine Para-
meter such as revolutions per minute (RPM) and engine temperature. The vehicle
Controller also includes the Control Gear action to determine when to change gears
based on engine speed (i.e., RPM) to optimize performance. The specifi cation of the
vehicle controller software can include a state machine diagram that changes state in
response to the inputs consistent with the state machine diagram in Figure 3.8 .

 The specifi cation of the algorithms to realize these actions requires further
analysis. A parametric diagram can specify the required fuel and air mixture in
terms of RPM and engine temperature to achieve optimum fuel effi ciency, and
they can be used to constrain the input and output of the actions. The algorithms
must implement these constraints by controlling fuel fl ow rate and air intake, and
perhaps other parameters. The algorithms, which consist of mathematical and log-
ical expressions, can be captured in an activity diagram or directly in code. Based
on the previous engineering analysis—the details of which are omitted here—the
V6 engine is able to satisfy the fuel effi ciency requirements and is selected as the
preferred vehicle system confi guration.

 3.4.18 Specifying the Vehicle and Its Components
 The block definition diagram in Figure 3.10 defined the blocks for the Vehicle
and its components. The preceding analysis is used to specify the features of the
blocks in terms of the functions they perform, their interfaces, and their perform-
ance and physical properties. Other aspects of the specification may include a
state machine for state-based behavior and definitions of items that are stored by
the block, such as fuel.

 A simple example is the specifi cation of the Engine block shown in Figure
3.17 . This block was originally shown in the Vehicle Hierarchy block defi nition
diagram in Figure 3.10 . In this example, the Engine hardware element performs
a function called generate torque, with ports that specify its interfaces to air in,
fuel in, control if, and out torque. Selected properties are shown that represent
performance and physical properties including its displacement, combustion effi -
ciency, max power, and weight along with their units. The property values may
also be represented as either a single value or a distributed value. Other blocks are
specifi ed in a similar way.

 3.4.19 Requirements Traceability
 The Automobile System Requirements were shown in Figure 3.2 . Capturing
the text-based requirements in the SysML model provides the means to establish
traceability between the text-based requirements and other parts of the model.

 The requirements traceability for the Maximum Acceleration requirement is
shown in Figure 3.18 . The requirement is satisfi ed by the Power Subsystem. The
rationale refers to the engineering analysis based on the Vehicle Acceleration
Analysis parametric diagram in Figure 3.14 . The Max Acceleration test case is

57

also shown as the method to verify that the requirement is satisfi ed. In addition,
the Engine Power requirement is derived from the Max Acceleration requirement
and contained in the Engine Specifi cation. The Engine block refi nes the Engine
Specifi cation by restating the text requirements in the model. In this way, the sys-
tem requirements can be traced to the system design and test cases, along with
rationale.

 The direction of the arrows points from the Power Subsystem design, Max
Acceleration test case, and Engine Power requirement to the Max Acceleration as
the source requirement. This is in the opposite direction that is often used to rep-
resent requirements fl ow-down. The direction represents a dependency from the
design, test case, and derived requirement to the source requirement, such that if
the source requirement changes, the design, test case, and derived requirement
should also change.

 As stated previously, there are other requirements relationships for trace and
copy. The requirements are supported by multiple notation options including a
tabular representation. Details of how SysML requirements and their relationships
are modeled are described in Chapter 12.

 3.4.20 Package Diagram for Organizing the Model
 The concept of an integrated system model is a foundational concept for MBSE
as described in Chapter 2. The model contains all of the model elements. The

bdd Vehicle Structure [Engine Specification]

«hardware»
6-Cylinder Engine

combustion efficiency: Percent
displacement: Cubic Inches
max power: Horsepower
weight: Pounds

generate torque ()

fuel in

air in

control if

out torque

values

operations

 FIGURE 3.17

 The block defi nition diagram shows the Engine block and the features used to specify the
block. This block was previously shown in the Vehicle Hierarchy block defi nition diagram in
 Figure 3.10 .

3.4 A Simple Example Using SysML for an Automobile Design

58 CHAPTER 3 SysML Language Overview

model elements and their relationships are captured in a model repository and can
be displayed on diagrams. The model elements are integrated such that a model
element that appears on one diagram may have relationships to model elements
that appear on other diagrams. An example is the Road property, such as the
incline angle that appears as a property of Road in the block definition diagram in
Figure 3.3 , and also is bound to a parameter of a constraint in the parametric dia-
gram in Figure 3.14 . The diagrams represent a view into this model.

 A model organization is essential to managing the model. A well-organized
model is akin to having a set of drawers to organize your supplies, where each
supply element is contained in a drawer, and each drawer is contained in a particu-
lar cabinet. This facilitates understandability, access control, and change manage-
ment of the model.

req Requirements [Max Acceleration Requirement Traceability]

«requirement»
Maximum Acceleration

id � 3.2.1
text � The vehicle shall accelerate from 0 to 60 mph i . . .

«testCase»
Max Acceleration

«block»
Power Subsystem

«requirement»
Engine Power

id � 3.2.2
text � The max engine horsepower shall be greater
than . . .

«requirement»
Engine Specification

«hardware»
6-Cylinder Engine

«rationale»
Refer to engineering
analysis results from
Vehicle Acceleration
Analysis parametric
diagram.

«deriveReqt»

«verify»

«satisfy»

«refine»

 FIGURE 3.18

 Requirement diagram showing the traceability of the Max Acceleration requirement that was shown in the
Automobile Specifi cation in Figure 3.2 . The traceability to a requirement includes the design elements
that satisfy it, other requirements derived from it, and test cases to verify it. Rationale for the traceability
relationships is also shown.

59

 The package diagram in Figure 3.19 shows how the model elements for this
example are organized into packages. Each package contains a set of model
elements. Model elements in one package can be related to model elements in
another package. However, model organization enables each model element to
be uniquely identifi ed by the package that contains it. The model organization is
generally similar to the view that is shown in the tool browser. Details on how to
organize the model with packages are given in Chapter 5.

Requirements

Use Cases

Behavior

Structure

Parametrics

Test Cases

Support Elements

Automobile Model

pkg Automobile Model [Model Organization]

 FIGURE 3.19

 Package diagram showing how the model is organized into packages that contain model
elements that comprise the Automobile Domain . Model elements in packages are displayed
on diagrams. Model elements in one package can be related to model elements in another
package.

3.4 A Simple Example Using SysML for an Automobile Design

60 CHAPTER 3 SysML Language Overview

 3.4.21 Model Interchange
 A SysML model that is captured in a model repository can be imported and
exported from a SysML-compliant tool in a standard format called XML metadata
interchange (XMI). This enables other tools to exchange this information if they
also support XMI. An example may be the ability to export selected parts of the
SysML model to another UML tool to support software development of the con-
troller software, or to import and export the requirements from a requirements
management tool, or to import and export the parametric diagrams and related
information to engineering analysis tools. The ability to achieve seamless inter-
change capability may be limited by the quality of the model and how the tool
implements the standard, but this capability continues to improve. A description
of XMI is included in Chapter 17.

 3.5 Summary
 SysML is a general-purpose graphical language for modeling systems that may
include hardware, software, data, people, facilities, and other elements within the
physical environment. The language supports modeling of requirements, struc-
ture, behavior, and parametrics to provide a robust description of a system, its
components, and its environment.

 The semantics of the language enable a modeler to develop an integrated
model where model elements on one diagram can be related to model elements
on other diagrams. The diagrams enable capturing and viewing the information
in the model repository to help specify, design, analyze, and verify systems. The
repository information can be imported and exported to exchange model data via
the XMI standard and other exchange mechanisms.

 The SysML language is a critical enabler of MBSE and can be used with a vari-
ety of processes and methods. However, effective use of the language requires a
well-defi ned MBSE method. The automobile example illustrated the use of one
such method. Other examples are included in Part III.

 3.6 Questions
 1. What are some of the aspects of a system that SysML can represent?
 2. What is a requirement diagram used for?
 3. What is an activity diagram used for?
 4. What is a sequence diagram used for?
 5. What is a state machine diagram used for?
 6. What is a use case diagram used for?
 7. What is the primary unit of structure in SysML?

 8. What is the block defi nition diagram used for?
 9. What is an internal block diagram used for?
 10. What is a parametric diagram used for?
 11. What is a package diagram used for?

PART

Language
Description II

This page intentionally left blank

 This chapter sets the stage for the detailed description of the SysML language that
follows in the rest of Part II. It contains a discussion on the SysML language archi-
tecture and provides an introduction to common concepts that apply to all SysML
diagrams. It also includes an introduction to the example used throughout the
chapters in Part II to illustrate the language concepts. The remaining chapters in
Part II provide the detailed description of the language.

 4.1 The OMG SysML Language Specifi cation
 The official OMG SysML specification [1] for the SysML language has been pub-
licly available since September 2007. The specification was developed in response
to the requirements specified in the UML for Systems Engineering Request for
Proposal (UML for SE RFP) [27]. It was formally adopted by the OMG in 2006 as
an extension to the Unified Modeling Language (UML) [28]. The SysML specifica-
tion is maintained and evolved by the OMG SysML Revision Task Force (RTF).

 The SysML specifi cation defi nes the SysML language concepts used to model
systems. The SysML language concepts are described in three parts:

 ■ An abstract syntax , or schema, described by a metamodel
 ■ A concrete syntax , or notation, described using notation tables
 ■ The semantics, or meaning, of the language concepts in the systems engin-

eering domain

 SysML is derived from the Unified Modeling Language, which was originally speci-
fied as a modeling language for software design but has been extended by SysML
to support general-purpose systems modeling. As indicated in the Venn diagram
in Figure 4.1 , SysML reuses a subset of the UML language and adds extensions to
meet the requirements in the UML for SE RFP.

 Approximately half of the UML language was reused. The subset of UML reused
by SysML is called UML4SysML as indicated in the diagram. The other portion of
UML was not viewed as essential to meet the requirements of the UML for SE RFP.

 SysML Language
Architecture 4

CHAPTER

64 CHAPTER 4 SysML Language Architecture

Limiting the portion of UML that was used reduces the requirements for SysML
training and tool implementation, while satisfying the requirements for systems
modeling.

 The reusable portion of UML was in some cases used as is, without modifi ca-
tion such as interactions, state machines, and use cases. Other parts of the reus-
able portion of UML were extended to address unique systems engineering needs.
The profi le is the standard UML mechanism used to specify the systems engineer-
ing extensions to the language and is described in more detail in Chapter 14. The
profi le-based approach was chosen over other extension mechanisms because
many UML tools can interpret profi les directly. This enables the systems modeling
community to leverage widely used UML-based tools for systems modeling. An
additional benefi t is that a profi le of UML can be used in conjunction with UML to
help bridge the gap between systems and software modeling.

 The SysML profi le is organized into the following discrete language units that
extend the language:

 ■ Requirements—textual requirements and their relationships to each other
and to models

 ■ Blocks —system structure and properties
 ■ Activities—extensions to UML activities to support continuous behavior
 ■ Constraint blocks —parametric models
 ■ Ports and fl ows—extensions to the UML structural model to support fl ow

of information, matter, and energy between system elements

 The SysML profi le is intended to be applied strictly, which means that models
authored using the SysML extensions may only use the supported subset of UML,
UML4SysML. The SysML language described in the specifi cation is therefore the
combination of UML4SysML and the SysML profi le as indicated in Figure 4.1 .

UML4SysML

SysMLUML

UML -
UML4SysML SysML

Profile

 FIGURE 4.1

 Relationship between SysML and UML.

65

 4.2 The Architecture of the SysML Language
 There are typically three levels of concept relevant to a modeling language:

 ■ Domain concepts for the domain being modeled (e.g., for SysML, general-
purpose systems modeling concepts such as system and function)

 ■ Mapping of domain concepts to language concepts (e.g., blocks, activities),
often called the metamodel

 ■ Instantiation and representation of the language concepts as they apply to a
particular system (e.g., a block called airplane), often called the user model

 This section describes these levels in more detail.

 4.2.1 The General-Purpose Systems Modeling Domain
 The goal of a modeling language is to enable the description of some domain of
interest. For SysML the domain of interest is the general-purpose modeling of sys-
tems such as airplanes, automobiles, and information systems. The domain concepts
are defined in the UML for Systems Engineering (SE) RFP that specifies the require-
ments for SysML. The requirements are organized into concepts needed to model
structure, behavior, properties, requirements, and other systems modeling con-
structs. The following is an example of a requirement under the Structure section:

 6.5.1.1. System hierarchy. UML for SE shall provide the capability to
model the hierarchical decomposition of a system into lower-level logical
or physical components.

 Other examples include the requirement to model a system, its environment,
functions, inputs/outputs, events, and property values to name a few. These con-
cepts enable the modeler to describe a system such as an airplane.

 Figure 4.2 shows a model of an airplane called Bill’s Plane, and some of its rel-
evant characteristics. In this example, the structure of the airplane is composed of
its fuselage, wings, and landing gear. The airplane behavior is described in terms
of its interaction with the pilot and the physical environment to support takeoff,
fl ight, and landing. Some of its performance and physical properties include its

Bill’s Plane

G-AS12

500

 FIGURE 4.2

 A typical system.

4.2 The Architecture of the SysML Language

66 CHAPTER 4 SysML Language Architecture

speed, dry weight, and fuel load. The principal requirement for this airplane is
to fl y a specifi ed distance with a specifi ed payload in a specifi ed time, and it also
needs to meet other requirements such as safety, reliability, and cost.

 4.2.2 The Modeling Language (or Metamodel)
 At the core of SysML is a metamodel that describes the concepts in the language,
their characteristics, and interrelationships. This is sometimes called the abstract
syntax, and is distinct from the concrete syntax that specifies the notation for the
language. The OMG defines a language for representing metamodels, called the
Meta Object Facility (MOF) [20]; it is used to define UML and other metamodels.

 In a metamodel, the individual concepts in a language are described by meta-
classes that are related to each other using relationships such as generalizations
and associations. Each metaclass has a set of properties that characterize the lan-
guage concept it represents, and a set of constraints that impose rules on the val-
ues for those properties.

 The package diagram in Figure 4.3 shows a small fragment of UML4SysML, the
MOF metamodel on which SysML is based. It shows one of the fundamental con-
cepts of UML, called Class, and some of its important relationships. Class special-
izes Classifi er, which enables it to form classifi cation hierarchies. The fi gure also
shows an association from Class to Property, which allows classes to have attri-
butes. Another Classifi er, Data Type, is used to describe values of attributes such
as integers and real numbers. Finally, the notion of a Package is introduced; it can
be used to group model elements, called generically Packageable Elements. All
Classifi ers are Packageable Elements and so are its specializations such as classes
and data types.

«metamodel diagram»
pkg [Model] UML4SysML [Small Fragment]

«metaclass»
Packageable Element

«metaclass»
Package

«metaclass»
Property

«metaclass»
Class

«metaclass»
Data Type

«metaclass»
Classifier

ownedAttribute

packagedElement

 FIGURE 4.3

 A fragment of the UML4SysML.

67

 A profi le in UML is the mechanism used to customize the UML language. A
profi le contains stereotypes, which are similar to metaclasses, and are used to
extend the metaclasses in UML to create new or modifi ed concepts in the custom-
ization. The system engineering extensions to UML in SysML are described using a
profi le called the SysML profi le.

 Figure 4.4 shows two SysML concepts in the Blocks language unit of the SysML
profi le and how they relate to UML metaclasses. Class and Data Type are UML
metaclasses from the UML4SysML subset. Block extends Class and is the funda-
mental structural concept in SysML. Value Type extends Data Type and adds quan-
titative features such as unit and dimension.

 The semantics of a language describe the meaning of its concepts in the
domain of interest. Semantics are described via a mapping between the domain
concepts and the language concepts. The domain concepts can be defi ned in
natural language (e.g., English text) or more formally defi ned mathematically. For
SysML, the domain concepts were defi ned by the requirements in the UML for SE
RFP as English text, as described earlier.

 The mapping between concepts in the systems modeling domain and the
language concepts in SysML is performed by mapping the requirements in the
UML for SE RFP to the metaclasses in the SysML metamodel, and it is captured
in a requirements traceability matrix [29]. For example, a system and its compo-
nents map to blocks, a composition relationship maps to a composite association,
a function maps to an activity, and a requirement in the domain maps to a require-
ment in the SysML metamodel.

 4.2.3 The System Model (or User Model)
 As described in Chapter 2, the user model is a description of a system and its envi-
ronment for a specific purpose, such as the validation of the requirements for the
system or to specify the system’s components. A SysML user model consists of

pkg [Profile] Blocks

«metaclass»
UML4SysML::Data Type

«stereotype»
Value Type

«metaclass»
UML4SysML::Class

«stereotype»
Block

 FIGURE 4.4

 A fragment of the SysML profi le for blocks.

4.2 The Architecture of the SysML Language

68 CHAPTER 4 SysML Language Architecture

model elements that are instances of the metaclasses in the SysML metamodel;
for example, a SysML block may be instantiated as an airplane, a fuselage, a wing,
and a landing gear in the user model. The model elements represented in the user
model conform to the metaclass properties, constraints, and relationships defined
by the metamodel. These model elements are visualized using a concrete syntax
(e.g., symbols on diagrams) as described in Section 4.3. The concrete syntax is
mapped to the abstract syntax so that each symbol represents a specific concept.
For example, a block and its properties have a specific graphical representation as
a box symbol with internal compartments.

 Figure 4.5 shows a fragment of a block defi nition diagram for defi ning airplanes,
along with their mapping to the metaclasses that represent the various concepts.
Airplane Model is a package containing Airplane and Wing blocks; Pilot, an actor
(i.e., external to the system); and Liters, a value type. Airplane has two properties
that describe two of its quantifi able characteristics: call sign, whose valid values
are described by String (a primitive concept defi ned by SysML), and fuel load,
with units of Liters. Airplane has an association to block Wing, which describes
part of its structure, in this case its (two) wings.

 As described in Chapter 2, a SysML modeling tool can store a user model as
structured data in a model repository. The modeler uses the tool to enter and
retrieve this information from the model repository, primarily by using the graphi-
cal representation provided by SysML diagrams. A SysML modeling tool that com-
plies with the SysML specifi cation enforces the metaclass properties, constraints,
and relationships on the information entered or retrieved from the model.

 Figure 4.6 shows how the original concept described in Figure 4.2 relates to
the user model fragment described in Figure 4.5 . That fi gure shows the class of
airplanes, but in this example, we are referring to a specifi c airplane. Bill’s Plane
is a specifi c instance of the Airplane block with values for call sign and fuel load
related to the corresponding properties of the block. Bill is an instance of Pilot and
the wings of Bill’s Plane are instances of the block Wing. The value type Liters
describes how to interpret the value for fuel load, which in the case of Bill’s Plane
is 500 liters. Note that the stereotypes and metaclasses referenced by the model
elements in Figure 4.5 —Block, Value Type, Actor, and Property—all represent

Airplane Model

«metaclass»
Package

«stereotype»
Block

«stereotype»
Value Type

«valueType»
Liters

«block»
Airplane

values
call sign : String
fuel load : Liters

«block»
Wing

Pilot

«metaclass»
Actor

«metaclass»
Association

wings

2

«metaclass»
Property

 FIGURE 4.5

 Relationship of metaclasses to model elements.

69

something in the real world of the user. Package, however, does not; it is simply
used to bring structure to the user model.

 4.2.4 Model Interchange
 As well as enabling the reuse of relevant concepts and diagrams from UML, build-
ing SysML as a formal extension of UML also enables SysML tools to leverage the
data interchange format, called XML metadata interchange or XMI. XMI explicitly
states how UML models, including models that use profiles, such as SysML, get con-
verted into XML. The implementation of the XMI specification [21] is intended to
enable SysML tools to read and write SysML models so that the modeling informa-
tion can be exchanged between tools. XMI is summarized in Chapter 17.

 4.3 SysML Diagrams
 In addition to a metamodel, SysML defines a notation, or concrete syntax that
describes how SysML concepts are visualized as graphical or textual elements. In
the SysML specification, this notation is described in notation tables that map lan-
guage concepts to graphical symbols on diagrams.

 Figure 4.7 shows the SysML diagram taxonomy. SysML notation is based on
the notation for UML, although several of the UML diagrams, including the object
diagram, collaboration diagram, deployment diagram, communication diagram,
interaction overview diagram, and timing diagram, were omitted. SysML includes

Bill’s Plane

G-AS12

500

«block»
Airplane

values
call sign : String
fuel load : Liters

«block»
Wing «valueType»

Liters
Pilot

 FIGURE 4.6

 Relating real-world concepts to model concepts.

4.3 SysML Diagrams

70 CHAPTER 4 SysML Language Architecture

modifi cations to other UML diagrams such as the class diagram, composite struc-
ture diagram, and activity diagram, and it adds two new diagrams for requirements
and parametrics. The detailed notation tables that describe the symbols used on
the diagrams can be found in the Appendix.

 In addition to the graphical forms of representation used on SysML diagrams,
SysML identifi es the need for tabular and tree representations of model data,
examples of which are included in various chapters in Part II.

 4.3.1 Diagram Frames
 Every SysML diagram must have a frame, as shown in Figure 4.8 . Diagram frames
provide a visible context for the diagram. The frame represents a model element

Content

«diagram usage»
diagram kind [model element type] model element name [diagram name]

Header

Diagram description
Version
Description
Completion status
Reference
User-defined fields

 FIGURE 4.8

 A diagram frame.

State
Machine
Diagram

Use Case
Diagram

Block
Definition
Diagram

Internal
Block

Diagram

Parametric
Diagram

Sequence
Diagram

Activity
Diagram

Package
Diagram

Structure
Diagram

Requirement
Diagram

Behavior
Diagram

SysML
Diagram

 FIGURE 4.7

 SysML diagram taxonomy.

71

that provides the context for the diagram content. In addition, certain diagrams
explicitly draw symbols on or to the frame boundary to indicate external inter-
faces of the model element owning the diagram.

 The diagram frame is a rectangle with a header, or label, containing standard
information in the top left corner. The rest of the rectangle is the content area, or
canvas, where the symbols representing diagram content are drawn. An optional
diagram description, providing further detail on the status and purpose of the dia-
gram, can be attached to the frame boundary.

 4.3.2 Diagram Header
 The diagram header, or label, is a rectangle with its lower right corner cut off.
It includes the following information:

 ■ Diagram kind—an abbreviation indicating the type of the diagram
 ■ Model element type—the type of model element that the diagram represents
 ■ Model element name —the name of the represented model element
 ■ Diagram name—the name of the diagram, which is often used to say some-

thing about its purpose
 ■ Diagram usage —a keyword indicating a specialized use of a diagram

 An example of a diagram frame with header is shown in Figure 4.3 .

 Diagram Kind
 The diagram kind may take one of the following values, depending on the type
of diagram:

 ■ Activity diagram— act
 ■ Block defi nition diagram— bdd
 ■ Internal block diagram— ibd
 ■ Package diagram— pkg
 ■ Parametric diagram— par
 ■ Requirement diagram— req
 ■ Sequence diagram— sd
 ■ State machine diagram— stm
 ■ Use case diagram— uc

 Model Element Type
 Different diagrams represent different types of model element. The valid permuta-
tions are listed here by diagram:

 ■ Activity diagram —activity control operator
 ■ Block defi nition diagram —block, constraint block, package, model, model

library
 ■ Internal block diagram —block
 ■ Package diagram —package, model, model library, profi le, view
 ■ Parametric diagram —block, constraint block

4.3 SysML Diagrams

72 CHAPTER 4 SysML Language Architecture

 ■ Requirement diagram —package, model, model library, requirement
 ■ Sequence diagram —interaction
 ■ State machine diagram —state machine
 ■ Use case diagram —package, model, model library

 The choice of model element type is explained further in the following chap-
ters where the diagrams are discussed. Strictly speaking, the model element type
only needs to be included in the header to avoid ambiguity if there is more than
one allowable model element type that the diagram can represent, although it
can help to orient novices in the language. SysML does make provision for the
model element type to be a user-defi ned stereotype where appropriate.

 Diagram Name
 Since a model can contain considerable amounts of information, the modeler may
choose to only highlight selected features in a particular diagram for a given pur-
pose, and hide (elide) other features that may detract from this purpose. The dia-
gram name is intended to provide a concise description of the diagram’s purpose.

 Diagram Usage
 The diagram usage describes a specialized use for the diagram type. The diagram
usage name is included in the header in guillemets. For example, a modeler may
specify a context diagram as a usage of a use case diagram. The diagram usage
notation does not have any semantic foundation but is thought to be a useful nota-
tional extension.

 4.3.3 Diagram Description
 The diagram description is an optional note attached either to the inside or
outside of the diagram frame. It is intended to enable the modeler to capture addi-
tional information about the diagram. The information includes some predefined
fields but also has a provision for user-defined fields. The following are the pre -
defined fields.

 Version: Version of the diagram.

 Completion status: A statement by the diagram author about the completeness of
the diagram. It may include a statement, such as “ in-process, ” “ draft, ” or “ complete, ”
and may also include a specific description of the information that is still missing
from the diagram. A very important use of this field is to indicate whether
the diagram is a complete view given its scope. Systems engineers are used
to modeling tools that show the complete detail for a given scope, whereas SysML
diagrams only show a subset of the possible details. This field can therefore be
used by the diagram author to assert its intended completeness of coverage.

 Description: Free text description of the diagram content or purpose.

 Reference: References to other information about the diagram, or hyperlinks to
related diagrams to aid in navigation.

73

 4.3.4 Diagram Content
 The diagram content area, or canvas, contains graphical elements that repre-
sent underlying elements in the model. SysML diagrams are composed of two
types of graphical elements: nodes and paths. A node is a symbol that can con-
tain text and/or other symbols to represent the internal detail of the represented
model element. Paths, also known as edges, are lines that may have multiple addi-
tional adornments such as arrows and text strings. The amount of information in
the description of many model elements is potentially very large and can lead to
diagram clutter. To help mitigate this problem, SysML tools typically offer the user
options to hide detail.

 Properties and Keywords
 SysML includes the notion of a keyword that is included in brackets called guille-
mets as « keyword » before the name of a model element. The keyword identi-
fies the type of model element (i.e., the metaclass) and is typically used to remove
ambiguity when a type of graphical element (e.g., rectangle, dashed arrow) rep-
resents more than one modeling concept. Users can create their own keywords
and associated meanings to further customize the language using stereotypes, as
described in Chapter 14.

 Symbols display certain commonly used information about their model ele-
ment, such as name and type, in a formatted string that is often called their name
string. Model elements often have additional properties, besides their name
string, that also need to be displayed on diagrams. These are shown as a comma-
separated list, enclosed in braces, following the name of the model element. A
user can also add additional properties, sometimes called tags, to model elements
associated with a keyword. To differentiate these from other properties, these
properties are displayed before the name and after their associated keyword using
the same form (i.e., a comma-separated list in braces).

 Node Symbols
 Node symbols are generally rectangular but may be round-angles, ellipses, and so
on. All node symbols have a name compartment that can be used to display the
name string of the represented model element, along with any applicable key-
word or keywords and properties. Some node symbols, in addition, have extra
compartments used to display details of nested elements, either in textual or
graphical form. In addition to its predefined nested elements, compartments can
be used to display tags added by the user.

 Figure 4.9 shows two examples of node symbols, a use case called Fly Airplane
and the block Airplane. The Airplane symbol shows an internal compartment
labeled values to store value properties.

 Path Symbols
 All path symbols are some kind of line, but they have different styles and ends
depending on the modeling concept they represent. Paths may have a text adorn-
ment that will contain their name string, keywords, and additional properties,

4.3 SysML Diagrams

74 CHAPTER 4 SysML Language Architecture

although this is often hidden. Additional textual information may also be shown
on the ends of the lines where the represented model element requires it.

 Figure 4.10 shows two examples of path symbols, an association and a general-
ization. The association symbol indicates that an Airplane has exactly two wings.
The generalization symbol indicates that an Airplane is a kind of Flying Thing.

 Icon Symbols
 Icons are typically used to represent low-level concepts that do not have further
internal detail. However, they can also be used as an alternate representation for
most other symbols. In particular, a stereotype may specify an icon that can be
used to display a stereotyped element. Where the model element represented by
an icon has properties, such as a name, these are displayed in a text string floating
near the object. Typically icons appear on the diagram canvas, or inside a node
symbol, but icons can also appear on lines. Figure 4.11 shows two examples of
icons: a stick figure representing the actor Pilot and a small box containing an
arrow that represents fuel flowing into the Airplane block.

 Note Symbols
 A note symbol can be attached to the symbol for any model element or set of
model elements and is used to annotate the model with additional textual infor-
mation that may include a hyperlink to a reference document. The note symbol

«block»
Airplanefuel in

Pilot

 FIGURE 4.11

 Examples of icon symbols.

Fly Airplane

«block»
Airplane

values
call sign : String
fuel load : Liters

 FIGURE 4.9

 Examples of node symbols.

«block»
Airplane

«block»
Flying Thing

«block»
Wing wings

2

 FIGURE 4.10

 Examples of path symbols.

75

is a rectangular box containing the textual information with a cutoff upper right
corner. Often the content of a note is free format textual description of the model
element, but notes can also be used to display user-defined tags. They are also
used extensively in SysML to display cross-cutting information, such as traceability
to requirements (see Chapter 12) and allocations (see Chapter 13).

 Figure 4.12 shows two examples of note symbols; one just stores a comment
about the Pilot and the other represents the claim that call sign satisfi es, the
Airplane Unique Identity requirement.

 4.3.5 Additional Notations
 SysML also includes nongraphical representations of model information that is
often useful for efficiently displaying large amounts of information. The forms of
nongraphical representation that SysML supports are tables, matrices, and trees.

 A table can be a highly effi cient and expressive way to represent informa-
tion. Tables have been used traditionally for capturing a wide variety of systems
engineering information. For example, N-squared (N2) charts [30] capture inter-
face information, requirements tables, and many other types of information. SysML
allows the use of tabular notation as an alternative diagram notation to represent
the modeling information contained in a SysML model repository. Tabular for-
mats may be used to represent properties of model elements and/or relationships
among model elements. The details of what information is captured in a table have
not been specifi ed to leave this as a fl exible capability for a tool vendor to support,
but the requirements and allocations chapters describe specifi c tabular formats for
representing requirements and allocations, respectively.

 When a table is used, the table is included in a diagram frame with the diagram
kind table shown in the diagram label. Otherwise, the diagram label format is the
same as that for any other kind of diagram. An example of a simple requirements
table is shown in Figure 4.13 .

 Matrices, identifi ed by the diagram kind matrix, are very useful for describ-
ing relationships, where the rows and columns of the matrix are model elements
and its cells describe a relationship between the appropriate row and column

«block»
Airplane

values
call sign : String
fuel load : Liters

Pilot

A pilot flies an airplane. He or she
must have appropriate training for
the type of airplane.

satisfies
«requirement»Airplane Unique Identity

 FIGURE 4.12

 Examples of note symbols.

4.3 SysML Diagrams

76 CHAPTER 4 SysML Language Architecture

elements. Trees, identifi ed by the diagram kind tree, typically describe hierarchi-
cal and other types of relationships that are frequently presented using browser
panes in SysML modeling tools.

 4.4 The Surveillance System Case Study
 A single case study is used throughout this part of the book to help demonstrate
the concepts in the SysML language.

 4.4.1 Case Study Overview
 A company, called ACME Surveillance Inc., produces and sells surveillance sys-
tems. Their range of surveillance systems products is intended to provide security
either for homes or small commercial sites. Their systems use sophisticated pan
and tilt cameras to produce video images of the surrounding area, and for a fee
can be connected to a central monitoring service. ACME also produces the cam-
eras and sells them as separate products for “ do-it-yourself ” enthusiasts.

 The chapters in Part II use selected extracts of the ACME Surveillance Inc.
model to highlight the features of SysML. A similar example is used in Chapter 16
to demonstrate the application of a model-based systems engineering method to
the development of a residential security system.

 Figure 4.14 shows a typical surveillance system setup for a small commercial
site. The system has four wall-mounted surveillance cameras, three connected into
the company’s Ethernet network and the fourth connected via a wireless access
point. One of the offi ces is used to house the monitoring station for the surveil-
lance system, which is also connected to the offi ce network. This particular moni-
toring station consists of one workstation and an additional screen. The offi ce has
a PBX that the monitoring station uses to communicate to its designated com-
mand center.

id reqʼt name reqʼt text

4 Capacity

4.1 CargoCapacity

4.2 FuelCapacity

4.3 PassengerCapacity

The Hybrid SUV shall carry 5 adult passengers, along with
sufficient luggage and fuel for a typical weekend campout.

The Hybrid SUV shall carry sufficient luggage for 5 people for
a typical weekend campout.

The Hybrid SUV shall carry sufficient fuel for a typical weekend
campout.

table [Requirement] Capacity [Decomposition of Capacity Requirement]

The Hybrid SUV shall carry 5 adult passengers.

 FIGURE 4.13

 Example of tabular format in SysML.

77

 4.4.2 Modeling Conventions
 Where elements are named in the example model, the names are chosen if pos-
sible to be valid English names. Whenever the names have more than one word,
the words are separated by spaces. Names of model elements that represent defi-
nitions have the first letter of all words in uppercase. Names of features have the
first letter of all words in lowercase.

 The following chapters contain numerous SysML diagrams used to illustrate
the concepts in the language. With few exceptions, each diagram is accompanied
by a description, and to better relate the description to the fi gures, names used in
the diagram are presented in italic font. Terms in bold are used to highlight funda-
mental concepts in the SysML language.

 4.5 Chapter Organization for Part II
 Chapters 5 through 14 in Part II describe the SysML language concepts and nota-
tion and how the language can be used to model a system. The ordering of the
chapters is based on the logical development of the language concepts, including

W

W

W

W

PBX

Monitoring
Station

 FIGURE 4.14

 Depiction of surveillance system example.

4.5 Chapter Organization for Part II

78 CHAPTER 4 SysML Language Architecture

concepts for model organization, structure, behavior, allocation, requirements, and
profiles. The ordering is NOT based on a systems engineering process. Part III
includes examples of model-based systems engineering methods that show how
the language is used as part of a systems engineering process.

 Each chapter describes applicable language concepts, diagram notation, and
example diagrams to show how to create syntactically correct diagrams and mod-
els that conform to the language specifi cations.

 4.6 Questions
 1. What does the abstract syntax of a modeling language describe?
 2. What are the two parts of the SysML abstract syntax?
 3. How are language concepts defi ned in a metamodel?
 4. What is a profi le and what does it contain?
 5. What do the semantics of a modeling language describe?
 6. What is XMI used for?
 7. What does the concrete syntax of a modeling language describe?
 8. What are the fi ve elements of a diagram header and what are they used for?
 9. What are the four kinds of symbols that can appear on a diagram?
 10. When is a keyword needed as part of a graphical symbol?

 Discussion Topics
 SysML could have been described completely as a metamodel, but instead used
the UML profiling mechanism. Discuss the relative benefits of these two options.

 Traditional engineering modeling tools always show all relevant model elements
in any given diagram, whereas SysML allows modelers to selectively hide detail.
Discuss the relative benefi ts of these two approaches.

 In addition to graphical representations of the model through diagrams, SysML
supports the use of nongraphical representations such as tables and trees. Under
which circumstances does it make sense to use these different representations?

 This chapter addresses the topic of model organization and describes the organi-
zational concepts provided by SysML: models, packages, and views. In SysML, the
fundamental unit of model organization is the package. Packages and their contents
are shown on a package diagram. Packages are both containers and namespaces,
two fundamental concepts in SysML.

 5.1 Overview
 In SysML, each model element is contained within a single container that is
sometimes called its owner or parent. Contained elements are often called the
child elements. When a container is deleted or copied, its child elements are
also deleted or copied. Some child elements are also containers, which leads to a
nested containment hierarchy of model elements.

 Packages are one example of a container. The model elements contained
within a package are called packageable elements, examples of which are blocks,
use cases, and activities. Since packages are also packageable elements, they can
support package hierarchies.

 In addition to having a place in a containment hierarchy, each model element
with a name must also be a member of a namespace. A namespace enables its ele-
ments to be uniquely identifi ed within its namespace. A package is a namespace
for the packageable elements it contains.

 A model is a special type of package that contains a set of model elements
that describe a domain of interest. The other chapters in Part II describe the
different types of model elements, including structural, behavioral, and cross-
cutting, and how they are used to describe a subject area of interest. This chapter
describes how those elements are organized to enhance modeling effectiveness.

 An effective model organization facilitates reuse of model elements, and also
easy access and navigability among model elements. It can also support confi gura-
tion management of the model, and exchange of modeling information with other
tools, as described in Chapter 17. The importance of maintaining a well-defi ned
model organization increases with the size of the model, but even small models

 Organizing the Model
with Packages 5

CHAPTER

80 CHAPTER 5 Organizing the Model with Packages

benefi t from consistently applied organizational principles. The specifi c criteria
for partitioning the model are methodology dependent, but some examples of
model organization principles are included later in this chapter.

 Because reuse is so important in modeling, SysML includes the concept of a
model library, which is specifi cally intended to contain model elements that can
be shared within and between models. Model libraries are more fully described in
Chapter 14.

 Views and viewpoints can be used to visualize models according to multiple
organizing principles. A view is a kind of package used to show a particular per-
spective on the model, such as performance or security. A viewpoint represents
a particular stakeholder perspective that specifi es the contents of a view. A view
conforms to a viewpoint.

 There are a number of relationships between packages and their contents. An
import relationship allows elements contained in one package to be imported
into another package so that it can be referenced by its name. SysML also contains
a generic concept of dependency between packageable elements, which can be
specialized as needed.

 5.2 The Package Diagram
 The model elements contained within a package can be shown on a package
diagram . The complete diagram label for a package diagram is as follows:

 pkg [package type] package name [diagram name]

 As described in Chapter 4, the diagram frame represents a particular model
element that provides the context for the model elements represented on the
diagram.

 The fi rst fi eld in the diagram label is the diagram kind, pkg, which is short for
package. The package type is the type of package that the diagram represents (e.g.,
model, package, model library, or view). The third fi eld in the diagram header is
the package name that identifi es the particular package that the diagram frame
represents. The last fi eld is a user-defi ned diagram name used to provide further
information about the diagram that typically summarizes the diagram purpose.

 An example of a package diagram is shown in Figure 5.1 . It shows several lev-
els of the package hierarchy for the Products package of the ACME Surveillance
Systems Inc. model. The notation tables for package diagrams are included in
Table A.1 in the Appendix.

 5.3 Defi ning Packages Using a Package Diagram
 SysML models are organized into a hierarchical tree of packages that are much
like folders in a Windows directory structure. Packages are used to partition ele-
ments of the model into coherent units that can be subject to access control,
model navigation, configuration management, and other considerations. The most

81

pkg [Package] Products [Nested Packages]

Surveillance Systems

LogicalPhysical

Use Cases

Behavior Parametrics Structure

RequirementsCameras

 FIGURE 5.1

 An example package diagram.

significant types of packages used to organize models in SysML are models, pack-
ages, model libraries, and views.

 A package is a container for other model elements. Any model element is con-
tained in exactly one container, and when that container is deleted or copied, the
contained model element is deleted or copied along with it. This pattern of con-
tainment means that any SysML model is a tree hierarchy of model elements.

 Model elements that can be contained in packages are called packageable
elements and include blocks, activities, and value types, among others. Packages
are themselves packageable elements, which allows packages to be hierarchically
nested. The containment rules and other related characteristics of other package-
able elements are described in the relevant chapters.

 A model in SysML is a top-level package in a nested package hierarchy. In a
package hierarchy, models may contain other models, packages, and views. The
choice of model content and detail—for example, whether to have a hierarchy
of models—is dependent on the methodology used. Typically, however, a model
is understood to represent a complete description of a system or subject area of
interest for some purpose, as described in Chapter 2.

 A model has a single primary hierarchy containing all elements whose organiz-
ing principle is based on what is most suitable to meet the needs of the project.
Views, which are described in Section 5.9, can be used to provide additional per-
spectives on the model using alternative organizing principles.

 Often a package is constructed with the intent that it will be reused in many
models. SysML contains the concept of a model library—a package that is des-
ignated to contain reusable elements. A model library is depicted as a package
symbol with the keyword «modelLibrary » above the package name as shown in
Figure 5.2 for Components and Standard Defi nitions. See Chapter 14 for more
details on model libraries.

 Relationships, such as dependency and import relationships, can be estab-
lished between packages and between the packageable elements within those
packages. These relationships are described in Sections 5.7 and 5.8.

5.3 Defi ning Packages Using a Package Diagram

82 CHAPTER 5 Organizing the Model with Packages

 The diagram content area of a package diagram shows packages and other
packageable elements within the package represented by the frame. Packages
are displayed using a folder symbol, where the package name and keywords can
appear in the tab or the body of the symbol. Where a model appears on a package
diagram, which may happen where there is a hierarchy of models, the standard
folder symbol includes a triangle in the top right corner of the symbol’s body.

 The package diagram in Figure 5.2 shows the top-level packages within the
corporate model of ACME Surveillance Systems Inc., as specifi ed in the frame
label of the diagram. The user-defi ned diagram name for this diagram is Top-Level
Packages, indicating that the purpose of this diagram is to show the top level of
the model’s package structure. In this example, the model contains separate pack-
age hierarchies for

 ■ Standard off-the-shelf components
 ■ Standard engineering defi nitions such as SI units—from the French Système

International d’Unités (also known as International System of Units)
 ■ The company’s products
 ■ Any specifi c extensions required to support more domain-specifi c notations

and concepts (extensions to SysML, called profi les, are described in detail in
Chapter 14)

 Each package should contain packageable elements specifi c to the purpose
of the package. These elements can then be represented as needed on different
SysML diagrams including structure, behavior, and requirement diagrams, as
described in later chapters in this part of the book.

 5.4 Organizing a Package Hierarchy
 As described previously, a model is organized into a single hierarchical struc-
ture of packages. The top-level package is always a model that generally contains
packages at the next level of the model hierarchy, as shown in Figure 5.2 . These
packages in turn often contain subpackages that further partition elements in the
model into logical groupings.

pkg [Model] ACME Surveillance Systems Inc [Top-Level Packages]

«modelLibrary»
Standard Definitions

«modelLibrary»
Components Products Profiles

 FIGURE 5.2

 Package diagram for the surveillance system model.

83

 Model organization is a critical choice facing the modeler because it impacts
reuse, access control, navigation, confi guration management, data exchange, and
other key aspects of the development process. For example, a package may be
the unit of the model assigned write privileges, granting only selected users the
ability to modify its contents. In addition, when a particular package is “checked
out” to modify its contents, other users may be excluded from making changes
until the package is “checked in. ” A poorly organized model makes it diffi cult for
users to understand and navigate it.

 The model hierarchy should be based on a set of organizing principles. The
following are some of the possible ways to organize a model:

 ■ By system hierarchy (e.g., system level, subsystem level, component level)
 ■ By process life cycle where each model subpackage represents a stage in

the process (e.g., requirements analysis, system design)
 ■ By teams that are working on the model (e.g., Requirements Team,

Integrated Product Team (IPT) 1, 2)
 ■ By the type of model elements contained in it (e.g., requirements, behavior,

structure)
 ■ By model elements that are likely to change together
 ■ By model elements organized to support reuse (e.g., model libraries)
 ■ By other logical or cohesive groupings of model elements based on defi ned

model-partitioning criteria
 ■ A combination of the preceding

 The containment relationship relates parents to children within a package
hierarchy. Several levels of containment hierarchy can be shown on the package
diagram using a containment relationship between container elements and their
contained elements. The containment relationship is shown as a line with a cross-
hair at the container (parent) end, but with no adornment on the ends associated
with the contained elements (children). Each containment relationship can be
shown as a separate path, but typically they are shown as a tree with one cross-
hair symbol and many lines radiating from it. An alternative representation of the
containment relationship is to show the nested model elements enclosed within
the body of the package symbol.

 Figure 5.3 shows the three packages contained within the Products pack-
age of the corporate model: Surveillance Systems, Cameras, and Requirements.
This example uses both notations for package containment. Different organiza-
tional principles are used for the Products, Cameras, and Surveillance Systems
packages. The Products package is organized to contain packages for the two
primary product lines that the company offers and an additional package for all
requirements specifi cations. The Cameras package hierarchy is organized by
artifact type, and it includes packages to capture the structural, behavioral, and
parametric aspects of the camera. The Surveillance Systems package hierarchy
is organized based on architectural principles that require a Logical Architecture
package, a Physical Architecture package, and a Use Cases package.

 The containment hierarchy is generally one of the primary browser views
visible in a tool. Figure 5.4 provides an example of the expanded browser view

5.4 Organizing a Package Hierarchy

84 CHAPTER 5 Organizing the Model with Packages

pkg [Package] Products [Nested Packages]

Surveillance Systems

LogicalPhysical

Use Cases

Behavior Parametrics Structure

RequirementsCameras

 FIGURE 5.3

 Showing nested packages on a package diagram.

 FIGURE 5.4

 Browser view of the model’s package hierarchy.

corresponding to the model organization from Figure 5.3 . The containment hier-
archy generally expands as the model evolves to include other nested packages
with increasing number and type of model elements. A tool generally enables the
containment hierarchy and associated content to be viewed in an expanded or
contracted form from the browser, similar to the fi le browser in Windows. Models

85

and packages form the branches of the containment hierarchy with other model
elements appearing as lower-level branches and leaves.

 5.5 Showing Packageable Elements on a Package Diagram
 In addition to packages, package diagrams are used to show packageable ele-
ments. Packageable elements are normally represented by node symbols of vari-
ous shapes and sizes, although icons can also be used.

 The package diagram in Figure 5.5 shows more detail of the Components
package from Figure 5.2 and contains a set of off-the-shelf components intended
for use in building cameras and surveillance systems. The components are blocks,
as indicated by the «block » keyword, and are shown within the diagram frame
that represents the Components package. The diagram only shows some of the
model elements within the package to reduce clutter. As explained in Chapters 2
and 4, diagrams are simply views of the underlying model and may not show all
possible contents of the diagram’s context. The diagram name is also elided, but
could have been included to highlight the diagram purpose.

 5.6 Packages as Namespaces
 In addition to acting as a container for packageable elements, a package is a
namespace for all named elements within it. Most SysML model elements have
names although a few, such as a comment, do not.

 Any type of namespace defi nes a set of uniqueness rules to distinguish between
the different named elements contained within it. The uniqueness rule for pack-
ageable elements in packages is that each element of a particular element type
within the package must have a unique name. In practice, however, this can be
confusing when the element types are not clearly distinguishable. As a result, many
projects require that all packageable elements of a package are uniquely named,
even if they have different types. Where this restriction is not used, the presence
of the type keyword in the symbol—for example, «block » in Figure 5.5 —can help
to remove potential ambiguity.

pkg [modelLibrary] Components

«block»
Digital Signal Processor

«block»
Video Controller

«block»
Tilt Gimbal

«block»
SDRAM

«block»
Pan Gimbal

«block»
Focal Plane Array

«block»
Stepper Motor

«block»
Brushless DC Motor

 FIGURE 5.5

 Showing the contents of the components package using a package diagram.

5.6 Packages as Namespaces

86 CHAPTER 5 Organizing the Model with Packages

 As stated earlier, a package hierarchy can include multiple levels of nested
packages, meaning that a model element can be contained within a package
that is contained in an arbitrarily number of higher-level packages. The contain-
ment relationship between a parent and child is unambiguously represented in
a browser view of the model. It is also obvious when a model element appears
as a symbol with its name on the canvas of a diagram that represents its parent.
However, sometimes a model element needs to be shown on a diagram that does
not represent its parent. Simply using the model element’s name is misleading in
this case because it gives a false impression of the containment relationship.

 The solution is to show a qualifi ed name in the symbol for that model ele-
ment. If the model element is nested within the containment hierarchy of the
package represented by the diagram, then the qualifi ed name shows the relative
path from that package to the contained element. If the model element is not
nested within the package represented by the diagram, the qualifi ed name con-
tains the full path from the root model to the element.

 The qualifi ed name for a model element always ends with the model element
name, preceded by a path with each containing namespace in the path delimited
by a double-colon symbol “ � ” , so that when reading the qualifi ed name, the path
is resolved from left to right. For example, a model element X that is contained
within package B, which in turn is contained within package A, is represented as
A� B � X.

 Figure 5.6 shows some examples of the use of qualifi ed names in a package dia-
gram that describes the Standard Defi nitions package shown in Figure 5.3 . The
symbol named Basic Types::Point denotes a value type called Point within a pack-
age called Basic Types, within the Standard Defi nitions package. Point is used
later to specify the scan pattern of a surveillance camera. The other two symbols
represent model elements that are external to Standard Defi nitions and there-
fore have fully qualifi ed names that correspond to the path name from the corpo-
rate model, ACME Surveillance Systems Inc. In a package hierarchy, each model
element is uniquely identifi ed within its type by its qualifi ed name regardless of
which namespace it is contained in.

pkg [Package] Standard Definitions [Some Named Elements]

«block»
ACME Surveillance Systems Inc::Components::Stepper Motor

«valueType»
Basic Types::Point

ACME Surveillance Systems Inc::Products::Cameras

 FIGURE 5.6

 Using qualifi ed names to represent a model element within a containment hierarchy.

87

 5.7 Importing Model Elements into Packages
 Depending on the organization of a model, model elements from different pack-
ages are often related to one another and these relationships usually need to be
represented on package diagrams. In this case, a given diagram may need to dis-
play elements from many packages, so a more scalable alternative than using a
qualified name, as shown in Figure 5.6 , is needed to avoid diagram clutter.

 An import relationship is used to bring an element or collection of ele-
ments belonging to a source package into another namespace, called the target
namespace. The names of imported element names become part of the target
namespace and do not require a qualifi ed name when shown on a diagram that
represents the target namespace.

 A package import applies to an entire package, and all the model elements of
the source package are imported into the target namespace. An element import
applies to a single model element, and may be used when it is unnecessary and
possibly confusing to import all the elements of a package.

 A name clash occurs when two or more model elements in the target
namespace would have the same names as the result of imports. An element
import has an alias fi eld that can be used to provide an alternate name for a model
element to prevent a name clash in the target namespace. The rules on name
clashes are as follows:

 ■ If an imported element name clashes with a child element of the target
namespace, that element is not imported, unless an alias is used to provide
a unique name.

 ■ If the names of two or more imported elements clash, then neither can be
imported into the target namespace.

 The named elements recognized within a namespace, whether through direct
containment or as a result of being imported, are called members. Members
have a visibility, either public or private, within their namespace. The visibility
of a member determines whether it can be imported into another namespace. A
package import only imports names with public visibility in the source package
into the target namespace. Furthermore, an import relationship can state whether
the imported names should be public or private within the target namespace.

 When access control on a model is enforced by a modeling tool, an imported
element can only be changed in the source package, although any relevant
changes made to the element are automatically visible in any diagrams represent-
ing the target package.

 The import relationship is shown using a dashed arrow, labeled with the keyword
«import ». The arrow points to the source from which names are being imported
and the tail points to the namespace into which the names are to be imported. The
arrow points either to an individual model element (element import) or to an entire
package (package import). The keyword «access» is used instead of «import » when
elements are to be imported as private members of the target namespace.

 Figure 5.7 shows three packages, P1, P2, and P3, in package Parent. The pack-
age called Model::P1 is not contained in the diagram’s context and so its qualifi ed

5.7 Importing Model Elements into Packages

88 CHAPTER 5 Organizing the Model with Packages

name has to be used. Model::P1 contains one block, called A, with public visibility
(SysML does not have a graphical notation for visibility, hence the notes attached
to the symbols). Package P2 privately imports P1 and contains a set of blocks,
B and C, which are defi ned with public visibility, and F, which is defi ned with
private visibility. P2 also contains a nested package called Child of P2, which
in turn contains a single public block, E. Package P3 defi nes a public block, C,
and imports the whole package P2, but also separately imports block C with the
alias D to avoid a name clash. Note that the alias D is annotated on the import
relationship.

 Figure 5.8 demonstrates the effect of import relationships on naming. It shows
a diagram representing package P3 showing the names of various model elements
from Figure 5.7 . Blocks B, C, and D (an alias for P2::C) can be shown using sim-
ple names because they are members of the P3, either by direct containment or
because they were imported. Block E has to be qualifi ed by its parent Child of
P2, whose name is visible because P3 has imported P2. Block F has to be quali-
fi ed by P2 because it was defi ned to be private and so is not imported, but P2 is
visible because it is in the same namespace as P3. Block A has to be qualifi ed by
its parent’s fully qualifi ed name, Model::P1, because although it was defi ned with
public visibility, Model::P1 was imported privately into P2 and was therefore not
visible in P2 and so was not imported into P3.

 Figure 5.9 shows some of the import relationships within the Standard
Defi nitions package. It contains an example of a reusable model library called SI
Defi nitions, which is defi ned within the SysML package. (These SI defi nitions are
defi ned as a nonnormative model library in Annex C of the SysML specifi cation
[1].) SI Defi nitions is imported into the SI Types package, which provides a com-
mon set of units for use throughout the model. SI Types is in turn imported for

pkg [Package] Parent

Block F is private
in package P2

Block A public in
package P1

«access»

«import»

«import»
«block»

A

Model::P1

«block»
B

«block»
C

«block»
F

«block»
E

Child of P2

«block»
C

P3
P2

D

 FIGURE 5.7

 Illustration of « import » and « access » .

89

use within many other packages, one of which is the Standard Item Defi nitions
package that contains defi nitions of information, material, and energy fl owing
through the surveillance systems.

 5.8 Showing Dependencies between Packageable Elements
 A dependency relationship can be applied between packageable elements to
indicate that a change in the element on one end of the dependency may result
in a change in the element on the other end of the dependency. The model ele-
ments at the two ends of the dependency are called client and supplier. The cli-
ent is dependent on the supplier, such that a change in the supplier will result in
a change in the client.

 A dependency between packages is used when the content of one package is
dependent on the content of another package. For example, the software applica-
tions in the application layer of the system software may depend on the software
components within the system software’s service layer. This may be expressed
in a model of the software architecture by a dependency between the package
that represents the application layer and the package that represents the service
layer.

«block»
P2::F

«block»
D

«block»
Child of P2::E

«block»
C

«block»
Model::P1::A

«block»
B

pkg [Package] P3

 FIGURE 5.8

 Naming in package P3.

pkg [modelLibrary] Standard Definitions

«import»

«model Library»
SysML::SI
Definitions

«modelLibrary»
SI Types

«modelLibrary»
Standard Item

Definitions«import»

 FIGURE 5.9

 Importing a library of SI unit types into the Standard Defi nitions package.

5.8 Showing Dependencies between Packageable Elements

90 CHAPTER 5 Organizing the Model with Packages

 Dependencies are often used to specify a relationship early in the modeling
process that is subsequently replaced or augmented when the precise nature of
the relationship is better defi ned. There are various types of dependency that can
be used on the package diagram and selected other diagrams. The following is a
list of the more common types of dependencies:

 ■ Use —indicates that the client uses the supplier as part of its defi nition
 ■ Refi ne—indicates that the client represents an increase in detail compared

to the specifi cation of the supplier, such as when detailed physical and per-
formance characteristics are included in a component defi nition. This rela-
tionship is often used in requirements analysis, as described in Chapter 12.

 ■ Realization—indicates that the client realizes the specifi cation expressed
in the description of the supplier, such as when an implementation package
realizes a design package

 ■ Trace—indicates that there is a linkage between the client and supplier
without imposing the more signifi cant semantic constraints of a more pre-
cise relationship

 A dependency is represented by a dashed line with an open arrow pointing
from the client to the supplier. The type of dependency is indicated by a keyword
in guillemets.

 Figure 5.10 shows some of the types of dependency relationships in the
Camera Performance view, which can be seen in Figure 5.11 . The constraint
block Video Stream Rate is a more precise representation (refi nement) of the
Video Performance requirement. Video Stream Rate uses a defi nition of megabits
per second (Mbps) as part of its defi nition. The activity Generate Video Outputs
is traced to the Video Stream Rate because if this constraint changes, the per-
formance of the activity may need to be reevaluated. Generate Video Outputs is
allocated to Camera to indicate that the camera is responsible for that activity.
Details of these various model elements are described in later chapters.

«activity»
Generate Video Outputs

«requirement»
Video Performance

«block»
Camera

«constraint»
Video Stream Rate

«valueType»
Mbps

«use»

«allocate» «refine»

«trace»

pkg [View] Camera Performance [Some Dependencies]

 FIGURE 5.10

 Example of dependencies in the camera performance view.

91

 5.9 Specifying Views and Viewpoints
 The package containment hierarchy provides the fundamental organization of a
model. However, it is often useful to incorporate a set of model elements that
span multiple namespaces into a view of the model that supports a particular
stakeholder perspective. SysML introduces the concepts of view and viewpoint
to facilitate this. The view and viewpoint terminology in SysML is generally con-
sistent with the IEEE 1471 standard, “Recommended Practice for Architectural
Description of Software-Intensive Systems ” [17].

 A viewpoint describes a perspective of interest to a set of stakeholders that
is used to specify a view of a model. A viewpoint includes a set of properties
that identify:

 ■ The purpose or reason for taking this perspective
 ■ The stakeholders who have an interest in this perspective
 ■ The concerns that the stakeholders wish to address
 ■ The languages used to present the view
 ■ The methods used to establish the view

5.9 Specifying Views and Viewpoints

 FIGURE 5.11

 Defi nition of a performance viewpoint and a view that conforms to it.

«viewpoint»
Profiles::Performance Viewpoint

«viewpoint»

«import»

«import»

«import»

«import»

«conform»

concerns � “Will the system perform adequately”
languages � “SysML”
methods � “performance analysis, requirements traceability”
purpose � “Highlight the performance issues of the system”
stakeholders � “product manager, chief engineer”

pkg [Package] Products [Camera Performance Definition]

Surveillance Systems::
Physical Architecture

Cameras::Structure

ACME Surveillance Systems Inc.
::Requirements

Cameras::Behavior

«view»
{viewPoint � Performance Viewpoint}

Cameras::Parametrics::
Camera Performance

92 CHAPTER 5 Organizing the Model with Packages

 A view is a type of package that conforms to a viewpoint. The view imports
a set of model elements according to the viewpoint methods and is expressed in
the viewpoint languages to present the relevant information to its stakeholders.
The view is intended to provide the model information that addresses the stake-
holder concerns. The properties of a viewpoint are often specifi ed informally,
as guidance to view builders, but can in theory be specifi ed precisely enough to
allow automated construction and evaluation of a view.

 A viewpoint is represented as a rectangle symbol with the keyword « viewpoint »
and the viewpoint name in the name compartment. The viewpoint properties
are shown in a separate compartment headed « viewpoint » . A view is represented
as a package symbol with the keyword « view » , along with the view name and a
reference to its viewpoint. A conformance relationship between a view and
viewpoint is shown as a dashed arrow pointing from the view to the viewpoint,
adorned with the keyword « conform » .

 A viewpoint that is often important from the perspective of a system architect
is one that emphasizes those aspects of the model that affect system performance.
In Figure 5.11 the Performance Viewpoint highlights those aspects of the model
that focus on performance. The Camera Performance view conforms to the
Performance Viewpoint. The Camera Performance view imports the Structure
and Behavior packages of Cameras because they contain elements whose perfor-
mance is being assessed. It also imports the Requirements package to refer to the
performance requirements. Finally, it imports the Surveillance Systems::Physical
Architecture package to enable the system architect to assess factors in the cam-
era environment that may affect camera performance.

 5.10 Summary
 A well-defined model organization is essential to ensure that the model is parti-
tioned into model elements that support reuse, access control, navigability, con-
figuration management, and data exchange. Different organizing principles can
be applied to establish a consistent package hierarchy with nested packages, each
of which contains logical groupings of packageable elements. The following list
summarizes the important aspects of model organization.

■ The principal SysML organizing construct is called a package. Package diagrams
are used to describe this model organization in terms of packages, their
contents, and relationships.

■ A model is a type of package that represents a description of a system for a
given purpose. Models are the roots of package hierarchies. If the area of
interest is sufficiently complex then it may have submodels.

■ Package hierarchies are based on the concept of containment or ownership
of packageable elements. An essential aspect of containment is that the
packageable elements in a package get deleted or copied with their container.
Examples of packageable elements are blocks, activities, and value types.

93

■ Packages are also namespaces for a set of named elements called members. A
namespace defines a set of rules for uniquely identifying an individual member.
The namespace rule for packages is that a member must have a unique name
within all members of its type (e.g., block, activity).

■ The names of the diagram’s symbols must allow a viewer to explicitly understand
where the represented element is within the model containment hierarchy. If a
symbol represents a member of the package that the diagram represents, then
its name (and sometimes keyword) is all that is required. Otherwise a qualified
name is required, which is a concatenation of the member’s name and a path
of all the namespaces between the member and the root model or diagram
context.

■ Package (and other) diagrams can get very cluttered with qualified names. To
avoid this, SysML provides a mechanism to import the members from a package
into a namespace, either as a whole package or as individual model elements.
The visibility of the member in its source package governs whether it is a
member of the target namespace.

■ Model elements depend on each other in various ways. The dependency
relationship between a supplier and a client element indicate that the supplier
element is subject to change if the client element changes. Different types of
dependencies are identified with a keyword and are used for specific purposes
such as refinement, allocation, and traceability.

■ A model has a single containment hierarchy, which therefore imposes a single
organizational perspective on the model. A viewpoint is a mechanism designed
to allow the modeler to view a model from a particular perspective. A given
view conforms to a single viewpoint that identifies both how it should be
constructed and its purpose. Views typically do not contain elements but instead
import model elements in order to collect them into a common namespace for
viewing via package and other diagrams.

 5.11 Questions
 1. What is the diagram kind that appears in the frame label of a package diagram?
 2. Which kinds of model element can be represented by a package diagram?
 3. What is the generic term for model elements that can be contained in

packages?
 4. Where does a model appear in a package hierarchy?
 5. Name three potential organizing principles that might be used to construct the

package hierarchy of a model.
 6. How can you show on a package diagram that one package contains another?
 7. Which rule does a package enforce for the named elements that are its

members?
 8. How can you tell by looking at a package diagram that a model element repre-

sented on the diagram is a member of the package that owns the diagram?

5.11 Questions

94 CHAPTER 5 Organizing the Model with Packages

 9. Write down the qualifi ed name for a block B1 contained in a package P1,
which in turn is contained in a model M1.

 10. A package P1 contains three elements—block B1, block B2, and block B3—all
with public visibility, and a package P4 with private visibility. Another package
P2 contains a package called B1 and two blocks called B2 and B4. If package P2
imports package P1 with public visibility, list all the members of P2.

 11. If an empty package P9 imports P2 with public visibility, list all the members
of P9.

 12. What is an alias used for?
 13. Name three common kinds of dependency.
 14. How are dependencies shown on a package diagram?
 15. Name three properties of a viewpoint.
 16. How do you represent a view V1, which conforms to a viewpoint VP1, on a

package diagram?

 Discussion Topic
 For a model that you are trying to build, discuss the type of model organization
that is appropriate for it.

 This chapter addresses modeling the structure of systems in terms of their hierar-
chy and interconnection. It describes blocks—the principle structural construct—
and the two types of diagrams used to represent structure—the block definition
diagram and the internal block diagram.

 6.1 Overview
 The block is the modular unit of structure in SysML that is used to define a type
of system, system component, or item that flows through the system, as well as
conceptual entities or logical abstractions. The block describes a set of uniquely
identifiable instances that share the block’s definition.

 The block defi nition diagram is used to defi ne block characteristics in terms
of their structural and behavioral features, and the relationships between the
blocks such as their hierarchical relationship. The internal block diagram is
used to describe the internal structure of a block in terms of how its parts are
interconnected.

 Properties are the primary structural feature of blocks. Part properties
describe the decomposition hierarchy of a block and provide a critical mecha-
nism to defi ne a part in the context of its whole. Value properties describe quan-
tifi able physical, performance, and other characteristics of a block such as its
weight or speed. Value properties are defi ned by value types that describe the
valid range of values, along with its dimension (e.g., length) and its units (e.g.,
feet or meters). Value properties may be related using parametric constraints as
discussed in Chapter 7.

 Ports are structural features that describe the points at which a block interacts
with other blocks and are used to connect the parts of a block. The two types of
SysML ports are fl ow ports, which specify what can fl ow in and out of blocks, and
standard ports, which specify the types of services that a block either requires or
provides. An item fl ow describes what fl ows on the connectors between ports
and parts.

 Modeling Structure
with Blocks 6

CHAPTER

96 CHAPTER 6 Modeling Structure with Blocks

 The behaviors associated with a block defi nes how the block responds to a
stimuli. The different behavioral formalisms, including activities, interactions,
and state machines, are discussed in Chapters 8 through 10, respectively. The
behavioral features of a block, which include operations and receptions, provide a
mechanism for external stimuli to invoke these behaviors.

 In addition to decomposition hierarchies, blocks can be organized into classifi -
cation hierarchies that allow blocks to be defi ned in terms of their similarities and
differences. Within a classifi cation hierarchy, a block can specialize another more
general block that allows it to inherit features from the general block and to add
new features specifi c to it. Blocks in a classifi cation hierarchy can also be used to
describe a unique design confi guration such as a system under test.

 6.1.1 Block Defi nition Diagrams
 The block definition diagram or “ bdd ” is used to define blocks in terms of their
features, and their structural relationships with other blocks. The block definition
diagram header is depicted as follows:

 bdd [model element type] model element name [diagram name]

 A block defi nition diagram can represent a package, a block, or a constraint
block, as indicated by the model element type in square brackets. The model ele-
ment name is the name of the package, block, or constraint block, and the diagram
name is user defi ned and is often used to describe the purpose of the diagram.

 Figure 6.1 shows an example block defi nition diagram containing the most
common symbols. The diagram shows several levels of the composition hierarchy

Protective Housing
values

clock speed : MHz
memory : MB

Electronics Assembly
Mount Assembly

Camera Module

parts
: Camera Housing
: Imaging Assembly
: Optical Assembly

Stepper Motor
Module

Pan GimbalTilt GimbalPlatform

Camera

1

azimuth gimbalelevation gimbal

ma

azimuth motor elevation motor

bdd [Package] Structure

 FIGURE 6.1

 Example block defi nition diagram.

97

of an ACME camera. The notation used in the block defi nition diagram to describe
blocks and their relationships is shown in the Appendix, Tables A.3 through A.5.

 6.1.2 Internal Block Diagram
 The internal block diagram or “ibd” resembles a traditional system block dia-
gram and shows the connections between parts of a block. The internal block
diagram header is depicted as follows:

 ibd [Block] block name [diagram name]

 The frame of an internal block diagram always represents a block, so the model
element type is often elided in the diagram header. The block name is the name of
the block that is designated by the frame, and the diagram name is user defi ned
to represent a description of the diagram purpose.

 Figure 6.2 shows an example internal block diagram containing some com-
mon symbols. The diagram describes part of the internal structure of the Camera,
and how light fl ows in and through various intermediate parts to become video
(MPEG4) output.

 The notation used in the internal block diagram to describe the usage of
blocks, called parts, and their interconnections is shown in the Appendix, Tables
A.8 and A.9.

 6.2 Modeling Blocks on a Block Defi nition Diagram
 The block is the fundamental modular unit for describing system structure in
SysML. It can define a type of a logical or conceptual entity, a physical entity (e.g.,
a system); a hardware, software, or data component; a person; a facility; an entity
that flows through the system (e.g., water); or an entity in the natural environ-
ment (e.g., the atmosphere or ocean). Blocks are often used to describe reusable
components that can be used in many different systems. The different categories
of block features used to define the block are described later and are generally
classified into structural features, behavioral features, and constraints.

 A block is a type, that is, a description of a set of similar instances, or objects,
each of which exhibits the features defi ned by it. An example of a block is an auto-
mobile that might have a set of features including its physical, performance, and
other properties (e.g., its weight, speed, odometer reading), and vehicle registration
number, as well as its behavioral features that defi ne how it responds to stimuli.
Each instance of the automobile block will include these features and be uniquely
identifi ed by the value of some of its properties. So, for example, a Honda CR-V
might be modeled as a block, a particular Honda CR-V is an instance of a Honda CR-V
with vehicle registration “A1F R3D ” and an odometer reading “150,010” miles. An
instance of a block can be modeled explicitly in SysML as a unique design confi gu-
ration, as described in Section 6.6.5. An instance can also include value properties
the values of which change over time, such as the speed and odometer reading.

 The block symbol is notated as a rectangle that is segmented into a series of
compartments. The name compartment appears at the top of the symbol and

6.2 Modeling Blocks on a Block Defi nition Diagram

9
8

ibd [Block] Camera [Nested Flow]

light in : Light

camera I/O :
Camera Interface

 : Electronics Assembly

 : MPEG Converter
 : MPEG4

 : Video

: Image Processor

 : Video

 : MPEG4

 : Camera Module

 : Imaging Assembly

 : Optical Assembly
 : Light

 : Light

 : Image

 : Image

 : Image : Image

 : Light

 : Light

 FIGURE 6.2

 Example internal block diagram.

99

is the only mandatory compartment. Other categories of block features, such as
parts, operations, and ports, can be represented in other compartments of the
block symbol. All compartments, apart from the name compartment, have labels
that indicate the category of feature they contain.

 Names on block defi nition diagrams follow the same convention as on package
diagrams. Model elements that are either directly contained in or imported into
the namespace represented by the diagram are designated just by their names.
Other model elements must be designated by their full qualifi ed names in order
to clearly identify their location in the model hierarchy.

 A rectangular symbol on a block defi nition diagram is interpreted by default as
representing a block, but the optional keyword « block » may be used, preceding
the name in the name compartment, if desired. To reduce clutter, the convention
used in this chapter is that the « block » keyword is only used where blocks appear
on the same block defi nition diagram as other model elements represented by
rectangles.

 Figure 6.3 shows a block defi nition diagram that has three blocks in the com-
pany’s corporate model, called ACME Surveillance Systems Inc. The names of the
blocks are fully qualifi ed with their path to show where they are located within
the package hierarchy of the model. The blocks shown cover a range of uses:
Camera is a description of an ACME product; Stepper Motor Module is an off-the-
shelf component used in ACME’s cameras; and Video is used to describe the video
images that the cameras produce.

 6.3 Modeling the Structure and Characteristics
of Blocks Using Properties

 Properties are one category of features of a block. They are used to capture the
structural relationships and values of a block. A property has a type that may be

bdd [Model] ACME Surveillance Systems Inc. [Some Blocks]

Standard Definitions::Standard Item Definitions : :Video

Components::Stepper Motor Module

Products::Cameras::Structure: :Camera

 FIGURE 6.3

 Blocks on a block defi nition diagram.

6.3 Modeling the Structure and Characteristics of Blocks

100 CHAPTER 6 Modeling Structure with Blocks

another block, or some more basic concept such as an integer value. This section
describes the three categories of property and their uses.

 ■ Part properties (parts for short) describe the decomposition of a block into
its constituent elements. These are described in Section 6.3.1.

 ■ Reference properties describe weaker relationships between blocks than
the composition relationship represented by part properties. These are
described in Section 6.3.2.

 ■ Value properties describe the quantifi able characteristics of a block, such as
its weight or velocity. These are described in Section 6.3.3.

 Later sections address more advanced topics related to properties, including:

 ■ Property derivation is described in the Derived Properties, subsection of
Section 6.3.3.

 ■ Property redefi nition and subsetting is defi ned in Section 6.6.5.
 ■ Property ordering and uniqueness is defi ned in Chapter 7, Section 7.3.

 6.3.1 Modeling Block Composition Hierarchies
Using Part Properties

 Part properties, sometimes shortened to just parts, describe composition rela-
tionships between blocks. This type of hierarchical composition of blocks is often
seen in a breakdown of equipment, or bill of materials. A composition relationship
is also called a whole–part relationship, where a block represents the whole and
the part property represents the part. A part property is always typed by a block.

 A part property uniquely identifi es the usage of its type in the context of
another block. The key distinction between a part and an instance of a block is
that the part describes an instance or instances of a block in a particular context
of an instance of the composite block.

 An instance of a whole may include multiple instances of a part property. The
potential number of instances is specifi ed by the multiplicity of the part property,
which is defi ned as follows:

 ■ A lower bound (minimum number of instances) that may be 0 or any
positive integer. The term optional is often used for multiplicities where
the lower bound is 0 because an instance of the whole can include zero
instances of the part.

 ■ An upper bound (maximum number of instances) that may be 1, many
(denoted by “ * ”), or a specifi c positive number.

 A part property is a feature of a block, and as such can be listed in a separate parts
compartment within a block. The parts compartment is headed by the keyword
parts and contains one entry for each part in the block. Each entry has the follow-
ing format:

part name: block name [multiplicity]

 The upper and lower bounds of a multiplicity are typically combined into one
expression like this: “lower bound .. upper bound, ” except where they have the

101

same value, in which case just the upper bound is shown. Where no multiplicity is
shown, a value of 1..1 is assumed.

 Figure 6.4 shows a simple example of an automobile with four wheels, where
each usage of Wheel is uniquely identifi ed by a part property. In this case, the Auto -
mobile is the whole and the wheels are represented as parts. Each of the four
wheels has a common block defi nition, Wheel, with certain characteristics (e.g.,
size, pressure, and so on), but each wheel can have a unique usage or role in
the context of a particular automobile. The front wheels have a different role
from the rear wheels and may have different values for their pressure. Each wheel
may also behave differently when the car is accelerating and decelerating and be
subject to different constraints. Similarly, the front wheels on a front wheel–drive
vehicle may have a different role than front wheels on a rear wheel–drive vehicle.

 A part property defi nes a set of instances that belong to an instance of the
whole or composite block. If a block is at the part end of more than one compos-
ite block, the SysML semantics are that an instance of the block at the part end
will be part of at most one block instance at the whole end at any point in time.
An example is an engine that can be part of two different types of vehicle, such
as an automobile and a truck. However, any given instance of engine can only be
part of one vehicle instance at a time. This rule implies that at the instance level,
the composition hierarchy is a strict tree, which means there can be no whole–
part cycles leading from any given instance back to itself.

 Typically, a whole–part relationship means that certain operations that apply
to the whole also apply to each of the parts. For example, if a whole represents
a physical object, a change in position of the whole could also change the posi-
tion of each of its parts. A property of the whole, such as its mass, could also be
implied by its parts.

 A particular application domain may establish its own interpretation of the
whole–part relationship for the blocks defi ned in a particular model. When

bdd [Package] Automobile Example

parts
left front : Wheel
right front : Wheel
left rear : Wheel
right rear : Wheel

values
weight : kg
vehicle reg : String

AutomobileWheel

values
pressure : psi
size : mm

 FIGURE 6.4

 An automobile with four wheels described as separate parts.

6.3 Modeling the Structure and Characteristics of Blocks

102 CHAPTER 6 Modeling Structure with Blocks

blocks represent components of physical systems, the whole–part relationships
generally can be thought of as an assembly relationship, where an instance of the
block on the whole end is made from instances of the block on the part end.
The implications of whole–part relationships for software relate to creating and
returning memory locations for computation. This may also apply to the defi ni-
tion of operations that apply to the parts and the whole. For software objects, a
typical interpretation is that delete, copy, and move operations apply to all parts
of a composite whole. The whole–part semantics specify that when an instance
at the whole end is destroyed, the instances at the part end will also be destroyed.

 Composite Associations
 While a part property does state the number of instances that can be included
in an instance of its whole, it does not state whether instances of the part must
always exist as part of an instance of some whole. For example, an engine may
physically exist on its own, as well as in an instance of an automobile or truck.

 This information must be specifi ed using a special relationship called a com-
posite association that relates part and whole with a multiplicity at both its
ends. The upper bound of the multiplicity at the whole end of a composite asso-
ciation is always 1 because an instance of a part property may only exist in one
whole at any one time. The lower bound of the multiplicity at the whole end,
however, may be 0 or 1. A value of 1 means that instances of the block at the part
end must always be composed within instances of the block at the whole end.
A value of 0 means that an instance of the block at the part end can exist if no
whole exists. Specifying a lower bound of 0 enables a block to be part of more
than one composite association. In this case, it is still mandated that an instance
of a block at the part end is only part of a single instance at the whole end at any
given time.

 A composite association is shown as a line between two blocks with various
adornments at its ends. The whole end of a composite association is adorned by
a black diamond. A shorthand notation can be used to represent a block that has
many composite associations by showing a single black diamond with a series
of lines connecting to the part ends. The part end of an association is typically
adorned with an arrowhead. The lack of an arrowhead indicates that the block
at the part end has a reference property that can be used to reference the block at
the whole end. Reference properties are described in the next section.

 Each end of the association may optionally show a name, often called a role
name, and a multiplicity. The term role name is used to convey the idea that
the instances at the part end are playing some role (c.f., an actor) in the overall
whole. When the multiplicity for an end is not shown, the default interpretation
is a whole end multiplicity of 0..1 and a part end multiplicity of 1. The name of
the part property can appear as the role name at the part end of the association
although, often, part properties are not named.

 A block can include a parts compartment that contains the part properties
represented at the part end of an association, but typically on a given diagram the
part property is shown either in a parts compartment or as an association end.

103

Protective Housing
parts

: Image Processor
: MPEG Converter

Electronics Assembly
Mount Assembly

Camera Module

parts
: Camera Housing
: Imaging Assembly
: Optical Assembly

Stepper Motor
Module

Pan GimbalTilt GimbalPlatform

Camera

1

azimuth gimbalelevation gimbal

ma

azimuth motor elevation motor

bdd [Package] Structure [Camera Top Level]

 FIGURE 6.5

 Showing a block composition hierarchy on a block defi nition diagram.

6.3 Modeling the Structure and Characteristics of Blocks

 Figure 6.5 shows a portion of the top two levels of the composition hierarchy
for a Camera. Any number of levels of decomposition can be shown on a single
block defi nition diagram, although here only the decomposition for Camera and
Mount Assembly is shown. The parts of Electronics Assembly and Camera Module
are shown in compartments. Multiple levels of decomposition can be shown on a
single diagram, but this can increase the clutter for even relatively simple systems.
Note that even though the block defi nition diagram shows blocks, the diagram
frame represents the package Structure , as indicated in the diagram header.

 Different projects have different philosophies on which part properties should
have names. In this chapter, except where stated, the following naming philoso-
phy is used:

 1. A role name at the part end of the association is provided to distinguish two
part properties with the same type (block). An example of this is the use of
role names for Stepper Motor Module to distinguish the two roles of eleva-
tion motor and azimuth motor.

 2. A role name is provided when the name of the type does not adequately
describe the role the part plays. Examples of this are the role names eleva-
tion gimbal and azimuth gimbal. The block names Tilt Gimbal and Pan
Gimbal do not explicitly describe the plane in which the gimbals move in
the Camera application.

104 CHAPTER 6 Modeling Structure with Blocks

 3. A role name is not provided when the block name provides suffi cient infor-
mation on the role of the part. Examples of this are Protective Housing,
Camera Module, and Electronics Assembly. This is often the case when
a block has been explicitly created to represent this part. This should also
apply to Mount Assembly, but a name was required to illustrate an addi-
tional notational form in Figure 6.8.

 Where a part name exists it is used in the figure description, otherwise the block
name is used.

 The lack of multiplicity adornments on all part ends in this fi gure indicate that
there is exactly one instance of each in the composition hierarchy of Camera .
The single multiplicity adornments on the whole end indicate that the Electronics
Assembly, ma, and the Camera Module are always part of a Camera, whereas the
block Protective Housing may be used in other blocks. All the parts of ma are
typed by reusable blocks that have uses in many other contexts. Camera Module
is shown with a parts compartment that lists its three part properties. None of
them has a name, and they all have the default multiplicity of 1.

 Modeling Parts on an Internal Block Diagram
 In addition to appearing on a block definition diagram, part properties can be
shown on another diagram called the internal block diagram that presents a differ-
ent visualization of block composition. The internal block diagram enables parts to
be connected to one another using connectors and ports as described later.

 The relationship between composition, as expressed on a block defi nition dia-
gram and on an internal block diagram, is as follows:

 ■ The whole end or composite (block) is designated by the diagram frame on
the internal block diagram with the block name in the diagram header. It
provides the context for all the diagram elements on the diagram.

 ■ Each name on the part end of a composite association whose whole end
is the context block, or an entry in the parts compartment of the context
block, appears as a box symbol with a solid boundary within the frame of
the internal block diagram. The name string of the box symbol is composed
of the part name followed by a colon followed by the type of the part.
Either the part name or the type name can be elided.

 The multiplicity of each part property may be shown in the top right corner of
the part symbol or in square brackets after the type name. If no multiplicity is
shown, then a multiplicity of 1 is assumed.

 Figure 6.6 is an internal block diagram derived from the composite associations
whose whole end is Mount Assembly. The diagram header identifi es the Mount
Assembly as the enclosing block that provides the context for the fi ve parts shown
in the diagram. In this case, the multiplicities are not shown, indicating that the
multiplicity is the default value of 1. (See Figure 6.28 for an example of nondefault
multiplicity.) Note that this is a simplifi ed form of internal block diagram for illus-
tration only. A modeler would seldom if ever build an internal block diagram with-
out connectors between the parts or other structural information present.

105

 Connecting Parts on an Internal Block Diagram
 An internal block diagram can be used to show connections between the parts
of a block, something that cannot be shown in a block definition diagram.
A connector is used to bind two parts and provides the opportunity for those
parts to interact, although the connector says nothing about the nature of
the interaction. Connectors can also connect ports, as described later in the
Connecting Flow Ports on an Internal Block Diagram section. The interaction
between the parts of a block is specified by the behavior of the parts, as described
in the Chapters 8, 9, and 10 about behavior.

 This interaction may include the fl ow of inputs and outputs between parts, the
invocation of services on parts, the sending and receiving of messages between
parts, or constraints between properties of the parts on either end. Where appro-
priate, the nature and direction of items fl owing on a connector can be shown
using item fl ows, as described in Section 6.4.2.

 The ends of a connector can include multiplicities that describe the relative
number of instances that can be connected by links described by the connector.
(Note: A link connects instances whereas a connector connects parts.) A connec-
tor may be typed by an association that allows further defi nition of the charac-
teristics of the connection. Where a connector is typed, its type is normally a
reference association, although composite associations may be used.

 On an internal block diagram, the connector between two parts is depicted as
a line connecting two part symbols. A part can connect to multiple other parts,
but a separate connector is required for each connection. The full form of the
connector name string is as follows:

 connector name: association name

 The ends of a connector can include an arrowhead, which means that the asso-
ciation that typed the connector had the equivalent adornment. The ends of the

ibd [Block] Mount Assembly [Parts]

azimuth motor : Stepper Motor
Module

elevation motor : Stepper Motor
Module

azimuth gimbal : Pan Gimbalelevation gimbal : Tilt Gimbal

 : Platform

 FIGURE 6.6

 An internal block diagram for the Mount Assembly .

6.3 Modeling the Structure and Characteristics of Blocks

106 CHAPTER 6 Modeling Structure with Blocks

connector can be adorned with the name and multiplicity of the connector ends.
If no multiplicity is shown, then a multiplicity of 1 is assumed. When connectors
cross one another, the intersection can be designated by a contour to indicate
that they are not related in any way.

 The internal block diagram for the Camera is shown in Figure 6.7 . The
Protective Housing that protects the camera internals is mechanically connected
to the Mount Assembly (ma). The Mount Assembly provides the platform for the
Camera Module and Electronics Assembly, which are connected to pass electrical
signals that allow the camera to function. The connectors in this example have
names, indicating that they are mechanically connected (m1 to m3) or electrically
connected (e1), but the names have no semantic implications. Meaningful key-
words can be added using a domain-specifi c profi le as described in Chapter 14. All
connectors have default multiplicity implying one-to-one connections.

 Modeling Deeply Nested Structures and Connectors
 Sometimes it is necessary to show multiple levels of nested parts within a system
hierarchy on an internal block diagram. The nested parts can be represented by
showing part symbols within part symbols, as shown in Figure 6.8 . SysML also
introduces an alternative notation to designate a nested part, also shown in the
figure, where each level of nesting of the part is separated by a period (i.e., dot)
within the name string of a single part symbol. The symbol’s name string, with
dot notation, represents the path from the level of the context block for the dia-
gram down to the nested part.

 Figure 6.8 shows two ways to display the nested part azimuth gimbal within
an internal block diagram whose context is the Camera. The azimuth gimbal
can be represented as a nested rectangle within the ma:Mount Assembly symbol.
It can also be represented using the dot notation with the higher-level part name,
ma , and a dot preceding the part name, azimuth gimbal.

ibd [Block] Camera [Part Connections]

 : Electronics Assembly

ma : Mount Assembly

 : Protective Housing

 : Camera Module
e1

m1 m3

m2

 FIGURE 6.7

 Connecting parts on an internal block diagram.

107

 Connectors can connect parts at different levels of nesting without directly
connecting to the intermediate levels of nested parts. For example, a tire can be
connected directly to a road without having to connect the road to the vehicle,
the vehicle to the suspension, the suspension to the wheel, and the wheel to the
tire with intermediate connectors at each level of nesting. The connector simply
crosses the nested part boundaries in order to directly connect the tire to the
road. It is often the case that connections are initially specifi ed between top-level
parts, and then as the internal details of the parts become known, connectors are
specifi ed between lower-level elements. It is a modeling choice as to whether the
outer connectors are removed or kept. Blocks have a special Boolean property
called encapsulated, which if true prohibits connectors from crossing boundaries
without connecting to any intermediate nested parts.

 Connectors with nested ends are shown in the same way as normal connec-
tors except that they cross the boundaries of part symbols. The encapsulated
property on a block is shown if true and not shown if false. Where shown, it
appears in the name compartment in braces before the block name.

 Figure 6.9 includes a more detailed look at the connections within the subas-
semblies in Figure 6.7 . After further investigation, connector m1 has been aug-
mented with a nested connector, called platform to housing, that connects the
Platform of ma to the Camera Housing in the Camera Module. The electrical
connector, e1, has been augmented with a nested connector, called imaging to
video, that connects the Imaging Assembly of the Camera Module to the Image
Processor in the Electronics Assembly.

 When a connector at one level of the structure is used to add more detail
about a connector at some higher level, there are potential issues with maintain-
ing the resulting model. For example, if the m1 connector from Figure 6.7 is
removed from the model, should platform to housing be removed as well? If this
type of relationship is important, then an association block can be used to show
decomposition of the connector in a similar way that blocks show the decomposi-
tion of parts. Association blocks are described in the next section.

ma : Mount Assembly

azimuth gimbal : Pan Gimbal

ma.azimuth gimbal : Pan Gimbal

ibd [Block] Camera [Two ways of showing azimuth gimbal]

 FIGURE 6.8

 Showing deep-nested parts on an internal block diagram.

6.3 Modeling the Structure and Characteristics of Blocks

108 CHAPTER 6 Modeling Structure with Blocks

 6.3.2 Modeling Noncomposite Relationships between Blocks
Using Reference Properties

 Reference properties, sometimes shortened to just references, indicate that
there is some relationship between the instances of the block that owns the ref-
erence property and the instances of the block that type the reference property.
The composition semantics of whole–part relationships, as described by part
properties, define a specific relationship between an instance of the block at the
whole end and an instance of the block at the part end, as described in the pre-
vious section. An example of this is destruction semantics, where destroying an
instance of the block at the whole end also destroys the instances of the blocks at
the part ends. For reference properties, the destruction semantics associated with
composition do not apply. There is also no constraint on the number of blocks
that can have reference properties that reference the same instance. This is a par-
ticularly important point that provides significant utility as described next.

 Reference properties can be used to describe a logical hierarchy that refer-
ences blocks that are part of other composition hierarchies. Reference proper-
ties can thus be used to cut across the tree structure of a composition hierarchy,
which allows additional views besides the primary system whole–part hierarchy.
This logical hierarchical organization can be represented on both the block defi ni-
tion diagram and internal block diagram. Allocations, discussed in Chapter 13, can
be used to establish the relationship between the reference property in a logical
hierarchy and the corresponding part in a composition hierarchy. Another use of
reference properties is to model stored items (e.g., water stored in a tank). The
water is not part of the tank in the same way that a valve is a part of the tank. For
this case, the water may be owned by another block and shown as a reference
property of the tank.

 Reference Associations
 The composite association was discussed earlier in this chapter to represent a hier-
archy of blocks. Reference associations are used on a block definition diagram

 FIGURE 6.9

 Nested connectors on an internal block diagram.

ibd [Block] Camera [Lower Part Connections]

: Camera Module

: Imaging Assembly

: Optical Assembly

: Camera Housing : Electronics Assembly

: Image Processor

ma : Mount Assembly

 : Platform

imaging
to video

platform
to housing

: MPEG Converter

109

to capture a different relationship between blocks, where the block on one end of
the association is referenced by the block on the other end. A reference associa-
tion can specify a reference property on the blocks at one or both ends.

 A reference association is represented as a line between two blocks. The
black diamond that represents a composite association is not used. When there
is a reference property on only one end, the line has an open arrowhead pointing
toward the type of the reference property and away from the owner of the refer-
ence property. If the association is bidirectional (i.e., has reference properties at
both ends), then there are no arrowheads. Multiplicities on the ends of reference
associations have the same form as for composite associations.

 One end of a reference association may be represented by a white diamond.
SysML assigns the same meaning to the association whether the white diamond is
present or not. However, the white diamond symbol is intended to be used with
an applied stereotype that may specify unique semantics for a particular domain.

 Like part properties, reference properties can be listed in a separate compart-
ment within a block. The references compartment is headed by the keyword ref-
erences and contains one entry for each reference property in the block, with the
same presentation as part properties.

 Figure 6.10 shows a block called Mechanical Power Subsystem that uses ref-
erence associations to reference the power supply of the Camera, its powered
mechanical components, including the motors in the various assemblies, and the
Distribution Harness. The Distribution Harness itself has references to other har-
nesses that are part of the different assemblies in the Camera. In the composition
hierarchy for the Camera, the components are part of a number of different assem-
blies, some of which are shown in Figure 6.5 . The Mechanical Power Subsystem
represents a logical aggregation of these components that interact to provide

6.3 Modeling the Structure and Characteristics of Blocks

bdd [Block] Camera [Power Subsystem]

Mechanical Power
Subsystem

Distribution Harness Brushless DC Motor
Module

Stepper Motor
Module

Power Supply

azimuth
motor

elevation
motor power sourceiris motor focus motor

references

 : Camera Harness
 : Electronics Harness
 : Mount Harness

 FIGURE 6.10

 A reference association on a block defi nition diagram.

110 CHAPTER 6 Modeling Structure with Blocks

power to the rest of the camera. The white diamond adornment is used in this
example to emphasize the hierarchical nature of the Mechanical Power Subsystem,
but this emphasis is strictly notational and has no semantic implications.

 Different model-based methods may include a block such as the Mechanical
Power Subsystem in different parts of the model structure. Here it is contained
in the Camera block itself, but it could just as easily have been placed in a spe-
cial package of similar subsystems (refer to Chapter 16 for another example).
An instance of Mechanical Power Subsystem would not show up in the equip-
ment tree for the Camera, but is more like a cross-cutting view of a portion of the
equipment tree.

 Modeling Reference Properties on Internal Block Diagrams
 Reference properties are depicted in a similar fashion to parts when shown on
the internal block diagram, except that their box symbol has a dashed instead of
solid boundary. Otherwise they have similar adornments and can be connected in
the same way as any part symbol.

 Figure 6.11 shows the connections between the reference properties in the
Mechanical Power Subsystem used to support power transfer within the sub-
system. In this case a single power source provides all the power needs of the
mechanical parts of the Camera , through the Distribution Harness.

 Using Associations to Defi ne Common Features of Connectors
 A connector can be typed by an association to define its characteristics in more
detail. An association is defined between two blocks. For the connector to be
typed by an association, the connected parts or references on the connector
ends must have the same types as the association ends. An association defines
the multiplicity of block instances on each of its ends. Although connectors may
have their own multiplicities, their lower and upper bounds are constrained to be
within the multiplicity defined for the ends of the association that types it.

ibd [Block] Mechanical Power Subsystem

focus motor : Brushless DC
Motor Module

iris motor : Brushless DC
Motor Module

azimuth motor : Stepper
Motor Module

elevation motor : Stepper
Motor Module

power source : Power Supply : Distribution Harness

 FIGURE 6.11

 Reference properties and their interconnections on an internal block diagram.

111

 An Asynchronous Digital Subscriber Line (ADSL) connection is used to connect
a Surveillance System and Command Center, as shown by the association ADSL
Connection in Figure 6.12 . The ends of ADSL Connection are named adsl dte
and adsl dce, indicating the respective roles of the related blocks. A Surveillance
System is a data terminator and thus has higher download than upload and must
be related, via its reference property adsl dce, to exactly one Command Center .
A Command Center is related, via its reference property adsl dte, to zero or more
Surveillance Systems.

 Figure 6.13 shows the part of the ACME Surveillance Network that deals with res-
idential users. It has a residential center connected to two residences, residence A
and residence B. The two connectors, ADSL A and ADSL B, are typed by the ADSL
Connection and so must conform to its defi ned multiplicities, which they do.

bdd [Package] Physical [ADSL Connection]

Surveillance System Command Center
ADSL Connection adsl dce

1

adsl dte

0..*

 FIGURE 6.12

 A reference association between two blocks.

6.3 Modeling the Structure and Characteristics of Blocks

adsl dce

adsl dte

adsl dce

adsl dte

ibd [Block] A Command Center [ACME Surveillance Network]

ADSL A : ADSL Connection

ADSL B : ADSL Connection

residential center : Command Center

residence A : Surveillance System

residence B : Surveillance System

 FIGURE 6.13

 ADSL connection in use.

112 CHAPTER 6 Modeling Structure with Blocks

 Association Blocks
 More detail can be specified for connectors by typing them with association
blocks. An association block, as the name implies, is a combination of an association
and a block, so it can relate two blocks together but can also have internal struc-
ture and other features of its own.

 Association blocks are shown on block defi nition diagrams as an association
path with a block symbol attached to it via a dashed line. The name of the asso-
ciation block is shown in the block symbol rather than on the association path.

 Figure 6.14 shows a refi nement to Figure 6.12 where ADSL Connection is now
an association block and is joined by another association block, SDSL Connection .
The fi gure also shows additional internal structure inside Surveillance System and
Command Center, an ADSL Modem and an ADSL Gateway, respectively. These
new parts are used to handle the ADSL communication between them, which is
specifi ed in ADSL Connection, as shown in Figure 6.15 . SDSL Connection repre-
sents the use of a Synchronous Digital Subscriber Line (SDSL) between Command
Centers , but the parts required to support SDSL are not shown.

 The internals of an association block are specifi ed in an internal block diagram
using the notation described earlier in this chapter but with one addition. The
ends of the association block are represented by participant properties, shown
on the diagram using a dashed box, like a reference property, but distinguished
from other properties by the keyword « participant ». They may also show an end
property in braces indicating the association end that the participant property
represents.

 Figure 6.15 shows the internal detail of the ADSL Connection association
block. Its two participant properties— adsl dte and adsl dte—are shown using
the «participant » keyword. In this case the end property is not shown because
the participant properties have the same names as the association’s ends. The
nested parts of adsl dte and adsl dce are shown in order to describe how an ADSL
Connection is achieved, in this case via a connector, called adsl link, between an
ADSL Modem and an ADSL Gateway. It is now implicit that every connector

Command Center

: ADSL Gateway

Surveillance System

: ADSL Modem

ADSL Connection

-adsl dce

1

-adsl dte

0..*

SDSL Connection

-sdsl client
1

-sdsl host
1

bdd [Package] Physical [Communications]

 FIGURE 6.14

 Using association blocks to relate blocks.

113

typed by ADSL Connection ensures that the ADSL Modem of its adsl dte and the
ADSL Gateway of its adsl dce are connected via a connector called adsl link. Note
that the connector adsl link is not typed and so there is no additional detail on the
link’s nature. If further internal detail, such as the nature of the physical details of
the ADSL connection, were required, an association could have been added.

 Figure 6.16 shows both the ADSL Connection and SDSL Connection in use.
This ACME Surveillance System has two command centers, one for corporate cli-
ents and the other for residential clients. The command centers communicate
through an SDSL Connection and to their clients through ADSL Connections.

 6.3.3 Modeling Quantifi able Characteristics of Blocks
Using Value Properties

 Value properties are used to model the quantitative characteristics, such as its
weight or speed, associated with a block. They can also be used to model vector
quantities such as position or velocity. Whereas the definition of a part or reference
property is based on a block, the definition of a value property is based on a value
type that specifies the range of valid values the property can take when describing
an instance of its owning block. SysML defines the concepts of unit and dimension
that can be used to further characterize a value type, although value types do not
need to have dimensions or units. Value properties can have initial values associ-
ated with them, and they can also define a probability distribution for their values.

 Modeling Value Types on a Block Defi nition Diagram
 Value types are used to describe the values for quantities. For example, a value
properties called total weight and component weight might be typed by a value
type called kilograms (kg) .The intent of the value type is to provide a uniform
definition of a quantity that can be shared by all value properties. Value type defini-
tions can be reused by typing multiple value properties with the same value type.

 A value type describes the data structure for representing a quantity and speci-
fi es its allowable set of values. This is especially important when relying on com-
puters to operate on the values to perform various computations. A value type
can be based on the fundamental types that SysML provides— Integer, String,

ibd [Block] ADSL Connection

: ADSL Modem : ADSL Gateway
adsl link

«participant»
adsl dte : Surveillance System

«participant»
adsl dce : Command Center

 FIGURE 6.15

 The internal structure of an association block.

6.3 Modeling the Structure and Characteristics of Blocks

1
1

4

ibd [Block] ACME Surveillance Network

residential center : Command Centercorporate center : Command Center

residence A : Surveillance System

residence B : Surveillance System

company X : Surveillance System

company Y : Surveillance System

sdsl host sdsl client

: SDSL Connection

adsl dce

adsl dte

ADSL Y : ADSL Connection

adsl dce

adsl dte

ADSL B : ADSL Connection

adsl dce

adsl dte

ADSL X : ADSL Connection

adsl dce

adsl dte

ADSL A : ADSL Connection

 FIGURE 6.16

 Example of an ACME surveillance network with two command centers.

115

Boolean, Real, or Complex—or it can be defi ned more generally. The following
are the different categories of value type:

 ■ A primitive type supports the defi nition of scalar values. Integer, String,
Boolean , and Real are primitive types.

 ■ An enumeration defi nes a set of named values called literals. Examples of
enumerations are colors and days of the week.

 ■ A structured type represents a specifi cation of a data structure that includes
more than one data element, each of which is represented by a value prop-
erty. Complex is a structured type provided by SysML.

 A value type can take any of these basic forms but extends the defi nition of a
quantifi able characteristic to include units and dimensions. What they all have in
common is that they represent values, not entities, and so unlike blocks they have
no concept of identity. Two instances of a value type are deemed to be identical if
they have the same values.

 Value types are represented on a block defi nition diagram by a box symbol
with a solid boundary. The name compartment of a value type has the keyword
« valueType » preceding its name. The symbol representing an enumeration has a
single compartment listing all the literals of the enumeration and the keyword
«enumeration» preceding its name in the name compartment. The symbol repre-
senting a structured type also has a single compartment labeled values that lists
the subelements of the data type, using the same compartment notation as shown
for other properties.

 Figure 6.17 shows some value types in the Basic Defi nitions package. Size is a
structured type, with three subelements: width, height, and length; they are typed

6.3 Modeling the Structure and Characteristics of Blocks

bdd [Package] Basic Definitions

«valueType»
MB

«valueType»
Size

width : m
height : m
length : m

values

«valueType»
Real

«valueType»
MHz

«valueType»
WayPoint

x : Real
y : Real

values

«valueType»
Frames per Second

«enumeration»
Image Quality

low
normal
high

 FIGURE 6.17

 Defi nition of basic types in a block defi nition diagram.

116 CHAPTER 6 Modeling Structure with Blocks

by another value type m (for meters). The defi nition of m includes its unit and
dimension and is shown later in Figure 6.19 . Image Quality is an enumeration
used to specify the quality of image captured by the camera, which can be used to
control how much data are required to capture each video frame. The other data
types are all real numbers, so specialize the SysML value type Real. In this case the
specialization is simply stating that the values for MHz, MB, and Frames per
Second are real numbers. See Section 6.6 for further discussion on the meaning
and notation for specialization.

 Adding Units and Dimensions to Value Types
 SysML defines the concepts of unit and dimension to enable their use as share-
able definitions that can be used consistently across a model, or captured in a
model library that can be reused across a set of models. A dimension identi-
fies a physical quantity such as length, whose value may be stated in terms of
defined units (e.g., meters or feet). A unit must always be related to a dimen-
sion, but a dimension need not have any associated units, and often equations
can be expressed in terms of quantities that include dimensions without specify-
ing units.

 A value type that represents a physical quantity may reference a dimension
and/or unit as part of its defi nition, and thus assign units and dimensions to any
value property that it types.

 The SI Standard for Units and Dimensions
 The International System of Units (SI) is a standard for units and dimensions pub-
lished by the International Standards Organization (ISO). The complete set of SI
dimensions and units are described in a model library in Annex C of the OMG
SysML Specification. This model library can be imported into any model to allow
the SI definitions to be used as is, or to use them as the basis for defining more
specialized units and dimensions. Although this model library is not formally a
part of the SysML specification, it is anticipated that many SysML modeling tools
will include this library and possible extensions.

 Figure 6.18 shows some of the defi nitions in the SI Defi nitions model library
of SysML. Although SysML provides descriptions of the SI units and dimensions, it
does not defi ne standard value types because value types are often customized for
the application based on the needs of data representation and accuracy. SI Types
is a locally defi ned model library that imports SI Defi nitions in order to defi ne a
set of SI value types for this application based on the SI units and dimensions.

 Some of the types in the SI Types model library are shown in Figure 6.19 , using
unit and dimension defi nitions imported from the SysML SI Defi nitions package.
This enables a consistent representation of quantities that can be checked for
compatibility of dimensions and consistency of units. Although not shown here,
all the value types in this fi gure are defi ned to be real numbers.

 Adding Value Properties to Blocks
 Once a set of value types have been defined, they can be used to type the value
properties of blocks. Value properties have the same features as other properties

117

such as multiplicity, and like other properties, are shown in a compartment of
their owning block. The values compartment has the label values.

 Figure 6.20 shows a block defi nition diagram containing three blocks with
value properties: Camera, Electronics Assembly, and Optical Assembly. Some of
the value properties are typed with the value types specifi ed in Figure 6.17 , such
as the clock speed and memory of Electronics Assembly. Others are typed with
value types shown in Figure 6.19 . For example, the sensitivity of the Camera is
typed by lux, which measures luminosity. The names of value types are not lim-
ited to alphanumeric characters. For example, pan fi eld of regard in Camera is
typed by the symbol “º”, which stands for degrees.

 Derived Properties
 Properties can be specified as derived, which means that their values are derived
from other values. In software systems, a derived property is typically calculated
by the software in the system. In physical systems, a property is typically marked as

«unit»
Watt

dimension � Power

dimension � Length

«unit»
Meter

«modelLibrary»
SI Definitions

«dimension»
Length

«dimension»
Power «modelLibrary»

Standard Item Definitions
«modelLibrary»

Basic Definitions

«modelLibrary»
SI Types

«import»

«import»
«import»

pkg [Package] Standard Definitions [Dependencies]

 FIGURE 6.18

 Importing the SI defi nitions defi ned by SysML.

6.3 Modeling the Structure and Characteristics of Blocks

«valueType»
lux

«valueType»
m

«valueType»
W

«valueType»
kg

«valueType»
s

dimension � Power
unit � Watt

dimension � Mass
unit � Kilogram

dimension � Illuminance
unit � Lux

dimension � Time
unit � Second

dimension � Length
unit � Meter

bdd [Package] SI Types [SI Types with Dimensions and Units]

 FIGURE 6.19

 Using dimensions and units in the defi nition of value types.

118 CHAPTER 6 Modeling Structure with Blocks

bdd [Package] Structure [Value Properties with Types]

Electronics Assembly

values
clock speed : MHz
memory : MB

Optical Assembly

values
aperture : mm
focal length : mm

Camera

values
dimensions : Size
power : W
pan field of regard : �
sensitivity : lux
tilt field of regard : �

 FIGURE 6.20

 Use of a value type to type a value property on an internal block diagram.

derived to indicate that the values of derived properties are calculated based
on analysis or simulation, and may well be subject to constraints as described in
Chapter 7. By definition, constraints express noncausal relationships between
properties, but derived properties can be interpreted as dependent variables, and
thus allow the equations expressed in constraints to be treated as mathematical
functions.

 A derived property is indicated by placing a forward slash (/) in front of the
property name.

 Figure 6.21 shows Optical Assembly with an additional property, f-number ,
that is marked as derived. It also shows a constraint between focal length, aperture,
and f-number that can be used, given focal length and aperture, to calculate the
value of f-number.

 Modeling Property Values and Distributions
 An initial can be assigned to a property. Initial values for value properties can be
specified as part of their property string in an initial values compartment, for a
block using the following syntax:

 property name: type name � initial value

 The initial values for a part can be specifi ed using a dedicated compartment
labeled initialValues . Quantities may need to be represented by a probability

Optical Assembly

constraints
{f-number �� aperture/focal length}

values
aperture : mm
focal length : mm
/f-number : Real

 FIGURE 6.21

 Example of derived property.

119

distribution rather than a single value. SysML allows a modeler to describe the
probability distribution of the range of values for a value property. Annex C of the
OMG SysML specifi cation defi nes a small set of commonly used distributions in
a model library that can be reused. The following notation is used to represent a
distributed property:

 «distributionName» {p1 � value, p2 � value … } property name:type name

 The properties p1, p2, and so on are properties that characterize the probabil-
ity distribution. For example, this may be a mean and standard deviation for a
normal distribution, or a min and max value for a uniform distribution.

 Figure 6.22 shows a number of distributed properties, including Camera.pan
fi eld of regard and Optical Assembly.focal length. Camera.pan fi eld of regard
is the size of the arc that the camera can cover while panning. It is defi ned as
an interval distribution with a minimum of 0º and a maximum of 360º because
the actual fi eld of regard will depend on where the camera is installed. The focal
length of the Optical Assembly is defi ned as a normal distribution with a mean
of 7 millimeters and a standard deviation of 0.7 millimeters. This is intended to
accommodate differences arising from the combination of minor deviations in the
placement of lenses and mirrors during manufacturing.

 The distributions of both pan fi eld of regard and focal length are distribu-
tions over the whole population of cameras and optical assemblies. The Camera.
dimensions and Optical Assembly.aperture have initial values, a simple scalar
value for aperture, and a value for each of the constituent value properties of
dimensions.

6.3 Modeling the Structure and Characteristics of Blocks

bdd [Package] Structure [Values]

values

Optical Assembly

Camera

values
dimensions : Size � (0.04,0.03,0.01)
«normal»{mean � "2.1", standardDeviation � "0.01"} power : W
«interval»{min � "0", max � "360"} pan field of regard : �
«interval»{min � "0.05", max � "0.1"} sensitivity : lux
«interval»{min � "0", max � "90"} tilt field of regard : �

aperture : mm � 2.4
«normal»{mean � "7", standardDeviation � "0.35"} focal length : mm

 FIGURE 6.22

 Examples of property values and distributions.

120 CHAPTER 6 Modeling Structure with Blocks

 6.4 Modeling Interfaces Using Ports and Flows
 A port represents an interaction point on the boundary of a block and on the
boundary of any part typed by that block. The port enables the behavior of a
block or part to be accessed. A block may have many ports that specify different
interaction points. Even though ports are defined on blocks, ports can only be
connected to one another by connectors on an internal block diagram to support
the interaction between parts.

 There are two kinds of ports in SysML to specify two different types of inter-
action. The fi rst kind is a fl ow port that specifi es what can fl ow in or out of the
block at the interaction point. The fl ow port may represent physical fl ow; for
example, a water pump might have a port that specifi es that water can fl ow in
and water can fl ow out. The pump might have another fl ow port that specifi es
that electrical power can fl ow in. Often, in electronic systems, fl ow ports describe
the fl ow of information and/or control, such as a signal that a radar system has
detected a target, or that a button has been pressed on a keyboard. Flow ports are
described in Section 6.4.3.

 The second kind of port is a standard port that specifi es the services required
or provided by the block at this interaction point. Standard ports are often used
either as high-level descriptions of system capabilities or to describe the interface
with software-intensive systems, such as command and control. An example of a
standard port might be one that provides access to a target-tracking subsystem,
where a client can request information on current targets and threats, or perhaps
historical data on recent levels of activity. Typically, a single standard port describes
a set of features related to some specifi c service, such as tracking or navigation, but
the allocation of the services offered by a block to its ports is a methodological
question. Standard ports are described in Section 6.5.3.

 The selection of which port type to use is a methodological question that often
relates to how the behavior is expressed. In general, fl ow ports are well suited for
representing continuous fl ows of physical entities, or representing other continu-
ous or discrete fl ows sent from one process to another. Standard ports are bet-
ter suited for a system whose behavior is described by the invocation of services
and are commonly used to represent interfaces between software components.
A combination of fl ow ports and standard ports can be used in any given model,
but standard ports cannot be directly connected to fl ow ports or vice versa.

 6.4.1 Modeling Items that Flow
 An item is used to describe a type of entity that flows through a system; it may
be a physical flow, which includes matter and energy, as well as a flow of informa-
tion. Items may be blocks, value types, or signals. Physical items may be modeled
as blocks, which typically include value properties that describe physical quanti-
ties of the item, such as the water temperature for a block that represents water.
A flow may also be simplified to represent just a quantifiable property (e.g., water
temperature) in which case the item can be represented as a value type instead

121

of a block. An item may have a complex internal structure, such as an automobile
that flows through an assembly line.

 The fl ow of information can be represented by signals. Signals may also be
used to control the behavior of a part that waits for the signal to be received.

 Items can be defi ned at different levels of abstraction and may be refi ned
throughout the design process. For example, an alert fl owing from a security system
to an operator may be represented as a signal at a high level of abstraction. However,
in exploring the nature of how that alert is communicated in detail, the item may
be redefi ned. If the alert is communicated as an audio alarm, for example, it may be
redefi ned as a block representing the amplitude and frequency of the sound.

 Figure 6.23 shows part of the Standard Item Defi nitions model library that
covers the items that fl ow in cameras. The items are modeled as blocks and con-
tain value properties that describe their characteristics.

 6.4.2 Modeling Flows between Internal Block Diagram Parts
 An item flow is used to specify the items that flow across a connector in a par-
ticular context. An item flow specifies the type of item flowing and the direction
of the flow. It may also be associated to a property, called an item property , of
the enclosing block to identify a specific usage of an item in the context of the
enclosing block. For example, water may flow in one port and out of another.
The type is the same for both; the property is different to correspond to different
usages. Item properties can be constrained in parametric equations, as described
in Chapter 7. A connector can have more than one item flow attached to it, either
flowing in the same or different directions.

 Item fl ows are represented as black-fi lled arrowheads on a connector where
the direction of the arrowhead indicates the direction of fl ow. All the item fl ows
in a given direction are shown in a comma-separated list of item fl ow descrip-
tions fl oating near the arrow for the appropriate fl ow direction. Each item fl ow
description has a type name, and if related to an item property, includes the prop-
erty name as well.

6.4 Modeling Interfaces Using Ports and Flows

Video

values
frame rate : Integer
lines : Integer

DC

values
voltage : V
current : A
power : W

Light

bdd [Package] Item Definitions [Standard Item Definitions]

 FIGURE 6.23

 Items that fl ow in the Camera system.

122 CHAPTER 6 Modeling Structure with Blocks

 Figure 6.24 shows the fl ow of electricity (represented by the block DC)
through Mechanical Power Subsystem. The overall fl ow, as one might expect,
is from power source through the Distribution Harness to the various motors.
In this case, each item fl ow is represented by a corresponding item property
owned by the Mechanical Power Subsystem.

 6.4.3 Modeling Flow-Based Interfaces Using Flow Ports
 A flow port is used to describe an interaction point for items flowing in or out of
a block. It specifies what input items can be received by the block and what out-
put items can be sent by the block. Like other structural features of a block, a port
can have a multiplicity that indicates how many instances of the port are present
on an instance of its owning block.

 Flow ports specify what can fl ow. What actually does fl ow in a particular con-
text, as represented by item fl ows, may be different. Item fl ows on connectors
between ports must be compatible with the port defi nitions but may be more
specifi c. For example, a fl ow port on a pump may be typed by fl uid, but in a given
context, the specifi c fl uid that fl ows through the port may be typed by water.

 Atomic Flow Ports
 A port that specifies only a single type of input or output flow is modeled as an
atomic flow port. An atomic flow port specifies the flow direction (in, out, or
inout). An atomic flow port is typed by the item that can flow in and/or out of
the block, which may be a block, value type, or signal. Examples include a block
(e.g., water), a value type (e.g., current in units of amperes), or a signal (e.g., an
alert message).

 Atomic fl ow ports are shown as small squares on the boundary of the block with
an arrow inside the symbol representing the direction of the port. A two-headed

ibd [Block] Mechanical Power Subsystem [Power Flow]

focus motor : Brushless DC
Motor Module

iris motor : Brushless DC
Motor Module

azimuth motor : Stepper
Motor Module

elevation motor : Stepper
Motor Module

power source : Power Supply : Distribution Harness

altm supply : DC

fm supply : DC

azm supply : DC

im supply : DC

supply : DC

 FIGURE 6.24

 Item fl ows on an internal block diagram.

123

arrow represents a direction of inout. The name, type, and multiplicity of the port
are shown in a string fl oating near the port in the form:

 port name: item name[multiplicity]

 Alternatively, the port strings can be included in a separate flow ports compart-
ment, using the syntax:

 direction port name: item name[multiplicity]

 On the block defi nition diagram in Figure 6.25 , the atomic fl ow ports on
Optical Assembly specify that it can accept Light as an input and produces a
focused optical image, which is still Light, as an output. The atomic fl ow ports on
Imaging Assembly specify that it accepts an optical image and produces an elec-
trical image for further processing.

 Nonatomic Flow Ports
 Where an interaction point has a complex interface with many items flowing, the
port is modeled as a nonatomic flow port. In this case a flow specification must
type the port. A flow specification is defined on a block definition diagram. The
flow specification includes flow properties that correspond to individual specifi-
cations of input and/or output flow. Each flow property has a type and a direc-
tion (in, out, or inout). Like an atomic flow port, the type of the flow property
can be a block, value type, or signal depending on the specification of what can
flow.

 When two blocks interact, they may exchange similar items but in opposite
directions. Rather than creating two separate fl ow specifi cations for the nonatomic
fl ow ports on the interacting blocks, SysML provides a mechanism called a conju-
gate port to reuse a single fl ow specifi cation for both ports. One port is set to be
the conjugate of the other, which indicates that the direction of all fl ow properties
in the fl ow specifi cation is reversed with respect to this port.

6.4 Modeling Interfaces Using Ports and Flows

bdd [Package] Structure [Flow Port Definitions]

Imaging Assembly

optical image : Light electrical image : Image

Optical Assembly

external light : Light optical image : Light

 FIGURE 6.25

 A block with atomic fl ow parts.

124 CHAPTER 6 Modeling Structure with Blocks

 A fl ow specifi cation is shown as a box symbol with the « fl owSpecifi cation »
keyword above the name in the name compartment. The fl ow properties of a
fl ow specifi cation are shown in a special compartment labeled fl owProperties,
with each fl ow property shown in the format:

direction property name: item name.

 A nonatomic fl ow port is indicated by two angle brackets facing each other
(� �) drawn inside the port symbol. A conjugate fl ow port is indicated by invert-
ing the fi ll and line color in the symbol. Nonatomic fl ow ports can be listed in
the fl ow ports compartment of their owning block, although they do not have a
direction. If a noncomposite fl ow port is « conjugated », then its entry ends with
the keyword conjugated in braces.

 In Figure 6.26 , data are communicated from the Monitoring Station to one or
more Cameras. A single fl ow specifi cation, Camera Interface, describes the data
that can be passed between the communication ports— camera I/O and station
I/O. Video fl ows out and commands in. Given that the two blocks are intended to
be connected, they share the same fl ow specifi cation for their ports. The station
I/O port on the Monitoring Station is conjugated with the dark shading to indi-
cate that fl ow specifi cation is reversed from the camera I/O port on the Camera;
that is, the video fl ows in and the commands fl ow out.

 Connecting Flow Ports on an Internal Block Diagram
 When a block has ports, the parts that are typed by this block also feature these
ports, which can then be connected on an internal block diagram using connec-
tors. When an output port, or nonatomic flow port with an output flow property,

bdd [Block] Surveillance System [Composite Flow Ports]

«flowSpecification»
Camera Interface

«block»
Monitoring Station

station I/O :
Camera Interface

«block»
Camera

camera I/O :
Camera Interface

«valueType»
Control Data

command : Byte
data1 : Word
data2 : Word

out digital video : MPEG4
out analog video : Composite
in control : Control Data
in shutdown sig : Shutdown
in startup sig : Start Up
in start test sig : Start Test Signal
in stop test sig : Stop Test Signal

flowPropertiesvalues

 FIGURE 6.26

 A block with a nonatomic fl ow port.

125

is connected to more than one other port, the items sent from that port are broad-
cast along all connectors.

 When attempting to connect two ports, their compatibility needs to be
assessed. Whether ports are compatible or not depends on both the kind of port
(fl ow ports can only be connected to fl ow ports and standard ports can only be
connected to standard ports) and more signifi cantly on the compatibility of the
specifi cation of the port types.

 The simplest form of compatibility between two connected fl ow ports is where:

 ■ Atomic fl ow ports have matching types and the direction of one port is in
and the other out, or both are inout.

 ■ Nonatomic fl ow ports have matching fl ow specifi cations and one fl ow port
is the conjugate of the other.

 As discussed in Section 6.6, the type of a port may be specialized, perhaps to add
new features. For the purposes of compatibility, a port with a given type will
always be compatible with a port that specializes that type.

 Atomic fl ow ports may be connected to nonatomic fl ow ports as long as the
fl ow specifi cation that types the nonatomic fl ow port contains a fl ow property
of a matching type and direction. In Figure 6.27 , two atomic fl ow ports on the
Camera Module and Electronics Assembly of the Camera are connected to
show that images can fl ow out of the Camera Module and into the Electronics
Assembly. The connection is valid since both ports have a compatible type,
Image, and they have compatible directions.

 In Figure 6.28 , two parts of the 4-Camera Surveillance System — Monitoring
Station and the set of cameras—are connected to enable communications

6.4 Modeling Interfaces Using Ports and Flows

ibd [Block] Camera [Port Connector Example]

: Electronics Assembly

: Image

: Camera Module : Image

 FIGURE 6.27

 Connecting ports on an internal block diagram.

ibd [Block] 4-Camera Surveillance System

: Monitoring Station

station I/O :
Camera Interface

cameras :
Camera [4]

camera I/O :
Camera Interface

4
1

 FIGURE 6.28

 A connector that connects two nonatomic fl ow ports with the same specifi cation.

126 CHAPTER 6 Modeling Structure with Blocks

between them. Ports on both parts use the fl ow specifi cation Camera Interface
to defi ne their interface. The port on the Monitoring Station is conjugated, and
the port on the cameras is not, so they are compatible and can be connected.
The multiplicities on the ends indicate how their instances can be connected in a
4-Camera Surveillance System. A camera instance must be connected to exactly
one monitoring station and a monitoring station must be connected to exactly four
cameras. Given that the Camera part has multiplicity 4 and the Monitoring
Station part has a multiplicity of 1, the instance of Monitoring Station is con-
nected to all four instances of cameras.

 Delegating Responsibility between Ports
 There are two cases to consider for how a block handles the interactions tak-
ing place at its ports. Either it handles the interactions directly itself, or it del-
egates the handling to a part or parts. If a block handles the port interactions
itself, then the port is called a behavior port. Where a flow port is a behavior
port, the flowing items must be relayed either to/from some feature of its owning
block, or a parameter of the block’s main (or classifier) behavior. The mechanism
used to specify the mapping is not stated in SysML, allowing modelers in differ-
ent domains and situations to take different approaches. See Section 6.5.1 for a
description of the classifier behavior for a block.

 The other case is when the block delegates the behavior to its parts. In this
case the block presents a port on its interface but it delegates responsibility for
handling the interaction at that port to a nested part or parts, via ports on their
interfaces. This type of port is called a delegation port.

 The delegation is carried by a connector from a delegation port on the par-
ent to a port on one of its parts. To distinguish the two cases, a connector from a
parent to a part is called a delegation connector and a connector between parts
is called an assembly connector. Delegation connectors are similar in most
ways to assembly connectors except that the compatibility rules are different.

 In the case of delegation connectors, the specifi cations of the connected ports,
instead of being complementary, must be similar, so:

 ■ For an atomic fl ow port, the types of ports must be compatible and their
directions match.

 ■ For nonatomic fl ow ports, they must be typed by the same fl ow specifi ca-
tion and either both must be conjugate or both not be conjugate.

 The compatibility rules in the presence of specialization of port types are the
same as for assembly connectors.

 Ports shown on the diagram frame of the internal block diagram represent the
ports on the enclosing block that is designated by the diagram frame as shown in
Figure 6.29 . SysML at present does not provide a notation to distinguish behav-
ior ports, although this information is stored in the model repository. Depending
on circumstances, it may be useful to add information in the diagram description
about whether a given part on an internal block diagram delegates port interac-
tions to its own internal structure.

127

 In Figure 6.29 , the conversion of light by the Camera Module into an electri-
cal signal that represents an image is actually performed by two of its parts, the
Optical Assembly that focuses the light and the Imaging Assembly that scans the
result and converts it to an analog signal representing the image. The MPEG4
atomic output port of the Electronics Assembly is connected to camera I/O on
Camera that is a composite. However, this connector is valid because Camera
Interface contains an output fl ow property typed by MPEG4. Note that the names
of the internal fl ow ports have been elided to reduce clutter on the diagram.

 Modeling Flows between Ports
 As noted earlier, item flows can be shown on connectors between parts . Item
flows are also shown on port-to-port connectors. SysML includes compatibility
rules to confirm that the item flow is compatible with the type of the ports on
either side of the connector. For an item flow to be valid in this context, it must
be attached to a connector between two flow ports that support types compat-
ible with the type of the flowing item. Specifically, the type of item that flows
must be compatible with the type of connected atomic flow ports, or be com-
patible with the type of one of the flow properties in the flow specification that
types the connected nonatomic flow ports.

 Figure 6.30 shows the two parts of Imaging Assembly, the Image Detector
that creates an analog electrical image from the incoming light and the Imaging
Electronics that amplifi es the electrical image so that it can be read by the image
processor in the Electronics Assembly. There are three item fl ows shown in the
fi gure, representing the fl ow of light into the Image Detector, the fl ow of electri-
cal signals from the Image Detector to the Imaging Electronics, and the fl ow of
boosted electrical signals from the Imaging Electronics. All the item fl ows are
associated to an item property and they are all compatible with their associated
connector. For example, the type of detector signal is Image, which is compatible

ibd [Block] Camera [Nested Flow]

light in : Light

camera I/O :
Camera
Interface

: Electronics Assembly

: MPEG Converter

: MPEG4

: Video

: Image Processor

: Video

: MPEG4

: Camera Module

: Imaging Assembly

: Optical Assembly

: Light

: Light

: Image

: Image

: Image
: Image

: Light

: Light

 FIGURE 6.29

 Examples of delegation ports.

6.4 Modeling Interfaces Using Ports and Flows

128 CHAPTER 6 Modeling Structure with Blocks

with the two ports at either end of its associated connector, and it is fl owing in a
compatible direction, from an out port to an in port.

 6.5 Modeling Block Behavior
 Blocks provide the context for behaviors, which is a SysML term covering any
and all descriptions of how the block deals with inputs and outputs and changes
its internal state. The two ways to specify the behavior of a block are referred to
as the main behavior (called classifier behavior) and by methods that provide the
specification of how service requests are handled. These in turn may invoke other
behaviors within the block. All behaviors have parameters that are used to pass
items into or out of the behavior before, after, or sometimes during execution.

 As Chapters 8 through 10 describe, there are three main behavioral formalisms
in SysML: activities, state machines, and interactions:

 ■ Activities transform inputs to outputs, including matter, energy, and information.
 ■ State machines are used to describe how the block responds to events.
 ■ Interactions describe how the parts of a block interact with each other

using message passing.

 SysML recognizes two other forms of behavior that are not formalized within
the language. An opaque behavior is represented as a textual expression and
defi nes the language in which the expression is written. A function behavior is
similar to an opaque behavior with the added restriction that it is not allowed
to directly affect the state of its owning block and may only communicate using
parameters. Function behaviors are often used to defi ne mathematical functions.

 6.5.1 Modeling the Main Behavior of a Block
 The main behavior (sometimes called classifier behavior) of a block starts
at the beginning of the block’s lifetime and generally terminates at the end of its
lifetime. Depending on the nature of the block, the choice of formalism for the
classifier behavior is between state machines, if the block is largely event-driven
(e.g., part of a service-based architecture), and activities, if the block is largely
used to transform input items to output items. A popular hybrid approach is to
use a state machine to describe the states of a block and to specify an activity that
executes when a block is in a given state.

: Image

: Image Detector

: Image

detector signal :
Image

optical image:
Light

electrical image :
Image

: Light : Image

boosted
signal : Image

optical signal :
Light

ibd [Block] Imaging Assembly [Item Flows]

: Imaging Electronics

 FIGURE 6.30

 A port-to-port connector with item fl ows.

129

 When a block has a classifi er behavior and also has parts with classifi er behav-
iors, the modeler should ensure that the behaviors between the whole and the
parts are consistent at each system hierarchy level. A classifi er behavior may act as
a controller that plays an active role in coordinating the behaviors of its parts. In
this case, the behavior of the block is a combination of its classifi er behavior and
the classifi er behavior of all its parts. Another approach is for the classifi er behavior
of the block to be some alternative abstraction of the behavior of its parts. In this
case, part-level behavior is a refi nement of the block’s classifi er behavior.

 6.5.2 Specifying the Behavioral Features of Blocks
 Along with structural features, blocks can also own behavioral features that
describe which requests a block can respond to. There are two types of behavio-
ral features, operations and receptions. A reception represents an asynchronous
request; that is, where the requester does not wait for a response. Each reception
is associated with a signal that defines a message with a set of attributes that rep-
resent the content of the message. Receptions in different blocks can respond to
the same signal type, so frequently used messages can be defined once and reused
in many blocks. The attributes of the signal in turn define the set of arguments
passed in with the asynchronous request.

 An operation is a behavioral feature that typically represents a synchronous
request; that is, where the requester waits for a response. Operations may also be
asynchronous but then are largely equivalent to receptions. Operations defi ne a
set of parameters that describe the arguments passed in with the request, or are
passed out once a request has been handled, or both.

 A behavioral feature may have an associated method that is a behavior invoked
when the block handles a request for the feature. Behavioral features are discussed
later in this section and in more detail in the activity, interaction, and state machine
chapters—Chapters 8 through 10, respectively.

 Operations are shown in a separate compartment labeled operations and are
described by their signature, a combination of their name along with parameters,
and optional return type as follows:

 operation name (parameter list):return type

 The parameter list is comma-separated with the format:

direction parameter name: parameter type

 Parameter direction may be in, out, or inout.
 Receptions are shown in another compartment labeled receptions and are

described by their signature of name and list of attributes as follows:

 «signal» reception name (attribute list)

 The attribute list is comma-separated with the format:

 attribute name: attribute type

6.5 Modeling Block Behavior

130 CHAPTER 6 Modeling Structure with Blocks

 Signals are defi ned using a box symbol with a solid outline and the keyword
«signal» before the signal name. A signal symbol has a single unlabeled compart-
ment that contains the attributes with the form:

attribute name: attribute type [multiplicity]

 Figure 6.31 shows operations and receptions for the blocks UI and Monitoring
Station. UI has operations to support user login and a set of receptions so that it
can be informed of the progress of camera tests. The diagram also shows the defi -
nition of the signals related to the receptions. Monitoring Station has a set of oper-
ations that support route management, user management, and test management.

 6.5.3 Modeling Service-Based Interfaces Using Standard Ports
 An alternative method for describing a service-based interface to a block is to
define the behavioral features the block can support at a given interaction point.
A standard (service-based) port uses a definition called an interface to specify
the set of behavioral features either required or provided at this interaction point.

 Modeling Interfaces
 Interfaces that type a standard port are defined on a block definition diagram as
box symbols with the keyword «interface» before their name. Interface symbols
have operation and reception compartments like block symbols.

 Figure 6.32 shows fi ve interfaces that describe different logical groupings of
services. Camera Control contains a set of operations that provide support for
controlling the camera. Test Tracking contains a set of receptions that allow the
reporting of progress during camera testing. The other interfaces support other
services (e.g., user and route management).

bdd [Package] Logical [Classes with Operations]

«block»
UI

login() : String
logout() : String

«block»
Monitoring Station

«signal»
Test in Progress

camera id : String

«signal»
System OK

operationsoperations

receptions
«signal» Test in Progress(camera id : String)
«signal» Test Complete(camera id : String, OK : Boolean)
«signal» System OK()

create route() : Route
delete route(in r : Route)
test cameras()
camera test complete(in OK : Boolean)
verify login details() : Boolean
check capacity()
pan camera(in strength : Integer)
tilt camera(in strength : Integer)
get camera status(in camera id : Integer, out camera status : String)

«signal»
Test Complete

camera id : String
OK : Boolean

 FIGURE 6.31

 Showing block operations on a block diagram.

131

 Adding Interfaces to Standard Ports
 A required interface on a port specifies one or more operations required by the
block (or its parts) to realize its behavior. A provided interface on a port speci-
fies one or more operations that a block (or one or more of its parts) provides.
A part that has a port with a required interface generally requests another part
to provide an input it needs to perform its function. The other part then pro-
vides the service by returning a value to the requester. Interface definitions can
be reused as needed to define the interfaces of standard ports on many blocks.

 When a standard port is a behavior port, the owner of the port must include
all the operations and receptions specifi ed by its provided interfaces. The typical
approach to modeling this is to add a realization dependency from the block
to each provided interface, which asserts that the block will declare a behavioral
feature for each behavioral feature in that interface. A block can assert that it
requires a set of behavioral features by adding a uses dependency to an inter-
face, although this has no affect on the features of the block.

 The uses dependency is represented by a dashed arrow with an open head
pointing toward the interface. The realization dependency is represented by a
dashed arrow with an unfi lled triangular head pointing toward the interface.

 The required and provided interfaces of a port may be represented by the
dependency notation described earlier, but a more popular notation called “ball
and socket ” is often used instead. An interface is represented by either a ball or
socket symbol with the name of the interface fl oating near it. The ball depicts
a provided interface, and the socket depicts a required interface. A solid line
attaches the interface symbol to the port that requires or provides the interface.

 A standard port can have one or more required interfaces and one or more
provided interfaces, and hence can be connected to multiple interface symbols.

bdd [Package] Logical [Interfaces]

«interface»
Camera Control

operations
get camera status(in camera id : Integer, in camera status : String)
test cameras()
pan camera(in strength : Integer)
tilt camera(in strength : Integer)

receptions

«interface»
Test Tracking

«signal» Test in Progress(camera id : String)
«signal» Test Complete(camera id : String, OK : Boolean)
«signal» System OK()

operations

«interface»
User Login

login() : String
logout() : String

«interface»
Login Support

operations
verify login details() : Boolean
check capacity()

«interface»
Route Management

create route() : Route
delete route(in r : Route)

operations

 FIGURE 6.32

 A set of interfaces used to defi ne provided or required services.

6.5 Modeling Block Behavior

132 CHAPTER 6 Modeling Structure with Blocks

Alternatively, the port strings can be included in a separate standard ports com-
partment, using the following syntax:

 port name: interface name[multiplicity]

 Figure 6.33 shows the set of standard ports that defi ne interface points on the
blocks UI and Monitoring Station. UI has four ports, two that provide services
and two that require services. The port test feedback provides the services defi ned
by the interface Test Tracking. The port route requests requires the services
defi ned by the interface Route Management. Monitoring Station also has four
ports, three that provide services and one that requires services. Whereas the port
route requests on UI requires the interface Route Management, port route requests
on Monitoring Station provides the interface Route Management.

 Login requests and test feedback on block UI are behavior ports, and so UI
has realization dependencies to the Test Tracking and User Login interfaces.
Similarly, Monitoring Station realizes Camera Control, Route Management, and
Login Support because login services, route requests, and camera requests are all
behavior ports.

 6.5.4 Connecting Standard Ports on an Internal Block Diagram
 On an internal block diagram, standard ports, like flow ports, can be connected to
multiple other ports through connectors. A request made through a standard port

bdd [Package] Logical [Ports and Interfaces]

UI

route
requests

login
services

test
feedback

login
requests

Monitoring Station

login
services

route
requests

camera
requests

test
feedback

Route
Management

Route
Management

Camera
Control

Login
Support

Login
Support

Test
Tracking

Test
Tracking

User
Login

«interface»
Test Tracking

«interface»
User Login

«interface»
Route Management

«interface»
Login Support

«interface»
Camera Control

 FIGURE 6.33

 Defi ning a service-based interface using standard ports.

133

is communicated along any connector that connects it to a port with a compat-
ible interface.

 A tool can verify the compatibility of the interfaces of connected standard ports
by verifying the compatibility of the operations on the interfaces. For assembly
connectors, compatibility is ensured if the provided interfaces of one port are
matched one-for-one with the required interfaces of the other port and vice versa.
For delegation connectors, the connected ports are compatible if they have the
same required and provided interfaces. In many cases, however, this is overly
restrictive because a connector may not be used for all the possible requests
implied by the interfaces of the connected ports, and so SysML leaves the precise
details of port compatibility for standard ports undefi ned.

 Required and provided interfaces can be shown on an internal block diagram
using the ball-and-socket notation introduced earlier if required, although this
often adds clutter to the diagram. If the ball-and-socket notation is used, it is easy
to perform a quick visual check on the compatibility of connected ports. Ports
connected by delegation connectors should have the interface symbols with the
same name and shape. Ports connected by assembly connectors should have
interface symbols with the same name and different shapes.

 Figure 6.34 displays an internal block diagram for Surveillance System show-
ing two of its parts, the UI and the Monitoring Station. The ports of these two
parts are connected both to the ports on their parent and to each other’s ports.
Surveillance System delegates the handling of requests on its user login port to
the UI, and the handling of requests on its camera cmds port to the Monitoring
Station. The UI uses Login Support services of the Monitoring Station, via its
login services port, to provide data on current users, and also passes through
route management requests. The Monitoring Station provides Test Tracking
services to the UI.

6.5 Modeling Block Behavior

ibd [Block] Surveillance System [UI and Monitoring Station Connections]

user
login camera

cmds

login services

route requests

test feedback
login

requests

login services
: Monitoring Station: UI

route requests

camera
requests

test feedback

Route
Management

Login
Support

Test
Tracking

Camera
Control

Test
Tracking

User
Login

User
Login

Camera
Control

Route
Management

Login
Support

 FIGURE 6.34

 Connecting standard ports on an internal block diagram.

134 CHAPTER 6 Modeling Structure with Blocks

 6.5.5 Modeling Block-Defi ned Methods
 Some behaviors owned by the block only execute in response to a particular stim-
ulus, either a request for a service provided by an operation or a signal request
tied to a reception. Such a behavior is called a method, and it is related to the
behavioral feature describing the request.

 Unlike the main block behavior, methods typically have a limited lifetime, start-
ing their execution following the stimulus, performing their allotted task, and then
terminating, perhaps returning some results. Methods are usually specifi ed using
activities, opaque behaviors, or function behaviors.

 It should be mentioned that not all behavioral features require methods. Requests
associated with behavioral features can be handled directly by behaviors using the
specialized constructs described in Chapters 8 through 10.

 SysML supports the notion of polymorphism, where many different blocks
may respond to the same service request or message, but each may do so in a spe-
cifi c way; that is, by invoking a specifi c method. Polymorphism is strongly associ-
ated with classifi cation, as described in the next section.

 6.6 Modeling Classifi cation Hierarchies
Using Generalization

 All the definitions that can appear on a block definition diagram are classifiers,
which means that they can be organized into a classification hierarchy. The clas-
sifiers so far encountered in this chapter are blocks, value types, interfaces, flow
specifications, and signals. In a classification hierarchy each classifier is described
as being more general or more specialized than another. Typically a general clas-
sifier includes a set of features common to a set of more specialized classifiers
that also include additional features. The relationship between the general classi-
fier and specialized classifier is called generalization. Different terms are used to
identify the classifiers at the end of a generalization relationship. In this chapter,
the general classifier is called the superclass, and the more specialized classifier
is called the subclass.

 Classifi cation can facilitate reuse where a subclass reuses the features of a
superclass and adds it own features. The benefi ts of such reuse can be substantial
when the superclass has signifi cant detail.

 This section deals initially with the classifi cation of structural features of a
block, covering both the addition of features and the redefi nition of existing fea-
tures in subclasses. Although the focus for this section is blocks, other elements
with structural features, such as fl ow specifi cations and value types, can also be
classifi ed in the same fashion. Subclasses of fl ow specifi cations can add or rede-
fi ne fl ow properties. Subclasses of value types may add additional characteristics
such as units and dimensions. Subclasses of an interface can add new operations
and receptions, and subclasses of a signal can add new attributes.

 In addition to classifi cation for reuse, classifi cation can also be used to describe
specifi c confi gurations of a block, to identify unique confi gurations for testing, or
as the input to simulations or other forms of analysis.

1356.6 Modeling Classifi cation Hierarchies Using Generalization

 Classifi cation also applies to behavioral features and can be used to control
the way blocks respond to incoming requests. Classifi cation of behavioral features
and the semantics implied by the use of classifi cation are covered by numerous
texts on object-oriented design and so will not be dealt with in any detail here.

 Generalization is represented by an arrow between two classifi ers with a hol-
low triangular arrowhead on the superclass end. Generalization paths may be dis-
played separately, or a set of generalization paths may be combined into a tree, as
shown later in Figure 6.36 .

 Figure 6.35 shows two subclasses of Camera, Wired Camera and Wireless
Camera. Both of the subclasses require all the characteristics of Camera but add
their own specialized characteristics as well. Wired Camera has both a mains
connection and a wired Ethernet connection. The Wireless Camera uses WiFi

Camera

parts
 : Protective Housing
ma : Mount Assembly
 : Camera Module
 : Electronics Assembly

values
dimensions : Size
power : W
field of view : °
orientation : °

in light in : Light
camera I/O : Camera Interface

control : ICameraSignals

flow ports

standard ports

parts
: Transformer
: Ethernet Card

Wired Camera

in mains input : AC
flow ports

parts
: Battery
: WiFi Card

Wireless Camera

battery life : s
values

in charger input : DC
flow ports

bdd [Package] Structure [Two Specialized Types of Camera]

 FIGURE 6.35

 Example of block specialization.

136 CHAPTER 6 Modeling Structure with Blocks

to communicate and is battery-driven. It has a DC charger input and a measure of
the current battery life.

 6.6.1 Classifi cation and the Structural Features of a Block
 Different blocks in a classification have different structural features, with sub-
classes adding features not present in their superclasses. Not all features added in
subclasses are new; some are introduced to override or otherwise change the defi-
nition of an existing feature, which is called redefinition. A feature in a subclass
may also be defined to represent a subset of a feature in a superclass.

 The fundamental consequence of redefi ning a property in a subclass is to pre-
vent further use of that property in the subclass. However, on top of this the rede-
fi ning property is typically intended to be used in place of the redefi ned property,
so often has the same name. When used instead of the redefi ned property, the
redefi ning property may:

 ■ Restrict its multiplicity—for example, from 0..* to 1..2 in order to reduce the
number of instances or values that the property can hold.

 ■ Add or change its initial value.
 ■ Provide a new distribution or change an existing distribution.
 ■ Change the type of the property to a more restricted type—in other words,

a type that is a subclass of the existing type.

 Redefinition is shown in braces after the name string of the redefining property
using the keyword redefines followed by the name of the redefined property.

 In the Components package, two motor modules are described for use in the
system. Both motor modules share a number of features; for example, they both
have some common value properties, such as weight, power consumption, and
torque. In Figure 6.36 a general concept of Motor Module has been introduced to
capture the common characteristics of the two motor modules.

 In addition to value properties, Motor Module defi nes a common concept of a
control input using a fl ow port. The Brushless DC Motor Module and the Stepper
Motor Module are represented as subclasses of this common concept with spe-
cial features of their own, such as the step size and position output for the Stepper
Motor Module. In addition, the common properties from Motor Module have
been redefi ned in the subclasses in order to place bounds on their values that
are appropriate to the type of motor. The value properties are described by an
« interval » probability distribution to represent the range of values properties can
have in their given subclass.

 6.6.2 Modeling Overlapping Classifi cations Using
Generalization Sets

 Sometimes a subclass may include features from multiple superclasses. This is
called multiple generalization, or sometimes multiple inheritance. The sub-
classes of a given class may also be organized into groupings based on how they

1
3

7

Brushless DC Motor
Module

values

Stepper Motor
Module

values

position : V

Motor Module

values
weight : g
power : W
torque : mNm

bdd [Package] Components [Types of Motor]

control input : V

«interval»{min � "8", max � "16"}weight : g{redefines weight}
«interval»{min � "5", max � "10"}power : W{redefines power}
«interval»{min � "1.5", max � "1.7"}torque : mNm{redefines torque}
step size : mm

«interval»{min � "0.3", max � "1.5"}weight : g{redefines weight}
«interval»{min � "0.2", max � "0.5"}power : W{redefines power}
«interval»{min � "0.02", max � "0.03"}torque : mNm{redefines torque}

 FIGURE 6.36

 Showing a classifi cation hierarchy on a block defi nition diagram.

138 CHAPTER 6 Modeling Structure with Blocks

can be used for further classification. For example, a superclass Person may have
subclasses that represent the characteristics of an Employee OR a Manager in
their job AND subclasses that represent the characteristics of a Woman OR a Man
as their gender. This situation can be modeled using generalization sets, as shown
in Figure 6.37 . Generalization sets have two properties that can be used to
describe coverage and overlap between their members.

 The coverage property specifi es whether all the instances of the superclass
are instances of one or another of the members of the generalization set. The
two values of the coverage property are complete and incomplete. The overlap
property specifi es whether an instance of the superclass can only be an instance
of at most one subclass in the generalization. The two values of the property are
disjoint and overlapping.

 A generalization set may be displayed on a block defi nition diagram by a
dashed line intersecting a set of generalization paths. The name of the gen-
eralization set and the values of the overlap and coverage properties, shown in
braces, are displayed fl oating near the line that represents the generalization set.
Alternatively, where the tree form of generalization notation is used, a general-
ization set may be represented by a tree with the generalization set name and
properties fl oating near the triangle symbol at its root. Figure 6.37 shows the dashed-
line variant and Figure 6.40 the tree variant.

 Figure 6.37 shows the example of generalization sets described earlier. Person
is subclassed by four subclasses in two generalization sets. Gender has two mem-
bers, Woman and Man, and is both disjoint and completely covered because all
instances of Person, must be an instance of either Woman or Man but not both.
Job has two members, Employee and Manager, and is overlapping and incom-
pletely covered because an instance of Person may be an instance of both
Employee and Manager , or neither.

 6.6.3 Modeling Variants Using Classifi cation
 The description and organization of product variants is a large and complex topic
and requires solutions that cover many different disciplines, of which modeling

bdd [Package] Generalization Set [Person Example]

Person

Employee ManagerWoman Man

{incomplete, overlapping}

Job

{complete, disjoint}

Gender

 FIGURE 6.37

 Showing a generalization set on a block defi nition diagram.

139

is just one. Nonetheless, SysML contains concepts like classification that can be
used to capture some of the details and relationships needed to model variants.
For example, classification can be used to model different variants of a block defi-
nition that represent alternative designs being evaluated in a trade study. This can
be achieved by describing several specialized variants of a block as subclasses of
the original, grouped into generalization sets. Note that multiple subclasses of a
superclass can be recombined using multiple generalizations in subsequent levels
of classification, but these must obey the specified overlap and coverage of their
superclasses.

 Figure 6.38 shows two mutually exclusive characterizations of the Camera: its
intended location and the way that it connects with a controller. Each character-
ization in this case has two variants. There are two intended locations, indicated
by the generalization set Location, served by either an Internal Camera or an
External Camera. There are also two intended modes of connection, indicated
by the Connection generalization set, served by the Wired Camera and Wireless
Camera blocks originally shown in Figure 6.35 . Two further variants, Wireless
Internal Camera and Wired External Camera, are created by multiple generaliza-
tion from these four. The features of the blocks are hidden to reduce clutter.

 6.6.4 Using Property-Specifi c Types to Model Context-Specifi c
Block Characteristics

 A property-specific type is used to designate parts or value properties that are
further specialized for localized use within an internal block diagram. This might
happen, for example, when one or more properties of a part have different dis-
tributions than in the original of their type. The property-specific type implicitly

bdd [Package] Structure [Camera Variants]

{complete, disjoint}

Location
{complete, disjoint}

Connection

Camera

Wireless Internal Camera Wired External Camera

External CameraWireless Camera Internal CameraWired Camera

 FIGURE 6.38

 Modeling variant confi gurations on a block defi nition diagram.

6.6 Modeling Classifi cation Hierarchies Using Generalization

140 CHAPTER 6 Modeling Structure with Blocks

creates a subclass of the block that types the part property to add the unique
characteristics. The presence of a property-specific type is indicated by including
the type name of a property in brackets. Compartments can be used to depict the
unique features for each part-specific property, such as the value properties for
the different motors ’ weights in the following example.

 Figure 6.39 shows a small fragment of a particular model of surveillance cam-
era, the SC Model 1 A, that specializes Camera. In the SC Model 1 A, the generic
Stepper Motor Module used in the Mount Assembly (ma) of Camera has been
replaced by a specifi c motor module containing the Maxon EC10 . To do this
replacement, rather than specifi cally create a block that represents this variant
of Mount Assembly, a property-specifi c type is used. Signifi cant properties of the
Maxon EC10 are shown in the values compartments of the parts.

 6.6.5 Modeling Block Confi gurations as Specialized Blocks
 A block configuration describes a specific structure and specific property val-
ues intended to represent a unique instance of a block in some known context.
For example, a block configuration may be used to identify a particular aircraft in
an airline company’s fleet by its call sign and to provide other characteristics spe-
cific to that aircraft. In that example, the call sign is intended to consistently iden-
tify the same aircraft even though the values of other properties may change over
time. Block configurations can also be used to identify the state of some entity at
a given point in time. Extending the example of the aircraft, it might be important
for an air-traffic control simulation to describe a snapshot of an aircraft’s position,
velocity, fuel load, and so on at certain critical analysis stages.

 It is important to note that because a block confi guration can only describe a
fi nite set of features and values, there may be many actual instances in the physi-
cal domain that match that description. It is up to the modeler to ensure that the
context is understood and that any ambiguity does not compromise the value of
the model. Typically the block contains a value property whose value can be used

ibd [Block] SC Model 1A [Specific Motors]

ma : [Mount Assembly]

elevation motor : Maxon EC10 azimuth motor : Maxon EC10

weight : g � 13{redefines weight}
power : W � 8{redefines power}
torque : mNm � 1.72{redefines torque}

values
weight : g � 13{redefines weight}
power : W � 8{redefines power}
torque : mNm � 1.72{redefines torque}

values

 FIGURE 6.39

 Property-specifi c types.

141

to identify a single instance within the context. For example, a car number plate
may be unique within a given country but not over all countries.

 Modeling a Confi guration on a Block Defi nition Diagram
 A block configuration is constructed using the generalization relationship des-
cribed earlier. The configuration becomes a subclass of the block for which it is
a configuration. There is no specific notation for designating a unique configura-
tion. However, a block is often defined with a property that represents a unique
identifier such as the vehicle identification number that can be used when mod-
eling configurations. Often it is useful to introduce a generalization set for block
configurations to distinguish them from other specializations of that block.

 A useful characteristic of the SysML property concept is the ability to state
that a property in a subclass may subset one or more properties in one of its
superclasses. This means that the set of instances or values of the subsetting prop-
erty are also in the set of instances or values for a subsetted property. Whereas a
redefi ning property replaces the redefi ned property in the subclass, a subsetting
property sits alongside its subsetted property and holds a subset of its values and
instances.

 Where a property has an upper bound of greater than 1, subsetting can be
used to explicitly identify one of the set of instances held by the property in
order to defi ne its specifi c characteristics. Subsetting is shown in braces after the
name string of the subsetting property using the keyword subsets followed by
the names of the subsetted properties.

 Two confi gurations of the company’s popular 4-Camera Surveillance System
are shown in Figure 6.40 . The values for location in each case give the addresses
of the installations. It is intended that within the context of the ACME business, the
specifi c values for location are enough to uniquely identify the instance of one of
their surveillance systems. The company also offers an optional service package
and the service level provides details of the level of service offered. Business Gold
includes hourly visits by a security agent outside offi ce hours. Household 24/7
ensures a response to any alert within 30 minutes, 24 hours and 7 days a week.

 The 4-Camera Surveillance System specializes Surveillance System and redefi nes
its camera’s part property with a new property, also called cameras. The new prop-
erty has a multiplicity of 4 that restricts the upper number of instances held by cam-
eras to 4 from the original upper bound of “*,” and also raises the lower bound to 4.

 To describe specifi c confi gurations, AJM Enterprises System and Jones House-
hold System specialize the 4-Camera Surveillance System and redefi ne or subset
some of its properties. Two value properties, location and service level, are rede-
fi ned in order to provide specifi c values for them. The camera ’s part property is
subsetted by part properties that represent individual cameras in the confi gura-
tion. In AJM Enterprises, the new parts are called front, reception, store room,
and computer room , based on their location within the company’s building.

 The set of confi gurations of the 4-Camera Surveillance System is grouped by
a generalization set called Confi guration. Confi guration is disjoint because each
subclass is intended to describe a separate instance, and is incomplete because
there may be other instances of the superclass than just these.

6.6 Modeling Classifi cation Hierarchies Using Generalization

1
4

2

AJM Enterprises System

{incomplete, disjoint}
Configuration

bdd [Package] Logical [System Instances]

parts
reception : Wireless Internal Camera{subsets cameras}
front : Wired External Camera{subsets cameras}
store room : Wireless Internal Camera{subsets cameras}
computer room : Wireless Internal Camera{subsets cameras}

values
location : String � "Suite A, AJM House, NY"{redefines location}
sevice level : String � "Business Gold"{redefines service level}

Jones Household System

parts
front door : Wired External Camera{subsets cameras}
rear door : Wired External Camera{subsets cameras}
pool : Wired External Camera{subsets cameras}
garage : Wired External Camera{subsets cameras}

values
location : String � "200 Oak Ave, Newark, NJ"{redefines location}
service level : String � "Household 24/7"{redefines service level}

Surveillance System

parts
: Monitoring Station
cameras : Camera [1..*]
: UI

values
location : String
service level : String

parts
cameras : Camera [4]{redefines cameras}

4-Camera Surveillance System

 FIGURE 6.40

 Modeling an instance of a block on a block defi nition diagram.

143

 Modeling Confi guration Details on an Internal Block Diagram
 When a block has been used to describe a configuration, the internal block dia-
gram for that block can be used to capture the specific internal structural (e.g.,
precise multiplicities and connections) and values unique to configuration prop-
erties. In particular, this should include the value of a property that uniquely
identifies the entities in the configuration (e.g., name, serial number, call sign).
A unique design configuration, such as a configuration with a specific serial number,
can be created by defining an identification property for each part in the block that
corresponds to the unique identification of the enclosing block.

 Given that AJM Enterprises System is a subclass of 4-Camera Surveillance
System, it has four cameras. Figure 6.41 identifi es a number of camera variants,
including the Wireless Internal Camera and Wired External Camera, used here
to satisfy the installation requirements. The camera id property of each camera
provides a unique identifi er for the cameras in the system and the four cameras
have their own values, also stenciled on the casing of the camera. The confi gura-
tion also describes the position and fi eld of regard (pan and tilt) of each camera
to facilitate coverage analysis as part of a security viewpoint.

 6.6.6 Classifi cation and Behavioral Features
 Just as the properties of blocks can be organized into classification hierarchies,
the behavioral features of blocks can be treated in a similar fashion. A summary

camera I/O:
Camera Interface

store room:
Wireless Internal Camera

reception:
Wireless Internal Camera

front:
Wired External Camera

camera I/O:
Camera Interface

camera I/O:
Camera Interface

camera I/O:
Camera Interface

: Monitoring Station

station I/O:
Camera Interface

initialValues
camera id � "AJMWL3"
position � "(1.5,2.5,2.3)"
pan field of regard � "180"
tilt field of regard � "80"

initialValues
camera id � "AJMWL2"
position � "(1.6,2.2,2.0)"
tilt field of regard � "90"
pan field of regard � "90"

initialValues
camera id � "AJMIWI1"
position � "(1.5,2.1,2.5)"
tilt field of regard � "90"
pan field of regard � "270"

initialValues
camera id � "AJMWL1"
position � "(1.2,1.0,3.0)"
tilt field of regard � "75"
pan field of regard � "180"

computer room:
Wireless Internal Camera

ibd [Block] AJM Enterprises System [Configuration]

 FIGURE 6.41

 Showing the confi guration of a block instance on an internal block diagram.

6.6 Modeling Classifi cation Hierarchies Using Generalization

144 CHAPTER 6 Modeling Structure with Blocks

description of the classification of behavioral features and corresponding behav-
iors is included here; however, more complete discussions are beyond the scope
of this book and can be found in many object-oriented design books.

 General services are described at an abstract level (as operations or recep-
tions) in the classifi cation hierarchy and more specifi c services are described in
more specialized blocks. As with structural features, the behavioral features of
superclasses may be redefi ned in subclasses to modify their signature.

 Interfaces can also be classifi ed and their behavioral features specialized in the
same fashion as blocks. When a block realizes an interface, it must support the
behavioral features of not just that interface but also all its superclasses.

 The response of a block to a request for a behavioral feature may also be spe-
cialized. Although a behavioral feature is defi ned in a general block, the method
for that feature in a given specialization of the block may be different. In software
engineering, this phenomenon is called polymorphism—from the Greek “ many
forms ” —because the response to a request for a given behavioral feature may be
different depending on the method that actually handles the request.

 In object-oriented programming languages, polymorphism is handled by a dis-
patching mechanism. If a behavior sends a request to a target object, it knows
what the type (e.g., block) of the target object is and that it can support the
request. However, due to specialization, the target object may validly be a subclass
of the type that the requester knew about, and that subclass may implement a dif-
ferent response to the request. The dispatching mechanism can “look behind the
scenes” and make sure the method of the appropriate type is invoked to handle
the request.

 6.7 Summary
 SysML structure is primarily represented on block definition diagrams and internal
block diagrams. The following are key concepts related to modeling structure.

 ■ The block is the fundamental unit of structure in SysML and is represented
on both the block definition diagram and the internal block diagram. Blocks
describe types of entities defined by their features. A block provides the descrip-
tion for a set of uniquely identified instances that all have the features defined
by the block. A block definition diagram is used to define a block, its character-
istics, and its relationship to other blocks. An internal block diagram is used to
describe internal details of a block.

 ■ Blocks have a number of structural and behavioral features that comprise its
definition. Properties describe its structural aspects in terms of its relationship
to other blocks and quantifiable characteristics. Ports describe a block’s inter-
face as a set of interaction points on its boundary. Behavioral features specify
the behaviors that may be invoked by requests for service.

 ■ A part property is used to describe the hierarchical composition (sometimes
called whole–part relationships) of block hierarchies. Using this terminology, the

145

owner of the property is the whole and the type of the part property is the part.
Any given instance of the block that types a part property may only exist as part
of one instance of a whole. Composite associations are used to express the rela-
tionship of the part to the whole; in particular, whether blocks of the part type
always exist in the context of an instance of the whole or may exist in isolation.

 ■ Reference properties are used to describe other relationships between blocks.
A reference property does not imply any exclusive relationship between related
instances, but does allow blocks to keep references to others.

 ■ Value properties represent quantifiable characteristics of a block such as its phys-
ical and performance characteristics. Value properties are typed by value types.
A value type provides a reusable description of some quantity and may include
units and dimensions that further characterize the quantity. A value property may
have an initial value and has extensions for capturing probability distributions.

 ■ SysML has two different types of ports: a flow port and a standard port. The flow
port specifies what can flow in or out of a block and the standard port specifies
what behavioral features are required or provided by the block.

 ■ A block can have two types of behavioral features, operations and receptions.
Operations describe synchronous interactions where the requester waits for
the request to be handled; receptions describe asynchronous behaviors where
the requester continues immediately. Behavioral features may be related to
methods, which are the behaviors that handle requests for the features. Requests
for behavioral features may also be handled directly by the main behavior, typi-
cally an activity or state machine, as described in Chapters 8 and 10.

 ■ The concepts of classification and generalization sets describe how to create
classification hierarchies of blocks and other classifiers such as value types and
flow specifications. Classifiers specialize other classifiers in order to reuse their
features and add new features of their own. Generalization sets group the sub-
classes of a given superclass according to how they partition the instances of
their superclass. Subclasses may overlap, which means that a given instance can
be described by more than one, or not. Subclasses may have complete coverage
of the superclass, which means that all instances are described by one of the
subclasses in the set, or not.

 ■ Blocks can be used to describe configurations, where the features of the block
are defined in enough detail to identify a specific instance of the block in the
real world of the system.

 6.8 Questions
 1. What is the diagram kind of a block defi nition diagram, and which model

elements can it represent?
 2. What is the diagram kind of an internal block diagram, and which model

elements can it represent?

6.8 Questions

146 CHAPTER 6 Modeling Structure with Blocks

 3. How is a block represented on a block defi nition diagram?
 4. Name the three categories of block properties.
 5. Which type of property is used to describe composition relationships between

blocks?
 6. What is the commonly used term for properties with a lower multiplicity

bound of 0..1?
 7. What is the default interpretation of the multiplicity for both ends of an

association when it is not shown on the diagram?
 8. Draw a block defi nition diagram, using composite associations, for blocks

 “ Boat, ”“ Car, ” and “Engine” showing that a “ Car ” must have one “Engine, ” and a
 “ Boat ” may have between one and two “Engines.”

 9. Give two situations in which the use of role names for the part end of a com-
posite association should be considered.

 10. How are parts shown on an internal block diagram?
 11. What does the presence of a connector between two parts imply?
 12. Draw an internal block diagram for the “ Boat ” from Question 8, but with an

additional part “ p ” of type “ Propeller. ” Add a connector between the “Engine”
part (using its role name from Question 8 if you provided one) and “ p, ” bear-
ing in mind that one “ Propeller ” can be driven by only one “ Engine. ”

 13. What are the two graphical mechanisms that can be used to represent prop-
erties nested more than one level deep on an internal block diagram?

 14. What is the major difference between parts and references?
 15. What is the difference in representation between the symbol for composite

association and reference association on a block defi nition diagram?
 16. What is an association block?
 17. How are the quantitative characteristics of blocks described?
 18. What are the three categories of value types?
 19. Apart from the defi nition of a valid set of values, what can value types

describe about their values?
 20. A block “ Boat ” is described by its “ length ” and “ width ” in “ Feet ” and a “ weight ”

in “ Tons. ” Draw a block defi nition diagram describing “ Boat, ” with defi nitions
of the appropriate value types, including units and dimensions.

 21. What is a derived property?
 22. How are probability distributions, say an interval distribution, for a property

represented in the values compartment on a block defi nition diagram?
 23. Which SysML concepts can be used to represent items (i.e., things that fl ow)?
 24. What does an item fl ow defi ne?
 25. What does a fl ow port specify?
 26. A block “ Boat ” takes “ fuel ” and “cold water ” as inputs and produces “ exhaust

gases” and “warm water ” as outputs. Show “ Boat ” on a block defi nition dia-
gram with inputs and outputs as atomic fl ow ports. Demonstrate the use of
both port icons and the “ fl ow ports ” compartment.

 27. What is the difference between atomic and nonatomic fl ow ports?
 28. What is the rule for assessing the compatibility of an item fl ow on a connec-

tor between two atomic fl ow ports?
 29. What is a delegation port on a block used for?

147

 30. Name all fi ve types of behavioral specifi cation supported by SysML.
 31. What are the behavioral features of blocks used for?
 32. What is a method?
 33. What is a standard port used to describe?
 34. What do the required interfaces of standard ports specify?
 35. What do the provided interfaces of standard ports specify?
 36. Describe the ball-and-socket representation for the interfaces of ports.
 37. Name four types of classifi er encountered in this chapter.
 38. Name three aspects of a redefi ned property that a redefi ning property can

change.
 39. How is a generalization relationship represented on a block defi nition diagram?
 40. When specifying a generalization set, what is the coverage property used to

defi ne?
 41. How are generalization sets represented on a block defi nition diagram?
 42. Where one property is defi ned to be a subset of another, what is the relation-

ship between the elements of the subsetted property and the elements of the
subsetting property?

 Discussion Topic
 Discuss the benefits of enforcing encapsulation of block structure using the
encapsulated properties.

6.8 Questions

This page intentionally left blank

 This chapter describes SysML support for modeling constraints on the perform-
ance and physical properties of systems and their environment to support a wide
array of engineering analyses.

 7.1 Overview
 A typical design effort includes the need to perform many different types of
engineering analyses to support trade-off studies, sensitivity analysis, and design
optimization. It may include the analysis of performance, reliability, and physical
properties to name a few. SysML supports this type of analysis through the use of
parametric models.

 Parametric models capture the constraints on the properties of the system,
which can then be evaluated by an appropriate analysis tool. The constraints
are expressed as equations whose parameters are bound to the properties of a
system. Each parametric model can capture a particular engineering analysis of
the design. Multiple engineering analyses can then be performed on each design
alternative to support trade-off analysis.

 SysML introduces a constraint block to support the construction of paramet-
ric models. A constraint block is a special kind of block used to defi ne equations
so that they can be reused and interconnected. Constraint blocks have two main
features: a set of parameters and an expression that constrains the parameters.
Constraint blocks follow a similar pattern of defi nition and use that applies to
blocks and parts as described in Chapter 6. A use of a constraint block is called a
constraint property. The defi nition and use of constraint blocks is represented on
a block defi nition diagram and parametric diagram, respectively.

 7.1.1 Defi ning Constraints Using the Block Defi nition Diagram
 Block definition diagrams are used to define constraint blocks in a similar way to
which they are used to define blocks. An example of a block definition diagram
containing constraint blocks is shown in Figure 7.1 .

 Modeling Constraints
with Parametrics 7

CHAPTER

 This fi gure shows three constraint blocks. Joule’s Law and Power Sum are
leaf constraint blocks that each defi ne an equation and its parameters. Power
Distribution is a constraint block composed of Joule’s Law and Power Sum to
build a more complex equation.

 The diagram elements for defi ning constraint blocks in the block defi nition
diagram are shown in the Appendix, Table A.5.

 7.1.2 The Parametric Diagram
 Parametric diagrams are used to create systems of equations that can constrain
the properties of blocks. The parametric diagram header is depicted as follows:

 par [model element type] model element name [diagram name]

 The diagram kind is par, short for parametric diagram. The diagram frame of
a parametric diagram represents either a block or a constraint block. The diagram
name as usual is user defi ned and is intended to emphasize the purpose of the
diagram.

 Figure 7.2 shows a parametric diagram for the constraint block Power
Distribution from Figure 7.1 . The constraint properties ps and pe are usages of

bdd [Package] Power Analysis

«constraint»
Power Sum

parameters
component demands : W [0..*]
total power : W

«constraint»
Joule’s Law

parameters

pe ps

constraints
{power � current*voltage}

constraints
{total power � sum
(component demands)}

current : A
voltage : V
power : W

«constraint»
Power Distribution

parameters

constraints
pe : Joule’s Law
ps : Power Sum

component demands : W [0..*]
current : A
voltage : V

 FIGURE 7.1

 Example block defi nition diagram with constraint blocks.

150 CHAPTER 7 Modeling Constraints with Parametrics

the constraint blocks Power Sum and Joule’s Law, respectively. The parameters of
the constraint properties ps and pe are bound to each other and to the parameters
of Power Distribution, which are shown fl ush with the diagram frame. The dia-
gram elements of the parametric diagram are shown in the Appendix, Table A.10.

 Sections 7.2 through 7.7 describe the defi nition of constraint blocks and their
use in constraining the properties of blocks. Section 7.8 deals with constraining
time-dependent properties. Section 7.9 deals with the application of constraints
to item fl ows. Sections 7.10 and 7.11 deal with more sophisticated analysis sce-
narios, including defi ning an analysis context and the application of parametrics
to trade studies.

 7.2 Using Constraint Expressions to Represent
System Constraints

 SysML includes a generic mechanism for expressing constraints on a system as
text expressions that can be applied to any model element. SysML does not pro-
vide a built-in constraint language because it was expected that different con-
straint languages, such as OCL, Java, or MathML, would be used as appropriate
to the domain. The definition of a constraint can include the language used to
enable the constraint to be evaluated.

 Constraints may be owned by any element that is a namespace, such as a pack-
age or block. If the element that owns the constraint is shown as a symbol with
compartments, such as a block, the constraint can be shown in a special com-
partment labeled constraints. A constraint can also be shown as a note symbol
attached to the model element(s) it constrains, with the text of the constraint

par [Constraint Block] Power Distribution

component demands : W [0..*]

voltage : V

current : A

ps : Power Sum

component demands : W [0..*]

total power : W

pe: Joule’s Law
current : A

power: W

voltage : V

 FIGURE 7.2

 A parametric diagram used to construct systems of equations.

1517.2 Using Constraint Expressions to Represent System Constraints

shown in the body of the note. The constraint language is shown in braces before
the text of the expression, although it may be and often is elided to reduce clutter.

 Figure 7.3 shows examples of the different constraint notations used in SysML
that constrain the properties of a block. Block 1 has an explicit compartment for
the constraint, which in this case is expressed using Java. Block 2 has a constraint
that is shown in an attached note and is expressed in the constraint language of a
specialized analysis tool called MATLAB.

 7.3 Encapsulating Constraints in Constraint Blocks
to Enable Reuse

 SysML also features a constraint block that extends the generic constraint con-
cept. A constraint block encapsulates a constraint to enable it to be defined
once and then used in different contexts, similar to the way parts represent
usages of blocks in different contexts. The equivalent concept to the part is called
a constraint property.

 The constraint expression can be any mathematical expression and may have
an explicit dependency on time, such as a time derivative in a differential equa-
tion. In addition to the constraint expression, a constraint block defi nes a set of
constraint parameters—a special kind of property used in the constraint expres-
sion. Constraint parameters are bound to other parameters and properties of the
blocks where they are used. Constraint parameters do not have direction to des-
ignate them as dependent or independent with respect to the constraint expres-
sion. The interpretation of the dependencies between parameters is based on the
semantics of the language used to specify the constraint expression. So, for exam-
ple, in the C programming language, the expression a � b � c implies that a is
dependent on the value of b and c, whereas the expression a � � b � c does not.

 Like other properties, each parameter has a type that defi nes the set of values
that the parameter can take. Typically parameters are scalars, vectors, or a struc-
tured data type such as complex. Through its type, the parameter can also be
constrained to have a specifi c unit and dimension. Parameters can also support
probability distributions like other properties.

Block 2

values
c : Real [*]
d : Real [*]
e : Real [*]

Block 1

values
a : Integer
b : Integer

{{MATLAB}c � d.*e}

constraints
{{java}a�b*2}

 FIGURE 7.3

 Example of the two notations for showing constraints.

152 CHAPTER 7 Modeling Constraints with Parametrics

 7.3.1 Additional Parameter Characteristics
 Properties have two characteristics that are useful when defining collections; that
is, properties whose multiplicity has an upper bound greater than 1. Modelers can
specify whether the collection is ordered and whether the values in the collec-
tion have to be unique. Ordered in this case simply means that the members of
the collection are mapped to the values of a positive integer: member 1, member 2,
and so on. The means by which the order is to be determined would have to be
specified by a constraint, or using a behavior that builds the collection. These two
characteristics are useful in specifying constraint parameters.

 Another useful characteristic of properties is that they can be marked as derived
(see Derived Properties section in Chapter 6). If a property is marked as derived it
means that its value is derived, typically from the values of other properties’ values.
This characteristic has two obvious uses in specifying parametrics. First, where the
calculation underlying an equation is known to be implemented as a function, a
derived parameter can be used to indicate which value is calculated. An example
of this can be seen in Figure 7.4 . Second, where the modeler wishes to guide the
equation solver, derived properties can indicate which values in a given analysis
need to be solved for. An example of this can be seen later in Figure 7.18 .

 A constraint block is defi ned in a block defi nition diagram as shown in Figure 7.4 .
The diagram header is the same as any other block defi nition diagram specifying
the package or block that owns the constraint block. The name compartment of the
constraint block includes the keyword «constraint» above the name to differenti-
ate it from other elements on a block defi nition diagram. The constraint expres-
sion is defi ned in the constraints compartment of the constraint block and the
constraint parameters are defi ned in the parameters compartment using a string
with the following format:

 parameter name: type[multiplicity]

«constraint»
Real Sum

parameters
operands : Real [*]
sum : Real

constraints

bdd [Package] Constraint Examples [Two Different Constraint Blocks]

{sum �� plus(operands)}

«constraint»
Rate Monotonic Model

parameters

constraints

{U � 2�1}(Σ n
n

i�1
n

Ti

Ci

{size(T) � n & size(C) � n}

T : Real [*] {ordered, unique}
/U : Real
C : Real [*] {ordered}
n : Integer

 FIGURE 7.4

 Two reusable constraint blocks expressed on a block defi nition diagram.

1537.3 Encapsulating Constraints in Constraint Blocks to Enable Reuse

 Indications of ordering and uniqueness appear as keywords in braces after
the multiplicity. The ordering indication is either “ ordered ” or “ unordered ” ; the
uniqueness indication is either “ unique ” or “nonunique. ” In practice, unordered and
nonunique are often indicated by the absence of a keyword. A derived property
is shown with a forward slash (/) before its name.

 Figure 7.4 shows two constraint blocks, Real Sum and Rate Monotonic Model.
Real Sum is a simple reusable constraint where one parameter, sum, equals the
sum of a set of operands, as expressed in the constraint in the constraints compart-
ment. Rate Monotonic Model is also reusable but more specialized; it describes the
equations underlying the rate monotonic analysis approach to scheduling periodic
tasks on a processing resource. T represents the periods of the tasks, C represents
the computation load of the tasks, and U represents the utilization of the process-
ing resource. The constraint language is not shown in either case, but it can be
seen that the constraint for Real Sum is expressed in a “ C ” -like syntax. The utiliza-
tion constraint for Rate Monotonic Model is expressed using a more sophisticated
equation language, which has the capability to be rendered using special symbols.
Both mechanisms are equally acceptable in a SysML constraint block.

 Both T and C are ordered collections, as indicated by the ordered keyword. The
values of T are required to be unique because each task must have a different rate
for the analysis to be correct. Parameter n specifi es the number of tasks and an addi-
tional constraint is used to constrain the size of both T and C to be n. U is always
the dependent variable in the underlying calculation and so is marked as derived.

 7.4 Using Composition to Build Complex
Constraint Blocks

 Modelers can compose complex constraint blocks from existing constraint
blocks on a block definition diagram. In this case, the composite constraint block
describes an equation that binds the equations of its child constraints. This ena-
bles complex equations to be defined by reusing simpler equations.

 The concept of defi nition and usage that was described for blocks in Chapter
6 applies to constraint blocks as well. A block defi nition diagram is used to defi ne
constraint blocks. The parametric diagram represents the usage of constraint blocks
in a particular context. This is analogous to the usage of blocks as parts in an inter-
nal block diagram. The usages of constraint blocks are called constraint properties.

 Composition of constraint blocks is described using composite associations
between constraint blocks. The associations are depicted using the standard asso-
ciation notation introduced in Chapter 6 to represent composition hierarchies. A
constraint block can also list its constraint properties in its constraints compart-
ment using the following syntax:

 constraint property : constraint block[multiplicity]

 Figure 7.5 shows the decomposition of a Power Distribution constraint block
into two other constraint blocks, Joule’s Law and Power Sum. The role names on

154 CHAPTER 7 Modeling Constraints with Parametrics

the component end of the compositions correspond to constraint properties.
Pe is a usage of the Joule’s Law constraint block, which describes the standard
power equation. Ps is a usage of the Power Sum constraint block, which equates
the total power demand to a set of component demands. Power Distribution
uses these equations to relate the demands of a set of components to the required
current and voltage of a power supply.

 The Joule’s Law and Power Sum constraint blocks feature their equations in
their constraints compartments, whereas Power Distribution lists its constituent
constraint properties. Note that, in this example, the constituent constraints of
Power Distribution are represented both in its constraints compartment and as
association symbols. However, typically, in a given diagram, only one form of rep-
resentation is used.

 7.5 Using a Parametric Diagram to Bind Parameters
of Constraint Blocks

 As with blocks and parts, the block definition diagram does not show all the
required information needed to interconnect its constraint properties. Specifically,
it does not show the relationship between the parameters of constraint properties

bdd [Package] Power Analysis

«constraint»
Power Sum

parameters
component demands : W [0..*]
total power : W

«constraint»
Joule’s Law

parameters

pe ps

constraints constraints
{power � current*voltage} {total power � sum

(component demands)}

current : A
voltage : V
power : W

«constraint»
Power Distribution

parameters

constraints
pe : Joule’s Law
ps : Power Sum

component demands : W [0..*]
current : A
voltage : V

 FIGURE 7.5

 A hierarchy of constraints on a block defi nition diagram.

1557.5 Using a Parametric Diagram to Bind Parameters of Constraint Blocks

and the parameters of their parent and siblings. This additional information is pro-
vided on the parametric diagram using binding connectors. Binding connectors
express equality relationships between their two ends.

 Constraint properties show the same parameters as their types. Two constraint
parameters can be bound directly to each other on a parametric diagram using a
binding connector, which indicates that the values of the two bound elements
must be the same. This enables a modeler to connect multiple equations to cre-
ate complex sets of equations where a parameter in one equation is bound to a
parameter in another equation.

 Just as the parameters of a constraint block say nothing about causality, sim-
ilarly binding connectors express an equality relationship between their bound
elements, but say nothing about the causality of the equation network. When
an equation is to be solved, it is assumed that the dependent and independent
variables are identifi ed or deduced, including the specifi cation of initial values.
This is typically addressed by a computational equation solver, which is generally
provided in a separate analysis tool, as discussed in Chapter 17. As stated earlier,
derived parameters or properties can be used to guide equation solvers where
parts of the solution order are known.

 Just as with the internal block diagram, the notation for constraint properties
in a parametric diagram relates back to their defi nition on the block defi nition
diagram as follows:

 ■ A constraint block, or block on a block defi nition diagram that owns con-
straint properties, can be represented as the diagram frame of a parametric
diagram with the constraint block or block name in the diagram header.

 ■ A constraint property, or a constraint block on the component end of the
composite association on the block defi nition diagram, may appear as a con-
straint property symbol within a frame representing the constraint block on
the composition end. The name string of the symbol is composed of the
constraint property name and its type. Where a composite association was
used, the constraint property name corresponds to the role name on the
component end of the association. The type name corresponds to the name
of the constraint block on the component end of the association.

 A simple example of constraint block composition is shown using Figure 7.6 and
Figure 7.7 .

 Figure 7.6 shows a block defi nition diagram with a constraint block K composed from
three other constraint blocks: K1 with three parameters, K1, a, and, b, and the con-
straint { K1 � a ∗ b } ; K2 with three parameters, K2, c, and d, and the constraint { K2 �
c ∗ d } ; and fi nally constraint block K1 ∗ K2 with three parameters, K, K1, and K2, and
constraint {K � K1 ∗ K2 } . K itself has fi ve parameters, K, a, b, c, and d, that will be
bound to parameters of its constituents ’ constraint properties as shown in Figure 7.7 .

 The frame of a parametric diagram corresponds to a constraint block or a block
as described in the next section. If the parametric diagram represents a constraint
block, then any parameters are shown as small rectangles fl ush with the inner
surface of the frame. The name, type, and multiplicity of each parameter are
shown in a textual label fl oating near the parameter symbol.

156 CHAPTER 7 Modeling Constraints with Parametrics

bdd [Package] Parametric Example

parameters
a : Real
b : Real
c : Real
d : Real
K : Real

{K � K1*K2}

K1 : Real
K2 : Real
K : Real

{K1 � a*b}

a : Real
b : Real
K1 : Real

{K2 � c*d}

parametersparametersparameters

c : Real
d : Real
K2 : Real

constraints constraints constraints

eq1 eq2 eq3

«constraint»
K

«constraint»
K1

«constraint»
K2

«constraint»
K1*K2

 FIGURE 7.6

 A block defi nition diagram for a composite constraint block.

par [ConstraintBlock] K

a

b

c

d

K

eq3 : K2
{K2 � c*d}

c

d

K2

eq1 : K1
{K1 � a*b}

a

b K1

{K � K1*K2}

K

K1

K2

eq2 : K1*K2

 FIGURE 7.7

 Binding two equations to each other.

1577.5 Using a Parametric Diagram to Bind Parameters of Constraint Blocks

 On a parametric diagram, a constraint property is shown as a round-cornered
rectangle (round-angle) symbol with the name of the property and its type inside
the box. Either the property name or the type name can be elided if desired. The
constraint equation itself can be elided, but if shown, may appear either inside
the round-angle or attached via a comment symbol to the round-angle. The param-
eters of the constraint property are shown fl ush with the inside surface of the
constraint property symbol.

 A binding connector is depicted as a restricted form of the connector used
on an internal block diagram. It is simply a solid line with no arrows or other
annotations.

 Figure 7.7 shows the corresponding parametric diagram for constraint block K
in Figure 7.6 . As stated earlier, the names in the constraint property symbols are
produced from the component ends of the associations on the block defi nition
diagram. The bindings in this case connect parameters with similar names, which
produces an equation for K that could be simplifi ed as { K � a ∗ b ∗ c ∗ d }.

 It should be noted that although this is just a trivial example it does highlight
an important point. Parametric diagrams can be quite bulky compared to textual
expressions but are useful when constructing more complex equations from reus-
able constraint blocks. This is an artifi cial example to demonstrate the concept of
composing constraint blocks. For an actual model using this simple example, K
would probably be expressed directly with the expression { K � a ∗ b ∗ c ∗ d } and
would have no internal structure.

 Figure 7.8 shows an example from the Surveillance System, where the Power
Distribution composite constraint block, originally introduced in Figure 7.5 , is
depicted as the frame of a parametric diagram.

par [ConstraintBlock] Power Distribution

component demands : W [0..*]

voltage : V

current : A

ps: Power Sum

component demands : W [0..*]

total power : W

pe: Joule’s Law
current : A

power : W

voltage : V

 FIGURE 7.8

 Internal details of the power distribution equation using a parametric diagram.

158 CHAPTER 7 Modeling Constraints with Parametrics

 The diagram shows how the parameters of constraint properties ps, a usage
of Power Sum, and pe, a usage of Joule’s Law, are bound together. The voltage
and current parameters of pe are bound to the voltage and current parameters of
the block Power Distribution (hence shown on the frame boundary). The power
parameter of pe is bound to the total cumulative power of all the powered equip-
ment, calculated by ps, from the set of component demands (also a parameter of
Power Distribution and shown on the frame boundary).

 7.6 Constraining Value Properties of a Block
 The value properties of a block can be constrained using constraint blocks. This
is achieved on a block definition diagram by drawing composite associations
between the block whose values are being constrained and the required con-
straint blocks. In a parametric diagram, the block represents the enclosing frame
and the constraint properties represent usages of the constraint blocks. The
parameters of the constraint properties can be bound to the value properties of
the block using binding connectors. For example, if the equation { F � w ∗ a/g } is
specified as the constraint of a constraint block with parameters F, w, and a, the
weight property of a block that is subject to the force can be bound to parameter
w of a constraint property typed by that constraint block. This enables the equa-
tion to be used to explicitly constrain the properties of interest.

 In a parametric diagram for a block, a value property is depicted as a rect-
angle displaying its name, type, and multiplicity. A nested value property within
a part hierarchy can be shown nested within its containing part symbol or can
be shown using the dot notation that was described in Chapter 6. An example
of binding nested value properties using the part hierarchy notation is shown in
 Figure 7.9 , and an example using the dot notation is shown in Figure 7.10 .

 Figure 7.9 shows the constraints on the power supply for the Mechanical
Power Subsystem described by the internal block diagram in Figure 6.11.
The Power Distribution constraint block is used, via a constraint property
demand equation, to relate the current and voltage of the power source for
the Mechanical Power Subsystem to the load imposed on the power source by
the various motors. An additional constraint block, Collect, is used to collect the
power demand values of all the powered devices into one collection for binding
to the component demands parameter of demand equation.

 7.7 Capturing Values in Block Confi gurations
 To allow an analysis tool to evaluate blocks containing constraint properties, at
least some of the value properties of the block under analysis need to have specific
values defined. Often, these values are provided during analysis using the inter-
face of the analysis tool, but they can be specified using block configurations—
that is, by creating a specialization of the block for a given analysis.

1597.7 Capturing Values in Block Confi gurations

demand equation
: Power Distribution

component demands : W [0..*]

current : A

voltage : V

power source

: Collect

c1:W

c2:W

c3:W

c4:W

c:W[0..*]

iris motor

power : W

focus motor

power : W

altitude motor

power : W

azimuth motor

power : W

voltage : V

current : A

par [Block] Mechanical Power Subsystem [Power Distribution]

 FIGURE 7.9

 Binding constraints to properties on a parametric diagram.

par [Block] Mechanical Power Subsystem with 2W and 0.4W motors [All Values Supplied]

focus motor.power : W � 0.4

iris motor.power : W � 0.4

demand equation
: Power Distribution

: Collect

c1:W

c2:W

c3:W

c4:W

c:W[0.*]

power source.voltage : V � 12

power source.current : A � 0.4

azimuth motor.power : W � 2

altitude motor.power : W � 2

component demands : W [0..*]

current : A

voltage : V

 FIGURE 7.10

 Describing a specifi c analysis confi guration.

160 CHAPTER 7 Modeling Constraints with Parametrics

 Although the block in Figure 7.9 contains all the relationships required to
perform an analysis of the Mechanical Power Subsystem block, the related prop-
erties do not have values, and so no calculation of required power can be per-
formed. Figure 7.10 shows a confi guration of the Mechanical Power Subsystem
block, specifi ed as a specialization of the original block and called Mechanical
Power Subsystem with 2W and 0.4W motors.

 Even though there are no mandatory naming standards for confi gurations it is
often useful to include information about the confi guration, as part of its name.
Note that, in this case, all the values for the related properties are shown and so
the demand equation constraint property simply acts as a check that the values
are consistent. In other analysis scenarios, one or more properties may not have
a value, in which case an equation-solving tool (often a human being) would be
used to rearrange the constraint expression to compute the missing value or val-
ues, or to report an error if a value cannot be determined.

 7.8 Constraining Time-Dependent Properties to Facilitate
Time-Based Analysis

 A value property is often a time-varying property that may be constrained by ordi-
nary differential equations with time derivatives, or other time-dependent equa-
tions. There are two approaches to representing these time-varying properties.
The first, as illustrated in Figure 7.11 , is to treat time as implicit in the expression.
This can help reduce diagram clutter and is often an accurate representation of
the analysis approach with time provided behind the scenes by the analysis tool.

azimuth motor.angular velocity: Radian/s � 0.1

azimuth gimbal. angular position: Radian � 0.01

: Angle Eq
{pos � integral(velocity)}

pos: Radian

velocity: Radian/s

par [Block] Mount Assembly [Azimuth Gimbal Position]

 FIGURE 7.11

 Using a time-dependent constraint.

1617.8 Constraining Time-Dependent Properties

 Figure 7.11 shows the calculation of the angular position, in Radians, of the
azimuth gimbal over time. The equation simply integrates the angular velocity
of the azimuth motor over time to establish the angular position, pos. The initial
values of azimuth gimbal angular position and azimuth motor angular velocity
in this case could be interpreted as initial or constant values depending on the
semantics of the analysis.

 Another approach to the representation of time is to include a separate time
property that explicitly represents time in the constraint equations. The time
property can be expressed as a property of a reference clock with specifi ed units
and dimension. The time-varying parameters in the constraint equations can then
be bound to the time property. Local clock errors, such as clock skew or time
delay, can also be introduced by defi ning a clock with its own time property that
is related to a reference clock through additional constraint equations.

 In Figure 7.11 , time was implicit and initial conditions were defi ned by the
default values of the position and velocity properties. Figure 7.12 shows an exam-
ple of the alternate approach of explicitly showing time, and uses constraints on
values to express conditions at time zero.

 The fi gure shows the standard distance equation bound to the values of an
object under acceleration. The block Accelerating Object contains a reference
to a Reference Clock, whose time property is bound to t, a value property of
Accelerating Object that records passage of time as experienced by the object.
The acceleration a, initial velocity u, and distance traveled s are bound to the
Distance Equation along with time t. An additional constraint, Distance at T0, is
used to specify the initial distance of the object (i.e., at time zero), which in this

par [Block] Accelerating Object [Distance Traveled]

: Distance at T0
{if (t��0) s�0}

s : mt : s

: Distance Equation
{s�u*t�(a*t2)/2}

a : ms�2

s: m

t : s

u : ms�1

: Reference Clock

time : s

u : ms�1 � 0

a : ms�2 � 9.8

s : m

t : s

 FIGURE 7.12

 Explicitly representing time in a parametric diagram.

162 CHAPTER 7 Modeling Constraints with Parametrics

case is 0. The value of property a is specifi ed with an initial value that represents
the constant value of acceleration due to gravity.

 7.9 Using Constraint Blocks to Constrain Item Flows
 A powerful use of constraint blocks is to show how properties associated with
the flow of matter, energy, or information is constrained. To achieve this, item
flows (or more accurately the item properties corresponding to item flows) can
be shown on parametric diagrams and bound to constraint parameters.

 Figure 7.13 shows the amplitudes of the item fl ows shown on the internal
block diagram in Figure 6.30. Detector signal is the item fl ow from the image
detector to the Imaging Electronics, and boosted signal is the item fl ow from the
Imaging Electronics to the boundary of the imaging assembly and therefore to
the electronics assembly. The low-level electrical signal from the image detector
must be amplifi ed before it leaves the camera module to reduce its sensitivity to
noise. The required amplifi cation is specifi ed using a gain equation to constrain
the amplitude of the input and output signals of the Imaging Electronics. The
gain parameter in the gain equation, Gain Eq, is bound to the gain property of
the Imaging Electronics.

par [Block] Imaging Assembly [Signal Gain]

boosted signal : Image

amplitude
: Gain Eq

gain

signal
after

signal
before

detector signal : Image

amplitude

gain � 5.0

: Imaging Electronics

 FIGURE 7.13

 Constraining item fl ows.

1637.10 Describing an Analysis Context

 7.10 Describing an Analysis Context
 A constraint property that constrains the value properties of a block can, as dis-
cussed earlier, be part of a block’s definition and thus shown in its constraint
compartment. This works well when the constrained properties are intrinsically
related in this way in all contexts. What often occurs, however, is that the con-
straints on block properties may vary based either on current context or analysis

requirements. For example, a different fidelity of analysis may be applied to the
same system block depending on the required accuracy of the value of key prop-
erties. This type of scenario requires a more flexible approach where the prop-
erties of the block can be constrained without the constraint being part of the
block’s definition. This approach effectively decouples the constraint equations
from the block whose properties are being constrained, and thus enables the con-
straint equations to be modified without modifying the block whose properties
are being constrained.

 To follow the approach described earlier, a modeler creates an analysis con-
text, which contains both the block whose properties are being analyzed and all
constraint blocks required to perform the analysis. Libraries of constraint blocks
may already exist for a particular analysis domain. These constraint blocks are
often called analysis models and may be very complex and supported by sophis-
ticated tools. The general analysis models in these libraries may not precisely fi t a
given scenario and the analysis context may contain other constraint blocks to
handle transformations between the properties of the block and the parameters
of the analysis model.

 An analysis context is modeled as a block with associations to the block being
analyzed, the chosen analysis model, and any intermediate transformations.
By convention, the block being analyzed is referenced by the analysis context
because it is really part of the system being built, rather than part of the analysis
context. The choice of using a white diamond symbol or a simple association with
no end adornment to represent a reference is arbitrary. Composite associations are
used between the analysis context and the analysis model and any other constraint
blocks, however. An example of an analysis context is shown in Figure 7.14 .

Network Latency

values

«constraint»
Simple Queuing Model

4-Camera Wired
Surveillance System

parts
«constraint»
RealSum4

parameters

«constraint»
Compare

parameters parameters

system
under
analysisanalysis

model
load
computation

satisfaction
check

goal : Real
actual : Real
ok : Boolean

network: Wired Network
camera 1 : Wired Camera {subsets cameras}
camera 2 : Wired Camera {subsets cameras}
camera 3 : Wired Camera {subsets cameras}
camera 4 : Wired Camera {subsets cameras}

o1 : Real
sum : Real
o2 : Real
o3 : Real
o4 : Real

video latency : Mbps
/analysis result : Boolean

bdd [Package] Analysis [Network Latency Analysis]

load : Real
service rate : Real
response time : Real

 FIGURE 7.14

 An analysis context shown on a bdd.

164 CHAPTER 7 Modeling Constraints with Parametrics

 Figure 7.14 shows the analysis of network throughput for a 4-Camera
Wired Surveillance System. The analysis context is called Network Latency,
which references the system under analysis, a 4-Camera Wired Surveillance
System. The analysis context also contains an analysis model, in this case a Simple
Queuing Model, and uses a couple of basic constraints, Real Sum and Compare ,
to perform a load computation and a satisfaction check, respectively. Network
Latency contains two value properties, video latency, specifi ed in Mbps, and anal-
ysis result, which is intended to be a computed value and hence is derived.

 In Figure 7.15 , the bindings needed to perform the analysis are shown. The
parameters of the analysis model are bound to the properties of the block under
analysis. The loads on the system from all four cameras in the system under anal-
ysis are summed to establish the total load using load computation. The network
bandwidth of the system under analysis is used to establish the service rate for
the analysis model. The response time, calculated using the analysis model, is
then compared, using the satisfaction check, to the required video latency, itself
a refi nement of a network throughput requirement, to establish the analysis result
(see Chapter 12 for a discussion of requirements). If the analysis result is true,
then the network satisfi es the requirement.

network.bandwidth : Mbps

camera 1.data rate : Mbps

camera 2.data rate : Mbps

camera 3.data rate : Mbps

camera 4.data rate : Mbps

/analysis result : Boolean

load : Real

response
time : Real

service rate : Real

o1 : Real
sum: Real

offered : Real

ok : Boolean

required : Real
video latency : Mbps

refines
«requirement» Required Network Throughput

system under analysis
: 4-Camera Wired

Surveillance System
analysis model

: Simple Queuing Model

load computation
: RealSum4

satisfaction check
: Compare

o2 : Real

o3 : Real

o4 : Real

par [Block] Network Latency

 FIGURE 7.15

 Binding values in an analysis context.

1657.10 Describing an Analysis Context

 7.11 Modeling Evaluation of Alternatives
and Trade Studies

 A common use of constraint blocks is to support “trade studies. ” A trade study
is used to compare a number of alternative solutions to see whether they satisfy
a particular requirement. Each solution is characterized by a set of measures of
effectiveness (often abbreviated “moes”) that have a calculated value or value
distributions. The moes for a given solution are then evaluated using an objective
function (often called a cost function or utility function), and the results for each
alternative are compared to select a preferred solution.

 Annex C of the SysML specifi cation introduces some concepts to support
the modeling of trade studies. A moe is a special type of property. An objective
function is a special type of constraint block that expresses an objective function
whose parameters can be bound to a set of moes using a parametric diagram. A
set of solutions to a problem may be specifi ed as a set of blocks that each special-
ize a general block. The general block defi nes all the moes that are considered rel-
evant to evaluating the alternatives, and the specialized blocks provide different
values or value distributions for the moes.

 A moe is indicated by the keyword «moe» in a property string for a block
property. An objective function is indicated by the keyword «objectiveFunction»
on a constraint block or constraint property.

 Figure 7.16 shows two variants of a Camera intended to provide a solution to
operate in low-light conditions. These variants are shown using specialization, as
described in Chapter 6, and are called Camera with Light and Low-Light Camera.

bdd [Package] Night Performance [Measures of Effectiveness]

Low-Light CameraCamera with Light

Camera

values values

values

«moe»power consumption : W � 20
«moe»environmental friendliness : Integer � 4
«moe»lightlevel : lux � 0.01
«moe»weight : kg � 0.3

«moe»power consumption : W � 10
«moe»environmental friendliness : Integer � 10
«moe»lightlevel : lux � 0.25
«moe»weight : kg � 0.2

«moe»power consumption : W
«moe»environmental friendliness : Integer
«moe»light level : lux
«moe»weight : kg

 FIGURE 7.16

 Two variants of a camera for handling low-light conditions.

166 CHAPTER 7 Modeling Constraints with Parametrics

Four relevant measures of effectiveness, indicated by the keyword «moe», are
used to conduct the trade studies.

 A trade study is typically described as a type of analysis context, which ref-
erences the blocks that represent the different alternatives. It also contains con-
straint properties for the objective function (or functions) to be used to evaluate
the alternatives, and a means to record the results of the evaluation, typically
value properties that capture the score for each alternative.

 Figure 7.17 shows the defi nition of Night Performance Trade-off—a trade
study for evaluating the nighttime performance of two camera variants. As indi-
cated by its associations, Night Performance Trade-off contains two constraint
properties, both typed by objective function NP Cost Function and two reference
properties, one typed by Low-Light Camera and the other by Camera with Light .
It is intended in the analysis that the equations are solved for option 1 and option
2 and so they are shown as derived. The bindings between the various properties
of Night Performance Trade-off are shown in Figure 7.18 .

 Figure 7.18 shows the internal bindings of the trade-off study Night
Performance Trade-off. One use of the objective function NP Cost Function, cf1,
is bound to the value properties of the Low-Light Camera, and the other, cf2, is
bound to the Camera with Light. The score parameters of cf1 and cf2 are bound
to two value properties of the context called option 1 and option 2, which are
the dependent variables in this particular analysis. In this case, using the values
provided in Figure 7.16 for the measures of effectiveness of the two solutions, the
scores are 400 for option 1 and 450 for option 2, indicating that the Low-Light
Camera is the preferred solution.

parameters

Night Performance Trade-off

values
/option1 : Real
/option2 : Real

Low-Light Camera Camera with Light

cf2cf1

«objectiveFunction»
NP Cost Function

weight : kg{unit � Kilogram, dimension � Mass}
power : W{unit � Watt, dimension � Power}
level : lux{unit � Lux, dimension � Illuminance}
ef : Integer
score : Real

bdd [Package] Night Performance [Night Performance Trade-off]

 FIGURE 7.17

 A trade study represented as an analysis context.

1677.11 Modeling Evaluation of Alternatives and Trade Studies

 7.12 Summary
 Constraint blocks are used to model constraints on the properties of blocks to
support engineering analyses, such as performance, reliability, and mass proper-
ties analysis. The following are key aspects of constraint blocks and their usages.

■ SysML includes the concept of a constraint that can correspond to any math-
ematical or logical expression, including time-varying expressions and differ-
ential equations. SysML does not specify a constraint language but enables the
language to be specified as part of the definition of the constraint.

■ SysML provides the ability to encapsulate a constraint in a constraint block so
that it can be reused and bound with other constraints to represent complex sets
of equations. A constraint block defines a set of parameters related to each other
by the constraint expression. Parameters may have types, units, dimensions, and
probability distributions. The block definition diagram is used to define constraint

par [Block] Night Performance Trade-off

: Camera with Light

«objectiveFunction»
cf1 : NP Cost Function

ef : Integer

level : lux

power : W

weight : kg

score : Real
/option 1 : Real � 400

«moe»
power consumption : W � 20

«moe»
environmental friendliness : Integer � 4

«moe»
light level : lux � 0.01

«moe»
weight : kg � 0.3

: Low-Light Camera

«objectiveFunction»
cf2 : NP Cost Function

ef : Integer

level : lux

power : W

weight : kg

score : Real
/option 2 : Real � 450

«moe»
power consumption : W � 10

«moe»
environmental friendliness : Integer � 10

«moe»
light level : lux � 0.25

«moe»
weight : kg � 0.2

 FIGURE 7.18

 Trade-off results between the two low-light camera variants.

168 CHAPTER 7 Modeling Constraints with Parametrics

blocks and their interrelationships. In particular, a composite association can
be used to compose constraint blocks to create complex equations. Constraint
blocks can be defined in model libraries to facilitate specific types of analysis
(performance, mass properties, thermal, etc.). Constraint blocks can be used by
blocks to constrain the values of their properties.

■ Constraint properties are usages of constraint blocks. The parametric diagram
shows how constraint properties bind to one another and to the value properties
of blocks through their parameters. They are bound using binding connectors
that express equality between the values of the parameters or properties at their
ends. The specific values needed to support the evaluation of the constraints for
a block are typically specified by a configuration of that block.

■ An analysis context is a block that provides the context for a system or compo-
nent that is subject to analysis. The analysis context is composed of the con-
straint blocks that correspond to the analysis model and references the system
being analyzed. A parametric diagram, whose frame represents the analysis con-
text, is used to bind the relevant properties of the block and the parameters of
the analysis model. The analysis context can be passed to an engineering analy-
sis tool to perform the computational analysis, and the analytic results can be
provided back as properties of the analysis context.

■ A common and useful form of analysis used by systems engineers is the trade
study, which is used to compare alternative solutions for a given problem based
on some criteria. A moe (short for measure of effectiveness) is used to define a
property that needs to be evaluated in a trade study and a specialization of con-
straint block, called an objective function, is used to define how the solutions
are evaluated.

 7.13 Questions
 1. What is the diagram kind of a parametric diagram?
 2. If a constraint parameter is ordered, what does that imply about its values?
 3. If a constraint parameter is unique, what does that imply about its values?
 4. How are constraint parameters represented on a block defi nition diagram?
 5. How is the composition of constraints represented on a block defi nition

diagram?
 6. How are constraint properties represented on a parametric diagram?
 7. How are constraint parameters represented on a parametric diagram?
 8. What are the semantics of a binding connector?
 9. How can constraint blocks be used to constrain the value properties of blocks?

 10. A block “Gas” has two value properties, “pressure ” and “volume, ” that vary
inversely with respect to each other. Create an appropriate constraint block
to represent the relationship and use it in a parametric diagram for “Gas” to
constrain “pressure ” and “volume. ”

 11. What are the two approaches to specifying parametric models that include
time-varying properties?

1697.13 Questions

170 CHAPTER 7 Modeling Constraints with Parametrics

 12. How are composite associations and reference associations typically used in
an analysis context?

 13. What is a measure of effectiveness and what is it used for?
 14. What is an objective function and how is it represented on a block defi nition

diagram and a parametric diagram?

 Discussion Topics
 Under what circumstances is it useful or necessary to use derived properties or
parameters in parametric models?

 What are the relative merits of making parametric equations part of the definition
of blocks, or applying an externally defined parametric model to an existing block?

 This chapter describes concepts needed to model behavior in terms of the flow
of inputs, outputs, and control using an activity diagram. An activity diagram is
similar to a traditional functional flow diagram with many additional features to
precisely specify a behavior.

 8.1 Overview
 In SysML, an activity is a formalism for describing behavior that specifies the
transformation of inputs to outputs through a controlled sequence of actions. The
activity diagram is the primary representation for modeling flow-based behavior
and is analogous to the functional flow diagram that has been widely used for mod-
eling systems. Activities provide enhanced capabilities over traditional functional
flow diagrams, such as the inherent capability to express their relationship to
the structural aspects of the system (e.g., blocks, parts), and the ability to model
continuous flow behaviors. The semantics of activities are precise enough to ena-
ble them to be mapped to executable constructs in an execution environment.
However, the mapping itself has not been standardized as of this time, although
there are current efforts under way to do this.

 Actions are the building blocks of activities and describe how activities exe-
cute. Each action can accept inputs and produce outputs, called tokens, on their
pins. These tokens can correspond to anything that fl ows such as information or a
physical item (e.g., water). Although actions are the leaf or atomic level of activity
behavior, a certain class of actions, termed call actions, can invoke other activities
that can be further decomposed into other actions. In this way, call actions can be
used to compose activities into activity hierarchies.

 The concept of object fl ow specifi es how the input and output items trans-
formed by an activity fl ow between its constituent actions. Object fl ows can con-
nect the output pin of one action to the input pin of another action to enable the
passage of tokens. Flows can be discrete or continuous, where continuous fl ow
represents the situation when the time between tokens is effectively zero. Complex
routing of object tokens between actions can be specifi ed by control nodes.

 Modeling Flow-Based
Behavior with Activities 8

CHAPTER

172 CHAPTER 8 Modeling Flow-Based Behavior with Activities

 The concept of control fl ow provides additional constraints on when, and in
which order, the actions within an activity will execute. A control token on an
incoming control fl ow enables an action to start execution, and a control token
is offered on an outgoing control fl ow when an action completes its execution.
When a control fl ow connects one action to another, the action at the target end
of the control fl ow cannot start until the source action has completed. Control
nodes, such as join, fork, decision, merge, initial, and fi nal nodes, can be used to
control the routing of control tokens to further specify the sequence of actions.

 The sending and receiving of signals is one mechanism for communicating
between activities executing in the context of different blocks, and for handling
events such as timeouts. Signals are sometimes used as an external control input
to initiate an action within an activity that has already started. Activities also
include more advanced modeling concepts, such as extensions to fl ow semantics
to deal with interrupts, fl ow rates, and probabilities.

 Activities can depict behavior without explicit reference to which elements
are responsible for performing the behavior. Alternatively, activities can depict
behavior performed by specifi c blocks or parts, such as a system or its compo-
nents. SysML provides several mechanisms to relate activities to the blocks that
perform them. Activity partitions allow the modeler to partition actions in an
activity according to the blocks that have responsibility for executing them.

 An activity may be specifi ed as the main behavior of a block that describes
how inputs and outputs of the block are processed. The activity can also be
specifi ed as the method for an operation of the block that is invoked as a result
of a service request for that operation. When the behavior of a block is speci-
fi ed using a state machine, activities are often used to describe what happens
when the state machine transitions between states, or what happens when in
a state.

 Other traditional systems engineering functional representations are also sup-
ported in SysML. Activities can be represented on block defi nition diagrams to
show activity hierarchies similar to functional hierarchies. Activity diagrams can
also be used to represent Enhanced Functional Flow Block Diagrams (EFFBDs).

 8.2 The Activity Diagram
 The principal diagram used to describe activities is called an activity diagram .
On an activity diagram, the frame represents an activity, and the content of the
diagram defines the actions along with the flow of input/output and control. The
frame label for an activity diagram has the following form:

 act [Activity] activity name [diagram name]

 The diagram kind for an activity diagram is designated as act (for activity).
The frame always represents an activity, and therefore may be elided. The activ-
ity name is the name of the represented activity, and the diagram name is user
defi ned and is intended to describe the purpose of the diagram. Figure 8.1 shows
an example activity diagram.

1
7

3

FIGURE 8.1

 An example activity diagram.

act Generate Video Outputs [Routing Flows]

composite out : Composite
{stream}

input signal : Video
{stream}

MPEG output : MPEG4
{stream}

a4:Convert to Composite

video in
composite
out

test signal

a2:Process Frame

processed
frames

raw
frames

a3:Encode MPEG

MPEG out

video ina1:Produce Test Signal

174 CHAPTER 8 Modeling Flow-Based Behavior with Activities

 Figure 8.1 shows an activity diagram for the activity Generate Video Outputs
and some of the basic activity diagram symbols. Generate Video Outputs includes
call actions that invoke other activities, such as the action a2 that invokes the
Process Frame activity. Actions have input and output pins, shown as small rect-
angles, to accept tokens that may represent units of information, matter, or energy.
Pins are connected using object fl ows. Actions can also be connected with con-
trol fl ows although none are shown in this fi gure. The notation for activity dia-
grams is shown in the Appendix, Tables A.11 through A.14.

 Figure 8.2 shows an example of an activity hierarchy that can be represented
on a block defi nition diagram. The activity hierarchy includes an alternative view
of the actions and invoked activities included in the activity Generate Video
Outputs shown in Figure 8.1 ; however, it does not include the fl ows between the
actions and other activity constructs such as control nodes. The structure of the
hierarchy is shown using composite associations from the parent activity to other
activities such as Process Frame. The role names on the associations, such as a2,
correspond to the names of the actions used to invoke the activities. The notation
required to show activity hierarchies on block defi nition diagrams is described in
the Appendix, Table A.7.

 8.3 Actions—The Foundation of Activities
 As described previously, an activity decomposes into a set of actions that describe
how the activity executes and transforms its inputs to outputs. There are a number
of different categories of action in SysML described during this chapter, but this sec-
tion provides a summary of the fundamental behavior of all actions. SysML activities
are based on token-flow semantics related to Petri-Nets [31, 32]. Tokens corre-
spond to values of inputs, outputs, and control that flow from one action to another.

 An action processes tokens placed on its pins. Tokens on input pins are con-
sumed, processed by the action, and placed on output pins for other actions to

bdd [Package] Behavior [Example of Activity Decomposition]

«activity»
Convert to Composite

«activity»
Generate Video Outputs

«activity»
Produce Test Signal

«activity»
Process Frame

«activity»
Encode MPEG

a2 a3a1a4

 FIGURE 8.2

 An example of an activity hierarchy in a block defi nition diagram.

175

accept. Each pin has a multiplicity that describes the minimum and maximum
number of tokens that the action consumes or produces in any one execution.
A pin acts as a buffer where input and output tokens to an action can be stored
prior to or during execution. If a pin has a minimum multiplicity of zero, then it is
said to be optional, otherwise it is said to be required.

 The action symbol varies depending on the type of action, but typically it is
a rectangle with round corners. The pin symbols are small boxes fl ush with the
outside surface of the action symbol and may contain arrows indicating whether
the pin is an input or output. Typically once a pin is connected to a fl ow and the
direction becomes obvious, arrow notation is discarded.

 Figure 8.3 shows a typical action, called a1, with a set of input and output
pins. One input pin and one output pin are required; that is, they have a lower
multiplicity bound greater than zero. The other two pins are optional; that is, they
have a lower multiplicity bound of zero. The action also has one incoming con-
trol fl ow and one outgoing control fl ow; see Section 8.6 for a detailed description
of control fl ows. An action will begin execution when tokens are available on all
its required inputs, including its control inputs as described next.

 The following rules summarize the requirements for actions to begin and end:

 ■ The fi rst requirement is that the action’s owning activity must be executing.
 ■ Given that, the basic rules for whether an action can execute are as follows:

 – The number of tokens available at each required input pin is equal to or
greater than its lower multiplicity bound.

– A token is available on each of the action’s incoming control fl ows.
 ■ Once these prerequisites are met, the action will start executing and the

tokens at all its input pins are available for consumption.
 ■ For an action to terminate, the number of tokens it has made available at

each required output pin must be equal to or greater than its lower multi-
plicity bound.

 ■ Once the action has terminated, the tokens at all its output pins are avail-
able to other actions connected to those pins. In addition, a control token is
placed on each outgoing control fl ow.

 ■ Regardless of whether an action is currently executing or not, it is termi-
nated when its owning activity terminates.

optional output [0..*]

required input [1] required output [1..*]

optional input [0..1]

a1

 FIGURE 8.3

 An action with input and output pins and input and output control fl ow.

8.3 Actions—The Foundation of Activities

176 CHAPTER 8 Modeling Flow-Based Behavior with Activities

 The preceding paragraphs describe the basic semantics of actions, but the follow-
ing additional semantics are discussed later in this chapter:

 ■ Different types of actions perform different functions, and some, particularly
the call actions discussed in Section 8.4.2, introduce additional semantics
such as streaming.

 ■ Object and control tokens are routed using control nodes that can buffer,
copy, and remove tokens. For more information, see Section 8.5 for object
fl ow and Section 8.6 for control fl ow. SysML allows control tokens to dis-
able as well as enable actions, but actions need control pins to support this,
as described in Section 8.6.2.

 ■ SysML also includes continuous fl ows that are addressed in Section 8.8.2.
 ■ Actions can be contained inside an interruptible region, which when inter-

rupted will cause its constituent actions to terminate immediately. Interruptible
regions are described in Section 8.8.1.

 The relationship between the semantics of blocks and activities is discussed in
Section 8.9.

 8.4 The Basics of Modeling Activities
 Activities provide the context in which actions execute. Activities are used, and
more important reused, through call actions. Call actions allow the composition
of activities into arbitrarily deep hierarchies that allows an activity model to scale
from descriptions of simple functions through to very complex algorithms and
processes.

 8.4.1 Specifying Input and Output Parameters for an Activity
 An activity may have multiple inputs and multiple outputs called parameters .
Note that these parameters are not the same as the constraint parameters
described in Chapter 7. Each parameter may have a type such as a value type or
block. Value types range from simple integers to complex vectors and may have
corresponding units and dimensions. Parameters can also be typed by a block that
may correspond to a structural entity such as water flow or an automobile part
flowing through an assembly line. Parameters have a direction that may be in or
out or both.

 Parameters also have a multiplicity that indicates how many tokens for this
parameter can be consumed as input or produced as output by each execution of
the activity. The lower bound of the multiplicity indicates the minimum number
of tokens that must be consumed or produced by each execution. As with pins, if
the lower bound is greater than zero, then the parameter is said to be required;
otherwise, it is said to be optional. The upper bound of the multiplicity speci-
fi es the maximum number of tokens that may be consumed or produced by each
execution of the activity.

177

 Activity parameters are represented on an activity diagram using activity
parameter nodes. During execution an activity parameter node holds tokens
that represent the arguments of its corresponding parameter. An activity param-
eter node is related to exactly one of the activity’s parameters and must have the
same type as its corresponding parameter. If a parameter is marked as inout, then
it needs at least two activity parameter nodes associated with it, one for input and
the other for output.

 A parameter may be designated as streaming or nonstreaming, which affects
the behavior of the corresponding activity parameter node. An activity parame-
ter node for a nonstreaming input parameter may only accept tokens when the
activity fi rst starts executing, and the activity parameter node for a nonstreaming
output parameter can only provide tokens once the activity has fi nished execut-
ing. This contrasts with a streaming parameter, where the corresponding activ-
ity parameter node can continue to accept streaming input tokens or produce
streaming output tokens throughout the activity execution. Streaming parameters
add signifi cant fl exibility for representing certain types of behavior. Parameters have
a number of other characteristics described later in this chapter.

 Activity parameter node symbols are rectangles that straddle the activity frame
boundary. Each symbol contains a name string, composed of the node name,
parameter type, and parameter multiplicity, thus:

 parameter name: parameter type[multiplicity]

 If no multiplicity is shown, then the multiplicity “1..1” is assumed. The node’s name
is typically the same as the name of its related parameter. An optional parameter
is shown by the keyword «optional» above the name string in the activity para-
meter node. Conversely, the absence of the keyword «optional» indicates that the
parameter is required.

 There is no specifi c graphical notation to indicate the direction of an activity
parameter node, although the direction can be shown using property notation.
Some methodologies suggest that input parameters are shown on the left of the
activity and outputs on the right. Once activity parameter nodes have been con-
nected by fl ows to nodes inside the activity, the parameter direction is explicit.

 Additional characteristics of the parameter, such as its direction and whether
it is streaming, are shown in braces either inside the parameter node symbol after
the name string or fl oating close to the symbol.

 Figure 8.4 shows the inputs and outputs of the Operate Camera activity that is
the main behavior of the camera. As can be seen from the notation in the param-
eter nodes, Light from the camera’s environment is available as input using the
current image parameter and two types of video signal are produced as outputs
using the composite out and MPEG output parameters. The input parameter,
confi g , is used to provide confi guration data to the camera when it starts up.

 The activity consumes and produces a stream of inputs and outputs as it exe-
cutes, as indicated by the {stream } annotation on the main parameter nodes. The
other parameter, confi g, is not streaming because it has a single value that is read
when the activity starts. As stated earlier, when the multiplicity is not shown, for
instance, on parameter confi g, this indicates a lower bound and upper bound of

8.4 The Basics of Modeling Activities

178 CHAPTER 8 Modeling Flow-Based Behavior with Activities

one. The other parameters are streaming and there is no requirement to consume
or produce tokens, so they are shown as «optional».

 8.4.2 Composing Activities Using Call Behavior Actions
 A significant type of action is a call behavior action, which invokes a behavior
when it executes. The call behavior action owns a set of pins that must match, in
number and type, the parameters of the invoked behavior. The called behavior is
assumed to be an activity in this chapter, although it can be other types of SysML
behavior.

 A call behavior action has a pin for each parameter of the called behavior and
the characteristics of those pins must match the multiplicity and type of their cor-
responding parameters on the invoked behavior. If an activity parameter on the
invoked activity is streaming, then the corresponding pin on the call behavior
action has streaming semantics. As stated earlier, tokens on normal or nonstream-
ing pins, such as those shown in Figure 8.3 , can only be available to the action for
processing at the start of (in the case of input pins) or at the end of (in the case
of output pins) the action execution. By comparison, tokens continue to be avail-
able through streaming pins while their owning action is executing, although the
number of tokens consumed or produced by each execution is still governed by
its upper and lower multiplicity bounds.

 The call behavior action symbol is a round-cornered box containing a name
string, with the name of the action and the name of the called behavior (e.g.,
activity), separated by a colon as follows: action name : behavior name. The default
notation is to include only the action name and not the colon. When the action is
shown but is not named, the colon is included to differentiate this notation from
the default.

 Different naming philosophies exist for call behavior actions. Names are
almost always used to differentiate two calls to the same activity. They are also
often used to provide a name for an action used in an allocation (see Chapter 13
on allocations for more detail).

act Operate Camera [Activity Frame]

«optional»
composite out : Composite[0..1]

{stream, direction � out}

«optional»
MPEG output : MPEG4[0..1]

{stream, direction � out}

«optional»
current image : Light[0..1]

{stream, direction � in}

config : Configuration Data
{direction � in}

 FIGURE 8.4

 Specifying an activity using a frame on an activity diagram.

179

 The name string of a pin on a call behavior action has the same form as the
name string for an activity parameter node symbol, but fl oats outside the pin
symbol. The name may include characteristics, such as streaming, of the corre-
sponding parameter. A rake symbol in the bottom right corner of a call behavior
action symbol indicates that the activity being invoked is described on another
diagram.

 To transform light into video signals, the Operate Camera activity invokes
other activities that perform various subtasks using call behavior actions, as shown
in Figure 8.5 . The action name strings take the form “: Activity Name, ” indicating
that actions do not have names. This fi gure shows just activity parameter nodes
and actions with their inputs and outputs. Figure 8.6 shows how their input and
output pins are connected. Note that the types of the pins have been elided here
to reduce clutter.

 All the invoked activities consume and produce streams of input and output
tokens, as indicated by the {stream } annotation on the pins of the actions. Collect
Images is an analog process performed by the camera lens. Capture Video is
where the images from the outside world are digitized to a form of video output.
Generate Video Outputs takes the internal video stream and produces MPEG and
composite outputs for transmission to the camera’s users.

 8.5 Using Object Flows to Describe the Flow
of Items between Actions

 Object flows are used to route input/output tokens that may represent informa-
tion and/or physical items between object nodes. Activity parameter nodes and
pins are two examples of object nodes. Object flows can be used to route items
from the parameters nodes on the boundary of an activity to/from the pins on
its constituent actions, or to connect pins directly to other pins. In all cases, the
direction of the object flow must be compatible with the direction of the object
nodes at its ends (i.e., in or out), and the types of the object nodes on both ends
of the object flow must be compatible with each other.

 An object fl ow is shown as a line connecting the source of the fl ow to the des-
tination of the fl ow, with an arrowhead at the destination. When an object fl ow is
between two pins that have the same characteristics, an alternative notation can
be used where the pin symbols on the actions at both ends of the object fl ow are
elided and replaced by a single rectangular symbol called an object node sym-
bol. In this case, the object fl ow connects the source action to the object node
with an arrowhead on the object node end, and then connects the object node to
the destination action, with an arrowhead at the destination end. The object node
symbol can have the same annotations as a pin symbol.

 In Figure 8.6 , the subactivities of Operate Camera shown in Figure 8.5 are
now interconnected by object fl ows to establish the fl ow from light entering the
camera to the output of video images in the two required formats. The incoming
light on the parameter called current image fl ows to the Collect Images activity;
its output, captured image, is the input to Capture Video (note the use of the

8.5 Using Object Flows to Describe the Flow of Items between Actions

1
8

0

«optional»
current image :

Light[0..1]
{stream, direction � in}

: Generate
Video Outputs

: Capture Video: Collect Images
«optional»
ext image
{stream}

«optional»
composite out :
Composite[0..1]

{stream, direction � out}

«optional»
MPEG output :
MPEG4[0..1]

{stream, direction � out}

«optional»
captured
image
{stream}

«optional»
video out
{stream}

«optional»
MPEG
output
{stream}

«optional»
composite
out {stream}

«optional»
input signal

{stream}

«optional»
captured

image
{stream}

act Operate Camera [Invocation Actions]

 FIGURE 8.5

 Invocation actions on an activity diagram.

1
8

1

act Operate Camera [Object Flows]

: Generate
Video Outputs

: Collect Images
«optional»

ext image {stream}

: Capture Video

«optional»
video out

«optional»
composite
out {stream}

«optional»
composite out

{stream}

«optional»
MPEG output

{stream}

«optional»
input signal

{stream}

«optional»
captured image

{stream}

«optional»
current image

{stream}

«optional»
MPEG output
{stream}

 FIGURE 8.6

 Connecting pins and parameters using object fl ows.

182 CHAPTER 8 Modeling Flow-Based Behavior with Activities

 “ object node ” notation). Capture Video produces video images, via its video out
pin, which in turn becomes the input for Generate Video Outputs. Generate Video
Outputs converts its input video signal into MPEG and composite outputs that are
then routed to corresponding output parameter nodes of Operate Camera.

 In Figure 8.6 , the names of the actions have been elided, which is indicated by
the absence of a colon in the name string of the action symbols. See Figure 8.8
later for an example where the actions are named.

 8.5.1 Routing Object Flows
 There are many situations where simply connecting object nodes using object
flows does not allow an adequate description of the flow of tokens through the
activity. SysML provides a number of mechanisms for more sophisticated expres-
sions of flow control. Each object flow may have a guard expression that specifies
a rule to govern which tokens are valid for the object flow.

 In addition, there are several constructs in SysML activities that provide more
sophisticated fl ow mechanisms, including:

■ A fork node has one input flow and more than one output flow—it replicates
every input token it receives onto each of its output flows. The tokens on each
output flow may be handled independently and concurrently. Note that the
tokens merely represent the items flowing, and the replication of tokens does not
imply that the represented items are replicated. In particular, if the represented
item is physical, replication of that physical object may not even be possible.

■ A join node has one output flow and more than one input flow—its default
behavior for object flows is to produce output tokens only when an input token
is available on each input flow. Once this occurs, it places all input object tokens
on the output flow. This has the important characteristic of synchronizing the
flow of tokens from many sources. Note that this applies to object flow, but the
handling of control tokens is different, as described in Section 8.6.

 The default behavior of join nodes can be overridden by providing a join
specification that specifies a logical expression for matching token arrival on
different flows.

 Figure 8.7 shows an example of a join specification. The join node has three
input flows— flow 1, flow 2, and flow 3—and the join specification states that
output tokens are produced if input tokens are received on both flow 1 and
flow 2, or on both flow 2 and flow 3. The expression uses the names of flows,
so the flows must be named in this situation. Another use of flow names is to
support flow allo cation (see Chapter 13).

■ A decision node has one input and more than one output flow—an input token
can only traverse one output flow. The output flow is typically established by
placing mutually exclusive guards on all outgoing flows and offering the token
to the flow whose guard expression is satisfied. The guard expression “ else ”
can be used on one of the node’s outgoing flows to ensure that there is always
one flow that can accept a token. If more than one outgoing object flow can

183

accept the token, then it cannot be determined which of the flows will receive
the token.

 A decision node can have an accompanying decision input behavior that is
used to evaluate each incoming object token and whose result can be used in
guard expressions.

■ A merge node has one output and more than one input flow—it routes each input
token received on any input flow to its output flow. Unlike a join node, a merge
node does not require tokens on all its input flows before offering them on its
output flow. Rather, it offers tokens on its output flow as soon as it receives them.

 Fork and join symbols are shown as solid bars, typically aligned either horizon-
tally or vertically. Decision and merge symbols are shown as diamonds. Where
forks and joins, or decisions and merges, are adjacent (i.e., would be connected by
just a flow with no guards), they can be shown as a single symbol with the inputs
and outputs of both connected to that symbol. Figure 8.12 , later in the chapter,
contains an example of this. Join specifications and decision input behaviors are
shown in notes attached to the relevant node.

 In Figure 8.8 , the activity Generate Video Outputs accepts an input video sig-
nal and outputs it in appropriate formats for external use, in this case, Composite
video and MPEG4. The Produce Test Signal activity allows Generate Video Outputs
to generate a test signal if desired. See the specifi cation of Produce Test Signal
later in Figure 8.14 to see how the activity knows when to generate the signal.
The test signal, when generated, is merged into the stream of video frames using
a merge node, and this merged stream is then converted into video frames by Process
Frame. Note that if tokens are produced on both the input signal parameter node
and the test signal pin, then they will be interleaved into the raw frames pin by the
merge node. In this case that is the desired behavior, but if not, then additional con-
trol would be needed to ensure that incoming token streams were exclusive.

 Once processed, the tokens representing the processed frames are then forked
and offered to two separate actions: Convert to Composite that produces the
composite out output and Encode MPEG that produces the MPEG output. These
two actions can continue in parallel, each consuming tokens representing frames
and performing a suitable translation. Note that the fork node does not imply that

flow 2

flow 3

flow 1

«joinSpecification»
{(flow 1 & flow 2) | (flow 2 & flow 3)}

 FIGURE 8.7

 Example of a join specifi cation.

8.5 Using Object Flows to Describe the Flow of Items between Actions

1
8

4

act Generate Video Outputs [Routing Flows]

composite out : Composite
{stream}

input signal : Video
{stream}

MPEG output : MPEG4
{stream}

a4:Convert to Composite

video in
{stream} composite

out {stream}

test signal
{stream}

a2:Process Frame

processed
frames
{stream}

raw
frames

{stream}

a3:Encode MPEG

MPEG out
{stream}

video in
{stream}a1:Produce Test Signal

 FIGURE 8.8

 Routing object fl ows between invocations.

185

the frame data are copied (although they may be), but merely that both Encode
MPEG and Convert to Composite have access to the data via their input tokens.

 In this example, the name strings of the call behavior actions include both the
action name and activity name, when arguably the actions need not be named.
This helps to demonstrate the mapping from activities on this activity diagram to
the same activities represented on the block defi nition diagram in Figure 8.25 in
Section 8.10.1 .

 8.5.2 Routing Object Flows from Parameter Sets
 The parameters of an activity can be grouped together into parameter sets,
where a parameter set must have either all input or all output parameters as
members. When an activity that has input parameter sets is invoked, the param-
eter nodes corresponding to at most one input parameter set can contain tokens.
When an activity that has output parameter sets has completed, the parameter
nodes corresponding to at most one output parameter set can contain tokens.
A given parameter may be a member of multiple parameter sets.

 Each set of parameters is shown by a rectangle, on the outer boundary of
the activity, that partially encloses the set of parameter nodes that correspond
to parameters in the set. These rectangles can overlap to refl ect the overlapping
membership of parameter sets.

 Figure 8.9 shows an activity called Request Camera Status with two dis-
tinct sets of outputs. When presented with a camera number as input, Request
Camera Status will return an error and a diagnostic if there is a problem with
the camera, or a power status and current mode if the camera is operational.

 If an invoked activity has parameter sets, then the groupings of pins corre-
sponding to the different parameter sets are shown on the call behavior action,
using similar notation to parameter sets on activities.

 Figure 8.10 shows the object fl ow for an activity Handle Status Request that
reads a camera id and writes a camera status. It invokes Request Camera Status
with a camera number and expects one of two sets of outputs that correspond

act [Activity] Request Camera Status

camera number

diagnostic

error

current mode

power status

 FIGURE 8.9

 An activity with parameter sets.

8.5 Using Object Flows to Describe the Flow of Items between Actions

186 CHAPTER 8 Modeling Flow-Based Behavior with Activities

to two parameter sets: an error and a diagnostic, or a power status and current
mode. These two sets of outputs are used by two different string-formatting func-
tions, Create Error String and Create Status String. Whichever formatting function
receives inputs produces an output string that is then conveyed via a merge node
to the camera status output parameter node.

 8.5.3 Buffers and Data Stores
 Pins and activity parameter nodes are the two most common types of object node,
but there are cases where additional constructs are required. A central buffer
node provides a store for object tokens outside of pins and parameter nodes.
Tokens flow into a central buffer node and are stored there until they flow out
again. It is needed when there are multiple producers and consumers of a single-
buffered stream of tokens at the same time; pins and activity parameter nodes
have either a single producer or single consumer.

 Sometimes activities require the same object tokens to be stored for access
by a number of actions during execution. A type of object node called a data
store node can be used for this. Unlike a central buffer node, a data store node
provides a copy of a stored token rather than the original. When an input token
represents an object that is already in the store, it overwrites the previous token.
Data stores can provide tokens when a receiving action is enabled, thus support-
ing the pull semantics of traditional fl ow charts.

 Data store nodes and central buffer nodes only store tokens while their parent
activity is executing. If the values of the tokens need more permanent storage,
then a property should be used. There are primitive actions, described in Section
8.12.1, that can be used to read and write properties.

 Both central buffer nodes and data store nodes are represented by a rectangle
with a name string, with the keywords «centralBuffer» and «datastore» above the
name string. Their names have the same form as pins, except without multiplicity:
buffer or store name : buffer or store type. An example of a central buffer node
is shown in Figure 8.19 in Section 8.8.4 .

act Handle Status Request

: Request Camera Status

error
diagnostic

power status
current mode

camera number
: Create Status

String

status string
power
current status

: Create Error
String error string

error
diagnostic

camera id : Integer
camera

status : String

 FIGURE 8.10

 Invoking an activity with parameters sets.

187

 Figure 8.11 describes the internal behavior of the Capture Video activity. Light
entering the camera lens is focused by the activity Focus Light, which produces an
image that is stored in a data store node called current image. The image stored in
current image is then used by two other activities: Convert Light that samples the
images to create video frames and Adjust Focus that analyzes the current image
for sharpness and provides a focus position to Focus Light. The use of a data store
node here facilitates the transition between the analog nature of the incoming
light from the lens and the digital nature of the video stream. (See Figure 8.17 in
the Flow Rates subsection of 8.8.2 for an enhanced version of this diagram, includ-
ing fl ow rate information.) In this case, the data store may be allocated to the focal
plane array of the camera (see Chapter 13 for a description of allocation).

 The object node called focus position is input to Focus Light, whereas Convert
Light and Adjust Focus receive their input from a data store node. The notation
for the object node representation of fl ows and the representation of buffer
nodes is quite similar, but buffer nodes always have the keyword «datastore» or
«centralBuffer» above their name.

 Sections 8.8.2 and 8.8.3 discuss other mechanisms to specify the fl ow of
tokens through data store and central buffers nodes, as well as other object nodes.

 8.6 Using Control Flows to Specify the Order
of Action Execution

 As mentioned previously, there are control semantics associated with object flow,
such as when an action waits for the minimum required number of tokens on all
input pins before proceeding with its execution. However, sometimes the availabil-
ity of object tokens on required pins is not enough to specify all the execution con-
straints on an action, in which case control flows are available to provide further
control using control tokens. Although object flows have been described first in this
chapter, the design of an activity need not necessarily start with the specification of

act Capture Video

Convert Light

images
{stream}

light in
{stream}

Adjust Focus

light in
{stream}

Focus Light

light in
{stream}

«datastore»
current image

video out : Video
{stream}

focused light
{stream}

captured image : Image
{stream}

focus position
{stream}

 FIGURE 8.11

 Using a data store node to capture incoming light.

8.6 Using Control Flows to Specify the Order of Action Execution

188 CHAPTER 8 Modeling Flow-Based Behavior with Activities

object flows. In traditional flow charts, it is often the control flows that are estab-
lished first and the routing of objects later.

 In addition to any execution prerequisites established by required pins, an
action also cannot start execution until it receives a control token on all input
control fl ows. When an action has completed its execution, it places control
tokens on all outgoing control fl ows. The sequencing of actions can thus be con-
trolled by the fl ow of control tokens between actions using control fl ows.

 An action can have more than one control fl ow input. This has the same
semantics as connecting the action to the outgoing control fl ow of a join with
multiple incoming control fl ows. Similarly, if an action has more than one control
fl ow output, it can be modeled by connecting the action via an outgoing control
fl ow to a fork with multiple control fl ow outputs. As will be seen in Section 8.6.2,
control tokens can be used to disable actions as well as enabling them.

 8.6.1 Depicting Control Logic with Control Nodes
 All the constructs used to route object flows can also be used to route control
flows to represent control logic. A join node has special semantics with respect to
control tokens. Even if it consumes multiple control tokens, it emits only one con-
trol token once its join specification is satisfied. Join nodes can also consume a mix-
ture of control and object tokens, in which case once all the required tokens have
been offered at the join node, all the object tokens are offered on the outgoing flow
along with one control token. In addition to the constructs described in Section
8.5.1, there are some special constructs that provide additional control logic:

 ■ Initial node—when an activity starts executing, a control token is placed on
each initial node in the activity. The token can then trigger the execution of an
action via an outgoing control fl ow. Note that although an initial node can have
multiple outgoing fl ows, a control token will only be placed on one. Typically
guards are used where there are multiple fl ows in order to ensure that only
one is valid, but if this is not the case, then the choice of fl ow is arbitrary.

 ■ Activity fi nal node—when a control or object token reaches an activity fi nal
node during the execution of an activity, the execution terminates.

 ■ Flow fi nal node—control or object tokens received at a fl ow fi nal node are con-
sumed but have no effect on the execution of the enclosing activity. Typically
they are used to terminate a particular sequence of actions without terminating
an activity. This may occur when processing in an activity is proceeding concur-
rently, after a fork node and only one processing route terminates the activity.

 A control flow can be represented either by using a solid line with an arrowhead
at the destination end like an object flow or, to more clearly distinguish it from
object flow, by using a dashed line with an arrowhead at the destination end.

 An initial node symbol is shown as a small solid black circle. The activity fi nal
node symbol is shown as a “ bulls-eye, ” and the fl ow fi nal node symbol is a hollow
circle containing a crosshair symbol, rotated 45° from the horizontal/vertical axis.
Examples of the initial and activity fi nal nodes are shown in Figure 8.12 . Figure
8.20 in Section 8.9.1 contains an example of a fl ow fi nal node.

189

 The console software provides the capability to drive a camera through a pre-
set scan route, as shown in Figure 8.12 . The activity Follow Scan Route will follow
a route, that is a set of positions, for the camera defi ned in terms of pan-and-tilt
angles. It has one input parameter, the route as a fi xed-length stream of positions
with size route size. When started, the activity resets its count property, then iter-
ates over all points in the route—incrementing count for every point—and fi nally
terminates when the guard [count � � route size] is false, indicating that the last
point in the route is reached. The Position Camera activity is invoked for each
position token offered on the route parameter. Control fl ows dictate the order in
which the activity executes.

 Note that in this case there is a combined merge and decision symbol that
accepts two input control fl ows and has two output control fl ows: one leads to
an activity fi nal node and the other leads into another iteration of the algorithm.
The property count is initialized and incremented using actions count � 0 and
count � count � 1; these are opaque actions; that is, their function is expressed in
some language (in this case the C programming language). As with constraints, the
language used to specify the action can be added in braces before the expression.

 8.6.2 Using Control Operators to Enable and Disable Actions
 An action with nonstreaming inputs and outputs typically starts once it has the
prerequisite incoming tokens and terminates execution when it completes the

act Follow Scan Route

{C}count � 0

:Position Camera

position

[count��route
size]

{C}count � count �1

route
{stream}

[else]

 FIGURE 8.12

 Control fl ow in activities.

8.6 Using Control Flows to Specify the Order of Action Execution

190 CHAPTER 8 Modeling Flow-Based Behavior with Activities

production of its outputs. However, particularly if the action is a call action with
streaming inputs and/or outputs, the completion of the action execution may
need to be controlled externally. To achieve this, a value can be sent via a control
flow to the action to enable or disable its invoked activity. SysML provides a spe-
cific control enumeration for this called ControlValue, with values enable and
disable. For an action to receive this control input, it needs to provide a control
pin that can receive it. A control value of enable has the same semantics as the
arrival of a control token, and a control value of disable will terminate the
invoked activity.

 A special behavior called a control operator produces control values via an
output parameter, typed by ControlValue. A control operator can include complex
control logic and can be reused, via a call behavior action, in many different activi-
ties. A control operator is also able to accept a control value on an appropriately
typed input parameter and will treat it as an object token rather than a control
token.

 The control value type could be extended in a profi le (see Chapter 14) to
include other control values in addition to enable and disable. A control operator
could then output these new values. A control value of suspend might, for exam-
ple, not terminate execution of the action like disable. The action would allow
execution to resume where it left off when it received a resume control value.

 The defi nition of a control operator is indicated by the presence of the key-
word controlOperator as the model element type in the diagram label on the
activity diagram frame.

 Figure 8.13 shows a simple control operator, called Convert Bool to Control,
that takes in a Boolean parameter called bool in and, depending on its value,
either outputs an enable or disable value on its control out output parameter.
The values are created using primitive actions, called value specifi cation actions,
whose purpose is to output a specifi ed value. By convention, the input and out-
put pins of these actions are elided. (See Section 8.12.1 for a discussion of primi-
tive actions.) Convert Bool to Control is a generally useful control operator that
can be reused in many situations.

 A control operator is a kind of behavior and so may be invoked using a normal
call behavior action. A call behavior action that invokes a control operator has

control out:
ControlValuebool in : Boolean

«valueSpecification»
enable

«valueSpecification»
disable

[else]

[bool in]

act [controlOperator] Convert Bool to Control

 FIGURE 8.13

 Using a control operator to generate a control value.

191

the keyword «controlOperator» above its name string. A control pin symbol is a
standard pin symbol with the addition of the property name “control ” in braces
fl oating near the pin symbol.

 A test signal, by defi nition, is not always wanted on the video output. A mecha-
nism to inhibit test signal production is shown in Figure 8.14 . The Convert Bool to
Control control operator shown in Figure 8.13 reads a Boolean fl ag, test in, from the
activity Receive Test Messages and uses that to output an enable or disable value on
a control pin called control out. This pin in turn is connected via a control fl ow to
the inhibit pin of the Generate Test Signal activity. Generate Test Signal interprets
this input as a control value because inhibit is a control pin, as indicated by the
annotation “{control }.” When Generate Test Signal is enabled, it reads the time at
2 Hz from the accept time event action (see Section 8.7 for a discussion of time
events). The activity Receive Test Messages is defi ned in Figure 8.23 (see page 204) .

 8.7 Handling Signals and Other Events
 In addition to obtaining inputs and producing outputs using its parameters, an
activity can accept signals using an accept event action for a signal event (com-
monly called an accept signal action) and send signals using a send signal
action. Communication can then be achieved between activities by including a
send signal action in one activity and an accept signal action for a signal event
representing the same signal in another activity. More typically signals are sent
from or received by the instances of the blocks that own and execute the activi-
ties, as described in Section 8.9.2. Communication via signals takes place asyn-
chronously; that is, the sender does not wait for the signal to be accepted by the
receiver before proceeding to other actions.

 An accept signal action can output the received signal on an output pin.
A send signal action has one input pin per attribute of the signal to be sent and one
pin to specify the target for the signal.

test
signal

{stream}

time
signal

{stream}

«controlOperator»
a12:Convert Bool

to Control

test in
{stream}

test value
{stream}

control out
{control}

inhibit {control}

act Produce Test Signal

a13:Receive
Test Messages

test signal : Video

after (0.5)

a11:Generate Test Signal

 FIGURE 8.14

 Using a control operator to control the execution of an activity.

8.7 Handling Signals and Other Events

192 CHAPTER 8 Modeling Flow-Based Behavior with Activities

 The accept event action can accept others kinds of event, including:

 ■ A time event, which corresponds to an expiration of an (implicit) timer. In
this case the action has a single output pin that outputs a token containing
the time of the accepted event occurrence.

 ■ A change event, which corresponds to a certain condition expression (often
involving values of properties) being satisfi ed. In this case there is no out-
put pin, but the action will generate a control token on all outgoing control
fl ows when a change event has been accepted.

 An accept event action with no incoming control flows is enabled as soon as its
owning activity (or owning interruptible region, see Section 8.8.1) starts to exe-
cute. However, unlike other actions, it remains enabled after it has accepted an
event and so is ready to accept others.

 A send signal action is represented by a rectangle with a triangle attached on
one end, and an accept event action is represented by a rectangle with a triangu-
lar section missing from one end. When the event accepted is a time event, the
accept event action may be shown as an hourglass symbol (see Figure 8.14).

 Figure 8.15 shows how MPEG frames get transmitted over the surveillance
camera network. The Transmit MPEG activity fi rst sends a Frame Header signal
to indicate that a frame is to follow. It then executes Send Frame Contents, which
splits the frame into packets and sends them. When Send Frame Contents fi n-
ishes, it outputs a packet count and two signaling actions are performed, a
Frame Footer signal is sent, and then an accept signal action waits for a Frame
Acknowledgment signal. Finally, the Check Transmission activity is invoked once
the Frame Acknowledgment signal has been received, to check the packet count

act Transmit MPEG
MPEG Frame

Frame Acknowledgment

: Send Frame Contents
packet
count

MPEG Frame

: Check Transmission

packets
sent

frame
ack

Frame Header

«datastore»
frame store

[else]
[transmission OK]

Frame Footer

 FIGURE 8.15

 Using signals to communicate between activities.

193

returned with the acknowledgment against the count provided as an output of
Send Frame Contents. If the packet counts match, then transmission is deemed
to have succeeded and the variable [transmission OK] is set to true. This vari-
able is then tested on the outgoing guards of a decision node, and if true, then
the activity terminates; otherwise, the frame is resent, having previously been
stored.

 Note that this description is incomplete because it does not provide a target
object for the send signal actions.

 8.8 Advanced Activity Modeling
 This section addresses several advanced activity modeling concepts.

 8.8.1 Interruptible Regions
 All the action executions within an execution of an activity are terminated when
the activity is terminated. However, there are some circumstances where the mod-
eler wants a subset of the action executions to be terminated but not all.

 An interruptible region can be used to model this situation. An interruptible
region groups a subset of actions within an activity and includes a mechanism
for interrupting execution of those actions, called an interrupting edge, whose
source is a node inside the region and whose destination is a node outside it. Both
control and object fl ows can be designated as interrupting edges. Normal (i.e.,
noninterrupting) fl ows may have a destination outside the region as well; tokens
sent on these fl ows do not interrupt the execution of the region.

 An interruptible region is entered when at least one action within the region
starts to execute. An interruption of an interruptible region occurs whenever a
token is accepted by an interrupting edge that leaves the region. This interrup-
tion causes the termination of all actions executing within the interruptible
region, and execution continues with the activity node or nodes that accepted
the token from the interrupting edge. (It can be more than one node because the
interrupting edge can connect to a fork node.)

 A token on an interrupting edge often results from the reception of a signal by
the activity containing the interruptible region, or its context object, if it has one.
In that case, the signal is received by an accept signal action within the interrupt-
ible region that offers a token on an outgoing interrupting edge to some activity
node outside the region. Because this is a common case, there are special seman-
tics associated with accept event actions contained in interruptible regions. As
long as they have no incoming edges, the accept event action does not start to
execute until the interruptible region is entered, as opposed to the normal case
where the accept event action starts when the enclosing activity starts.

 An interruptible region is notated by drawing a dashed round-cornered box
around a set of activity nodes. An interrupting edge is represented either by a
lightning bolt symbol or by a normal fl ow line with a small lightning bolt annota-
tion fl oating near its middle.

8.8 Advanced Activity Modeling

194 CHAPTER 8 Modeling Flow-Based Behavior with Activities

 Figure 8.16 shows a more complete defi nition of the overall behavior of
the camera, Operate Camera, previously shown in Figure 8.6 . After invoking the
Initialize activity, the camera waits for a S tart Up signal to be received by an
accept signal action before proceeding simultaneously with the primary activi-
ties that the camera performs: Collect Images, Capture Video, and Generate Video
Outputs. These actions are triggered, following the acceptance of the Start Up sig-
nal, using a fork node to copy the single control token emerging from the accept
signal action into control fl ows terminating on each action.

 The actions are enclosed in an interruptible region and continue to execute
until a Shut Down signal is accepted by an accept event action. When a Shut
Down signal has been accepted, an interrupting edge leaves the interruptible
region, all the actions within it terminate, and control transitions to the action
that invokes the Shutdown activity. Once the Shutdown activity has completed,
a control token is sent to an activity fi nal node that terminates Operate Camera .
Note that there are other fl ows leaving the interruptible region, but because they
are not interrupting edges, they do not cause its termination.

 8.8.2 Modeling Flow Rates and Flow Order
 There is a default assumption that tokens flow at the rate dictated by the exe-
cuting actions and that tokens flowing into an object node flow out in the same
order. SysML offers constructs to deal with situations where these assumptions
are not valid.

 Flow Rates
 Any streaming parameter may have a rate attached to it that specifies the expected
rate at which tokens flow into or out of a related pin or parameter node. The
expected rate at which tokens can arrive at or leave a pin or parameter node is
specified by the rate property on a parameter. Note that this is only the statisti-
cally expected rate value. The actual value may vary over time, only averaging out
to the expected value over long periods. Continuous flow is a special case that
indicates that the expected rate of flow is infinite, or conversely the time between
token arrivals is zero. In other words, there are always newly arriving tokens avail-
able at whatever rate the tokens are read.

 When no rate information is displayed, an arbitrary discrete rate is assumed,
which can be explicitly indicated by marking the parameter as discrete. In addi-
tion to parameters, fl ows can be notated as continuous or discrete or with a rate.
When a rate is provided for a fl ow, it specifi es the expected number of objects
and values that traverse the edge per time interval; that is, the expected rate at
which they leave the source node and arrive at the target node. It does not refer
to the rate at which a value changes over time.

 Continuous and discrete rates are indicated by the appearance of the cor-
responding keywords «continuous» and «discrete» above the name string of
the corresponding symbol, or if a specifi c expected rate is required, by the
property pair, rate � rate value, in braces either inside or fl oating alongside the
corresponding symbol.

1
9

5

config :
Configuration Data

input signal
{stream}

: Collect Images

captured
image
{stream}

ext image
{stream}

: Capture Video

Shut Down

: Shutdown

Start Up

: Initialize
config

«optional»
current image :

Light[0..1]
{stream}

act Operate Camera [Interruptible Region]

«optional»
MPEG output :
MPEG4[0..1]

{stream}

«optional»
composite out :
Composite[0..1]

{stream}

: Generate
Video Outputs

composite
out {stream}

captured image
{stream}

video out
{stream}

MPEG
output
{stream}

 FIGURE 8.16

 An interruptible region.

196 CHAPTER 8 Modeling Flow-Based Behavior with Activities

 In Figure 8.17 , the object fl ows associated with light in the Capture Video
activity are continuous. The Focus Light and Adjust Focus actions invoke analog
processes with continuous inputs and outputs, as indicated by the appearance of the
keyword «continuous» on object nodes associated with those actions, including the
current image parameter node. However, the images generated by the Convert Light
action must be produced at a rate of 30 frames per second, as indicated on the video
out parameter node.

 Flow Order
 As described earlier in this chapter, tokens can be queued at pins or other object
nodes as they await processing by the action, subject to a specified upper bound.
Where the upper bound of an object node is greater than one, the modeler can
specify the order in which its tokens are read using the ordering property of
the node that can take values of ordered, First-In/First-Out (FIFO), Last-In/First-Out
(LIFO), or unordered. Where the ordering property is specified as ordered , the
modeler must provide an explicit selection behavior that defines the ordering. This
mechanism can be used to select the token based on some value, such as priority, of
the represented object.

 In the case where an offered token would cause the number of tokens to
exceed the upper bound of the object node, a modeler can choose to overwrite
tokens already there, or to discard the newly arrived tokens.

 The notation for ordering is the name value pair ordering � ordering value,
placed in braces near or inside the object node. If no ordering is shown, then the
default FIFO is assumed. The keyword «overwrite» is used to indicate that a token
arriving at a full node replaces the last token in the queue according to the “ order-
ing ” property for the node. Alternatively, the keyword «noBuffer» can be used to
discard newly arriving tokens that are not immediately processed by the action.

 8.8.3 Modeling Probabilistic Flow
 Where appropriate, a flow can be tagged with a probability to specify the likeli-
hood that a given token will traverse a particular flow among available alternative

Convert Light

images
{stream}

light in
{stream}

Adjust Focus

Focus Light

act Capture Video [with Rate Indication]

«continuous»
current image : Light

{stream}

video out : Video
{rate � "30 per second"}

{stream}

«continuous»
light in

{stream}

«continuous»
focused light
{stream}

«continuous»
focus

«continuous»
light in
{stream}

«datastore»
current image

 FIGURE 8.17

 Use of continuous fl ows and discrete fl ows with rate information.

197

flows. This is typically encountered in flows that emanate from a decision node,
although probabilities can also be specified on multiple edges going out of
the same object node (including pins). Each token can only traverse one edge,
with the specified probability. If probabilistic flows are used, then all alterna-
tive flows must have a probability and the sum of the probabilities of all flows
must be 1.

 Probabilities are shown either on activity fl ow symbols, or parameter set sym-
bols, as a property/value pair, probability � probability value enclosed in braces
fl oating somewhere near the appropriate symbol.

 Figure 8.18 shows the activity diagram for Transmit MPEG, fi rst introduced in
Figure 8.15 . In this example, the probability of successful transmission has been
added. The two fl ows that correspond to successful and unsuccessful transmis-
sion have been labeled with their relative probability of occurrence.

 8.8.4 Modeling Pre- and Postconditions and Input and Output States
 An action is able to execute when all of the prerequisite tokens have been offered
at its inputs, and similarly may terminate when it has offered the postrequisite
tokens on its outputs. However, sometimes additional constraints apply, which are
based on the values of those tokens or conditions currently holding in the execu-
tion environment. These constraints can be expressed using pre- and postcondi-
tions on the actions, and in the case of call actions, on the behaviors they invoke.
In the specific case when an object represented by a token has an associated

act Transmit MPEG [with probabilities]
MPEG Frame

Frame Acknowledgment

: Send Frame Contents

packet count

MPEG Frame

: Check Transmission
packets sent

frame ack

Frame Header

«datastore»
frame store

[else] {probability � "0.01"}
[transmission OK]

{probability � "0.99"}

Frame Footer

 FIGURE 8.18

 Probabilistic fl ow.

8.8 Advanced Activity Modeling

198 CHAPTER 8 Modeling Flow-Based Behavior with Activities

state machine, an object node may explicitly specify the required current state or
states of that object in a state constraint.

 The display of pre- and postconditions depends on whether they are speci-
fi ed against the behavior or the action. Pre- and postconditions on behaviors (in
this case activities) are specifi ed as text strings placed inside the activity frame,
preceded by either the keyword «precondition» or «postcondition». Pre- and post-
conditions on actions are placed in note symbols attached to the action, with the
keyword «localPrecondition» or «localPostcondition» at the top of the note, pre-
ceding the text of the condition.

 A state constraint on an object node is shown by including the state name in
square brackets underneath the name string of the symbol for that object node.
This is equivalent to a local precondition or postcondition on the owning action
requiring the specifi ed state.

 Although ACME Surveillance Systems Inc. does not manufacture the cameras,
they do want to have some say in the production process. Figure 8.19 shows
their preferred process. The optimal path for the production process is through
Assemble Cameras and Package Cameras. However, their experience is that
some assembled cameras do not work properly but can be repaired, at reasonable
cost, and sold as reconditioned.

 The repair process is modeled as the activity Repair Cameras. Some cameras
are unfi xable, but even then the camera can be cannibalized (through activity
Cannibalize Cameras) for spare parts that can be fed back into the assembly pro-
cess. A camera in production progresses through a number of states (see Chapter 10
for a description of state machines) as it moves through production, and different
activities require or provide cameras in specifi c states. Assemble Cameras may
produce cameras faster than they can be packaged or repaired, so they are placed
in a buffer called assembled cameras. From there they either progress directly
to Package Cameras if their state is operational; otherwise, they progress to
Repair Cameras if their state is damaged. Repair Cameras accepts cameras in the
damaged state, and they are either repaired or deemed unfi xable when the activ-
ity has fi nished with them.

 Note that the activity Build Cameras merely models the process of building
cameras, using tokens to represent cameras. In this example, the fl ow of tokens
could mirror quite closely the fl ow of physical cameras through a production sys-
tem; the central buffer node might be allocated to a storage rack, for example.
However, the physical production system may be quite different, and it’s only
when these activities are allocated to physical processing nodes that the physical
meaning of the token fl ow is understood.

 The previous discussion described how the input and output states could be
used to specify preconditions and postconditions, respectively. A constraint on
the input and output relationship can also be specifi ed, in effect by combining
a precondition and postcondition. These constraints might, for example, express
the relationship between the pressure of some incoming gas and the tempera-
ture readings provided by some outgoing electrical signal. Alternatively, this could
be used to express an accuracy or time constraint associated with the action or
activity.

1
9

9

act [Activity] Build Cameras

camera parts cameras

Cannibalize Cameras

parts cameras
[unfixable]

Assemble Cameras

parts cameras

Package Cameras packaged
cameras

operational cameras
[operational]

reclaimed cameras
[repaired]

Repair Cameras

repaired cameras
[repaired]rejected cameras

[unfixable]

«centralBuffer»
assembled
cameras

damaged
cameras

[damaged]

 FIGURE 8.19

 Example of using states on pins.

200 CHAPTER 8 Modeling Flow-Based Behavior with Activities

 8.9 Relating Activities to Blocks and Other Behaviors
 Activities are often specified independently of structure (i.e., blocks), and their
execution semantics do not depend on the presence of blocks. However, as the
system design progresses, the relationship between the behaviors of a system,
expressed in this case using activities, and the structure of a system, expressed
using blocks, does eventually need to be established.

 Different methods approach this in different ways. A classical systems engi-
neering functional decomposition method allocates the functions to components,
as discussed in Chapter 13. Other methods approach this somewhat differently by
establishing a block hierarchy and driving out the scenarios between the blocks.
Examples of these different methods are included in Chapters 15 and 16.

 SysML also has two other mechanisms to relate blocks and activities. The fi rst
is the use of an activity partition to assert that a given block (or part) is respon-
sible for the execution of a set of actions. The second is for a block to own an
activity and use this as a basis for specifying the block’s behavior.

 8.9.1 Linking Behavior to Structure Using Partitions
 A set of activity nodes, and in particular call actions, can be grouped into an
activity partition (also known as a swimlane) that is used to indicate respon-
sibility for execution of those nodes. A typical case is where an activity par-
tition represents a block or a part and indicates that any behaviors invoked
by call actions in that partition are the responsibility of the block or the block
that types the part. The use of partitions to indicate which behaviors are the
responsibilities of which blocks is an important communication mechanism
to specify the functional requirements of a system or component defined by
the block.

 Activity partitions are depicted as rectangular symbols that physically encom-
pass the action symbols and other activity nodes within the partition. Each par-
tition symbol has a header containing the name string of the model element
represented by the partition. In the case of a part or reference, the name string
consists of the part or reference name followed by the type (block) name, sepa-
rated by a colon. In the case of a block, the name string simply consists of the
block’s name. Partitions can be aligned horizontally or vertically to form rows or
columns, or optionally can be represented by a combination of horizontal and
vertical rows to form a grid pattern. An alternative representation for an activity
partition for call actions is to include the name of the partition or partitions in
parentheses inside the node above the action name. This can make the activity
easier to lay out than when using the swimlane notation.

 Figure 8.20 contains an example of partitions taken from the model of an
ACME surveillance system. It shows how new intruder intelligence is analyzed
and dealt with by the security guard and the company security system within
some overall system context. Once the security guard has received new intelli-
gence (signal Intruder Intel), he or she may need to address two concerns in
parallel, so the token representing the signal is forked into two object fl ows. If the

201

intruder has moved, then a Move Joystick action is performed to follow him or
her. If the intruder is deemed to have moved out of range of the current camera,
then a Select Camera activity is performed to select a more appropriate camera.
In both cases, a fl ow fi nal node is used to handle the tokens referencing the signal
data where no action is required.

 The company security system stores the currently selected camera in a data
store node. It uses this information when it reacts to joystick commands by send-
ing Pan Camera and Tilt Camera commands to the selected camera. Security
guard and company security system are parts, as indicated by the name strings in
the partition headers. Partitions themselves can have subpartitions that can repre-
sent further decomposition of the represented element.

 Figure 8.21 shows the process for an Operator (security guard) logging in to
a Surveillance System (company security system). The security guard enters his
or her details that are read by the User Interface, part of the company security
system, and validated by another part, Controller, that then responds appropriately.

act Manual Tracking

Intruder Intel

Issue Camera Commands

tilt commands
{stream}

joystick vector
{stream}

current
camera

{stream}

Pan Camera

Tilt Camera

«datastore»
current camera

new camera joystick command

[else][else]

se
cu

ri
ty

g
u

ar
d

:
A

d
va

n
ce

d
 O

p
er

at
o

r
co

m
p

an
y

se
cu

ri
ty

sy
st

em
:

S
u

rv
ei

lla
n

ce
S

ys
te

m

Move JoystickSelect Camera

Intruder IntelIntruder Intel

[Intruder off camera] [Intruder has moved]

pan commands
{stream}

 FIGURE 8.20

 Activity partitions.

8.9 Relating Activities to Blocks and Other Behaviors

202 CHAPTER 8 Modeling Flow-Based Behavior with Activities

The User Interface and the Controller are represented by nested partitions with
company security system . In this case, the security guard and the company secu-
rity system are themselves shown as nested partitions of a block representing the
context for both the surveillance system and its users.

 An allocate activity partition is a special type of partition that can be used to
perform behavioral allocation, as described in Chapter 13.

 8.9.2 Specifying an Activity in a Block Context
 In SysML, activities can be owned by blocks in which case an instance of the own-
ing block executes the activity. For a block, an activity may either represent the
implementation of some service, which is termed a method, or it may describe the
behavior of the block over its lifetime, which is termed the classifier behavior or
the main behavior. During execution of an activity, an instance of its owning block
provides its execution context. The execution of the activity can access stored
state information for the instance and has access to its queue of requests.

act Log On

Relay
Response

Read
Response

Enter User
Data

Read User
Data

Respond with
Error

Respond OK

Validate

[�3 Failures]

[Details Correct] [Details Incorrect]

[Logon
Successful]

:User Interface

company security system : Surveillance System

:Controller
security guard : Operator

«block»
System Context

[Logon Failed]

 FIGURE 8.21

 Nested activity partitions.

203

 Activities as Block Behaviors
 When an activity serves as a main behavior, parameters of the activity may be
mapped to flow ports on the owning block. The mapped ports must be behav-
ior ports; that is, their inputs and/or outputs must be consumed and/or produced
by the block behavior rather than being delegated to parts of the block. SysML
does not explicitly say how flow ports are matched to parameters because there
are many different approaches, depending on methodology and domain. An obvi-
ous strategy is to match parameters to ports based on at least type and direction,
but where this still results in ambiguity, the names can also be used to confirm a
match. Allocation can also be used to express the mapping.

 Figure 8.22 shows a block called Camera that describes the design for one of
ACME’s surveillance cameras. It has four fl ow ports, three of which allow light to
fl ow into the camera and video to fl ow out in either composite or MPEG4 format.
The fourth allows confi guration data to be passed to the camera. It also has a stan-
dard (client/server) port with a provided interface that supports a set of control
signals used to control the operation of the camera. The block behavior of the
camera is the activity Operate Camera that has appeared in a number of previous
fi gures, most recently Figure 8.16 . In Figure 8.22 , the parameters of the activity
match the fl ow ports of the Camera block in terms of their direction and type

Camera

config : Configuration Data composite out : Composite

mpeg out : MPEG4light in : Light
control

ICameraSignals

act Operate Camera

composite out : Composite
{stream,

direction � out}

current image : Light
{stream,

direction � in}

config : Configuration Data
{direction � in}

MPEG output : MPEG4
{stream,

direction � out}

«interface»
ICameraSignals

«signal»Start Test Signal()
«signal»Stop Test Signal()
«signal»Shutdown()
«signal»Start Up()

receptions

 FIGURE 8.22

 A block with fl ow ports and a block behavior.

8.9 Relating Activities to Blocks and Other Behaviors

204 CHAPTER 8 Modeling Flow-Based Behavior with Activities

but not in all cases their names. However, in this case matching by type and direc-
tion is suffi cient to resolve any ambiguity. The parameters of Operate Camera can
therefore be mapped one to one with the fl ow ports of Camera.

 In Figure 8.22 , there is no direct correspondence between the control port on
Camera and a parameter or parameters on its block behavior Operate Camera .
However, when an activity acts as the block behavior for a block, it can accept sig-
nals received through standard ports on the block. These signals can be accepted
using an accept event action, and then used within the activity.

 Figure 8.23 shows the specifi cation of the activity Receive Test Messages that is
invoked as part of Produce Test Signal, as shown on Figure 8.14 . Once the activ-
ity starts, it simply waits for a Start Test Signal signal using an accept signal action,
then a Stop Test Signal signal, and then repeats the sequence. The accept signal
actions trigger value specifi cation actions via control fl ows that create the right
Boolean value and these values are merged into a test value output. Because
Operate Camera executes Receive Test Messages (albeit several levels deep in
the activity hierarchy), the execution has access to signals received by the owning
context that is, in this case, an instance of Camera. The other two signals recog-
nized by the control port in Figure 8.22 are Shutdown and Start Up, whose use is
shown in Figure 8.16 .

 Activities as Methods
 When used as a method, an activity needs to have the same signature (i.e., same
parameter names, types, multiplicities, and directions) as the associated service
definition, called in SysML a behavioral feature. There are two types of behavio-
ral feature. An operation supports synchronous requests (i.e., the requester waits
for a response) and asynchronous requests (i.e., the requester does not wait for
a response). A reception only supports asynchronous requests. A reception indi-
cates that the object can receive signals of a particular kind, as the result of a

test value:
Boolean

Start Test Signal

Stop Test Signal

«valueSpecification»
true

«valueSpecification»
false

act [Activity] Receive Test Messages

 FIGURE 8.23

 Using signals to control activity fl ow.

205

send signal action (see Section 8.7). A method is invoked when the owning block
instance (object) consumes a request for its associated behavioral feature. The activ-
ity executes until it reaches an activity final node, when the service is deemed to
be handled, and if the request is synchronous, any output arguments are passed
back to the initiator of the request.

 SysML has a specifi c action to invoke methods via operations, called a call
operation action. This has pins matching the parameters of the operation, and
one additional input pin used to represent the target. When the action is exe-
cuted, it sends a request to the target object that handles the request by invoking
the method for the feature, passing it the input arguments, and passing back any
output arguments.

 If an activity invoked as the result of a call operation action has streaming
parameters, then the pins of the call operation action may consume and pro-
duce tokens during execution of the activity. However, in a typical client/server
approach to system design, all parameters are nonstreaming to fi t more easily into
a client/server paradigm.

 Figure 8.24 shows the Surveillance System block with one of its ports, called
status. The status port provides an interface Camera Status that includes an
operation called get camera status as shown, with an input parameter called
camera id and an output parameter called camera status. The activity Handle
Status Request, shown originally in Figure 8.10 , is designated to be the method
of get camera status, so it has the same parameters. A call operation action for
get camera status will result in the invocation of Handle Status Request with
an argument for camera id, and it will expect a response on camera status. A
call operation action for get camera status is shown, with pins corresponding to
the two parameters and also a pin to identify the target; that is, the Surveillance
System to which the request must be sent.

status

Camera
Status

act Handle Status Request

camera id : Integer camera status : String

Method OwnsDefines

«interface»
Camera Status

+get camera status (in camera id : Integer,
... out camera status : String)

operations

Surveillance System

�get camera status (in camera id : Integer,
out camera status : String)

operations

a1:get camera statuscamera
id camera

status

target:
Surveillance
System

Calls

 FIGURE 8.24

 A block with behavioral features and associated methods.

8.9 Relating Activities to Blocks and Other Behaviors

206 CHAPTER 8 Modeling Flow-Based Behavior with Activities

 8.9.3 Relationship between Activities and Other Behaviors
 SysML has a generic concept of behavior that provides a common underlying base
for its three specific behavioral formalisms: activities, state machines, and interac-
tions. This provides flexibility to select the preferred behavioral formalism for the
modeling task. For example, a call behavior action or call operation action in an
activity can be used to invoke any type of behavior. However, the design and anal-
ysis method must further specify the semantics and/or constraints for a call action
to call a state machine or an interaction from an activity since this is not currently
fully specified. We expect future versions of SysML, and perhaps domain-specific
extensions, to provide more precise semantics.

 State machines use the general SysML concept of behavior to describe what
happens when a block is in certain states and when it transitions between states.
In practice, activities are often used to describe these behaviors as follows:

 ■ What happens when a state machine enters a state (called an entry behavior).
 ■ What happens when a state machine exits a state (called an exit behavior).
 ■ What happens while a state machine is in a state (called a do activity).
 ■ What happens when a state machine makes a transition between states

(called a transition effect).

 State machines are discussed in Chapter 10.

 8.10 Modeling Activity Hierarchies Using Block
Defi nition Diagrams

 Activities can be represented as hierarchies in a very similar way to blocks using
a block definition diagram. When represented this way, the activity hierarchies
resemble traditional functional decomposition hierarchies.

 8.10.1 Modeling Activity Invocation Using Composite Associations
 Invocation of activities via call behavior actions is modeled using the standard com-
position association where the calling activity is shown at the black diamond end
and the called activity is at the other end of the association. On a block definition
diagram, activities are shown using a block symbol with the keyword «activity». The
role name is the name of the call behavior action that performs the invocation.

 Figure 8.25 shows the block defi nition diagram equivalent of the activity hier-
archy for Generate Video Outputs, as described in Figures 8.8 and 8.16 . The block
defi nition diagram does not represent the fl ows on the activity diagram but can
include the parameters and object nodes, as shown in Figure 8.26 .

 8.10.2 Modeling Parameter and Other Object Nodes
Using Associations

 Parameters and other object nodes can also be represented on the block defini-
tion diagram. However, by convention, the relationship from activities to object

207

bdd [Package] Behavior [Decomposition of Activity Generate Video Outputs]

«activity»
Generate Video Outputs

«activity»
Convert to Composite

«activity»
Generate Test Signal

«activity»
Produce Test Signal

«controlOperator»
Convert Bool to Control

«activity»
Process Frame

«activity»
Encode MPEG

a2 a3a1

a11a12

a4

«activity»
Receive Test Messages

a13

 FIGURE 8.25

 An activity hierarchy modeled on a block defi nition diagram.

«activity»
Capture Video

«block»
Light

«valueType»
Real

«activity»
Convert Light

«activity»
Adjust Focus

«activity»
Focus Light

«block»
Video

current image

captured image

cv3

focused light

light in

cv1

light in

video out

light in

cv2

images

focus
position

bdd [Package] Behavior [Decomposition of Activity Capture Video]

focus
position

 FIGURE 8.26

 Activity hierarchy with parameters.

8.10 Modeling Activity Hierarchies Using Block Defi nition Diagrams

208 CHAPTER 8 Modeling Flow-Based Behavior with Activities

nodes is represented with a reference association because the tokens contained
within the object nodes are references to entities that are not “ part ” of the exe-
cuting activity, and they are not necessarily destroyed when the execution of the
activity terminates. However, composition can be used when composition seman-
tics between the activity and the referenced objects apply. If the white diamond
notation is used, then the activity is shown at the white diamond end and the
object node type at the other end, and the role name at the part end is the name of
the object node. Properties of the object node may be shown floating near the
corresponding role name.

 Figure 8.26 shows the hierarchy of activities for the Capture Video activ-
ity, originally shown in Figure 8.11 , including its own parameter nodes and the
parameter nodes of its various subactivities. The data store, current image, is also
shown.

 8.11 Enhanced Functional Flow Block Diagram
 The Enhanced Functional Flow Block Diagram (EFFBD) or variants of it have
been widely used in systems engineering to represent behavior. A function in an
EFFBD is analogous to an action in an activity. The EFFBD does not include the
distinction between an invocation action and an activity.

 Most of the functionality of an EFFBD can be represented as a constrained
use of a SysML activity diagram. The constraints are documented in Annex C of
the SysML specifi cation [1]. Using the keyword «effbd» in the diagram header of
an activity indicates that the activity conforms to the EFFBD constraints. These
constraints preclude the use of activity partitions and continuous and streaming
fl ows, as well as many other features within activity diagrams.

 Some EFFBD semantics are not explicitly addressed by the activity diagram.
In particular, a function in an EFFBD can only be executed when all triggering
inputs, the control input, and the specifi ed resources are available to the function.
In addition, a “ resource ” is not an explicit construct in SysML but can be modeled
using constraints. Triggering inputs in EFFBDs correspond to “required inputs ” in
activity diagrams, nontriggering inputs correspond to “optional inputs, ” and con-
trol inputs correspond to control fl ow in activity diagrams. The detailed mapping
between EFFBD and activity diagrams, along with an example of the mapping in
use, is described in Bock [33].

 8.12 Executing Activities
 Models can be used to specify systems, as discussed in Chapter 2. Often these
models are used simply to facilitate communication among project teams; but
sometimes models are intended to be interpreted by machines or computer pro-
grams to simulate the system. This latter category of model is often called an
executable specification because it contains all the information necessary for a
machine to “ execute. ” The construction of executable specifications imposes a

209

burden of completeness on the modeler, but it also requires the modeling formal-
ism (SysML in this case) to have semantics defined precisely enough to allow exe-
cution of the model. This section describes how SysML supports the execution
semantics of activities in the context of existing technologies.

 To execute activities, the details of the processing must be specifi ed, such as
the transformation of property values, using mathematical operations. SysML has
a set of primitive actions that support basic object manipulation such as creation,
deletion, access to properties, object communication, and others; some of them
have already been described in this chapter. This section describes some of the
primitive actions and their intended use.

 SysML further depends on other executable formalisms for its execution
semantics, either to provide an executable defi nition of its own primitives or as
direct expressions of functionality defi ned in so-called “opaque” constructs. These
executable formalisms are normally accompanied by technologies for performing
executions, as discussed in Chapter 17.

 8.12.1 Primitive Actions
 SysML includes a set of actions and a precise, although informal, definition of
them. Some of these actions have been described previously in this chapter:

 ■ Accept event actions respond to events in the environment of the activity.
 ■ Send signal actions support communication between executing behaviors

using messages.
 ■ Call actions allow an activity to trigger the invocation of another behavior

and to provide it with inputs and receive outputs from it.

 In addition, there are a number of actions that have a more localized effect,
such as updating properties and creating or destroying objects. These actions can
be broadly categorized as:

 ■ Object access actions allow properties of blocks and the variables of activi-
ties to be accessed.

 ■ Object update actions allow those same elements to be updated or added to.
 ■ Object manipulation actions allow objects themselves to be created or

destroyed.
 ■ Value actions allow the specifi cation of values.

 Note that the set of actions in SysML does not include fundamental operations
such as mathematical operators. These have to be provided as libraries of opaque
behaviors, or more likely function behaviors, suitable for the domain.

 Primitive actions do have a corresponding notation, although because they are so
low level, it is often a very painstaking job to construct activities from them using
graphical notation. The intention behind their inclusion in SysML is that different
textual notations for specifying processing would be mapped to these primitive
actions and a tool would translate the textual notation to actions. To date there
is no standard textual notation, but Figure 8.27 shows an example of how such a
translation to actions might appear.

8.12 Executing Activities

210 CHAPTER 8 Modeling Flow-Based Behavior with Activities

 Figure 8.27 shows an alternate representation of the expression count �
count � 1 in the algorithm in Figure 8.12 , but using primitive actions instead of
an opaque action. The resulting activity fragment fi rst has to execute a read self
action to obtain a reference to itself so that it can access its own internal struc-
tural features properties. The resulting object is passed to a read structural feature
action that accesses the count property of the executing activity. The value of the
count property is then passed to a call of the Binary Add function behavior. The
other input is provided by a value specifi cation action that outputs the value 1.
The result of Binary Add is then offered to an add structural feature value action
that uses the identity of the activity, obtained from the read self action, to update
its count property. Needless to say, most modelers prefer the short form!

 8.12.2 Executing Continuous Activities
 Where a model is used as a blueprint for a system, it is expected that continu-
ous activities will be implemented by physical devices such as motors, sensors, or
humans. In this case the specification of the activity may be a set of equations, or it
may simply be allocated to some component that is already known to provide the
appropriate behavior.

 However, sometimes it is important to simulate these continuous activities
prior to building the system itself. There are simulation systems that can take
physical equations and use those to construct a simulation of the implied system.
Alternatively, there are other simulation systems that execute discrete activities
at different execution rates, in the expectation that a suffi ciently fast rate will
approximate the continuous behavior to serve the purposes of the modeler.
These technologies impose restrictions on the constructs that can be used in the

«addStructuralFeatureValue»
count

«readStructuralFeature»
count

«valueSpecification»
1 : Binary Add«readSelf»

 FIGURE 8.27

 Example of primitive actions.

211

activity’s defi nition (no token buffering, for example) and have their own special-
ized libraries of functions that need to be integrated into the model.

 Invariably, the use of technologies to simulate continuous activities requires
additional constructs and semantics that have to be provided using a profi le. More
information on profi les can be found in Chapter 14.

 8.13 Summary
 The concepts for flow-based behavior are based on activities, which are repre-
sented on both the activity diagram and the block definition diagram.

■ An activity represents a controlled sequence of actions that transform its inputs
to its outputs. The inputs and outputs of an activity are called parameters.

■ Activities are composed of actions that represent the leaf level of behavior. An
action consumes input tokens and produces output tokens via its pins.

■ Actions are connected by flows. There are two types of flow:

 – Object fl ows route object tokens between the input and output pins of
actions. On occasion, the fl owing tokens may need to be queued or stored
for later processing. The input and output pins on actions can queue tokens
along with specialized nodes capable of storing tokens. Depending on the
domain, fl ows may be identifi ed as continuous, which is particularly useful
for describing physical processes.

 – Control fl ows transfer control from one action to other actions using control
tokens.

■ Where the routing of flows is complex, intermediate constructs called control
nodes, including join, fork, decision, and merge, allow flows to be split and
merged in various ways. There are also specialized control nodes that describe
what happens when an action starts and stops, called the initial node, activity
final node, and flow final node, respectively.

■ Actions come in many different categories from primitive actions, such as updating
variables, to the invocation of entire behaviors.

 – Call actions are an important category of action because they allow one activ-
ity to invoke the execution of another (or in principle any type of behavior).
The pins of call actions correspond to the parameters of the called entity. A call
behavior action allows an activity to include the execution of another activity as
part of its processing. A call operation action allows an activity to make a serv-
ice request on another object that can trigger the execution of some activity to
handle the request. Oper ation calls make use of the dispatching mechanism of
SysML blocks to decouple the caller from knowledge of the invoked behavior.

 – Send signal actions and accept event actions allow the activity to communi-
cate via signals rather than just through its parameters. When the activity is
executing in the content of a block, the activity can accept signals sent either
to the block or sent directly to the activity.

8.13 Summary

212 CHAPTER 8 Modeling Flow-Based Behavior with Activities

■ Activity partitions provide the capability to assign responsibility for actions in
an activity diagram to blocks or parts that the partitions represent.

■ Block definition diagrams are used to describe the hierarchical relationship
between activities, and the relationship of activities to their inputs and outputs.
As such, only a limited form of the block definition diagram is used. The use of
a block definition diagram for this purpose is similar to a traditional functional
hierarchy diagram.

■ Activity diagrams can be used to describe Enhanced Functional Flow Block
Diagrams (EFFBDs), although special constraints on the semantics of activities
must be imposed to ensure compliance with them.

■ Activities may be described as stand-alone behaviors independent of any structure,
but they often exist as the main behavior of a block. Activities within a block often
communicate using signals, accepting signals that arrive at the block boundary
and sending signals to other blocks. The parameters of a main behavior may also
be mapped directly to the flow ports of its parent block. In this case flows to and
from activity parameter nodes are routed directly through the flow ports.

■ An activity can also be used to implement the response to a service request,
where the arguments of the request are mapped to the activity’s parameters.
As described in Chapter 10, activities are often used to describe the processing
that occurs when a block is transitioning between states and what the block
does while in a particular state.

 8.14 Questions
1. What is the diagram kind of the activity diagram?

 2. How are an action and its pins typically represented on an activity diagram?
 3. What does action a1 in Figure 8.3 require to start executing?
 4. How are the parameters of activities shown on activity diagrams?

 5. What is the difference in semantics between a streaming and nonstreaming
parameter?

 6. How are parameters with a lower-multiplicity bound of 0 identifi ed on an
activity diagram?

 7. Draw an activity diagram for an activity “Pump Water, ” which has a stream-
ing input parameter “w in ” typed by block “ Water ” and a streaming output
parameter “ w out, ” also typed by “ Water. ”

 8. How are the set of pins for a call behavior action determined?
 9. What is an object fl ow used for and how is it represented?
 10. How does the behavior of a join node differ from that of a merge node?
 11. How does the behavior of a fork node differ from that of a decision node?
 12. What are parameter sets used for and how are they represented, both in the

defi nition and invocation of an activity?
 13. Figure 8.10 only shows the object fl ows between the call behavior actions.

What else does it need in order to perform as the method for the get camera

213

request in Figure 8.24 ? Draw a revised version of Figure 8.10 with suitable
additions.

 14. What is the difference between a data store node and a central buffer node?
 15. What is the difference in behavior between a fl ow fi nal and an activity fi nal

node?
 16. How is an initial node represented on an activity diagram, and what sort of

fl ows can be connected to it?
 17. What special capability does a control operator have?
 18. An action “pump” invokes the activity “Pump Water ” from Question 7, and

can be enabled and disabled by the output of a control operator. What addi-
tional features does “pump” need in order to enable this?

 19. Another action “controller ” calls a control operator called “Control Pump ”
with a single output parameter of type “Control Value. ” Draw an activity dia-
gram to show how the actions “pump” and “controller ” need to be connected
in order for “controller ” to control the behavior of “pump. ”

 20. Name three kinds of event that can be accepted by an accept event action.
 21. How can an interruptible region be exited?
 22. What does a fl ow rate of “25 per second ” on an activity edge indicate about

the fl ow of tokens along that edge?
 23. How would a modeler indicate that new tokens fl owing into a full object

node should replace tokens that already exist in the object node?
 24. If a call behavior action is placed in an activity partition representing a block,

what does this say about the relationship between the block and the called
behavior?

 25. Name the two different roles that an activity can play when owned by a block.
 26. Describe the four ways in which activities can be used as part of state

machines.

 Discussion Topic
 Discuss the various ways that activities with continuous flows may be executed.

8.14 Questions

This page intentionally left blank

 This chapter discusses the use of sequence diagrams to model how parts of a
block interact by exchanging messages.

 9.1 Overview
 In Chapter 8, behavior was modeled in terms of activity diagrams to represent a
controlled sequence of actions that transform inputs to outputs. In this chapter,
an alternative approach to representing behavior is introduced; it uses sequence
diagrams to represent the interaction between structural elements of a block as
a sequence of message exchanges. The interaction can be between the system
and its environment or between the components of a system at any level of a sys-
tem hierarchy. A message can represent the invocation of a service on a system
component or the sending of a signal.

 This representation of behavior is useful when modeling service-oriented con-
cepts, where one part of a system requests services of another part. A service-
oriented approach can be useful for representing discrete interactions between
software components, where one software component requests a service of another
and where the service is specifi ed as a set of operations. However, the sequence dia-
gram is in no way limited to modeling interactions between software components
and has found broad application in modeling system-level behaviors as well. An
interaction can be written as a specifi cation of how parts of a system should inter-
act, but it can also be used as a record of how the parts of a system did interact.

 The structural elements of a block are represented by lifelines on a sequence
diagram. The sequence diagram describes the interaction between these lifelines
as an ordered series of different types of events that can correspond to the send-
ing and receiving of messages, the creation and destruction of objects, or the start
and end of behavior executions.

 Many of the events described earlier are associated with the exchange of mes-
sages between instances represented by lifelines. There are many different types
of messages, including both synchronous messages where the sender waits for a
response, and asynchronous messages where the sender continues without waiting

 Modeling Message-Based
Behavior with Interactions 9

CHAPTER

216 CHAPTER 9 Modeling Message-Based Behavior with Interactions

for a response. A sending event marks when the message is sent by the sending
instance, and a receiving event marks when the message is received by the receiv-
ing instance. On reception of a message, the receiving instance may start the exe-
cution of a behavior that implements the operation or signal reception referenced
in the message. The receipt of a message may also trigger the creation or destruc-
tion of the instance represented by the receiving lifeline.

 To model more complex event ordering than simple sequences, interactions
can include specialized constructs called combined fragments. A combined frag-
ment has an operator and a set of operands, which themselves may contain inter-
action fragments such as messages or more combined fragments, thus forming a
tree. There are a number of operators that provide different options such as paral-
lel, alternative, and iterative ordering of their operands.

 Interactions themselves can also be composed to handle large scenarios or to
allow reuse of common interaction patterns. An interaction may reference another
interaction to abstract away the detail of some part of the interaction between mul-
tiple lifelines, or to reference an interaction between the parts of a particular lifeline.

 An interaction executes in the context of an instance of its owning block, each
lifeline in the interaction represents a single instance that is part of that instance.
As behaviors execute on these instances, events occur as they send and receive
requests corresponding to operation calls and signals, and also as they start and end
their execution. The sequence of event occurrences for a given scenario of inter-
est, in this case the lifetime of the interaction, is called a trace. A trace is valid if the
event occurrences are consistent with the event ordering defi ned by the interaction.

 9.2 The Sequence Diagram
 A given sequence diagram represents an interaction. The frame label for a
sequence diagram has the following form:

 sd [Interaction] interaction name [diagram name]

 The diagram kind for a sequence diagram is always sd. Sequence diagrams can
only describe interactions, and therefore the model element type (Interaction)
does not need to be shown in the diagram header. The interaction name is the
name of the represented interaction, and the diagram name is user defined and
may be used to describe the purpose of the diagram.

 Figure 9.1 shows a sequence diagram with examples of many of the symbols.
It shows an interaction between an operator and the surveillance system during
the handling of an intruder alert. The notation for the sequence diagram is shown
in detail in the Appendix, Tables A.15 through A.17.

 9.3 The Context for Interactions
 Interactions take place in the context of a block between elements of its internal
structure. Figure 9.2 shows an internal block diagram of the System Context block

217

that contains all the significant participants in the interactions that are included in
the figures in this chapter.

 Figure 9.2 features an internal block diagram of a block called System Context ,
which is the context for a specifi c Surveillance System called company security
system. In addition to the company security system, the context contains other
parts including a Regional HQ, a set of Perimeter Sensors, an Alarm System, and
a security guard, which may correspond to a number of physical actors. The dia-
gram also shows the internal parts of the regional HQ and the company security
system whose behavior is specifi ed in the following interactions. The interaction

sd Handling Alert

opt

alt

company security system : Surveillance Systemsecurity guard[Elvis] : Advanced Operator

Intruder Alert(sensor id)
Raise Alarm()

Lost Track

Cancel Alarm()

Auto Track()

Pan Camera(strength)

Tilt Camera(strength)

Cancel Alert()

Illegal Entry Detected(id � sensor id)

loop par

{automatic mode
required}

{manual mode
required}

{lost contact}

 FIGURE 9.1

 An example sequence diagram.

9.3 The Context for Interactions

218 CHAPTER 9 Modeling Message-Based Behavior with Interactions

lifelines can also represent reference properties, but this does not affect the nota-
tion or the semantics of the interaction. There are no lifelines that represent refer-
ence properties in the examples in this chapter.

 9.4 Using Lifelines to Represent Participants in an Interaction
 The principal structural feature of an interaction is the lifeline. A lifeline repre-
sents the relevant lifetime of a member of the interaction’s owning block, which
will be either a part property or a reference property, as described in Chapter 6.
As explained there, a part can be typed by an actor, which enables actors to par-
ticipate in interactions as well. However, since an actor cannot support opera-
tions, there are restrictions on its use. To avoid this restriction, an actor may
be allocated to a block that is used to type the part. Lifelines can also represent
standard ports, but because ports typically just relay messages they rarely contrib-
ute much to the understanding of an interaction.

 When an interaction executes in an instance of its owning block, each life-
line denotes an instance of some part of the block (see Chapter 6 for a defi nition
of block semantics). Thus, when the lifeline represents a member with multiplic-
ity greater than 1, an additional selector expression can be used to explicitly
identify one instance. Otherwise, the lifeline is taken to represent an arbitrarily
selected instance. The selector expression can take many forms depending on
how instances are identifi ed in this part. For example, it may be an index into an
ordered collection, or a specifi c value of some attribute of the part’s block, or a
more informal statement of identity.

regional HQ : Command Center

: Alarm System

ibd [Block] System Context

alarm controller : Control System

: Emergency Comms System

internal PA : PA System

: Perimeter Sensor [1..*]

security guard : Advanced Operator [1..*]

company security system : Surveillance System

: Monitoring Station

user interface : UI

: Camera [1..*]

 FIGURE 9.2

 Internal block diagram of the interaction context.

219

 A lifeline is shown using a rectangle (the head) with a dashed line descending
from its base (the tail). The rectangle contains the name and type (if applicable) of
the represented member, separated by a colon. The selector expression, if present,
is shown in square brackets after the name. The head may indicate the kind of
model element it represents using a special shape or icon.

 Figure 9.3 shows a simple sequence diagram with a diagram frame and two
lifelines. One represents the Surveillance System under consideration, called com-
pany security system, and the other lifeline represents an Advanced Operator,
called security guard. Because, the security guard from Figure 9.2 has an upper
bound greater than 1, the lifeline also contains a selector called Elvis to specify
exactly which instance is interacting. The security guard is shown with a small
actor icon to indicate that it is a user of the Surveillance System.

 9.4.1 Events and Occurrences
 A lifeline is related to an ordered list of events that describes things that happen
to the instance represented by the lifeline during the interaction. (Actually the
lifeline features occurrence specifications that reference events, but to simplify
the description, we refer to the conflated concept as an event.) During execution
of the interaction, instances of events (called occurrences) are compared to the
events expected on the lifeline.

 Different types of events describe different types of occurrences. Three cat-
egories of events are relevant to interactions:

 ■ The sending and receiving of messages
 ■ The start and completion of execution of actions and behaviors
 ■ Creation and destruction of instances

 Constructs like messages and interaction operators, described later in this
chapter, provide further order and structure to these occurrences. When an inter-
action is executed to validate an ordered set of occurrences in time, called a trace
the order and structure of these events is used to determine whether the trace is
valid.

sd Camera Control [Lifelines]

company security system : Surveillance Systemsecurity guard[Elvis] : Advanced Operator

 FIGURE 9.3

 An interaction with lifelines.

9.4 Using Lifelines to Represent Participants in an Interaction

220 CHAPTER 9 Modeling Message-Based Behavior with Interactions

 9.5 Exchanging Messages between Lifelines
 Messages can be exchanged between lifelines to achieve interactions. A message
can be sent from a lifeline to itself to represent a message that is internal to a part.

 A message often represents an invocation or request for service from the send-
ing lifeline to the receiving lifeline, or the sending of a signal from the sending life-
line to the receiving lifeline. A message is shown on a sequence diagram as a line
with different arrow heads and annotations depending on the type of message.

 Messages are sent by behaviors that are executing on the lifeline, or more pre-
cisely, invocation actions, such as send signal or call operation actions, within
those behaviors. (See Chapter 8 for more information on invocation actions.)
Receipt of a message by a lifeline often triggers the execution of a behavior, but
may simply be accepted by a currently executing behavior. Note that there may
be a delay between a message being received and handled. The execution of
behaviors is shown by solid bars drawn on top of the lifeline tails. When the exe-
cution is nested, the bars may also be nested.

 Although typically messages are used to model information passed between
computer systems and their users, they may also indicate the passage of material or
energy. An interaction in a radar-tracking system might represent the detection of a
target and the response to that detection. In a production system, the request for man-
ufacture of a car and the subsequent delivery of that car to a dealer might be modeled
as an interaction between the dealer and the manufacturer, as shown in Figure 9.4 .

 9.5.1 Synchronous and Asynchronous Messages
 The two basic types of messages are asynchronous and synchronous. A sender
of an asynchronous message continues to execute immediately after sending the
message, whereas a sender of a synchronous message waits until it receives a
reply from the receiver that it has completed its processing of the message before
continuing execution.

 Asynchronous messages correspond to either the sending of a signal or to an
asynchronous invocation (or call) of an operation. A signal is a defi nition of messages
passed asynchronously between objects. Signals are handled by receptions that are

sd Ordering an Automobile

: Manufacturing Plant

Automobile Delivered

Order("GSX")

: Dealer

 FIGURE 9.4

 A simple example of message exchange.

221

part of the defi nition of a block or interface. A synchronous message corresponds
to the synchronous invocation of an operation. In this case, the reply to the
sender is indicated using a separate (optional) message from the receiver back to the
sender. See Chapter 6 for a description of the behavioral features of blocks.

 Call and send messages can include arguments that correspond to the input
parameters of the associated operation or attributes of the associated send signal.
Arguments can be literal values, such as numbers or strings; attributes of the part
represented by the lifeline; or parameters of the currently executing behavior. A
reply message can include arguments that correspond to output parameters or
the return value of the operation called. When an operation returns a value, the
features to which the output parameters and return value is assigned can be indi-
cated. A feature can either be an attribute of the receiving lifeline or a local attri-
bute or parameter of the receiver’s current execution.

 The actual sending of a message implies two occurrences: One is related to a
send message event that happens to the instance corresponding to the send-
ing lifeline; the other is related to a receive message event that happens to the
instance corresponding to the receiving lifeline. As one might expect, the sending
occurrence has to happen before the receiving occurrence.

 Messages are represented by arrows between lifelines. The nonarrow (tail)
end represents the occurrence corresponding to the sending of the message, and
the arrow end represents the occurrence corresponding to the receipt of the
message. The shape of the arrowhead and the line style of the arrow line indicate
the nature of the message as follows:

 ■ An open arrowhead means an asynchronous message. Input arguments asso-
ciated with the message are shown in parentheses, as a comma-separated list,
after the message name. The operation parameter or signal attribute name may
be shown followed by an equal sign before an argument. If this notation is not
used, then all the input arguments must be listed in the appropriate order.

 ■ A closed arrowhead means a synchronous message. The notation for
arguments is the same as for asynchronous messages.

 ■ An open arrowhead on a dashed line shows a reply message. Output argu-
ments associated with the message are shown in parentheses after the mes-
sage name, and the return value, if any, is shown after the argument list. The
feature to which the return value is assigned is shown before the message
name, followed by an equal sign. As with input arguments, output argu-
ments can be preceded by their corresponding parameter followed by an
equal sign. In the rare case that both the parameter name and assigned fea-
ture are required, then the following syntax is used:

feature name � parameter name: argument

 Figure 9.5 shows a sequence of messages exchanged between the two lifelines
introduced in Figure 9.3 . The security guard fi rst selects camera “CCC1” to inter-
act with. After the company security system returns control and stores the guard’s
selection, he gets that camera’s current status, which is “OK. ” The company security

9.5 Exchanging Messages between Lifelines

222 CHAPTER 9 Modeling Message-Based Behavior with Interactions

system obtains the status from the selected camera by issuing a subsidiary get sta-
tus request. The security guard wishes to move the camera a little, so he or she
gives a pan camera order (probably via a joystick), and without waiting for the
camera to complete the move, asks for the status again, which this time is “ Moving. ”

 9.5.2 Lost and Found Messages
 Normally message exchange is deemed complete; that is, it has both a sending
and receiving event. However, it is also possible to describe lost messages, where
there is no receiving event, and found messages, where there is no sending event.
This capability is useful, for example, to model message traffic across an unreli-
able network and to model how message loss affects the interaction.

 The notation for lost messages is an arrow with the tail on a lifeline and the head
attached to a small black circle. The notation for found messages is the reverse—the
tail of the arrow attached to a small black circle and the head attached to a lifeline.
An example can be seen in this book’s Appendix.

 9.5.3 Weak Sequencing
 An interaction imposes the most basic form of order on the messages and occur-
rences that it contains, called weak sequencing. Weak sequencing means that

get current status()

get current status()

pan camera(strength � 2)

select camera(camera id � "CCC1")

get status():"OK"

get status():"Moving"
get current status():"Moving"

get status
(camera id � "CCC1")

get status
(camera id � "CCC1")

get current status():"OK"

sd Camera Control [Simple Sequence]

company security system : Surveillance Systemsecurity guard [Elvis] : Advanced Operator

 FIGURE 9.5

 Synchronous and asynchronous messages exchanged between lifelines.

223

the ordering of occurrences on a lifeline must be followed, but other than the
constraint that message receive occurrences are ordered after message send
occurrences, there is no ordering between occurrences on different lifelines.

 The messages on the sequence diagram in Figure 9.6 impose an order on
send and receive occurrences; for example, A.send happens before A.receive and
B.send happens before B.receive. Lifelines also impose an order on occurrences,
so lifeline 3 states that A.receive happens before B.send. However, nothing is said
about the ordering of B.send and D.send. Note also that it is not the messages
that are sequenced but their send and receive occurrences. For example, B.send
happens before C.send but B.receive happens after C.receive. This phenomenon
is sometimes referred to as message overtaking and is dealt with in more detail
in Section 9.6.

 9.5.4 Executions
 The arrival of a message at a lifeline may trigger the execution of a behavior in
the receiver. In this case the receiving lifeline executes the behavior (called the
method) for the operation or reception that the message represents. Alternatively,
the message arrival may simply trigger an executing behavior, for example, a state
machine or activity to execute some additional actions. The arguments contained
in a call or send message are passed to the behavior that handles it. If and when
a reply message is sent, the output arguments are provided to the execution that
sent the corresponding synchronous call message.

 Lifelines can send messages to themselves. If the message is synchronous, it may
cause a new execution to be started, nested within the current execution.

 Lifelines are hosts to executions, either of single actions or entire behaviors.
The extent to which executions are modeled is down to the modeler. Typically
execution-start events are coincident with a message-receipt event, but do not
have to be in all cases (i.e., the execution can occur later due to message schedul-
ing delays). When an execution is triggered by the receipt of a synchronous mes-
sage, its end event may be coincident with the sending of a reply message.

lifeline 2 lifeline 3lifeline 1 lifeline 4

A

F

D

C
B

E

 FIGURE 9.6

 Explanation of weak sequencing.

9.5 Exchanging Messages between Lifelines

224 CHAPTER 9 Modeling Message-Based Behavior with Interactions

 Focus of control bars or activations are overlaid on lifelines and cor-
respond to executions; they begin at the execution’s start event and end at the
execution’s end event. When executions are nested, the focus of control bars are
stacked from left to right. If an execution is triggered by the arrival of a message,
the arrow is attached to the top of the activation. If an execution ends with the
production of a reply message, then the tail of the reply arrow is attached to the
bottom of the activation. An alternate notation for activations is a box symbol
overlaid on the lifeline with the name of the behavior or action inside.

 Figure 9.7 shows the same interaction as Figure 9.5 but with activations added.
The relevant behaviors and actions on the company security system and security
guard lifelines are now explicit. The select camera operation tells the company
security system to store a currently selected camera. In a change from Figure
9.5, the action executed to store the camera id, current camera � camera id, is
explicitly shown here using the box notation. The processing of get current sta-
tus causes a new execution to start that is triggered by a get status message with
the previously stored camera id as an argument. This new execution ends with a

get current status()

get current status()

pan camera(strength�"2")

select camera(camera id�"CCC1")

get status():"OK"

get status():"Moving"
get current status():"Moving"

get status
(current camera)

get status
(current camera)

get current status():"OK"

sd Camera Control [Simple Sequence with Activations]

company security system : Surveillance Systemsecurity guard [Elvis] : Advanced Operator

current camera�camera id

 FIGURE 9.7

 Lifelines with activations.

225

status reply of “ OK. ” After the pan camera command, another get status message
triggers a new execution that returns the result “ Moving. ” The execution on the
security guard’s lifeline continues throughout the interaction even while waiting
for a response from the company security system. There have been suggestions
that a “suspension” notation should be introduced to indicate when an execution
is waiting but nothing has been standardized as yet.

 9.5.5 Create and Destroy Messages
 During an interaction, specialized message types, called create messages and
destroy messages, can be used to represent the creation and destruction of
instances, which are represented by lifelines. These messages generally apply to
the allocation and return of memory to execute software instances. However, this
can also be used to add or remove a physical part of a system from a scenario.

 The creation of an instance is indicated by a creation occurrence and an
instance’s destruction by a destroy occurrence. Where they occur, they are,
respectively, the fi rst and last occurrences on a lifeline.

 The notation for a create message is a dashed line with an open arrow, termi-
nating on the header box of the lifeline being created; it is moved down in the
sequence diagram to accommodate the notation. The dashed “tail” of the lifeline is
drawn as normal. The creation message name and input arguments are displayed
in the same way as those of a call message.

 The notation for a destroy message is a solid line with a fi lled arrow. Where
the arrow terminates on the lifeline of the receiver, the lifeline ends with a cross
symbol.

 The sequence diagram in Figure 9.8 shows how new routes are created and
destroyed by a surveillance system. A Route is a set of pan-and-tilt angle pairs that
a surveillance camera follows when in an automated surveillance mode. In this
case the user interface component communicates to the Monitoring Station to
perform the route maintenance operations. First, the user-interface calls the cre-
ate route service offered by the Monitoring Station, which in turn creates a new
route and returns a reference to the user interface via the new route attribute.
The user interface then interacts with this new route in order to add waypoints;
fi nally, when the route is complete (only some of the waypoints are shown here),
it uses the delete route service to delete old route. Note that the execution of
action verify waypoint is shown using box notation.

 9.6 Representing Time on a Sequence Diagram
 In a sequence diagram, time progresses vertically down the diagram and, as stated
earlier, events on a lifeline are correspondingly ordered. In addition, the send
event and receive event for a single message are also ordered in time. However,
particularly in distributed systems, a message may be overtaken by a subsequent
message sent from the same lifeline; that is, the first message may arrive after
receipt of the second message. Sequence diagrams allow this kind of situation to

9.6 Representing Time on a Sequence Diagram

226 CHAPTER 9 Modeling Message-Based Behavior with Interactions

be drawn using a downwards-slanting arrow between two lifelines, as shown in
 Figure 9.9 .

 The sequence diagram in Figure 9.9 shows what happens when an Alert mes-
sage overtakes a regular Status Report message. This may be because the Status
Report message is queued waiting to be processed, or it may indicate a manual
process for handling messages. Once the Alert message has been received by the
regional HQ, it defers handling of the Status Report message until a Stand Down
message has been received.

 In addition to relative ordering in time, time can be represented explicitly on
sequence diagrams. A modeler can use a time observation to note the time at
some instant during the execution of the interaction, and a duration observa-
tion to note the time taken between two instants during the execution of the
interaction. A time constraint and a duration constraint can use observations
to express constraints involving the values of those observations. A time con-
straint identifi es a constraint that applies to a single event on the sequence dia-
gram. A duration constraint identifi es two events, called start and end events, and
expresses a constraint on the duration between them. A duration constraint often

sd Route Maintenance

: Monitoring Station

new route : Route

old route : Routeuser interface : UI

new route�create route()

create route()

delete route(r�old route)

verify waypoint(nwp)

verify waypoint(nwp)

add waypoint(nwp� (50,125))

add waypoint(nwp� (10,35))

 FIGURE 9.8

 Create and destroy messages.

227

applies to any element, such as a message, deemed to have duration or an execu-
tion, in which case the constraint applies between the events that bracket the
element’s duration.

 SysML does not mandate a particular model of time. The expressions used in
observations and time constraints may assume a single clock or may reference a
more complex model of time with multiple clocks.

 A time constraint is shown using a standard constraint expression in braces
attached by a line to the constrained event. A duration constraint is shown by a
double-headed arrow between the two constrained events with the constraint
fl oating near it, also expressed in standard constraint notation (i.e., in braces).
A duration constraint may also be shown as a standard constraint fl oating close
to an element with duration, such as a message, or an interaction occurrence.
Observations are shown in a similar way to constraints, but instead of an expres-
sion in braces, an observation has the name of the observation followed by an
equal sign and then some expression indicating how the observation is taken. The
actual language used to express observations and constraints, including default
time units, and so on, must be stated as part of the observation or constraint.

 Figure 9.10 shows a scenario where the Monitoring Station is asked by the
user interface to test the system’s cameras. The Monitoring Station in turn
requests each camera to perform a self-test and awaits the result. While wait-
ing for a response from each camera, the controller component internal to the
Monitoring Station needs to provide a progress indication to the user interface ,
so it uses asynchronous messages to interleave communication. In this case the

company security system : Surveillance
System regional HQ : Command Center

Alert

Stand Down

Status Ack

Status Report

sd Handling Surveillance Messages [Message Overtaking]

 FIGURE 9.9

 Message overtaking scenario.

9.6 Representing Time on a Sequence Diagram

228 CHAPTER 9 Modeling Message-Based Behavior with Interactions

communication between the Monitoring Station and the cameras is over a net-
work, and the communication between the controller and the user interface is
local. As a result of network delays, the Monitoring Station receives the response
from the camera after the progress message is sent. Note that although sloping
lines are used here to indicate the passage of time, there is no formal semantic
implication in the slope; the only timing implications are expressed using the time
and duration constraints and the ordering of events.

 Also, a number of observations and constraints on this interaction are
expressed, in a time unit of seconds. A time observation, t, is taken at the point
when the fi rst self-test message is sent using the expression t � now. A time con-
straint on the message receipt indicates that the time must be between 1 and 2
seconds after t. The duration between sending and receipt of the fi rst self-test
response message is observed via a duration observation d, and there is a con-
straint on the second response message to not exceed 1.5 times the fi rst duration.
The total time taken between the user interface requesting a test command and
the completion of both camera self-tests should be between 5 and 10 seconds, as
indicated by the duration constraint on the left of the diagram.

: Monitoring Stationuser interface : UI [c2] : Camera[c1] : Camera

t � now

d � duration

{d..d*1.5}

{5
..1

0}

Test in Progress(1)
perform self test()

{t�1..t�2}

Test Complete(1, true)

perform self test()
Test in Progress(2)

Test Complete(2, true)

System OK

test cameras()

camera test complete
(OK � true)

camera test complete
(OK � true)

sd Successful Camera Test

 FIGURE 9.10

 Representing time on a sequence diagram.

229

 9.7 Describing Complex Scenarios Using
Combined Fragments

 The most basic form of an interaction is, as stated earlier, a weak sequence of
occurrences—broadly speaking, read from top to bottom of the sequence dia-
gram. However, more complex patterns of interaction are often needed and can
be modeled using constructs called combined fragments. Different combined
fragments specify different rules for the ordering of messages and their associated
occurrences such as parallel and alternative traces.

 A combined fragment consists of an interaction operator and its operands .
The interaction operator defi nes the type of ordering logic, and its operands are
all subject to that rule. Each operand has a guard containing a constraint expres-
sion that indicates the conditions under which it is valid. Each guard is bound to
a single lifeline and can only reference attributes of that lifeline in its constraint.
The operands may themselves contain combined fragments, and thus can be com-
posed into a tree hierarchy. During execution of an interaction, all operands use
weak sequencing semantics on their contents.

 A combined fragment must specify which lifelines participate in the interac-
tion defi ned by the operands. Only the events on the participating lifelines are
valid when considering the traces of the fragment.

 9.7.1 Basic Interaction Operators
 The following subset of interaction operators is used more frequently:

■ Seq—weak sequencing, as described in Section 9.5.3. Weak sequencing is the
default form of sequencing for all operands, so is rarely used explicitly.

■ Par—an operator where operands can occur in parallel, each following weak
sequencing rules. There is no implied order between occurrences in different
operands. This operator has an alternate shorthand notation, when applied to
a single lifeline called a coregion, where instead of a frame the operands are
bracketed by vertical square brackets.

■ Alt/else—an operator where exactly one of its operands will be selected based
on the value of its guard. The guard on each operand is evaluated before
selection, and if the guard on one of the operands is valid, then that one is
selected. If more than one operand has a valid guard then the selection is
nondeterministic. An optional else fragment is valid only if none of the guards on
the other operands are valid. A common situation is where the choice of operand
is based on whether the next occurrence matches the first event in one of the
operands. In this case there is no guard.

■ Opt—a unary operator that is equivalent to an alt with only one operand.
This implies that the operand is either executed or skipped depending on the
validity of the guard.

■ Loop—an operator where the trace represented by its operand repeats until
its termination constraint is met. A loop may define lower and upper bounds

9.7 Describing Complex Scenarios Using Combined Fragments

230 CHAPTER 9 Modeling Message-Based Behavior with Interactions

on the number of iterations as well as the guard expression. These bounds
are documented in brackets after the loop keyword in the fragment label as:
 “ (lower bound, upper bound), ” where the upper bound may have the value “ * ”
indicating an infinite upper bound.

 A combined fragment is shown using a frame whose label indicates the type of
operator and potentially other information depending on the type of operator.

 Alt and par operators have multiple horizontal partitions, separated by dashed
lines, that correspond to their operands. Other operators have just a single par-
tition. Messages and possibly other combined fragments are nested within each
operand. Where an operator has a single operand that is itself a combined frag-
ment, their frames can be merged into one, and the frame label for the merged
frame is used to indicate all the contents such as loop par.

 The frame symbol for the combined fragment must not obscure the lifelines
that participate in its interaction, so the tails of the participating lifelines are vis-
ible on top of the frame. The frame does obscure the lifelines that do not partici-
pate in the fragment’s interaction.

 In Figure 9.11 , lifelines 1 through 3 participate in the opt fragment, but only
lifelines 1 and 4 participate in the loop fragment. So, to maintain the current lay-
out, lifelines 2 and 3 are obscured by the loop frame to indicate that they do not
participate.

 Figure 9.12 shows what happens when an intruder is detected by the com-
pany security system and tracked. The interaction is started when some lifeline
external to this interaction detects a potentially illegal entry into the monitored
areas. This triggers the system to alert the user (the security guard) with the id
of the sensor and raise the alarm. The security guard then locates the sensor and
attempts to fi nd and track the intruder and eventually (in this case) cancels the
alert.

loop

opt

msg 1

msg 2

msg 3

lifeline 2 lifeline 3lifeline 1 lifeline 4

 FIGURE 9.11

 Example of overlapping and nonoverlapping lifelines.

231

 Within this sequence, the alt operator indicates that the security guard has a
choice between using the system’s auto-track feature and manually tracking the
intruder. In the automatic case, the system attempts to acquire and track a target.
Failure to acquire a target, or loss of an acquired target, is indicated by a Lost Track
message. In the manual-tracking case, the security guard uses an input device to
repeatedly pan and tilt the cameras, as indicated by the loop par fragment.

 In all scenarios, the security guard is responsible for canceling the alert,
which prompts the company security system to cancel the alarm. In this case
the Raise Alarm and Cancel Alarm messages terminate at gates on the frame,

sd Handling Alert

opt

alt

security guard [Elvis] : Advanced Operator

Intruder Alert (sensor id)

Raise Alarm()

Lost Track

Cancel Alarm()

Auto Track()

Pan Camera(strength)

Tilt Camera(strength)

Cancel Alert()

Illegal Entry Detected (id�sensor id)

loop par

company security system : Surveillance System

{manual mode
required}

{automatic mode
required}

{lost contact}

 FIGURE 9.12

 Complex interaction described using interaction operators.

9.7 Describing Complex Scenarios Using Combined Fragments

232 CHAPTER 9 Modeling Message-Based Behavior with Interactions

to interact with lifelines outside the current interaction (see Section 9.8 for a
description of gates).

 9.7.2 Additional Interaction Operators
 The following are other interaction operators that are not as commonly used.

■ Strict—like “ seq ” except that the occurrences represented by its operands are
sequenced in order across all participating lifelines. The strict rule does not
apply to the operands of any nested combined fragments.

■ Break—an operator whose operand is executed rather than the remainder
of the enclosing fragment. This is often used to represent the handling of
exceptional scenarios.

■ Critical—an operator where the sequence of operands must take place with
no interleaving of other occurrences, at least within the participating lifelines
of the fragment. This may be used when some higher-level par operator
indicates that interleaving can occur, and this operator is used to constrain the
interleaving.

■ Neg—an operator where the traces described by its operand cannot occur.

 There are cases in interaction modeling where covering all potential message
occurrences is very onerous, such as a where there are a large number of occur-
rences related to messages that are not relevant to the scenario being described.
For these cases, the following operators provide the ability to fi lter messages in
their operand:

 Consider—only consider messages for a specified set of operations and/or
signals. All event occurrences corresponding to other messages are ignored;
that is, they are not considered for validity. Only considered messages can
appear in the operand.

 Ignore—do not consider messages for a specified set of operations and/or signals.
Event occurrences corresponding to ignore messages are not considered for
validity. Ignored messages cannot appear in the operand.

 Consider and ignore operators allow occurrences and messages that have
been explicitly ignored (or not considered) to be interleaved with valid traces of
their operand. The assert operator provides a mechanism to assert that only the
occurrences in its operand are valid, even if according to an enclosing consider or
ignore fragment, ignored (not considered) events could occur.

 The messages to be ignored or considered are shown in braces following the
keyword in the fragment label.

 Figure 9.13 describes the sequence of messages exchanged when the com-
pany security system is communicating with the regional HQ in an emergency.
There are always regular status updates and acknowledgments between any sur-
veillance system and the regional HQ, but these are not of interest in this sce-
nario and so are ignored, as indicated by the ignore fragment. Alerts are only

233

going to happen while the surveillance system is on, so the regional HQ can dis-
count any alerts apparently received when the system is off (although they may
wish to investigate why they happened). However, when a valid Alert message
has been sent, there must be no other messages, including status messages, until
a Stand Down message has been received. Given that status messages are being
ignored, the only way to be explicit about their exclusion is to use an assert frag-
ment, making it explicit that no other messages will be sent between Alert and
Stand Down.

 9.7.3 State Invariants
 It is often useful to augment the message-oriented expression of valid traces by
adding constraints on the required state of a lifeline at a given point in a sequence
of event occurrences. This can be achieved using a state invariant on a lifeline.
The invariant constraint can include the values of properties or parameters, or
the state (of a state machine) that the lifeline is expected to be in.

 The notation for state invariants is an expression in braces shown on top
of the lifeline that is constrained. If the invariant specifi es the state of a state
machine, then it is shown as a state symbol on the lifeline.

 Figure 9.14 shows a scenario for shutting down the system. The state invariant
on the security guard’s lifeline indicates that he or she has to be logged on for

sd Emergency Communications

regional HQ : Command Center

System On

System Off

Alert

Stand Down

ignore {Status Report, Status Ack}

loop assert

company security system : Surveillance System

 FIGURE 9.13

 Message-fi ltering scenario.

9.7 Describing Complex Scenarios Using Combined Fragments

234 CHAPTER 9 Modeling Message-Based Behavior with Interactions

the Shutdown System message to be valid. The state invariant on the company
security system lifeline indicates, for a shutdown request to be valid, the number
of users must be one; that is, there are no other users currently logged on. A valid
trace ends with a Shutdown Confi rmed message reply to the security guard.

 9.8 Using Interaction References to Structure
Complex Interactions

 In most systems engineering projects, the size of systems and hence often the
size of interactions becomes very large. There are also many patterns of interac-
tion, for example, initialization and shutdown, which are repeated many times as
parts of different scenarios.

 To support large-scale uses of interactions, any interaction may reference (the
offi cial term is interaction use) one or more existing interactions described on
other sequence diagrams. Interactions can be nested such that one interaction
can use an interaction that in turn uses still others. This capability signifi cantly
enhances the scalability of interactions. It also facilitates reuse since an interac-
tion can be used by more than one interaction. The using interaction identifi es
the participants in the used interaction. The interaction’s defi nition must have
lifelines that represent all the identifi ed participants, but may include additional
lifelines as well.

 To allow messages to pass into and out of an interaction when it is being used
by another, an interaction can have connection points, called formal gates, at its
boundary. There is a gate for every message that enters or leaves the interaction
at its boundary. When the interaction is used, the using interaction has actual
gates that correspond one-to-one with the formal gates of the used interaction.

{number of
users��1}

Shutdown Confirmed

Shutdown System

sd Shutdown System

company security system : Surveillance Systemsecurity guard [Elvis] : Advanced Operator

Logged On

 FIGURE 9.14

 State invariants.

235

The messages arriving or leaving the actual gates must match those arriving
or leaving at their corresponding gates in terms of direction, type, and cause
(signal/operation).

 In the defi nition of an interaction, messages can connect to the frame of the
interaction. There is a formal gate at each connection point, although there is no
symbol representing the gate itself. Gates can be named but the name is typically
not shown. An example of such a defi nition appears in Figure 9.12 .

 Interaction uses are shown as frames with the keyword ref. The body of the
frame contains the name of the used interaction. Messages that terminate/start at
the boundary of the frame imply the presence of actual gates. Lifelines that partic-
ipate in the nested interaction are obscured by the frame symbol. Note that this
is opposite of how participants are represented on combined fragments, where
participants are not obscured.

 Figure 9.15 shows an interaction that uses four other interactions, as indicated
by ref. The fi rst-used interaction describes the company security system being set
up by the security guard. During the guard’s shift, one of two things are shown as
potentially occurring. If things are quiet (normal status), the guard might perform
some maintenance on the automated surveillance routes (the scenario in Figure 9.8),
or the guard and the system might handle an alert (the scenario from Figure 9.12).
These two alternatives may occur repeatedly as indicated by the loop alt fragment,
until the guard shuts down the system. To use the Handling Alert interaction, this
interaction needs to attach compatible messages to all its gates.

 9.9 Decomposing Lifelines to Represent Internal Behavior
 A lifeline can represent a part that corresponds to a usage of a block for the speci-
fied interaction. The block can correspond to a system or component at any level
of a system hierarchy. Each lifeline may be further decomposed based on the con-
stituent parts of the block.

 A sequence diagram includes the provision to decompose the lifeline and
further elaborate the interaction among its parts. If, for example, the lifeline
represents a system, an interaction can be specifi ed between the system and its
external environment. This is often referred to as a black-box interaction, where
the internal behavior of the system is hidden and only external behavior is vis-
ible. The system lifeline can then be decomposed into its parts to specify a nested
interaction that supports the black-box interaction.

 The interaction among these parts is defi ned by a separate interaction that
is used by the parent lifeline being decomposed. The used interaction includes
gates that correspond to where it sends or receives its messages. The messages at
the gates of this interaction must be compatible with the messages of the parent
lifeline, and the message send and receive events must occur in the same order as
on the parent lifeline. Only lifelines representing parts of the block that type the
parent lifeline may appear in the used interaction.

 The lifeline decomposition is shown by adding the name of the referenced
interaction below the name of the lifeline, prefi xed by the keyword ref. The same

9.9 Decomposing Lifelines to Represent Internal Behavior

2
3

6

loop alt

company security system
: Surveillance System

security guard{Elvis]
: Advanced Operator[gate1] : Perimeter Sensor

: Alarm System
ref During Alert

Shutdown System

Setup System

Handling Alert

ref

ref

sd End-to-End Scenario

Raise Alarm()

Cancel Alarm()

Route Maintenance

ref

ref

Illegal Entry
Detected (gate1)

{normal status}

{alert status}

 FIGURE 9.15

 Reference to another interaction.

237

name is used in the frame label of the referenced interaction. Gates are implied in
the reference interaction by messages that start or terminate on its frame.

 Figure 9.16 shows the decomposition of the black-box lifeline for the Alarm
System from Figure 9.15 . It shows how the Alarm System handles alerts. When
the alarm controller receives a Raise Alarm message, it requests an announce-
ment on the internal PA, and then alerts all the registered emergency services
through the Emergency Comms System; it provides a location and a passwor d
to authenticate the alert. When the Cancel Alarm message is received, the alarm
controller requests another announcement and then sends a request to the emer-
gency services to stand down. At least one emergency service must be alerted,
but the maximum number may depend on circumstances.

 There is an alternative to using the reference sequence diagram for represent-
ing a nested interaction. This is accomplished by showing the lifeline with its
nested parts on the same sequence diagram. This is depicted on the diagram by
showing the black-box lifeline on top of the lifelines corresponding to the nested
parts. The header boxes of the parts are attached to the underside of the parent
lifeline’s header box. The nested lifelines can be used to show interactions that
occur within the parent lifeline, or to send and receive messages directly to and
from other external lifelines.

alarm controller : Control System : Emergency Comms System internal PA : PA System

service � get next service()

loop (1,*)

loop (1,*)

sd During Alert

Announce(message � "alertmsg", repeat � "true")

Alert(location, password, service)

Announce(message � "standownmsg", repeat � "false")

Standown(location, password,
service)

Raise Alarm()

Cancel Alarm()

service � get next service()

{more services}

{more services}

 FIGURE 9.16

 A decomposed lifeline.

9.9 Decomposing Lifelines to Represent Internal Behavior

238 CHAPTER 9 Modeling Message-Based Behavior with Interactions

 Figure 9.17 shows a white-box view of what happens when the security guard
wishes to log in to the company security system. The two signifi cant parts of the
company security system—the user interface and the Monitoring Station—are
shown underneath the lifeline of the company security system. In this scenario
a login message is received by the user interface and requests the Monitoring
Station—to verify it. The user interface then checks that the maximum number
of logins has not been exceeded and returns control to the security guard.

 9.10 Summary
 Sequence diagrams describe interactions used to capture system scenarios as a set
of message exchanges between lifelines. An interaction is specified as an ordered
sequence of events that result from the execution of behaviors by parts of the
owning block represented by the lifelines. The most significant source of events
is the exchange of messages between lifelines that may trigger executions and the
creation of new instances in the system. The following list highlights key aspects
of interactions.

■ Lifelines represent parts (or references to parts) of the block that owns the
interaction. During execution, a lifeline may represent only one instance;
so where the part has an upper bound greater than 1, an additional selector
expression is required to specify exactly one of the instances represented
by the part. Lifelines may run from top to bottom of the sequence diagram
indicating that the parts they represent exist before and after the execution of

sd Logging In

security guard[Elvis] : Advanced
Operator

: Monitoring Stationuser interface : UI

login():"OK"

check capacity()

verify login details():true

check capacity():3

login("Fred Bloggs", "Squirrel007")
verify login details
(user name, pwd)

company security system : Surveillance System

{capacity�4}

 FIGURE 9.17

 Inline nesting of lifeline decomposition.

239

the interaction. They also may start and/or end within the sequence diagram,
indicating the creation or destruction of instances during execution. Lifelines
may be physically nested on a diagram to show a white-box view of the
interactions within that lifeline. State invariants on the lifelines assert conditions
that must hold at that point for the interaction to be valid.

■ Messages are exchanged between lifelines and typically represent an invocation
of an operation or a sending of a signal. Messages do not represent data flows,
but the flow of data (or other items such as matter or energy) can be captured
via arguments of the message. Messages are sent and received by behaviors
executing on the lifelines and can be either asynchronous (sender continues
executing) or synchronous (sender waits for a response).

■ The default ordering of events imposed by an interaction is weak sequencing,
where unrelated event occurrences are sequenced within but not across
lifelines. A combined fragment is a means for specifying different ordering
semantics. A combined fragment includes an operator and operands, where
the operator identifies the ordering of its operands that may themselves be
combined fragments. Commonly used operators include par, alt, and loop .
Each operand may have a guard expression that must be satisfied in order for
the operand to be executed.

■ Interactions can use other interactions as part of their definition to enhance
scalability, as denoted by the keyword ref. An interaction can use another
interaction to describe the internal interactions of one of its lifelines; this
enables a black-box specification style. An interaction can also use another to
specify part of its total behavior, which may involve a number of its lifelines.
This decomposition is either done to reduce the size of a sequence diagram,
or to reuse some common interaction pattern. Interaction frames can feature
connection points on their perimeter, called gates, to enable messages to pass
across interaction boundaries.

 9.11 Questions
 1. What is the diagram kind for a sequence diagram, and which type of model element

does it represent?
 2. What is the context for an executing interaction?
 3. Draw a sequence diagram with two lifelines: one representing a part with no

name, typed by the actor “Customer, ” and the other with the name “m, ” typed
by the block “Vending Machine. ”

 4. What is a selector expression used for?
 5. Which kinds of event are relevant when specifying interactions?
 6. List the different types of messages that can be exchanged between lifelines.
 7. On the diagram from Question 3, add a message from the “Customer” lifeline to

the“Vending Machine ” lifeline representing the signal “Select Product ” with the
argument“C3. ”

9.11 Questions

240 CHAPTER 9 Modeling Message-Based Behavior with Interactions

 8. What does the term “ message overtaking ” mean?
 9. How is an action or behavior execution represented on a sequence diagram?

 10. What is an observation and how is it used?
 11. In the diagram from Question 7, observe the current time (provided by the

 “ clock ” function) when the “ Select Product ” message is sent?
 12. How is a combined fragment represented on a sequence diagram?
 13. Name four common interaction operators.
 14. In the diagram from Question 7, change “Select Product ” from a signal to

an operation on “Vending Machine ” and show two different replies: If the
machine has stock, then it replies with the return string “Stock Available ”;
otherwise, it replies with the string “ Sold Out. ”

 15. Messages M1 and M2 from lifeline L2 can occur in any order on lifeline L1.
Show two different ways that this can be expressed on a sequence diagram.

 16. Are the lifelines that participate in a combined fragment shown in front of or
behind the frame box for the combined fragment?

 17. Which messages are valid inside an ignore fragment?
 18. What does a state invariant specify?
 19. What are gates used for?
 20. Name two ways of showing the interaction between the children of a lifeline.
 21. Are the lifelines that participate in an interaction occurrence shown in front

of or behind the frame box for the interaction occurrence?

 Discussion Topic
 Sequence diagrams can be used to capture test specifications or test results. What
differences would you expect to see between sequence diagrams used for these
two purposes?

 This chapter describes how to model behavior in terms of the response of blocks
to internal and external events, using state machines.

 10.1 Overview
 State machines typically are used in SysML to describe the state-dependent behav-
ior of a block throughout its life cycle in terms of its states and the transitions
between them. A state machine for a block may be started, for example, when
it initiates power up, transitions through multiple states in response to different
stimuli, and terminates when it completes power down. In each state, the block
may perform different sets of actions. Thus, the state machine defines how the
block’s behavior changes as it transitions through different states. State machines
in SysML can be used to describe a wide range of state-related behavior, from the
behavior of a simple lamp switch, to the complex modes of an advanced aircraft.

 Although a state machine is a behavior, and therefore can be called from an
activity or referenced by an interaction, the semantics of these combinations are
not completely clear, so they should be used with care.

 State machines are normally owned by blocks and execute within the context
of an instance of that block. (It is possible for a state machine to be owned by a
package, but its usefulness is much restricted so that particular use will not be
covered here.) The behavior of a state machine is specifi ed by a set of regions,
each of which defi nes a set of states. The states in any one region are exclusive;
that is, when the region is active, exactly one of its substates is active. A region
normally has an initial pseudostate, which is the place where the region starts
when it fi rst becomes active. When a state is entered, an (optional) entry behavior
(e.g., an activity) is executed. Similarly on exit, an optional exit behavior is exe-
cuted. While in a state, a state machine can execute a behavior called a do activ-
ity. It also normally has a fi nal state that, when active, signifi es that the region has
completed. Regions and states are described in Section 10.3.

 Modeling Event-Based
Behavior with State
Machines 10

CHAPTER

242 CHAPTER 10 Modeling Event-Based Behavior with State Machines

 Change of state is effected by transitions that connect a source state to a tar-
get state. Transitions are defi ned by triggers, guards, and effects, where the trig-
ger indicates an event that can cause a transition to the target state, the guard is
evaluated in order to test whether the transition is valid, and the effect is a behav-
ior executed once the transition is triggered. Triggers may be based on a variety
of events such as the expiration of a timer, or the receipt of a signal by the state
machine’s owning object. Junction and choice pseudostates support the construc-
tion of compound transitions between states, with multiple guards and effects.
Transitions are described in Section 10.4. Operation calls on the owning block are
also valid trigger events for transitions; these are described in Section 10.5.

 State machines in different blocks may interact with one another by either
sending signals or invoking operations. For example, the state machine of one
block can send a signal to another block as part of a transition effect or state
behavior. The event corresponding to the receipt of this signal by the receiving
block can trigger a state transition in its state machine. Similarly, a state machine
in one block may call an operation on another block that causes an event that
triggers a transition.

 The rest of the chapter covers more advanced state machine concepts. Section
10.6 deals with state hierarchies that occur when a state contains its own regions. A
state with just one region is the most common case and is called a composite state.
A state with more than one region is called an orthogonal composite state. Finally,
a kind of state called a submachine state, may reference another state machine. To
model state hierarchies effectively, additional constructs are needed. Fork and join
pseudostates are needed to specify transitions into and out of orthogonal compos-
ite states. Entry and exit point pseudostates can be used to add connection points
for transitions on the boundary of a state or state machine.

 State machines may also be used to defi ne continuous behaviors, as described
in Section 10.7, where a set of discrete states of a block, and changes in that state,
are defi ned in terms of the values of other continuous variables such as heat and
pressure.

 State machines can be used in conjunction with other behaviors. A state
machine can use another behavior (e.g., an activity) to specify what happens on
state entry and exit, or when a transition fi res. State machine states are also used
within interactions (see Section 9.7.3) and activities (see Section 8.8.4) to con-
strain certain aspects of their behavior.

 10.2 State Machine Diagram
 State machine diagrams are sometimes referred to as state charts or state
diagrams, but the actual name in SysML is the state machine diagram. The frame
label has the following form:

 stm [State-Machine] state machine name [diagram name]

 The diagram kind for a state machine diagram is stm. The diagram frame always
represents a state machine, and therefore the type of the model element is

243

always State Machine and is often elided. The state machine name is the name
of the represented state machine, and the diagram name is user defined and is
intended to describe the purpose of the diagram. Figure 10.1 shows many of the
basic notational elements for describing state machines.

 Figure 10.1 describes a state machine for an ACME Surveillance System. It
starts in the idle state; runs through a series of states during its life cycle; and,
fi nally, ends up at idle again, from where it may receive a Turn Off signal that
causes it to complete its state machine behavior. The notation for the state
machine diagrams is shown in the Appendix, Tables A.18 through A.20.

 10.3 Specifying States in a State Machine
 A state machine is a potentially reusable definition of some state-dependent
behavior. State machines typically execute in the context of a block, and events
experienced by the block may cause state transitions.

 10.3.1 Region
 A state machine can contain one or more regions, which together describe the
state-related behavior of the state machine. Each region is defined in terms of

stm Surveillance System

operating

entry/Display "Operating" Status
do/Monitor Site
exit/Display "Shutdown" Status

shutting down

diagnosing

initializing

idle

System
KO

[init OK]

System OK

[r �� "Yes"]/
Shut Down Cameras

Confirmation
Response (r)

[not init OK]

[r �� "No"]

Turn Off

Startup after (60 s)/
Display "Timed Out" Status

Shutdown
[in (logged on)]/

Confirm
Shutdown

Request

 FIGURE 10.1

 A state machine.

10.3 Specifying States in a State Machine

244 CHAPTER 10 Modeling Event-Based Behavior with State Machines

states and pseudostates, collectively termed vertices, and transitions between
those vertices. An active region has exactly one active state within it. The differ-
ence between a state and a pseudostate is that a region can never rest in pseu-
dostate; it merely exists to help determine the next active state.

 Where a state machine has multiple regions, they may be describing some
concurrent behavior happening within the state machine’s owning block. This
may in turn be an abstraction of the behavior of different parts within the block,
as discussed in Section 6.5.1. For example, one part of a factory may be storing
incoming material, another turning raw material into fi nished products, and yet
another sending out fi nished goods. If the parts are ever specifi ed with behaviors
of their own, the modeler has to be clear on the relationship between the state
machine for the parent block and the behaviors of its parts. It may also be that
the state machine needs to keep track of concurrent behavior in its environment
such as a camera being panned and tilted at the same time.

 States can also contain multiple regions, as described in Section 10.6.2, but
this section confi nes itself to simple states with only a single region. Where a state
machine or state contains a single region, it typically is not named, but where
multiple regions are present, it often makes sense to name them.

 The initialization and completion of a region are described using an initial pseu-
dostate and fi nal state, respectively. An initial pseudostate specifi es the initial
state of a region. The outgoing transition from an initial pseudostate may include an
effect (see Section 10.4.1 for a detailed discussion of transition effects). Such effects
are often used to set the initial values of value properties used by the state machine.

 When the active state of a region is the fi nal state, the region has completed
and no more transitions take place within it. Hence, a fi nal state can have no out-
going transitions.

 The terminate pseudostate is always associated with the state of an entire
state machine. If a terminate pseudostate is reached, then the behavior of the state
machine terminates. A terminate pseudostate has the same effect as reaching the fi nal
states of all the state machine’s regions. The termination of the state machine does
not imply the destruction of its owning object, but it does mean that the object will
not respond to events via its state machine.

 A single region is represented by the area inside the frame of the state machine
diagram. The notation for the concepts introduced thus far is as follows:

 ■ An initial pseudostate is shown as a fi lled circle.
 ■ A fi nal state is shown as a “ bulls-eye ” ; that is, a fi lled circle surrounded by a

larger hollow circle.
 ■ A terminate pseudostate is shown as an “ X ” .

 10.3.2 State
 A state represents some significant condition in the life of a block, typically
because it represents some change in how the block responds to events. This con-
dition can be specified in terms of the values of selected properties of the block,
but typically the condition is expressed in terms of an implicit state variable

245

(or variables) corresponding to its regions. It is sometimes helpful to think of a state
as corresponding to a switch position for the block, where the block can exhibit
some specified behavior in each switch position. A state machine can define all
valid switch positions (i.e., states) of the system. Switch positions can correspond
to a truth table similar to how logic gates can be specified.

 Each state may have entry and exit behaviors that are performed whenever
the state is entered or exited, respectively. In addition, the state may perform a
do activity that executes once the entry behavior has completed and continues
to execute until it completes or the state is exited. Although any SysML behavior
can be used, typically entry and exit behaviors and do activities are activities or
opaque behaviors.

 A state is represented by a round-cornered box containing its name. Entry and
exit behaviors and do activities are described as text expressions preceded by the
keywords “entry, ”“exit, ” or “do” and a forward slash. There is some fl exibility in the
content of the textual expression. The text expression typically is the name of the
behavior, but where the behavior is an opaque behavior, the body of the opaque
behavior can be used instead.

 Figure 10.2 shows a simple state machine for the Surveillance System, with
a single operating state in its single region. A transition from the region’s initial
pseudostate goes to the operating state. On entry, the Surveillance System dis-
plays the fact that it is operational on all operator consoles, and on exit, it displays
a shutdown status. While the Surveillance System is in the operating state, it per-
forms, via a do activity, its standard function of Monitor Site; that is, monitoring the
building where it is installed for any unauthorized entry. When in the operating
state, a Turn Off signal triggers a transition to the fi nal state, and then the region,
and hence the state machine has completed.

 10.4 Transitioning between States
 A transition specifies how states change within a state machine. State machines
always run to completion once a transition is triggered, which means that they

stm Surveillance System

Turn Off

operating

entry/Display "Operating" Status
do/Monitor Site
exit/Display "Shutdown" Status

 FIGURE 10.2

 A state machine containing a single state.

10.4 Transitioning between States

246 CHAPTER 10 Modeling Event-Based Behavior with State Machines

are not able to consume another trigger event until the state machine has com-
pleted the processing of the current event.

 10.4.1 Transition Fundamentals
 A transition may include one or more triggers, a guard, and an effect as described
next.

 Trigger
 Triggers identify the possible stimuli that cause a transition to occur and are asso-
ciated with events. The four main types of events are:

 ■ Signal events indicate that a new asynchronous message has arrived. A sig-
nal event may be accompanied by a number of arguments that can be used
in the transition effect as described later.

 ■ Time events indicate either that a given time interval has passed since the
current state was entered (relative), or that a given instant of time has been
reached (absolute).

 ■ Change events indicate that some condition has been satisfi ed (normally
that some specifi c set of attribute values hold). Change events are discussed
in more detail in Section 10.7.

 ■ Call events indicate that an operation on the state machine’s owning block
has been requested. A call event may also be accompanied by a number of
arguments. Call events are discussed in more detail in Section 10.5.

 Once the entry behavior of a state has completed, transitions can be triggered by
events irrespective of what is happening within the state. For example, a transi-
tion may be triggered while a do activity is executing, in which case the do activ-
ity is interrupted.

 By default, events must be consumed as soon as they are presented to the state
machine, even if they do not trigger transitions. However, events may be explicitly
deferred while in a specifi c state for later handling. In that case, unless they actually
do trigger a transition, they are not consumed as long as the state machine remains
in that state. As soon as the state machine has entered a state where the event is not
deferred, the event must be consumed immediately. It may be consumed to trigger
a transition but, if not, then it is consumed anyway and has no effect.

 Transitions can also be triggered by internally generated completion events .
For a simple state with no internal states, a completion event is generated when
the entry behavior and the do activity have completed.

 Guard
 The transition guard contains an expression that must be true for the transition
to occur. The guard is specified using a constraint, introduced in Chapter 7, that
includes a textual expression to represent the guard condition. When an event
satisfies a trigger, the guard on the transition, if present, is evaluated. If the guard
evaluates to true, the transition is triggered, and if the guard evaluates to false,

247

then the event is consumed with no effect. Guards can test the state of the state
machine using the operators in (state x) and not in (state x).

 Effect
 The third part of the transition is the transition effect. The effect is a behavior,
normally an activity or an opaque behavior, executed during the transition from
one state to another. For a signal or call event, the arguments of the correspond-
ing signal or operation call can be used directly within the transition effect, or the
arguments can be assigned to attributes of the block owning the state machine.
The transition effect can be an arbitrarily complex behavior that may include send
signal actions or operation calls used to interact with other blocks.

 If the transition is triggered, then fi rst the exit behavior of the current (source)
state is executed, then the transition effect is executed, and fi nally the entry
behavior of the target state is executed.

 A state machine can contain transitions, called internal transitions, that do not
effect a change in state. An internal transition has the same source and destination
and, if triggered, simply executes the transition effect. By contrast, an external tran-
sition with the same source and destination state—sometimes called a “transition-
to-self ”—triggers the execution of that state’s entry and exit behaviors as well as the
transition effect. One frequently overlooked consequence of internal transitions is
that, because the state is not exited and entered, timers for relative time events are
not reset.

 Transition Notation
 A transition is shown as an arrow between two states, with the arrow pointing
to the target state. Transitions to self are shown with both ends of the arrow
attached to the same state. Internal transitions are not shown as graphical paths
but are listed within the state symbol.

 The defi nition of the transition’s behavior is shown in a formatted string on
the transition with the list of triggers fi rst, followed by a guard in square brack-
ets, and fi nally the transition effect preceded by a forward slash. Section 10.4.3
describes an alternate graphical syntax for transitions.

 The text for a trigger depends on the event, as follows:

■ Signal and call events—the name of the signal or operation followed
optionally by a list of attribute assignments in parentheses. Typically, call
events are distinguished by including the parentheses even when there are
no attribute assignments, although this is just a (useful) convention, not part
of the standard notation.

■ Time events—the term “after” or “at” followed by the time; “after” indicates
that the time is relative to the moment when the state is entered; “at” indi-
cates that the time is an absolute time.

■ Change events—the term “when” followed by the condition that has to
be met in parentheses. Like other constraint expressions, the condition is
expressed in text with the expression language optionally in braces.

10.4 Transitioning between States

248 CHAPTER 10 Modeling Event-Based Behavior with State Machines

 The effect expression may either be the name of the invoked behavior or may
contain the text of an opaque behavior.

 When an event is deferred in a state, the event is shown inside the state sym-
bol for that state using the text for the trigger followed by a “ / ” and the keyword
defer. See Figure 10.12 (page 260) for an example.

 Transitions can also be named, in which case the name may appear alongside
the transition instead of the transition expression. A name is sometimes a useful
shorthand for a very long transition expression.

 Figure 10.3 shows a more sophisticated state machine for the Surveillance
System than in Figure 10.2 , with all the principal states and the transitions
between them. Compared to Figure 10.2 , the initial pseudostate now indicates
that the region starts at the idle state. The fi nal state is also reached from the idle
state, but it is still triggered by the receipt of a Turn Off signal. Having completed
processing in the initializing state (refer to Figure 10.14 on page 262 to view
inside the initializing state), a completion event for initializing will be gener-
ated. If the condition variable init OK is true, the system enters the operating
state. Otherwise, the system enters the diagnosing state where an operator will
look at the error logs and try to manually initialize the system. Just in case some-
thing happens and the test procedure does not complete, the system has a time-
out after 60 seconds, which returns the system to the idle state.

stm Surveillance System

operating

entry/Display "Operating" Status
do/Monitor Site
exit/Display "Shutdown" Status

shutting down

diagnosing

initializing

idle

System
KO

[init OK]

System OK

[not init OK]

Turn Off

Startup after (60 s)/
Display "Timed Out" Status

Shutdown
[in (logged on)]/

Confirm
Shutdown

Request

Shutdown Confirmed/Shut Down Cameras

 FIGURE 10.3

 Transitions between states.

249

 From the diagnosing state, the operator indicates success using the signal
System OK, which allows the system to enter the operating state. The signal System
KO indicates that the system is beyond operator repair and causes a transition
back to idle. From the operating state, a Shutdown signal will cause a transition to
the shutting down state, as long as the operating state is in substate logged on
(refer to Figure 10.9 for a view inside the operating state). As part of shutting
down, the system requests a confi rmation and will only exit the shutting down
state when it receives a Shutdown Confi rmed signal, whereon it executes the
Shut Down Cameras activity.

 Unless the graphical notation for transitions is being used, transition effects,
with the exception of opaque behaviors, are specifi ed on separate diagrams
appropriate to the type of behavior. Figure 10.4 shows the activity diagram for
the Shut Down Cameras activity.

 When invoked as a transition effect, Shut Down Cameras loops over all known
cameras and sends each a Shutdown signal. Note that the activity does not include
an accept event action; this would leave the invoking state machine in an ambigu-
ous (mid-transition) state when waiting for new events to occur.

act [Activity] Shut Down Cameras

id � get next camera()

id

Shutdown

target

[else]

[more cameras()]

 FIGURE 10.4

 Defi ning a transition effect using an activity.

10.4 Transitioning between States

 10.4.2 Routing Transitions Using Pseudostates
 There are a variety of situations where a simple transition directly between
two states is not sufficient to express the required semantics. SysML includes a
number of pseudostates to provide these additional semantics. This section intro-
duces junction and choice pseudostates, which support compound transitions
between states.

250 CHAPTER 10 Modeling Event-Based Behavior with State Machines

 A junction pseudostate is used to construct a compound transition path
between states. The compound transition contrasts with a simple transition by
allowing more than one alternative transition path between states to be specifi ed,
although only one path can be taken in response to any single event. Multiple
transitions may either converge to or diverge from the junction pseudostate.
When there are multiple outgoing transitions from a junction pseudostate, the
selected transition will be one of those whose guard evaluates to true at the time
the event was served up for processing. If more than one guard does evaluate to
true, SysML does not defi ne which one of the valid transitions is chosen for exe-
cution. If a particular compound transition path includes more than one junction
between two states, all the guards along that path must evaluate to true before
the compound transition is taken.

 The choice pseudostate also has multiple incoming transitions and outgo-
ing transitions and like the junction pseudostate is part of a compound transi-
tion between states. The behavior of the choice pseudostate is distinct from that
of a junction pseudostate in that the guards on its outgoing transitions are not
evaluated until the choice pseudostate has been reached. This allows effects exe-
cuted on the prior transition to affect the outcome of the choice. When a choice
pseudostate is reached in the execution of a state machine, there must always be
at least one valid outgoing transition. If not, the state machine is invalid. A tech-
nique that is often used to ensure the validity of a choice pseudostate is to use
a catch-all guard on at most one outgoing transition. This is specifi ed using the
keyword “ else. ” Whether a compound transition contains junction pseudostates,
choice pseudostates, or both, any possible compound transition must contain
only one trigger, normally on the fi rst transition in the path.

The various routing pseudostates are represented as follows:

 ■ A junction pseudostate is shown, like an initial pseudostate, as a fi lled circle.
 ■ A choice pseudostate is shown as a diamond.

 Figure 10.5 completes the state machine for the Surveillance System shown
in Figure 10.3 . The handling of shutdown has been improved to describe what
happens if the operator does not actually want to shut down the system after all.
The argument of the Confi rmation Response signal, which takes values of “ Yes ”
or “ No, ” is mapped to attribute r. The transition triggered by the Confi rmation
Response signal now ends at a junction, with two outgoing transitions with differ-
ent guards. If r � � “ Yes, ” then the system shutdown proceeds; if r � � “ No, ” then
the system returns to the operating state.

 The transition from shutting down to idle/operating was able to be specifi ed
using a junction pseudostate in Figure 10.5 because the value of r, needed to
determine the complete transition path, was available before the transition was
triggered. However, Figure 10.6 shows another approach to system shutdown with-
out a shutting down state. Here, the confi rmation request is made as an effect of
the transition out of the operating state, so the value of r is not known before the
fi rst leg of the compound transition has been taken. In this case a choice pseudo-
state is needed to allow the value of r returned from Confi rm Shutdown to be
used in the guard conditions on its exit transitions. As noted earlier, the modeler

251

must ensure that there is always at least one valid path from a choice pseudostate,
so the guard on the transition has been changed to [else] in order to deal with any
values other than “ Yes. ” Then, even if Confi rm Shutdown unexpectedly returns a
value other than “ Yes ” or “ No, ” the state machine will still operate.

stm Surveillance System

operating

entry/Display "Operating" Status
do/Monitor Site
exit/Display "Shutdown" Status

shutting down

diagnosing

initializing

idle

System
KO

[init OK]

System OK

[r �� "Yes"]/
Shut Down Cameras

Confirmation
Response (r)

[not init OK]

[r �� "No"]

Turn Off

Startup after (60 s)/
Display "Timed Out" Status

Shutdown
[in (logged on)]/

Confirm
Shutdown

Request

 FIGURE 10.5

 Routing transitions.

idle

[r �� "Yes"]/Shut
Down Cameras

Shutdown [in (logged on)]/
r � Confirm Shutdown

[else]

operating

entry/Display "Operating" Status
do/Monitor Site
exit/Display "Shutdown" Status

 FIGURE 10.6

 Specifying shutdown using a choice pseudostate.

10.4 Transitioning between States

252 CHAPTER 10 Modeling Event-Based Behavior with State Machines

 10.4.3 Showing Transitions Graphically
 Some modelers prefer to show transitions graphically on state machine diagrams.
SysML introduces a set of special symbols that allow a modeler to graphically
depict triggers, signal send actions, and other actions; their graphical syntax is as
follows:

 ■ A rectangle with a triangular notch removed from one side represents all
the transition’s triggers, with descriptions of the triggering events and the
transition guard inside the symbol.

 ■ A rectangle with a triangle attached to one side represents the send sig-
nal action. The signal’s name, together with any arguments being sent, are
shown within the symbol. There may be many send signal actions in a sin-
gle transition effect, each with their own symbol. Signals are very important
when communicating between state machines, hence the separate treat-
ment of this action.

 ■ Any other action in the transition effect is represented by a rectangle
containing text that describes the action to be taken. There may be many
actions as part of a transition effect, each with their own symbol.

 Figure 10.7 shows the use of transition notation to provide an equivalent defi -
nition of the transitions between operating, idle, and shutdown, originally shown
on Figure 10.5.

 10.5 State Machines and Operation Calls
 State machines can respond to operation calls on their parent block via call
events. A call event may either be handled in a synchronous fashion—that is,

Confirm Shutdown Request

Confirmation Response (r)

Shut Down Cameras

shutting down

Shutdown [in (logged on)]

operating idle

[r �� "Yes"][r �� "No"]

 FIGURE 10.7

 Transition-oriented notation.

253

the caller is blocked while waiting for a response—or asynchronously, which
results in similar behavior to the receipt of a signal. The state machine executes
all actions triggered by the call event until it has reached another state, and then
returns any outputs created by the actions to the caller. Note that the invocation
of an operation or reception may also trigger the invocation of a method (see
Section 6.5.5). If so, the method is invoked and completely executed before the
transition enabled by the call event is triggered.

 One of the components used by the surveillance system’s operators is a video
player that allows them to review recorded surveillance data. The Video Player
block, shown in Figure 10.8 , provides a set of operations in its interface to control
playback. Although many of the operations do not return data, it makes sense for
any client of Video Camera to wait until a request for these operations has been
processed; hence, it makes sense for the interface to be defi ned as operations. The
response of the block to requests from these operations is defi ned using the state
machine shown in Figure 10.8 , where call events related to the operations are used
as triggers on transitions. Calls to the play, stop, pause, and resume operations
cause call events that trigger transitions between the various states of Video
Player. Calls to the operations, next chapter, previous chapter, and get play time
cause call events that trigger transitions that are local to state playing. To simplify
the example, Figure 10.8 does not show many of the transition effects, but it does
show how a request on get play time gets its return argument.

Video Player

play()
pause()
stop()
next chapter()
previous chapter()
get play time() : Seconds
resume()

operations

values
play time : Seconds

stm Video Player

playing

next chapter() /
previous chapter() /
get play time() /
return play time;

after (1 s)/play time��

paused

stopped

stop()

play()

pause()

resume()

/play time � 0

 FIGURE 10.8

 A state machine driven by call events for operations on its owning block.

10.5 State Machines and Operation Calls

254 CHAPTER 10 Modeling Event-Based Behavior with State Machines

 10.6 State Hierarchies
 Just as state machines can have regions, so can states; such states are called com-
posite or hierarchical states. This capability allows state machines to scale to
represent arbitrarily complex state-based behaviors. This section discusses com-
posite states with single and multiple regions, and also the reuse of an existing
state machine to describe the behavior of a state.

 10.6.1 Composite State with a Single Region
 Arguably the most common situation is a composite state that has a single region.
A state nested within a region can only be active when the state enclosing the
region is active. Thus, the switch position analogy described earlier can apply to
nested states by requiring that the switch position corresponding to the enclosing
state be enabled in order to enable any of its nested states.

 As stated earlier, a region typically will contain an initial pseudostate and a
fi nal state, a set of pseudostates and substates, which may themselves be com-
posite states. If the region has a fi nal state, then a completion event is generated
when that state is reached.

 When an initial pseudostate is missing from a region in a composite state, the
initial state of that region is undefi ned, although extensions to SysML are free
to add their own semantics. However, a composite state may be porous; that is,
transitions may cross the state boundary, starting or ending on states within its
regions (see Figure 10.10 later). In the case of a transition ending on a nested
state, the entry behavior of the composite state, if any, is executed after the effect
of the transition and before the execution of the entry behavior of the transition’s
end state. In the opposite case, the exit behavior of the composite state is exe-
cuted after the exit behavior of the source state and before the transition effect.
In the case of more deeply nested state hierarchies, the same rule can be applied
recursively to all the composite states whose boundaries have been crossed.

 Figure 10.9 shows the decomposition of the state operating into its sub-
states. On entry to the operating state, two entry behaviors are executed: the
entry behavior of operating, Display “ Operating ” status; logged in � 0, and then
the entry behavior of logged off, Display “Logged Off. ” This is because on entry, as
indicated by the initial pseudostate, the initial substate of operating is logged off.

 When in state logged off, a Login signal will cause a transition to the
logged on state and will increment the value of logged in. While in the logged on
state, repeated Login and Logout signals will increment and decrement the value
of logged off, often as internal transitions without a change of state. However, if a
Logout signal is received when the value of logged in is 1, then the signal will trig-
ger a transition back to logged off. The entry behavior for logged on records the
time in the variable time on, and its exit behavior uses that to display the session
length.

 State operating does not have a fi nal state, so a completion event is never gen-
erated. As can be seen in Figure 10.5 , this state is exited when a Shutdown signal
is presented.

255

 The do activity Monitor Site executes as long as the state machine for the
Surveillance System is in the operating state, irrespective of what substate of
operating is currently active.

 10.6.2 Composite State with Multiple (Orthogonal) Regions
 A composite state may have many regions, which may each contain substates.
These regions are orthogonal to each other, so a composite state with more
than one region is sometimes called an orthogonal composite state. When
an orthogonal composite state is active, each region has its own active state that
is independent of the others and any incoming event is independently analyzed
within each region. A transition that ends on the composite state will trigger
transitions from the initial pseudostate of each region, so there must be an initial
pseudostate in each region for such a transition to be valid. Similarly, a comple-
tion event will occur when all the regions are in their final state.

 In addition to transitions that start or end on the composite state, transitions
from outside the composite state may start or end on the nested states of its
regions. In this case one state in each region must be the start or end of one of a
coordinated set of transitions. This coordination is performed by a fork pseudostate
in the case of incoming transitions and a join pseudostate for outgoing transitions.

 A fork pseudostate has a single incoming transition and as many outgoing
transitions as there are orthogonal regions in the target state. Unlike junction and
choice pseudostates, all outgoing transitions of a fork are part of the compound
transition. When an incoming transition is taken to the fork pseudostate, all the out-
going transitions are taken. Because all outgoing transitions of the fork pseudostate
have to be taken, they may not have triggers or guards, but may have effects.

operating

logged onlogged off

Logout [logged in �� 1]/
logged in � logged in � 1

Login/logged in �
logged in � 1

entry/Display "Logged
Off "

entry/Display "Operating" Status; logged in � 0
do/Monitor Site
exit /Display "Shutdown" Status

entry/Display "Logged On"; time on � now
exit/Display "Session Length:", now – time on
Logout [logged in �1]/logged in � logged in � 1
Login/logged in � logged in � 1

 FIGURE 10.9

 States nested within a sequential state.

10.6 State Hierarchies

256 CHAPTER 10 Modeling Event-Based Behavior with State Machines

operating

logged on

Login/logged in �
logged in � 1

Logout [logged in �� 1]/logged
in � logged in � 1

/alert count � 0

/Display "Alerts: ", alert count

entry/Display "Logged On"; time on � now
exit/Display "Session Length:", now – time on
Logout [logged in �1]/logged in � logged in � 1
Login/logged in � logged in � 1

entry/Display "Operating" Status; logged in � 0
do/Monitor Site
exit/Display "Shutdown" Status

logged off

entry/Display "Logged
Off"

maintainingidle

Edit Routes

Store Routes

route maintenance

alertednormal

Alert/alert count � alert count � 1

Stand Down

alert management

 FIGURE 10.10

 Entering and leaving a set of concurrent regions.

 The coordination of outgoing transitions from an orthogonal composite state
is performed using a join pseudostate that has multiple incoming transitions and
one outgoing transition. The rules on triggers and guards for join pseudostates
are the opposite of those for fork pseudostates. Incoming transitions of the join
pseudostate may not have triggers or a guard but may have an effect. The outgo-
ing transition may have triggers, a guard, and an effect. When all the incoming
transitions can be taken and the join’s outgoing transition is valid, the compound
transition can happen. Incoming transitions are taken fi rst and then the outgoing
transition. An example of this can be seen in Figure 10.10 .

 Note that a transition can never cross the boundary between two regions of
the same composite state. Such a transition, if triggered, would leave one of the
regions with no active state, which is not allowed.

 When an event is associated with triggers in multiple orthogonal regions,
the event may trigger a transition in each region, assuming the transition is valid
based on the other usual criteria. A simple example of this scenario is shown later
in Figure 10.11 .

257

 The presence of multiple regions within a composite state is indicated by
multiple compartments within the state symbol, separated by dashed lines. The
regions can optionally be named, in which case the name appears at the top of
the corresponding compartment. All vertices within such a compartment are part
of the same region. When an orthogonal composite state has no other compart-
ments, it is preferable to use an alternative notation for a state, where the name of
the state is placed in a tab attached to the outside of the state symbol. An example
of this can be seen in Figure 10.11 .

 Fork and join pseudostates are described by a vertical or horizontal bar, with
transition edges either starting or ending on the bar.

 Figure 10.10 shows an elaboration of the operating state fi rst shown in Figure
10.9. In this elaboration, the logged on state has two orthogonal regions. One
region, called alert management, specifi es states and transitions for normal and
alerted modes of operation; the other region, called route maintenance, specifi es
states and transitions for updating the route (i.e., pan-and-tilt angles) for when the
automatic surveillance feature of the system is engaged. As before, in state logged
off, the receipt of a Login signal triggers transition to logged on. Based on the ini-
tial pseudostates in the two regions, the two initial substates of logged on are idle
for region route maintenance and normal for alert management. The receipt
of an Alert signal triggers the transition from normal to alerted in alert manage-
ment. Similarly, the receipt of an Edit Routes signal triggers the transition from
idle to maintaining in route management.

 To prevent dereliction of duty, the last operator can only log off if the logged
on state is in substates idle and normal. This constraint is specifi ed using a join
pseudostate whose outgoing transition is triggered by a Logout signal with a
guard of logged in � � 1. The two incoming transitions to the join pseudostate
start on idle and normal, so even if there is a Logout signal and the number of
logged on operators is one, the outgoing transition from the join pseudostate
will be valid only if the two active substates of logged on are idle and normal .
Because the transitions from idle and normal cross the boundary of state logged
in, its exit behavior is executed before any effects on the transitions. The order of
execution triggered by a valid Logout signal is thus:

 ■ Exit behavior of logged in—Display “Session Length: ”, now–time on
 ■ Incoming transition effect to join—Display “Alerts:, ” alert count
 ■ Outgoing transition effect from join— “logged in � logged in � 1”
 ■ Entry behavior of logged off—Display “Logged Off”

 Having elaborated the operating state, it is apparent that the transitions Logout
[logged in � 1] and Login are rightly internal transitions rather than transitions to
self. Transitions to self always exit and reenter the state, which in this case would
reset the substates of route maintenance and alert management; obviously, this
is not desirable in the middle of an intruder alert!

 10.6.3 Transition Firing Order in Nested State Hierarchies
 It is possible that the same event may trigger transitions at several levels in a state
hierarchy, and with the exception of concurrent regions, only one of the transitions

10.6 State Hierarchies

258 CHAPTER 10 Modeling Event-Based Behavior with State Machines

can be taken. Priority is given to the transition whose source state is innermost in
the state hierarchy.

 Consider the state machine, Machine 1, shown in Figure 10.11 , in its initial
state (i.e., in state 1.1.1 and 1.2.1). The signal sig1 is associated to the triggers of
three transitions, each with guards based on the value of variable x. Note that, in
this case, the transitions have both a name and a transition expression, whereas
a transition edge normally would show one or the other. This has been done to
help explain the behavior of the state machine. The following list shows the tran-
sitions that will fi re based on values of x from � 1 to 1:

 ■ x equals � 1—transition t1 will be triggered because it is the only transition
with a valid guard

 ■ x equals 0—transition t2 will be triggered because, although transition t1
also has a valid guard, state 1.1.1 is the innermost of the two source states

 ■ x equals 1—both transitions t2 and t3 will be triggered because both their
guards are valid

 The normal rules for execution of exit behaviors apply, so, for example, before
the transition from state 1 to state 2 can be taken, any exit behavior of the active
nested states of state 1, as well as the exit behavior of state 1, must be executed.

 The example in Figure 10.11 is fairly straightforward. Assessing transition pri-
ority is more complex when compound transitions and transitions from within
orthogonal composite states are used. However, the same rules apply.

 10.6.4 Using the History Pseudostate to Return to a Previously
Interrupted State

 In some design scenarios, it is desirable to handle an exception event by inter-
rupting the current state, responding to the event, and then returning back to the
state that the system was in at the time of the interruption. This can be achieved

state 1.1.1 state 1.1.2

state 1.2.1 state 1.2.2

state 2

sig1 [x �� 0]

sig1 [x �� 1]

sig1 [x �� 0]

stm Machine 1

t1

t2

t3

state 1

 FIGURE 10.11

 Illustration of transition fi ring order.

259

by a type of pseudostate called a history pseudostate. A history pseudostate
represents the last active substate of its owning region, and a transition ending
on a history pseudostate has the effect of returning the region to that state. An
outgoing transition from a history pseudostate designates a default history pseudo-
state. This is used where the region has no previous history or its last active sub-
state was a final state.

 The two kinds of history pseudostate are deep and shallow. A deep history
pseudostate records the states of all regions in the state hierarchy below and
including the region that owns the deep history pseudostate. A shallow history
pseudostate only records the top-level state of the region that owns it. As a result,
the deep history pseudostate will enable a return to a nested state, while a shallow
history pseudostate will enable a return to only the top-level state.

 A history pseudostate is described using the letter “H” surrounded by a circle.
The deep history pseudostate has a small asterisk in the top right corner of the
circle.

 The Surveillance System supports an emergency override mechanism, as
shown in Figure 10.12 . In a change from Figure 10.10 , the reception of an
Override signal, with a valid password, will always cause a transition from the
operating state, even if there is an ongoing alert. However, once the emergency is
over, a Resume Operation signal needs to restore the operating state completely
to its previous state so that the system can continue with its interrupted activities.
To achieve this, the transition triggered by the Resume Operation signal ends
on a deep history pseudostate, which will restore the complete previous state
including substates of operating. By comparison, if a shallow history pseudostate
was used, and the previous substate of operating was logged on, then the initial
rather than previously active substates of logged on would be used.

 Alert events are deferred in the emergency override activated state so that
they can be handled, if appropriate, in the resumed operating state.

 10.6.5 Reusing State Machines
 A state machine may be reused to specify the behavior of a kind of state called a
submachine state. A transition ending on a submachine state will start its refer-
enced state machine, and similarly, completion events trigger transitions whose
source is the submachine state when the referenced state machine completes.
However, modelers can also benefit from two additional types of pseudostates,
called entry- and exit-point pseudostates, that allow the state machine to define
additional entry and exit points that can be accessed from a submachine state.

 Entry and Exit Points on State Machines
 For a single-region state machine, entry- and exit-point pseudostates are similar to
junctions; that is, they are part of a compound transition. Outgoing guards have
to be evaluated before the compound transition is triggered, and only one out-
going transition will be taken. On state machines, entry-point pseudostates can
only have outgoing transitions and exit-point pseudostates can only have incom-
ing transitions.

10.6 State Hierarchies

2
6

0

operating

logged off

H*
emergency

override
activated

Login/logged in �
logged in �1

Override [check (password) ��"valid"]

Resume Operation

Logout [logged
in �� 1]/ logged

in � logged in �1

logged on

maintainingidle

normal alerted

Edit Routes

Store Routes

Stand Down

route maintenance

alert management

Alert /defer entry/Display "Logged
Off"

/Display "Alerts:" , alert count

/alert count � 0

entry/Display "Logged On"; time on � now
exit/Display "Session Length:" , now – time on
Logout [logged in � 1]/logged in � logged in � 1
Login/logged in � logged in � 1

entry/Display "Operating" Status; logged in � 0
do/Monitor Site
exit /Display "Shutdown" Status

Alert/alert count � alert count � 1

 FIGURE 10.12

 Recovering from an interruption using a history pseudostate.

261

 Entry- and exit-point pseudostates are described by small circles that overlap
the boundary of a state machine or composite state. An entry-point symbol is
hollow, whereas an exit-point symbol has a cross, rotated 45° from the vertical/
horizontal axis.

 Figure 10.13 shows a state machine for testing cameras, called Test Camera,
that uses the graphical form for specifying transitions. From the entry-point
pseudostate, the fi rst transition simply sets the failures variable to 0 and ends on
a choice pseudostate. On fi rst entry, the state machine will always take the [else]
transition, which will result in the sending of a Test Camera signal with the cur-
rent camera number (ccount) as its argument. The state machine then stays in the
await test result state until a Test Complete signal with argument test result has
been received. The transition triggered by a Test Complete signal ends on a junc-
tion that either leads to the exit-point pseudostate pass, if the test passed, or back
to the initial choice pseudostate, if the test failed, incrementing the failures vari-
able on the way. If the camera has failed its self-test more than three times, then
the transition with guard [failures � 3] will be taken to exit-point fail.

 Submachine States
 A submachine state contains a reference to another state machine that is exe-
cuted as part of the execution of the submachine state’s parent. The entry- and
exit-point pseudostates of the referenced state machine are represented on the
boundary of the submachine state by special vertices called connection points .
Connection points can be the source or target of transitions connected to states
outside the submachine state. A transition whose source or target is a connec-
tion point forms part of a compound transition that includes the transition to or
from the corresponding entry- and exit-point pseudostate in the referenced state
machine. An example of this can be seen in Figure 10.14 . In any given use of a
state machine by a submachine state, only a subset of its entry- and exit-point
pseudostates may need to be externally connected.

 A submachine state is represented by a state symbol showing the name of the
state, along with the name of the referenced state machine, separated by a colon.
A submachine state also includes an icon shown in the bottom right corner depict-
ing a state machine. Connection points may be placed on the boundary of the

stm Test Camera

Test Complete

failures � failures � 1

Test Camera
(ccount)

failures � 0
await
test

result pass

fail

[test result �� fail]

[test result �� pass]

[failures � 3]

[else]

 FIGURE 10.13

 A state machine with entry and exit points.

10.6 State Hierarchies

262 CHAPTER 10 Modeling Event-Based Behavior with State Machines

submachine state symbol. These symbols are identical to the entry- and exit-point
pseudostate symbols used in the referenced state machine. Note that only those
connection points that need to be attached to transition edges need be shown on
the diagram.

 Figure 10.14 shows the initializing state of the Surveillance System. On entry,
ccount (i.e., a property of the owning block that counts the number of cameras
tested) and passed (i.e., a property that counts the number of cameras that passed
their self-test) are initialized to 1 and 0, respectively. A junction pseudostate,
which allows the algorithm to test as many cameras as required, follows. To test
each camera, the testing state uses the Test Camera state machine. The transition
leaving the pass exit-point pseudostate has an effect that adds one to the passed
variable; the transition leaving its fail exit-point pseudostate does not. Both transi-
tions end in a junction whose outgoing transition increments the count of cam-
eras tested. This transition ends on a choice, with one outgoing transition looping

testing
: Test Camera

passfail

/passed � passed � 1

[ccount �� total
cameras]

/ccount � 1;
passed � 0;

[ccount � total
cameras]/init OK �
(passed � 0)

/ccount � ccount � 1

initializing

t1

 FIGURE 10.14

 Invoking a substate machine.

263

back to test another camera if [ccount �� total cameras] and the other reaching
the fi nal state of initializing. On the transition to the fi nal state, the effect of the
transition sets the init OK variable to true if at least one camera passed its self-test,
and false otherwise.

 As stated earlier, entry- and exit-point pseudostates form part of a com-
pound transition, that in the case of submachine states, incorporates transitions
(and their triggers, guards, and effects) from both containing and referenced
state machines. Looking at both Figures 10.13 and 10.14, it can be seen that the
compound transition from the initial pseudostate of state initializing will be as
follows:

 1. Initial pseudostate of the (single) region owned by state initializing
 2. Transition labeled with effect ccount � 1; passed � 0
 3. Transition named t1
 4. Transition with effect failures � 0
 5. Transition with guard [else] (at least this time)
 6. (Graphical) transition with effect send Test Camera signal with argument

ccount
 7. State await test result

 Entry- and Exit-Point Pseudostates on Composite States
 Entry- and exit-point pseudostates can be used on the boundaries of composite
states as well. Where the composite state has a single region, they behave like
junctions. Where the composite state has multiple regions, they behave like forks
in the case of entry-point pseudostates and joins in the case of exit-point pseu-
dostates. For entry-point pseudostates, the effects of their outgoing transitions exe-
cute after the entry behavior of the composite state. For exit-point pseudostates,
their incoming transitions execute before the composite state’s exit behavior.

 10.7 Contrasting Discrete versus Continuous States
 The examples shown so far in this chapter have been based on discrete seman-
tics, and specifically state machines where the triggering event is a specific stim-
ulus (i.e., a signal, an operation call, or the expiration of a timer). SysML state
machines can also be used to describe systems where transitions are driven by
the values of either discrete or continuous properties. Such transitions are trig-
gered by change events.

 A trigger on a transition may be associated with a change event whose change
expression states the conditions, typically in terms of the values of properties,
which will cause the event to occur and hence trigger the transition. The change
expression has a body containing the expression, and an indication of the lan-
guage used, which allows a wide variety of possible expressions.

 Figure 10.15 shows a very simple state machine, called Lamp Switch, for con-
trolling a lamp with an unlatched button. It starts in state off, which has an entry

10.7 Contrasting Discrete versus Continuous States

264 CHAPTER 10 Modeling Event-Based Behavior with State Machines

behavior that turns the lamp off and a do activity that repeatedly polls an input
line and places the value of the input into the variable button value. A change
event, when (button value � � 1), triggers a transition to state on, so as soon as
the polled value changes to 1, the off state is exited and the do activity is termi-
nated. On entry into the on state, the lamp is turned on and the state machine
again repeatedly polls the input line. The transition out of state on to state off
is again triggered by the change event when (button value � � 1). This type of
solution is suitable for describing digital systems that execute continuously moni-
toring inputs and writing outputs.

 The transitions between states in the Lamp Switch state machine are triggered
by a change to the value of a discrete property, button value. This is in contrast
to the continuous state representation of a system in terms of continuous state
variables (expressed as value properties).

 The state machine for H2 O, shown in Figure 10.16 , defi nes the transitions
between its solid, liquid, and gas states. These represent discrete states of H2 O ,
while the values of its properties, such as temperature and pressure, represent
continuous state variables. Specifi c values for the variable temp, plus other con-
ditions (e.g., the withdrawal or addition of energy), defi ne the expressions for
the change events on the transitions. So implicitly, the values of its state variables
determine the discrete state of H2 O via the transitions between them. Similarly,
the discrete state of other continuous systems can be defi ned in terms of values
of selected continuous properties of the system.

 10.8 Summary
 State machines are used to describe behavior of a block in terms of its states and
transitions. State machines can be composed hierarchically, like other SysML
behavioral constructs, enabling arbitrarily complex representations of state-based
behavior.

 The signifi cant state machine concepts covered in this chapter include the
following.

■ A state machine describes a potentially reusable definition of the state-dependent
behavior of a block. Each state machine is described using a state machine
diagram.

stm Lamp Switch

off

entry/Lamp Off
do/loop
 button value � poll();

on

entry/Lamp On
do/loop
 button value � poll();

when (button value �� 1)

when (button value �� 1)

 FIGURE 10.15

 A discrete state machine driven by change events.

265

■ Each state machine contains at least one region, which itself can contain a
number of substates, pseudostates (called collectively vertices), and transi-
tions between those vertices. During execution of a state machine, each of its
regions has a single active state that determines the transitions that are cur-
rently viable in that region. A region can have an initial pseudostate and final
state that correspond to its beginning and completion, respectively.

■ A state is an abstraction of some significant condition in the life of a block, and
specifies the effect of entering and leaving that condition, and what the block
does while it is in that condition, using behaviors such as activities.

■ Transitions describe valid state changes, and under what circumstances those
changes will happen. A transition has one or more triggers, a guard, and an
effect. A trigger is associated to an event, which may correspond either to the
reception of a signal (signal event) or operation call (call event) by the own-
ing block; the expiration of a timer (time event); or the satisfaction of a condi-
tion specified in terms of properties of the block and its environment (change
event). A transition can also be triggered by a completion event that occurs
when the currently active state has completed.

■ A guard expresses any additional constraints that need to be satisfied if the transi-
tion is to be triggered. If a valid event occurs, the guard is evaluated, and if true,
the transition is triggered; otherwise, the event is consumed. A transition can
include a transition effect that is described by a behavior such as an activity. If
the transition is triggered, the transition effect is executed.

■ A state may specify that certain events can be deferred, in which case they are
only consumed if they trigger a transition. Deferred events are consumed on
transition to a state that does not further defer them.

stm H2O States

Liquid

Solid

Gas

when (temp �� 0 &
latent heat of liquification
removed)

when (temp �� 0 &
latent heat of

liquification added)

when (temp �� 100 &
latent heat of vaporization
removed)

when (temp �� 100 &
latent heat of

vaporization added)

 FIGURE 10.16

 State machine for H 2O.

10.8 Summary

266 CHAPTER 10 Modeling Event-Based Behavior with State Machines

■ There are a number of circumstances where simple transitions between states
are not sufficient to specify the required behavior. Junction and choice pseu-
dostates allow several transitions to be combined into a compound transition.
Although the compound transition can include only one transition with trig-
gers, it can have multiple transitions with guards and effects. Junction and
choice pseudostates can have multiple incoming transitions and outgoing tran-
sitions. They are used to construct complex transitions that have more than
one transition path, each potentially with its own guard and effect. History
pseudostates allow a state to be interrupted and then subsequently resume its
previously active state or states.

■ States may be composite with nested states in one or more regions. Just like state
machines, during execution an active state will have one active substate per
region. Composite states are porous; that is, transitions can cross their bounda-
ries. Special pseudostates called fork and join pseudostates allow transitions to
and from states in multiple regions at once. A given event may trigger transitions
in multiple active regions.

■ State machines may be reused via submachine states. Interactions with the
reused state machine take place via transitions to and from the boundary of
the corresponding submachine state, either directly or through entry- and exit-
point pseudostates.

■ Change events are driven by the values of variables of the state machine or prop-
erties of its owning block. In addition to discrete systems, change events can be
used to describe the state of continuous systems, where transitions between the
system’s discrete states are triggered by changes in the values of other continu-
ous properties.

 10.9 Questions

 1. What is the diagram kind for a state machine diagram?
 2. Which types of model element may a state machine region contain?
 3. What is the difference between a state and a pseudostate?
 4. A state machine has two states, “ S1 ” and “ S2 ” ; how do you show that the ini-

tial state for this machine is “ S1 ” ?
 5. What is the difference between a fi nal state and a terminate pseudostate?
 6. A state has three behaviors associated with it; what are they called and when

are they invoked?
 7. What are the three components of a transition?
 8. Under what circumstances does a completion event get generated for a state

with a single region?
 9. What is the difference in behavior between an internal transition and an

external transition with the same source and target state?
 10. What would the transition string for a transition look like if triggered by a sig-

nal event for signal “ S1, ” with guard “ a � 1 ” and an effect “ a � a � 1 ” ?

267

 11. Draw the same transition using the graphical notation for transitions.
 12. Where and how is a deferred event represented?
 13. What is the difference between a junction and a choice pseudostate?
 14. If a state has several orthogonal regions, how are they displayed?
 15. What is the difference between a shallow and deep history pseudostate?
 16. How can a state machine be reused within another state machine?
 17. How are entry- and exit-point pseudostates represented on a state machine?
 18. Under what circumstances will a given change event occur?

 Discussion Topic
 Discuss the relative benefits of using orthogonal regions in a single state machine,
or creating a composition hierarchy of blocks, each with their own state machine.

10.9 Questions

This page intentionally left blank

 This chapter describes how to model the high-level functionality of a system with
use cases.

 11.1 Overview
 Use cases describe the functionality of a system in terms of how its users use
that system to achieve their goals. The users and other interested participants of a
system are described by actors, which may represent external systems or humans
who use the system. Use cases have a textual and graphical description that may
be further elaborated with detailed descriptions of their behavior, using activi-
ties, interactions, or state machines. The relationships between the system under
consideration, its actors, and use cases are described on a use case diagram that
shares many characteristics with a block definition diagram.

 Different methodologies apply use cases in different ways [34]. For example,
some methods require a use case description for each use case captured in text,
which may include pre- and postconditions, and primary, alternative, and/or
exceptional fl ows.

 Use cases have been viewed as a mechanism to capture system requirements
in terms of the uses of the system. SysML requirements can be used to more
explicitly capture text requirements and establish relationships with use cases
and other model elements (refer to Chapter 12 for a discussion on requirements).
The steps in a use case description can also be captured as SysML requirements.

 11.2 Use Case Diagram
 On a use case diagram, the frame represents a package or block, and the con-
tent of the diagram describes a set of actors and use cases and the relationships
between them. The diagram header for a use case diagram has the following form:

 uc [model element type] model element name [diagram name]

 Modeling Functionality
with Use Cases 11

CHAPTER

 The diagram kind for a use case diagram is uc. The model element type for a
use case diagram may be either a package or a block. Model element name is the
name of the model element that contains the use cases and actors in the diagram,
and the diagram name, as usual, is user specifi ed and may be used to describe
the purpose of the diagram.

 Figure 11.1 shows an example of a use case diagram containing the key dia-
gram elements, a system, a use case, and some actors. The diagram shows the
main use case for the Surveillance System and the participants in that use case.
The notation for use case diagrams is shown in the Appendix, Table A.21.

 11.3 Using Actors to Represent the Users of a System
 An actor is used to represent the role of a human, an organization, or any exter-
nal system that participates in the use of some system being investigated. Actors
may interact directly with the system or indirectly through other actors.

 It should be noted that “ actor ” is a relative term because an actor who is exter-
nal to one system may be internal to another. For example, assume individuals
in an organization request services from an internal help desk department that
provides IT support for the organization. The help desk is considered the system
and the members of the organization who are requesting service are considered
the actors. However, these same individuals may in turn be providing services to
an external customer. In that context, the individuals who were previously con-
sidered actors relative to the help desk are considered part of the system relative
to the “ external ” customer.

 Actors can be classifi ed using the standard generalization relationship. Actor
classifi cation has a similar meaning to the classifi cation of other classifi able model
elements. For example, a specialized actor participates in all the use cases that
the more general actor participates in.

 An actor is shown either as a stick fi gure with the actor’s name underneath, or
as a rectangle containing the actor’s name below the keyword «actor». The choice

pkg [Package] Use Cases [Main Use Case]

Surveillance System

Monitor Environment

Operator Intruder

0..*1..*

«actor»
Emergency

Services

 FIGURE 11.1

 Example use case diagram.

270 CHAPTER 11 Modeling Functionality with Use Cases

of symbol is dependent on the tool and methodology being used. Actor classifi ca-
tion is represented using the standard SysML generalization symbol—a line with a
hollow triangle at the general end.

 The Use Cases package for the Surveillance System contains descriptions of
the system’s users. Five actors are shown in Figure 11.2 . The actors include an
Operator who operates the system and a Supervisor who manages the system.
There is also an Advanced Operator whose role is a specialized version of the
Operator because that role has additional specialized skills. Note that an Intruder
is also modeled as an actor. Although strictly speaking not a user, an intruder does
interact with the system and is an important part of the external environment
to consider. Also of interest are the Emergency Services to whom incidents may
need to be reported. This actor is not modeled using an actor stick-fi gure symbol
because it is an organization composed of people, systems, and other equipment.

 11.3.1 Further Descriptions of Actors
 Although not defined in SysML, there are many methodologies that suggest addi-
tional descriptive properties that can apply to actors as users of a system. These
may include the following:

 ■ The organization that the actor is a part of (e.g., procurement)
 ■ Physical location
 ■ Skill level required to use the system
 ■ Clearance level required to access the system

 11.4 Using Use Cases to Describe System Functionality
 A use case describes the functionality that some system must provide in order
to achieve some user goals. Typically, the use case description identifies the goal

pkg [Package] Use Cases [Actors]

«actor»
Emergency

Services

Advanced Operator

Operator Supervisor

Intruder

 FIGURE 11.2

 Representing actors and their interrelationships on a use case diagram.

27111.4 Using Use Cases to Describe System Functionality

or goals of the use case, a main pattern of use, and a number of variant uses. The
system that provides functionality in support of use cases is called the system
under consideration and often represents a system that is being developed.
The system under consideration is sometimes referred to as the subject and is
represented by a block. We will use the term system or subject interchangeably in
reference to the system under consideration.

 A use case typically covers many scenarios that are different paths the actors
can take through the use case under different circumstances.

 Actors are related to use cases by associations, with some restrictions. The
association ends can have multiplicities, where the multiplicity at the actor end
describes the number of actors involved in each use case. The multiplicity at the
use case end describes the number of instances of the use case in which the actor
or actors can be involved at any one time. Composite associations in either direc-
tion are not permitted; actors and use cases are always regarded as peers.

 Neither actors nor use cases may own properties, so role names on associa-
tions do not represent reference properties as they might do on block defi nition
diagrams. The role name on an actor end can be used, literally, to describe the
role an actor plays in the associated use case whenever it is not obvious from the
actor’s name. The role name on the use case end can be used to describe how
use case functionality is relevant to the associated actor.

 A use case is shown as an oval with the use case name inside it. Associations
between actors and use cases are shown using standard association notation. The
default multiplicity of the association ends, if not shown, is “ 0..1. ” Associations
cannot have arrows in use case diagrams because neither actors nor use cases
may own properties. The subject of a set of use cases can be shown as a rectangle
enclosing the use cases, with the subject’s name centered at the top.

 Figure 11.3 shows the central use case of the Surveillance System ,
called Monitor Environment. The two main actors associated with Monitor
Environment are the system’s Operator and the Intruder. The multiplicities on

pkg [Package] Use Cases [Main Use Case]

Surveillance System

Monitor Environment

Operator Intruder

0..*1..*

«actor»
Emergency

Services

 FIGURE 11.3

 A use case and the actors that participate in it.

272 CHAPTER 11 Modeling Functionality with Use Cases

the associations indicate that there must be at least one Operator and potentially
many Intruders. The Emergency Services are also associated with the Monitor
Environment use case, although they may not be active participants unless an
Intruder is detected and reported.

 11.4.1 Use Case Relationships
 Use cases can be related to one another by specialization, inclusion, and extension.

 Inclusion
 The inclusion relationship allows one use case, referred to as the base use
case, to include the functionality of another use case, called the included use
case, as part of its functionality when performed. The included use case is always
performed when the base use case is performed. A behavior that realizes the base
use case often references the behavior of the included use case.

 It is implicit in the defi nition of inclusion that any participants of a base
use case may participate in an included use case, so an actor associated with
a base use case need not be explicitly associated to any included use case.
For example, as shown in Figure 11.4 , the Operator implicitly takes part in
Initialize System and Shutdown System through their association with Monitor
Environment.

 Included use cases are not intended to represent a functional decomposition
of the base use case, but rather are intended to describe common functional-
ity that may be included by other use cases. In a functional decomposition, the
lower-level functions represent a complete decomposition of the higher-level
function and contain the actual functionality. By contrast, a base use case often
describes a signifi cant proportion of the overall functionality required. For exam-
ple, in the case of Monitor Environment in Figure 11.4 , the key monitoring func-
tion is described by the base use case, and additional functionality is described by
the included use cases.

 Extension
 A use case can extend a base use case using the extension relationship. The
extending use case is a fragment of functionality that is not considered part of
the normal base use case functionality. It often describes some exceptional behav-
ior in the interaction, such as error handling, between subject and actors that
does not contribute directly to the goal of the base use case.

 To support extensions, a (base) use case defi nes a set of extension points
that represent places where it can be extended. An extension point can be ref-
erenced as part of the use case description. For example, if the use case had a
textual description of a sequence of steps, the extension point could be used to
indicate at which step in the sequence an extending use case would be valid. An
extension has to reference an extension point to indicate where in the base use
case it can occur. The conditions under which an extension is valid can be further
described by a constraint that is evaluated when the extension point is reached to
determine whether the extending use case occurs on this occasion. The presence

27311.4 Using Use Cases to Describe System Functionality

of an extension point does not imply that there will be an extension related to it,
and the base use case is unaware of whether there is an extension.

 Unlike an included use case, the base use case does not depend on an extend-
ing use case. However, an extending use case may be dependent on what is
happening in its base use case; for example, it is likely to assume that some excep-
tional circumstance in the base use case has arisen. There is no implication that
an actor associated with the base use case participates in the extending use case,
and the extended use case in fact may have entirely different participants, as dem-
onstrated by the use case Handle Camera Fault in Figure 11.4 .

 Classifi cation
 Use cases can be classified using the standard SysML generalization relation-
ship. The meaning of classification is similar to that for other classifiable model
elements. One implication, for example, is that the scenarios for the general use
case are also scenarios of the specialized use case. It also means that the actors
associated with a general use case do not participate in any scenarios solely
described by a specialized use case. Classification of use cases is shown using the
standard SysML generalization symbol.

 Inclusion and extension are shown using dashed lines with an open arrow
at the included and extended ends, respectively. An inclusion line has the key-
word «include» and an extension line has the keyword «extend». The direction of
the arrows should be read as tail end includes or extends arrow end. Thus, a base
use case includes an included use case, and an extending use case extends a base
use case.

 A use case may have an additional compartment under its name compartment
that lists all its extension points. The extension line can have a call-out that names
its extension point and shows the condition under which the extending use case
occurs.

 Figure 11.4 shows a use case diagram containing the complete set of use
cases for the Surveillance System. As part of Monitor Environment, normal
Operators are only allowed to oversee the automatic tracking of suspicious move-
ments—that is, where the system controls the cameras. This allows the company
to employ untrained people and avoid issues with health and safety legislation.
Advanced Operators can participate in the Manually Monitor Environment
use case, where they control the cameras manually using a joystick. Advanced
Operators also have the option to set up surveillance tracks for the cameras to
follow.

 The complete specifi cation for Monitor Environment also includes system
initialization and shutdown as indicated by the include relationships between
Monitor Environment and Initialize System and Shutdown System.

 The Fault extension point represents a place in the Monitor Environment
use case where camera fault might be handled. The Handle Camera Fault
use case extends Monitor Environment at the Fault extension point. It is an
exceptional task that will only be triggered when camera faults are detected,

274 CHAPTER 11 Modeling Functionality with Use Cases

as indicated by its associated condition, and may only be performed by the
Supervisor.

 11.4.2 Use Case Descriptions
 A text-based use case description should be used to provide additional informa-
tion to support the use case definition. This description contributes significantly to
the use case’s value. The description text can be captured in the model as a single
or multiple comments. It is also possible to treat each step in a use case description
as a SysML requirement. A typical use case description may include the following:

 ■ Preconditions —the conditions that must hold for the use case to begin.

 ■ Postconditions—the conditions that must hold once the use case has
completed.

 ■ Primary fl ow —the most frequent scenario or scenarios of the use case.

 ■ Alternate and/or exception fl ows—the scenarios that are less frequent or
off nominal. The exception fl ows may reference extension points and gen-
erally represent fl ows that are not directly in support of the goals of the pri-
mary fl ow.

27511.4 Using Use Cases to Describe System Functionality

pkg [Package] Use Cases [Complete]

Surveillance System

Monitor Environment

extension points
Fault

Handle Camera Fault

Shutdown SystemInitialize System

Manually Monitor
Environment

Setup Track

Advanced Operator

Supervisor

Operator

Intruder

«include» «include»

«extend»
0..*

1..*

1..*

1..*

Condition: {camera fault detected}
extension point: Fault

 FIGURE 11.4

 A set of use cases for the Surveillance System.

 ■ Other information may augment the basic use case description to further
elaborate the interaction between the actors and the subject.

 Here is an extract from the use case description for Monitor Environment:

Precondition
 The Surveillance System is powered down.

 Primary Flow
The Operator or Operators will use the Surveillance System to monitor
the environment of the facility under surveillance. An Operator will
initialize the system (see Initialize System) before operation and shut
the system down (see Shutdown System). During normal operation, the
system’s cameras will automatically follow preset routes that have been set
to optimize the likelihood of detection.
 If an Intruder is detected, an alarm will be raised both internally and
with a central monitoring station, whose responsibility it is to summon
any required assistance. If fi tted, an intelligent intruder tracking system,
which will override the standard camera search paths, will be engaged at
this point to track the suspected intruder. If not fi tted then it is expected
that Operators will keep visual track of the suspected intruder and pass
this knowledge onto the Emergency Services if and when they arrive.

 Alternate Flow
Immediately after system initialization but before normal operation begins,
it is possible that a fault will arise in which case it can be handled (c.f.
Fault extension point), but faults will not be handled thereafter.

 Postcondition
 The Surveillance System is powered down.

 11.5 Elaborating Use Cases with Behaviors
 The textual definition for a use case, together with the use case models described
previously, can describe the functionality of a system. However, if desired, a more
detailed definition of the use case may be modeled with interactions, activities,
or state machines, described in Chapters 8 through 10. Typically these additional
definitions are added after the use case definition has been reviewed and agreed
on and may represent the first step toward design. The choice of behavioral for-
malism is often a personal or project preference, but in general:

 ■ Interactions are useful where a scenario is largely message-based.

 ■ Activities are useful where the scenario includes considerable control logic,
fl ow of inputs and outputs, and/or algorithms that transform data.

 ■ State machines are useful when the interaction between the actors and the
subject is asynchronous and not easily represented by an ordered sequence
of events.

276 CHAPTER 11 Modeling Functionality with Use Cases

 11.5.1 Context Diagrams
 When using interactions or activities, the lifelines and/or partitions represent par-
ticipants in the interaction. It is useful to create an internal block diagram where
the enclosing frame corresponds to the system context, and the subject and
participating actors correspond to parts in the internal block diagram. To support
this technique, actors can appear on a block definition diagram, and a part on
an internal block diagram can be typed by the actor. Alternatively, the actors can
be allocated to blocks using the allocation relationship described in Chapter 13,
and then the parts representing actors can be typed by the block.

 Figure 11.5 shows an internal block diagram that describes the internal
structure of the block System Context, which represents the context for the
Surveillance System and its associated use cases. The system under consider-
ation, Surveillance System, is represented as part of the System Context, called
company security system. Two of the actors, Advanced Operator and Intruder,
who participate in the use cases are also represented as parts security guard and
suspected thief , respectively.

 11.5.2 Sequence Diagrams
 A use case, in addition to being described in a use case description, can be elabo-
rated by one or more interactions described by sequence diagrams. The different
interactions may correspond to the (base) use case, any included use cases, and
any extending use cases. The block that owns the interactions must have parts
that correspond to the subject and participants, which can then be represented
by lifelines in the interactions.

 As stated earlier, an included use case must always occur as part of its base use
case. As a result, the use of an interaction describing an included scenario will typ-
ically be a mandatory part of the interaction representing a base scenario. This is
typically indicated by the use of mandatory operators, such as seq, strict, or loop.

 Strictly speaking, an interaction representing a base use case should be speci-
fi ed without reference to extending use cases, simply noting the extension points.

ibd [Block] System Context [Use Case Participants]

company security system : Surveillance System

security guard : Advanced Operator [1..*]

suspected thief : Intruder [0..*]

 FIGURE 11.5

 Context for use case scenarios.

27711.5 Elaborating Use Cases with Behaviors

However, a popular approach is to reference extending use cases as optional con-
structs in the interaction representing the base scenario. In this approach, an inter -
action corresponding to an extending use case is typically contained in an operand
of a conditional operator, such as break, opt, or alt. The operand should be guarded
using the constraint on the extension, if one is specifi ed.

 The block System Context, whose internal block diagram was shown in Figure
11.5, owns a number of interactions. The interaction for the primary scenario of the
Manually Monitor Environment use case, Handling Alert, is shown in Figure 11.6 .
In Figure 11.4 , the Manually Monitor Environment use case included the
Initialize System use case and the Shutdown System use case. The Handling Alert

sd Handling Alert

opt

alt

Intruder Alert()

Lost Track

Auto Track()

[lost contact]

loop par

Standard Initializationref

Pan Camera(angle)

Tilt Camera(angle)

Cancel Alert()

company security system : Surveillance System
security guard[Honoria] : Advanced

Operator

Standard System Shutdownref

[automatic mode
required]

[manual mode
required]

 FIGURE 11.6

 Scenario for a use case represented by a sequence diagram.

278 CHAPTER 11 Modeling Functionality with Use Cases

interaction includes corresponding uses of the interaction Standard Initialization
that is a scenario for the Initialize System use case, and the interaction Standard
Shutdown that is a scenario for the Shutdown System use case.

 In between these two interactions, the scenario describes how the secu-
rity guard, Honoria, deals with an intruder alert. Because she is an Advanced
Operator, she can manually control the cameras if she wishes, or she can elect to
allow the system to automatically track the suspected intruder.

 11.5.3 Activity Diagrams
 As mentioned previously, a use case scenario can also be represented by an activ-
ity diagram, where the participants are represented as activity partitions. As with
interactions, an activity can elaborate a base use case, included use cases, and
extending use cases.

 Figure 11.7 shows an alternate description of how manual tracking of sus-
pected intruders is handled. Two activity partitions, representing the security

27911.5 Elaborating Use Cases with Behaviors

act Manually Track Intruder

se
cu

ri
ty

 g
u

ar
d

:
A

d
va

n
ce

d
 O

p
er

at
o

r
co

m
p

an
y

se
cu

ri
ty

 s
ys

te
m

:
S

u
rv

ei
lla

n
ce

 S
ys

te
m

Intruder Intel

Issue Camera Commands

tilt commands
{stream}

joystick vector
{stream}

current
camera

{stream}

Pan Camera

Tilt Camera

«datastore»
current camera

new camera joystick command

[else][else]

Move JoystickSelect Camera

Intruder IntelIntruder Intel

[Intruder off camera] [Intruder has moved]

pan commands
{stream}

 FIGURE 11.7

 Using an activity to describe a scenario.

guard and the company security system, are used to indicate which use case par-
ticipant takes responsibility for which actions.

 New intruder intelligence (from what source we are not told) is analyzed. The
control fl ow initiated by the reception of the intelligence is forked to address two con-
cerns. If the intruder has moved, then a Move Joystick action is performed to follow
the intruder. If the intruder appears to have moved out of range of the current cam-
era, then a Select Camera action is performed to select a more appropriate camera. In
both cases, a fl ow fi nal node is used to handle situations where no action is required.
Meanwhile, this stream of inputs is turned into Pan Camera and Tilt Camera mes-
sages to the appropriate camera by the Issue Camera Commands action.

 11.5.4 State Machine Diagrams
 State machines can also be used to represent scenarios, although some methods
encourage the use of a single state machine to represent all possible scenarios of
the use case, including exception cases. Note that when using a state machine,
there are no constructs, such as interaction lifelines or activity partitions, to
explicitly identify the parties responsible for taking actions. However, a state
machine may have a number of regions that can informally be related to the par-
ticipants involved in the use case.

 Figure 11.8 shows part of a state machine describing the Manually Monitor
Environment use case. It shows three states, operator idle, intruder present, and

stm Manually Monitor Environment

Auto Track

operator idle

Lost Track

Intruder Alert /
Raise Alarm

Cancel Alert /
Cancel Alarm

intruder present

do / Manually Track Intruder

automatic tracking
enabled

 FIGURE 11.8

 Using a state machine to describe the Manually Monitor Environment use case.

280 CHAPTER 11 Modeling Functionality with Use Cases

automatic tracking enabled. When in the operator idle state, an Intruder Alert
event causes the Raise Alarm message to be sent, and a transition taken to the
intruder present state. Once in the intruder present state, the intruder can be
manually tracked, but an Auto Track event will trigger a transition to automatic
tracking enabled and prohibit manual tracking until a Lost Track event happens.

 This description shares many of the signals with Figure 11.6 , but it focuses on
states rather than messages.

 11.6 Summary
 Use cases are used to capture the functionality of a system needed to achieve user
goals. The use case is often used as a means to describe the required functionality
for a system and can augment SysML requirements to further refine the defini-
tion of text-based functional requirements. The way in which use cases are used
is highly methodology dependent. The following are the key use case concepts
introduced in this chapter.

■ The system under consideration (also known as the subject) provides the func-
tionality required by actors, expressed by use cases.

■ Use cases describe a particular use of a system to achieve a desired user goal. Use
case relationships for inclusion, extension, and specialization are useful for fac-
toring out common functionality into use cases that can be reused by other use
cases. The included use case is always performed as part of the base use case. A
use case that extends the base use case is usually performed by exception, and
generally is not in direct support of the goals of the base use case.

■ Actors describe a role played by an entity external to the system and may rep-
resent humans, organizations, or external systems. Generalization relationships
may be used to represent the relationships between different categories of
users. Associations relate actors to the use cases in which they participate.

■ The functionality described by a use case is often elaborated in more detail
using interactions, activities, and state machines. Although these behaviors ’ dif-
ferent formalisms do make them more suitable in some situations than others,
the choice of which to use is often based on personal or project preference.

 11.7 Questions
 1. What is the diagram kind for a use case diagram?
 2. Which types of model elements can a use case diagram represent?
 3. What does an actor represent?
 4. How are actors represented on a use case diagram?
 5. If one actor specializes another, what does that imply?
 6. What does a use case represent?

28111.7 Questions

282 CHAPTER 11 Modeling Functionality with Use Cases

 7. What is another term for the system under consideration?
 8. How does a scenario differ from a use case?
 9. How is an inclusion relationship represented?
 10. Apart from a base and extending use case which two other pieces of infor-

mation might an extension relationship have?
 11. If a use case specializes another, what does that imply about its scenarios?
 12. How may use case participants and the system under consideration repre-

sented on an internal block diagram?
 13. How are use case participants and the system under consideration repre-

sented in interactions?
 14. How are use case participants and the system under consideration repre-

sented in activities?

 Discussion Topics
 Apart from those listed discuss two additional descriptive properties that would
be useful for describing actors.

 Apart from those listed discuss two additional descriptive properties that would
be useful for describing use cases.

 This chapter describes how text-based requirements are captured in the model
and related to other model elements. This chapter also describes the diagram-
matic representations and special notations used to represent requirements and
other cross-cutting relationships, such as allocations, in a SysML model.

 12.1 Overview
 A requirement specifies a capability or condition that must (or should) be satis-
fied, a function that a system must perform, or a performance condition a system
must achieve.

 Requirements come from many sources. Sometimes requirements are provided
directly by the person or organization paying for the system, such as a customer
who hires a contractor to build his or her house. Other times, requirements are
generated by the organization that is developing the system, such as an automo-
bile manufacturer that must determine the consumer preferences for its product.
The source of requirements often refl ects multiple stakeholders. In the case of the
automobile manufacturer, the requirements will include government regulations
for emissions control and safety as well as the direct preferences of the consumer.

 Regardless of the source, it is common practice to group similar requirements
into a specifi cation. The individual requirements should be expressed in clear
and unambiguous terms, suffi cient for the developing organization to implement
a system that meets stakeholder needs. However, the classic systems engineer-
ing challenge is to ensure that requirements are consistent (not contradictory)
and feasible, have been validated to adequately refl ect real stakeholder needs, and
have been verifi ed to ensure that they are satisfi ed by the system design.

 Requirements management tools are also widely used to manage both require-
ments and the relationships between them. Requirements are typically maintained
in some kind of digital repository. SysML has introduced a requirements modeling
capability to provide a bridge between the text-based requirements that may be

 Modeling Text-Based
Requirements and Their
Relationship to Design 12

CHAPTER

284 CHAPTER 12 Modeling Text-Based Requirements

maintained in a requirements management tool and the system model, using the
requirements and confi guration management processes defi ne how to keep the
requirements in sync with the model. This capability is intended to signifi cantly
improve requirements management throughout the life cycle of a system by enabling
rigorous traceability between text-based requirements and model elements that
represent the system design, implementation, and test cases.

 The individual text requirements may be imported from a requirements man-
agement tool or text specifi cation, or created directly in the system modeling
tool. The specifi cations are typically organized into a hierarchical package struc-
ture that corresponds to a specifi cation tree. Each specifi cation contains multi-
ple requirements, such as a systems specifi cation that contains the requirements
for the system, or the component specifi cations that contain the requirements
for each component. The requirements contained in each specifi cation are mod-
eled in a containment hierarchy partitioning them into a tree structure that corre-
sponds to how the specifi cation is organized.

The individual or aggregate requirements within the containment hierarchy
can then be linked to other requirements in other specifi cations and to model ele-
ments that represent the system design, implementation, or test cases. The deriva-
tion, satisfaction, verifi cation, refi nement, trace, and copy relationships supports
a robust capability for relating requirements to one another and to other model
elements. In addition to capturing the requirements and their relationships, a
capability is provided to capture the rationale, or basis for a particular decision
and for linking it directly to the relationship or other model element.

 SysML provides multiple ways for capturing requirements and their relation-
ships, in both graphical and tabular notations. A requirement diagram can
be used to represent many of these relationships. In addition, compact graphi-
cal notations are available to depict the requirements relationships on any other
SysML diagrams. The browser view of the requirements that is generally provided
by the tool implementer also provides an important mechanism for visualizing
requirements and their relationships.

 Use cases have been used to support requirements analysis in many of the
model-based approaches using UML and SysML. Different development methods
may choose to leverage use cases in conjunction with SysML requirements. Use
cases are typically effective for capturing the functional requirements, but are not
as well suited for capturing a wide array of other requirements, such as physical
requirements (e.g., weight, size, vibration); availability requirements; or other so-
called nonfunctional requirements. The incorporation of text-based requirements
into SysML effectively accommodates the broadest possible range of requirements
that a systems engineer will face.

Use cases, like any other model element, can be related to requirements using
the various relationships (e.g., the refi ne relationship). In addition, use cases are
often accompanied by a use case description (see the example in Chapter 11).
The steps in the use case description can be captured as individual text require-
ments, and then related to other model elements, to provide more granular trace-
ability between the use cases and the model. Many other techniques with varying
degrees of formalism can be used in addition to the examples cited here.

285

 12.2 Requirement Diagram
 Requirements captured in SysML can be depicted on a requirement diagram as
well as other diagrams. The requirement diagram is generally used to graphi-
cally depict hierarchies of requirements or to depict an individual requirement
and its relationship to other model elements. The requirement diagram header is
depicted as follows:

 req [package or requirement] Model Element Name [diagram name]

 The diagram frame for a requirement diagram designates a model element
type that can be a package or a requirement. The model element name is the
name of the package or requirement containing the requirements, and the dia-
gram name is user defi ned and often used to describe the purpose of the dia-
gram. Figure 12.1 shows a generic example of a requirement diagram that
contains some of the most common symbols.

 This example highlights a number of different requirements relationships
and alternative notations. For example, Camera satisfi es the requirement called
Sensor Decision. It also includes three different representations of containment,
deriveReqt, Verify, and satisfy relationships (shown as direct relationships, in
compartment notation, and in callout notation). In practice, only one of these
representations would be used. Each of the symbols depicted on this diagram are
discussed later in this chapter. Tables A.22 through A.24 in the Appendix contain
a complete description of the SysML notation for requirements.

 The requirements construct can be directly shown on block defi nition dia-
grams, package diagrams, and use case diagrams. The relationships between
requirements and other model elements can be represented on other diagrams
(e.g., block defi nition diagrams, internal block diagrams, and others) using com-
partment and callout notations; see Sections 12.5.2 and 12.5.3 for examples.
Alternative ways to view requirements are discussed in Section 12.7 (tabular
views) and Section 12.9.1 (browser view).

 12.3 Representing a Text Requirement in the Model
 A requirement that is captured in text represented in SysML using the
«requirement» model element. Once captured, it can be related to other require-
ments and to other model elements through a specific set of relationships. Each
requirement includes predefined properties for a unique identifier, and for a text
string.

 Figure 12.2 is an example of a text-based requirement called Operating Envir-
onment as represented in SysML. It is distinguished by the keyword «requirement»
and will always contain, as a minimum, properties for id and text. This same infor-
mation can be displayed in a tabular format that is described later in this chapter.

 Requirements can be customized by adding additional properties such as verifi ca-
tion status, criticality, risk, and requirements category. The verifi cation status prop-
erty, for example, may include values such as not verifi ed, verifi ed by inspection,

12.3 Representing a Text Requirement in the Model

286 CHAPTER 12 Modeling Text-Based Requirements

verifi ed by analysis, verifi ed by demonstration, and verifi ed by test. A risk or criti-
cality property may include the values high, medium, and low. A requirements cat-
egory property may include values such as functional, performance, or physical.

 An alternative method for creating requirements categories is to defi ne addi-
tional subclasses of the requirement stereotype (see Chapter 14 for discussion on

req [Package] Customer Specification [example requirement diagram]

«requirement»
Operating Environment

«requirement»
All Weather Operation

id � "S1.1"
text � "The system shall be capable of detecting
intruders under all weather conditions."

derivedFrom
«requirement» Sensor Decision

verifiedBy
«interaction» Water Spray Test

refinedBy
«useCase» Detection Scenario
«stateMachine» Weather Model

id � "S1"
text � "The system shall be capable of
detecting intruders 24 hours per day,
7 days per week, under all weather
conditions."

id � "S1.2"
text � "The system shall be capable
of detecting intruders 24 hours per
day, 7 days per week."

«requirement»
24/7 Operation

«requirement»
Sensor Decision

«testCase»
Water Spray Test

«block»
Camera

satisfies
«requirement» Sensor Decision

«satisfy»

derived
«requirement» All Weather Operation
«requirement» 24/7 Operation
satisfiedBy
«requirement» Camera

id � "D1"
text � "The system shall use cameras
to detect intruders."

«deriveReqt»

«deriveReqt»

«verify»

 FIGURE 12.1

 Generic example of a requirement diagram.

287

subclassing stereotypes). The stereotype enables the modeler to add constraints
that restrict the types of model elements that may be assigned to satisfy the
requirement. For example, a functional requirement may be constrained so that
it can only be satisfi ed by a behavioral model element such as an activity, state
machine, or interaction. Annex C of the SysML specifi cation [1] includes some
nonnormative requirement subclasses, which are also shown in Table 12.1 .

 As shown in the table, each category is represented as a stereotype of the generic
SysML «requirement». Table 12.1 also includes a brief description of the category.
Additional stereotype properties or constraints can be added as deemed appropriate
for the application.

 Other examples of requirements categories may include operational require-
ments, specialized requirements for reliability and maintainability, store require-
ments, activation and deactivation requirements, and a high-level category for
stakeholder needs. Some guidance for applying a requirements profi le follows.
(General guidance on defi ning a profi le is included in Chapter 14.)

 ■ The categories should be adapted for the specifi c application or organiza-
tion and refl ected in the table. This includes agreement on the categories
and their associated descriptions, stereotype properties, and constraints.
Additional categories can be added by further stereotyping the categories
shown in Table 12.1 , or adding additional categories at the peer level of
these categories.

 ■ Apply the more specialized requirement stereotype (functional, interface,
performance, physical, design constraint) as applicable and ensure consis-
tency with the description, stereotype properties, and constraints of these
requirements.

 ■ A specifi c text requirement can include the application of more than one
requirement category, in which case each stereotype should be shown in
guillemets (« ») or in a comma-separated list.

 12.4 Types of Requirements Relationships
 SysML includes specific relationships to relate requirements to other require-
ments as well as to other model elements. These include relationships for defin-
ing a requirements hierarchy, deriving requirements, satisfying requirements,
verifying requirements, refining requirements, and copying requirements.

«requirement»
Operating Environment

id � "S1"
text � "The system shall be capable of
detecting intruders 24 hours per day, 7
days per week, under all weather conditions."

 FIGURE 12.2

 Example of a requirement as depicted in SysML.

12.4 Types of Requirements Relationships

2
8

8

Table 12.1 Optional Requirements Stereotypes from SysML 1.0 Annex C.2

 Stereotype Base Class Properties Constraints Description

 «extendedRequirement» «requirement» source: String
risk: RiskKind
verifyMethod:
VerifyMethodKind

N/A A mix-in stereotype that contains
generally useful attributes for
requirements.

 «functionalRequirement» «extendedrequirement» N/A Satisfi ed by an
operation or
behavior

 Requirement that specifi es an
operation or behavior that a system,
or part of a system, must perform.

 «interfaceRequirement» «extendedrequirement» N/A Satisfi ed
by a port,
connector,
item fl ow, and/
or constraint
property

 Requirement that specifi es the
ports for connecting systems and
system parts and that optionally
may include the item fl ows across
the connector and/or interface
constraints.

 «performanceRequirement» «extendedrequirement» N/A Satisfi ed by
a value
property.

 Requirement that quantitatively
measures the extent to which a
system, or a system part, satisfi es a
required capability or condition.

 «physicalRequirement» «extendedrequirement» N/A Satisfi ed by
a structural
element.

 Requirement that specifi es physical
characteristics and/or physical
constraints of the system, or a
system part.

 «designConstraint» «extendedrequirement» N/A Satisfi ed by
a block or
a part.

 Requirement that specifi es a
constraint on the implementation of
the system or system part, such as
“the system must use a commercial
off-the-shelf component”.

289

Table 12.2 Requirement Relationships and Compartment Notation

 Relationship
Name

 Keyword
Depicted on
Relation

 Requirement
(arrow) End
Callout/
Compartment

 Client (no arrow) End
Callout/Compartment

 Satisfy «satisfy» Satisfi ed by
«model element»

Satisfi es «requirement»

 Verify «verify» Verifi ed by
«model element»

Verifi es «requirement»

 Refi ne «refi ne» Refi ned by
«model element»

Refi nes «requirement»

 Derive
Requirement

«deriveReqt» Derived
«requirement»

 Derived from
«requirement»

 Copy «copy» (None) Master «requirement»

 Trace «trace» Traced
«model element»

 Traced from
«requirement»

 Containment
(Requirement
decomposition)

 (Crosshair
icon)

 (No callout) (No callout)

 Table 12.2 summarizes the specifi c relationships, which are discussed later in
this chapter. The containment, derive, and copy relationships can only relate one
requirement to another. The satisfy, verify, refi ne , and trace relationships can
relate requirements to other model elements.

 12.5 Representing Cross-Cutting Relationships
in SysML Diagrams

 Requirements can be related to model elements, even if they may appear in differ-
ent hierarchies or on different diagrams. These relationships can be shown directly
if the related model elements happen to appear on the same diagram. If the model
elements do not appear on the same diagram, they can still be shown by using the
compartment or callout notation. Direct notation may be used, for example, to
show a derive requirement relationship between requirements on a requirement
diagram. The compartment or callout notation is used when requirements do not
appear on other kinds of diagrams, or when other model elements do not appear
on a requirement diagram. An example is a block definition diagram showing a
block that satisfies one or more requirements. In addition to these graphical repre-
sentations, SysML provides for a flexible tabular notation for representing require-
ments and their relationships. Note that the allocation relationship, described in
Chapter 13, is represented using the same notational approaches as those used here
to represent the relationship between requirements and other model elements.

12.5 Representing Cross-Cutting Relationships

290 CHAPTER 12 Modeling Text-Based Requirements

 12.5.1 Depicting Requirements Relationships Directly
 When the requirement and the model element it relates to are shown on the same
diagram, this relation may be depicted directly. Direct notation depicts this rela-
tionship as a dashed arrow with the name of the relationship displayed as a key-
word (e.g., «satisfy», «verify», «refine», «derive requirement», «copy», and «trace»).

 Figure 12.3 provides an example of a «satisfy» relationship between a Camera
and a requirement, Sensor Decision, where the camera is part of the design that
is asserted to satisfy the requirement. Note that the arrowhead points to the
requirement.

 It is important to recognize the signifi cance of the arrow direction. Since most
requirement relationships in SysML are based on the UML dependency relation-
ship, the arrow points from the dependent model element (called the client) to the
independent model element (called the supplier). The interpretation of this rela-
tionship is that the camera design is dependent on the requirement, meaning that
if the requirement changes, the design must change. Similarly, a derived require-
ment will be dependent on the requirement that it is derived from. In SysML,
the arrowhead direction is opposite of what has typically been used for require-
ments fl ow-down or requirements allocation, in which the requirement points to
the design element intended to satisfy it, or the higher-level requirement points
to the lower-level requirement.

 12.5.2 Depicting Requirements Relationships
Using Compartment Notation

 Compartment notation is an alternative method for displaying a requirement
relationship between a requirement and another model element, such as a block,
part, or another requirement, that supports compartments. This is a compact
notation that can be used instead of displaying a direct relationship. It also can
be used for diagrams that preclude display of a requirement directly, such as an
internal block diagram. In Figure 12.4 , compartment notation is used to show
the same satisfy relationship to the requirement from Figure 12.3 . This should be
interpreted as “the requirement is satisfied by the Camera. ” The compartment
notation explicitly displays the relationship and direction (satisfiedBy), the model
element type («block»), and the model element name (Camera).

«block»
Camera

id � "D1"
text � "The system shall use
cameras to detect intruders."

«requirement»
Sensor Decision

«satisfy»

 FIGURE 12.3

 Example of direct notation depicting a satisfy relationship.

291

 12.5.3 Depicting Requirements Relationships Using Callout Notation
 Callout notation is an alternative notation for depicting requirements relation-
ships. It is the least restrictive notation in that it can be used to represent a rela-
tionship between any requirement and any other model element on any diagram
type. This includes relationships between requirements and model elements,
such as pins, ports, and connectors, that do not support compartments and there-
fore cannot use compartment notation.

 A callout is depicted as a comment symbol that is graphically connected to
a model element. The callout symbol represents the model element at the other
end of the relationship. The callout notation depicted in Figure 12.5 shows the
same information as the compartment notation in Figure 12.4 , and it should be
interpreted as “the requirement is satisfi ed by the Camera. ”

 12.6 Depicting Rationale for Requirements Relationships
 A rationale is a SysML model element that can be associated with either a require-
ment or a relationship between requirements. As the name implies, the rationale
is intended to capture the reason for a particular design decision. Although ration-
ale is described here for requirements, it is a model element that can be applied
throughout the model to capture the reason for any type of decision. A problem is
like a rationale, but is used instead to specifically identify a particular problem
that needs to be solved.

 As shown in Figure 12.6 , the rationale is expressed using a comment nota-
tion with the keyword «rationale». The problem is likewise identifi ed with the

«requirement»
Sensor Decision

id � "D1"
text � "The system shall use
cameras to detect intruders."

satisfiedBy
«block» Camera

 FIGURE 12.4

 Example of compartment notation depicting a satisfy relationship.

satisfiedBy
«block» Camera

id � "D1"
text � "The system shall use
cameras to detect intruders."

«requirement»
Sensor Decision

 FIGURE 12.5

 Example of callout notation depicting a satisfy relationship.

12.6 Depicting Rationale for Requirements Relationships

292 CHAPTER 12 Modeling Text-Based Requirements

«problem» keyword. The text in the comment can either provide the rationale
directly or reference an external document (e.g., a trade study or analysis report)
or another model part such as a parametric diagram. The reference may include a
hyperlink, although this is not explicit in the language. In this particular example,
there is a reference to a trade study, T.1. The context of this particular rationale is
shown in Figure 12.14 later in this chapter.

 A rationale or problem can be attached to any requirements relationship or to
the requirement. For example, a rationale or problem can be attached to a satisfy
relationship, and refer to an analysis report or trade study that provides the sup-
porting rationale for why the particular design satisfi es the requirement. Similarly,
the rationale can be used with other relationships such as the derive relationship.
It also provides an alternative mechanism to the verify relationship by attaching a
rationale to a satisfy relationship that references a test case.

 12.7 Depicting Requirements and Their Relationships
in Tables

 The requirement diagram has a distinct disadvantage when viewing large num-
bers of requirements. Large amounts of real estate are needed to depict and relate
all the requirements needed to specify a system of even moderate complexity.
The traditional method of viewing requirements in textual documents is a more
compact representation than viewing them in a diagram. Modern requirements
management tools typically maintain requirements in a database, and the results
of queries to the database can be displayed clearly and succinctly in tables or
matrices. SysML embraces the concept of displaying results of model queries in
tables, but the specifics of generating tables is left to the tool implementer.

 Figure 12.7 provides an example of a simple requirements table. In this
example, the table lists the requirements in the System Specifi cation package.
Depending on its capability, a tool may also apply query and fi lter criteria to gen-
erate requirements reports from a query of the model. This report can represent
a view of the model, as described in Chapter 5. In addition, the tool may support
editing requirements and their properties directly in the table view.

 12.7.1 Depicting Requirement Relationships in Tables
 A relationship path can be formed by selecting one or more requirements (or other
model elements), and navigating the relationships from the selected requirement.

«rationale»
Using a camera is the most cost-effective
way of meeting these requirements.
See trade study T.1.

 FIGURE 12.6

 Example of rationale as depicted on any SysML diagram.

293

This can be represented in tabular form, as shown in Figure 12.8 . In this exam-
ple, D1 is the selected requirement, and the path includes a derivedFrom relation-
ship and the rationale associated with the relationship.

 The relationship paths can be arbitrarily deep; that is, navigates a single kind
of relationship from one model element to the next, or navigates different types of
relationships from one model element to the next. This can be particularly useful
when analyzing the impact of requirements changes across the model. This query
mechanism could also be used as a method to construct a view, as described in
Chapter 5. Depending on tool capability, it may also be possible to edit require-
ment relationships and properties directly in the tabular view.

 12.7.2 Depicting Requirement Relationships as Matrices
 The tabular notation can also be used to represent multiple complex interrelation-
ships between requirements and other model elements in the form of matrices.
Figure 12.9 shows the result of a query in tabular (matrix) form; it depicts the
satisfy and derive relationships. In this example, the requirements are shown in
the left column, and the model elements that have a derive or satisfy relationship
are shown in the other columns. Filtering criteria can be applied to limit the size
of the matrix. In this example, the requirements properties have been excluded,
and only the derive and satisfy relationships have been included. These relation-
ships are discussed later in this chapter. Again, this is an example of a mechanism
that a tool vendor might use to construct a view of the model.

id name text
S1 Operating Environment The system shall be capable of detecting intruders 24 hours per day.. .

S1.1 Weather Operation The system shall be capable of detecting intruders under all weather. . .

S1.2 24/7 Operation The system shall detect intruders 24 hours per day, 7 days per week

S2 Availability The system shall exhibit an operational availability (Ao) of 0.999.. .

table [Package] System Specification [Decomposition of top-level requirements]

 FIGURE 12.7

 Example of requirements table.

id name relation id name Rationale

S1.1 24/7 Operation
Using a camera is the most cost-effective way of
meeting these requirements. See trade study T1.

derivedFrom

derivedFrom S1.2
Weather
Operation

Using a camera is the most cost-effective way of
meeting these requirements. See trade study T1.

D1 Sensor
Decision

table [Requirement] Camera Decision [Requirements Tree]

 FIGURE 12.8

 Example of table following the derivedFrom relationship.

12.7 Depicting Requirements and Their Relationships in Tables

294 CHAPTER 12 Modeling Text-Based Requirements

 12.8 Modeling Requirement Hierarchies in Packages
 Requirements can be organized into a package structure. A typical structure may
include a top-level package for all requirements relative to this model. Each pack-
age within this package structure may correspond to a different specification,
such as the system specification, subsystem specifications, and component speci-
fications. Each specification package contains the text-based requirements for
that specification. This package structure corresponds to a typical specification
tree that is a useful artifact for describing the scope of requirements for a project.

 An example of a requirements package structure, or specifi cation tree, is
shown in the package diagram in Figure 12.10 . The containment relationship with
the crosshairs symbol at the owning end is used to indicate that the Customer
Specifi cation package, the System Specifi cation, and the Camera Specifi cation
are contained in the Requirements package.

 Organizing requirements into packages corresponding to various specifi ca-
tions provides familiarity and consistency with document-based approaches and
facilitates confi guration management of individual specifi cations at the package
level. Also, a specifi cation report can be generated directly from the contents of
the appropriate package.

 12.9 Modeling a Requirements Containment Hierarchy
 The containment relationship is used to represent how a complex requirement
can be partitioned into a set of simpler requirements without adding meaning or
other implications. A containment relationship can be viewed as a logical and-
ing (conjunction) of the contained requirements with the container requirement.
The partitioning of complex requirements into simpler requirements is essential

 FIGURE 12.9

 Example of tabular view of requirements as matrices tracing satisfy and derive requirement
relationships, respectively.

295

to establish full traceability and show how individual requirements are the basis
for further derivation, and how they are satisfied and verified.

 Figure 12.11 shows a requirement diagram with a simple containment hierar-
chy. The Customer Specifi cation package from Figure 12.10 represents a top-level
specifi cation that serves as a container for all other customer-generated require-
ments. In this example, the Customer Specifi cation package contains two other
requirements, as depicted by the crosshairs symbol. Note that instead of using a
package, a specifi cation may be modeled as a «requirement» that contains a hier-
archy of other requirements. A typical specifi cation may contain from hundreds
to thousands of individual requirements, but they generally can be organized into
a hierarchy that corresponds to the organization of a specifi cation document.

 Figure 12.12 shows how containment hierarchies can be used to create multi-
ple levels of nested requirements. In this example, the Operating Environ ment
requirement contains two additional requirements for All Weather Operation and
24/7 Operation .

 12.9.1 The Browser View of a Containment Hierarchy
 A typical modeling tool will include a browser view of the model that includes the
requirements hierarchy. In Figure 12.13 , the specification packages corresponding
to the package diagram in Figure 12.10 are shown along with the requirements cor-
responding to the containment hierarchy in Figure 12.12 . This representation is a
compact way to view the requirements containment hierarchy.

Customer Specification

Camera Specification

System Specification

Requirements

pkg [Package] Requirement Example [req pkg structure]

 FIGURE 12.10

 Example of a package structure for organizing requirements.

12.9 Modeling a Requirements Containment Hierarchy

296 CHAPTER 12 Modeling Text-Based Requirements

req [Package] Requirement Example [containment example 1]

Customer Specification

req [Package] Customer Specification [containment example 2]

«requirement»
Operating Environment

id � "S2"
text � "The system shall exhibit an operational
availability (Ao) of 0.999 over its installed lifetime."

id � "S1"
text � "The system shall be capable of detecting
intruders 24 hours per day, 7 days per week,
under all weather conditions."

«requirement»
Availability

«requirement»
Operating Environment

«requirement»
Availability

id � "S1"
text � "The system shall be capable of detecting
intruders 24 hours per day, 7 days per week,
under all weather conditions."

id � "S2"
text � "The system shall exhibit an operational
availability (Ao) of 0.999 over its installed
lifetime."

 FIGURE 12.11

 Two equivalent examples of requirements contained in a package.

 12.10 Modeling Requirement Derivation
 Deriving requirements from source, customer, or other high-level requirements
is fundamentally different from the containment relationship described in the
previous section. A derive relationship between a derived requirement and a
source requirement is based on an analysis. The analysis can be associated with
the derived relationship by a «rationale».

 An example of the derive relationship is represented in the requirement dia-
gram in Figure 12.14 . The relationship is shown with a dashed line with the
keyword «deriveReqt» with the arrowhead pointing to the source requirement.
Note that the «rationale» has been associated with the derivation relationship and
includes a reference to trade study documentation.

297

«requirement»
All Weather Operation

verifiedBy
«interaction» Water Spray Test

«requirement»
24/7 Operation

«requirement»
Operating Environment

id � "S1"
text � "The system shall be capable of
detecting intruders 24 hours per day,
7 days per week, under all weather
conditions."

id � "S1.1"
text � "The system shall be capable of
detecting intruders under all weather
conditions."

id � "S1.2"
text � "The system shall be capable of
detecting intruders 24 hours per day,
7 days per week."

req [Package] Customer Specification [containment example 3]

 FIGURE 12.12

 Example of requirements containment hierarchy.

 FIGURE 12.13

 Example of requirements containment in a tool browser/explorer.

 The requirements traceability matrix, included in traditional specifi cation doc-
uments, often shows relationships between requirements in one specifi cation to
requirements in other higher- or lower-level specifi cations. This relationship is
semantically equivalent to a set of SysML derive relationships. A derive relationship
often shows relationships between requirements at different levels of the specifi ca-
tion hierarchy. It is also used to represent a relationship between requirements at
the peer level of the hierarchy, but at different levels of abstraction. For example,
the analysis of hardware or software requirements, which are originally specifi ed by

12.10 Modeling Requirement Derivation

298 CHAPTER 12 Modeling Text-Based Requirements

the systems engineering team, may result in more detailed requirements that refl ect
additional implementation considerations or constraints. The more detailed require-
ments may be related to the original requirements through a derive relationship.

 12.11 Asserting That a Requirement Is Satisfi ed
 The satisfy relationship is used to assert that a model element corresponding to
the design or implementation satisfies a particular requirement. The actual proof
that the assertion is correct is accomplished by the verify relationship described
in the next section. Figure 12.15 provides examples of the satisfy relationship.

 The satisfy relationship is shown with a dashed line with the keyword «satisfy»
with the arrowhead pointing to the requirement to assert that the Camera satis-
fi es the requirement. An alternative callout notation is also shown to represent
this relationship. The «rationale» is associated with the satisfy relationship to indi-
cate why this design is asserted to satisfy the requirement. In Figure 12.16 , the
same satisfy relationship from Figure 12.15 is shown on the block defi nition dia-
gram using the compartment notation.

 12.12 Verifying That a Requirement Is Satisfi ed
 The verify relationship is a relationship between a requirement and a test case
that is used to verify that the requirement is satisfied. As stated in the previous

req [Package] System Specification [sensor decision derivation rationale]

«requirement»
All Weather Operation

id � "S1.1"
text � "The system shall be capable of
detecting intruders under all weather
conditions."

«requirement»
Sensor Decision

id � "D1"
text � "The system shall use
cameras to detect intruders."

satisfiedBy
«block» Camera

«requirement»
24/7 Operation

id � "S1.2"
text � "The system shall be capable of
detecting intruders 24 hours per day,
7 days per week."

«rationale»
Using a camera is the most cost-effective
way of meeting these requirements. See
trade study T.1.

«deriveReqt»«deriveReqt»

 FIGURE 12.14

 Example of «deriveReqt» relationship, with rationale attached.

299

satisfies
«requirement» Sensor Decision

«block»
Camera

bdd [Package] Requirement Example [satisfy compartment]

 FIGURE 12.16

 Example of satisfy relationship using compartment notation.

«block»
Camera

derived
«requirement» All Weather Operation
«requirement» 24/7 Operation

satisfiedBy
«block» Camera

satisfies
«requirement» Sensor Decision

«satisfy»

req [Package] Requirement Example [direct relationship with callouts]

«rationale»
Camera is a logical block
to be realized later by a
specific camera type.«requirement»

Sensor Decision

id � "D1"
text � " The system shall use cameras
to detect intruders."

 FIGURE 12.15

 Example of requirement satisfy relationship and associated callout notation.

section, the satisfy relationship is an assertion that the model elements represent-
ing the design or implementation satisfy the requirement, but the verify relation-
ship is used to prove the assertion is true (or false). A test case can represent
any method for performing the verification, including the standard verification
methods of inspection, analysis, demonstration, and testing. Additional stereo-
types can be defined by the user if required to represent the different verifica-
tion methods. The test case can reference a documented verification procedure,
or it can represent a model of the verification method, such as an interaction
(sequence diagram). The results of performing the test case is called the verdict,
which can include a value of pass or fail or a specific value.

 Figure 12.17 provides an example of the use of the verify relationship. The
verify relationship is shown with a dashed line with the keyword «verify» with
the arrowhead pointing from the Water Spray Test test case to the All Weather

12.12 Verifying That a Requirement Is Satisfi ed

300 CHAPTER 12 Modeling Text-Based Requirements

Operation requirement that is being verifi ed. An alternative compartment nota-
tion is also shown to represent this relationship.

 A test case keyword can be applied to other behaviors, including a sequence
diagram, activity diagram, and state machine diagram, to specify the test case
method. An example of applying the test case keyword to a sequence diagram
is shown in Figure 12.18 . In this case the test case shows an emulator represent-
ing the verifi cation system, providing a stimulus to the system under test, and the
interaction represents the expected system in response. The expected response
can be compared with the actual response from running the test to assess
whether the system actually satisfi es the requirement.

 A test case that is modeled as a behavior, in general, can represent a mea-
surement of almost any characteristic, including structural characteristics. For
example, the test case could represent a behavior that measures system weight.
In this sense, a test case is a general-purpose mechanism for verifying require-
ments. In addition, other model elements can be used to verify a requirement. An
example may include using a constraint block as an analysis method to verify a
requirement.

 The test case in SysML is defi ned consistent with the UML Testing Profi le [35]
to facilitate its integration. The test profi le provides additional semantics for rep-
resenting many other aspects of a test environment. The integration with the test-
ing profi le is covered briefl y in Chapter 17 as part of the discussion on integrated
system development environments.

 12.13 Reducing Requirements Ambiguity Using
the Refi ne Relationship

 The refine relationship provides a capability to reduce ambiguity in a require-
ment by relating a SysML requirement to another model element that clarifies the
requirement. This relationship is typically used to refine a text-based requirement
with a model, but it can also be used to refine a model with a text-based require-
ment. For example, a text-based functional requirement may be refined with

req [Package] Testing [verification example]

«requirement»
All Weather Operation

«verify»

verifiedBy
«interaction» Water Spray Test

«testCase»
Water Spray Test

verifies
«requirement» All Weather Operation

verdict: VerdictKind
.. .

 FIGURE 12.17

 Example of verify relationship.

301

a more precise representation, such as a use case and its realizing activity dia-
gram. Alternatively, the model element or elements may include a fairly abstract
representation of required system interfaces that can be refined by an interface’s
text specification that includes a detailed description of an interface protocol or
a physical layout of an interface envelope.

 Refi nement of requirements should clarify only the requirement meaning or
context. It is distinguished from a derive relationship in that a refi ne relationship
can exist between a requirement and any other model element, whereas a derive
relationship is only between requirements. In addition, a derive relationship is
not limited to a reexpression or clarifi cation, but rather imposes additional con-
straints based on analysis.

sd [Interaction] Water Spray Test [example test case sequence]

alt

: Camera: Test Jig: Arbiter

no leak {verdict � pass}

leak {verdict � fail}

Spray Done

Water

Spray Water()

Check for Leaks

[no leakage]

[leakage]

 FIGURE 12.18

 Example of a test case interaction, depicted as a sequence diagram.

12.13 Reducing Requirements Ambiguity Using the Refi ne Relationship

302 CHAPTER 12 Modeling Text-Based Requirements

 An example of the refi ne relationship is provided in Figure 12.19 ; it shows
how the All Weather Operation requirement is refi ned by a state machine that
models weather conditions and transitions. The refi ne relationship is shown with
a dashed line with the keyword «refi ne» with the arrowhead pointing from the
element that represents the more precise representation to the element being
refi ned. An alternative callout and compartment notation is also shown to repre-
sent this relationship. Note that the Weather Model state machine only partially
refi nes the requirement. The Detection Scenario use case might address, for
example, specifi c detection expectations in each weather condition.

req [Package] Customer Specification [refinement example]

derivedFrom

«requirement» Sensor Decision

refinedBy

«useCase» Detection Scenario
«stateMachine» Weather Model

«requirement»
All Weather Operation

Detection Scenario

«statemachine»
Weather Model«refine»

«refine»

verifiedBy

«interaction» Water Spray Test

id � "S1.1"
text � "The system shall be capable of detecting
intruders under all weather conditions. "

stm Weather Model [refinement using state machine]

SnowyRainy Foggy

[precip, T � 0] [no precip, T � dewpoint]

[high pressure][low pressure]

[precip, T ��0]

Cloudy

Clear

 FIGURE 12.19

 Example of refi ne relationship applied to requirement.

303

 12.14 Using the General-Purpose Trace Relationship
 A trace relationship provides a general-purpose relationship between a require-
ment and any other model element. The trace semantics do not include any con-
straints and therefore are quite weak. However, the trace relationship can be
useful for relating requirements to source documentation or for establishing a
relationship between specifications in a specification tree.

 As shown in Figure 12.20 , the trace relationship is used to relate a particular
requirement to a Market Survey that was conducted as part of the needs analy-
ses. The trace relationship is shown with a dashed line with the keyword «trace»
with the arrowhead pointing to the source document. The survey is represented
as a user-defi ned model element with the keyword «document».

«requirement»
Operating Environment

«document»
Market Survey«trace»

id � "S1"
text � "The system shall be capable of
detecting intruders 24 hours per day,
7 days per week, under all weather
conditions."

req [Package] Customer Specification [trace example]

 FIGURE 12.20

 Example of trace relationship linking a requirement to an element representing an external
document.

12.14 Using the General-Purpose Trace Relationship

 12.14.1 Reusing Requirements with the Copy Relationship
 Requirements in SysML are not like blocks in that they cannot have subclasses, or
be generalized or specialized. As in specification documents, SysML requirements
are simply textual imperatives, and they cannot have multiple usages, but they
can be copied. The copy relationship relates a copy of a requirement to its origi-
nal to support reuse of requirements. A requirement exists in one namespace or
containment hierarchy and has specific meaning in its containing context. To sup-
port reuse of the requirement, the copied requirement is a requirement whose
text property is a read-only copy of the text property of the source requirement,
but with a different id.

 An example of a copy relationship is shown in Figure 12.21 . The copy rela-
tionship is shown with a dashed line with the keyword «copy» with the arrow-
head pointing from the copied requirement to the source requirement. In this
example, the source requirement being copied is a requirement from a technical
standard that is reused in many different requirements specifi cations.

304 CHAPTER 12 Modeling Text-Based Requirements

 12.15 Summary
 SysML can be used to model text-based requirements and relate them to other
requirements and to other model elements. The following are some of the key
requirements modeling concepts.

■ The SysML requirements modeling capability serves as a bridge between traditional
text-based requirements and the modeling environment. The requirements can be
imported from a requirements management tool, or text specification, or created
directly in the modeling tool.

■ Each specification is generally captured in a package. The package structure
can correspond to a traditional specification tree. Each specification in turn
includes a containment hierarchy of the requirements contained within
the specification. The browser view in most tools can be used to view the
requirements containment hierarchy.

■ The individual or aggregate requirements can then be related to other require-
ments in other specifications as well as model elements that represent the
design, implementation, or test cases. The requirements relationships include
derive, satisfy, verify, refine, trace, and copy. These relationships provide a robust
capability for managing requirements and supporting requirements validation
and verification so that the design satisfies the requirements.

■ There are multiple notational representations to enable requirements to be
related to other model elements on other diagrams; they include direct notation,
compartment notation, and callout notation. The requirement diagram is
generally used to represent a containment hierarchy or to represent the relation-
ships for a particular requirement. Tabular notations are also used to efficiently
report requirements and their relationships.

«copy»

req [Package] Requirements [copy example]

«requirement»
Requirements::IEEE Standards::802.11g Power-Bandwidth

id � "802.11g.214"
text � "The maximum power bandwidth shall not exceed .. ."

«requirement»
Requirements::Camera Specification::WiFi Power-Bandwidth

id � "C4.1"
text � "The maximum power bandwidth shall not exceed .. ."

 FIGURE 12.21

 Example of a requirement copy relationship.

305

 12.16 Questions
 1. What is the abbreviation for a requirement diagram that appears in the dia-

gram header?
 2. Which kind of model element can the frame of a requirement diagram

represent?
 3. Which standard properties are expressed in a SysML requirement?
 4. Can you add additional properties and constraints to a requirement?

 5. What type of requirement relationships can only exist between requirements?
 6. How do you read Figure 12.3 ?
 7. How do you express the requirement relationship in Question 6 using callout

notation?
 8. How do you express the requirement relationship in Question 6 using com-

partment notation?
 9. How do you represent a «deriveReqt» relationship between Reqt A and Reqt

B in a matrix?
 10. How do you represent the rationale for the derived requirement in Figure

12.14 that the derivation is based on the xyz analysis?
 11. What is a satisfy relationship used for? (Select from answers a–c.)

 a. to ensure a requirement is met
 b. to assert a requirement is met
 c. to more clearly express a requirement

 12. What are the elements found on either end of a verify relationship?
 13. What is used as a basis for a derived relationship? (Select from answers a–c.)

 a. analysis
 b. design
 c. test case

 14. How would you decompose the requirement A into two requirements A.1
and A.2 using the containment relationship?

 15. Which relationship would you use to relate a requirement to a document?
(Select from answers a–d.)
 a. deriveReqt
 b. satisfy
 c. verify
 d. trace

 16. Why are requirements included in SysML? (This can be a discussion topic
rather than a question.)

 Discussion Topics
 What are different uses of a requirement diagram?

 When would you use a requirement diagram versus a table?

 How can requirements and use cases be used together?

12.16 Questions

This page intentionally left blank

 This chapter describes how allocation relationships are used to map from one
model element to other model elements to support behavioral, structural, and
other forms of allocation.

 13.1 Overview
 Beginning early in systems development, the modeler may need to associate vari-
ous elements in the system model in abstract, preliminary, and sometimes tentative
ways. It may be inappropriate to impose detailed constraints on the solution too
early in the development of a system’s architecture. Allocation is a mechanism
to relate model elements that is typically a prelude to more rigorous relationships
that are established through follow-on model refinement. Additional user-defined
constraints can augment the allocation relationship to add the necessary rigor as
the design progresses. For example, an allocation of functions (e.g., activities) to
components may be done early in the design. As the design progresses, additional
constraints are defined to ensure that the activity inputs, outputs, and controls are
explicitly allocated to component interfaces. With appropriate user-defined con-
straints, allocation can be used to help enforce specific system development meth-
ods to ensure the model’s integrity.

 Allocation may be appropriate when modeling a system of systems (SoS),
knowing that detailed system development and model refi nement may be con-
ducted by different teams, and perhaps even different companies. It also provides
a mechanism for dealing with legacy system elements that have not been devel-
oped using rigorous modeling techniques. In both cases, allocation can be used to
formalize constraints, expectations, or assumptions about that particular system
element within the context of a broader system model.

 The allocation relationship is used to support many forms of allocation
including allocation of behavior, structure, and properties. A typical example of
behavioral allocation is the allocation of activities to blocks (traditionally called
functional allocation), where each system component is assigned responsibility
for implementing a particular activity. An important distinction is made between

 Modeling Cross-Cutting
Relationships with
Allocations 13

CHAPTER

308 CHAPTER 13 Modeling Cross-Cutting Relationships with Allocations

allocation of defi nition and allocation of usage. For functional allocation, allo-
cating activities to blocks is an allocation of defi nition, and allocating actions to
parts is an allocation of usage.

 SysML includes several notational options to provide fl exibility for representing
allocations of model elements across the system model. The options include both
graphical and tabular representations, similar to those used for relating require-
ments. Figure 13.1 shows some of the graphical representations of allocation on
an activity diagram, on an internal block diagram, and on a block defi nition dia-
gram. A complete description of the SysML notation for allocations can be found
in the Appendix, Table A.23.

 13.2 Allocation Relationship
 An allocation relationship may be established between any two named model
elements. Every SysML allocation relationship has one “from ” end and one or more
“to ” or arrow ends. Model element A is said to be “allocated to ” model element
B, when the “from ” end of the allocation relationship relates to A and the “to ”
(arrow) end relates to B. Additional constraints may be placed on allocations in
special cases; for example, functional allocation may be constrained to occur only
between blocks and activities. Section 13.4 discusses various types of allocation.

 13.3 Allocation Notation
 There are several types of notation to represent allocation of one model element
to another. The notations used to represent allocation relationships are similar
to the graphical and tabular notations used to represent requirements relation-
ships, as described in Section 12.5 in Chapter 12. Graphical notations include
the direct notation, compartment notation, and callout notation.

 When the model elements at both ends of the allocation relationship can be
shown on the same diagram, the allocation relationship can be depicted directly,
as indicated in Figure 13.2 , using the keyword «allocate» on the relationship.
Here, the Adjust Focus Motor activity is allocated to the Focus Optimizer, and
the arrowhead represents the “allocatedTo ” end of the relationship. Although
functional allocation is depicted in this example, this representation is equally
valid for other types of allocations.

 As with requirements relationships, it is often the case that the model elements
at either end of the allocation relationship are on different diagrams. For these
cases, compartment notation and callout notation can be used to identify the
model element at the other end of the allocation relationship as described later.

 The compartment notation identifi es the element at the opposite end of the
allocation relationship in a compartment of the model element, as shown in
Figure 13.3 . However, this can only be used when the model element can include
compartments such as blocks and parts. It cannot be used for model elements
that do not have compartments such as connectors.

3
0

9

a2 : Optimize Focusof2

allocatedTo
«connector» c1

f2 : Focus Optimizer

c1
allocatedFrom

«objectFlow» of2
«block»
«logical»

Focus Optimizer

allocatedFrom

«activity» Adjust Focus Motor
«activity» Optimize Focus

«activity»
Adjust Focus Motor

«allocate»
f1 : Sharpness Detector

allocatedTo
«block» Focus Optimizer

ibd [Block] Focus Controller [objflw to cnktr 2]

act [Activity] Simplified Adjust Focus [objflw to cnktr 1]

bdd [Package] Allocation Example [allocation compartment]

allocatedFrom

«action» a1 :
Measure Pixel Contrast

f1 : Sharpness Detector

a1 : Measure Pixel Contrast

 FIGURE 13.1

 Examples of allocation on activity, block defi nition, and internal block diagrams.

310 CHAPTER 13 Modeling Cross-Cutting Relationships with Allocations

 The callout notation shown in Figure 13.4 can be used to represent the oppo-
site end of the allocation relationship for any model element whether it has com-
partments or not. Callout notation is represented as a note symbol that specifi es
the type and name of the model element at the other end of the allocation rela-
tionship. It also identifi es which end of the allocation relationship applies to the
model element as indicated by the allocatedTo or allocatedFrom. The callout
notation is read by starting with the name of the model element that the callout
notation attaches to, then reading the allocatedTo or allocatedFrom, and then
reading the model element name in the callout symbol. For example, the allocation

«block»
«logical»

Focus Optimizer

allocatedFrom

«activity» Adjust Focus Motor
«activity» Optimize Focus

«activity»
Adjust Focus Motor

allocatedTo
«block» Focus Optimizer

bdd [Package] Allocation Example [allocation compartment]

 FIGURE 13.3

 Example depicting an allocation relationship in compartment notation.

«block»
«logical»

Focus Optimizer

allocatedFrom
«activity» Adjust Focus Motor
«activity» Optimize Focus

«activity»
Adjust Focus Motor

«block» Focus Optimizer
allocatedTo

bdd [Package] Allocation Example [allocation callout]

 FIGURE 13.4

 Example depicting an allocation relationship in callout notation.

«activity»
Adjust Focus Motor

«allocate» «block»
«logical»

Focus Optimizer

 FIGURE 13.2

 Example directly depicting an allocation relationship, when both model elements appear on
the same diagram.

311

relationship in Figure 13.4 is read: “The activity Adjust Focus Motor is allocated
to the block Focus Optimizer. ”

 A tabular or matrix notation is also used to depict multiple allocation relation-
ships as shown in Figure 13.5 . In this example, activities are in the left column
and blocks are displayed in the top row. This format is not specifi cally pre-
scribed by the SysML specifi cation and will vary from tool to tool. The arrows in
the matrix indicate the direction of the allocation relationships, consistent with
those shown in Figures 13.3 and 13.4 .

 This matrix form of representing allocations is particularly useful when a
concise, compact representation is needed, and it is used often in this chapter to
illustrate allocation concepts. Allocations to or from some model elements, such
as item fl ows, cannot be unambiguously depicted on any diagram, and thus can
only be shown in a matrix or tabular form.

 13.4 Types of Allocation
 The following section describes different types of allocations including alloca-
tion of requirements, behavior, flow, structure, and properties.

 13.4.1 Allocation of Requirements
 The term requirement allocation represents a mechanism for mapping source
requirements to other derived requirements, or mapping requirements to other
model elements that satisfy the requirement. (See Chapter 12 for more informa-
tion on these kinds of relationships.) SysML does not use the «allocate» relation-
ship to represent this form of allocation, but instead uses specific requirements
relationships that are described in Chapter 12.

 FIGURE 13.5

 Example depicting allocation relationships in tabular matrix form.

13.4 Types of Allocation

312 CHAPTER 13 Modeling Cross-Cutting Relationships with Allocations

 13.4.2 Allocation of Behavior or Function
 The term behavioral allocation generally refers to a technique for segregating
behavior from structure. A common systems engineering practice is to separate
models of structure (sometimes referred to as “models of form ”) from models of
behavior (sometimes referred to as “models of function ”) so that designs can be
optimized by considering several different structures that provide the desired
emergent behavior and properties. This approach provides the required degrees
of freedom—in particular, how to decompose structure, how to decompose
behavior, and how to relate the two—to optimize designs based on trade studies
among alternatives. The implication is that an explicit set of relationships must
be maintained between behavior and structure for each alternative.

 The behavior of a block can be represented in different ways. On a block
defi nition diagram, the operations of a block explicitly defi ne the responsibility
the block has for providing the associated behavior (see Section 6.5 in Chapter 6
for more on specifying operations for blocks). In a sequence diagram, a mes-
sage sent to a lifeline invokes the operation on the receiving lifeline to provide
the behavior (see Chapter 9 for more on interactions). In activity diagrams, the
placement of an action in an activity partition implicitly defi nes that the part
represented by the partition provides the associated behavior (see Chapter 8 for
more on activities).

 In this chapter, the term behavioral allocation refers to the general concept
of allocating elements of behavioral models (activities, actions, states, object
fl ow, control fl ow, transitions, messages, etc.) to elements of structural models
(blocks, properties, parts, ports, connectors, etc.). The term functional alloca-
tion is a subset of behavioral allocation, and it refers specifi cally to the alloca-
tion of activities (also known as functions) or actions to blocks or parts.

 13.4.3 Allocation of Flow
 Flow represents the transfer of energy, mass, and/or information from one
model element to another. Flows are typically depicted as object flows between
action nodes on activity diagrams, as described in Chapter 8, and as item flows
between ports or parts on an internal block diagram, as described in Chapter 6.
Flow allocation is often used to allocate flows between activity diagrams and
internal block diagrams.

 13.4.4 Allocation of Structure
 Structural allocation refers to allocating elements of one structural model to
elements of another structural model. A typical example is a logical–physical
allocation, where a logical block hierarchy is often built and maintained at an
abstract level, and in turn is mapped to another physical block hierarchy at a
more concrete level. Software–hardware allocation is another example of
structural allocation. In SysML, allocation is often used to allocate abstract soft-
ware elements to hardware elements. UML uses the concept of deployment to

313

specify a more detailed level of allocation that requires software artifacts to be
deployed to platforms or processing nodes. The transition from a SysML alloca-
tion to a UML deployment may be accomplished through model refinement and
more detailed modeling and design of the software.

 13.4.5 Allocation of Properties
 Allocation can also be used to allocate performance or physical properties to
various elements in the system model. This often supports the budgeting of sys-
tem performance or physical property values to property values of the system
components. A typical example is a weight budget in which system weight is
allocated to the weights of the system’s components. Once again, the initial allo-
cation can be specified in more detail as part of model refinement using para-
metric constraints, as discussed in Chapter 7.

 13.4.6 Summary of Relationships Associated with the
Term “Allocation”

 Table 13.1 is a partial list of some uses of the term “allocation ” for systems mod-
eling, along with proposed SysML relationships to meet usages’ purpose.

Table 13.1 Various Uses of “Allocation” and How to Represent in SysML

 Kind of Allocation Reference Relationship From To

 Requirement allocation Section 12.11

 Section 12.10
 Section 12.13

 Satisfy

 DeriveReqt
Refi ne

 requirement

 requirement
 named element

 named
element
 requirement
 requirement

 Functional allocation Section 13.6 Allocate activity
 action

 block
 part

 Structural allocation
(e.g., logical to physical,
hardware to software)

 Section 13.9
 Section 13.10
 Section 13.9

 Allocate block
 port
 item fl ow
 connector

 block
 port
 item fl ow
 parts and
connectors

 Flow allocation Section 13.7 Allocate object fl ow
 object fl ow
 object fl ow

 connector
 item fl ow
 item property

 Property decomposition/
allocation

 Section 7.7 Binding
connector

 value property parameter

13.4 Types of Allocation

314 CHAPTER 13 Modeling Cross-Cutting Relationships with Allocations

 13.5 Planning for Reuse: Specifying Defi nition
and Usage in Allocation

 The terms definition and usage were discussed in Chapter 6. The term definition
refers to a model element that is a classifier or type such as a block. The element
is defined by specifying its features such as the properties and operations of a
block. The term usage identifies a defined element in a particular context. For
example, a part is a usage of a block in the context of a composite block, and the
part is defined by the block that types it. The parts connection with other parts
on an internal block diagram, and its interaction with other parts on an activity
or a sequence diagram, describes how the part is used. Leveraging the concepts
of definition and use is a significant strength of SysML, but it also requires care-
ful consideration to maintain consistency across different potential usages.

 The concept of defi nition and usage is not restricted to structure. Chapter
10 discusses a similar depiction of activity composition on a block defi nition
diagram and depicting that same composition as actions on an activity diagram.
Similarly, constraint blocks are defi ned on a block defi nition diagram, and their
usage is represented on a parametric diagram. Table 13.2 shows the different
kinds of diagrams, the model elements that represent usages on the diagrams,
and the model elements that can be used to type or defi ne them.

 The model element’s defi nition is generally shown on a block defi nition
diagram. However, the usage name can refer to the defi nition by its type—for
example, action name : Activity Name. A common convention is that usage
names are all lowercase and defi nition names start with leading uppercase.

 Allocation can be used to relate elements of defi nition (blocks, activities, etc.)
and elements of usage (actions, parts, etc.) in various combinations to provide
considerable fl exibility in how allocations are employed. As shown in Figure 13.6 ,
activities and actions are allocated to both blocks and parts. While this fi gure

Table 13.2 Contextualized Elements Representing Usages and Their Defi nition

 Diagram Kind Model Element/Usage Model Element/Defi nition

 Activity diagram action
 object node/action pin
 activity edge (object
fl ow, control fl ow)

 activity
 block (optional)
 (none)

 Internal block diagram Part
 connector
 item fl ow
 item property
 value property

 block (optional)
 association (optional)
 (none)
 block (optional)
 value type

 Parametric diagram Constraint property constraint block (optional)

315

explicitly depicts functional allocation, the concept applies equally to structural
allocation (block to block, part to part, etc.).

 13.5.1 Allocating Usage
 As shown in Figure 13.6 , allocation of usage applies when both the “from ” and
“to ” ends of the allocation relationship relate to usage elements (parts, actions,
connectors, etc.). When allocating usage, nothing is inferred about the corre-
sponding allocation of definition (blocks, activities, etc.). Only the specific usage
is affected by the allocation. For example, if an action is allocated to a part on an
internal block diagram, the allocation is only specific to that part, not to any
other similar parts, even if they are typed by the same block.

 Allocation of usage does not impact anything at the defi nition level, thus it does
not impact other uses of similar parts. If there are a large number of similar parts
with similar allocated characteristics or functions, it may be more appropriate

actionName
«allocate»

Allocation of
Definition«activity»

ActivityName

«activity»
Composite-

ActivityName

bdd [Package] PackageName
[Example Behavioral Definition]

«allocate»
Allocation of

Definition to Usage«allocate»
Allocation of

Usage to Definition

partName

«block»
BlockName

«block»
Composite-
BlockName

bdd [Package] PackageName
[Example Structural Definition]

ibd [Block] Composite-BlockName
[Example Structural Usage]

«allocate»
Allocation of

Usage
partName: BlockName

act Composite-ActivityName
[Example Behavioral Usage]

actionName: ActivityName

 FIGURE 13.6

 Allocation of defi nition and usage. Functional allocation is shown here, but structural
allocation is similar. Flow allocation will be discussed separately.

13.5 Planning for Reuse: Specifying Defi nition and Usage in Allocation

316 CHAPTER 13 Modeling Cross-Cutting Relationships with Allocations

to allocate and provide these characteristics at the defi nition level to each of its
parts as described next.

 13.5.2 Allocating Defi nition
 Allocation of definition applies when both “from ” and “to ” (arrow) ends of the
allocation relationship relate to elements of definition (blocks, activities, asso-
ciations, etc.). When allocating definition, every usage of the defining element
retains the allocation. For example, if a block were used to define several parts,
an allocation to the block would apply to all its parts (i.e., usages of the block).

 13.5.3 Allocating Asymmetrically
 Asymmetric allocation is when one end of the allocation relationship relates
to an element of definition, and the other end relates to an element of usage.
Asymmetric allocation is used by exception; that is, it is not generally recom-
mended since it can introduce notational ambiguity. Allocation of usage or allo-
cation of definition are the preferred allocation approaches.

 13.5.4 Guidelines for Allocating Defi nition and Usage
 The significance of using allocation of usage and allocation of definition rela-
tionships is discussed in Table 13.3 . By examining these two approaches to
allocation with respect to functional allocation, flow allocation, and structural
allocation, the following conclusions can be drawn:

■ Allocation of usage is localized to the fewest model elements and has no inferred
allocations. It can be directly represented on diagrams of usage (e.g., internal block
diagram or activity diagram), which establishes the context for the allocation.

Table 13.3 Allocation Guidelines Table

 Allocation of Usage Allocation of Defi nition

 Example: part to part, action to part,
connector to connector, property to
property

 Example: block to block or activity to
block

 Applicability: when the allocation is not
intended to be reused

 Applicability: when the allocation is
intended to apply to all usages

 Discussion
 – Most localized with least implication

on other diagrams and elements
 – Only way to allocate flows and

connectors that have no definition
 – Possible redundancy or inconsistency

as parts/actions used in multiple
places

 Discussion
 – Allocation inferred to all usages
 – Can result in overallocation (more

activities allocated to a part than
really necessary)

 – Not directly represented on an activ-
ity diagram with allocate activity
partition (see Section 13.6.3)

317

It is appropriate to start with allocation of usage and consider allocation of defi-
nition after each of the uses has been examined.

■ Allocation of definition is a more complete form of allocation because it applies
(is inferred) to every usage. Allocation of definition follows from allocation of
usage, as it typically requires blocks or activities to be specialized to the point,
where the allocation of definition is unique, and overallocation (more allocations
than really desired) is avoided. If a part requires a unique allocation, using alloca-
tion of definition requires the additional step of creating an additional block to
define the part uniquely, and then allocating to (or from) that specialized block
instead of to the part. This extra attention to refine the definition should facili-
tate future reuse of definition hierarchies.

 13.6 Allocating Behavior to Structure Using
Functional Allocation

 Functional allocation is used to allocate functions to system components. Figure 13.7
defines a suitably complex behavioral hierarchy and a structural hierarchy to be
used for the following functional allocation examples.

«activity»
Measure Pixel

Contrast

«activity»
Adjust Focus

Motor

«activity»
Adjust Focus

«activity»
Optimize Focus

«activity»
Detect Edges

a1a2 d1a3

bdd [Package] Behavior [example activity hierarchy]

f2 v1f1

bdd [Package] Logical Structure [example structural hierarchy]

«block»
«logical»

Focus Optimizer

«block»
«logical»

Focus Controller

«block»
«logical»

Sharpness Detector

«block»
«logical»

Video Quality Checker

 FIGURE 13.7

 Example behavioral and structural hierarchy defi nition.

13.6 Allocating Behavior to Structure Using Functional Allocation

318 CHAPTER 13 Modeling Cross-Cutting Relationships with Allocations

 Note that in this example, Measure Pixel Contrast is used by more than one
activity, and Sharpness Detector is used by more than one block. See Section 8.10
in Chapter 8 for modeling activity hierarchies on block defi nition diagrams and
Section 6.2 in Chapter 6 for modeling composition hierarchies on block defi nition
diagrams.

 This example of the autofocus portion of a surveillance camera will be used
throughout the remainder of this chapter. Assume that the surveillance camera
will use a passive autofocus system that uses pixel-to-pixel contrast as a way of
determining how well the optics are focused, and then it generates a signal to
adjust the focus motor accordingly. The Adjust Focus activity, then, can be com-
posed of actions defi ned by three other activities: a1 : Measure Pixel Contrast,
a2 : Optimize Focus, and a3 : Adjust Focus Motor. An activity diagram describ-
ing the behavior of Adjust Focus is presented in Section 13.6.1. Consider, hypo-
thetically, that a separate activity to detect edges of objects in the video frame
may also want to use the Measure Pixel Contrast activity.

 A logical structure for the auto-focus portion of the camera is also provided.
The Focus Controller block is composed of parts f1 : Sharpness Detector and
f2 : Focus Optimizer. Assume, hypothetically, that the block Sharpness Detector
may also defi ne a part used by some other logical block whose purpose is to
check video quality.

 13.6.1 Modeling Functional Allocation of Usage
 As discussed in an earlier section, functional allocation of usage (e.g., action
to part) should be used over functional allocation of definition (e.g., activity to
block) when each action is allocated to parts that are typed by different blocks.
Allocation of usage should also be considered if the action uses different inputs/
outputs (i.e., pins) that may result in different interfaces on the associated block.

 Figure 13.8 depicts functional allocation of usage. This example shows the use
of the callout notation for representing allocations from the actions on the activ-
ity diagram, and the use of the compartment notation for representing allocation
to the parts on the internal block diagram. Note that action a1 : Measure Pixel
Contrast on the activity diagram is allocated to part f1 : Sharpness Detector ,
but that none of the other actions are allocated. This is because their defi ning
activities are allocated in Section 13.6.2, so it is not appropriate to also allocate
the usage. Also, notice that object fl ow of2 is allocated to connector c1. This
kind of fl ow allocation can only be allocation of usage; it is described in more
detail in Section 13.7.2.

 On the internal block diagrams, the allocation callouts are the reciprocal of
the allocation callouts on the activity diagram. An allocation matrix is also pro-
vided as a concise alternative representation of the allocation relationships in the
other diagrams.

 13.6.2 Modeling Functional Allocation of Defi nition
 Allocation of definition is used when each action is allocated to a part that is
typed by the same block and can be depicted on block definition diagrams. The
allocation must be to or from activities or blocks.

319

 FIGURE 13.8

 Example of functional allocation of usage.

13.6 Allocating Behavior to Structure Using Functional Allocation

focus : Command

a1 : Measure Pixel Contrast

a2 : Optimize Focus

a3 : Adjust Focus Motor

current : Image

current1 : Image
contrast1 : Information

delta1 : Information

focus1 : Command

contrast1 : Information

delta1 : Information

of2

of4

of3

of1

allocatedTo
«part» f1 : Sharpness Detector

allocatedTo
«connector» c1

act [Activity] Adjust Focus [funct/flow alloc of usage 1]

allocatedFrom
«actionNode» a1 :
Measure Pixel Contrast

allocatedFrom
«objectFlow» of2

ibd [Block] Focus Controller [funct/flow alloc of usage 2]

p1 : Information

p1 : Information

c1

f1 : Sharpness Detector

f2 : Focus Optimizer

320 CHAPTER 13 Modeling Cross-Cutting Relationships with Allocations

 Figure 13.9 shows an example of functional allocation of defi nition using the
allocation relationship, along with the alternative callout and compartment nota-
tion. Note that the activities Optimize Focus and Adjust Focus Motor are allo-
cated to the block Focus Optimizer. The use of Focus Optimizer in the block
Focus Controller, and everywhere else it is used, has an inferred allocation of
these two activities. This allocation can later be realized by creating two oper-
ations for Focus Optimizer that would call Optimize Focus and Adjust Focus
Motor as their methods. These new operations would then be available to every
instance typed by Focus Optimizer .

 Note that the activity Measure Pixel Contrast is not allocated to the block
Sharpness Detector, even though from previous discussions there is a concep-
tual relationship between them. In this particular example, Measure Pixel
Contrast is also used by the activity Detect Edges, which is a processing tech-
nique not associated with picture sharpness. Measure Pixel Contrast should
not have any inferred allocation to Sharpness Detector when it is used in Detect
Edges, thus allocation of defi nition is inappropriate. Allocation of usage is the
correct technique in this case.

 Figure 13.10 is a block defi nition diagram of a system similar to the water
distiller example in Chapter 15. Note that the Meter Flow activity has been allo-
cated to the block Valve, which infers that the Meter Flow activity applies to

«activity»
Optimize Focus

«activity»
Adjust Focus Motor

«activity»
Adjust Focus

«activity»
Measure Pixel

Contrast

«activity»
Detect Edges

«block»
«logical»

Focus Optimizer

«block»
«logical»

Focus Controller

«block»
«logical»

Sharpness Detector

a1 d1a2 a3

«allocate» «allocate»

f2 f1

bdd [Package] Behavior [functional allocation of definition]

Note: Allocation of
definition from Measure
Pixel Contrast to Sharpness
Detector is inappropriate,
since Detect Edges
would then be dependent
on Sharpness Detector.

 FIGURE 13.9

 Example of functional allocation of defi nition.

321

each usage of the Valve block. This is appropriate because every valve performs
an activity to meter fl uid fl ow.

 Note also that the activity Boil Water has been allocated to the block Boiler .
This infers that all the usages of the Boiler can perform the activity Boil Water .

 Figure 13.11 is a block defi nition diagram representing a Power Station, and
it uses many of the blocks previously defi ned for the Distiller. The allocation of
defi nition to the Boiler and Valve referred to in Figure 13.10 is still valid. The
part stm gen : Boiler has an inferred allocation from the Boil Water activity, and

«block»
Heat Exchanger

«block»
Valve

«block»
Boiler

«block»
Distiller

«activity»
Meter Flow

«activity»
Boil Water

draincondenser

«allocate»«allocate»

evaporator

bdd [Package] Initial Distiller [distiller allocation of definition]

 FIGURE 13.10

 Functional allocation of defi nition from distiller example.

bdd [Package] Power Station Structure [power station allocation of definition]

«block»
Boiler

allocatedFrom
«activity» Boil Water

«block»
Valve

allocatedFrom
«activity» Meter Flow

«block»
Heat Exchanger

«block»
Power Station

«block»
Generator

«block»
Turbine

«block»
Pump

throttlefeed

t1g1

stm gen main condenser

feed

 FIGURE 13.11

 Implications of functional allocation of defi nition as seen in the power station example.

13.6 Allocating Behavior to Structure Using Functional Allocation

322 CHAPTER 13 Modeling Cross-Cutting Relationships with Allocations

both the feed and throttle usages of Valve include an inferred allocation from
the Meter Flow activity.

 13.6.3 Notational Simplicity: Modeling Functional Allocation
Using Allocate Activity Partitions (Swimlanes)

 Allocate activity partitions are a special type of activity partitions that are distin-
guished by the keyword «allocate». The presence of an allocate activity partition
on an activity diagram implies an allocate relationship between any action node
within the partition and the part represented by the partition (which appears as
the name of the partition), as depicted in Figure 13.12 . Note that allocate activity
partitions can only explicitly depict allocation of usage because the activities (defi-
nition) are not directly represented on activity diagrams. If allocation of definition
is desired, the activity must be allocated to the block that can be directly depicted
on a block definition diagram or by using compartment or callout notation.

 Functional allocation using allocate activity partitions (a.k.a. swimlanes)
is depicted in Figure 13.13 . This is a subset of the example previously shown in
Figure 13.8 , where action node a1 (a usage of activity Measure Pixel Contrast) has
been allocated to part f1 (a usage of block Sharpness Detector). This allocation is
depicted graphically by the allocate activity partition on the activity diagram.

 Allocate activity partitions are distinguished from other activity partitions
by the keyword «allocate». If a standard activity partition is used without that
keyword, the allocation implications for the actions are different: If an action is
a call behavior action, then the activity called by the action must be a behavior of

«allocate»
part name : Block Name

action name : Activity Name

 FIGURE 13.12

 Allocate activity partition.

act [Activity] Simplified Adjust Focus [allocate swimlane]

«allocate»
f1 : Sharpness Detector

a1 : Measure Pixel Contrast a2 : Optimize Focus

 FIGURE 13.13

 Simple example of functional allocation using an allocate activity partition (swimlanes).

323

the block that represents the partition. In particular, a block’s operation can be
defi ned in a way that calls this activity as its method, as described in Section 6.5
in Chapter 6. This does not employ the SysML allocate relationship, but instead
tightly couples the behavior defi nition to the structural defi nition.

 13.7 Connecting Functional Flow with Structural
Flow Using Functional Flow Allocation

 Flow between activities can either be control or object flow as described in
Chapter 8. The following sections address allocating object flow as represented
on activity diagrams. Allocation of control flow may be depicted in a similar way
as allocation of object flow. Flow allocation is typically an allocation of usage
because items that flow between model elements are usually specified in the
context of their usage.

 13.7.1 Options for Functionally Allocating Flow
 Item flows are used to depict flow between parts on internal block diagrams, as
described in Section 6.4.2 in Chapter 6. Item flows can have an associated item
property. The item flow represents the direction of flow, and the item property
is the usage of the item that flows. Item properties can be defined (i.e., typed)
by blocks just like parts can be typed by blocks.

 Chapter 8 discusses the equivalent depiction of object fl ows (solid arrows on
activity diagrams) in either action pin notation (small squares on the edges of
action nodes) or object node notation (larger rectangles between action nodes).
Due to constraints in the underlying UML metamodel, object nodes on activity
diagrams cannot be directly allocated either to item fl ows or their respective item
properties. To avoid ambiguity of the allocation relationship, it is recommended
that action pin notation be used when performing behavioral fl ow allocation.

 The following sections discuss allocating an object fl ow to a connector, allo-
cating an object fl ow to an item fl ow, and allocating item properties between dia-
grams. Other kinds of fl ow allocation can be used as well, such as allocating an
action pin to an item fl ow or an activity parameter node to a port. These additional
allocations are an advanced topic that is a function of the specifi c design method
used and are not discussed here.

 13.7.2 Allocating an Object Flow to a Connector
 Figure 13.14 extends the example shown in Figure 13.13 and is also a subset of the
example shown in Figure 13.8 . The object flow of2 is allocated to the connector
c1. This is a convenient preliminary form of allocation to use before item flows
have been defined, or if item flows are not modeled. It can be ambiguous, how-
ever, if more than one item flow or item property is associated with the connector.

 Control fl ows can also be allocated to connectors, but the semantics and
physical implications of allocating control fl ows are also highly dependent on the

13.7 Connecting Functional Flow with Structural Flow

3
2

4

act [Activity] Simplified Adjust Focus [objflw to cnktr 1]

«allocate»
f1 : Sharpness Detector

a1 : Measure Pixel Contrast a2 : Optimize Focus
of2

allocatedTo
«connector» c1

«actionNode» a1 :
Measure Pixel Contrast

allocatedFrom

allocatedFrom
«objectFlow» of2

ibd [Block] Focus Controller [objflw to cnktr 2]

c1

f1 : Sharpness Detector

f2 : Focus Optimizer

 FIGURE 13.14

 Object fl ow to connector allocation.

325

design method. Additional model refi nement may be required before unambiguous
control fl ow allocation can be achieved.

 13.7.3 Allocating Object Flow to Item Flow
 Figure 13.15 provides an alternative method of flow allocation from Figure 13.14 .
In this case object flow of2 has been allocated to the item flow if1. While this
can be easily depicted on the activity diagram using callout notation, it cannot
be unambiguously depicted on an internal block diagram since the name of the
item flow may not be visible. An allocation matrix is provided to explicitly show
the allocation relationships. This is a more specific form of allocation than object
flow to connector, and it will remain unambiguous even if more than one item
flow is associated with the connector. In general, activity edges that represent
control flow or object flow can be allocated to item flows.

 Allocating an object fl ow or control fl ow to an item fl ow does not affect the
behavior represented on the activity diagram. If the modeling tool animates or
executes the activity diagram, it is the object fl ow that will be part of that execu-
tion semantic, not the item fl ow.

act [Activity] Simplified Adjust Focus [objflw to itemflw]

«allocate»
f1 : Sharpness Detector

a1 : Measure Pixel Contrast a2 : Optimize Focus

of2

allocatedTo
«itemFlow» if1

 FIGURE 13.15

 Object fl ow to item fl ow allocation.

13.7 Connecting Functional Flow with Structural Flow

326 CHAPTER 13 Modeling Cross-Cutting Relationships with Allocations

 When allocating object fl ows to item fl ows, it is important to ensure consistent
typing. Action pins may be typed by blocks, but item fl ows are not typed directly.
The item properties that are related to the item fl ows are typed by blocks. The
built-in constraints on object fl ows ensure that the action pins on each end of the
object fl ow are typed by the same (or at least consistent) blocks. When allocating
the object fl ow to an item fl ow, the type of the action pins associated with the
object fl ow should be consistent with the type of the item properties associated
with the item fl ow. This is an example of what might be expected from a model
checker provided by the tool to reduce the likelihood of error as well as the work-
load of the modeler.

 Rather than allocate the object fl ow to the item fl ow, it may be appropriate
to allocate the object fl ow to the item property associated with the item fl ow.
Figure 13.16 shows the results of this kind of allocation; it is used in the water
distiller example in Chapter 15 because it ties the object fl ows in the functional
model to specifi c properties of the water fl owing through the system. The values
of these properties are used for subsequent engineering analysis.

act [Activity] Simplified Adjust Focus [objflw to itemprop]

«allocate»
f1 : Sharpness Detector

a1 : Measure Pixel Contrast a2 : Optimize Focus

of2

allocatedTo
«itemProperty» sharpness

 FIGURE 13.16

 Object fl ow to item property allocation.

327

 13.8 Modeling Allocation between Independent
Structural Hierarchies

 There are times to consider more than one model of structure (e.g., logical–
physical). For example, it is a common practice to group capabilities, functions,
or operations into an abstract, or logical structure, while maintaining a separate
implementation-specific physical structure. Chapter 16 includes an example of
developing a logical architecture.

 A particular method for logical architecture development must include a way
to relate elements of logical structure with elements of physical structure. SysML
allocation provides an abstract vehicle to perform and analyze this mapping.
Implementation of the physical structure may require further model develop-
ment to realize the logical structure, such as inheritance of owned behaviors or
fl ow specifi cations, but this development should wait until the logical-to-physical
allocation is stable and consistent across the system model.

 The physical structure may itself be divided into software structures and
hardware structures. UML software modelers typically use deployment relation-
ships to map software structures on to hardware structures. SysML allocation
provides a more abstract mechanism for this kind of mapping, which does not
have to consider host–target environment, compiler, or other more detailed
implementation considerations. These considerations may be deferred until after
preliminary hardware and software allocation has been performed and analyzed.

 13.8.1 Modeling Structural Allocation of Usage
 An example of a structural allocation of usage is shown in Figure 13.17 using a
block definition diagram. The diagram shows both ends of the structural allocation
of the blocks ’ internal structure. The structure compartment of a block on a block
definition diagram corresponds to what is depicted on the internal block diagram
of that block.

«block»
«logical»

Focus Controller

«allocate»

«allocate»

«allocate»

c1 j1

f1 : Sharpness Detector

f2 : Focus Optimizer

bdd [Package] Physical Structure [structural allocation of usage]

«block»
«physical»

Mother Board

mb1 : ADC Chipset

mb4 : Control Processor

 FIGURE 13.17

 Structural allocation of usage example.

13.8 Modeling Allocation between Independent Structural Hierarchies

328 CHAPTER 13 Modeling Cross-Cutting Relationships with Allocations

 Allocation between parts in different structure compartments, as shown, can
only depict allocation of usage. Likewise, allocation shown between connectors
on internal block diagrams or structure compartments can only represent alloca-
tion of usage.

 13.8.2 Allocating a Logical Connector to a Physical Structure
 A connector depicted in an abstract, or logical structure, may need to be allo-
cated to multiple elements in an implementation or physical structure. A con-
nector binds parts or ports together, and it does not necessarily represent an
interfacing part, such as a wiring harness or a network.

 The example in Figure 13.18 depicts the allocation of a connector in a logical
structure, where implementation details are not considered, to a physical part
(ea5 : PWB Backplane) and associated connectors at the appropriate ends of the
cable. The use of allocation is an appropriate way to show the refi nement of the

p18 : SM pin

p27 : SM pin

p052 : PWB pad

p325 : PWB pad

j01

j02

«allocate»

«allocate»

«allocate»

«block»
«logical»

Focus Controller

c1

f1 : Sharpness Detector

«actionNode» a1 :
Measure Pixel Contrast

allocatedFrom

«part» mb1 : ADC Chipset
allocatedTo

ea5 : PWB Backplane

«part» mb4 : Control
Processor

allocatedTo

f2 : Focus Optimizer

bdd [Package] Physical Structure [physical connector allocation]

«block»
«physical»

Mother Board

mb1 : ADC Chipset

«part» f1 : Sharpness
Detector

allocatedFrom

«part» f2 : Focus
Optimizer

allocatedFrom

mb4 : Control Processor

 FIGURE 13.18

 Refi ning a connector using allocation.

32913.9 Modeling Structural Flow Allocation

logical connector, without requiring undue extension of the logical architecture
into implementation details. Any item fl ow on the logical connector should be
allocated to multiple item fl ows in the physical structure, corresponding to fl ow
entering and exiting the cable.

 13.8.3 Modeling Structural Allocation of Defi nition
 Figure 13.19 shows structural allocation of definition for the autofocus portion
of the surveillance camera. This is different from the allocation represented
previously in Figure 13.17 , which depicted allocation of usage. If a structural
allocation is meant to apply to all its usages, then allocation of definition is
appropriate. In this example, wherever the block Vector Processor is used, it
will include the inferred allocation from Image Processor, even if it is not used
in an Mother Board .

 13.9 Modeling Structural Flow Allocation
 An item flow can be a common item to both an abstract (e.g., logical) internal
block diagram and a concrete (e.g., physical) internal block diagram. This ena-
bles a common structural data model to be maintained between logical and
physical hierarchies.

 There may be good reasons, however, to establish separate abstract (e.g., logi-
cal) and concrete (e.g., physical) data models. For example, a standard logical data
model may be required, but the data-level implementation may need to be opti-
mized. In the case in which an item fl ow depicted at an abstract level needs to
be allocated to structures at a more concrete level, it may be necessary to decom-
pose the abstract item fl ow so that it may be uniquely allocated. If a block is used
to represent the item that fl ows at the abstract level, it should be decomposed
into a set of blocks that can be used to represent the items that fl ow at the more
concrete level. The abstract item fl ow can then be allocated to the more concrete
item fl ows that use the appropriate blocks to type item properties.

 Figure 13.20 shows how an item fl ow at an abstract level can be allocated to an
item fl ow at a more concrete level. The name of the item fl ow in Focus Controller
is if1, but this name doesn’t appear next to the item fl ow symbol. This is because
if1 has an item property, sharpness, that is typed by a block, Information, and
this name supersedes the name of the item fl ow when represented on the inter-
nal block diagram. Likewise, the name of item fl ow if6 in Electronics Assembly
has been superseded by item property pixel contrast and its type called Data .
Because of this naming convention, the allocation of if1 to if6 is not directly
shown on the diagram and must be represented in an allocation matrix.

 It is possible to allocate from an item property on one diagram directly to an
item property on another diagram, such as from sharpness : Information to pixel
contrast : Data. Allocation between item properties cannot be directly repre-
sented on any diagram because it would look like allocation between item fl ows.
Allocation between item properties is best represented on an allocation matrix.

3
3

0

«block»
«logical»

Camera Electronics

«block»
«logical»

Image Detector

«block»
«logical»

MPEG Converter

«block»
«logical»

Image Processor

«block»
«logical»

Focus Controller

«block»
«physical»
FPA Board

«block»
«physical»

Mother Board

«block»
«logical»

CCD Imaging Chipset

«block»
«physical»

MPEG Chipset

«block»
«physical»

ADC Chipset

«block»
«physical»

Vector Processor

«block»
«physical»

Control Processor

mb4

«allocate»

«allocate»

«allocate»

ce4

ce1

mb3

fb1

mb1

ce3

ce2

bdd [Package] Physical Structure [structural allocation of definition]

mb2

 FIGURE 13.19

 Depicting structural allocation of defi nition.

331

In most cases of allocation between item properties, the defi ning type (conveyed
classifi er) will be the same for both item properties. In the Figure 13.20 example,
note that the logical data model is independent of the physical data model, and
thus the types (conveyed classifi ers) of each item property are different.

 It is certainly possible to allocate the logical conveyed classifi er to the physi-
cal. This would be allocation of defi nition, and thus should be done paying spe-
cial attention to avoiding unwanted inferred allocation.

 13.10 Evaluating Allocation across a User Model
 An assessment of the integrity and completeness of the allocation relationships is
largely dependent on the system’s stage of development. Since allocation is used

«block»
«logical»

Focus Controller

c1 j1

f1 : Sharpness Detector

f2 : Focus Optimizer

bdd [Package] Physical Structure [logical & phys flow]

«block»
«physical»

Mother Board

mb1 : ADC Chipset

mb4 : Control Processor

p18 : SM pin

p27 : SM pin

sharpness : Information

p1 : Information

p1 : Information

pixel contrast : Data

 FIGURE 13.20

 Example of structural fl ow allocation.

13.10 Evaluating Allocation across a User Model

332 CHAPTER 13 Modeling Cross-Cutting Relationships with Allocations

as an abstract prelude to more concrete relationships, the quality of allocation at
a given point in time can only be assessed with respect to the system develop-
ment method or strategy being employed.

 13.10.1 Establishing Balance and Consistency
 The quality of the model can be assessed in terms of the completeness and con-
sistency of the allocation relationships and the overall balance of the allocation
as described next.

 Completeness and consistency are evaluated using rules or constraints. In
functional allocation, for example, allocation of a package of activities is said to be
complete when each activity has an allocation relationship to a block elsewhere
in the model. It may not be judged to be consistent, for example, until the action
nodes defi ned by the activities are depicted in a valid activity diagram; the
inferred allocation to parts are depicted on a valid internal block diagram; and
any object fl ows on the activity diagram are allocated to appropriate connectors
on the internal block diagram. Consistency can also involve checking for circular
allocations, redundant allocations, and what the modeler may defi ne as inappro-
priate allocations (e.g., allocating an activity to another activity). Again, automated
model checking is expected to assist with this.

 Evaluating balance is more subjective and likely to require experience and
judgment on the part of the modeler. One aspect of balance may involve assess-
ing the level of detail represented by the model element at each end of the allo-
cation relationship. It may be inappropriate for the element at the “from ” end
to be more detailed than the element at the “to ” end if one is allocating from
a more abstract model part to a more concrete model part. A similar aspect of
balance might involve examining portions of the model that are rich in alloca-
tion, and determining whether the level of detail is too high, or whether the
allocation-poor portions of the model need further refi nement. When evaluating
functional allocation, for example, if a large number of activities are allocated
to a single block and other blocks have few or no activities allocated, the mod-
eler may ask: (1) Have the activities of the system been completely modeled? or
(2) Has the structural design incorporated too much functionality into a single
block? The answers to these questions will help determine the direction for the
future modeling effort. For question 1, it might be fl eshing out the activity model
in other areas; for question 2, it might be decomposing the overallocated block
into lower-level blocks.

 13.11 Taking Allocation to the Next Step
 Allocation is a means, not an end point. Once allocation across the model is bal-
anced and complete, each allocation may be refined by a more formal relation-
ship that preserves and elaborates the constraints from the “from ” end to the “to ”
end of the allocation. In this way, allocation is used to direct the system design

333

activity through the model without prematurely deciding how the relationship
between model elements will be refined. Of course, this is very dependent on
the modeling method.

 SysML allocations allow the modeler to keep model refi nement options open.
For example, functional allocations can be refi ned by: (1) Designating activities
allocated to a block as methods called by operations of the block; this, of course,
requires the additional step of creating the operations. (2) Designating the activi-
ties as owned behaviors of the block. Each approach has merits for downstream
development; deferring the decision allows the modeler to work at a consistent
level of abstraction, and not to get prematurely drawn into modeling details or
methodological trade-offs.

 Even after the model is refi ned, it is appropriate to retain the allocation rela-
tionships, possibly capturing supporting «rationale» in the model to provide a
history of how the model was developed. This can be very important informa-
tion when considering reuse of the model on a different program or product.

 13.12 Summary
 The allocation relationship provides significant flexibility for relating model ele-
ments to one another beginning early in the development process. Key concepts
for modeling allocations include the following.

■ How allocation can be used to support system modeling is discussed in this
chapter, including examples. Also included is a brief discussion of how to assess
allocations in terms of their completeness, consistency, balance, and flexibility
in directing further model development efforts.

■ A system model can be developed without using allocation. Use of allocation,
however, enables certain implementation decisions to be deferred by specify-
ing the model at higher levels of abstraction and then using allocations as a
basis for further model refinement.

■ There are many different types of allocation, including allocation of behavior,
structure, and properties. Allocation supports traditional systems engineering con-
cepts, such as allocating behavior to structure by allocating activities to blocks.
Also supported is allocation of logical elements to physical elements, including
logical connectors to physical interfaces, software to hardware, object flows to
item flows, and many others.

■ A key distinction must be made between the allocation of definition and the
allocation of usage. In the former, defined elements (e.g., activities) are allocated
to other defined elements (e.g., blocks). For allocation of definition, all usages of
the activity are allocated to all usages of the block. For allocation of usage, only
specific usages are allocated without impacting other usages, such as the case
when an action is allocated to a part.

■ An allocate activity partition provides an explicit graphical mechanism to allo-
cate responsibility of an action to a part.

13.12 Summary

334 CHAPTER 13 Modeling Cross-Cutting Relationships with Allocations

■ There are multiple graphical and tabular representations for representing alloca-
tions similar to those used for representing requirements relationships. Graphical
representations include direct notation, compartment notation, and callout nota-
tion. Tabular representations often include a compact form for representing mul-
tiple allocation relationships.

 13.13 Questions
 1. List four ways that allocations can be represented on SysML diagrams.
 2. Which kinds of model elements can participate in an allocation relationship

in SysML?
 3. Is the allocate relationship appropriate to use when allocating requirements?
 4. List and describe three uses of allocation in SysML that rely on the allocate

relationship.
 5. For each of the following kinds of diagrams, indicate whether they are dia-

grams of usage or diagrams of defi nition:
 a. activity diagram
 b. block defi nition diagram
 c. internal block diagram
 d. parametric diagram

 6. For each of the following allocation relationships, indicate whether they are
allocation of defi nition or allocation of usage:
 a. action node (on activity diagram) to part (on internal block diagram)
 b. activity to block
 c. object fl ow to connector
 d. activity parameter to fl ow specifi cation

 7. What is the signifi cance of choosing an allocation of defi nition instead of an
allocation of usage?

 8. Should an object fl ow ever be allocated to a block? Explain your answer.
 9. Should an activity ever be allocated to a part? A connector to a block? Explain

your answers.
 10. The following questions apply to Figure 13.20 :

 a Are the item fl ow names shown on the block defi nition diagram? Explain.
 b. Why is there no direct allocation shown on the block defi nition diagram?

 Discussion Topics
 What is the purpose of allocation? What role does it play in system develop-
ment? How can good or poor allocation impact the overall quality of the system
design?

 Describe an appropriate next step after completing functional allocation. Which
mechanisms are available to implement functionality in blocks?

 This chapter describes how to customize SysML using profiles and model librar-
ies. These types of customization support the wide range of domains that systems
modeling can be applied to. A number of advanced metamodeling concepts that
are typically of interest to language designers and others who may be responsible
for customizing the language to meet domain-specific needs are also addressed.
Some of the metamodeling concepts were introduced in Chapter 4.

 14.1 Overview
 SysML is a general-purpose systems modeling language that is intended to support
a wide range of domain-specific applications such as the modeling of automotive
or aerospace systems. SysML has been designed to enable extensions that support
these specialized domains. An example may be a customization of SysML for the
automotive domain that includes specific automotive concepts and representa-
tions of standard domain elements such as engines, chassis, and brakes.

 To accomplish this, SysML includes its own extension mechanisms, called
stereotypes, that are grouped into special kinds of packages called profi les.
Stereotypes extend existing SysML language concepts with additional proper-
ties and constraints. SysML also supports model libraries—collections of reus-
able model elements commonly used in a particular domain. Profi les and model
libraries are themselves contained in models, but they typically are authored
by language designers rather than the general system modeler. The term “user
model” refers to a model authored by a system modeler to describe a system or
systems.

 Model libraries provide constructs that can be used to describe real-world
instances represented by a model, be they blocks specifying reusable components
or value types defi ning valid units and dimensions for block properties. Profi les,
on the other hand, provide constructs that extend the modeling language itself;
for example, stating that there is such a thing as a value type with units and
dimensions in the fi rst place.

 Customizing SysML for
Specifi c Domains 14

CHAPTER

336 CHAPTER 14 Customizing SysML for Specifi c Domains

 Profi les and model libraries are represented on package diagrams, as described
in Chapter 5, with additional notations described in this chapter. Figure 14.1
shows a package diagram with much of the notation used for defi ning stereotypes.

 The diagram in Figure 14.1 shows the defi nitions of three stereotypes and their
properties to support simulations. Flow-Based Simulation and Flow Simulation
Element both extend the SysML Activity metaclass and add information about the
type of simulation and how it executes. Probe extends both the ObjectFlow and
ObjectNode metaclasses—part of the activity specifi cation—and is used to tell the
simulation system which data to monitor.

 Table A.2 in the Appendix shows the additional notation needed to represent
the extensions to the package diagram for model libraries and profi les.

 Figure 14.2 shows a model library of elements that are themselves extended
using the stereotypes shown in Figure 14.1 . The model elements in the Flow
Simulation Elements model library are intended for use in building fl ow-based
simulations. They are activities (i.e., model elements whose type is the metaclass
Activity shown in Figure 14.1) with the stereotype Flow Simulation Element
applied. Note that when stereotypes are applied, the keyword for a stereotype
by convention has a different typographic style than the style of the stereotype’s
name. This convention is described later in this chapter. These activities can be
invoked from actions owned by a fl ow-based simulation. The values for the stereo-
type’s properties allow the simulation tool to determine their validity based on
the type of simulation required.

«stereotype»
Flow-Based Simulation

«stereotype»
Flow Simulation Element«stereotype»

Probe

«metaclass»
ObjectNode

«metaclass»
Activity

«metaclass»
ObjectFlow

0..*
probes

simulation type : Simulation Kind
step type : Step Kind
solver : Solver Kind
version : String

compatibility : Simulation Kind
version : String

pkg [Profile] Simulations

action : Probe Action Kind

 FIGURE 14.1

 Example of a profi le defi ned on a package diagram.

337

 Table A.24 in the Appendix shows the additional notation needed on SysML
diagrams to represent model elements that have been extended by stereotypes.

 14.1.1 A Brief Review of Metamodeling Concepts
 Although the topic of metamodeling is discussed in Chapter 4, the main concepts
are reprized here for convenience. A modeling language has three parts:

■ Abstract syntax describes the concepts in the language, the relationships between
the concepts, and a set of rules about how the concepts can be put together. The
abstract syntax for a modeling language is described using a metamodel. SysML
is based on OMG standards for both modeling and metamodeling. The OMG
defines a metamodeling mechanism, called the Meta Object Facility (MOF) [20],
that is used to define metamodels such as UML and SysML.

■ Notation describes how the concepts in the language are visualized. In the
case of SysML, the notation is described in notation tables that map language
concepts to graphical symbols on diagrams.

bdd [modelLibrary] Flow Simulation Elements [A Selection of Flow Simulation Elements]

«activity»
«flowSimulationElement»

Derivative

«activity»
«flowSimulationElement»

Integrator

compatibility � continuous
version � "7.5"

compatibility � continuous
version � "7.5"

compatibility � discrete
version � "7.5"

compatibility � discrete
version � "7.5"

compatibility � discrete
version � "7.6"

«activity»
«flowSimulationElement»

Signal Generator

compatibility � discrete
version � "7.5"

«activity»
«flowSimulationElement»

Divide

«activity»
«flowSimulationElement»

Sum

«activity»
«flowSimulationElement»

Saturation

 FIGURE 14.2

 Example of the application of stereotypes to model elements.

14.1 Overview

338 CHAPTER 14 Customizing SysML for Specifi c Domains

■ Semantics describe the meaning of the concepts by mapping them to concepts
in the domain of the language—for example, systems engineering. Sometimes
the semantics are defined using formal techniques, such as mathematics, but
in SysML the semantics are described in English text. Efforts are under way to
provide a more formal definition of SysML semantics and many tools implicitly
define the semantics by building simulators.

 The individual concepts in the metamodel are described by metaclasses that
are related to each other using generalizations and associations in a similar fash-
ion to the way blocks can be related to one another on a block defi nition dia-
gram. Each metaclass has a description and a set of properties that characterize
the concept it represents, and also a set of constraints that impose rules on those
properties ’ values.

 The package diagram in Figure 14.3 shows a small fragment of UML4SysML —
the metamodel on which SysML is based. It shows one of the fundamental con-
cepts of UML, called Class, and some of its most important relationships. Class
specializes Classifi er through which it gains the capability of forming classifi ca-
tion hierarchies. The fi gure also shows associations to Property and Operation ,
which between them defi ne most of the important features of a Class .

 A model of a system contains model elements that are instances of the meta-
classes in the metamodel for the language. These instances have values and
references to other instances based on the properties and relationships defi ned in

aggregation : AggregationKind

isQuery : Boolean

isAbstract : Boolean none
shared
composite

class

0..1

ownedOperation
0..*

ownedAttribute

0..*

class

0..1

general
1 0..*

specific

1

generalization

0..*

«metaclass»
Operation

«metaclass»
Property

«metaclass»
Classifier

«metaclass»
Class

«metaclass»
Generalization

«enumeration»
AggregationKind

«metamodel diagram»
pkg [Model] UML4SysML

 FIGURE 14.3

 Fragment of UML4SysML, the underlying metamodel for SysML.

339

the metamodel. Some of these model elements just capture details of the model’s
internal structure, such as how the model elements are organized into packages
(the equivalent of folders in Windows). However, the majority of the elements in
a model describe entities in the world of the system.

 The two SysML concepts presented in this chapter, model libraries and pro-
fi les, are used to add new capabilities to the modeling language. Model libraries
contain normal model elements, described by metaclasses in the metamodel.
Profi les extend a metamodel, called a reference metamodel, with additional con-
cepts that have their own properties, rules, and relationships; thus, they allow the
language defi ned by the metamodel (in this case SysML) to be augmented with
concepts for domains not covered directly by SysML.

 Modeling tools are normally specially engineered to support a specifi c
metamodel and will only understand models that use that metamodel. Extending
the language by adding to the metamodel is something typically done by a tool
vendor. The benefi t of a profi le is that many UML tools are engineered to support
not just the core metamodel but also any user-defi ned profi les. This means that
a profi le for a specifi c domain can be loaded into a UML tool and the tool will
understand how to edit, display, load, and store elements of that profi le without
the need for a tool extension. So, a modeler can make use of a set of modeling
elements for a specialized modeling domain without needing to change the mod-
eling tool.

 As discussed in Chapter 4, SysML is based very closely on a subset of the con-
cepts in UML, so it is defi ned as a UML profi le. This allows UML tools to support
SysML simply by loading the SysML profi le, although many UML tool vendors have
extended their UML tools to make the SysML profi le more usable.

 The rest of this chapter discusses model libraries and profi les in detail. Section
14.2 describes model libraries and their use in defi ning reusable components.
Sections 14.3 and 14.4 cover the defi nition of stereotypes and the use of profi les
to describe a set of stereotypes and supporting defi nitions. Sections 14.5 and
14.6 focus on the use of profi les and model libraries to build domain-specifi c user
models.

 14.2 Defi ning Model Libraries to Provide
Reusable Constructs

 A model library is a special type of package that is intended to contain a set
of reusable model elements for a given domain. Model libraries are not used to
extend the language concepts of SysML, although model elements in the library
may have stereotypes applied if they support a specialized domain, as shown
in Figure 14.2 . Model libraries can contain very specialized elements similar to
parts catalogs containing the specifications of off-the-shelf components, or they
can contain elements with wider applicability, such as the SI Definitions model
library provided in the SysML specification.

 Any packageable model element (see Chapter 5), such as blocks, value types,
activities, and constraint blocks, can be included in a model library. Elements in

14.2 Defi ning Model Libraries to Provide Reusable Constructs

340 CHAPTER 14 Customizing SysML for Specifi c Domains

a model library may be contained directly in that library, or they may have been
defi ned in other models or packages and imported. In the latter case, the model
library acts as a mechanism to gather elements from disparate sources into a con-
venient unit for reuse.

 The contents of a model library may be shown on a package diagram or block
defi nition diagram using the standard symbols for those diagrams. When a model
library is shown on a package diagram, it is designated by a package symbol with
the keyword «modelLibrary» appearing before the name of the model library in
the name compartment or tab of the package. See Figure 14.9 in Section 14.5
for an example of the former notation. When a model library corresponds to the
frame of a diagram, the type modelLibrary is shown in square brackets in the dia-
gram header as the model element type.

 The model library in Figure 14.4 defi nes a set of blocks to represent some very
basic physical concepts intended to be specialized by domain-specifi c blocks.
Physical Thing describes things with mass and density and provides a constraint,
via the constraint block Mass Equation, that defi nes the mass of a physical entity
in terms of the mass of its components. The block Moving Thing specializes
Physical Thing with properties of motion (e.g., acceleration and velocity). It also
has a property, force, that allows force to be applied to get a Moving Thing mov-
ing, or to stop it. Instead of a set of equations, the properties of Moving Thing are
calculated using a simulation, as shown later in Figure 14.11 .

«constraint»
Mass Equation

{total�sum(components)}

parameters

Thermal Thing

constraints
ee : Energy Equation

values

Moving Thing

values

Physical Thing

values
componentsmeconstraints

bdd [modelLibrary] Physical Elements

total : kg
components : kg [*]

acceleration : ms�2

velocity : ms�1

initial velocity : ms�1

force : N
temperature : K
energy : J

mass : kg
density : kgm�3

 FIGURE 14.4

 A model library defi ning some basic physical concepts.

341

 14.3 Defi ning Stereotypes to Extend Existing
SysML Concepts

 Whereas the elements of model libraries use existing language concepts to
describe reusable constructs, stereotypes add new language concepts, typically
in support of a specific systems engineering domain. Stereotypes are grouped
together in special packages called profiles. SysML itself is defined as a profile of
UML and uses stereotypes to define systems engineering concepts such as block
and requirement. Just as models can contain instances of metaclasses, they can
also contain instances of stereotypes, although instances of stereotypes have spe-
cial rules along with different conventions for how they are displayed.

 A stereotype is based on one or more metaclasses in a reference metamodel.
In the case of SysML this is a subset of UML called UML4SysML. (See Chapter 4
for a description of metamodeling and in particular UML4SysML.) The relation-
ship between the metaclass and the stereotype is called an extension, which is
a kind of association that is conceptually closer to a generalization. The choice of
the base metaclass or metaclasses for a stereotype depends on the kind of con-
cepts that need to be described. A language designer will look for a metaclass
with some of the characteristics needed to represent the new concept and then
add others and, if necessary, remove characteristics that are not required.

 Metamodels, including UML4SysML, contain abstract metaclasses that cannot
be instantiated directly in the user model, but exist to provide a set of common
characteristics that are specialized by concrete metaclasses instantiated in the
user model. This is a powerful reuse mechanism that is widely used by metamod-
elers. A stereotype may extend an abstract metaclass, in which case it is equiva-
lent to the stereotype extending all the concrete specializations of that metaclass.

 Profi les are specifi ed using an extension to package diagrams that allows them
to show stereotypes, metaclasses, and their interrelationships. A metaclass is rep-
resented by a rectangle with the keyword «metaclass» centered at the top, fol-
lowed by the name of the metaclass. A stereotype is represented by a rectangle
with the keyword «stereotype» centered at the top, followed by the name of the
stereotype. An extension relationship is depicted as a line with a fi lled triangle at
the metaclass end.

 Figure 14.5 shows a set of stereotypes that describe new concepts for rep-
resenting fl ow-based simulation artifacts. The stereotype Flow-Based Simulation
allows modelers to defi ne simulations of system fl ow. Flow-Based Simulation
extends Activity because activities already have a fl ow-based semantic and so
have many of the right characteristics. The stereotype Flow Simulation Element
is used to model a specialized form of activity that can be added to a fl ow-based
simulation.

 A very useful capability of simulations is to monitor the values of certain ele-
ments as the simulation runs. The Probe stereotype allows the modeler to desig-
nate that certain elements of the simulation should be monitored. Probe extends
both ObjectFlow and ObjectNode because these are both constructs through which
values (as tokens) fl ow. Probe extends ObjectNode, which is an abstract metaclass
as indicated by the use of italic font for its name. This means that all the concrete

14.3 Defi ning Stereotypes to Extend Existing SysML Concepts

342 CHAPTER 14 Customizing SysML for Specifi c Domains

subclasses of ObjectNode (e.g., DataStoreNode and ActivityParameterNode among
many others) are implicitly extended as well. Note that this is an example of how
extension and generalization differ. Probe is not a specialization of both ObjectFlow
and ObjectNode; rather an instance of Probe may extend an instance of ObjectFlow ,
or an instance of ObjectNode (or concrete subclass thereof), but not both.

 A stereotype can be defi ned by specializing an existing stereotype, or stereo-
types, using the generalization mechanism described in Chapter 6. In this case
the new stereotype inherits all the characteristics of the stereotypes it special-
izes, including extensions. The new stereotype can then add more characteristics,
including new extensions, which are relevant to the new concept. Stereotypes
may be abstract, which means they cannot be used directly in a user model, but
can be specialized and their characteristics inherited. Stereotype specialization is
shown using the standard generalization notation—a line with a hollow triangle
at the general end.

 Figure 14.6 shows an example from SysML. Block extends the UML metaclass
Class and ConstraintBlock specializes Block. It inherits the property isEncapsu-
lated, which indicates whether a connector can cross its boundary, from Block .
Here is a snippet of the description for ConstraintBlock in the SysML specifi cation:

 “A constraint block is a block that packages the statement of a constraint so
it may be applied in a reusable way to constrain properties of other blocks. ”

 SysML also borrows a stereotype from StandardProfileL2 of UML, called Trace,
and specializes it to represent relationships in the Requirements profile.

 14.3.1 Adding Properties and Constraints to Stereotypes
 Sometimes stereotypes are defined to add a concept that is significant in terms of
some domain but does not have any additional characteristics. For more sophisti-
cated definitions of a new concept, the stereotype mechanism includes the ability
to add both properties and constraints to the stereotype definition. Stereotypes

«stereotype»
Flow Simulation Element

«stereotype»
Flow-Based Simulation

«stereotype»
Probe

«metaclass»
ObjectFlow

«metaclass»
ObjectNode

«metaclass»
Activity

pkg [Profile] Simulations [Just Stereotypes]

 FIGURE 14.5

 A package diagram containing stereotypes that support fl ow-based simulations.

343

that specialize other stereotypes will inherit the properties and constraints of their
general stereotype. Stereotype properties represent information about the stere-
otype and have a type just like any other property. SysML defines a set of basic
types—String, Integer, Boolean, and Real—but profiles can add their own types,
or use types defined in model libraries. Constraints can be added to the stereotype
to specify rules about valid use of new properties or to restrict the capabilities of
an existing concept by further constraining the extended metaclasses’ properties.
Constraints are specified using a textual expression in a specified language. The
language OCL is often used for expressing constraints in profiles.

 A stereotype may also defi ne properties that are typed by either stereotypes
or metaclasses. This allows instances of the stereotype to contain references in
the user model to instances of other stereotypes and metaclasses. These proper-
ties can be defi ned in the metamodel using associations or simply as attributes
of the stereotype defi nition. Metaclasses in the reference metamodel cannot be
modifi ed; so, any association between a stereotype and metaclass can only defi ne
properties on the stereotype, not on the metaclass.

 Stereotype properties and constraints are shown in a similar way to the prop-
erties and constraints of blocks. Properties and constraints are shown in compart-
ments below the name compartment. Constraints can also be shown in notes
attached to the constrained stereotype. In addition to properties and constraints,
a stereotype defi nition may contain an image that can optionally be displayed
when the stereotype is applied to a model element.

 Figure 14.7 shows the properties and constraints of the stereotypes fi rst
shown in Figure 14.5 , and also some enumerations that are needed to defi ne
some of those properties. The defi nition of Flow-Based Simulation includes
three properties that govern the type of simulation performed. Simulation type
is typed by an enumeration, Simulation Kind, that has two values, discrete and

«stereotype»
StandardProfileL2::Trace

«metaclass»
Abstraction

«stereotype»
DeriveReqt

«stereotype»
Copy

«stereotype»
Verify

pkg [Profile] Requirements [Subtypes of Trace]

«stereotype»
ConstraintBlock

«stereotype»
Blocks::Block

«metaclass»
Class

isEncapsulated : Boolean

pkg [Profile] Constraint Blocks

 FIGURE 14.6

 Specialization example from SysML.

14.3 Defi ning Stereotypes to Extend Existing SysML Concepts

3
4

4

«stereotype»
Flow Simulation Element

compatibility : Simulation Kind
version : String

«stereotype»
Flow-Based Simulation

simulation type : Simulation Kind
step type : Step Kind
solver : Solver Kind
version : String

«stereotype»
Probe

action : Probe Action Kind

«enumeration»
Probe Action Kind

log
display
both

«enumeration»
Solver Kind

ode45
ode23

...

«enumeration»
Simulation Kind

continuous
discrete

«enumeration»
Step Kind

variable
fixed

«metaclass»
ObjectNode

«metaclass»
Activity

«metaclass»
ObjectFlow

0..*
probes

ode1
ode2

pkg [Profile] Simulations [with Properties and Constraints]

{owned actions must only invoke
Flow Simulation Elements}
{if step type is variable then the solver
must be one of ode45 or ode12}
{the version of all invoked activities must
be greater than the simulation version}

{if compatibility is continuous then the
simulation type of the owning
Flow-Based Simulation
must be continuous}

 FIGURE 14.7

 Providing additional detail for the fl ow-based simulation stereotypes.

345

continuous, stating whether a continuous or discrete solution is required. Step
type says whether the simulation steps are fi xed in size or can vary. Solver
defi nes the type of solver to be used. The defi nition of Flow Simulation Element
includes a property called compatibility, which says what types of simulation it is
compatible with. A value of continuous means that this element can be used only
in continuous simulations; a value of discrete means it can be used in both.

 These stereotypes also defi ne constraints that affect activities with the vari-
ous stereotypes applied. A constraint on Flow Simulation Element states that
an element whose compatibility property has the value continuous can be used
only if the simulation type of their owning activity has the value continuous .
Another constraint states that a Flow Simulation Element may be invoked only
by an action contained in a Flow-Based Simulation. A constraint on Flow-Based
Simulation states that a variable step solver (ode45 or ode23) must be used if the
value for step type is variable .

 Probe has a property action that indicates the action to take place for values
on the monitored element. Its type, Probe Action Kind, has three values: display
means display values in a simulation window; log means log these values to a
log fi le; both means do both. A Flow-Based Simulation has a property probes
that references all the probes defi ned within it, as indicated by the association
between Flow-Based Simulation and Probe .

 As stated earlier, for practical reasons of tool implementation, stereotypes are
not metaclasses, but rather defi ne additional elements that are created along with
instances of metaclasses. However, some stereotypes act more like metaclasses
and others act more like ancillary constructs. The two cases can be understood
intuitively by considering whether the modeler will think in terms of creating an
instance of the stereotype in the user model rather than an instance of the meta-
class, or whether he or she will think more in terms of adding an instance of the
stereotype to an existing metaclass instance.

 For example, a modeler probably intends to create a Flow-Based Simulation
(see Figure 14.7) rather than create an Activity, and then apply the Flow-Based
Simulation stereotype to it. Quite apart from the previously stated intuitive under-
standing of the situation, a Flow-Based Simulation has constraints placed on it
that an arbitrarily selected activity is unlikely to satisfy. On the other hand, the
stereotype Audited Item in Figure 14.13 is an example of the other intuitive use
of stereotypes as providers of ancillary information. Audited Item adds auditing
information to a model element and is only needed once auditing of the element
has begun. It is therefore natural in this scenario to imagine creating an instance
of Classifi er (like a block) and only applying Audited Item at some later date.

 In a user model, a stereotype can be applied to any model element that has
the same metaclass that the stereotype extends. Typically, it is the modeler who
dictates whether a stereotype is used or not, but occasionally the profi le designer
may wish to enforce that every model element of a particular metaclass must
have a specifi c stereotype applied. The extension is then said to be required.
Required extensions can be useful when the use of the model depends on all
model elements of a certain metaclass having some special characteristics. If the
stereotype is required, then the property keyword {required} is shown near the
stereotype end of the extension. Figure 14.13 in Section 14.6.1 shows an example

14.3 Defi ning Stereotypes to Extend Existing SysML Concepts

346 CHAPTER 14 Customizing SysML for Specifi c Domains

of a required extension that adds confi guration data, perhaps in conjunction with
some confi guration management tool, to all model elements of metaclasses that
are deemed worthy of confi guration control.

 14.4 Extending the SysML Language Using Profi les
 A profile is a kind of package used as the container for a set of stereotypes and
supporting definitions. Typically a profile will contain a set of stereotypes that
represent a cohesive set of concepts for a given modeling domain. More complex
profiles often contain subprofiles that further subdivide the overall domain into
subsets of related domain concepts.

 Profi les typically serve one of two potential uses: Either the profi le defi nes a
set of concepts that support a new domain, or it defi nes a set of concepts that
add new information to a model in a domain that is already supported. It is often
useful to bear this distinction in mind when creating a profi le.

 The former use is sometimes called a domain-specifi c language and offers a
new set of language concepts that a modeler might use when building a new
model in that domain. The Simulations profi le shown in Figure 14.8 is an exam-
ple of this use. A modeler will set out to build a simulation using language con-
cepts in the Simulations profi le and will think in terms of those concepts. In
this type of use, the stereotypes in the profi le will predominantly resemble meta-
classes, as described in the previous section.

 The latter use is a set of additional data that can be stored about existing
model elements. A process or confi guration management profi le, such as the
Quality Assurance profi le shown later in Figure 14.13 , is a good example of this
use. Stereotypes from the Quality Assurance profi le will be added to existing
model elements, when quality-assurance information about them is required, and
removed if and when the information is no longer relevant.

«metamodel»
UML4SysML

«profile»
Simulations

«profile»
SysML «import»

«reference»

pkg [Model] System [Dependencies of Simulations Profile]

 FIGURE 14.8

 Defi ning the inputs required to specify the Simulations profi le.

347

 14.4.1 Specifying a Profi le’s Reference Metamodel
and Other Inputs

 Section 14.3 described how stereotypes are defined by either extending a meta-
class or subclassing a stereotype. For a stereotype to extend a metaclass, the pro-
file that contains the stereotype must include a reference to the metaclass, or a
reference to the metamodel that contains the metaclass, using a special type of
import relationship (see Chapter 5 for a discussion on the import relationship)
called a reference relationship. To specialize a stereotype contained in another
profile, the profile must import the stereotype, or import the profile that contains
the stereotype. When a profile is importing an existing profile, references of the
imported profile are the basis for its reference metamodel, although it may refer-
ence additional metaclasses as well.

 The notation for the reference relationship is a dashed arrow, annotated with
the keyword «reference», with its head pointing at the referenced metaclass or
metamodel. The import relationship is also shown as a dashed arrow with its
head pointing toward the imported stereotype or profi le, but it is annotated with
the keyword «import».

 In Figure 14.8 , the SysML profi le references the UML4SysML metamodel (the
subset of UML used by SysML) to extend its metaclasses. The metamodel keyword
is used, and the triangle indicates that this is a model. The Simulations profi le
imports the SysML profi le and hence its reference metamodel is also UML4SysML .
Stereotypes inside the Simulations profi le can now extend metaclasses in
UML4SysML (e.g., Activity) and subclass SysML stereotypes (e.g., Block).

 14.5 Applying Profi les to User Models in Order
to Use Stereotypes

 The two previous sections in this chapter have described how to define a profile
and the stereotypes contained within the profile. For modelers to use constructs
from the profile in their model, they need to apply the profile to their model,
or to a subpackage of their model. Once the profile has been applied, the stere-
otypes and other model elements in the profile, and the metaclasses from its ref-
erence metamodel, may be used anywhere within the containment hierarchy of
the model or package.

 A profi le is applied to a model or package using a profi le application rela-
tionship. The modeler can choose whether to apply the profi le strictly by using
the strict property of the profi le application relationship. A strict application
implies that only metaclasses from the profi le’s reference metamodel can be used
within the model or package applying the profi le. If the strict property is not set
on the profi le application, there is no restriction on which metaclasses can be
used. A modeler can add or remove a profi le application relationship at any time.
However, when a profi le application is removed, any instances of stereotypes from
the profi le are also removed from the model; so, any such removal should be under-
taken with care and a backup copy of the model should be made.

14.5 Applying Profi les to User Models in Order to Use Stereotypes

348 CHAPTER 14 Customizing SysML for Specifi c Domains

 Whenever possible, it is recommended that the reference model for a profi le be
constructed in such a way that the profi le can be applied strictly (i.e., that it has all
the constructs required to support the profi le domain). If users need to use meta-
classes other than those referenced by the profi le, it is likely that the impact of using
them in combination with profi le concepts may not have been fully considered.
The SysML profi le has been defi ned to be applied strictly, but this restriction can
be removed to use additional software-related concepts from the UML metamodel if
supported by a well–thought out systems and software development methodology.

 The notation for applying a profi le to a user model or subpackage is a dashed
arrow, labeled with the keyword «apply», whose head points toward the profi le
that is applied.

 Figure 14.9 shows a package diagram that contains the Physical Elements
model library. Physical Elements applies the Simulations profi le so that elements
within it can have simulation extensions applied. Note that the Simulations
profi le is applied strictly, which means that only metaclasses from its reference
metamodel (UML4SysML via its import of SysML shown on Figure 14.8) can be
used in the Physical Elements model library. Physical Elements also imports a
model library called Flow Simulation Element so that it can use the simulation
elements it contains.

 14.6 Applying Stereotypes when Building a Model
 Once a user model has a profile applied to it, the stereotypes from the profile
may be applied to model elements within that model. How stereotypes are used

«modelLibrary»

Flow Simulation Elements

«modelLibrary»

Physical Elements

«profile»

Simulations

«apply»

{strict}

«import»

pkg [Model] System [Dependencies of Physical Elements]

 FIGURE 14.9

 Applying the Simulations profi le to a model and importing elements to support fl ow-based
simulations.

349

depends on whether the intended purpose of the profile is a domain-specific lan-
guage, or as a source of ancillary data and rules to support a particular aspect of
the model. Although there is nothing in the specification of a profile to differen-
tiate the two cases, often tool vendors will add custom support tailored to the
intended use when building the profile.

 For a given stereotype, its extension relationships defi ne the model elements
that it can validly extend, subject to the model element satisfying any additional
constraints that the stereotype specifi es. A model element may have any number
of valid stereotypes applied to it, in which case it must satisfy the constraints of
each stereotype.

 Although the intention of the SysML graphical notation for stereotypes, and
many tool vendor implementations of profi les, is to hide these details and to pro-
vide a visualization that matches the modeler’s expectation, the mechanics of
how stereotypes are applied is worthy of some explanation. When a stereotype is
applied to a model element (i.e., a metaclass instance), an instance of the stereo-
type is created and is related to the model element. Once an instance of the ste-
reotype exists, the modeler can then add values, which are stored in the instance,
for the stereotype’s properties. An instance of a stereotype cannot exist without a
related metaclass instance to extend, and in consequence, when a model element
is deleted, all its related stereotype instances are also deleted.

 Subject to these basic rules, how the modeler actually applies stereotypes is
often governed by a modeling tool based on the intended use of the stereotype. For
example, the tool may create an instance of the stereotype and an instance of the
base metaclass at the same time, or it may allow the modeler to create a model ele-
ment fi rst and then add and potentially remove the stereotype as separate actions.

 Information from a stereotype is shown as part of, or attached in a callout to,
the symbol of the model element to which it is applied. A stereotyped model ele-
ment is shown with the name of the stereotype in guillemets (e.g., «stereotype-
Name»), followed by the name of the model element. Whereas the stereotype
name may be capitalized, and may contain spaces in its defi nition, the convention
is for the stereotype name to be shown as a single word using camel case (fi rst
letter lowercase, second and subsequent words in the original name have their
fi rst letter capitalized) when applied to a model element in a user model.

 If a model element is represented by a node symbol (i.e., rectangle), the ste-
reotype name is shown in the name compartment of the symbol. If the model
element is represented by an path symbol (e.g., a line), the stereotype name is
shown in a label next to the line and near the name of the element. Stereotype
keywords can also be shown for elements in compartments when they are shown
before the element name.

 If a model element has more than one stereotype applied, then each stereo-
type name is, by default, shown on a separate line in a name compartment. If
no stereotype properties are shown, multiple stereotype names can appear in a
comma-separated list within one set of guillemets. See Figure 14.13 in Section
14.6.1 for an example of the application of multiple stereotypes. Whenever ste-
reotypes are applied to a model element whose symbol normally has a keyword,
its standard keyword is displayed before/above the stereotype keywords. The

14.6 Applying Stereotypes when Building a Model

350 CHAPTER 14 Customizing SysML for Specifi c Domains

properties for a stereotype may be displayed in braces after the stereotype label,
or if the symbol supports compartments, in a separate compartment.

 A stereotyped model element may also be shown with a special image that is
part of the stereotype defi nition. For node symbols, that image may appear in the
top right corner of the symbol, in which case it is often shown instead of the ste-
reotype keyword. Alternatively, the image may replace the entire symbol.

 Figure 14.10 shows some of the elements in the Flow Simulation Element’s
model library. They all have the fl owSimulationElement stereotype applied so
that their version and compatibility properties can be specifi ed. In this case
Derivative and Integrator are only compatible with continuous simulations;
the rest are compatible with discrete and continuous simulations. They all have
version “ 7.5 ” except the Signal Generator, which has version “ 7.6. ” Note that
because the underlying model elements are all activities, the keyword « activity» is
shown, as described in Section 8.10. These elements can be used in the construc-
tion of fl ow-based simulations.

 The activity diagram in Figure 14.11 shows a simulation model of the motion
of the Moving Thing block, fi rst shown in Figure 14.4 . The activity Motion
Simulation is the classifi er behavior of Moving Thing, so the model shows what
happens to it over its lifetime. The simulation calculates the values of acceleration,
velocity, and distance over time. The algorithm fi rst calculates the acceleration from

bdd [modelLibrary] Flow Simulation Elements [A Selection of Flow Simulation Elements]

«activity»
«flowSimulationElement»

Derivative

«activity»
«flowSimulationElement»

Integrator

compatibility � continuous
version � "7.5"

compatibility � continuous
version � "7.5"

compatibility � discrete
version � "7.5"

compatibility � discrete
version � "7.5"

compatibility � discrete
version � "7.6"

«activity»
«flowSimulationElement»

Signal Generator

compatibility � discrete
version � "7.5"

«activity»
«flowSimulationElement»

Divide

«activity»
«flowSimulationElement»

Sum

«activity»
«flowSimulationElement»

Saturation

 FIGURE 14.10

 Defi ning a library of fl ow-based simulation elements using stereotypes to add simulation
details.

3
5

1

act Motion Simulation

«addStructuralFeatureValue»
velocity

«addStructuralFeatureValue»
acceleration

«readStructuralFeature»
force

«readStructuralFeature»
mass

«readStructuralFeature»
initial velocity

s : Integrator

state

difference
v : Integrator

state

difference
total v : Sum

result

inputs
a : Divide

«probe»
{action � display}
vel out

«probe»
{action � display}
accel out

«dataStore»
«probe»

{action � display}
distance

 FIGURE 14.11

 Using fl ow-based simulation stereotypes and library elements in the defi nition of a simulation.

352 CHAPTER 14 Customizing SysML for Specifi c Domains

the mass of the object (inherited from Physical Thing) and the force applied; then
it integrates the acceleration to get the velocity. Finally, it integrates the sum of the
velocity due to acceleration and the initial velocity to get the distance traveled,
which is stored in data store distance. The current values of acceleration and veloc-
ity from the simulation are used to update the relevant properties of Moving Thing .

 Three probes are used over time to display the values of acceleration, velocity,
and distance. The fi rst two values are obtained via probes on object fl ows, and
the third by a probe on a data store.

 Figure 14.12 shows Motion Simulation as an activity hierarchy. This view
is useful because it shows the properties of the simulation elements. Motion
Simulation and its children in the activity hierarchy satisfy all the constraints
imposed by the stereotypes Flow-Based Simulation and Flow Simulation
Element, as defi ned in Figure 14.7 :

 ■ All the invoked activities of Motion Simulation are stereotyped by Flow
Simulation Element .

 ■ All the invoked activities have version numbers at least as high as Motion
Simulation itself .

 ■ The ode45 solver is appropriate for a variable step continuous simulation .

bdd [Block] Moving Thing [Activity Hierarchy for Motion Simulation Activity]

«activity»
Motion Simulation

probes �

distance,
accel out,
vel out

simulation type � continuous
solver � ode45
step type � variable
version � "7.5"

compatibility � continuous
version � "7.5"

«activity»
«flowSimulationElement»

Divide

compatibility � discrete
version � "7.5"

compatibility � discrete
version � "7.5"

«valueType»
m

a total v

distance

sv

«activity»
«flowSimulationElement»

Integrator

«activity»
«flowSimulationElement»

Sum

p

t

x

 FIGURE 14.12

 Block defi nition diagram showing the activity hierarchy for Motion Simulation .

353

 ■ Motion Simulation is a continuous simulation, so both discrete and con-
tinuous Flow Simulation Elements are allowed.

 Instead of showing the keyword «flowBasedSimulation» for Motion Simulation
to illustrate the use of stereotype images, this figure shows the stereotype’s image
in the top right corner of the symbol.

 14.6.1 What Happens When Model Elements with Applied
Stereotypes Are Specialized?

 A potential area of confusion when using stereotypes is the effect of subclassing a
classifier—a model element that can be classified (i.e., have subclasses)—that has
a stereotype applied to it in the user model. Application of a stereotype to a model
element does not imply that the stereotype is applied to subclasses of the model
element. Whenever such an outcome is desired, its stereotype definition should
include a specific constraint to ensure this. Even when a constraint forces subclasses
to have the same stereotype as their superclasses, they do not inherit values for ster-
eotype properties. When this is desired, the stereotype should include an additional
constraint that every subclass has the stereotype applied and also inherits the values
of the stereotype’s properties. Figures 14.13 and 14.14 show an example where nei-
ther applied stereotypes nor the values of their properties are inherited.

 Figure 14.13 shows two stereotypes from the profi le Quality Assurance. The
stereotype Audited Item, which extends the metaclass Classifi er and can be applied
to blocks among other model elements, is used when a classifi er has been audited
for quality—typically, when it reaches a certain level of maturity. It has properties
to capture the audit date, the auditor, and the quality level that may take values
from high to low. The stereotype Confi gured Item contains properties that must be
applied to every classifi er, hence the presence of the { required } property.

pkg [Profile] Quality Assurance

«stereotype»
Configured Item

version : Dewey Decimal
configuration date : Date

audit date : Date
quality level : Level Kind
auditor : String

«stereotype»
Audited Item

«enumeration»
Level Kind

high
medium
low

«metaclass»
Classifier

{required}

 FIGURE 14.13

 Defi nitions of two stereotypes used as part of quality assurance on a model.

14.6 Applying Stereotypes when Building a Model

354 CHAPTER 14 Customizing SysML for Specifi c Domains

 Figure 14.14 shows the Audited Item and Confi gured Item stereotypes in use.
In this case the block Baselined Block has been audited and so has values for
audit date, auditor, and quality level. Its subclass Prebaselined Block is still in
early design, so it has not yet been audited. It clearly does not make sense to
assume, just because Baselined Block has the Audited Item stereotype applied to
it, that Prebaselined Block will also have it.

 Even when a stereotype, such as Confi gured Item, is required and therefore
applied to all blocks, it clearly is not the case that the confi guration properties of
a block (e.g., Baselined Block) will be inherited by a subclass like Prebaselined
Block. The information stored in the properties of Confi gured Item is specifi c to
the model element to which it is applied.

 Note that Baselined Block has two stereotypes applied to it, demonstrating
the notations that are used where multiple stereotypes are applied. The keywords
representing the two applied stereotypes both appear separated by a comma
inside a single set of guillemets. The properties of the two stereotypes appear in
separate compartments, labeled using the keyword of their owning stereotype.

 14.7 Summary
 SysML is a general-purpose systems modeling language that includes built-in mech-
anisms, called model libraries and profiles, to further customize the language.

bdd [Package] Configuration Example

«configuredItem»
Prebaselined Block

«auditedItem,configuredItem»
Baselined Block

«auditedItem»
audit date � "03-03-07"
auditor � "Alan"
quality level � high

«configuredItem»
configuration date � "02-03-07"
version � "2.1"

«configuredItem»
configuration date � "07-07-07"
version � "1.1"

 FIGURE 14.14

 Application of quality-assurance stereotypes to two blocks, one of which specializes the other.

355

When used properly, model libraries and profiles can be used to support domain-
specific modeling for many different domains. The following are some of the key
concepts for domain-specific modeling.

■ A modeling language is defined using a metamodel and contains a number of
distinct language concepts, represented by metaclasses. Metaclasses have a set
of properties and constraints on them. Metaclasses can also be associated with
each other, thus allowing the language concepts to be related to one another.
The underlying metamodel for SysML is called UML4SysML and is based on
UML—an existing modeling language. UML4SysML contains the subset of UML
concepts that are needed for systems modeling. SysML defines a graphical
notation, based on UML, to represent the concepts in the metamodel.

■ User models contain model elements, which are instances of metaclasses
contained in the metamodel. These model elements have values for the
properties of their metaclasses and can be related according to the associations
defined between their metaclasses.

■ A model library is a special type of package that contains model elements
intended for reuse in multiple models. They can vary from very specific, such
as representing a set of electronic components, to general, such as a definition
of a common set of units and dimensions for representing quantities.

■ A profile adds new concepts to a language (in this case SysML) by means of
stereotypes. A profile extends a reference metamodel, which for SysML profiles
is always its reference metamodel—UML4SysML. SysML itself is defined as a set
of profiles that extend UML4SysML, but it also makes the profile mechanism
available to SysML modelers so that they may further extend the language.
A profile can import an existing profile in order to reuse the stereotypes it
contains.

■ Stereotypes extend one or more metaclasses in the reference metamodel.
A stereotype can contain properties and also constraints that may constrain
both the values of its own properties and the property values of its base
metaclasses.

■ To use a profile, a modeler must apply it to his or her model or some sub-
package of the model using a profile application relationship. A profile may be
applied strictly, which means that model elements that apply to the profile may
only be instances of metaclasses in the profile’s reference metamodel.

■ When a profile has been applied, stereotypes from that profile may be applied
to appropriate model elements within it. Once a stereotype has been applied,
modelers may provide values based on the stereotype’s properties, and the
constraints of the stereotype are applied to the model element. SysML includes
a graphical notation that describes how a stereotyped model element appears
in a diagram.

14.7 Summary

356 CHAPTER 14 Customizing SysML for Specifi c Domains

 14.8 Questions
 1. Which type of diagram is used to defi ne model libraries and profi les?
 2. List the three parts of a modeling language like UML.
 3. What are metaclasses used for?
 4. What is the relationship between metaclasses and model elements?
 5. What is a model library used for?
 6. What is the relationship between a stereotype and its base metaclass called

and how is it represented on a diagram?
 7. Which rule applies to an association between a stereotype and a metaclass

and why?
 8. Which model elements can a profi le contain?
 9. What is the reference relationship used for?
 10. What must modelers do before they can apply stereotypes to elements in

their models?
 11. On a diagram, how can a modeler tell that a stereotype has been applied to a

model element?
 12. How can the applied stereotype and stereotype property values for a graphi-

cal path (line) symbol be shown?
 13. How can the applied stereotype and stereotype property values for a block

symbol be shown?
 14. When a block subclasses a block with a stereotype applied to it, which of the

following describes the effect?
 a. The subclass automatically inherits the stereotypes applied to its

superclass.
 b. The subclass automatically inherits the stereotypes applied to its super-

class and also inherits the values of any stereotype properties.
 c. The subclass cannot inherit either applied stereotypes or the values of ste-

reotype properties.
 d. The subclass can inherit applied stereotypes and the values of stereotype

properties but the stereotype has to be explicitly specifi ed to allow that.

 Discussion Topics
 When adding new concepts to a language, when does it make sense to use a pro-
file and when to use a model library?

 What is the difference in meaning and use between a property of a stereotype
and the property of a block?

PART

Modeling
Examples III

This page intentionally left blank

 This chapter contains an example that describes the application of SysML to the
design of a water distiller system using a traditional functional analysis method.
This method is familiar and intuitive to many practicing systems engineers.
The example was originally developed by the International Council on Systems
Engineering (INCOSE) to support the initial evaluation of the SysML specification.
Chapter 16 demonstrates the application of SysML to a more complex problem
using the object-oriented systems engineering method. The following approach is
used to address the problem:

 ■ Stating the problem
 ■ Defi ning the model-based systems engineering approach
 ■ Organizing the model
 ■ Establishing requirements
 ■ Modeling behavior
 ■ Modeling structure
 ■ Analyzing performance
 ■ Modifying the original design

 15.1 Stating the Problem
 Eliciting and analyzing stakeholder requirements is a critical initial step in the sys-
tems engineering process. When this is done, stakeholder requirements are often
revealed to contain ambiguity and contradictions. The ability to model the speci-
fication of a system provides a mechanism to better understand the requirements,
reduce the ambiguity, and validate the requirements with the stakeholders to
ensure the right problem is being solved.

 In this example, the initial stakeholder requirements were provided as follows:

 Describe a system for purifying dirty water
 Heat dirty water and condense steam are performed by Counter Flow Heat Exchanger
 Boil dirty water is performed by a Boiler

 Water Distiller Example
Using Functional
Analysis 15

CHAPTER

360 CHAPTER 15 Water Distiller Example Using Functional Analysis

 Drain residue is performed by a Drain
 Water has the following properties: vol � 1 liter, density � 1 gm/cm 3, temp � 20 °C,

specific heat � 1 cal/gm °C, heat of vaporization � 540 cal/gm

 These statements are elaborated in the diagram in Figure 15.1 , which was provided
by the customer to help communicate the requirements.

 Although the diagram lacks formalism, it does emphasize certain features that
appear to be important to the stakeholder specifying this problem. The diagram iden-
tifi es the primary functions that the system is expected to perform—heating water,
boiling water, condensing steam, and draining residue—along with the expected
fl ows between system functions and expected sequence for the functional fl ow.

 The system modeler must interpret and analyze the stakeholder requirements to
develop a precise and complete specifi cation and to remove potential ambiguities.
For example, the diagram seems to imply that the distillation is a discrete process
that produces purifi ed water in batches, versus a distillation process where water
continuously fl ows into the distiller and produces a continuous stream of purifi ed
water.

 Figure 15.2 shows an example of a batch distiller that includes a boiler and a
condenser. The boiler is fi lled with water. A heat source is used to heat the water
in the boiler, steam is then generated, and the distilled water is collected from the
condenser. The process stops when there is no more water in the boiler; purify-
ing more requires refi lling the boiler with water.

 Figure 15.3 shows an example of a continuous distiller that can have water
fl ow through it continually. It includes a boiler with an internal heating element
and a counterfl ow heat exchanger that has cool liquid fl owing in the coils and
steam condensing around them. These terms are consistent with the original
problem statement, indicating that a continuous distiller may be the preferred
approach to address the total set of requirements, but this must be validated to
ensure that customer needs are being satisfi ed.

Heat dirty water
to 100 deg C

Boil dirty water and

Condense
steam

Drain
residue

Heat to dirty
water

Dirty water
@ 20 deg C

Dirty water
@ 100 deg C

Heat to boil
water

Residue
Disposed
residue

Pure
water

Energy to
condense

Steam

and

 FIGURE 15.1

 Informal, Non-SysML behavior diagram provided with distiller problem statement.

361

 15.2 Defi ning the Model-Based Systems
Engineering Approach

 The model-based systems engineering approach taken to address this problem is
outlined next. Note that while the steps are shown as a sequence, they are often
performed in parallel and iteratively.

 ■ Organize the model and identify reuse libraries

 ■ Capture requirements and assumptions

 FIGURE 15.2

 Representation of a batch distiller.

Steam

C

B

D
A

E

F

Salts, nitrates, and metals
Chemical contaminant venting

A � condensing coil
B � drain
C � dirty water

D � evaporate
E � heater
F � pure condensate

 FIGURE 15.3

 Representation of a continuous distiller.

15.2 Defi ning the Model-Based Systems Engineering Approach

362 CHAPTER 15 Water Distiller Example Using Functional Analysis

 ■ Model behavior
 – In similar form to problem statement
 – Elaborate as necessary

 ■ Model structure
 – Capture implied inputs and outputs, and things fl owing through the system
 – Identify structural components and their interconnections
 – Allocate behavior onto components and behavioral fl ow onto inter-

connections

 ■ Capture and evaluate parametric constraints
 – Derive and represent the heat balance equation
 – Perform the analysis to assess feasibility of the solution

 ■ Modify design as required to meet constraints

 Organize the model The initial step in any model-based approach is to establish
a model organization. In particular, the organization should include a package
structure based on the concepts presented in Chapter 5. Model organization also
includes the identification and incorporation of existing libraries of components
or other elements that may be leveraged to support the model development.

 Capture requirements and assumptions The next step is to capture the
requirements and assumptions. This lays the necessary foundation for further
development.

 Model behavior Modeling behavior and structure can be done concurrently. In
this example, behavior modeling is discussed first. Since the customer provided
an initial behavior diagram, behavioral modeling focuses first on formalizing the
behavior that was provided and reconciling it with the other requirements.

 Model structure Modeling structure is discussed next. The customer has indi-
cated a partial identification of system components. As with the behavior
model, the structural model is formalized and reconciled, both with require-
ments and behavior. Part of this reconciliation involves assessment of how the
behavior model is supported by the structure model.

 Capture and evaluate parametric constraints and modify design as required
This step is used to model the distiller performance in the form of a heat bal-
ance equation. The customer provided some of the information necessary to per-
form the analysis, so it is used to determine whether this system will perform as
expected. If not, the design is modified as necessary to develop a feasible solu-
tion that addresses the requirements.

 15.3 Organizing the Model
 A critical step prior to initiating significant effort in specifying model elements
and developing diagrams is to establish the initial organization of the model.
This is done by defining the model’s overall package structure. The organization

363

should also consider what model libraries may be leveraged for the development.
Chapter 5 provided a number of approaches that can be used to organize the
model. Caution must be exercised when organizing the model to avoid prema-
turely constraining or biasing the design.

 The package diagram in Figure 15.4 describes the organization for this model.
The packages are primarily organized based on the types of artifacts developed
using the selected process, including requirements, use cases, and structural and
behavioral models. The Engineering Analysis package includes the constraint
blocks and parametric models used to analyze the performance.

 Note that the Value Types package imports from the SI Defi nitions package—
a reusable library package available to multiple models. The Value Types pack-
age uses the imported defi nitions of units and dimensions to create specifi c value
types as indicated in Figure 15.5 . The value types are then applied to value prop-
erties with consistent units throughout the model.

 A package for Item Types is included to separately capture the types of things
that fl ow in the system. Segregating item types into its own package allows the mod-
eler to concentrate on defi ning the things that fl ow and leverage reuse libraries that
may exist independent of where they fl ow or how they are used. This segregation is
similar to establishing a reusable library of components, and has proved effective in
the past. For this example, water and heat fl ow through the system. Putting the
item types in a separate package allows the modeler to consolidate all the relevant
information about water, heat, and the other Item Types used in this model.

 The browser structure of the modeling tool typically provides a view of these
packages in a folderlike structure that is populated as the model is developed.

Distiller Requirements Distiller Use Cases

«modelLibrary»
SI DefinitionsEngineering Analysis

Distiller Behavior Distiller Structure

Item Types Value Types

«import»

pkg Distiller [model organization]

 FIGURE 15.4

 Package diagram documenting the organization of the distiller model.

15.3 Organizing the Model

364 CHAPTER 15 Water Distiller Example Using Functional Analysis

It may be convenient to revise the organization of the model over time as the
model is refi ned and updated. For example, after an initial design has been estab-
lished, packages may be established for each component that is subject to further
design and analysis.

 15.4 Establishing Requirements
 The system requirements for this example were provided by the stakeholder in the
form of the problem statement described in Figure 15.1 . The problem statement is
captured in the requirement diagram in Figure 15.6 . The diagram’s header indi-
cates that the frame represents a package called Distiller Requirements .

 The original requirements statement is designated with requirement id
S0.0. This diagram shows the containment relationship: how requirement S0.0
is decomposed into individual atomic requirements S.1 through S.5. Requirement
decomposition indicates that nothing was added or subtracted from the statements
in the source requirement S.0, but that the compound statement was replaced by a
set of atomic statements, each of which can be individually analyzed and verifi ed.

 It often becomes necessary to derive more explicit requirements from an exist-
ing set of requirements. For example, requirement S1.0 states that “The system shall
purify dirty water. ” It does not say that the system shall boil water, but that it

pkg Value Types [value types for distiller]

«valueType»
cal/sec

dimension � heat flow
rate
unit � calories per second

«valueType»
cal/(gm*�C)

dimension � specific heat
unit � calories per gram
degree Celsius

«valueType»
cal/gm

dimension � latent heat
unit � calories per gram

«valueType»
�C

dimension � temperature
unit � degrees Celsius

«valueType»
N/m^2

dimension � pressure
unit � newtons per
square meter

«valueType»
gm/sec

dimension � mass flow
rate
unit � grams per second

«valueType»
efficiency

{0��n��1}

«valueType»
Real

 FIGURE 15.5

 Block defi nition diagram documenting the valueTypes used in analyzing distiller performance.

365

shall purify water. To explicitly understand that the system needs to purify water
by boiling it, we have to derive a new requirement, as follows: requirement S2.0
states that the system must “Heat dirty water …,” and requirement S3.0 states that
the system must “Boil dirty water.…” It is merely necessary to show the derivation

Source

«rationale»
The requirement
for a boiling
function and a
boiler implies
that the water
must be purified
by distillation.

«d
er

iv
eR

eq
t»

«requirement»
OriginalStatement

id � S0.0
text � Describe a system for purifying dirty water.
–Heat dirty water and condense steam are performed by a Counterflow Heat Exchanger.
–Boil dirty water is performed by a Boiler. Drain residue is performed by a Drain.
The water has properties: vol � 1 liter, density � 1 gm/cm3, temp � 20 deg C,
specific heat � 1 cal/gm deg C, heat of vaporization � 540 cal/gm.

«requirement»
WaterProperties

id � S5.0
text � Water has properties:
density � 1 gm/cm3,
temp � 20 deg C,
specific heat � 1 cal/gm
deg C, heat of vaporiza-
tion � 540 cal/gm.

«requirement»
WaterInitialTemp

id � S5.1
text � Water has an
initial temp � 20 deg C.

«requirement»
HeatExchanger

id � S2.0
text � Heat dirty water and
condense steam are
performed by a Counterflow
Heat Exchanger.

«requirement»
Boiler

id � S3.0
text � Boil dirty water is
performed by a Boiler.

«requirement»
Drain

id � S4.0
text � Drain residue is
performed by a Drain.

«requirement»
PurifyWater

id � S1.0
text � The system shall
purify dirty water.

«requirement»
DistillWater

id � D1.0
text � The system shall
purify water by boiling it.

req [package] DistillerRequirements

 FIGURE 15.6

 Requirement diagram with top-level distiller requirements from the problem statement.

15.4 Estabilishing Requirements

366 CHAPTER 15 Water Distiller Example Using Functional Analysis

relationships between purify, heat, and boil. This provides the rationale for the
derivation of requirement D1.0 .

 Requirement S2.0 states that “Heat dirty water and condense steam are per-
formed by a Counterfl ow Heat Exchanger. ” Requirements can be derived from
S2.0 that state “The system shall contain a Counterfl ow Heat Exchanger ” and “The
system shall heat dirty water ” and “The system shall condense steam. ” It should
also be noted that these statements were provided as requirements, yet they impose
a design solution. It is generally undesirable to have requirements that overcon-
strain the solution space; however, this may not be within the control of the system
designer. It is the responsibility of the systems engineer to establish a dialog with
the customer and sort the true requirements from assumptions about the solution.

 This process for capturing requirements has resulted in a more granular set of
requirements statements and rationale than the source requirement that was pro-
vided by the customer. The source requirement has been broken up into require-
ments related to heat exchangers, boilers, and drains. The source statement about
water properties has also been broken out separately and then further broken down
into initial water temperature, density, specifi c heat, and heat of vaporization. The
added granularity of the requirements statements will now enable each of them to
be uniquely traced to the parameters used in the distiller performance analysis.

 It may seem surprising to see properties of water tracked as requirements that
show up on a requirement diagram. The point of doing this is to have complete
traceability from the customer’s problem statement through the design. If the
properties of water were somehow assessed to be incorrect, documenting them
in this way would provide a rationale for why they were changed, or at least pro-
vide a dialog with the customer to assist in the requirements validation process.

 In this example, all source requirements, both original and decomposed,
start with S. All derived requirements start with D. It is expected that the project
establishes a convention for requirements numbering, and that tools can assist in
enforcing the convention. The requirements numbers may correspond to specifi c
paragraph numbers in a specifi cation.

 Figure 15.7 includes the requirements in a tabular format, which is an allow-
able notation in SysML. This is a traditional way to view the requirements. The
table in the fi gure is a report out from the model and contains some of the same
information shown in the requirement diagram; it provides requirement id,
name, and text. In this case the table relies on the numbering to indicate the
hierarchy or containment relationships, but this could have been shown by level
of indenture or on another mechanism.

 Figure 15.8 also shows a tabular format for requirements, but it includes the
relationships between requirements. In addition to id and name, the table cap-
tures the derive relationship, which shows how one requirement is derived from
another, along with the rationale for the relationship. When multiple relation-
ships are to follow, this generates a requirements tree. This information is also
shown graphically on the requirement diagram, which is a useful way to enter
the relationships; however, it is often more compact to view the information in
tabular format. Tools are expected to provide the tabular format for requirements
and other types of modeling information, as described in Chapter 4.

367

 Note that Appendix C of the OMG SysML specifi cation lists nonnormative
requirement types that may be used. Users may want to leverage these types
and/or create user-defi ned extensions using the profi le mechanism described in
Chapter 14.

 15.5 Modeling Behavior
 This section describes techniques used for modeling distiller behavior and flow
and introduces behavioral allocation.

 15.5.1 Simple Behavior
 The first step in analyzing the system behavior is to recast the customer’s origi-
nal behavior diagram as an activity diagram in SysML. This initial version uses the
Enhanced Functional Flow Block Diagram (EFFBD) format, which is a nonnorma-
tive profile included the SysML 1.0 specification [1].

 The diagram in Figure 15.9 characterizes the behavior of the Distill Water activ-
ity. The enclosing frame designates an enclosing activity called Distill Water as
shown in the diagram header. As described in Chapter 8, round-cornered boxes
represent actions (usages) that are typed by activities (defi nitions). The dashed lines

id name text

S5.1 WaterInitialTemp Water has an initial temp of 20 deg C

S5.0 WaterProperties Water has properties: density � 1 gm/cm3, temp � 20 deg C, . . .

S4.0 Drain Drain residue is performed by a Drain.

S3.0 Boiler Boil dirty water is performed by a Boiler.

S2.0 HeatExchanger Heat dirty water and condense steam are performed by a . . .

S1.0 PurifyWater The system shall purify dirty water.

S0.0 OriginalStatement Describe a system for purifying dirty water. . . .

table [Package] DistillerRequirements [Decomposition of OriginalStatement]

 FIGURE 15.7

 Requirements decomposition table.

S1.0

id

D1.0

id

table [Package] DistillerRequirements [Requirements Trace from S1.0]

name Rationale

PurifyWater

name

DistillWater

relation

deriveReqt

The requirement for a boiling function
and a boiler implies that the water must
be purified by distillation.

 FIGURE 15.8

 Requirement trace in tabular format.

15.5 Modeling Behavior

368 CHAPTER 15 Water Distiller Example Using Functional Analysis

are control fl ows that defi ne the sequence of actions; dashed lines are optional but
help to more clearly distinguish control fl ow from object fl ow. The things that fl ow
are represented as object nodes, in this case drawn as square-cornered boxes con-
nected to actions via object fl ows. The actions and object nodes include their role
names (usages) and types (defi nitions) using the role name : Type Name notation.

 Note that the object node recovered : Heat fl ows into action a1 : Heat Water .
This begs the question: Where does that heat come from? On the customer’s
original behavior diagram in Figure 15.1 , Energy to condense was shown fl ow-
ing into the activity Condense steam. This energy is actually heat that must be
removed in order for the steam to condense. Hence, in recasting this diagram
into SysML in Figure 15.9 , the object node recovered : Heat is shown fl owing out
of a3 : Condense Steam. This is consistent with the operation of a counterfl ow
heat exchanger. Although this diagram accurately represents all the elements on
the customer’s original diagram, it still does not adequately describe the desired
distiller behavior and needs further refi nement.

 Note too that this model considers heat to be provided from a source external
to the distiller. For both the batch and continuous distillers shown in Figures 15.2
and 15.3 , one could consider the heat source to be internal to the distiller system,
in one case consisting of an oil lamp, and in the other, an electric heating coil.
Here, the heat source is initially modeled as an external component, but later in
the example it is introduced as an electrical heater that is part of the boiler.

 Figure 15.10 shows a refi ned version of the activity diagram. Note that action
pins are necessary when object nodes send or receive object fl ows from activity

act [Activity] Distill Water [1. simple starting point]

«block»
cold dirty : H2O

[Liquid]

«block»
pure : H2O

[Liquid]

«block»
recovered :

Heat

«block»
steam : H2O

[Gas]

«block»
hot dirty : H2O

[Liquid]

«block»
recovered :

Heat

«block»
discharge :

Residue

«block»
predischarge :

Residue

«block»
external : Heat

a1 : Heat Water a2 : Boil Water

a3 : Condense Steam

a4 : Drain Residue

 FIGURE 15.9

 Original problem statement diagram captured as a SysML activity diagram.

369

parameter nodes (on the diagram frame). The use of action pins will be impor-
tant when considering fl ow allocation. In this version, the recovered : Heat from
a3 : Condense Steam is connected directly to a1 : Heat Water, thus eliminating
redundancy in the previous diagram. It is also appropriate at this point to rechar-
acterize those object nodes that fl ow outside the distiller as activity parameter
nodes, thus graphically moving them to the boundary of the Distill Water activity
diagram. This more clearly defi nes the activity inputs and outputs and enables
Distill Water to fi t into a larger behavioral context.

 Note the operational implications of the control fl ow on the model. When the
distiller stops heating water, it initiates the action Boil Water. When it stops boil-
ing water, it initiates the parallel actions— Condense Steam and Drain Residue .
When these actions are complete, the Distill Water activity is complete. This is
consistent with the defi nition of a batch distiller shown in Figure 15.2 .

 The decomposition of the Distill Water activity is represented in a block defi ni-
tion diagram in Figure 15.11 . This functional decomposition concept is discussed in
Section 8.14 in Chapter 8. Note that the composition relationships use role names
on the part end of the associations that are consistent with action names shown on
the activity diagram in Figure 15.10 . The actions represent the usage of these
activities.

 The control fl ows and object fl ows from the activity diagram are not shown on
a block defi nition diagram. The blocks used to type the object nodes can be shown

act [Activity] Distill Water [2. parameter nodes]

cold dirty : H2O

cold
dirty : H2O

pure : H2O

«block»
steam : H2O

[Gas]

«block»
hot dirty : H2O

[Liquid]

discharge : Residuedischarge : Residue

pure : H2O

«block»
predischarge : Residue

external : Heat

external : Heat

a2 : Boil Water

a4 : Drain Residue

«block»
recovered : Heat

a1 : Heat Water

a3 : Condense Steam

 FIGURE 15.10

 Elaborating the original diagram with activity parameter nodes and a feedback loop.

15.5 Modeling Behavior

370 CHAPTER 15 Water Distiller Example Using Functional Analysis

on the block defi nition diagram to provide the defi nition of the items fl owing
into the activity diagram. In this case the items include water, residue, and heat,
but are not shown.

 It should also be noted that water changes state between gas (i.e., steam) and
liquid as it proceeds through the Distill Water process. Figure 15.12 shows a state
machine diagram for the change in state of water that includes solid, liquid, and
gas states. The transitions are shown, along with the guard condition. Latent heat
of vaporization must be added to transition from liquid to gas. The same latent

bdd [Package] Initial Behavior [behavior breakdown]

«activity»
Condense Steam

«activity»
Boil Water

«activity»
Distill Water

«activity»
Heat Water

«activity»
Drain Residue

a4a1 a2 a3

 FIGURE 15.11

 Distill Water functional hierarchy.

stm States of H2O [example state machine diagram]

Solid

Gas

Liquid

when (water temp��100 and
latent heat of vaporization added) when (water temp��100 and

latent heat of vaporization removed)

when (water temp��0 and
latent heat of fusion removed)

when (water temp��0 and
latent heat of fusion added)

 FIGURE 15.12

 Representing states of H 2O.

371

heat of vaporization must be removed when transitioning from gas to liquid. The
state machine provides useful information for analyzing the distiller system’s heat
balance since removing the latent heat turns out to be a driving factor.

 15.5.2 Parallel Flow
 Up to this point, activity diagrams have represented a highly sequential flow that
adequately represents a simple batch distillation process. However, as pointed
out in the requirements analysis earlier, customer requirements require further
validation to determine whether this is truly what is desired. As a result, the activ-
ity diagram will be modified to represent continuous and parallel behavior that is
consistent with a continuous distiller.

 Figure 15.13 is an initial modifi cation of the activity diagram that represents
a parallel-versus-sequential fl ow of actions triggered by inputs and outputs. Note
that the inputs and outputs to the Distill Water activity (activity parameter nodes)
are the same. The control fl ow has been reoriented so that all the activities are
enabled simultaneously when a token is placed on the initial node.

 15.5.3 Continuous Flow
 In Figure 15.14 , the object flows have been stereotyped as continuous to more
accurately represent the continuous distiller process. As described in Chapter 8,
continuous flows mean that the delta time between inputs approaches zero, as is
the case with many physical flows such as water and heat. In addition, the con-
tinuous flows are streaming, which means that the action can consume inputs
and produce outputs while it is processing. The implications of an action with
continuous and streaming inputs and outputs are that it does not automatically
terminate when it produces an output. As a result, another mechanism is required
to indicate when the actions complete their execution.

 In Figure 15.15 , an interruptible region, indicated by the dashed line, encloses
the actions. All the actions in this interruptible region terminate when the region
is exited, which occurs when the shutdown signal is received by the accept event
action. This behavior model now represents the steady-state behavior for a con-
tinuous distiller. It does not address how the distiller is started up or shut down,
but it is adequate to proceed with the initial design. The details of startup and
shutdown are addressed later. The next step is to formalize how this functionality
is implemented in terms of distiller structure (e.g., the blocks in the block defi ni-
tion diagram and parts in the internal block diagram).

 15.5.4 Allocated Flow
 The initial allocation of behavior to structure can be specified through the use
of activity partitions (i.e., swimlanes). In Figure 15.16 , the initial allocation of
actions is specified by the use of partitions to represent the parts condenser :
Heat Exchanger, evaporator : Boiler, and drain : Valve. The use of the keyword

15.5 Modeling Behavior

3
7

2

act [Activity] Distill Water [3. parallel]

external : Heat

pure : H2Oa3 : Condense Steam

a1 : Heat Water a2 : Boil Water a4 : Drain Residue discharge : Residue

cold dirty : H2O

pure :
H2O

predischarge :
Residue

predischarge :
Residue

discharge
: Residue

cold dirty :
H2O

recovered :
Heat

external :
Heat

steam :
H2O

hot dirty :
H2O

hot dirty :
H2O

steam :
H2O

recovered :
Heat

 FIGURE 15.13

 Depicting parallel fl ow in the distiller.

3
7

3

act [Activity] Distill Water [4. parallel continuous]

«continuous»
external : Heat

{stream}

«continuous»
pure : H2O

{stream}
a3 : Condense Steam

a1 : Heat Water a2 : Boil Water a4 : Drain Residue
«continuous»

discharge : Residue
{stream}

«continuous»
cold dirty : H2O

{stream}

pure : H2O
{stream}

discharge :
Residue
{stream}

predischarge :
Residue
{stream}

predischarge :
Residue
{stream}

cold dirty : H2O
{stream}

recovered :
Heat

{stream}

external : Heat
{stream}

hot dirty : H2O
{stream}

hot dirty : H2O
{stream}

steam :
H2O
{stream}

steam :
H2O

{stream}

recovered :
Heat
{stream}

 FIGURE 15.14

 Depicting continuous fl ow in the distiller.

3
7

4

act [Activity] Distill Water [5. interruptable]

«continuous»
external : Heat

{stream}

«continuous»
pure : H2O

{stream}

shutdown

a3 : Condense Steam

a1 : Heat Water a2 : Boil Water a4 : Drain Residue
«continuous»

discharge : Residue
{stream}

«continuous»
cold dirty : H2O

{stream}

pure : H2O
{stream}

recovered :
Heat
{stream}

hot dirty : H2O
{stream}

hot dirty : H2O
{stream}

predischarge :
Residue
{stream}

Steam : H2O
{stream}

external :
Heat

{stream}

recovered :
Heat

{stream}
steam : H2O

{stream}

cold dirty :
H2O

{stream}

discharge :
Residue
{stream}

predischarge :
Residue
{stream}

 FIGURE 15.15

 Using an interruptible region to simplify control fl ow.

3
7

5

act [Activity] Distill Water [6. swimlanes]

«continuous»
external : Heat

{stream}

«continuous»
pure : H2O

{stream}

shutdown

a3 : Condense Steam

a1 : Heat Water a2 : Boil Water a4 : Drain Residue

«allocate»
condenser : Heat Exchanger

«allocate»
drain : Valve

«allocate»
evaporator : Boiler

of4

of8

of2

of3

of5

of6

of7

«continuous»
discharge : Residue

{stream}

«continuous»
cold dirty : H2O

{stream}

pure : H2O
{stream}

steam dirty :
H2O
{stream}

external :
Heat

{stream}

recovered : Heat
{stream}

discharge :
Residue
{stream}

predischarge :
Residue
{stream}

of1

recovered :
Heat

{stream}
Stream : H2O

{stream}

cold dirty : H2O
{stream}

hot dirty :
H2O
{stream}

hot dirty : H2O
{stream}

predischarge :
Residue
{stream}

 FIGURE 15.16

 Using allocate activity partitions (swimlanes) for functional allocation.

376 CHAPTER 15 Water Distiller Example Using Functional Analysis

«allocate» in the partition means that the partition is an allocate activity partition
that has an explicit allocation relationship to the part that represents the partition,
as described in Chapter 8. This in turn specifies that the part is responsible for
performing the actions within the partition.

 As an example, the part evaporator is a usage of the block Boiler, and the
action a2 : Boil Water is allocated to evaporator : Boiler. Note that we have
defi ned role names for each part, and typed each part by a block. For example,
the role drain is a part of type Valve. This distinction is important because other
valves with the same defi nition may have different roles, as will be evident later
in the example. The specifi cation of the parts and blocks are described next as
part of the distiller structure.

 15.6 Modeling Structure
 This section describes the use of blocks, parts, and ports for the modeling of a
distiller’s structure, and it completes the example of behavioral allocation.

 15.6.1 Defi ning Distiller’s Blocks in the Block Defi nition Diagram
 Figure 15.17 is a block definition diagram for the distiller system. This diagram
frame designates the Initial Distiller Structure package. Use of packages for organ-
izing models was discussed in Chapter 5. Each block on the diagram is contained
within this package unless it includes a qualified name that indicates that it is con-
tained in a different package.

satisfies

«requirement» Heat Exchanger

«block»
Heat Exchanger

«requirement» Boiler

«block»
Boiler

«block»
Valve

«requirement» Drain

condenser drainevaporator

satisfies satisfies

bdd [Package] Initial Distiller Structure [distiller breakdown]

«block»
Distiller

 FIGURE 15.17

 Initial structural hierarchy of the distiller.

377

 The user-defi ned diagram name for this block defi nition diagram is distiller
breakdown, to differentiate it from any other block defi nition diagram that des-
ignates the same Distiller Structure package for its diagram frame. This diagram
shows the block named Distiller, which is composed of a block named Heat
Exchanger, a block named Boiler, and a block named Valve. The composition
relationship shows that the Distiller is composed of one Heat Exchanger that
fulfi lls the role condenser, one Boiler that fulfi lls the role evaporator, and one
Valve that fulfi lls the role drain .

 The requirements described in Section 15.4 included requirements that were
to be satisfi ed by various Distiller components. In particular, the requirement
id S2.0 Heat Exchanger, id S3.0 Boiler, and id S4.0 Drain clearly state the cus-
tomer’s requirements for these elements of the distiller system. Since the blocks
Heat Exchanger, Boiler, and Drain are intended to satisfy these requirements,
a satisfy relationship can be established between the blocks and the require-
ment as shown using the requirements compartment notation (refer to Chapter
12 for details on the requirements compartment notation). As an example,
the compartment notation can be read as “Boiler satisfi es the «requirement»
Boiler . ”

 15.6.2 Defi ning the Ports on the Blocks
 An internal block diagram can be developed based on the block definition dia-
gram to show how parts are connected to one another. However, before doing
this, the blocks on the block definition diagram are further elaborated by identi-
fying the ports on the blocks and their definitions so that the ports can be con-
nected in the internal block diagram.

 The ports are identifi ed on the blocks on the block defi nition diagram in
Figure 15.18 . In this case all the ports are defi ned as unidirectional atomic fl ow
ports, meaning that only one type of item fl ows through the port, and in only
one direction. The fl ow port labels describe the fl ows from the perspective of
the block rather than the perspective of the Distiller. For example, the Valve has
fl ow ports for in : Fluid and out : Fluid, which generally apply to all uses of a
two-port valve. The Heat Exchanger has a cold loop (c in and c out) and a hot
loop (h in and h out); both features are common to all counterfl ow heat exchang-
ers. Thinking through the port confi gurations and labels facilitates the interface
defi nitions that are further specifi ed on the internal block diagram.

 In Figure 15.18 , the constraints compartment in the Heat Exchanger speci-
fi es a set of constraints on the temperature of items fl owing through each port.
This further defi nes the Heat Exchanger. Alternatively, these constraints could
have been applied to local usage by using property-specifi c types, as described in
Chapter 6, in which case the constraints would not apply to the defi nition but to
the use. The constraints of temperature and pressure can be validated against the
results of the performance analysis to ensure the heat exchanger is fi t for use in
this application. In addition, an engineer can assess whether a particular off-the-
shelf heat exchanger, which meets these constraints, can be procured.

15.6 Modeling Structure

3
7

8

bdd [Package] Initial Distiller Structure [distiller breakdown (ports)]

«block»
Heat Exchanger

{h out.temp��120,
c in.temp��60,
h in.temp��120,
c out.temp��90}

c in : Fluid

c out : Fluid

h in : Fluid middle : Fluid

h out : Fluid bottom : Fluid

«block»
Boiler

bottom : Heat

top : Fluid

«block»
Distiller

«block»
Valve

in : Fluid out : Fluid

condenser drainevaporator

constraints

 FIGURE 15.18

 Distiller hierarchy with fl ow ports defi ned.

379

 The next step is to show usage of these Blocks in the context of the dis-
tiller system on an internal block diagram, including the connections and fl ows
between them.

 15.6.3 Creating the Internal Block Diagram with Parts,
Connectors, and Item Flows

 Figure 15.19 is an internal block diagram for the Distiller system. The diagram
header identifies the enclosing block as the Distiller. The user-defined diagram
name is 1. distiller block diagram (initial). The parts represent how the blocks
are used in the Distiller context and have the same role names as were shown on
the block definition diagram. The flow ports are consistent with their definition
on the block definition diagram.

 The additional information on the internal block diagram that was not on the
block defi nition diagram is the representation of the connectors between the
parts and the item fl ows on the connectors. The connectors connect the ports
and refl ect the distiller’s internal structure. The item fl ows represent what items
fl ow across the connector and in and out of the ports.

 As discussed in Chapter 6, item fl ows have associated properties (item prop-
erties). The item fl ow defi nes the direction of a fl ow on the connector, and the
item property represents the thing that is fl owing in the context of the enclosing
block (i.e., the Distiller). The item property is typed by a block in this case.

 In this example, a naming convention for item properties has been used to
identify the items fl owing through the system. The main H2O fl ow has been des-
ignated starting with main: main1 is the fl ow of H2O into the system and into the
cold loop of the heat exchanger; main2 is the fl ow of H2O out of the cold loop
of the heat exchanger and into the boiler; main3 is the fl ow of H2O (steam) out of
the boiler and into the hot loop of the heat exchanger; and main4 is the fl ow
of H2O (condensate, or pure water) out of the heat exchanger and out of the
system. The fl ow of sludge has been similarly designated: sludge1 out of the boiler
and into the drain valve, and sludge2 out of the drain valve and out of the system.
The only additional fl ow is q1, which represents heat fl owing into the system and
into the boiler.

 At this point, the distiller system’s structure has been expressed in defi nition
on the block defi nition diagram and in usage on the internal block diagram, along
with the physical fl ows. It is now appropriate to further elaborate the allocation
of behavior to structure that was initially specifi ed in the Figure 15.16 activity dia-
gram with swimlanes.

 15.6.4 Allocation of Actions and Flows
 Figure 15.20 is an internal block diagram, identical to what was previously cre-
ated, but enhanced to include an allocation compartment on each part. The
information in the allocation compartments is consistent with the allocation rela-
tionship from the activity diagram in Figure 15.16 . As previously discussed, plac-
ing an action in an allocate activity partition on the activity diagram resulted in

15.6 Modeling Structure

3
8

0

ibd [Block] Distiller [1. distiller block diagram (initial)]

dirty water : H2O

q in : Heat

purified : H2O

sludge : Residue

condenser : Heat Exchanger

c in : Fluid c out : Fluid

h in : Fluidh out : Fluid

drain : Valve

in : Fluid out : Fluid

evaporator : Boiler

middle : Fluid

top : Fluid

bottom : Fluid

bottom : Heat

main4 : H2O

q1 : Heat

main3 : H2O

sludge1 : Residuemain2 : H2Omain1 : H2O sludge 2 : Residue

 FIGURE 15.19

 Distiller internal structure with item fl ows.

3
8

1

ibd [Block] Distiller [2. distiller block diagram (initial allocated)]

dirty water : H2O

q in : Heat

purified : H2O

sludge : Residue

condenser

c in : Fluid c out : Fluid

h in : Fluidh out : Fluid

drain : Valve

in : Fluid out : Fluid

evaporator : Boiler

middle : Fluid

top : Fluid

bottom : Fluid

bottom : Heat

main4 : H2O

q1 : Heat

main3 : H2O

sludge1 : Residuemain2 : H2Omain1 : H2O sludge2 : Residue

allocatedFrom allocatedFrom allocatedFrom

«action» a1 : Heat Water
«action» a3 : Condense Steam

«action» a2 : Boil Water «action» a4 : Drain Residue

 FIGURE 15.20

 Distiller internal structure showing allocation of actions.

382 CHAPTER 15 Water Distiller Example Using Functional Analysis

an allocate relationship between the action and the part represented by the parti-
tion. These allocation relationships are explicitly depicted in the allocation com-
partments; allocatedFrom indicates the direction of the relationship—namely,
from the elements specified in the compartment to the part.

 In addition to allocating actions to parts, it is also appropriate to reconcile the
fl ow in the behavior model with the fl ow in the structural model. In this particu-
lar example, it was decided to allocate the object fl ows from the activity model to
the item properties of the item fl ows in the structural model. This is in anticipa-
tion that the heat balance analysis will focus on these item properties. As shown
in Figure 15.21 , each object fl ow on the activity diagram is allocated to specifi c
item properties. To avoid ambiguity, both object fl ows and item properties are
uniquely named. For example, Figure 15.21 shows that object fl ow of1 has been
allocated to item property main1, of2 to main2, of3 to main3, and so on, with
each allocation being uniquely identifi able.

 As discussed in Section 13.8 in Chapter 13, allocation of object fl ow to item
fl ow/item property cannot be unambiguously represented on internal block dia-
grams. If a callout were used to show the object fl ow allocated to a black triangle
on an internal block diagram, it is not clear whether this is meant to represent
allocation to the item fl ow, the item property, or the type of the item property.
To avoid this ambiguity, the example uses a matrix to depict both functional and
fl ow allocation, as shown in Figure 15.22 . The arrows in the matrix represent the
direction of the allocation relationship.

 15.7 Analyzing Performance
 Now that system behavior has been allocated to system structure, the implica-
tions on system performance are considered next.

 15.7.1 Item Flow Heat Balance Analysis
 The key aspect of distiller performance is the appropriate balance of water and
heat flow through the system. To evaluate the flow balance, the analysis focuses
on the physical flow of water and heat, as expressed by item flows on the inter-
nal block diagram. An alternative approach may have been to analyze the object
flows on the activity diagram, but the object flows have been uniquely allocated
to the item flows, so the approach is equivalent. The feasibility of the design
can be assessed by analyzing the mass flow rate of the H2O through the system,
and analyzing the heat flow required to heat the H2O and the associated phase
changes. This analysis is simplified by the fact that the entire system is isobaric;
that is, the pressure throughout the system is assumed to be atmospheric.

 Figure 15.23 is a parametric diagram of the Distiller block, representing sim-
ple mathematical relationships between the physical fl ows. In this simple exam-
ple, it was decided to apply the constraints directly to the Distiller block rather
than creating a separate analysis context block, as described in Chapter 7. The

3
8

3

act [Activity] Distill Water [7. swimlanes and callouts]

«continuous»
external : Heat

{stream}

«continuous»
pure : H2O

{stream}

shutdown

a3 : Condense Steam

a1 : Heat Water a2 : Boil Water a4 : Drain Residue

«allocate»
condenser : Heat Exchanger

«allocate»
drain : Valve

«allocate»
evaporator : Boiler

of4

of8

of2

of3

of5

of6

of7

of1

allocatedTo
«itemProperty»
main4 : H2O

allocatedTo
«itemProperty»
main3 : H2O

allocatedTo
«itemProperty»
main1 : H2O

allocatedTo
«itemProperty»
main2 : H2O

allocatedTo
«itemProperty»
sludge1 : Residue

«continuous»
discharge : Residue

{stream}

«continuous»
cold dirty : H2O

{stream}

allocatedTo
«itemProperty» q1 : Heat

allocatedTo
«itemProperty» sludge2 : Residue

 FIGURE 15.21

 Initiating functional fl ow allocation (pin names have been elided) .

384 CHAPTER 15 Water Distiller Example Using Functional Analysis

 FIGURE 15.22

 Functional and fl ow allocation from behavior to structure.

six square boxes around the outside of the diagram (main1 : H2O, main2 : H2O ,
and so on) represent the item properties previously identifi ed on the internal
block diagram. Each item property can have associated value properties unique
to its usage, such as temperature and mass fl ow rate. Specifi c heat and latent heat
are common, invariant properties of water that also need to be considered in
the analysis. The three round-cornered boxes in the center of the diagram rep-
resent constraint properties of the Distiller; each has a corresponding constraint
expressed as a mathematical formula. This constraint is identifi ed by curly brack-
ets ({ }), and can either be displayed on the constraint property directly or shown
in a separate constraint callout.

 Based on the topology of the distiller, the mass fl ow rate of the water input
(main1) has to be equal to the mass fl ow rate of the water output of the heat
exchanger (main2) because there is nowhere else for it to go. This equivalence
is depicted in Figure 15.23 by directly binding the mass fl ow rate value property
of the main1 : H2O item property and the mass fl ow rate value property of the
main2 : H2O item property. Likewise, the mass fl ow rate of the steam output
from the boiler (main3) must equal the mass fl ow rate of the water output from
the Distiller (main4), and the same kind of binding is used.

 The system needs to heat water and condense steam at the same time as spec-
ifi ed in the activity diagram. The single-phase heat transfer equation, which is
applied when heating liquid water, relates mass fl ow rate, change in temperature,
and specifi c heat to heat fl ow (q rate). Note that the constraint s1 : Single Phase

3
8

5
par Distiller Isobaric Heat Balance [composition of equations]

q1 : Heat

dQ/dt : calories per second

main1 : H2O

mass flow rate : gm/sec

water temp : �C

main2 : H2O

mass flow rate : gm/sec

water temp : �C

main3 : H2O

mass flow rate : gm/sec

main4 : H2O

mass flow rate : gm/sec

 : Distiller

«constraint»
condensing : Phase Change Heat Xfer Equation

{q rate�m rate*l heat}

l heat :
cal/gm

m rate :
gm/sec

q rate :
cal/sec

«constraint»
s1 : Single Phase Heat Xfer Equation

{q rate�(th�tc)*m rate/s heat}
m rate :
gm/sec q rate :

cal/sec

s heat :
cal/(gm*�C)tc : �C

th : �C

«constraint»
boiling : Phase Change Heat Xfer Equation

{q rate�m rate*l heat}

l heat :
cal/gm

m rate :
gm/sec

q rate :
cal/sec

 : H2O

latent heat : cal/(gm*�C)

specific heat : cal/gm

 FIGURE 15.23

 Defi ning parametric relationships as a prelude to analysis.

386 CHAPTER 15 Water Distiller Example Using Functional Analysis

Heat Xfer Equation shows each of these parameters in small square boxes.
Binding connectors are used to bind the value properties associated with the
main1 and main2 mass fl ow rate and temperature and the specifi c heat of water
to the parameters of this constraint. The q rate parameters in different constraints
are bound directly to one another, as opposed to being bound to value properties
of the item properties. The q rate from condensing : Phase Change Heat Xfer
Equation is bound to the q rate for s1 : Single Phase Heat Xfer Equation, since
the energy used to heat the water comes from condensing steam.

 A simple phase change equation is used to determine how much heat needs to
be extracted for a given mass fl ow rate of steam. In this example, the constraint
block, Phase Change Heat Xfer Equation, is used both for condensing steam and
for boiling water. For convenience, this equation is defi ned only once as a con-
straint block, and it used to type the two constraints: condensing and boiling .
Note how both condensing and boiling constraints have identical parameters but
are bound to different properties. Also note that specifi c heat and latent heat are
invariant properties of H2O and are thus shown underlined.

 This parametric diagram defi nes the mathematical relationships between prop-
erties, but it does not specifi cally defi ne the analysis to be performed. It explicitly
relates properties of the items that fl ow through the distiller. The next step is to
perform the analysis by evaluating the equations.

 15.7.2 Resolving Heat Balance
 The equations and value properties expressed in the parametric diagram were
manually entered into a spreadsheet to perform the computation. Figure 15.24
is a table captured from this analysis. The analysis started by assuming unity flow
rate into the evaporator (main2 : H2O into evap) and then determining how
much water is required to flow through the condenser. The conclusions indicate
that to remove enough heat to condense the steam, almost seven times more
water mass needs to flow into the system than flows out of it! In the current
design, there is no place for that water to go except into the boiler, which will
then overflow. This is not a feasible steady-state solution and requires modifica-
tion to the design.

 15.8 Modifying the Original Design
 Since analysis has revealed a fundamental flaw in the original distiller design, this
section will describe modifications to the design to achieve adequate performance.

 15.8.1 Updating Behavior
 As shown in the modified activity diagram in Figure 15.25 , the design is modified
by adding another part called diverter assembly:, represented as an allocate activ-
ity partition, with the action to divert the water called a5 : Divert Feed .

387

 15.8.2 Updating Allocation and Structure
 The allocate activity partition corresponds to a new part, which includes another
usage of the previously defined Valve block, that has been added to the system.
This new part, its internal structure, and the associated flows are shown in the
internal block diagram in Figure 15.26 . This assembly is decomposed into a
tee fitting to divert most of the flow out of the system, and a valve to throttle the
water going into the boiler. The diverter assembly: is an untyped part that is a
simple collection of parts; it is not defined by a block. Note also the use of nested
connectors to avoid the need to use flow ports on the diverter assembly.

table[Package]IsobaricHeatBalance 1 [Results of Isobaric Heat Balance]

specific heat cal/gm-°C

latent heat cal/cm

1

540

m
ai

n1
 :

H
2O

m
ai

n3
 :

H
2O

m
ai

n4
 :

H
2O

mass flow rate gm/sec

temp °C

6.8 1 1 1

100 100 100 100

dQ/dt cooling water cal/sec

dQ/dt steam condensate cal/sec

condenser efficiency

heat deficit

dQ/dt condensate steam cal/sec

boiler efficiency

dQ/dt in boiler cal/sec

6.8

20

540

540

1

0

540

1

540

m
ai

n2
 :

H
2O

 fr
m

 c
on

de
ns

er

m
ai

n2
 :

H
2O

 in
to

 e
va

p

Note: Cooling water
needs to have 6.75x
flow of steam!
Need bypass between
hx_water_out and
bx_water_in!

satisfies «requirement»
WaterSpecificHeat

satisfies «requirement»
WaterHeatOfVaporization

satisfies «requirement»
WaterInitialTemp

 FIGURE 15.24

 Analysis reveals heat imbalance in initial design.

15.8 Modifying the Original Design

3
8

8

act [Activity] Distill Water [8.revised]

«allocate»
diverter assembly

«allocate»
condenser : Heat Exchanger

«allocate»
drain : Valve

«allocate»
evaporator : Boiler

a3 : Condense Steam«continuous»
cold dirty : H2O

{stream}

a1 : Heat Water a2 : Boil Water

a5 : Divert Feed

a4 : Drain
Residue

«continuous»
external : Heat

{stream} shutdown

«continuous»
pure : H2O

{stream}

«continuous»
bypass : H2O

{stream}

«continuous»
discharge : Residue

{stream}

predischarge :
Residue {stream}

Steam : H2O
{stream}

of7

of2b

feed : H2O
{stream}

of1 of8

of2

of3

of4

of2a

of5

recovered : Heat
{stream}

cold dirty : H2O
{stream}

Stream :
H2O

{stream}

recovered : Heat
{stream}

hot dirty : H2O
{stream} external : Heat

{stream}

hot dirty
{stream}

predischarge:
Residue {stream}

discharge : Residue
{stream}

hot dirty : H2O
{stream}

pure : H2O
{stream}

bypass : H2O
{stream}

of6

 FIGURE 15.25

 Revising behavior to accommodate diverting feed water.

3
8

9

dirty water : H2O

q in : Heat

purified : H2O

sludge : Residue

bypass : H2O

diverter assembly

evaporator : Boiler

middle : Fluid

top : Fluid

bottom : Fluid

bottom 1 : Heat

condenser : Heat Exchanger

c in : Fluid c out : Fluid

h in : Fluidh out : Fluid

drain : Valve

in : Fluid out : Fluid

splitter : Tee Fitting

port1 : Fluid

port2 : Fluid

feed : Valve

in : Fluid

out : Fluid

main4 : H2O

m2.2 : H2O

q1 : Heat

main2 : H2O

main3 : H2O

sludge1 : Residue sludge2 : Residuemain1 : H2O

m2.1 : H2O

m2.1 : H2O

ibd [Block] Distiller [distiller block diagram (revised)]

port3 : Fluid

 FIGURE 15.26

 Revised distiller internal structure with fl ow diverter.

390 CHAPTER 15 Water Distiller Example Using Functional Analysis

This modifi ed design enables the feed : Valve to be throttled so that the
boiler does not overfl ow, and yet retain enough water fl owing through the heat
exchanger to condense the steam. Note also the reuse of the block Valve. The
drain : Valve and the feed :Valve each have two ports, both of which are defi ned
the same but connected differently. Although not shown here, the block defi ni-
tion diagram is also updated to refl ect another composite association between
Distiller and Valve with the new part name.

Distiller

Operate Distiller

uc [Package] Distiller Use Cases [use case example]

«actor»
Operator

 FIGURE 15.27

 Defi ning operator interface using a use case.

 15.8.3 Controlling the Distiller and the User Interaction
 Up to this point, the design has not considered how or if a user interacts with the
Distiller. The following steps update the model to reflect how the operator inter-
acts with Distiller, along with other considerations for startup and shutdown of
the system.

 Figure 15.27 shows a use case diagram that includes model elements con-
tained within the Distiller Use Cases package.

 It may be appropriate at this point to develop a textual use case description to
describe Operate Distiller, but the example here does not include this step. The
sequence diagram that realizes the use case is shown in Figure 15.28 ; it describes
the expected interaction between the user and Distiller when operating the dis-
tiller system.

The Operator starts by turning the Distiller on and observes a Power Lamp
On. When the Distiller reaches operating temperature, the Operator observes
the Operating Lamp On; then the distiller cycles as it produces distilled water.
The Operator turns the Distiller off, and the Power Lamp Off signal is returned
by the Distiller. This interaction indicates that further changes to the design must
be made to include the parts needed for the user to provide inputs to the system,
the lamps, and the mechanism for automatically controlling the distiller.

391

alt

loop

1: Turn On

7: Turn Off

2: Power Lamp On

4: High-Level Lamp On

5: Low-Level Lamp On

6: Draining Lamp On

3: Operating Lamp On

8: Power Lamp Off

«block»
: Distiller

sd [Interaction] Operational Sequence [simple sequence]

: Operator

[while state � Operating]

[state � draining residue]

[level � low]

[level � high]

 FIGURE 15.28

 Defi ning operator interaction using a sequence diagram.

 15.8.4 Developing a User Interface and a Controller
 Figure 15.29 is a block definition diagram, and Figure 15.30 is an internal block
diagram that reflects the update to the design to realize the use case. A control
panel has been added with the lamps that the operator observes. A controller has

15.8 Modifying the Original Design

392 CHAPTER 15 Water Distiller Example Using Functional Analysis

been added to ensure that the valves are operated in the proper sequence and
that the lamps are turned on and off.

 Power input is provided to the heaters in the Boiler to convert electrical
power to heat. It makes sense to use the controller to provide power to the
Boiler. A fl ow specifi cation can now be used to describe the kind of signals
expected to pass between the Controller and the Boiler. The fl ow specifi cation
may include the position of fl oat switches in the boiler to indicate whether the
level is high or low.

 Figure 15.31 shows the fl ow specifi cation Boiler Signals. Note that it uses two
fl ow properties, control and status, and the direction is appropriate for the heat
and valve : Controller in Figure 15.30 . The evaporator : Boiler uses a conjugate
fl ow port with the same fl ow specifi cation as the fl ow port on the Controller. The
conjugate reverses the direction of the fl ow properties and makes the connection
compatible.

 15.8.5 Startup and Shutdown Considerations
 Since the system now uses a controller, the startup and shutdown and other
aspects of system control can be represented as a state machine diagram for the
Controller, as shown in Figure 15.32 . The states and transitions in the diagram
were identified by examining the sequence diagram associated with the Operate
Distiller use case.

bdd [Package] Revised Elaborated Distiller Structure [distiller breakdown revised and elaborated]

«block»
Heat Exchanger

«block»
Control Panel

«block»
Tee Fitting

«block»
Controller

«block»
Valve

«block»
Distiller

splitter

user heat and valve

feedcondenser drain

«block»
Boiler

evaporator

 FIGURE 15.29

 Distiller structural hierarchy with controller and user interface.

3
9

3
ibd [Block] Distiller [block diagram revised and elaborated]

pwr in : Elec Power

heat and valve : Controller

pwr : Elec Power

b : Boiler Signals v1 : V Ctrlv2 : V Ctrl bp : Elec Power

diverter assembly

condenser : Heat Exchanger

iPanel

evaporator : Boiler

p in : Elec
Power

drain : Valve

v : V Ctrl

user : Control Panel

splitter : Tee Fitting

feed : Valve

v : V Ctrl

main4 : H2O

m2.2 : H2O

distiller pwr : Elec Power

feed ctl : V Ctrl

htr pwr : Elec Power

drain ctl : V Ctrl

blr status : Blr Sig

blr ctl : Blr Sig

sludge1 : Residue sludge2 : Residuemain1 : H2O

m2.1 : H2O

m2.1 : H2O

iPanel

main2 :
H2O

c : Boiler
Signals

main3 :
H2O

 FIGURE 15.30

 Distiller internal structure with controller and user interface.

394 CHAPTER 15 Water Distiller Example Using Functional Analysis

flowProperties

«flowSpecification»
Boiler Signals

out control : Signals
in status : Signals

bdd [Package] New Item Types [flow spec development]

 FIGURE 15.31

 Flow specifi cation for boiler signals.

 Starting with the Distiller in the Off state, in which it is cold and dry, a num-
ber of things will have to happen before it begins distilling and producing water.
The fi rst step is to fi ll the boiler. While in the Filling state, the feed : Valve opens.
As soon as the water level in the Boiler is adequate to cover the heater coils,
the heater can be turned on without damage. The system can now enter the
Warming Up state, where the boiler heaters are turned on and the boiler begins
warming up.

 Once the boiler temperature reaches 100°C, the system enters the Operating
state. In this state, the boiler heaters are still on, but two substates, Controlling
Boiler Level and Controlling Residue, occur in parallel. In this example, control
of residue relies on a simple timer to transition between the Building Up Residue
substate when the drain : Valve is closed and the Purging Residue substate
when the drain : Valve is open and dumping the residue. In essence, this state
machine periodically blows down the boiler to make sure that not too much
sludge builds up.

 When controlling the water level in the Boiler, one of three substates exist:
either Level OK, in which case the drain : Valve and feed : Valve need to both
be closed; Level Low, which requires more water, so the feed : Valve needs to be
open; or Level High, where the drain : Valve needs to be open.

 To turn off the Distiller, the operator should not just cut the power and walk
away. It is necessary to go through a shutdown procedure; otherwise, corrosion
will severely limit the lifespan of the Distiller. The fi rst step in this procedure is
to cool off the system. In the Cooling Off state, the heaters are turned off and the
feed : Valve and the drain : Valve opened, allowing cool water to fl ow freely through
the entire system. Once the boiler temperature reaches a safe level, the Boiler
needs to be drained. In the Draining state, the feed : Valve is shut while the drain :
Valve remains open, and all water is drained out of the Boiler. Once the Boiler
is empty, the Distiller system can safely be turned off.

3
9

5

stm Controller State Machine [simple diagram]

Operating

do /bx heater on

Building Up Residue

do /close drain : Valve

Purging Residue

do /open drain : Valve

[bx1 level high]

[NOT bx1 level high]

[bx1 level low]

[NOT bx1 level low]

[residue timer]

[drain timer]

[bx level low][power � on]

[shutdown command][bx1 temp � 100]

entry /bx1 heater OFF
do /open feed : Valve, open drain : Valve

do /open drain : Valvedo/open feed : Valve

do /bx1 heater on

Warming Up Cooling Off

DrainingFilling

do /Power Light Off

Off

do /open drain : Valve

Level HighLevel OK

do /shut all Valves

Level Low

do /open feed : Valve [bx1 temp � 30]
[NOT bx1
level low]

 FIGURE 15.32

 Controller state machine for distiller.

396 CHAPTER 15 Water Distiller Example Using Functional Analysis

 15.9 Summary
 This example shows how SysML can be used to model a system with a traditional
functional analysis approach. The problem also illustrates the application of mod-
eling physical systems with limited software functionality. Examples of each
SysML diagram are used to support the specification, design, and analysis, along
with fundamental SysML language concepts such as the distinction between defi-
nition and use.

 15.10 Questions
 The following questions may best be addressed in a classroom or group project
environment.

 1. The customer has introduced this new requirement: “The water distiller shall
be able to operate at least 2 meters vertically above the source of dirty water. ”
Show the impact of this new requirement on the system design, as expressed
in each of the following modeling artifacts.
 a. Requirement diagram (relate new requirement to existing requirements)
 b. Activity diagram (defi ne and incorporate new activities to support the new

requirement)
 c. Block defi nition diagram (defi ne and incorporate new blocks to support the

new requirement)
 d. Internal block diagram (defi ne fl ows and interfaces to any new parts neces-

sary to support the new requirement, and any functional and fl ow alloca-
tions from the activity diagram)

 e. Parametric diagram (describe how the heat balance is affected by this new
requirement)

 f. Use case diagram (describe any changes to the operational scenario)
 g. Sequence diagram (elaborate any changes to the Operate Distiller use case)
 h. State machine diagram (describe how the Controller state machine would

be affected by the preceding design changes)
 2. Discuss the applicability and physical signifi cance of control fl ows in the dis-

tiller activity model, as shown on Figures 15.9, 15.10, and 15.13 . In which situ-
ations are control fl ows useful representations of behavior, and in which ways
can they be misleading?

 The example in this chapter describes the application of SysML to the development
of a residential security system using the Object-Oriented Systems Engineering
Method (OOSEM). It demonstrates how SysML can be used with a top-down,
scenario-driven process to analyze, specify, design, and verify the system. A scaled-
down version of this method was introduced as part of the automobile design
example in Chapter 3.

The application of OOSEM, along with the functional analysis method in
Chapter 15, are examples of how SysML is applied; but SysML can be applied
with other methods as well. The intent of this chapter is, however, to provide a
method that readers can adapt to their application to meet their needs.

 This chapter begins with a brief introduction to the method and how it fi ts
into the context of the overall development process, and then it shows how
OOSEM is applied to the residential security example. The reader should refer to
the language description in Part II for the foundational language concepts.

 16.1 Method Overview
 This section provides an introduction to OOSEM including the motivation and
background for the method, a high-level summary of the development process
that provides the context for OOSEM, and a summary of the OOSEM system spec-
ification and design process within the development process.

 16.1.1 Motivation and Background
 OOSEM is a top-down, scenario-driven process that uses SysML to support the
analysis, specification, design, and verification of systems. The process leverages
object-oriented concepts and other modeling techniques to help architect more
flexible and extensible systems that can accommodate evolving technology and
changing requirements. OOSEM is also intended to ease integration with object-
oriented software development, hardware development, and test processes.

 In OOSEM and other model-based systems engineering approaches, the sys-
tem model is a primary output of the design process. The system model artifacts

 Residential Security
System Example Using the
Object-Oriented Systems
Engineering Method

 16
CHAPTER

398 CHAPTER 16 Residential Security System Example Using OOSEM

represent the system’s multiple facets such as its behavior, structure, and proper-
ties. For a model to have integrity, the various facets must provide a consistent
representation of the system, as described in Chapter 2.

 OOSEM includes fundamental systems engineering activities such as needs
analysis, requirements analysis, architecture, trade studies and analysis, and
verifi cation. It has similarities with other methods such as the Harmony process
[6, 7] and the Rational Unifi ed Process for Systems Engineering (RUP SE) [9, 10],
which also apply a top-down, scenario-driven approach that leverages SysML as
the modeling language. OOSEM includes various modeling techniques, such as
causal analysis, logical decomposition, partitioning criteria, node distribution
analysis, control strategies, and parametrics, to deal with a wide array of system
concerns.

 OOSEM was developed in 1998 [36, 37] and further evolved as part of a joint
effort between Lockheed Martin Corporation and the Systems and Software
Consortium (SSCI), which previously was the Software Productivity Consortium
[8]. Early pilots were conducted to assess the feasibility of the method [38], and
then it was further refi ned by the INCOSE OOSEM Working Group beginning in
2002. Tool support has been substantially improved for OOSEM with the adop-
tion of the SysML specifi cation beginning in 2006.

 16.1.2 System Development Process Overview
 The system life-cycle process includes processes for developing, producing,
deploying, operating, supporting, and disposing the system. The successful out-
put of the development process is a verified and validated system that satisfies
operational requirements and capabilities and the other life-cycle requirements
for production, deployment, support, and disposal.

 OOSEM is part of a higher-level development process that was originally based
on the Integrated Systems and Software Engineering Process (ISSEP) [39]. A modi-
fi ed version of this process, as it applies to OOSEM, is highlighted in Figure 16.1 ,
and includes the management process, the system specifi cation and design pro-
cess, the next level development processes, and the system integration and veri-
fi cation process. This process can be applied recursively to multiple levels of a
system’s hierarchy that is similar to a Vee development process [40], where the
specifi cation and design process is applied to successively lower levels of the sys-
tem hierarchy down the left side of the Vee, and the integration and test process
is applied to successfully higher levels of the system hierarchy up the right side of
the Vee. This development process is different from a typical Vee process in that
it includes both management processes and technical processes at each level of
the hierarchy.

 Applying the specifi cation and design process at each level results in the spec-
ifi cation of elements at the next lower level of the system hierarchy. For example,
applying the process at the system-of-systems (SoS) level results in the specifi ca-
tion of one or more systems. Applying the process at the system level results in
the specifi cation of the system elements, and applying the process at the system-
element level results in the specifi cation of the components. The hardware and

399

 software development processes are then applied at the component level to ana-
lyze component requirements and design, implement, and test them.

 The leaf level of the process is the level at which an element or component
is procured or implemented. In the automobile design example in Chapter 3, if
the automotive design team procures the engine, the team specifi es the engine
requirements and verifi es that the engine satisfi es the requirements. On the other
hand, if the engine is subject to further design, the process is applied to the next
level of engine design to specify the engine components.

 The following subsections contain a high-level summary of each process
shown in Figure 16.1 .

act Activities [Develop System1]

Develop System

:System

Manage
System

Development

system_reqts_&_design :Plan

hardware_development :Plan

software_development :Plan

database_development :Plan

verification :Plan

system_reqts_&_
design :Status

hardware_development :Status

software_development :Status

database_development :Status

verification :Status

Specify and
Design
System

hw :Requirement

sw :Requirement

data :Requirement

system :Requirement

hw :Verification
Result

sw :Verification Result

data :Verification Result

system :Verification Result

operational procedure :Requirement

operational procedure :Verification Result

Develop
Hardware

Develop
Software

Develop
Database

Integrate
and Verify

System:Database
[verified]

:Software
[verified]

:Hardware
[verified]

:Operational
Procedure
[verified]Develop

Operational
Procedures

 FIGURE 16.1

 System development process.

16.1 Method Overview

400 CHAPTER 16 Residential Security System Example Using OOSEM

 Manage System Development
 This process includes project planning, and controlling the execution of the work
in accordance with the plan. Project control includes monitoring cost, schedule,
and performance metrics to assess progress against the plan, managing risk, and
controlling changes to the technical baseline.

 The management process also includes selection of the life-cycle model, such
as waterfall, incremental, or spiral, that defi nes the ordering of the activities. Use
cases that are defi ned in the model provide units of functionality that can serve as
an effective organizing principle for planning and controlling the scope of work
to be accomplished for a particular development spiral or increment.

 The management process also includes tailoring the standard process activities
and artifacts to meet the project’s needs. Tailoring depends on a variety of factors
that may include the extent to which the system is a new design (i.e., unprec-
edented), the system size and complexity, the available time and resources, and
the level of experience of the development team. As an example, a system design
that is based on a prior design is generally constrained to include signifi cant leg-
acy or predefi ned commercial off-the-shelf (COTS) components. This can signifi -
cantly impact which activities are performed and the ordering of the activities.
The activities may include early characterization of the COTS components in par-
allel with other system specifi cation and design activities. The design emphasis
is placed on how the COTS components interact to achieve the system require-
ments, and which additional components are required to interface with the COTS
components.

 Additional tailoring of the process and its artifacts may be required for spe-
cifi c domains at each level of the system’s hierarchy. For the automobile design
example, the intermediate element level may require tailoring of the processes
and artifacts to develop the power train, body, and steering assembly, including
unique types of analysis.

 Specify and Design System
 This process is implemented by OOSEM, as summarized later in Section 16.1.3.
The system speficiation and design process include activities to analyze the
system requirements, define the system architecture, and allocate the system
requirements to the next level of design. The next level of design implements the
allocated requirements and verifies that the design satisfies the requirements and/
or requests updates to the system design to reallocate the requirements as needed.
In the residential security example in Section 16.2, the next level of design is
assumed to be the component level, where the hardware, software, database, and
operational procedures are developed. However, as stated previously, there may
be intermediate “ element ” levels of the system hierarchy.

 Develop Hardware, Software, Database, and Operational Procedures
 This process includes analysis, specification, design, implementation, and verifi-
cation of the components. For hardware components, implementation is accom-
plished by fabricating and/or constructing the component, and for software
components, implementation includes coding the software. If there are multiple

401

intermediate levels of the system hierarchy prior to the component level, the
development process in Figure 16.1 is applied recursively to each intermediate
level.

 Integrate and Verify System
 This process integrates the next lower level of system elements or components
and verifies that the system design satisfies its requirements. The process includes
developing verification plans, procedures, and methods (e.g., inspection, demon-
stration, analysis, testing), conducting the verification, analyzing the results, and
generating the verification reports. OOSEM supports the right side of the Vee by
specifying the test cases at each level of design and by integrating the design mod-
els into the next higher level of the Vee. Referring to the automobile design exam-
ple in Chapter 3, the engine component design models are integrated into the
engine design model, which in turn is integrated into the automobile system design
model as part of the upside of the Vee process. This integrated model can be used
to verify that the component designs satisfy their requirements, the engine design
satisfies its requirements, and the automobile design satisfies its requirements.

 16.1.3 OOSEM System Specifi cation and Design Process
 Figure 16.2 is a high-level summary of the OOSEM Specify and Design System
process. The section in which each activity is addressed is also shown in the dia-
gram. To simplify the process, it does not include the potential loops to reflect the
process iterations, nor does it include the inputs and outputs from each activity.

 The Analyze Stakeholder Needs activity characterizes the as-is system, its limi-
tations and potential improvement areas, and specifi es the mission requirements
that the to-be system must support. The Analyze System Requirements activity
specifi es the system requirements in terms of its input and output responses and
other black-box characteristics. The Defi ne Logical Architecture activity decom-
poses the system into logical components and defi nes how the logical compo-
nents interact to realize system requirements. The Synthesize Candidate Physical
Architectures activity allocates the logical components to physical components
that are implemented in hardware, software, data, and procedures. The Optimize
and Evaluate Alternatives activity is invoked throughout the process to perform
engineering analysis that supports system design trade studies and design optimi-
zation. The Manage Requirements Traceability activity is used to manage trace-
ability from the mission-level requirements to the component requirements. Each
of these activities is further elaborated later as part of the example.

 The level of detail of the process documentation is tailored according to orga-
nizational and project needs. The next level of decomposition for each of the
preceding activities is included in the residential security example in the next
section. The documentation can be further elaborated to describe the detailed
process description for creating each modeling artifact, such as a use case. In
addition, the process fl ows can be further refi ned to refl ect the design iterations
and the fl ow of inputs and outputs. This level of detail is not included in any of
the process fl ows in this example to simplify the process description.

16.1 Method Overview

402 CHAPTER 16 Residential Security System Example Using OOSEM

 16.2 Residential Security Example Overview
and Project Setup

 The remainder of this chapter describes how OOSEM is applied to the residential
security example.

 16.2.1 Problem Background
 A company called Security Systems Inc. has been providing residential security
systems to the local area for many years. Their security systems are installed at
local residences and are monitored by a central monitoring station (CMS). The
system is intended to detect potential intruders. When an intruder is detected by
the security system, operators at the CMS contact the local emergency dispatcher
to dispatch police to the residence to intercept the intruder.

 Security Systems Inc. had a successful business for many years. In the past sev-
eral years, however, their sales have signifi cantly dropped and many of their existing

act Activities [Specify and Design System]

16.3.1 analyze stakeholder needs

16.3.5 optimize and
evaluate alternatives

16.3.6 manage
requirements traceability

16.3.4 synthesize candidate
physical architectures

capture parametrics
and perform
engineering analysis

capture reqts
relationships

16.3.2 analyze system
requirements

16.3.3 define logical
architecture

 FIGURE 16.2

 OOSEM Specify and Design System process.

403

customers have terminated their contracts in favor of competitors. It has become
evident to the management of the company that their current system is becom-
ing obsolete in terms of its capabilities, and that they must reestablish their market
position. In particular, they have decided to launch a major initiative to develop an
enhanced security system (ESS) that is intended to help regain their market share.

 The Systems Engineering Integrated Team (SEIT) is responsible for providing
technical management for the system development, including technical planning,
risk management, managing the technical baseline, and conducting technical
reviews. In addition, the SEIT includes team members who are responsible for the
system requirements analysis, system architecture design, engineering analysis, and
integration and verifi cation of the ESS, as described in Section 1.4 in Chapter 1.
The implementation teams are responsible for the system components. This includes
analyzing the requirements allocated to the components by the SEIT, and designing,
implementing, and verifying that the ESS components satisfy their requirements.

 The SEIT selected an incremental development process as its life-cycle model.
During the fi rst increment, the SEIT established the incremental project plan and
project infrastructure. The plan for the modeling effort included defi ning the
modeling objectives; scoping the model to meet the objectives; selecting and tai-
loring the method and modeling conventions; selecting, acquiring, and installing
the tools; defi ning the detailed schedule for the modeling activities; staffi ng the
effort; and providing the necessary training.

 The SEIT selected OOSEM as their model-based systems engineering method
in conjunction with SysML as their graphical modeling language. This was based
on the results of an earlier pilot project to assess how well the method and tools
would support their needs (refer to discussion on deploying SysML in Chapter 18).
They selected tools based on the tool selection criteria described in Chapter 17.
The systems development environment includes SysML modeling tools, a UML-based
software development environment; hardware design tools; performance analysis
tools; testing tools; confi guration management tools; a requirements management
tool; and other project management tools for planning, scheduling, and risk
management. The SEIT and selected members of other implementation teams
received rigorous training in SysML, OOSEM, and the use of their selected tools.

 The second increment focuses on a breadth-fi rst design approach, which
includes analysis of stakeholder needs, specifying the black-box system require-
ments, and evaluating and selecting the preferred system architecture for the pro-
posed ESS solution. The follow-on increments focus on architecture refi nement
and implementing the components needed to achieve incremental capabilities
that correspond to selected ESS use cases.

 The example in this chapter is intended to describe the modeling activities for
the second increment. During this increment, the ESS model is used to specify and
validate system requirements, architect the solution, and allocate requirements
to the ESS hardware, software, and data components, which are either developed
by the implementation teams, or procured as COTS products. It is anticipated
that there will be signifi cant software and database development, but the hard-
ware components, such as sensors, cameras, processors, and network devices, are
primarily COTS. The ESS also requires development of new operational procedures

16.2 Residential Security Example Overview and Project Setup

404 CHAPTER 16 Residential Security System Example Using OOSEM

for the customer and central monitoring station operators that defi ne how to
interact with the system.

 Only selected diagrams are included to illustrate the approach. In particular,
the selected diagrams primarily relate to the intruder-monitoring thread.

 16.2.2 Modeling Conventions and Standards
 Modeling conventions and standards are required to ensure consistent represen-
tation and style across the model. This includes establishing naming conventions
for each type of model element, such as packages, blocks, and activities, and for
the diagram names. The conventions and standards also identify other stylistic
aspects of the language, such as when to use uppercase versus lowercase and
when to use spaces in the names. The conventions and standards should also
account for tool-imposed constraints, such as limitations on the use of alphanu-
meric and special characters. It is also recommended that a template be estab-
lished for each diagram type.

 Table 16.1 contains a list of user-defi ned stereotypes for an OOSEM-specifi c
profi le of SysML that is used in this example. The approach for defi ning a profi le
is described in Chapter 14.

Further information is detailed in the following list.

 Use of Upper- and Lowercase—Uppercase is used for the first letter of each word
for all definitions/types, such as blocks and value types, and for packages and
requirements, with a space between compound names that have more than
one word. Example: Surveillance Camera: Lowercase is used for the first letter
for parts, properties, item properties, actions, and states with a space between
compound names that have more than one word. All other letters are lower-
case. Example: surveillance camera.

 Verb/Noun Form: The verb/noun form is used to name activities, actions, and
use cases. Example: “ Monitor Intruder. ”

 Pin Names on Activity Diagrams—in:Type Name and out:Type Name are often
used. Examples: “ in:Alert Status ” and “ out: Dispatch Request. ”

 Flow Port Names —Flow ports start with fp and standard ports start with sp .

 Tool-Specific Notation—This chapter’s diagrams are generated from a modeling
tool. Some of the notation may differ somewhat from the SysML specification
that is described in Part II.

 16.2.3 Model Organization
 The model organization is recognized as a critical aspect of MBSE. The com-
plexity of the system model can quickly overwhelm the users of the model and
become intractable, particularly for large teams. This in turn can impact the abil-
ity of model developers to maintain a consistent model and the ability to maintain
configuration management control of the model. Refer to Chapter 5 for consid-
erations for how to organize the model with packages.

405

 The OOSEM process includes a standard approach for how to organize the
model that is defi ned by the package structure. Model organization includes a recur-
sive package structure that mirrors the system hierarchy. A package is defi ned for
each block, which is further decomposed to contain the model elements for the
next level of decomposition. This package contains the block defi nition diagram and
internal block diagram for the next level of decomposition, and a behavior package
that specifi es the collaboration among the parts at the next level of decomposition.

 The model organization also includes other packages that are not nested within
the system hierarchy packages. These packages include requirements, parametrics,
input/output defi nitions, value types, and other model aspects that may be reused
at multiple levels of the system hierarchy.

 The model organization for this example is highlighted by the package struc-
ture shown in the browser view in Figure 16.3 . The model shown at the top
level of the browser contains three top-level packages called Process Guidance ,
Security Domain Life Cycle as-is, and Security Domain Life Cycle to-be .

 The Process Guidance package provides a convenient mechanism to capture
process issues, tool issues, and other process information that is identifi ed by the
systems engineering team throughout the modeling process. This information

Table 16.1 OOSEM-Specifi c Profi le of SysML User-Defi ned Stereotypes

 OOSEM Stereotype Base Class

 «composite state» Block, Property

 «confi guration item» Block, Property

 «document» Block, Part

 «element» Block, Part

 «fi le» Block, Part

 «hardware» Block, Part

 «logical» Block, Part

 «node» Block, Part

 «node logical» Block, Part

 «node physical» Block, Part

 «operator» Block, Part

 «procedure» Block, Part

 «mop» Property

 «moe» Property

 «software» Block, Part

 «state» Block, Property

 «status» Property

 «store» Property

 «system of interest» Block, Part

16.2 Residential Security Example Overview and Project Setup

406 CHAPTER 16 Residential Security System Example Using OOSEM

 should ultimately be refl ected in updates to the organizational standard processes
if the information is relevant across projects. For this example, the package also
includes the process fl ows that describe the methodology, such as Figure 16.2 .
Alternatively, other process-modeling tools may be used to capture process
information.

 The Security Domain Life Cycle as-is package contains the parts of the model
that characterize the current system and enterprise in suffi cient detail to aid in
understanding the limitations to be addressed by the to-be system. Parts of the as-
is model may be reused in the to-be model.

 The Security Domain Life Cycle to-be package contains elements of the model
for the to-be enterprise and system. Several nested packages are contained within
this package. The Viewpoints package contains the viewpoints and associated
views for different ESS stakeholders. (Note: Viewpoints and views are described

 FIGURE 16.3

 ESS model organization (browser view).

407

in Chapter 5.) The Life-Cycle Use Cases package contains the use cases that span
the systems life cycle. The SI Defi nitions package is an imported library that con-
tains standard units and dimensions.

 The Value Types package contains additional value types with units and dimen-
sions that are added for use throughout the model. The Requirements package
contains the requirements for the ESS system from mission-level requirements
down to hardware and software component requirements. The requirements are
often imported from a requirements management tool. The Parametrics package
contains the parametric diagrams and associated model elements to support engi-
neering analysis and trade studies.

 There are also packages that correspond to other parts of the system ’s life cycle,
including Development, Installation, Operational, and Support (not shown). Most
of the elaboration of this model is contained within the Operational package, since
the focus of this example is on the operational system design. The Operational
package contains nested packages for Item & Interface Defi nitions, Enterprise Use
Cases, and the Enterprise. The Item & Interface Defi nitions elaborate the inputs
and outputs and the port defi nitions used throughout the model. The Enterprise
Use Cases contain the primary mission use cases for the security system.

 The Enterprise package is further nested to mirror the hierarchy of the system
as described in the beginning of this section. The Enterprise package contains
the Scenarios package, which describes how the enterprise use cases are real-
ized, and the ESS package, which contains the ESS system design model. The ESS
is the system that is being specifi ed and designed in this example.

 The ESS package contains nested packages for the Logical Architecture , Node
Logical Architecture , Node Physical Architecture , and Physical Architecture . The
Physical Architecture package in turn contains packages for the Software Archi-
tecture, Data Architecture , Hardware Architecture , Operational Procedures ,
and Operators of the ESS system (all not shown). Each of the preceding packages
contains model elements that are created by applying OOSEM. The contents of
each of these packages are described in the following sections.

 Diagrams contained in particular packages are highlighted in the browser with
special symbols that are unique to each tool. The symbol in Figure 16.3 for the
Operational Domain BDD within the Operational package, represents a block
defi nition diagram in this tool.

 As described in Chapter 5, model elements contained in one package can be
related to model elements contained in another package. When a model element
from another package appears on a diagram, its fully qualifi ed name identifi es
the package it is contained in. This enables each model element on a diagram to
be uniquely identifi ed. The fully qualifi ed name can be shown with the double-
colon notation described in Chapter 5, but this is mostly elided in this example to
reduce diagram clutter.

 The package structure from Figure 16.3 is partially represented in the package
diagram in Figure 16.4 . The package diagram is called Model Organization. As
described in Chapter 4, the diagram header includes the type of diagram (pkg), the
type of diagram element the frame represents (package), the name of the package
that is represented by the frame (Security Domain Life Cycle to-be), and the

16.2 Residential Security Example Overview and Project Setup

408 CHAPTER 16 Residential Security System Example Using OOSEM

 name of the diagram (Model Organization). Based on the diagram header inform-
ation, the diagram frame represents the Security Domain Life Cycle to-be pack-
age and the diagram contents represent its nested packages.

 16.3 Applying the Method to Specify
and Design the System

 The following subsections elaborate the Specify and Design System process and
artifacts that were summarized in Section 16.1.3. The subsections correspond to
the actions in Figure 16.2 . The activities— Manage Requirements Traceability and
Optimize and Evaluate Alternatives—are included toward the end of this sec-
tion even though they occur as supporting activities throughout this process.

pkg Security Domain Life Cycle to-be [Model Organization]

This top-level package includes
the Security Domain Life-Cycle
BDD and Domain Blocks

Separate model for as-is
with a similar package
structure

Name: Model Organization
Author: 28894
Version: 1.0
Created: 2/17/2008 2:57:00 PM
Updated: 2/17/2008 5:21:37 PM

Software Architecture Data Architecture Operational Procedures Hardware Architecture

Logical Architecture Node Logical Architecture Node Physical Architecture Physical Architecture

Scenarios ESS

Enterprise Use Cases Enterprise Item and Interface Definitions

Installation SupportOperational

Parametrics Life-Cycle Use Cases Value Types

Requirements Viewpoints SI Definitions

«import»

 FIGURE 16.4

 ESS Model Organization (package diagram).

409

 16.3.1 Analyze Stakeholder Needs
 The Analyze Stakeholder Needs activity is shown in Figure 16.5 . As mentioned
previously, this simplified process flow does not include inputs/outputs and iter-
ation. This activity is intended to provide the analysis to understand the stake-
holder problems to be solved, and to specify the mission-level requirements that
must be satisfied to solve the problem.

 This analysis includes assessing the limitations of the current systems by charac-
terizing the as-is system and enterprise and by performing causal analysis to deter-
mine the limitations and potential improvement areas from the perspective of each
stakeholder. Analysis results are used to derive mission requirements and overall
objectives for the to-be system and enterprise, which address the limitations of the

act Activities [Analyze Stakeholder Needs]

specify mission requirements

conduct mission requirements
review

characterize as-is system
and enterprise

perform causal analysis

capture measures of
effectiveness

input to optimize and
evaluate activity

This may also
include early
characterization
of reusable
components.

define to-be domain bdddefine enterprise use cases

 FIGURE 16.5

 Analyze Stakeholder Needs activity to specify mission requirements.

16.3 Applying the Method to Specify and Design the System

410 CHAPTER 16 Residential Security System Example Using OOSEM

current system and enterprise. The to-be model of the domain, the enterprise use
cases, and measures of effectiveness are used to specify mission requirements.

 For this example, OOSEM is applied to the design of a single system called
ESS. As a result, there is little emphasis on architecting at the SoS or enterprise
levels. If this is required, then the additional architecting activities can be applied
at the enterprise level [41]. In particular, the OOSEM activities that correspond to
defi ne logical architecture and synthesize candidate physical architectures are
inserted between analyze stakeholder needs and analyze system requirements
in Figure 16.2 .

 Characterize As-Is System and Enterprise
 The as-is system, users, and enterprise are characterized at a level sufficient to
understand the stakeholder concerns. This involves modeling the current system
and enterprise only as required to provide insight into the problem and avoiding
excessive modeling of the current system. Causal analysis is performed to deter-
mine the limitations and potential improvement areas of the current system. If
an as-is solution does not exist, there is obviously nothing to characterize, and
one can proceed directly to specifying the mission requirements. However, there
is often an as-is solution to the problem that represents a starting point for the
analysis.

 The as-is domain is shown in the block defi nition diagram in Figure 16.6 . It
includes a top-level block called the Operational Domain as-is, which provides
the context for the other blocks in the domain. This block is decomposed into
the Security Enterprise as-is and multiple Sites .

 In OOSEM, an enterprise block is established to represent an aggregation of
blocks that collaborate to achieve a set of mission objectives. In this example,
the as-is enterprise includes the as-is security system, which is stereotyped as the
«system of interest »; the Emergency Services, which includes the Dispatcher and
the Police; and the Communication Network, which enables communication
between the as-is security system and the emergency services. These blocks col-
laborate to monitor a residence for potential intruders.

 The domain block is also composed of multiple sites that are being protected
that are external to the enterprise. Each site is composed of a single residence
with one or more occupants and may include zero to n intruders.

 The domain model helps establish the boundary between the system of interest
and the external systems and users that the system either directly or indirectly inter-
acts with. The as-is security system includes multiple site installations, as indicated
by the multiplicity on the association end, and a single central monitoring station.
Note that the site installation is owned (i.e., black diamond) by the Security System
as-is and is a reference part (i.e., white diamond) of the Single-Family Residence .
The reference part provides a mechanism to represent a more complex system
boundary, where the part is owned by one block and referenced by another.

 An alternative depiction of the as-is domain is shown in Figure 16.7 , where
the system and external systems are shown in iconic form. This provides a means
to communicate a simplifi ed depiction of the as-is domain that can be annotated
to informally represent selected interactions and relationships among the entities.

4
1

1

bdd Operational [Operational Domain as-is BDD]

«system_of_in...
Security System

as-is

«block»
Security Enterprise

as-is

Link to Security
Enterprise
Operational As-Is
Use Case Diagram

«block»
Communication

Network

«block»
Emergency Services

«block»
Site

«block»
Single-Family

Residence

«block»
Occupant

«block»
Dispatcher

«block»
Police

«block»
Intruder

«block»
Site Installation as-is

«block»
Central Monitoring

Station as-is

«block»
Operational Domain

as-is

s as-is * seo

comm nw emerg servicessecurity system

cmssite i *

security
installation

sfr

intr0..* occ 1..*

* policedisp

 FIGURE 16.6

 The as-is operational domain.

412 CHAPTER 16 Residential Security System Example Using OOSEM

 The relationships between the entities could be represented as associations, but
for the purpose of this example, it is assumed that they are merely annotations on
the block defi nition diagram; they are represented later as connectors with item
fl ows on the internal block diagram.

 Perform Causal Analysis
 The as-is system and enterprise are analyzed to assess their capabilities and limita-
tions and to identify potential improvement areas. Other sources of data may be
required to support this analysis, including marketing data such as customer sur-
veys and competitive data.

 A useful technique for structuring the causal analysis is to use a fi shbone dia-
gram to represent a tree of cause–effect dependencies. A fi shbone diagram for
the Security Enterprise as-is is shown in Figure 16.8 . The root of the tree repre-
sents measures of effectiveness (moe) that can refl ect value from the perspective
of each stakeholder. The nodes of the tree represent dependent properties that
can impact the moes.

 Business sales is a moe of particular importance to the company owner, as well
as to the investors of Security Systems Inc. The cause–effect dependencies show
that sales are impacted by Customer Satisfaction and the Market Size . Customer
Satisfaction is measured in terms of System Cost and Security Effectiveness .
System Cost is measured in terms of its Installation Cost and ongoing Service Cost .
Security Effectiveness is measured in terms of response time, false alarm, missed
detections, and other parameters. Moes for other ESS stakeholders—including

Communication
Network

Central Monitoring Station As-Is

Police

Residence

Dispatcher Intruder

bdd [Package] Operational Domain (As-Is)

 FIGURE 16.7

 ESS as-is domain (iconic representation).

413

 the customer, the police department, and internal stakeholders such as central
monitoring station operators and system installers—should also be considered.
One example is the police department’s concern regarding false alarms and the
associated cost to the city that can be represented by the cause–effect relation-
ship. Although this is not represented as a SysML diagram, an equivalent of a
fi shbone diagram can be represented by capturing the relationship between the
parameters on a parametric diagram.

 A weighted value can be assigned to quantify the impact of each cause on the
effect similar to a risk or fault tree analysis. Additional engineering analysis is per-
formed to identify the root cause and associated impact on the moes. This analy-
sis may include timeline analysis, reliability analysis, and life-cycle cost analysis;
and it may be captured in parametrics diagrams as discussed later.

 A primary defi ciency identifi ed during the causal analysis in this example is
the limited functionality of the current security system relative to the competi-
tive systems. A stakeholder need is identifi ed to extend the functionality beyond
intruder detection to include emergency protection for fi re and medical emergen-
cies. In addition, it is determined that there is a need to expand the market size
for the security systems to protect multifamily residences and small businesses in
addition to single-family residences.

Customer
Satisfaction

Lack of
Sales

Market Size

Security
Effectiveness

System Cost

missed
detections

false
alarms

response
time

Installation
Cost

Service Cost

hardware
installation

cost

software
upgrade

cost

repair
cost

monitoring
cost

single
family

multi-
family

operational
availability

conviction
rate

intruder
location

small
business

 FIGURE 16.8

 Causal analysis of the Security Enterprise as-is.

16.3 Applying the Method to Specify and Design the System

414 CHAPTER 16 Residential Security System Example Using OOSEM

 Specify Mission Requirements
 Based on the preceding analysis, a prioritized set of mission requirements is
defined that address the limitations of the as-is domain. The mission require-
ments are captured as text requirements, as shown in the requirements diagram
in Figure 16.9 . The top-level mission requirement for the ESS includes the text
statement to “Enhance security of life and property by providing emergency
response to theft, burglary, fire, and health and safety. ” The mission requirements
are contained in the Requirements package. The traceability between the mission
requirements and lower-level requirements is discussed in Section 16.3.6.

 Capture Measures of Effectiveness
 Moes reflect mission-level performance requirements and value to the cus-
tomer and other stakeholders, and they are derived from the causal analysis and
related stakeholder needs analysis. The measures of effectiveness are the emer-
gency response time, false alarm rate, operational availability, and total cost of
ownership. The target value for each moe is established to achieve a competitive
advantage.

 Engineering analysis is performed throughout the development effort to sup-
port evaluation, selection, and optimization of the design solution. moes are
captured in the top-level parametric diagram in Figure 16.10 . The moes are repre-
sented using the dot notation, described in Chapter 6, to capture the path name
to the properties based on the system hierarchy shown in Figure 16.11 . An opti-
mization function defi nes the overall cost effectiveness of the design solution in
terms of a weighted sum of the utility associated with each moe. Additional analy-
sis models can be established for each moe and captured in a parametric diagram.
This provides a mechanism to fl ow down the top-level moes to critical system
parameters (also known as technical performance measures) as the model is fur-
ther elaborated. This is discussed further in Section 16.3.5.

req ESS Mission Requirements

«requirement»
ESS Mission Requirements

requirements

«requirement»
Intruder Emergency

Response

«requirement»
Fire Emergency

Response

«requirement»
Health and Safety Emergency

Response

Text: Enhance security of life and property by providing . . .

 FIGURE 16.9

 ESS mission requirements.

415

 Defi ne To-Be Domain Model
 Based on the preceding analysis, we can establish the scope for the to-be system and
enterprise. The block definition diagram for the to-be operational domain is shown
in Figure 16.11 . This diagram is shown in the browser view in Figure 16.3 under
the Operational package. The diagram represents the hierarchy of blocks with the
Operational Domain as the top-level block. The to-be operational domain includes
significant changes from the as-is operational domain in Figure 16.6 , and it reflects
the broader set of mission requirements that resulted from the causal analysis.

 The Emergency Services includes the Firefi ghter and Paramedic in addi-
tion to the Police and Dispatcher that were included in the as-is domain. The
Multifamily Residence and small Business have been added as specializations
of Property along with the Single-Family Residence from the as-is domain. The
Physical Environment has been added since the system must now monitor the
environment for fi re. In addition, the as-is security system has been replaced by
the ESS black box, which is the «system of interest» for this development effort.

 The Security Enterprise, which includes the ESS, Emergency Services, and
Communications Network, is responsible for satisfying the mission requirements
and providing services to the customer and Occupants. The moes are captured as
stereotyped value properties (« moe») of the Security Enterprise block along with
their corresponding units. Specifi c target values and/or value distributions can be
specifi ed as well.

 In this example, the Police, Firefi ghter, and Paramedic are all a subclass of
Responder. As complexity increases, it may be necessary to create a separate block
defi nition diagram for the specialization hierarchies for the external systems.

par Parametrics [Cost-Effectiveness Parametric Diagram]

optimization function : Operational Objective Function

avail

cost effect

emerg resp time exp cost fa

probability
of detection

«moe»
od.seo.probability

of intruder detection

«moe»
od.operational cost

effectiveness

«moe»
od.seo.emergency

response time

«moe»
od.seo.expected

cost of false alarm

«moe»
od.seo.availability

 FIGURE 16.10

 ESS top-level parametric diagram.

16.3 Applying the Method to Specify and Design the System

4
1

6

bdd Operational [Operational Domain BDD]

«block»
Operational Domain

«moe»
operational_cost_effectiveness : Real

«block»
Security Enterprise

«moe»
availability : Percent
emergency response time : Time
probability of false alarm : Dollars
probability of intruder detection : Percent

«block»
Single-Family

Residence

«block»
Physical

Environment

«block»
Multifamily
Residence

«block»
Communication

Network

«block»
Emergenecy

Services

sfr

site * le

ess comm nw emerg serv

paramedicfirefighter

seo

disp

phys
env

occ1..*

in
tr0..*

prop

police* *

Link to Security
Enterprise Operational
Use Case Diagram

«block»
Small Business

«block»
Property

«block»
Site

«block»
Intruder

«block»
Occupant

«system . . .
ESS

«block»
Responder

«block»
Law Enforcement

«block»
Dispatcher

«block»
Police

«block»
Firefighter

«block»
Paramedic

 FIGURE 16.11

 The to-be operational domain.

417

 Defi ne Enterprise Use Cases
 Enterprise use cases are defined to represent each mission objective that corre-
sponds to the mission requirements in Figure 16.9 . The objectives are to provide
responses to intruders, fire, and medical emergencies, as shown in the use case
diagram in Figure 16.12 . Each use case is specialized from a more general use
case called Provide Emergency Response. An additional use case, called Provide
Validated Data, supports postemergency response actions, such as providing evi-
dence to convict an intruder.

 This use case includes two additional use cases— Assign User Access and
Provide Query Response. The Security Enterprise is the subject in the use case
diagram and is used by the actors to achieve the use case goals (i.e., mission

uc Enterprise Use Cases [Enterprise Use Cases]

Security Enterprise

Provide Intruder
Emergency Response

Occupant

Intruder

Physical
Environment

Provide Fire
Emergency Response

Provide Medical
Emergency Response

Provide Validated Data

Law
Enforcement

Assign User Access Provide Query Response

Provide Emergency
Response

 FIGURE 16.12

 ESS Enterprise Use Cases .

16.3 Applying the Method to Specify and Design the System

418 CHAPTER 16 Residential Security System Example Using OOSEM

objectives). The blocks that are external to the enterprise in the operational
domain block defi nition diagram are allocated to the actors in the use case dia-
gram. Exception use cases can also be defi ned; they do not support the mission
objectives and are often used to help specify fault-tolerant solutions.

 The use cases in this example refi ne the mission requirements using the refi ne
relationship. An example of the refi ne relationship is shown in Figure 16.58 in
Section 16.3.6. The use cases may also trace to other source documentation such
as a concept of operations or marketing data. The enterprise use cases are real-
ized by enterprise scenarios that elaborate the interaction between the actors and
parts of the enterprise. This analysis is used to help specify the ESS black-box
requirements, as described in the next section.

 Each use case may be augmented with a use case description that includes a
textual description of each step in the use case scenario. There are many books
on how to write and model use cases [34]. The individual steps can be captured
as SysML requirements that can be traced to other model elements, such as spe-
cifi c actions in an activity diagram. The use case description may include addi-
tional information such as alternative paths and pre- and postconditions, which
may be used to express the moes associated with the mission objectives. In this
example, the relationship between pre- and postconditions can be used to specify
the mission response time. The modeling of use cases is described in Chapter 11.

 16.3.2 Analyze System Requirements
 The Analyze System Requirements activity is shown in Figure 16.13 . This activity
specifies the requirements for the system as a black box in terms of its input and out-
put behavior and other externally observable characteristics. Scenario analyses for
each of the enterprise use cases describe how the system interacts with the external
systems and users identified in the domain model to achieve the mission objectives.

 The scenarios are modeled using either activity diagrams with activity parti-
tions or sequence diagrams. A system context diagram using an internal block
diagram is generated to represent the interfaces between the system and the
external systems and users. Critical system properties, which can impact the mea-
sures of effectiveness, are identifi ed. Based on the analysis, the black-box system
requirements can be specifi ed in terms of the system functionality, interface, con-
trol, store, and performance requirements. The system state machine augments
the system black-box requirements by specifying when system functions or oper-
ations are performed. Requirements variation analysis is evaluated in terms of the
probability that a requirement will change, and it is input into the design process
to ensure that the design can accommodate the change. Design constraints, such
as the required use of a COTS component, are also identifi ed and captured, and
later imposed on the architecture.

 Defi ne Enterprise Scenarios
 In this activity, one or more enterprise scenarios are defined for each enterprise
use case to specify the interaction between the system and the external systems

419

act Activities [Analyze System Requirements]

define system context (ibd)

specify black-box system
requirements

system operations,
stores, properties,
and ports

analyze system
requirements variation

define system state
machine

identify system design
constraints

may include state
machine for selected
external systems

define enterprise scenarios
(system black box)

capture critical system
properties and constraints

conduct system
requirements review

This includes the system black-
box scenarios and other
collaboration artifacts.

[next use case]
[use cases analyzed]

 FIGURE 16.13

 Analyze System Requirements activity to specify black-box system requirements.

16.3 Applying the Method to Specify and Design the System

420 CHAPTER 16 Residential Security System Example Using OOSEM

 to achieve the use case goals (i.e., mission objectives). The enterprise scenarios
provide the basis for specifying the system behavioral requirements. A complete
set of scenarios, which correspond to each primary and alternative path for the
use cases, are needed to completely specify the system requirements. This may
involve additional refactoring of the use cases to identify common functionality.
The modeler should also ensure that the following are addressed:

 ■ High likelihood scenarios
 ■ Performance stressing scenarios and scenarios that signifi cantly impact the

moes
 ■ Failure scenarios
 ■ Critical system functionality
 ■ New system functionality
 ■ Interactions that include all external systems and users

 The enterprise scenarios are modeled with activity or sequence diagrams. The
activity partitions (also known as swimlanes) in the activity diagram, or the life-
lines in the sequence diagram, represent the system and external systems. For
this example, the enterprise scenarios are represented with activity diagrams. By
applying the «allocate» stereotype to each activity partition, the actions in the
activity partition are automatically allocated to the part that is represented by the
activity partition. The inputs and outputs of the activity are shown as parameter
nodes on the boundary of the activity.

 A representative scenario for the enterprise use case, called Intruder Emer-
gency Response Scenario, is shown in Figure 16.14 . The scenario is represented
by an activity diagram with activity partitions for the ESS, Emergency Services ,
Occupant, and Intruder. The actions in each activity partition specify what the
corresponding part must do. The ESS must activate and deactivate the system in
response to the Occupant input and must monitor the environment to detect an
Intruder .

 The pre- and postconditions for each action can be specifi ed in terms of con-
straints. As an example, the postcondition on the intruder alert status must be that
the alert has to be validated, {validated � true}, when the input exceeds a thres-
hold defi ned by a precondition. The pre- and postcondition constraints can be cap-
tured in a parametric diagram to support engineering analysis, such as the analysis
of the probability of detection.

 The streaming pins on the monitor action (i.e., shaded pins) indicate that the
action continues to accept inputs and/or provide outputs as it executes. In this
example, the monitor intruder action continues to execute as it receives stream-
ing inputs from the Intruder. The output control fl ow from deactivate system
terminates on a fl ow fi nal and does not cause the entire activity to terminate.

 In addition to the activity or sequence diagram that captures the scenario for
the enterprise use case, other artifacts can be created to more completely spec-
ify collaboration among the parts. This is called a collaboration process pattern
in OOSEM, and it is reused in the logical and physical architecture as well. The
pattern includes creation of a block defi nition diagram, which defi nes the parts
that interact based on the activity partitions; an internal block diagram to capture

421

act Intruder Emergency Response Collaboration [Intruder Emergency Response Scenario]

Provide Intruder Emergency Response

seo1 :Security Enterprise

«allocateActivityPartition»

:Emergency Services

«allocateActivityPartition»

:ESS

«allocateActivityPartition»

occ1 :Occupant

«allocateActivityPartition»

intr1 :Intruder

«allocateActivityPartition»

provide
activation

input

out :
Activation
Select

:Activate
system

in :
Activation
Select

:Monitor intruder

exit :
Window-
Door State

approach
property

external :
Target
Signature

enter
property

entry :
Window-Door
State

conduct
crime

internal :
Target
Signature

exit property

exit :
Window-Door
State

depart
property

external :
Target
Signature

apprehend
intruder

provide
police

response

in :
Dispatch
Request

provide
deactivation

input

out :User
Validation
Request

:Deactivate
System

in :User
Validation
Request process_

report

exit
property

enter
property

depart
property

Activation input may
initiate internal and/or
external sensors. If
occupants are still in the
property, then internal
sensor should not be
activated.

Activate system defines
system state, which is
used to control the
actions in the Monitor
Intruder Activity.

assess
emergencyin :

Alert
Status

Activation validates entry code and then
activates alarms after t � timeout (preset � 45
sec) to give occupant time to get out of house.
Behavior specified in activation activity.

FlowFinal

FlowFinal

ActivityFinal

«Postcondition»
{validated � true}

intruder
arrival

«continuous»

«continuous»

[else]

[door.open
� true]

[else]

[else]

[police_arrival_
time�t_depart]

[police_arrival_
time�t_depart]

out : Dispatch
Request

[emergency � intruder]

external :
Source
Signature

entry :
Window-
Door State

internal :
Source
Signature

intr :Alert
Status

 FIGURE 16.14

 Intruder Emergency Response Scenario realizes the enterprise use case.

16.3 Applying the Method to Specify and Design the System

422 CHAPTER 16 Residential Security System Example Using OOSEM

 the interfaces between the interacting parts; a block defi nition diagram, which
captures the input and output defi nitions (i.e., item defi nitions); a parametric dia-
gram to capture the input/output constraints including pre- and postconditions;
and test cases, which verify that the input/output relation is satisfi ed. The preced-
ing modeling artifacts can be implemented for each use case scenario to aid in
verifi cation, requirements traceability, engineering analysis, and the ability to cre-
ate executable specifi cations, as described in Chapter 17.

 Defi ne System Context
 The system context diagram is shown as an internal block diagram in Figure
16.15 . This diagram depicts the ESS and its interfaces to all external systems and
users that participate in the enterprise scenarios. The frame of the internal block
diagram represents the Operational Domain block. The parts of the Operational
Domain correspond to the Security Enterprise and the enterprise actors from
the block definition diagram in Figure 16.11 . The ESS and Emergency Services are
nested within the Security Enterprise. The inputs/outputs in the activity diagram
are allocated to item flows that flow across the connectors between the parts.

 Flow ports are defi ned for each interface on each part. The fl ow port is typed
by a block or fl ow specifi cation that specifi es the type of input/output that can
fl ow through the port. For an item fl ow to fl ow in or out of a fl ow port, the type
of the fl ow port must be the same type or a super class of the item that is fl ow-
ing. The type of fl ow port should then represent the most general classifi cation of
the input or output item that fl ows. For a fl ow specifi cation, this also applies to
the type of its fl ow properties.

 To represent the most general classifi cation, the port may be typed by the phys-
ical nature of the item that fl ows, such as material, fl uid, video, or an analog or
discrete signal, rather than typing the port by the logical content of the item that
fl ows. The type of port may also correspond to a specifi cation of the physical inter-
face such as a USB port on a computer. In that case, any fl ow that is compatible
with the physical nature of the USB specifi cation can fl ow in or out of the port.

 An interface taxonomy, which specifi es both a logical and physical classifi ca-
tion of interfaces, can be defi ned. The type of fl ow port is based on the physical
taxonomy. The type of item that fl ows in or out of the port can subclass from
both the logical and physical classifi cation. This enables the item that fl ows to
capture the logical content and have a compatible type with the fl ow port. A sim-
ilar approach is used to type the inputs and outputs of the behavior that is bound
to the port.

 An example of an ESS fl ow port, shown in Figure 16.15 , is fp external sensor
in, which is typed by Electromagnetic Signal. The type of fl ow port can later be
subclassed if it is desired to further constrain what fl ows in or out of the port. If
the external sensor is determined to be a surveillance camera that accepts an opti-
cal or an infrared signal input, the type of fp external sensor in can be subclassed
as an optical signal or an infrared signal, respectively. The item fl ow is typed
by Target Signature, which corresponds to the logical content of the item that
fl ows. The Target Signature is a subclass of Electromagnetic Signal to ensure
that its type is compatible with the ESS fl ow port. The type of the Intruder fl ow

423

ibd Operational [Operational Domain IBD (aka System Context)]

seo : Security Enterprise

s : Site [*]

fp alarm in

prop : Property

fp entry–exit sensor if
fp window–door

fp pwr out

intr : Intruder [0..*] fp signature

fp force

fp emerg serv

occ : Occupant [1..*]
fp touch

fp visual

phys_envir : Physical
Environment

fp ess

fp emerg serv

ess : ESS

fp emerg serv

fp external sensor in

fp control in

fp entry–exit sensor in

fp fire sensor in

fp internal sensor in

fp pwr in

fp alarm out

sp network if

fp display out
fp company

intranet

emerg_serv : Emergency Services

fp ess
comm if

fp intruder

le : Law Enforcement

sp nework if
Query
response

Query

«block» Entry–
Exit Force

«flow»
«block» Target Signature

«block» User Input

«block» Window–Door State

«block» Alert Status,
«block» Event Log,
«block» Sensed Output

«block» User Output

«block» Target Signature

«block» Electrical Power

«block» Alarm
Signal

«block» Thermal Radiation

fp phys envir

 FIGURE 16.15

 ESS context diagram showing the interfaces between the ESS and the external systems, users, and physical
environment.

 port on the other end of the connector must also have a compatible type with
the item fl ow and the ESS fl ow port. An interface specifi cation may also include
parametrics to constrain the properties of the connecting ports, such as the sum
of the energy input and output fl ow must equal zero.

16.3 Applying the Method to Specify and Design the System

424 CHAPTER 16 Residential Security System Example Using OOSEM

 Sometimes additional physical encoding of the item that fl ows needs to be
specifi ed. An example of an item that fl ows is a fi le that fl ows from a computer
port to a printer port. Assume the logical content of the item is a report and the
format of the report is rich text format (RTF). The RTF is the physical encoding
of the report and should be refl ected in the type of the item. In this case, the item
type is RTF, and the report is allocated either to the item type or to item prop-
erty. Modeling the physical interface characteristics of the ports and fl ows can be
deferred until interface design decisions are made.

 The standard port on ES, called sp network if, specifi es an interface to pro-
vide a Query Response when a Query is requested by Law Enforcement on the
required interface. The Query and Query Response are the required and provided
interfaces, respectively, for the standard ports.

 Capture Critical System Properties and Constraints
 Critical performance requirements can be captured as a value property of the ESS
block or an activity. The performance requirements are derived based on engi-
neering analysis.

 One example of a performance analysis is a timeline analysis. The timing dia-
gram in Figure 16.16 specifi es the mission timeline for the Intruder Emergency
Response Scenario in Figure 16.14 . The actions from the activity diagram are
shown on the y-axis and the required time to perform the actions are shown on

sd Intruder Emergency Response Timeline

minutes 0 1 2 3 4 5 6 7 8 9 10

In
tr

u
d

er
 T

im
el

in
e

start

approach property

enter property

conduct crime

exit property

assess emergency

provide police response

apprehend intruder X

 FIGURE 16.16

 Intruder Emergency Response Timeline.

425

the x-axis. The timeline is used to allocate time to each action in the scenario in
order to satisfy the mission response time that was identifi ed as a moe. In this
example, the intruder detection response time is the time from the intruder
entering the property until the ESS reports the alert to the dispatcher. This is
viewed as a critical system property, referred to as a measure of performance,
represented as «mop» in the model. The value for this property can be budgeted
based on its impact on overall security effectiveness.

 Other critical system properties that require analysis to satisfy requirements
may include probability of detection and probability of false alarm. The con-
straints on these properties are captured in parametric diagrams as part of the
engineering analysis described in Section 16.3.5.

 Specify Black-Box System Requirements
 The application of OOSEM results in the specification of the system based on the
scenario analysis, interface definitions, and other engineering analyses performed,
as described earlier. The specification is often called a black-box specification in
that it defines the system’s externally observable behavior and physical character-
istics. The black-box specification does not specify the internal characterization,
or white-box specification, of the system in terms of how it achieves the black-
box specification. Design constraints may augment the black-box specification to
constrain how the requirements are implemented, such as the constraint to use a
particular COTS component or a particular algorithm in the design.

 The specifi cation features of a black box that is represented as a block include
the following:

 ■ The required functions it must perform and the associated inputs and out-
puts. The required functions are modeled as activities that are allocated to
the block, or as operations of a block whose methods can be activities. The
associated inputs and outputs are the inputs and outputs to the activity and
the signature of the operation.

 ■ The required external interfaces that enable it to interact with other external
systems and users. The interfaces are specifi ed by the ports on the block.

 ■ The required performance, physical, and quality characteristics that impact
how well the functions must be performed or a physical characteristic (e.g.,
weight). These characteristics are specifi ed as value properties with units
and dimensions. The value properties may have specifi c values or probability
distributions associated with their values. Constraints on value properties
are captured as parametric constraints. OOSEM stereotypes these properties
as «mop».

 ■ The required control in terms of input events and preconditions that deter-
mine when the functions are performed. The control can be specifi ed in
terms of a state machine for the block that specifi es which activities are per-
formed in response to different input events and associated preconditions.

 ■ The required items that the system must store including data, energy,
and mass. The required stores can be modeled as properties of the block.
OOSEM stereotypes these properties as «store».

16.3 Applying the Method to Specify and Design the System

426 CHAPTER 16 Residential Security System Example Using OOSEM

 The specifi cation features for the ESS block are shown in Figure 16.17 . In this
example, an operation is defi ned for the ESS for each action in the ESS activity
partition from each scenario that was analyzed. The method of the operation is
the corresponding activity. Alternatively, an allocated compartment can be used
to show the activities allocated to the block directly. The performance properties,
such as probability of intruder detection, intruder detection response time, and
availability, are stereotyped as measures of performance «mop». Parametric con-
straints on these properties can constrain the value properties of the block and/
or constrain the inputs and outputs on an activity or operation (i.e., pre- and post-
conditions). The ports specify the system interfaces, but are not shown in the
fi gure. The items that are stored, such as the event log and auxilliary power, are
stereotyped as «store» properties.

bdd ESS [ESS Black Box]

«system of interest»
ESS

«store»

aux pwr: Electrical Power
event log: Event Log
sensor data: Sensed Output

availability: Percent
cost: Dollars
intruder detection response time: Time
probability of intruder detection: Percent
probability of intruder false alarm: Percent
probability of intruder identification: Percent
reliability: Hours
repair time: Hours

«composite state»

ess state: ESS State

activate system()
assign data access privileges()
control data access()
deactivate system()
manage electrical power()
manage faults()
monitor fire()
monitor intruder()
monitor medical emergency()
provide case data()

«mop»

 FIGURE 16.17

 ESS black-box specifi cation.

427

 The black-box specifi cation can be traced to the mission requirements as part
of the requirements management, described in Section 16.3.6, using the appropri-
ate requirements relationship. Traceability can be defi ned at a fi ne-grained feature
level or at a less granular level depending on the need.

 The black-box specifi cation can be applied at any level of design, including
system, element, and component levels. As a result, this approach is used later in
the chapter to specify component requirements.

 Defi ne System State Machine
 Each scenario defines actions that the ESS system must perform. The ESS state
machine specifies the ESS behavior from all scenarios that it participates in. The
ESS evaluates the guard conditions in response to an input event to determine
whether a transition to a next state is triggered. The guard conditions specify
conditions on the input values, current state, and resource availability. If the
transition is triggered, the block executes the exit action from the current state,
executes the transition behavior (i.e., effect), and enters the next state. It then
executes the entry action of the next state followed by its do/behavior, which is
defined by an activity. The transition behavior may include a send signal action
that can trigger a transition in another system’s state machine. The system’s logi-
cal and physical design must implement the control requirements imposed by the
system state machine.

 A simplistic state machine specifi es the control requirements as a series of
statements as follows. If an input event occurs while in the current state and the
guard conditions are satisfi ed, then transition to the next state and execute the
selected actions.

 A selected portion of the ESS state machine is shown in Figure 16.18 . The
state machine includes regions for intruder monitoring, fi re monitoring, medical
emergency monitoring, and fault monitoring to specify that monitoring of these
different events can be concurrent. The behavior in the orthogonal regions can
result in contention for system resources, such as processor capacity, that must
be reconciled through the design process.

 As shown in the intruder monitoring region, when ESS power up is complete ,
it initially transitions to the intruder nonalert state. If an intruder is detected, it
transitions to the intruder alert state. If the system is in the activated state at
the time of the transition, it sets an alarm. In the alert state, the alert is initially
unvalidated. Once the alert has been validated, the system transitions to a val-
idated state and sends the validated intruder alert to Emergency Services. The
specifi c approach used for developing this state machine is based on an analy-
sis of the enterprise scenarios, but it is not included here for brevity. Alternative
approaches can be used to specify the system state machine as well.

 A property of the ESS block in Figure 16.17 , called ess state, is stereotyped as
«composite state » and is typed by a block called ESS State, which has the same
stereotype applied. The value of this property represents the state of the system at
any point in time and is determined by the ESS state machine behavior. One can
think of the value of this property as the position of a set of switches, where each
switch sets a particular system state to true or false. The allowable concurrent,

16.3 Applying the Method to Specify and Design the System

428 CHAPTER 16 Residential Security System Example Using OOSEM

stm ESS [ESS State Machine]

ESS states

[site is operational]

site i on

[power management]

[fault management]

[activation–deactivation]

site available

power up

prime pwr aux pwr

power down

power steady state

site unavailable

deactivation
/reset alarm

power select [aux]

power select [prime]

power request [off, user � validated]

intruder [detected]
/update status

[activated]
/set alarm

power up
[complete]

available [false]

activation select [true]
/activate system

deactivation select
[user � validated]

/deactivate system

power up
[complete]

electrical power [off]

available [true]

power request [on]

[deactivated]

deactivated activated

site i off

intruder nonalert

intruder alert

[alert � validated]
/send intruder alert

unvalidated validated

[fire monitoring]

[medical emergency monitoring]

[data access control]

[data access account setup1]

[intruder monitoring]

The ESS State Machine specifies
"when" its operations are
triggered during its system life cycle.

power up
[complete]

 FIGURE 16.18

 ESS State Machine.

429

 sequential, and nested states are defi ned by the state machine diagram. This prop-
erty can be used in parametrics to capture state-dependent constraints.

 Analyze System Requirements Variation
 Requirements variation analysis is intended to define the potential change in
requirements that can result from different sources, such as a likely change to an
external interface, a possible increase in the number of system users, or possible
new functionality to stay competitive. For the ESS, potential requirements change
can result from an increase in the number of expected site installations, or adding
new functionality to monitor carbon monoxide, or to integrate with an automatic
sprinkler system to extinguish fires.

 Requirements variation is evaluated in terms of the probability that a require-
ment will change. The results of the analysis are input to the risk analysis to
assess the impact of the change and to develop mitigation strategies. The strategy
is refl ected in the architecture and design approach, such as isolating the source
of the changing requirement on the design. A similar strategy can be applied to
likely technology changes.

 Identify System Design Constraints
 Design constraints are those constraints that are imposed on the solution space
or ESS white box. These constraints are typically imposed by the customer, by
the development organization, or by external regulations. The constraints may be
imposed on the hardware, software, data, operational procedures, interfaces, or
any other part of the system. Examples may include a constraint that the system
must use predefined COTS hardware or software or a specific interface protocol.
For the ESS system, much of the legacy central monitoring station hardware con-
strains the solution, as well as the communications network between the central
monitoring station and the legacy site installations.

 Design constraints can have a signifi cant impact on the design and should be
validated prior to imposing them on the solution. A straightforward approach to
address design constraints is to categorize the type of constraints (e.g., hardware,
software, procedure, algorithm), identify the specifi c constraints for each cate-
gory, and capture them as system requirements in the Requirements package,
along with the corresponding rationale. The design constraints are then imposed
on the physical architecture, as discussed later.

 16.3.3 Defi ne Logical Architecture
 The Define Logical Architecture activity is shown in Figure 16.19 . This activity is
part of the system architecture design that includes decomposing the system into
logical components that interact to satisfy system requirements. The logical com-
ponents are abstractions of the components that implement the system, which
perform the system functionality without imposing implementation constraints. An
example of a logical component is a user interface that may be realized by a Web
browser or display console, or an entry/exit sensor that may be realized by an opti-
cal sensor. The logical architecture serves as an intermediate level of abstraction

16.3 Applying the Method to Specify and Design the System

430 CHAPTER 16 Residential Security System Example Using OOSEM

 between the system requirements and the physical architecture that can reduce
the impact of both requirements and technology changes on the physical design.

 The logical architecture defi nition activity includes decomposing the system
into logical components, as described earlier. For each operation the system is

act Activities [Define Logical Architecture]

define logical decomposition

define interaction between
logical components to

realize each system activity
and/or operation

define logical ibd

specify logical components
Logical component
functions, states, stores,
properties, and ports

define logical
component state machine

State machine
for selected
components with
state behavior
such as a system
controller

This includes the
logical scenarios and
other collaboration
artifacts

[next system activity]

[system activities analyzed]

 FIGURE 16.19

 Defi ne Logical Architecture activity decomposes the system into logical components, and
describes their interactions such that they satisfy the system requirements.

431

required to perform, a scenario is defi ned to describe the interaction among the
logical components, along with other collaboration artifacts that realize the oper-
ation, such as an internal block diagram that shows the interconnection between
the logical components. The logical components identifi ed from the initial logical
decomposition are subject to refi nement based on repartitioning of their function-
ality and properties. Each logical component is then specifi ed in a similar way, as
described for the ESS black-box specifi cation. A logical component may include a
state machine as part of its specifi cation if it has signifi cant state-based behavior.
The logical components are allocated to the physical architecture, as described in
Section 16.3.4.

 Defi ne Logical Decomposition
 The ESS block is specified as part of the system requirements analysis described
in the previous section. In OOSEM, the ESS block is decomposed into both a log-
ical and a physical hierarchy. To maintain separate logical and physical system
design hierarchies, a subclass of the ESS block is created for each decomposition
of the system hierarchy. In Figure 16.20 , the ESS Logical block is a subclass of the
ESS block that inherits all the ESS features, including its operations (or allocated
activities), stores, properties, and ports. The ESS Logical block is decomposed
into logical components.

 The Logical Subsystem Composite is a subclass of the ESS Logical block. It is
used to decompose the ESS into subsystems. In OOSEM, a subsystem corresponds
to an aggregate of components that realize an individual ESS operation or activity.
The Logical Subsystem Composite represents an aggregate of logical subsystems,
each of which realizes a particular ESS operation.

 The ESS Node Logical and ESS Node Physical are also subclasses of the ESS
block, as shown in the fi gure. These blocks are used to decompose the ESS sys-
tem into logical and physical nodes, as described in Section 16.3.4. The nodes
represent an aggregate of components at a particular location. For the ESS, the
locations correspond to the site installation and the central monitoring station. A
logical node aggregates the logical components at a particular location, and the
physical nodes aggregate the physical components at a particular location. Using
this approach, the system can have multiple decomposition hierarchies, which
can be related to one another.

 The other blocks in the fi gure represent composites for other decompositions
that are discussed later in this chapter. In particular, the Node Logical Subsystem
Composite and the Node Physical Subsystem Composite aggregate subsystems
in a similar manner as described for the Logical Subsystem Composite. The soft-
ware, hardware, and data composites represent aggregates for the hardware,
software, and data components of the system, respectively, and the operational
procedure is further classifi ed into the types of procedures required to operate
the system.

 The ESS Logical block is decomposed into logical components, as shown in
the ESS Logical block defi nition diagram in Figure 16.21 . The system is decom-
posed into three classes of logical components, including External Interface
Components to manage the interface to each external system or user; Application

16.3 Applying the Method to Specify and Design the System

4
3

2

bdd ESS [ESS BDD]

«system of interest»
ESS

«system of interest»
ESS Logical

«system of interest»
ESS Node Logical

«system of interest»
ESS Node Physical

«system of interest»
Logical Subsystem

Composite

«system of interest»
Node Physical Subsystem

Composite

«block»
Software Composite

«block»
Hardware Composite

«block»
Data Composite

«procedure»
Operational Procedure

«system_of_interest»
Node Logical Subsystem

Composite

sw composite

hw composite

data composite

ess procedure

 FIGURE 16.20

 ESS subclasses for logical and physical decomposition.

433

 Components, which are responsible for providing the business logic and process-
ing each external item fl ow from the ESS context diagram in Figure 16.15 ; and
Infrastructure Components , which provide internal system support services.

 In the ESS logical decomposition, a User If is an example of an External
Interface Component, the Fault Manager is an example of an Infrastructure

bdd Logical Architecture [ESS Logical BDD]

«system of int . . .
ESS Logical

«logical»
Alarm

«logical»
External Sensor

«logical»
Entry Sensor

«logical»
Exit Sensor

«logical»
Internal Sensor

«logical»
User If

«logical»
Fire Sensor

«logical»
Hig bw Data

Recorder

«logical»
User Validation

Mgr

«logical»
Activation Mgr

«logical»
System Controller

«logical»
Emergency
Services If

«logical»
External User If

«logical»
Electrical Power If

«logical»
Power Mgr

«logical»
Auxilliary Power

«logical»
Event Mgr

«logical»
Alert Validation

Mgr

«logical»
Fault Mgr

«logical»
Company Mgr

«logical»
Query Mgr

Application
Components
that process the
item flows

External Interface
Components that manage
communications with
external environment

Infrastructure
Components that
provide internal
support services

«logical»
Data Access
Request Mgr

«logical»
System Status

Mgr

«logical»
Company If

«rationale»

The site and CMS interface
components are derived from the
node architecture. The company
interface is required for the ESS
operational system to interface
with other parts of the security
company.

ev_mgr

data_access_
req_mgr

elec_pwr_if

user_if

fire_sens

0..*

fault_
mgr

data_recorder

internal_sensor

0..*

aux_
pwr

ext_user_if

comp_if

pwr_
mgr

status_mgr

entry_sensor

0..*

user_val_mgr

external_
sensor

0..*

data_query_
mgr

sys_contr

emerg_serv_if

config_
mgr

alarm

exit_sensor

0..*

alert_val_mgr

 FIGURE 16.21

 ESS logical decomposition into logical components including External Interface Components, Application
Components , and Infrastructure Components.

16.3 Applying the Method to Specify and Design the System

434 CHAPTER 16 Residential Security System Example Using OOSEM

Component, and the Event Manager and System Controller are examples of
Application Components . This approach ensures that the system logical architec-
ture includes components with the functionality to communicate with external
systems, process the inputs and outputs, and provide internal support services.
The part names and multiplicities on the component ends of the composition
relationships are also refl ected in the ESS Logical internal block diagram.

 Defi ne Interaction between Logical Components to Realize
System Activity and/or Operation
 Activity diagrams are defined for each operation or each activity allocated to the
ESS Logical block. This ensures that each action from the enterprise scenarios that
is allocated to the system is realized in the logical design.

 Figure 16.22 shows the Monitor Intruder Activity Diagram that realizes the
Monitor intruder operation of the ESS Logical block. An enclosing activity is cre-
ated with the same name as the operation called monitor intruder. The inputs
and outputs of the enclosing activity match the pins from the monitor intruder
action in the Intruder Emergency Response Scenario in Figure 16.14 . The activ-
ity partitions represent the parts of the system that are typed by the logical com-
ponents from the ESS Logical Block Defi nition Diagram in Figure 16.21 .

 The External Sensor, Entry Sensor, Exit Sensor, and Internal Sensor generate
Detections. The Event Manager processes the Detections and stores them in the
Event Log. The System Controller then controls the system actions in response
to the Event. The control actions request the Status Manager to provide a status
update. If the system has been activated, the controller sends a signal to trigger
the alarm, to record the high-bandwidth sensor data, and to request validation of
the alert. If the alert is validated, the alert status is communicated to Emergency
Services .

 The logic of this activity diagram is consistent with the system-level behavior
defi ned in the ESS state machine in Figure 16.18 . The pattern of behavior for the
sensors, event manager, and controller applies to the fi re and medical emergency
response scenarios as well.

 Some of the actions in the activity diagram include streaming inputs and out-
puts. The control intruder action includes a process constraint, which constrains
the values of the inputs and outputs that can be captured and used in a paramet-
ric diagram for further engineering analysis. The Event Log is stored by the Event
Manager and the external sensor data that are stored by the High-Bandwidth
Data Recorder as indicated by the data stores in the activity partitions.

 A similar set of collaboration artifacts, which can be developed at the ESS sys-
tem level for each enterprise scenario, can also be developed to further specify the
collaboration among logical components. The process for developing the artifacts
applies the same collaboration process pattern referred to in Section 16.3.2 to each
operation of the ESS Logical block. The collaboration artifacts include a block defi -
nition diagram, activity diagram, internal block diagram, updates to the item defi ni-
tions on the block defi nition diagram, parametric diagram, and test cases.

 For each ESS logical operation, a block defi nition diagram is defi ned, which
aggregates the logical components that interact to realize the system operation.

435

The logical components correspond directly to the activity partitions on the activ-
ity diagram. The block that aggregates the components is referred to as a subsys-
tem. The Monitor Intruder Subsystem Block Defi nition Diagram is shown in
Figure 16.23 . (Note: The Monitor Intruder Subsystem block is a component of
the Logical Subsystem Composite block shown in Figure 16.20 .)

 The Monitor Intruder Subsystem Internal Block Diagram in Figure 16.24
specifi es the structural interconnection between the logical components that inter-
act in the activity diagram. The ports on the enclosing block are the external ESS
system interfaces. The parts on the internal block diagram correspond to the part
names on the Monitor Intruder Subsystem Block Defi nition Diagram, and to the
names of the activity partitions in the activity diagram. The connectors defi ne
the interconnection between the parts. The ports on the logical parts and the item
fl ows on the connectors have not been included for brevity. If included, the
item fl ows are allocated from the pins on the actions in the activity diagram using
the allocation relationship (refer to Chapter 13 for details). The item properties
have the same type as the pins on the activity diagrams. The input and output
defi nitions are specifi ed on the item block defi nition diagrams.

 Defi ne System Logical Internal Block Diagram
 The internal block diagram for the Monitor Intruder Subsystem showed only the
interconnection among parts that participated in the Monitor Intruder Activity
Diagram. However, there are additional activity diagrams that correspond to
each operation of the ESS Logical block. Each activity diagram may have different
sets of interacting components.

 The ESS Logical Internal Block Diagram in Figure 16.25 represents the inter-
connection of all the parts from all the activity diagrams and corresponds to a tra-
ditional system block diagram (see page 440). Each subsystem corresponds to a
subset of the parts and interconnections on this internal block diagram. The enclos-
ing block represents the ESS Logical block. The ports on the ESS Logical block are
consistent with the ports defi ned on the ESS in Figure 16.15 , enabling the external
interfaces to be delegated to the logical parts of the system.

 Specify Logical Components
 The specification of each logical component includes the specification features
that are captured in their respective block in the same way that was described for
specifying the ESS system block. The actions from the activity diagrams are cap-
tured as allocated activities or operations; the logical interfaces can be captured
as the component ports; persistent stores are captured as store properties; and
performance properties are captured as value properties of the block, or proper-
ties of the activity allocated to the block.

 Defi ne Logical Component State Machine
 A component specification can include a state machine if it has state behavior that
is dependent on input events and preconditions. A simple state-dependent behav-
ior for a component may include a wait state, where the component waits until it
receives an input event. The component then transitions to another state to execute

16.3 Applying the Method to Specify and Design the System

436 CHAPTER 16 Residential Security System Example Using OOSEM

act Monitor Intruder Subsystem [Monitor Intruder Activity Diagram]

Monitor intruder

external :
Source
Signature

entry :
Window–Door
State

internal :
Source
Signature

exit :
Window–Door
State

intr :
Site
Status

:Monitor Intruder Subsystem

«allocateActivityPartition»

«allocateActivityPartition»

ev mgr i :Event Mgr

«allocateActivityPartition»

data recorder i :High bw
Data Recorder

«allocateActivityPartition»

external sensor i :
External Sensor

«allocateActivityPartition»

«allocateActivityPartition»

«allocateActivityPartition»

sense entry

entry :
Detection

entry :
Window–Door
State

sense
exit

exit :
Window–Door
State

sense
external

external :
Detection

external :Source
Signature

out :
Sensed
Output

sense
internal

internal :
Detection

internal :
Source
Signature

process intr
detection

in :Detection

out :Event

intruder
:Event

Timer is set as part
of the Activate
System Activity.

record data

ext_sens :
Record
Request

in :
Sensed
Output

use to capture sensor
data, etc. for data
validation

store intr
event

in :Event

communicate
status

in :Site
Status

out :Site
Status

«Postcondition»
{activation_time_out � true}

«datastore»
sensor data :

External Sensor
Data Store

«datastore»
intr log :Event Log

entry sensor i :Entry Sensor

«allocateActivityPartition»

internal sensor i :Internal
Sensor

exit sensor i :Exit Sensor

exit :
Detection

user if mgr i :User If

sensor_data
:Sensed
Output

 FIGURE 16.22

 ESS Monitor Intruder Activity Diagram is a thread through the logical system design that realizes
the Monitor intruder operation of the ESS Logical block.

437

intr :Alert
Status

intr :Alarm
Signal

«allocateActivityPartition»

alert val mgr i :
Alert Validation Mgr

«allocateActivityPartition»

sys contr i :System Controller

«allocateActivityPartition»

generate intr
alarm

intr :
Alarm
Signal

validate intr
alert

intr :
Alert

Status

sensor data :
Sensed Output

control intr
actions

intruder :
Event

ext sens :
Record

Request

Controller determines what actions
to take based on detection event
and state of system.

all actions start when activity is
invoked

communicate
alert

out :Alert
Status

in :Alert
Status

report intr
status

intruder :
Status Update
Request

intruder :
Site

Status

«Process»
{if (intruder :Event � true and
activation_status � true} then
{intruder :Alert_Validation_Request � true
and intruder :Alarm_Request � true and
ext_sensor :Record_Request � true}

«Postcondition»
{validated = true}

emerg serv if i :
Emergency Services If

«allocateActivityPartition»

intruder :
Alert
Validation
Request

intruder :
Status
Update
Request

intruder :
Alarm
Request

intruder :
Alarm Request

«continuous»

status mgr i :System Status Mgr

alarm i :Alarm

«allocateActivityPartition»

intruder :
Alert

Validation
Request

16.3 Applying the Method to Specify and Design the System

4
3

8

bdd Monitor Intruder Subsystem [Monitor Intruder Subsystem BDD]

«block»
Monitor Intruder Subsystem

«logical»
Alert Validation Mgr

«logical»
Alarm

«logical»
Event Mgr

«logical»
Entry Sensor

«logical»
Exit Sensor

«logical»
External Sensor

«logical»
Internal Sensor

«logical»
System Controller

«logical»
Hig bw Data Recorder

«logical»
User If

«logical»
System Status Mgr

«logical»
Emergency Services If

emerg serv if i

status mgr iuser if i data recorder i

sys contr iinternal sensor i

external sensor i

exit sensor i

entry sensor i

ev mgr i

alarm i

alert val mgr i

 FIGURE 16.23

 Monitor Intruder Subsystem Block Defi nition Diagram aggregates the components that interact in the Monitor Intruder Activity
Diagram.

439

ibd Monitor Intruder Subsystem [Monitor Intruder Subsystem IBD]

ESS Logical«system of interest»
Logical Subsystem Composite

fp alarm out

fp control in

fp display out

fp emerg serv

fp entry–exit
sensor in

fp fire sensor in

fp internal sensor in

fp external sensor in

fp pwr in

sp network if

«block»
:Monitor Intruder Subsystem

«logical»
sys contr i :System Controller

«logical»
entry sensor i :Entry Sensor

«logical»
exit sensor i :Exit Sensor

«logical»
internal sensor i :Internal Sensor

«logical»
external sensor i :External Sensor

«logical»
ev mgr i :Event Mgr

«logical»
alert val mgr i :Alert Validation Mgr

«logical»
alarm i :Alarm

«logical»
data recorder i :High bw Data Recorder

«store»
intr log :Event Log

«block,store»
sensor data :External Sensor Data Store

«logical»
user if i : User If

«logical»
emerg serv if i :Emergency Services If

«logical»
status mgr i :System Status Mgr

«store»
intruder alert :ESS State

 FIGURE 16.24

 Monitor Intruder Subsystem Internal Block Diagram showing the interconnection of the parts that interact on
the Monitor Intruder Activity Diagram in Figure 16.22 . (Note: The parts are references that are not owned by
the subsystem.)

 a particular do/behavior that is defined by an activity. It then transitions back to its
wait state when the activity is complete and waits for the next triggering event.

 For this example, the Event Manager and the System Controller are logi-
cal components that have more complex state-dependent behavior. The System
Controller is a logical component that is responsible for controlling actions in
response to events from the Event Manager. Since the controller must respond
differently to different events, and its behavior is also dependent on the current
state of the system, it is appropriate to represent the controller’s behavior with a
state machine, as shown in a partial view of its state machine in Figure 16.26 .

16.3 Applying the Method to Specify and Design the System

4
4

0

«logical»
status mgr

«logical»
config mgr

«logical»
aux pwr

«logical»
company if

«store»
system state

«logical»
sys contr

«logical»
ev mgr

«store»
event log

«logical»
alert val mgr

«logical»
alarm

«logical»
emerg serv if

«logical»
query mgr

«logical»
ext user if

«logical»
ext user val mgr

«logical»
fire sensor [0..*]

«logical»
entry sensor [0..*]

«logical»
exit sensor [0..*]

«logical»
internal sensor [0..*]

«logical»
external sensor [0..*]

«logical»
fault mgr

«logical»
data access req mgr

«store»
user access

account

«logical»
user val mgr

«logical»
user if

«logical»
elec pwr if

ibd Logical Architecture [ESS Logical IBD]

ESS
«system of interest»

ESS Logical

fp emerg
services

fp
external
sensor in

fp display
out

fp entry
exit

sensor in

fp fire
sensor in

fp
internal

sensor in

fp company
intranet

fp pwr
in fp:

alarm_out

fp control
in

sp
network if

«store»
power

«logical»
pwr mgr

«store»
sensor
data

«logical»
data recorder

 FIGURE 16.25

 ESS Logical Internal Block Diagram showing the interconnection between all logical components of the system.

441

stm System Controller [System Controller State Machine]

System Controller States

[power monitor]

[fault monitor]

[activation–deactivation control]

[medical emergency monitor]

[fire monitor]

[intruder monitor]

intruder nonalert

intruder alert

deactivated

activated

power nonalert

power alert

Final

[power down complete]

power [power down]
/request status update,
request alert validation

deactivation

power up
[complete]

activation
/request status update

deactivation
/request alarm
reset, request
alert reset,
request recorder
pause

deactivation
/request alarm
reset, request
alert reset,
request recorder
pause

power up
[complete]

intruder
/request status update

[deactivated]

[activated] /request alarm,
request alert validation,
request data record

deactivation

power up
[complete]

 FIGURE 16.26

 System Controller State Machine .

16.3 Applying the Method to Specify and Design the System

442 CHAPTER 16 Residential Security System Example Using OOSEM

 The system controller includes multiple regions to support concurrent states.
As shown in the intruder monitor region, when powerup is complete, the
System Controller transitions to an intruder nonalert state. If an intruder event is
received, the controller sends a status update and then transitions to the intruder
alert state. If the system is in the activated state, the System Controller sends
signals to other logical components as indicated on the transition actions. These
include a request alarm to the Alarm, a request alert validation to the Alert
Validation Manager, and a request data record to the High-Bandwidth Data
Recorder . The signals are not sent if the system is not in the activated state.

 The state machine augments the specifi cation of the logical components. The
traceability between the system-level requirements and the logical components is
maintained, as discussed in Section 16.3.6.

 16.3.4 Synthesize Candidate Physical Architectures
 The Synthesize Candidate Physical Architectures activity is shown in Figure 16.27 .
This activity synthesizes the system’s alternative physical architectures to satisfy
the system requirements. The architecture is defined in terms of its physical com-
ponents and relationships, and their distribution across system nodes. The physical
components of the system include hardware, software, persistent data, and oper-
ational procedures. The system nodes represent a partitioning of components
based on their physical location or other distribution criteria. If it is not distrib-
uted, the system is assumed to consist of a single node.

 The partitioning criteria are defi ned and used to partition the physical com-
ponents and address concerns such as performance, reliability, and security. A
node logical architecture is defi ned to determine how the logical components,
and their associated functionality, persistent data, and control, are distributed
across system nodes. A node physical architecture is defi ned where each logical
component in each node is allocated to physical components that may include a
combination of hardware, software, and persistent data components, as well as
operational procedures performed by operators. System design constraints that
were identifi ed in Section 16.3.2 are imposed on the physical architecture.

 The software, hardware, and data architecture are established to further par-
tition the physical components based on additional physical domain-specifi c
implementation concerns. The requirements are then specifi ed for each physical
component and traced to the system requirements. Engineering analysis and trade
studies are performed to evaluate, select, and refi ne the preferred architecture. It
should be noted that trade studies are performed throughout the OOSEM process
beginning with Analyze Stakeholder Needs .

 Defi ne Partitioning Criteria
 Partitioning is a fundamental aspect of systems architecting. Partitioning criteria
are established to partition functionality, persistent data, and control among the
logical and physical components, and to partition the components among subsys-
tems, nodes, and layers of the architecture. Applying partitioning criteria through-
out the design process should result in component designs that exhibit maximum

443

 cohesion and minimum coupling to reduce interface complexity. Applying the cri-
teria should also reduce the impact of requirements and technology changes and
more effectively address key requirements such as performance, reliability, main-
tainability, and security. Some examples of partitioning include the following:

 ■ Refactoring common functionality into shared components
 ■ Partitioning components and functionality based on having the same update

rate, or partitioning components with high update rates versus those with
low update rates

act Activities [Synthesize Candidate Physical Architectures]

define
software

architecture

define data
architecture

define
hardware

architecture

define
operational
procedures

allocates logical
components to
nodes

allocates logical
components in each
node to one or more
physical components

define partitioning
criteria

define logical node
architecture

capture criticial node and
component properties

define physical node
architecture

specify component
requirements

conduct system design
review

 FIGURE 16.27

 Synthesize Candidate Physical Architectures activity to specify the components of the system.

16.3 Applying the Method to Specify and Design the System

444 CHAPTER 16 Residential Security System Example Using OOSEM

 ■ Partitioning software components into architecture layers based on the level
of dependency of the functionality or services they provide

 ■ Partitioning data into separate repositories based on their security classifi ca-
tion level

 ■ Physical partitioning such that lower reliability components are more acces-
sible to ease maintainability

 ■ Physical partitioning of components to reduce the number of moving parts
for assembly and disassembly

 ■ Partitioning components based on reuse of common patterns
 ■ Partitioning components based on their likelihood to change
 ■ Partitioning functionality and components based on development consider-

ations such as whether they are part of a particular incremental delivery

 Defi ne Logical Node Architecture
 Up to this point, there has been no discussion of how the functionality is dis-
tributed across system nodes. A node typically represents a partitioning of com-
ponents and associated functionality, control, and persistent data based on the
geographic location of the components. The node may include a fixed facility or a
moving platform such as an aircraft. Many modern systems are distributed across
multiple system nodes. Nodes may also be defined based on other criteria such as
organizational responsibility (e.g., the people and resources in a particular depart-
ment). In OOSEM, a logical node represents an aggregation of logical components
at a particular location. A physical node represents an aggregation of physical com-
ponents at a particular location. The logical components at a logical node are allo-
cated to physical components at a physical node, as described later in this section.

 Functionality, control, and persistent data can be distributed in many ways.
A system can be highly distributed such that each node has complete functional-
ity, control, and data and can operate autonomously. Alternatively, the distribu-
tion may be highly centralized where most of the functionality, control, and data
are within a central node, and the local nodes primarily provide an interface
to external systems and users at a particular location. This can provide a cost-
effective solution to minimize the required resources across the system. Between
a fully distributed solution and fully centralized distribution, functionality, control,
and data can be partially distributed across regional and local nodes, where each
node performs a subset of the total functionality, control, and data.

 Distribution options can include any combination of a central node, multiple
regional nodes, and multiple local nodes in each region. Trade studies are typi-
cally performed to optimize the distribution approach based on considerations
such as performance, reliability, security, and cost. Many types of systems are
distributed including information systems with networked communications, elec-
trical power distribution systems, and complex SoS applications such as transpor-
tation systems.

 The ESS Node Logical Block Defi nition Diagram defi nes the logical compo-
nents in a node hierarchy as shown in Figure 16.28 . The top block in the block
defi nition diagram is a subclass of the ESS block called the ESS Node Logical ,

445

bdd Node Logical Architecture [ESS Node Logical BDD]

«system of interest»
ESS Node Logical

«node logical»
Central Monitoring

Station

«node logical»
Site Installation

«logical»
Alarm

«logical»
Alert Validation

Mgr

«logical»
CMS to Site If

«logical»
Company If

«logical»
Company Mgr

«logical»
Data Access
Request Mgr

«logical»
Query Mgr

«logical»
Emergency
Services If

«logical»
Entry Sensor

«logical»
Event Mgr

«logical»
Exit Sensor

«logical»
External User If

«logical»
External Sensor

«logical»
Fault Mgr

«logical»
Fire Sensor

«logical»
Internal Sensor

«logical»
Site to CMS If

«logical»
System Controller

«logical»
System Status

Mgr

«logical»
User If

«logical»
High bw Data
Recorder-site

«logical»
High bw Data
Recorder-cms

«logical»
Electircal Power

If-site

«logical»
Electrical Power

 If-cms

«logical»
Power Mgr-cms

«logical»
Power Mgr-site

«logical»
Auxillary

Power-site

«logical»
Auxiliary

Power-cms

«store»
::Auxiliary Power

«logical»
User Validation

Mgr-site

«logical»
User Validation

Mgr-cms

«rationale»
The site of and CMS if are derived from the node
architecture based on the need to communicate
between nodes. The company if is required for
the ESS operational system to interface with
other parts of the security company.

ext_user_if

site_i
1..*

cms_to_site
_if

alert_val_
mgr

site_to_
cms_if

comp_if
internal_
sensor

cms_pwr
_mgr

cms_aux_
pwr

cms_user_
val_mgr

cms_data_
recorder

cms 1

emerg_serv
_if

entry_
sensor

user_if

sys_contr

alarm

sys_status_
mgr

aux_pwr

ev_mgr

exit_sensor

external_
sensor

site_elec_
pwr_if

fire_
sensor_
recorder

config_mgr

user_val_
mgr

fault_mgr

cms_elec_
pwr_if

data_
recorder

 FIGURE 16.28

 ESS Node Logical Block Defi nition Diagram showing the logical components allocated to the Site Installation
and Central Monitoring Station nodes.

16.3 Applying the Method to Specify and Design the System

446 CHAPTER 16 Residential Security System Example Using OOSEM

 which was shown previously in Figure 16.20 . This block is composed of the
system logical nodes and stereotyped as « node logical ». For the ESS, the nodes
represent the Central Monitoring Station (CMS), and the Site Installa tions that
are installed at Single-Family Residences, Multifamily Residences, and small
Businesses. Although not included in this example, a CMS backup facility may be
an additional required node to provide disaster recovery and satisfy the system
availability requirement.

 Each logical node is composed of logical components. A logical component
can be distributed to more than one node. However, the logical component may
have different requirements in each node, as is the case for the high-bandwidth
data recorder that is a component of both the Site Installation and the Central
Monitoring Station. In this case a subclass of the High-Bandwidth Data Recorder
logical component is defi ned for each node with its unique characteristics.

 A similar set of modeling artifacts used for defi ning the ESS Logical archi-
tecture in the previous section can also be developed for the ESS Node Logical
architecture. This includes the node logical activity diagrams and internal block
diagram. An elaboration of each activity diagram that was created for the ESS
Logical architecture in the previous section should be created for the ESS Node
Logical architecture to specify how the activity is executed by the logical compo-
nents that are distributed across the nodes.

 The node logical activity diagrams show the interaction of the components
within each node and across nodes. The Monitor Intruder Activity Diagram-nl
is shown in Figures 16.29 and 16.30 . The nodes are represented as activity parti-
tions, and the logical components are nested within their respective node. New
logical components are required to support the interaction between nodes that
are also included on the Node Logical Block Defi nition Diagram. This activ-
ity diagram is consistent with the behavior that was originally specifi ed in the
Monitor Intruder Activity Diagram as part of the undistributed logical design in
the activity diagram in Figure 16.22 .

 The ESS Node Logical Internal Block Diagram-nl in Figures 16.31 and 16.32
shows how the logical components are interconnected within each node and
across nodes. This includes the interconnection of parts that are interacting in
the Monitor Intruder Activity Diagram. Once again, the system external inter-
faces are maintained on the ports of the enclosing block. The other collaboration
artifacts referred to in the previous section can be created for each scenario as
well, depending on the process tailoring.

 Defi ne Physical Node Architecture
 The functionality for the ESS Logical architecture is first distributed among the
logical nodes and captured in the ESS Node Logical architecture as described
in the previous section. This was accomplished by distributing the logical com-
ponents to each of the logical nodes based on partitioning concerns that are
somewhat independent of how the components are implemented. For example,
it made sense to distribute the Entry Sensor to the Site Installation node inde-
pendent of what technology is used to implement the Entry Sensor. The logi-
cal components in each node are then allocated to physical components in each

447

 node to constitute the ESS Node Physical architecture. The supporting trade-off
analysis, which addresses technology and implementation concerns related to
performance, reliability, security, and other quality attributes, is addressed as part
of this allocation decision. For this example, the Entry Sensor is allocated to an
Optical Sensor. A partial allocation of the logical components to physical compo-
nents for the Site Installation node and the Central Monitoring Station node are
shown in the allocation tables in Figures 16.33 and 16.34 , respectively (see pages
451–452).

«allocateActivityPartition»

:Modem

«allocateActivityPartition»

«continuous»

«datastore»
intr log :Event Log

A

B

act Monitor Intruder Subsystem-nl [Monitor Intruder Activity Diagram-nl]

:Entry Sensor

«allocateActivityPartition»

sense entry

:IR Motion Detector

«allocateActivityPartition»

sense
internal

:Exit Sensor

«allocateActivityPartition»

sense exit

:User If

«allocateActivityPartition»

communicate
status

communicate
data

communicate
alert status

:System Status Mgr

report intr
status

«allocateActivityPartition»

:Recorded Alarm

generate intr
alarm

«allocateActivityPartition»

:Surveillance Camera

sense
external

«allocateActivityPartition»

:Event Mgr

store intr
event

process intr
detection

«allocateActivityPartition»

:Video Recorder

:Site Installation

record data

«allocateActivityPartition»

:System Controller

control intr
actions

«Postcondition»
{activation time
out�true}

«datastore»
sensor_data : Capacity

Monitor intruder-nl

«allocateActivityPartition»

all actions start when
activity is invoked

 FIGURE 16.29

 Monitor Intruder Activity Diagram-nl showing the interaction of components within the Site Installation
node. Additional components have been added to interface between the nodes.

16.3 Applying the Method to Specify and Design the System

448 CHAPTER 16 Residential Security System Example Using OOSEM

 The design constraints that were identifi ed during the system requirements
analysis in Section 16.3.2 are imposed on the physical architecture as part of the
logical-to-physical allocation. For example, a logical component may be allocated
to a particular COTS component that has been imposed as a design constraint.
A reference architecture may also constrain the solution space with preselected

act Monitor Intruder Subsystem-nl [Monitor Intruder Activity Diagram-nl (two-of-two)]

Monitor intruder-nl

intr :Alert Status

external :
Source
Signature

entry :
Window–
Door
State

internal :
Source
Signature

exit :
Window–
Door
State

intr :Site
Status

:Central Monitoring Station

«allocateActivityPartition»

:Alert Validation Mgr

«allocateActivityPartition»

intr :Alert
Status

intr :Alert
Validation
Request

sensor_data :
Sensed
Output

in :
Event
Log

:High bw Data Recorder-cms

«allocateActivityPartition»

:CMS to Site If

«allocateActivityPartition»

communicate
alert status

in :Alert
Validation
Request

out :Alert
Validation
Request

communicate
data

validate intr
alert

sensor_data :
Sensed
Output

sensor_data :
Sensed
Output

sensor_data :
Sensed
Output

sensor_data
:Sensed
Output

:Monitor Intruder Subsystem-nl

«allocateActivityPartition»

:Emergency Services If

«allocateActivityPartition»

out_alert_status

in :
alert_status

communicate
alert

«datastore»
sensor data :Capacity

record dataA

B

all actions start when
activity is invoked

 FIGURE 16.30

 Monitor Intruder Activity Diagram-nl showing the interaction of components within the Central Monitoring
System node. Additional components have been added to interface between the nodes. This behavior also
partially supports the behavior that was specifi ed in the Monitor Intruder Activity Diagram in Figure 16.22 .

449

ibd Node Logical Architecture [ESS Node Logical IBD (one of two)]

ESS«system of interest»
ESS Node Logical

fp emerg services

fp external
sensor in
[0..*]

fp display
out [1..*]

fp
entry–exit
sensor in
[0..*]

fp fire
sensor in
[0..*]

fp internal
sensor in
[0..*]

fp
company
intranet

fp pwr
in [1..*]

fp alarm out [1..*]

fp
control in
[1..*]

«node l...
cms :Central
Monitoring

Station

«node logical»
site i : Site Installation [1..*]

fp cms

«logical»
alarm

«logical»
aux pwr

«logical»
config mgr

«logical»
data recorder

«logical»
elec pwr if

«logical»
entry sensor [0..*]

«logical»
evmgr

«logical»
exit sensor [0..*]

«logical»
external sensor

[0..*]

«logical»
fault mgr

«logical»
fire sensor [0..*]

«logical»
internal sensor

[0..*]

«logical»
pwr mgr

«logical»
site to cms if

«logical»
status mgr

«logical»
sys contr

«logical»
user if

«logical»
user val mgr

fp
site sp

network
if

 FIGURE 16.31

 ESS Node Logical Internal Block Diagram showing the interconnection between the parts within and across
nodes, focused on the Site Installation . The parts are represented as activity partitions in the Monitor Intruder
Activity Diagram-nl in Figure 16.29 .

16.3 Applying the Method to Specify and Design the System

450 CHAPTER 16 Residential Security System Example Using OOSEM

ibd Node Logical Architecture [ESS Node Logical IBD (two of two)]

ESS
«system of interest»
ESS Node Logical

fp emerg services

fp
external
sensor
in [0..*]

fp
display
out
[1..*]

fp
entry–exit
sensor
in [0..*]

fp
fire sensor
in [0..*]

fp
internal
sensor in
[0..*]

fp
company
intranet

fp pwr
in
[1..*]

fp alarm out [1..*]

fp
control
in [1..*]

sp
network
if

«node logical»
cms :Central Monitoring Station

fp pwr
in cms

«node l...
site i :Site
Installation

[1..*]

fp cms

Internet
access

«logical»
data access

req mgr

«logical»
ext user if

«logical»
ext user val

mgr

«logical»
query mgr

«logical»
cms data
recorder

«logical»
cms to site if

«logical»
alert val mgr

«logical»
emerg serv if

«logical»
company if

«logical»
cms pwr mgr

«logical»
cms aux pwr

«logical»
cms elec pw if

 FIGURE 16.32

 ESS Node Logical Internal Block Diagram showing the interconnection between the parts
within and across nodes, focused on the Central Monitoring Station . The parts are represented
as activity partitions in the Monitor Intruder Activity Diagram-nl in Figure 16.30 .

451

 or legacy components. An example of a reference architecture is briefl y described
later in this section as a multilayered architecture that includes specifi c types
of components associated with each architecture layer—that is, presentation,
mission application, infrastructure, and operating system layers.

 Alternative physical architectures are identifi ed by allocations of logical com-
ponents to alternative physical components. The logical-to-physical component

table [Package] Site [Logical to Physical]

From Type To Name

Light Alarm

Sound Alarm

Recorded Alarm

Alarm If

Battery If

Battery

Config Mgr

Power Adapter-site

Magnetic Sensor

Optical Sensor If

Contact Sensor

Optical Sensor

File If

Event Log Data File

Event Mgr

Magnetic Sensor

Contact Sensor

Optical Sensor

Optical Sensor If

Electric Fence

Surveillance Camera

Camera If

Fault Mgr

Fire Detector If

Fire Detector

Video Recorder

Video Recorder If

DVD

IR Motion Detector If

IR Motion Detector

Pwr Distr Hub If

Power Distribution Hub-site

Power Mgr-site

Router

Modem

Network Interface Card

Modem If

Network If

Router

Network Interface Card

Console

Console If

Network If

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

From Name

Alarm

Alarm

Alarm

Alarm

Auxillary Power-site

Auxillary Power-site

Company Mgr

Electrical Power If-site

Entry Sensor

Entry Sensor

Entry Sensor

Entry Sensor

Event Mgr

Event Mgr

Event Mgr

Exit Sensor

Exit Sensor

Exit Sensor

Exit Sensor

External Sensor

External Sensor

External Sensor

Fault Mgr

Fire Sensor

Fire Sensor

High bw Data Recorder-site

High bw Data Recorder-site

High bw Data Recorder-site

Internal Sensor

Internal Sensor

Power Mgr-site

Power Mgr-site

Power Mgr-site

Site to CMS If

Site to CMS If

Site to CMS If

Site to CMS If

Site to CMS If

User If

User If

User If

User If

User If

User Validation Mgr-site

Relation

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

To Type

hardware

hardware

hardware

software

software

hardware

software

hardware

hardware

software

hardware

hardware

software

block

software

hardware

hardware

hardware

software

hardware

hardware

software

software

software

hardware

hardware

software

hardware

software

hardware

software

hardware

software

hardware

hardware

hardware

software

software

hardware

hardware

hardware

software

software

software User Validation Mgr-site

 FIGURE 16.33

 Allocation of logical components to physical components in Site Installation node.

16.3 Applying the Method to Specify and Design the System

452 CHAPTER 16 Residential Security System Example Using OOSEM

 allocations may be based on patterns. The architectural patterns may repre-
sent common solutions with associated technologies. For example, the Event
Manager and System Controller constitute a design pattern in the logical design
that can be implemented in a selected software design pattern.

 Trade studies are performed to select the preferred physical architecture
based on selection criteria that optimize the measures of effeciveness and associ-
ated measures of performance. In this example, the probability of intruder detec-
tion and false alarm may drive the Site Installation performance requirements,
and the number and type of Site Insallations that are monitored may drive the
Central Monitoring Station performance requirements. Performance requirements

table [Package] CMS [Logical to Physical]

From Type To Name

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

logical

From Name

Alert Validation Mgr

Alert Validation Mgr

Alert Validation Mgr

Alert Validation Mgr

Auxillary Power-cms

Auxillary Power-cms

CMS to Site If

CMS to Site If

CMS to Site If

CMS to Site If

CMS to Site If

CMS to Site If

Company If

Company If

Data Access Request Mgr

Data Access Request Mgr

Data Access Request Mgr

Data Access Request Mgr

Electrical Power If-cms

Emergency Services If

Emergency Services If

Emergency Services If

External User If

External User If

External User If

External User If

External User If

External User If

High bw Data Recorder-cms

High bw Data Recorder-cms

High bw Data Recorder-cms

Power Mgr-cms

Power Mgr-cms

Power Mgr-cms

Relation

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

allocate

To Type

logical allocate

User If

Work station-Security Operator

CMS Security Operator Procedure

Alert Mgr

Generator If

Power Generator

Network If

Modem If

Modem

Firewall

Router

Network Interface Card

Web Browser

Network Interface Card

CMS Administrator Procedure

User Access Account Database

Data Access Request Mgr

User If

Power Adapter-cms

Modem

Dedicated High bw If

Modem If

Network Interface Card

Firewall

Modem

Modem If

Router

Network If

Video Server

Video Storage Device

Video If

Power Mgr-cms

Pwr Distr Hub If

Power Distribution Hub-cms

DBMS If

DBMS

software

hardware

procedure

software

software

hardware

software

software

hardware

software

hardware

hardware

software

hardware

procedure

block

software

software

hardware

hardware

hardware

software

hardware

software

hardware

software

hardware

software

hardware

hardware

software

software

software

hardware

software

software

software Data Access Mgr

Query Mgr

Query Mgr

User Validation Mgr-cms

 FIGURE 16.34

 Allocation of logical components to physical components in Central Monitoring Station node.

453

must be balanced against availability, cost, and other critical requirements to arrive
at a balanced solution based on the trade-off analysis.

 When a logical component is allocated to software, the software component
must also be allocated to a corresponding hardware component to execute it. This
can also be refl ected in the allocation tables in Figures 16.33 and 16.34 , although
they are not shown. Sometimes, the allocation decision is made at run time. For
allocations of software to hardware at run time, the run-time allocation decision
process is also modeled as part of the activity diagram or sequence diagram. The
run-time allocation methods may require algorithms, such as load balancing, to
implement the decision process. In addition to software allocation, persistent data
are allocated to hardware components that store the data, and operational proce-
dures are allocated to operators that execute the procedures.

 The ESS Node Physical Block Defi nition Diagrams for the Site Installation
and Central Monitoring Station are shown in Figures 16.35 and 16.36 , respec-
tively. They are similar to the ESS Node Logical Block Defi nition Diagram in
Figure 16.28 except the logical components have been replaced by the physical
components to which they were allocated, and the Site Installation and Central
Monitoring Station nodes are physical nodes instead of logical nodes.

 Similar modeling artifacts that were created for the ESS node logical architec-
ture in the previous section are created for the ESS node physical architecture,
including the collaboration artifacts. This includes the node physical activity
diagrams and the node physical internal block diagram. A node physical activity
diagram is created for each node logical activity diagram, which in turn rep-
resents a realization of a required black-box system behavior. Node physical
activity diagrams must support the behavior specifi ed by node logical activity
diagrams.

 The Monitor Intruder Activity Diagram-np for the Site Installation and the
Central Monitoring Station are shown in Figures 16.37 and 16.38 , respectively.
The activity partitions represent the components of the system’s physical architec-
ture. The activity diagram captures the interaction between the hardware and soft-
ware components, as well as the operators of the system. The activity partitions
for the site installation software components are nested within a partition that rep-
resents a site installation software confi guration item. The software executes on a
processing platform, although this is not shown as an activity partition in the activ-
ity diagram. Similarly, other activity partitions represent the hardware components
and operators.

 The activity diagram must support the behavior from the corresponding node
logical activity diagram, and also support the original behavior specifi ed for the
Monitor intruder action of the Intruder Emergency Response Scenario in Figure
16.14, including its inputs, outputs, and pre- and postconditions. Supporting the
behavior of the higher-level abstraction means that the logical behavior described
previously is maintained in terms of the inputs, outputs, and fl ow of control, but
that more detail is added to show how this behavior is accomplished when the
logical behavior is distributed across nodes. In this example, the control intruder
actions is accomplished at the Site Installation node and the validate intruder
alert is accomplished at the Central Monitoring Station node.

16.3 Applying the Method to Specify and Design the System

454 CHAPTER 16 Residential Security System Example Using OOSEM

bdd Site [Site Installation Physical BDD]

«node physical»
Site Installation

«hardware»
Surveillance

Camera

«software»
Camera If

«hardware»
Optical Sensor

«software»
Optical Sensor If

«hardware»
IR Motion
Detector

«software»
IR Motion
Detector If

«hardware»
Fire Detector

«software»
Fire Detector If

«hardware»
Recorded Alarm

«software»
Alarm If

«software»
Console If

«hardware»
Console

«hardware»
Power Adapter-

site

«hardware»
Modem

«software»
Modem If

«software»
Network If

«hardware»
Network Interface

Card

«software»
System

Controller

«hardware»
Site Processor

«software»
Fault Mgr

«hardware»
Power Distribution

Hub-site

«hardware»
Battery

«software»
Battery If

«software»
Power Mgr-site

«hardware»
Video Recorder

«software»
Video

Recorder If

«hardware»
Router

«software»
User Validation

Mgr-site

«software»
Event Mgr

«software»
System Status

Mgr

«hardware»
DVD

«block»
Event Log Data

File

«software»
File If

«software»
DBMS If

«block»
Camera Video

File

«software»
Pwr Distr Hub If

modem

nw_if

user_val_mgr

video_rec_if

router

file_if

video_rec

nic

alarm pwr_distr_
hub

console

fire_det_if

status_mgr
pwr_adapter

event_log

modem_if

ir_motion_det
_iffa

alarm_if

ir_motion_
det

0..*

console_if

optical_sensor
_if

optical_
sensor

0..*

site_
processor

camera_if

fault_mgr

camera_video

surv_
camera

0..*

fire_det

0..*

dvd

0..*

battery

pwr_distr_hub
_if

sys_contr

battery_if

pwr_mgr

event_mgr

dbms_if

 FIGURE 16.35

 Site Installation Physical Block Defi nition Diagram showing the hierarchy of physical components in the
 Site Installation node.

 As a result, this activity diagram includes communication actions to commu-
nicate the control actions from the Site Installation to the Central Monitoring
Station. The communication actions represent the added detail that was not
included in the ESS logical activity diagram in Figure 16.22 . However, the overall
behavior of the logical activity diagram is maintained.

 The ESS Node Physical Internal Block Diagram in Figures 16.39 and 16.40
(see pages 458–459) show how the physical parts are interconnected within each

455

bdd CMS [CMS Physical BDD]

«node physical»
Central Monitoring Station

«software»
Firewall

«software»
Network If

«hardware»
Network Interface

Card

«hardware»
Dedicated High

bw If

«software»
Generator If

«hardware»
Power Distribution

Hub-cms

«hardware»
Power Adapter-cms

«hardware»
Router

«hardware»
Power Generator

«software»
Power Mgr-cms

«hardware»
Video Server

«software»
Video If

«hardware«
Video Storage

Device

«hardware»
Work

Station-Security
Operator

«software»
Data Access Mgr

«hardware»
Administration

Server

«software»
Alert Mgr

«hardware»
Work

Station-
Administrator

«hardware»
Application Server

«procedure»
CMS Security

Operator
Procedure

«procedure»
CMS Administrator

Procedure

«software»
Data Access
Request Mgr

«software»
DBMS

«hardware»
Database Server

«block»
User Access

Account Database

«operator»
CMS

Administrator

«operator»
CMS Security

Operator

«software»
Pwr Distr Hub If

«hardware»
Web Server

«hardware»
Network Switch

«software»
DBMS If

«software»
User If

db_server

user_if_appl

2

dbms

user_access_acct
_db

dbms_if

web_server

dedicated_high
_bw_if

cms_admin

firewall

2

sec_operator

data_access_
req_mgr

pwr_distr_hub_if

admin_procedure

video_server

pwr_distr_hub

pwr_adapter

router

2

pwr_generator

pwr_mgr

video_if

1..*

video_storage
_device

sec_oper_
work_station

1..*

admin_server

nw_switch

nw_if

1..*

alert_val_mgr

admin_work_
station

1..*

application_server

generator

sec_operator
_procedure

data_access_mgr

nic

«rationale»
Derived component
to provide internal
communications

 FIGURE 16.36

 Central Monitoring Station Physical Block Defi nition Diagram showing the hierarchy of physical components in
the Central Monitoring Station node.

16.3 Applying the Method to Specify and Design the System

456 CHAPTER 16 Residential Security System Example Using OOSEM

act Monitor Intruder Subsystem-np [Monitor Intruder Activity Diagram-np (one of two)]

Monitor Intruder-np : Site status

intr : Alert Status

external :
Source
Signature

entry :
Window–
Door State

internal :
Source
Signature

exit :
Window–
Door State

intr :Site
Status

Monitor intruder subsystem-np : Monitor Intruder Subsystem-np

«allocateActivityPartition»

:Site Installation

«allocateActivityPartition»

site csci : Site Software Composite

«allocateActivityPartition»

:System Controller

«allocateActivityPartition»

:Network Interface Card

«allocateActivityPartition»

:Console

«allocateActivityPartition»

:Event Mgr

«allocateActivityPartition»

«allocateActivityPartition»

site : Hig bw Data Recorder

«allocateActivityPartition»

:Internal Sensor

«allocateActivityPartition»

:Optical Sensor

«allocateActivityPartition»

:Optical Sensor

«allocateActivityPartition»

sense entry

sense exit

sense
external

sense
internal

process intr
detection

generate intr
alarm

record data

control
intractions

store
intrevent

all actions start when activity is invoked

:System Status Mgr

«allocateActivityPartition»

report intr
statuscommunicate

status

:Modem

«allocateActivityPartition»

«Postcondition»
{activation time
out � true}

communicate
alert status

communicate
data

communicate
alert status

communicate
data

:Surveillance Camera

«allocateActivityPartition»

«datastore»
sensor data :

Capacity

«datastore . . .
intr log :Event

Log

A

B
:Alarm

intr : Alarm
Signal

 FIGURE 16.37

 Monitor Intruder Activity Diagram-np for the Site Installation Node Physical supports the behavior of Site
Installation in the node logical activity diagram in Figure 16.29 .

 node and across nodes. Similar to the ESS Logical Internal Block Diagram and
the ESS Node Logical Internal Block Diagram, the enclosing block represents
a subclass of the ESS block and retains the original ESS external interfaces. The
external ports on the ESS Node Physical can be further subclassed from the ESS
port defi nitions to specify the physical interface defi nition such as a USB port on
a computer, as described in Section 16.3.2.

457

act Monitor Intruder Subsystem-np [Monitor Intruder Activity Diagram-np (two of two)]

Monitor Intruder-np : Site status

intr : Alert Statusintr : Alarm Signal

external :
Source
Signature

entry :
Window–
Door State

internal :
Source
Signature

exit :
Window–
Door State

intr :Site
Status

Monitor intruder subsystem-np : Monitor Intruder Subsystem-np

«allocateActivityPartition»

«allocateActivityPartition»

:Central Monitoring Station

«allocateActivityPartition»

generate
alert

communicate
alert

«allocateActivityPartition»«allocateActivityPartition»

communicate
alert status

communicate
data record data

:User If

alert
operator

select video

display
video

asess video

«Postcondition»
{validated � true}

A

B

«datastore»
sensor_data:

Capacity

:Router :Video Server

:Dedicated High bw If

«allocateActivityPartition»

:Alert Mgr «allocateActivityPartition»

«allocateActivityPartition»

:CMS Security
Operator

«allocateActivityPartition»

:Video If

 FIGURE 16.38

 Monitor Intruder Activity Diagram-np for the Central Monitoring Station Node Physical
supports the behavior of Central Monitoring Station from the node logical activity diagram
in Figure 16.30 .

16.3 Applying the Method to Specify and Design the System

458 CHAPTER 16 Residential Security System Example Using OOSEM

ibd Node Physical Architecture [ESS Node Physical IBD (one of two)]

ESS
«system of interest»
ESS Node Physical

fp
emerg

services

fp external
sensor
in [0..*]

fp
display
out [1..*]

fp fire
sensor
in [0..*]

fp
internal
sensor
in [0..*]

fp
company

intranet

fp pwr
in [1..*]

fp alarm out [1..*]

fp
control
in [1..*]

sp
network

if

fp site
[1..*]

fp cms nw [1..*]fp cms phone [1..*]

fp entry–exit
sensor
in [0..*]

«node physical»
site i [1..*]

«hardware»
site processor :Site Processor

«configuration item»
Site Installation CSCI

optical sensor
[0..*]

fire det [0..*]

ir motion det
[0..*]

surv camera
[0..*]

console

pwr adapter

battery

video rec

dvd [0..*]

«store,...
camera video

«software»
fire det if

«software»
optical sensor if

«software»
ir motion det if

«software»
camera if

alarm modem router nic

«softw...
battery if

«softw...
pwr mgr

«software»
alarm if

«software»
video rec if

«software»
sys contr

«software»
status mgr

«software»
user val mgr

«software»
fault mgr

«software»
event mgr

«software»
console if

Communications to
nw if and modem is
accomplished through
a bus

file if
used to write
to event log
dbms if used
to access
event log
from CMS

fault mgr
should
connect with
all interfaces
for devices
that are
being
monitored

«software»
pwr distr hub if

«software»
file if

«software»
dbms if

«store»
event log

«software»
nw if

«software»
modem if

pwr distr hub

 FIGURE 16.39

 ESS Node Physical Internal Block Diagram for site i:Site Installation.

 The internal block diagram defi nes the interconnection between the parts based
on their interaction from all the activity diagrams. The defi nition of the ports has
been deferred pending the detailed interface specifi cations on the parts. An individ-
ual activity diagram, such as the Monitor Intruder Activity Diagram, can be viewed
as exercising specifi c interconnection paths through the internal block diagram.

459

 The node physical architecture defi nes the physical components of the sys-
tem, including hardware, software, persistent data, and other stored items (e.g.,
fl uid, energy) and operational procedures that are performed by operators. The
software components and persistent data stores are nested within the hard-
ware component that they are allocated to. The software allocation to hardware

ibd Node Physical Architecture [ESS Node Physical IBD (two of two)]

ESS
«system of interest»
ESS Node Physical

fp emerg services

fp external
sensor in
[0..*]

fp
display
out [1..*]

fp fire
sensor in
[0..*]

fp internal
sensor
in [0..*]

fp
company
intranet

fp pwr
in [1..*]

fp alarm
out [1..*]

fp control
in [1..*]

fp site
[1..*]

fp cms nw [1..*]
fp cms
phone [1..*]

fp entry–
exit sensor
in [0..*]

«node physical»
cms

«hardware»
router2

«hardware»
admin server

«hardware»
application server

«hardware»
db server

«hardware»
dedicated high

bw if

«hardware»
pwr adapter

«hardware»
pwr distr hub

«hardware»
pwr generator

«hardware»
video server

«hardware»
video storage device

«hardware»
web server

«hardware»
admin work station

«hardware»
sec oper work station

«hardw..
nw switch

These ports connect through the
comm network that is external to ESS.

«store»
camera video

«software»
dbms

«operator»
cms admin

«operator»
sec operator

«software»
alert mgr

«software»
data access req

mgr

«software»
data access

mgr

«software»
generator if

«software»
pwr mgr

«software»
video if

«software»
config mgr

«software»
dbms if

External user will access this via
pc/browser/ext comm nw.

«hardware»
router1

«software»
firewall1

«software»
fire wall2

«software»
user if appl1

«software»
user if appl2

sp
network
if

 FIGURE 16.40

 ESS Node Physical Internal Block Diagram for cms:Central Monitoring Station.

16.3 Applying the Method to Specify and Design the System

460 CHAPTER 16 Residential Security System Example Using OOSEM

is an abstraction of a UML deployment of a software component to a hardware
processor.

 The node physical architecture serves as the integrating framework for all
components to work together. The following activities support architecting the
software, data, and hardware; specialty views of the architecture such as security;
and the specifi cation of operational procedures to address their domain-specifi c
concerns.

 Defi ne Software Architecture
 The software architecture is a view of the overall system architecture that
includes the software components and their interrelationships. Software archi-
tecting is critical to effectively specify the software components.

 The ESS Software Block Defi nition Diagram is shown in Figure 16.41 . The
Software Composite block aggregates all the software and is composed of the
Site Software Composite and CMS Software Composite. The Software Composite
may be a container rather than a run-time entity that calls other components. This
is subject to further refi nement through the software architecture process.

 The Site Software Composite and CMS Software Composite in turn aggre-
gate the components that were allocated to the Site Installation and the Central
Monitoring Station software. The hierarchies are shown in the respective software
block defi nition diagrams in Figures 16.42 and 16.43 . The initial allocation from the
logical-to-physical components may not include the allocation to infrastructure and
operating system components that are required to support the application compo-
nents, but it must be addressed as part of the software architecture design.

 These software block defi nition diagrams, along with the internal block dia-
gram and activity diagrams from the node physical architecture, provide a foun-
dation for defi ning the software architecture at the system level. The software
components may require considerable refi nement to address the software-specifi c
concerns and fully specify the software requirements. For example, the software

bdd Software architecture [ESS Software BDD]

«block»
CMS Software Composite

«block»
Site Software Composite

«block»
Software Composite

site_install_sw cms_sw

 FIGURE 16.41

 ESS Software Block Defi nition Diagram aggregates the Site Installation software and Central
Monitoring Station software.

461

bdd Site Software [Site Installation Software BDD]

«block»
Site Software Composite

The site installation
composite can be viewed
as a software
configuration item.

«software»
Power Mgr-site

«software»
Optical Sensor If

«software»
IR Motion Detector If

«software»
Fire Detector If

«software»
Alarm If

«software»
Console If

«software»
Modem If

«software»
Network If

«software»
Camera If

«software»
Fault Mgr

«software»
Video Recorder If

«software»
User Validation Mgr-site

«software»
Event Mgr

«software»
System Status Mgr

«software»
File If

«software»
DBMS If

«software»
Pwr Distr Hub If

«software»
System Controller

«software»
Battery If

 FIGURE 16.42

 Site Installation Software Block Defi nition Diagram showing the software components in a typical Site
Installation.

16.3 Applying the Method to Specify and Design the System

462 CHAPTER 16 Residential Security System Example Using OOSEM

bdd CMS Software [CMS Software BDD]

«block»
CMS Software Composite

«software»
Alert Mgr

«software»
DBMS

«software»
Data Access Mgr

«software»
Data Access Request Mgr

«software»
Firewall

«software»
Generator If

«software»
Power Mgr-cms

«software»
Video If

 FIGURE 16.43

 CMS Software Block Defi nition Diagram showing the software components in the Central
Monitoring Station.

463

 architecture may include sequence diagrams to refi ne the interaction between the
software components, as shown in the Monitor Intruder Sequence Diagram in
Figure 16.44 . In addition, an internal block diagram, which represents the inter-
connection of software parts, may be generated for the Site Software Composite
and CMS Software Composite. The interfaces may include standard ports that are
typed by required and provided interfaces. Both the sequence diagrams and the
internal block diagrams should be consistent with the behavior and structural
requirements specifi ed by the node physical architecture activity diagrams and
internal block diagrams. The software architecture refi nement may be expressed
in UML as described later in this section.

 Some of the software architecture concerns depend on the application domain.
For information systems, the software architecture is often a layered architecture,
where each layer includes software components that may depend on a lower layer

sd Scenarios [Monitor Intruder Sequence Diagram-software1]

«software»
Optical

Sensor If

«software»
Event Mgr

«software»
System

Controller

«software»
Alarm If

«software»
System

Status Mgr

«software»
Console If

«software»
Network If

par

store
event()

control intruder
actions()

validate alert()

generate
status update()

generate alarm()

display
intruder alert()

process
intruder

detection()

 FIGURE 16.44

 Monitor Intruder Sequence Diagram showing the interaction among the software components.

16.3 Applying the Method to Specify and Design the System

464 CHAPTER 16 Residential Security System Example Using OOSEM

 for the services it provides. This may include a presentation layer, mission appli-
cation layer, infrastructure layer, operating system layer, and data layer, as shown
in the package diagram in Figure 16.45 . The software components from the node
physical architecture are further elaborated and partitioned into the different layers.

pkg Architecture Layers [SW Architecture Layers]

Mission Application

Presentation

Infrastructure Application

Operating System

Software Components
are contained in
Architecture Layers

Data Interface

 FIGURE 16.45

 Layered software architecture on a package diagram showing dependencies between layers.

465

 A reference architecture may be imposed as a design constraint that includes
reusable components that provide much of the infrastructure layer, such as mes-
saging, access control services, and database interfaces. For embedded real-time
software design, the architecture must also address concerns related to schedul-
ing algorithms and how to address concurrency, prioritization, and contention
for bus, memory, and processor resources. It should be noted that the partition-
ing of software components into packages does not capture all the relationships
between the run-time entities that must be addressed to adequately represent the
software architecture.

 Defi ne Data Architecture
 The data architecture is a view of the physical architecture that represents the
persistent data, how the data are used, and where the data are stored. The node
physical architecture provides the integration framework to ensure that the data
architecture is consistent with the overall system design. The persistent data
requirements can be derived from the scenario analysis. Persistent data are stored
by a logical or physical component and are represented as a property of the
component with the «store» stereotype applied. As part of the logical design,
the persistent data are encapsulated in the logical component that operates on
them. In the physical architecture, the physical data stores, such as a database,
are identified.

 The data defi nition types are specifi ed on an ESS Data Defi nition Block
Defi nition Diagram as shown in Figure 16.46 . The Data Composite aggregates
the persistent data defi nitions, which type the data properties stored by physi-
cal components. The Event Log Data File, Camera Video File, and User Access

bdd Data Architecture [ESS Data Definition BDD]

«block»
Data Composite

«block»
Site Data Composite

«block»
CMS Data Composite

«block»
Event Log Data File

«block»
Camera Video File

«block»
User Access Account Database

cms datasite install data

user account dbsite i camera
video

site camera
video

1..*

site i event log
1..*

1..*

site event log

 FIGURE 16.46

 ESS Data Defi nition Block Defi nition Diagram showing persistent data stored by the system at the Site
Installation and Central Monitoring Station.

16.3 Applying the Method to Specify and Design the System

466 CHAPTER 16 Residential Security System Example Using OOSEM

Account Database are examples of types of persistent data that are stored by ESS
components. The data defi nitions can be complex data structures. For example,
the Event Log Data File includes records of many different types of events, such
as intruder power-up events, system activation events, intruder detection events,
and others, that were derived from the scenario analysis.

 The composition relationship is used as a common pattern within OOSEM to
represent different hierarchies. This type of grouping in software is represented
by packaging rather than by composition because composition represents run-
time composition. The implication from a software perspective is that an instance
of a data item of the type Data Composite contains one or more instances of the
data type Site Data Composite , which is not an accurate run-time representation.
An alternative modeling approach is to include a package called Data Composite ,
which contains three packages called Site Data Composite , CMS Data Composite ,
and Shared Data Composite that have the appropriate data types defi ned within
them.

 The data architecture may include domain-specifi c artifacts to refi ne the data
specifi cations. The data relationships may be specifi ed by an entity relation attribute
(ERA) diagram or directly on the data defi nition block defi nition diagram using
associations among the data defi nitions. This description can be viewed as the con-
ceptual data model that represents the requirements for implementing the data-
base. The implementation of the conceptual data model is dependent on the tech-
nology employed, such as fl at fi le, relational database, and/or an object-oriented
database.

 There are many other domain-specifi c aspects of the data architecture that
must be considered, such as data normalization, data synchronization, data
backup and recovery, and data migration strategies. The selection of the data
architecture and the specifi c technology is determined through trade studies and
analyses, as described in Section 16.3.5.

 Defi ne Hardware Architecture
 The hardware architecture is a view of the physical architecture, which repre-
sents the hardware components and their interrelationships. The ESS Hardware
Block Definition Diagram is shown in Figure 16.47 . It aggregates the hardware
in a similar way to the ESS Software Block Definition Diagram in Figure 16.41 .

 The Site Installation Hardware Block Defi nition Diagram captures the
hardware components in a hierarchical structure, as shown in Figure 16.48 .
The hardware components are allocated from the logical components in Figure
16.33. The ESS Node Physical Internal Block Diagram in Figures 16.39 and
16.40 showed the interconnection of the hardware components. This can be
more fully elaborated with more detailed hardware interfaces, including commu-
nication protocols and the details of the communications network. The specifi c
selection of the hardware architecture and component technology results from
the engineering analysis and trade studies, as described in Section 16.3.5. This
includes the performance analysis to support sizing of the hardware components,
and reliability, maintainability, and availability analysis to evaluate supportability
requirements.

467

bdd Hardware Architecture [ESS Hardware BDD]

«block»
Hardware Composite

«block»
Site Hardware Composite

«block»
CMS Hardware Composite

Site and CMS hardware
composites can correspond to
Hardware Configuration Items

site install hw 1..* cms hw

 FIGURE 16.47

 ESS Hardware Block Defi nition Diagram aggregates the hardware for the Site Installation and
Central Monitoring Station .

 Defi ne Operational Procedures
 Operators can be external or internal to the system, depending on how the sys-
tem boundary is established. For the ESS, the Occupants of the property are
external to the system, as defined in the Operational Domain in Figure 16.11 .
On the other hand, the CMS Security Operator and CMS Administrator in Figure
16.49 are considered internal to the ESS. Some logical components are allocated
to internal operators to perform selected tasks. Both internal and external oper-
ators/users of the system are represented on activity diagrams to describe how
they interact with the rest of the system. They are also included in other diagrams
like any other external system or system component.

 The requirements for what an Operator must do to operate the system can be
specifi ed in terms of operational procedures, which defi ne the tasks required of
each Operator. The task analysis, timeline analyses, cognitive analysis, and other
supporting analysis are performed to determine levels of task performance that
are consistent with the specifi ed skill levels. The ESS Operational Procedures
are identifi ed in the ESS Operational Procedures Block Defi nition Diagram in
 Figure 16.50 .

 Specify Component Requirements
 The node physical architecture, which includes the elaboration of the software
architecture, data architecture, hardware architecture, and operational procedures,
results in the specification of the components of the system architecture to be
implemented in software, data, hardware, and operational procedures, respectively.

16.3 Applying the Method to Specify and Design the System

468 CHAPTER 16 Residential Security System Example Using OOSEM

bdd Site Hardware [Site Installation Hardware BDD]

«block»
Site Hardware Composite

«hardware»
Recorded Alarm

«hardware»
Power Adapter-site

«hardware»
Battery

«hardware»
Video Recorder

«hardware»
Modem

«hardware»
Router

«hardware»
Network Interface Card

«hardware»
Power Distribution

Hub-site

«hardware»
Surveillance Camera

«hardware»
Optical Sensor

«hardware»
IR Motion Detector

«hardware»
Fire Detector

«hardware»
Console

«hardware»
Site Processor

 FIGURE 16.48

 Site Installation Hardware Block Defi nition Diagram showing the hardware components within
the Site Installation that were allocated from the logical components in Figure 16.33 .

 The component specifications are a primary output from systems specifica-
tion and design process. The component specifications are typically captured
as blocks with the appropriate black-box specification features, as described in
Section 16.3.2. Examples of a software component specification and hardware
component specification model are shown in Figure 16.51 .

469

bdd Operators [ESS Operators BDD]

«operator»
ESS Operator

«operator»
CMS Administrator

«operator»
CMS Security Operator

 FIGURE 16.49

 ESS Operators Block Defi nition Diagram showing the internal ESS Operators.

bdd Operational Procedures [ESS Operational Procedures BDD]

«procedure»
Operational Procedure

«procedure»
Site Procedure

«procedure»
CMS Procedure

Maintenance procedures
are included separately with
the Security Domain
Installation and Support
procedures.

«procedure»
ESS User Procedure

«procedure»
CMS Administrator Procedure

«procedure»
CMS Security Operator

Procedure

 FIGURE 16.50

 ESS Operational Procedures Block Defi nition Diagram.

 The software component in the fi gure is the System Controller that is part
of the Site Software Composite, with the OOSEM «software» stereotype applied.
The fl ow ports show the event in port and the request out port. Standard ports
with required and provided interfaces could have been used instead of fl ow ports.
The controller operations are also specifi ed as features of the block. The state
machine for the controller derived from the logical state machine in Figure 16.26
defi nes the events that trigger the operations. The state machine provides a speci-
fi cation approximately equivalent to a series of statements as follows: {if (input i
 � X j and current state � S m), then (next state � S n) and do/activity A m } .

 The develop software process referred to in Figure 16.1 is used to perform
software requirements analysis to derive more detailed requirements, perform

16.3 Applying the Method to Specify and Design the System

470 CHAPTER 16 Residential Security System Example Using OOSEM

 software design, and implement and test software components. The Unifi ed
Modeling Language [28] is used to support this process. Classes can be sub-
classes of the software component specifi cations or allocated from the software
component specifi cations and represented on class diagrams. The UML compos-
ite structure diagram is used to refi ne the internal block diagram from the node
physical architecture in Figures 16.39 and 16.40 to refl ect the interconnection
and interfaces between the software components. The software design realizes
the software component interfaces, operations, and state machine behavior by
introducing more detailed structures and behaviors. The software sequence dia-
grams, such as the one shown in Figure 16.44 , are further elaborated to show the
interaction between the lower-level software design components. The UML com-
ponent diagram and deployment diagram can also be used for software design to
show more explicitly how the software is deployed beyond the abstract alloca-
tion of software to hardware in Figures 16.39 and 16.40 .

 The hardware component specifi cation in Figure 16.51 is the Surveillance
Camera that is part of the Site Hardware Composite with the OOSEM «hardware»
stereotype applied. The black-box component specifi cation includes functional
requirements derived from the scenario analysis, and performance properties with
stereotype «mop» whose values are determined through engineering analysis and
trade studies, as described in Section 16.3.5. The fl ow ports are used to specify the
interfaces. The development status indicates this is a COTS component.

 If software components are allocated to the hardware, they can be repre-
sented in an allocation compartment. In addition, a property can also be added

bdd Physical Architecture [Example Component Specifications]

«software»
System Controller

control activation actions ()
control deactivation actions ()
control fault actions ()
control fire actions ()
control intractions ()
control medical emerg actions ()
control pwr actions ()

fp event in

fp request
out

«hardware»
Surveillance Camera

«status»
COTS: boolean � true
«mop»
fov: Degrees
mtbf: Hours
resolution: int
sensitivity: int
weight: Pounds

provide health status ()
sense external ()

fp optical in

fp pwr in

fp sensor out
status

System controller specification
includes state machine

 FIGURE 16.51

 Example of hardware and software component specifi cations.

471

to the hardware component that references a geometric drawing of the compo-
nent, or customized port types can be defi ned to represent mechanical interfaces.
Additional specifi cation features can be added to address the needs.

 Defi ning Other Architecture Views
 There may be other architectural views of the system that address specific stake-
holder perspectives, such as a security architecture. The security architecture
can be represented as a subset of the node physical architecture, which includes
hardware, software, data, and procedures that address security requirements. In
this sense, the security architecture is a subset of the overall system architecture.

 A viewpoint represents a stakeholder perspective, such as a security architect
viewpoint. The viewpoint is used to specify a subset of the model that is of inter-
est to the stakeholder. As described in Chapter 5, a viewpoint includes rules that
specify how a particular view is constructed to refl ect the stakeholder perspec-
tive. The rules can be defi ned in terms of criteria for querying the model. A view
provides a fi ltered portion of the model that conforms to the viewpoint by return-
ing the model elements in response to the model query.

 If the query criteria defi ne all components needed to satisfy the system secu-
rity requirements, such as the confi dentiality, integrity, and availability require-
ments, the security architecture view includes the model elements that satisfy
these requirements. Refer to Section 16.3.6 for an example of how viewpoints
and views can satisfy requirements.

 16.3.5 Optimize and Evaluate Alternatives
 The Optimize and Evaluate Alternatives activity is shown in Figure 16.52 . This
activity is invoked throughout all other OOSEM activities to support engineering
analysis and trade studies. This activity includes identifying the analysis that is
needed, defining the analysis context, capturing the constraints in a parametric
diagram, and performing the engineering analysis.

 Chapter 7 describes how to model constraints with parametrics. Chapter 17
includes a discussion of engineering analysis and simulation models and how they
fi t into the overall modeling environment. SysML enables critical system character-
istics in the model to be captured so that they can be analyzed, and it provides a
mechanism to integrate the system design models with the multitude of engineer-
ing analysis models, such as performance, reliability, and mass properties analysis.

 Identify Analyses to Be Performed
 The analyses to be performed should support specific analysis objectives, which
may include the following:

 ■ Characterize or predict some aspect of the system, such as its performance,
reliability, mass properties, or cost

 ■ Optimize the design through sensitivity analysis
 ■ Evaluate and select a preferred solution among alternative design approaches
 ■ Verify a design using analysis
 ■ Support other analyses, such as a risk analysis and mitigation planning

16.3 Applying the Method to Specify and Design the System

472 CHAPTER 16 Residential Security System Example Using OOSEM

 Different types and fidelity of engineering analyses are identified throughout the
design process to meet the range of analysis objectives.

 Defi ne the Analysis Context
 The analysis context is a block definition diagram that defines the constraint
blocks that are used in the analysis. The constraint block specifies an equation,
such as { F � m * a } , along with its parameters, which in this case would be “ F, ”
 “ m,” and “ a. ”

 Figure 16.53 shows the ESS Analysis Context. The Analysis Context block is
composed of constraint blocks that are used to analyze the system. In this exam-
ple, the constraint block defi nes an objective function that is used as a basis for
evaluating the overall value of the system. The objective function specifi es an
equation that relates system cost effectiveness to the measures of effectiveness
for availability, emergency response time, probability of intruder detection ,
and probability of false alarm .

 The ESS Analysis Context also includes a reference to the Operational
Domain block, which is the top block in the system hierarchy. By referencing
this block, the analysis equations can be related to any of the properties of the

act Activities [Optimize and Evaluate Alternatives]

property values
captured in
model

define
analysis context

capture constraints
in parametric diagram

perform
engineering analysis

identify
analyses to be performed

 FIGURE 16.52

 Optimize and Evaluate Alternatives activity to support trade studies and analysis.

4
7

3

bdd Parametrics [ESS Analysis Context]

«block»
Analysis Context

reference_coordinate_system:
Position Vector � 0,0

«constraintBlock»
Operational Objective Function

constraints
{cost effectiveness � WeightedSumofUtility (avail,emerg resp time,

prob intr detection, cost false alarm)}

exp cost false
alarm

prob of
detectionavail

emerg
resp timecost effect

The objective
function is used to
support trade-off
analysis.

«constraintBlock»
Total Availability

Equation

«constraintBlock»
Prob of Intruder

Detection Equation

«constraintBlock»
Probability of False

Alarm Equation

«constraintBlock»
Operational Cost

Equation

«constraintBlock»
Emergency Response

Time Equation

«block»
Operational Domain

oper cost eqert eqenter avail eq pid eq pfa eq

optimization_function *

od

 FIGURE 16.53

 ESS Analysis Context defi nes the objective function as the top-level constraint block and other analysis models for each moe.

474 CHAPTER 16 Residential Security System Example Using OOSEM

 operational system being analyzed. The context also references the operational
domain to support trade-off analysis of ESS alternatives that are part of the opera-
tional domain.

 Capture Constraints in Parametric Diagram
 The parametric diagram enables the integration between the design and analysis
models. It does this by binding the parameters of the analysis equations that are
defined in the Analysis Context to the properties of the system being analyzed.

 The top-level parametric diagram for the ESS is discussed in Section 16.3.1
and shown in Figure 16.10 . The parametric diagram uses the equations defi ned
in the ESS Analysis Context in Figure 16.53 . The parametric diagram binds the
parameters of the objective function to the moes in the Security Enterprise
shown in Figure 16.11 .

 The top-level parametric diagram is used to identify other engineering analyses
to be performed. As the system design evolves, additional engineering analysis is
needed to evaluate the system design against top-level moes. Figure 16.54 shows
a parametric diagram for the availability model that binds the parameters of the
availability equation to specifi c properties of the ESS. The availability property in
the fi gure is also shown in the top-level parametric diagram in Figure 16.10 and
represents a moe. The parametric diagrams provide the mechanism to maintain

par Analysis Context [Availability Analysis]

avail 1 avail 2 avail 3

avail total
enterprise : Total Availability Equation

sys avail
ess : Availability Equation

mtbf mttr

«moe»
od.seo.emerg serv.

availability

«moe»
od.eso.comm nw.

availability

«mop»
od.seo.ess.
repair time

«mop»
od.seo.ess.

reliability

«moe»
od.seo.ess.
availability

«moe»
od.seo.

availability

 FIGURE 16.54

 Availability Analysis model captured in a parametric diagram.

475

explicit relationships between the moes and their fl ow down to critical system,
element, and component properties.

 Parametrics can also be used to constrain inputs, outputs, and the input/out-
put relationship associated with the behavior of a system or component. In the
Intruder Emergency Response Scenario in Figure 16.14 , the Monitor intruder
action includes pre- and postconditions on the inputs and outputs. A correspond-
ing constraint block can be defi ned to specify the mathematical relation between
the probability of detection of the signal output and the signal-to-noise ratio of
the signal input. The constraint block can then be used on a parametric diagram
to bind to the system’s specifi c properties to analyze the detection performance.

 As described in Section 16.3.2, the state of the system is also shown as a prop-
erty of the ESS block that is stereotyped as «composite state ». The value of this
property represents the state of the system at any point in time and is determined
by the ESS state machine behavior. This property can be used in parametrics
by binding a state-dependent constraint to the composite state property. For a
bouncing ball example, the constraints that apply to the forces on the ball depend
on the state of the ball in terms of whether it is in contact with the ground or not.
The state-dependent constraint can be conditioned on the state of the ball. For this
example, the state-dependent constraint would specify whether the state of the
ball is “contact with ground, ” then one constraint applies; and if the state of
the ball is “not in contact with the ground, ” then another constraint would apply.

 Perform Engineering Analysis
 A computational capability is required to execute the equations in the parametric
diagram. This can be done manually or with the aid of engineering analysis tools,
as described in Chapter 17. The analysis results determine the specific values or
range of values of the system properties that satisfy the constraints. The values can
be incorporated back into the system design model. As an example, the availabil-
ity analysis results can show the extent to which the system satisfies its availability
requirement. The timeline in Figure 16.16 is another example of analysis results.

 16.3.6 Manage Requirements Traceability
 The Manage Requirements Traceability activity is shown in Figure 16.55 . This
activity is invoked throughout all other OOSEM activities to establish require-
ments traceability between the stakeholder requirements and the system specifi-
cation and design model. This includes defining the specification tree; capturing
the text-based requirements in the model; establishing relationships between the
text-based requirements and the model elements using derive, satisfy, verify, and
refine relationships; and generating the traceability reports. The language con-
cepts for requirements modeling are described in Chapter 12.

 Defi ne Specifi cation Tree
 The ESS Specification Tree is shown in Figure 16.56 . The specification tree shows
the specifications at each level of the system hierarchy. A requirement is created

16.3 Applying the Method to Specify and Design the System

476 CHAPTER 16 Residential Security System Example Using OOSEM

 to represent a container for all the requirements contained in each text specifica-
tion. The specification tree includes the ESS Mission Requirements, ESS System
Requirements, Site Installation Requirements, Central Monitoring Station
Requirements, and Site and CMS Hardware and Software Requirements .

act Activities [Manage Requirements Traceability]

establish requirements
relationships and rationale

capture text-based
requirements in model

manage
requirements

updates

analyze
traceability

gaps

define
specification

tree

derive, satisfy,
verify, refine

 FIGURE 16.55

 Manage Requirements Traceability activity, intended to maintain traceability between
stakeholder requirements and the system specifi cation and design model.

477

req Requirements [ESS Specification Tree]

Security Enterprise
Capabilities as-is

Stakeholder Needs
Assessment

Competitive System
Capabilities

«requirement»
CMS Hardware
Requirements

«requirement»
CMS Software
Requirements

«requirement»
Site Installation
Requirements

«requirement»
ESS Test Procedure

«requirement»
ESS System

Requirements

«requirement»
Site Hardware
Requirements

«trace»

«trace»

«trace» «trace»

«trace» «trace»

«trace»

«requirement»
ESS Mission
Requirements

«requirement»
Site Software
Requirements

«requirement»
Central Monitoring

Station Requirements

 FIGURE 16.56

 ESS Specifi cation Tree on a requirements diagram showing the hierarchy of specifi cations.

 The trace relationship shows the traceability between the specifi cations at
each level. The specifi cation tree also shows traceability from the ESS Mission
Requirements to a Stakeholder Needs Assessment document. A document icon is
shown in the upper right corner rather than the stereotype symbol «document»,
which is an example of a user-defi ned icon.

 The trace relationship is used for coarse-grained traceability that does not
include the fi ne-grained traceability between individual design elements and indi-
vidual requirements. The fi ne-grained traceability uses other requirements rela-
tionships, as described later in this section.

16.3 Applying the Method to Specify and Design the System

478 CHAPTER 16 Residential Security System Example Using OOSEM

 Capture Text-Based Requirements in Model
 The stakeholder requirements are often captured in text specifications external
to the modeling environment. The text-based requirements are captured in the
model by creating a SysML requirement for each text requirement. Many of the
SysML modeling tools provide a mechanism to import text requirements directly
into the modeling tool and to maintain synchronization between the source
requirements and the requirements in the SysML modeling tool.

 The Requirements package, which was briefl y discussed in Section 16.3.1 and
shown in Figure 16.3 , contains the requirements. A nested package is created for
each specifi cation in the ESS Specifi cation Tree, which contains the requirements
in the specifi cation.

 As an example, the ESS System Specifi cation is shown in the requirements dia-
gram in Figure 16.57 . The top-level requirement is the ESS System Requirements .
As mentioned before, this requirement serves as a container for the other require-
ments in the specifi cation. The containment hierarchy of requirements in each
individual specifi cation generally corresponds to the organization of the text-
based specifi cation. Each requirement has a name, an id, and text, and may also
include additional requirement properties, such as criticality, uncertainty, prob-
ability of change, and verifi cation method.

 Establish Requirements Relationships and Rationale
 Requirements traceability is maintained by establishing relationships between the
text-based requirements in the model, and other model elements that correspond
to other requirements, design elements, and test cases. The rationale for the rela-
tionship can also be captured in the model.

 An example of requirements traceability can be seen in the requirements dia-
gram in Figure 16.58 , which shows traceability from the mission requirement for
Intruder Emergency Response to the Surveillance Camera component specifi ca-
tion. The Provide Emergency Response use case refi nes the requirement by add-
ing a use case description (not shown). The steps in the use case description can
also be captured as text requirements that can be related to other requirements,
design elements, and test cases as part of the traceability.

 The ESS system requirement for Intruder Detection and False Alarm Rate
is derived from the mission-level requirements. The requirement for Perimeter
Detection is contained by the Intruder Detection and False Alarm Rate require-
ment. The Surveillance Camera Requirements are derived from the Perimeter
Detection and Data Validation requirement. The Surveillance Camera is
asserted to satisfy the Surveillance Camera Requirements. The Monitor Intruder
test case verifi es that the Intruder Detection and False Alarm Rate require-
ment is satisfi ed. The rationale for storing video at both the Site Installation and
Central Monitoring Station to satisfy the Video Storage requirement is shown
using the «rationale» stereotype.

 The level of granularity at which the traceability is maintained is determined as
part of the process tailoring. For example, it may be suffi cient to assert that a par-
ticular component satisfi es a requirement, such as the Surveillance Camera in the

479

req ESS System Specification [ESS System Specification]

«requirement»
Intrusion Detection

and False Alarm Rate

«requirement»
Perimeter Detection

«requirement»
Internal Detection

«requirement»
Medical Alert

and False
Alarm Rate

«requirement»
Fire Detection

and False
Alarm Rate

«requirement»
Security System

Capabilities

«requirement»
Reliability,

Maintainability,
Availability

«requirement»
Availability

«requirement»
Physical and
Installation

«requirement»
Wireless

«requirement»
Interface

«requirement»
Internet Access

«requirement»
Backup Power

«requirement»
System Vulnerability

«requirement»
User Interface

«requirement»
Wireless

Activation and
Deactivation

(optional)

«requirement»
Cost

«requirement»
Installation Cost

«requirement»
Recurring Cost

«requirement»
Environment

«requirement»
Fault Detection
and Isolation

«requirement»
Data Validation

«requirement»
ESS System Requirements

«requirement»
Detect Loss of

Power

«requirement»
Web Interface

«requirement»
Displays and

Controls
Interface

«requirement»
Power Surge
and Lightning

Protection

«requirement»
Sprinkler System

«view»
RMA

«view»
Security

This can be a
view of the
security
architecture.

«rationale»
This imposes specific requirements
for capturing evidence to support
prosecution.

«satisfy»

«satisfy»

«requirement»
Entry–exit Detection

«rationale»
Reference RMA
analysis report.

RMA parametrics
provided as input
to this analysis.

This should
attach to satisfy
relationship.

 FIGURE 16.57

 ESS System Specifi cation showing the requirements contained in the system specifi cation on a requirements
diagram.

16.3 Applying the Method to Specify and Design the System

480 CHAPTER 16 Residential Security System Example Using OOSEM

req Requirements [Requirements Flowdown for Intruder Emergency Response]

«requirement»
Intrusion Detection

and False Alarm Rate

«requirement»
Intruder Emergency

Response

«requirement»
Perimeter Detection

«hardware»
Surveillance Camera

provide health status()
sense external()

«requirement»
Surveillance Camera

Requirements

«requirement»
Video Storage

«requirement»
Data Validation

«hardware»
Video Recorder

«hardware»
Video Storage Device

«store»
-sensor video: CMS Data
Composite

Provide Intruder
Emergency
Response

«testCase»
Monitor Intruder

«rationale»
Video is stored at both the
site installation and the
CMS to enable the Site
Installation to store the
video for short periods of
time and the CMS to
maintain long-term storage
of selected video.

«derive»

«satisfy»

«satisfy»

«satisfy»

«verify»

«derive»

«refine»

«derive»

 FIGURE 16.58

 Requirement diagram showing traceability from the Intruder Emergency Response mission requirement to
component-level requirements and design.

 earlier example. Alternatively, it may be necessary to show that a particular feature
of a component, such as one of its operations, satisfi es a particular requirement.
The fi ner granularity adds precision to the traceability, which may assist in change
impact assessment, for example; but it is done at the price of increased effort to
establish and maintain the traceability relationships.

481

 Analyze Traceability Gaps
 Traceability reports are generated and used to analyze traceability gaps and assess
how the system design satisfies the system requirements. Metrics can also be
used to determine requirements coverage in terms of both satisfy and verify rela-
tionships. The results from this analysis are used to drive updates to the system
design and verification and to update the traceability.

 The Viewpoints package was introduced in Section 16.3.1 and shown in
Figure 16.3 . Viewpoints and their corresponding views can aid in requirements
traceability analysis by providing a means to query the model for the model ele-
ments that satisfy a particular set of requirements. This was discussed at the end
of Section 16.3.4 as it relates to defi ning architecture views. A package diagram
of viewpoints and conforming views is shown in Figure 16.59 . The viewpoints
represent different stakeholder perspectives, which include Emergency Services ,
the Company Owner, the Customer, and selected members of the develop-
ment team, including the RMA Analyst and the Security Architect. If selected
requirements are used as the basis for defi ning the view query criteria, each
view is essentially a report of the model elements that satisfy the selected set of
requirements.

 Managing Requirements Updates
 The requirements management activity may result in proposed updates to exist-
ing requirements and the generation of new requirements. The model helps to
uncover ambiguous, inconsistent, and incomplete requirements that can then be
refined by proposing changes to requirements and managing the change through
the project change management process.

 On larger projects, a requirements management tool is generally used in con-
junction with the systems modeling tool. Integration between the two tools is
important to ensure that the requirements and their relationships are synchro-
nized between both tools. The change process must determine how changes to
requirements are handled. One approach is to make changes to requirements text
in the requirements management tool, and to establish the relationships to the
model elements and text requirements in the modeling tool. Chapter 17 includes
additional discussion on integrating the system modeling tools with the require-
ments management tool.

 16.3.7 Integrate and Verify System
 The Integrate and Verify System process is part of the system development proc-
ess described in Section 16.1.2. The goal of this process is to verify that the sys-
tem satisfies its requirements. System, element, and component verification is
typically accomplished by a combination of inspection, analysis, demonstration,
and testing. The process includes developing verification plans and procedures,
conducting verifications per the procedures, analyzing verification results, and
generating verification reports.

 OOSEM supports this process in several ways. The system-level use cases, sce-
narios, and associated requirements are used as a basis for developing test cases

16.3 Applying the Method to Specify and Design the System

482 CHAPTER 16 Residential Security System Example Using OOSEM

pkg Stakeholder Viewpoints

«view»
RMA

«view»
Security

«view»
Customer

«view»
Company Owner

«view»
Emergency Services

«conform»

«conform»

«conform»

«conform»

«conform»

«viewpoint»
RMA Analyst

concerns � RMA
methods � query model of elements that satisfy RMA
 requirements
purpose � show how RMA requirements are satisfied
stakeholders � RMA analyst

«viewpoint»
Security Architect

concerns � system security
methods � query model of elements that satisfy security
 requirements (i.e., security architecture)
purpose � show how security requirements are satisfied
stakeholders � Security architect

«viewpoint»
Customer

concerns � ease of use and installation, system cost, and
 overall capabilities
languages � SysML
methods � query model on moe's and reqt's related to
 system cost and operational capabilities

«viewpoint»
Company Owner

concerns � overall company sales and profit, customer
 satisfaction
languages � SysML
methods � query model on moe's and reqt's related to
 system cost

«viewpoint»
Emergency Services

concerns � cost and effectiveness of service
languages � sysml
methods � query model on moe's and reqt's related to
 false alarm rate and mission response time
purpose � assess impact on city services planning
stakeholders � Emergency services
 (police, fire, paramedics...)

 FIGURE 16.59

 ESS Stakeholder Viewpoints can be used to augment the requirements traceability.

 and associated verifi cation procedures. The Monitor Intruder test case verifi es
the Intrusion Detection and False Alarm Rate requirement shown in Figure
16.60 . The test case is represented as a stereotype of a sequence diagram. The ESS
NodePhysical is the system under test. In this example, an Emulator represents
the ESS external environment that generates the stimulus for a specifi c thread

483

 through the system and monitors the response to the stimulus. A tester initiates
the test.

 The ESS components interact in response to the test stimulus. The results
can then be recorded to determine whether the system provides the desired
response. An executable system model or the operational hardware and soft-
ware can be used to generate the response, or some combination of the two.
The test case includes a specifi cation of the stimulus and the expected response,
which provides the basis for comparison with the verifi cation result to determine
whether the system passes or fails. The parametric diagrams used to specify the
input/output relations are used to specify the stimulus and expected response
values for the test case. The requirements management database is updated to
refl ect the verifi cation results.

 16.3.8 Develop Enabling Systems
 To develop a complete capability that supports the entire system life cycle, sev-
eral enabling systems may need to be developed and/or modified. The enabling

sd [TestCase] Monitor Intruder [Intruder Detection Test Case]

system under test
:ESS Node Physical

:Environment
Emulator:Tester

initate test()

activate()

activate on()

intruder entry()

intruder alert()

verification result()

 FIGURE 16.60

 Monitor Intruder test case.

16.3 Applying the Method to Specify and Design the System

484 CHAPTER 16 Residential Security System Example Using OOSEM

 systems include the manufacturing system to produce the system, support sys-
tems such as support equipment to maintain the system, and verification systems
to test the system. The practice of concurrent engineering demands that these
life-cycle considerations be addressed early and in a coordinated fashion. As a
result, the enabling systems are developed concurrently with the operational sys-
tem so that specific concerns, which may impact other parts of the life cycle, are
addressed early in the development process.

 Figure 16.61 shows the processes for concurrent development of the ESS
operational system with the ESS enabling systems for verifi cation and installation.
The OOSEM method was applied to the development of the operational system
in this example. However, the method and associated artifacts can be tailored
and applied to specify and design the enabling systems as well. For very complex
enabling systems, the entire method may be applied. For simpler systems, only
selected aspects of the method may apply.

 As an example, the verifi cation system may be quite complex, such as when
precision measurement equipment is required to verify the system. The require-
ments on the measurement equipment may be more stringent than the require-
ments on the operational system under test. For this case, a rigorous application of
OOSEM may be required. In Figure 16.60 , a part of the verifi cation system included
the Emulator for stimulating the system under testing and monitoring the results.
The emulation development may require an application of OOSEM.

act Activities [Develop Operational and Enabling Systems]

develop
installation

system

develop
verification

system

develop
operational

system

The development process is
applied to each enabling system
that is required to support the
system life cycle (e.g., test,
installation, manufacturing,
support systems).

 FIGURE 16.61

 Concurrent development process of the operational system and enabling systems.

485

 The ESS Installation System may be complex as well and may warrant the
application of OOSEM to its specifi cation and design. The block defi nition dia-
gram for the ESS installation domain is shown in Figure 16.62 . The Installation
Enterprise includes the ESS Installation System and external Suppliers that
support the installation objectives, as defi ned by the installation use cases. The
ESS Installation System includes Installation Equipment, such as Installation
Trucks and Installation Tools, and the Installers. This serves as a starting point
for specifying and designing the ESS Installation System in a similar way to the
Operational Domain Block Defi nition Diagram in Figure 16.11 , which was a
starting point for the specifi cation and design of the ESS operational system.

 16.4 Summary
 The example described in this chapter illustrates how SysML is used as part of a
model-based systems engineering method, called OOSEM, to solve a systems engi-
neering problem. The top-down scenario-driven method flows the requirements

bdd Installation [Installation Domain BDD]

Link to Installation
Enterprise Use
Case Diagram

installation
system

site 0..*

0..*

0..*

security
installation

sei

installation_equip

«block»
Site

«block»
Installation Enterprise

«block»
Installation Domain

«block»
ESS Installation System

«node logical»
Site Installation

«block»
Installation Equipment

«block»
Installer

«block»
Supplier

«block»
Installation Truck

«block»
Installation Tool

 FIGURE 16.62

 Installation domain block defi nition diagram, a starting point for the specifi cation and design
of the ESS Installation System .

16.4 Summary

486 CHAPTER 16 Residential Security System Example Using OOSEM

down from stakeholder needs to component-level specifications, which include
hardware, software, persistent data, and operational procedures. The OOSEM
approach includes analysis of stakeholder needs, analysis of black-box system
requirements, defining the logical architecture, synthesizing candidate physical
architectures, and supporting activities to optimize and evaluate alternatives and
manage requirements traceability.

 The method also supports the verifi cation process in the up side of the Vee
development process. The approach illustrates how different aspects of the sys-
tem are analyzed to address a multitude of concerns related to system functional-
ity, interfaces, performance, distribution, and life-cycle considerations.

 OOSEM should be tailored to the particular project objectives and constraints
and associated modeling objectives, scope, and tool and resource constraints. The
tailoring includes selecting the level of rigor that is applied to each of the OOSEM
activities, which modeling artifacts are generated, and to what level of detail.

 16.5 Questions
 1. Develop the following artifacts for the Provide Fire Emergency Response use

case shown in Figure 16.12 .
 a. Fire Emergency Response Scenario (equivalent to Figure 16.14)
 b. Monitor Fire Activity Diagram—Logical (equivalent to Figure 16.22)

 2. The customer has introduced the following new requirement: “The ESS shall
provide the ability to integrate with a fi re-suppression system to extinguish
fi res when detected with minimal adverse impact to the property. ” Describe
the impact of this new requirement on the system design by identifying the
changes to each of the following modeling artifacts.
 a. Requirement diagram (Figure 16.57)
 b. Use Case Diagram (Figure 16.12)
 c. Fire Emergency Response Scenario (refer to response to Question 1a)
 d. ESS Context Diagram (Figure 16.15)
 e. ESS Black-Box Specifi cation (Figure 16.17)
 f. ESS Logical Decomposition (Figure 16.21)
 g. Monitor Fire Activity Diagram—Logical (refer to response to Question 1b)
 h. ESS Logical Internal Block Diagram (Figure 16.25)
 i. ESS Node Logical Block Defi nition Diagram (Figure 16.28)
 j. ESS Node Logical Internal Block Diagram (Figure 16.32)

 k. Allocation Table for Site Installation (Figure 16.33)
 l. ESS Node Physical Internal Block Diagram—Site Installation (Figure 16.39)

 3. Discuss how the preceding requirements change impacts the analyses to be
performed.

 4. How are the measures of effectiveness impacted by this requirements change?
 5. How does this impact the top-level parametric diagram in Figure 16.10 ?
 6. What additional types of analysis are required, and how can this be refl ected in

parametric diagrams?

PART

Transitioning to
Model-Based
Systems
Engineering

IV

This page intentionally left blank

 This chapter describes an approach to and considerations for integrating SysML
into a systems development environment. The considerations include the role of
the SysML model in the development environment, the logical interfaces between
systems modeling tools and other tools in the environment, the specific data
exchange mechanisms, and the criteria for selecting a SysML tool. Other aspects
of deploying SysML in an organization are discussed in Chapter 18.

 17.1 Understanding the System Model’s Role in a Systems
Development Environment

 This section describes how the system model must be supported by the system
development environment, how it provides an integrating framework for system
development, and how it relates to understanding system dynamics via model
execution.

 17.1.1 Systems Development Environment
 A systems development environment refers to the tools and repositories used
for system development. Typical tools may include the system modeling tools;
engineering analysis tools, hardware, software, and test tools; project manage-
ment tools; and others. Tools and repositories are expected to be computer-
based, multiuser, networked applications supported by a computing and network
infrastructure. The term integrated systems development environment implies
some logical connectivity between these tools and repositories to support col-
laborative engineering.

 17.1.2 The System Model as an Integrating Framework
 As discussed in Chapter 2 and shown in Figure 17.1 , the system model is a pri-
mary product of a model-based systems engineering (MBSE) approach. As such,
the application of the specific MBSE approach determines the scope and integrity

 Integrating SysML into a
Systems Development
Environment 17

CHAPTER

490 CHAPTER 17 Integrating SysML into a Systems Development Environment

of the model, and how it relates to other artifacts of the system development
process. A system model, represented in SysML, is shown in Figure 17.1 . The sys-
tem model can serve as an integrating framework for other models and devel-
opment artifacts including external requirements, engineering analysis models,
hardware and software design models, and verification models. In particular, it
relates the text requirements to the design, provides the design information
needed to support the analysis, serves as a specification for the subsystem and
component design models, and provides the test case information needed to sup-
port verification.

 17.1.3 Relation of a System Model to an Executable System Model
 As described in previous chapters, the system model captures the requirements,
structure, behavior, and parametric constraints associated with a system and its
environment. This information can then be queried and analyzed for consistency
across the model. The system model information can be used as a basis for build-
ing an executable system model to understand and analyze the dynamics of the
system. To support this, the static system modeling environment must be aug-
mented by an execution environment. Executable system models can include a
dynamic system model, a performance simulation model, and other ana-
lytical models .

closed form

discrete event

network

Analysis Models

External
Requirements

System
Documentation

and Specifications

viewpoint

traceability
rationale

analysis
needs

Electrical
Design
Models

Software
Design
Models

Mechanical
Design Models

Testing
Methods and

Models

performance
estimates

System Model (SysML)

system framework for design

req

actibd

par

Structure Behavior

Requirements Parametrics

 FIGURE 17.1

 The system model as a framework for analysis and traceability.

491

 A dynamic system model can be a discrete event simulation that provides
a means for dynamic verifi cation and consistency checking of the model. This
abstract-level model execution can signifi cantly enhance understanding of sys-
tem operation. Dynamic system behavior, such as the sequencing of actions,
input/output and message fl ow, and state changes, are often diffi cult to under-
stand through a static graphical view of the behavior, such as an activity diagram,
sequence diagram, or state machine diagram.

 Execution of the dynamic system model can be augmented by animation and
other visualizations to step through the behavior. Animation can rely on pre-
scripted execution of defi ned scenarios, or it can rely on specifi c user interac-
tion (e.g., “toggle this input and see what happens ”). This capability can help
validate functional and interface requirements, validate data types, perform what-
if behavior analysis, and explore user interaction concepts. To accomplish this,
the dynamic system modeling environment must be able to interpret or compile the
semantic information from the SysML model, and extend it into executable code.
The primary SysML modeling artifacts that support creation of a dynamic system
model are the behavior and structure models.

 As stated before, a dynamic system model generally focuses on the sequenc-
ing of actions and consistency of inputs and outputs. A performance simula-
tion, or continuous stimulation, extends this capability to capture the underlying
mathematical relationships associated with resource modeling and physics-based
modeling, which is necessary to analyze system performance. The performance
simulation may also include the capability to evaluate the stochastic nature of sys-
tem performance, such as providing a Monte Carlo capability. These simulations
are sometimes accompanied by data-analysis tools and sophisticated visualization
tools that enable performance to be visualized, much like a video game. The exe-
cution environment for this capability must extend beyond the dynamic system
model execution environment by providing the ability to simulate the underlying
mathematics, such as numerical solutions to differential equations. In addition to
the behavior and structure models in SysML, the performance simulation models
can leverage SysML parametric models.

 A further extension to performance simulation is the distributed simulation
capability that enables multiple simulations to be integrated across a network.
The High-Level Architecture (HLA) standard supports a distributed simulation
capability. A simulation based on HLA requires development of Federated Object
Models (FOM), which represent individual simulation modules that can commu-
nicate with one another. The Run-Time Infrastructure (RTI) provides the run-time
environment for time management, publish/subscribe, messaging, and other fea-
tures necessary to coordinate the distributed simulation execution.

 An analytic model is a general class of model used to address a specifi c type
of analysis. Analytic models can be static or dynamic and can include models of
reliability, mass properties, and thermal characteristics. Performance simulation
can be viewed as a type of analytic model that evaluates performance. The exe-
cutable analytic model drives either a dynamic simulation or a static constraint
solver that solves a set of simultaneous equations. The execution environment
must include some computational engine to support this. SysML parametrics,

17.1 Understanding the System Model’s Role

492 CHAPTER 17 Integrating SysML into a Systems Development Environment

along with the values of related properties captured in the system model, are
intended to be a key input to analysis models.

 17.2 Integrating the Systems Modeling Tool with Other Tools
 This section discusses integrating the systems modeling tool with other tools,
including tool interface definition and interchange standards.

 17.2.1 Classes of Tools in a Systems Development Environment
 A systems development environment includes a wide spectrum of tools to sup-
port the various types of models and other artifacts resulting from the system
development process. Figure 17.2 depicts an environment that integrates mul-
tiple types of tools to support a development process, which includes systems,
hardware, software, verification, engineering analysis, and simulation, along with
configuration management and other project management tools. Each class of
tool implements specific parts of the overall development process. The tools are
briefly summarized next.

 Project management tools support planning and control of the overall develop-
ment effort to ensure effective cost, schedule, and technical performance. These
tools may also include workflow engines to control the whole process.

 System-of-systems modeling tools support the SoS and enterprise modeling.
A typical tool may include support for DoD Architecture Framework (DoDAF)
modeling.

Project Management

C
M

/D
M

P
ro

du
ct

 D
at

a
M

an
ag

em
en

t

R
eq

ui
re

m
en

ts
 M

an
ag

em
en

t

P
er

fo
rm

an
ce

 S
im

ul
at

io
n

V
er

ifi
ca

tio
n

an
d

V
al

id
at

io
n

SoS/DoDAF /Business Process Modeling
UPDM

System Modeling
(SysML)

Software Modeling
UML 2.0

Hardware Modeling
VHDL, CAD, . . .

E
ng

in
ee

rin
g

A
na

ly
si

s

Document Generation

 FIGURE 17.2

 Interlocking disciplines in an integrated system development environment.

493

 System modeling tools support development of the system model as described
earlier. This is assumed to be the primary SysML tool.

 Performance simulation tools support dynamic performance analysis and
trade-off analysis from the SoS level down to the component level.

 Requirements management tools generate, trace, track, and report text-based
requirements, and assemble them into specification documents.

 Configuration management and data management tools ensure that models
and other development artifacts (e.g., specifications, plans, analyses, test
results) are maintained in a controlled fashion.

 Verification tools are used to verify compliance with requirements. The verifica-
tion environment can vary from simple test tools to complex verification facilities
and equipment.

 Engineering analysis tools support analysis of the system design from multiple
aspects, and often are specialized tools for different disciplines (e.g., reliability,
safety, security, cost, and mass properties analysis).

 Hardware development tools are used to design, implement, and test hardware
components and may include 3D modeling tools, electrical design tools, and
so on.

 Software development tools are used to design, implement, and test software
components and may include UML modeling tools, compilers, debuggers, and
so on.

 Document generation tools are used to prepare and manage formal documentation
of the system design, either as text files or queries, that can be run on demand to
collect and format data from the other tools.

 17.2.2 An Interconnected Set of Tools
 Establishing an integrated systems development environment requires a systems
engineering approach in its own right. The full life cycle of the systems devel-
opment environment should be considered when engineering the environment
from its initial procurement, through installation and configuration, operating the
environment, and maintaining the environment. Architecting of the environment
should include a definition of its interfaces and the standards required to support
them. The following discussion focuses on the structure and information flow
within the systems development environment.

 Figure 17.3 is a notional example of an integrated systems development envi-
ronment, depicted as an internal block diagram. Note that each class of tool
from Figure 17.2 is represented, but that some of the tools, such as the System
Analysis Tool and Engineering Development Tool, include further subclasses;
they are abstracted to simplify this diagram.

 This example assumes that each class of tool has generic capabilities. A specifi c
tool may fi ll more than one of these roles, and a specifi c systems development

17.2 Integrating the Systems Modeling Tool with Other Tools

494 CHAPTER 17 Integrating SysML into a Systems Development Environment

environment may include multiple tools for the same role, depending on user pref-
erences and previous vendor arrangements. Not every class of tool needs to be
included for the systems development environment to be useful. In many cases
simple offi ce tools (e.g., spreadsheets, word processing, scheduling) may be used.
Each of these kinds of tools may have their own fi le structure or internal database.
It is assumed that the confi guration management tool is able to capture these
fi les or databases in a managed repository throughout the development process.

 The following summarizes the logical fl ow of data between the system model-
ing tool and the other classes of tools, and it provides a general approach for ana-
lyzing the interface requirements for the system modeling tool.

 17.2.3 Interface with Requirements Management Tool
 Figure 17.4 shows the interface between the System Modeling Tool and a Require-
ments Management Tool, which includes the exchange of requirements and their
relationships. This can be a two-way exchange of information, but it is highly proc-
ess dependent, and is a function of which tool is responsible for updating which
aspect of the requirements database.

 A typical approach to synchronize updates in the Requirements Management
Tool and the model is to assume that the Requirements Management Tool con-
tains all textual requirements in the requirements baseline, and that this baseline
is maintained in the Requirements Management Tool. The System Modeling Tool
typically addresses a subset of the total requirements depending on the scope of
the model. As a result, the System Modeling Tool can be used to propose updates

ibd [Block] System Modeling Environment [item flows elided]

: System Modeling
Tool

: Requirement Management
Tool

: Document Generation
Tool

: System Analysis
Tool

: Configuration Management
Tool

: Engineering Development
Tool

: Program Management
Tool

performance
analysis,
engineering analysis

software
hardware
mechanical

: Verification Tool

 FIGURE 17.3

 Notional interfaces between tools in a systems development environment.

495

to the requirements baseline, but they are formally updated and controlled in the
Requirements Management Tool .

 The derive relationship between the text requirements may be maintained in
the Requirements Management Tool, as well, because they only involve relation-
ships between text-based requirements. Other requirements relationships, such
as the satisfy, verify, and refi ne relationships between the requirements and the
model elements, may be more easily maintained in the System Modeling Tool .
The responsibility for maintaining the data in each tool must be well defi ned, and
the repositories must be synchronized.

 Many modeling tools also interface with other third-party tools that provide an
interface between the modeling tool and requirements management tools to sup-
port traceability analysis and requirements coverage analysis.

 17.2.4 Interface with Performance Analysis and Other
Engineering Analysis Tools

 The system model expressed in SysML captures the system design model in terms
of behavior, structure, and parametrics. Parametrics are a key feature of SysML
that can enhance the integration between design and analysis models. The design
model is analyzed in terms of performance analysis and other engineering analysis.
As shown in Figure 17.5 , the System Modeling Tool provides design information
to the System Analysis Tool. The analysis tool performs the analysis and may pro-
vide the analysis results back to the System Modeling Tool in terms of property
values that can be captured in the system model. For example, the system model
may describe a particular network configuration connecting system elements.
An analytical model may be derived from the model of system structure and con-
straints and provide a prediction of overall network performance. Similar types of
relationships apply to other executable models, as described in Section 17.1.3.

 17.2.5 Interface with Documentation Generation Tool
 The specification and design information derived from the system model must
be made available in a format that is easily comprehensible by a broad range of

ibd [Block] System Modeling Environment [System Model to Requirements]

: System Modeling Tool
: Requirement Management

Tool

derived :
Requirements

source :
Requirements

 FIGURE 17.4

 Interface between System Modeling Tool and Requirements Management Tool .

17.2 Integrating the Systems Modeling Tool with Other Tools

496 CHAPTER 17 Integrating SysML into a Systems Development Environment

stakeholders (e.g., customers, managers, design engineers, test engineers). Docu-
ments are an effective way to organize and communicate system design information
to some of the stakeholder community. Document generation should report the
model information in a standard and tailorable format. Note that many SysML tools
include some document-generation capability. Figure 17.6 depicts the notional rela-
tionship between the System Modeling Tool and the Document Generation Tool .

 17.2.6 Interface with Confi guration Management Tool
 Successful systems engineering on large projects requires disciplined management
of technical baselines. Incremental updates to the system model, requirements,
analyses, and other artifacts can be easily overlooked and not properly considered
in the design process, resulting in inefficiencies and design quality issues. The
development and ongoing update of the technical baseline spans all the informa-
tion in the systems development environment.

ibd [Block] System Modeling Environment [System Model to Analysis

performance analysis tool:
System Analysis Tool

specialty engineering tool :
System Analysis Tool

model structure : ModelElements
variables : ValueProperties

variables : ValueProperties
equations : Constraints

results : ValueProperties

results : ValueProperties

: System Modeling Tool

 FIGURE 17.5

 Interface between System Modeling Tool and System Analysis Tool .

ibd [Block] System Modeling Environment [System Model to Document Generation]

: System Modeling Tool : Document Generation Tool

reference documents :
File References

reports :
QueryResults

 FIGURE 17.6

 Interface between System Modeling Tool and Document Generation Tool .

497

 The interface between the System Modeling Tool and the Confi guration
Management Tool can be described as follows: The System Modeling Tool pro-
vides packages or other controlled model elements based on the model organiza-
tion, and the model elements they contain to the Confi guration Management
Tool. The Confi guration Management Tool in turn controls access to these
model elements in the System Modeling Tool (or potentially other tools) and the
ability to update the model elements either on a check-out or read-only basis. This
is depicted in Figure 17.7 .

 The update of the model requires a disciplined process to ensure that the
updates to the technical baseline are properly reviewed to eliminate redundancy
and inconsistency with other model elements, requirements, analysis results,
plans, constraints, and so on, and to fully understand the impact of the change
on the rest of the baseline. The System Modeling Tool can be used as a vehicle
to check for these inconsistencies and redundancies by using queries and metrics
that help reveal them.

 The organization of the system model is briefl y discussed in Chapter 4.
Packages are often used to partition the model and as the unit of confi guration
control. Typical model organizations are also included in the example problems
in Chapters 15 and 16. For large projects, it is usually appropriate to partition the
model so that each development team will access and update work in a dedicated
part of the model that it controls. Confi guration management ensures that each
package is appropriately versioned as model elements are updated, and which
versions of the constituent packages apply.

 Views and viewpoints were described in Chapter 4 and may play an increas-
ingly important role in providing access to the model and for enabling the sharing
of current model data between tools and teams.

 17.2.7 Interface with Project Management Tool
 Project management can leverage information from the system model to assist in
planning and control. The model-based metrics described in Chapter 2 are exam-
ples of metrics that can be extracted from the model to assess design quality and

: System Modeling Tool

ibd [Block] System Modeling Environment [System Model to CM]

: Configuration
Management Tool

baseline : Packages
reference : Model Elements

working : Packages
working : Model Elements

model consistency : Query Results

 FIGURE 17.7

 Interface between System Modeling Tool and Confi guration Management Tool .

17.2 Integrating the Systems Modeling Tool with Other Tools

498 CHAPTER 17 Integrating SysML into a Systems Development Environment

design progress and to estimate the level of effort required. The following addi-
tional data can easily be provided from the system model:

 ■ Number of model elements created or updated within a specifi c time period
 ■ Number of requirements linked by satisfi ed or verifi ed relationship within a

time period
 ■ Number of use cases realized
 ■ Number of activities allocated to blocks
 ■ Number of analysis results (value properties) identifi ed versus number

updated
 ■ And so on

 These metrics can be automatically reported from the model, typically by
using the scripting capability of a given tool, providing concrete information to
assist in managing the development effort.

 As shown in Figure 17.8 , the Program Management Tool can be used to
establish metrics in the form of SysML constraints, and the System Modeling Tool
can then evaluate those expressions and provide model status back to the Program
Management Tool in the form of computed value properties from the model.

 17.2.8 Interface with Verifi cation Tool
 Verification planning and conduct is often facilitated by a unique set of tools within
a verification environment. This environment is used to verify that each require-
ment is satisfied, generally by providing a stimulus to the system and monitoring
its response to determine whether the requirement is met. Other verification tools
are used to support other verification techniques, such as inspection. The verifica-
tion system environment can be modeled in the system modeling tool along with
the operational system it is designed to test, as briefly discussed in Chapter 16.

 As shown in Figure 17.9 , the System Modeling Tool can provide the specifi c
system confi guration under test, and a set of test cases to the Verifi cation Tool .
Once tests have been conducted, test results can be passed back into the System
Modeling Tool and reconciled with the rest of the model. The results are also
passed to the requirements management tool to update the verifi cation status.

: System Modeling Tool

Model status :
ValueProperties

pm metrics :
Constraints

ibd [Block] System Modeling Environment [System Model to PM]

: Program Management Tool

 FIGURE 17.8

 Interface between System Modeling Tool and Program Management Tool .

499

 17.2.9 Interface with Development Tool
 A principal reason for developing system models is to specify the requirements
and constraints for the system’s components, which typically include hardware
and software. The interface between the System Modeling Tool and hardware and
software development tools is a critical one. In particular, the System Modeling
Tool provides the component specifications to hardware and software develop-
ment tools , which in turn provide design verification data that the hardware and
software design models satisfy the specifications. As the state of practice matures,
the goal will be to fully integrate the hardware and software component design
models back into the system model to verify that the design meets the system
requirements.

 Figure 17.10 depicts the kinds of information potentially fl owing between a
System Modeling Tool and various hardware and software development tools .
In each case, the System Modeling Tool provides component requirements spe-
cifi c to that domain, as well as model structure (packages and model elements)
that provides system context for those requirements. The component black-box
specifi cation may be in the form of the component blocks with their features
specifi ed, including their interfaces, state machine, behavioral requirements, and
value properties. In response, hardware and software development tools provide
the satisfy relationships to parts of the detailed design with rationale, along with
issues that need to be addressed by the system model.

 For software design environments using UML, the interface between the
System Modeling Tool and the UML modeling tool is more a function of the model-
based methods because the underlying language concepts have the same roots.
In this case the SysML model can be extended and refi ned in the UML modeling
tool to evolve the software design from the specifi cations. For hardware devel-
opment tools , the interface is more complex since the language structures are
different. For these cases, component specifi cations need to be transformed into
the domain of the hardware language. There are mechanisms that are intended to
assist in the transformation, such as the ISO STEP standards described in the next
section, but this is still work in progress.

: System Modeling Tool

test results :
ValueProperties

system configuration : Model
test configuration : Model
verification : Test cases

ibd [Block] System Modeling Environment [System Model to Test]

: Verification Tool

 FIGURE 17.9

 Interface between System Modeling Tool and Verifi cation Tool .

17.2 Integrating the Systems Modeling Tool with Other Tools

500 CHAPTER 17 Integrating SysML into a Systems Development Environment

 17.3 Data Exchange Mechanisms in an Integrated
Systems Development Environment

 This section discusses the mechanisms and standards for data exchange between
tools.

 17.3.1 Data Exchange Mechanisms
 Exchange of data between tools in a systems development environment may be
accomplished in the following ways:

 ■ Manually (e.g., re-keying the data from one tool into another tool)
 ■ File-based exchange: neutral fi le format (e.g., csv), native fi le format (e.g., mdl),

or exchange format (e.g., XMI)
 ■ Interaction-based exchange (using APIs or queries to draw data from tools

only when required)
 ■ Repository-based exchange (using exchange format fi les and packaging

schemes to manage data independent of the tool)

 Selecting which of these approaches to implement between any two tools
must take into account the cost of implementing them versus the long-term value
tool integration will provide. The following considerations are recommended:

■ How often will data be exchanged between these tools and over what
duration? If it is known in advance that the data need only be exchanged once,

ibd [Block] System Modeling Environment [System Model to Development Tools]

: System
Modeling Tool

: Software
Development Tool

: Electronics
Development Tool

: Mechanical
Development Tool

software : Requirements
software : Packages

software : ModelElements

satisfy, allocate
modified : ModelElements

description : Rationale

elec : Requirements
elec : Packages

elec : ModelElements

satisfy, allocate
modified : ModelElements

description : Rationale

mech : Requirements
mech : Packages

mech : ModelElements

satisfy, allocate
modified : ModelElements

description : Rationale

 FIGURE 17.10

 Interface between System Modeling Tool and hardware and software development tools .

501

a less sophisticated and lower-cost data exchange may be appropriate. On the
other hand, even a simple data exchange, if expected to occur on a frequent
basis over an extended period of time, may justify the cost of developing some
kind of automated data transfer.

■ How complete or reliable must the data be that are transferred? For particu-
larly large data transfers, or where transfer errors cannot be tolerated, it may be
appropriate to invest in automated data transfer to minimize the possibility of
manual error.

■ Is the subject system a single one-off product or the basis for an ongoing
product line? The value of investing in a robust systems development environ-
ment with automated data exchange between tools, which facilitates reuse
development data, may not be fully realized until the rapid update or development
of a follow-on system.

 Automation of fi le-based exchanges between two tools may be accomplished
using a “bridge, ” or purpose-developed software application. In this case some
amount of redundant data exist in each tool. The appropriate synchronization of
these data is the responsibility of manual procedures, constraints, or the opera-
tion of the bridge software, or it can be addressed by model transformations.

 An exchange of data between tools may also occur on an as-needed, or inter-
action basis. This is facilitated by the use of a tool’s application programming
interface (API) to access and fi lter data in that tool, and to make them available
to another tool or database. This method can be very rapid, repeatable, and reli-
able, but it is important to understand how the development process anticipates
using each tool, the data dependencies between tools, and how often these inter-
actions must occur. Otherwise, tool users may end up competing over various
design parameters or characteristics.

 A repository is a confi guration-managed database, accessible to two or more
tools that contain the data fi les the tools share. Repositories generally support
multiple tools that fi le and categorize systems engineering data in a database
rather than just lists of data exchange fi les. Maintaining systems engineering data
in this manner enables the use of consistency checkers on the entirety of the
repository data rather than relying on consistency checkers in individual tools.
Repositories that maintain this kind of systems engineering data can publish a
metadata catalog, allowing other tools access to both the data and their meaning.

 17.3.2 Role of Data Exchange Standards
 The exchange of data between modeling tools has traditionally been accom-
plished by creating a point-to-point exchange between individual tools using the
mechanisms described earlier. This can be costly because each tool requires its
own interface mechanism. Implementing point-to-point interfaces can require the
development of n 2 interfaces for n tools. In addition, the interface mechanism
must be updated as each tool changes. The emphasis for an Integrated Systems
Development Environment is on the use of data exchange and other modeling

17.3 Data Exchange Mechanisms

502 CHAPTER 17 Integrating SysML into a Systems Development Environment

standards to support tool and model interoperability. Some of the relevant stand-
ards related to SysML are briefly discussed next.

 XML Metadata Interchange
 XMI is short for eXtensible Markup Language (or XML) Metadata Interchange
[21] and provides a standard format for interchanging UML and SysML models
between tools. XMI is based on three industry standards: the eXtensible Markup
Language, the Meta Object Facility (MOF), and the Unified Modeling Language
(UML). MOF and UML are modeling and metadata repository standards from the
Object Management Group (OMG). XML is a text-based language from the World
Wide Web Consortium (W3C) that supports the use of tags to describe structured
data. XMI is in essence a set of rules for converting a metamodel, expressed using
MOF, UML, and UML profiles into a set of custom tags in XML. Hence SysML,
which is a UML profile, also has implicit interchange standards using XMI.
However, there may be tool limitations, as well as issues with how the models
are used, that can impact the quality of the exchange.

 Figure 17.11 shows a simple SysML diagram, where Block1 is composed of
Block2, both of which have properties. Figure 17.12 is the equivalent XMI gen-
erated from the model. The XMI fragment in Figure 17.12 identifi es each model
element in terms of its UML metaclass type, unique id, and other information
depending on its metaclass.

 Note that the id’s in Figure 17.12 have been simplifi ed for ease of drawing
because globally unique id’s would have been very cumbersome for this fi gure.
The diagram frame denotes a package with the name Parent that is also captured
in the XMI as the owner of both Block1 and Block2. However, the diagram kind,
user-defi ned diagram name, and other diagram information (e.g., symbol posi-
tions) are not included in the exchange.

 Where the model elements represent SysML concepts, they are extended
by instances of SysML’s stereotypes, as described in Chapter 14. In this case
instances of block reference back to the UML element it extends.

 Application Protocol 233
 STEP, or the Standard for the Exchange of Product Model Data (more formally
known as ISO 10303 [22]), is an international standard for the computer-
interpretable representation and exchange of product data. The objective is to
provide a mechanism that is capable of describing product data throughout the

bdd [Package] Parent [XMI Example]

b2

property2

«block»
Block2

property1

«block»
Block1

 FIGURE 17.11

 Simple SysML diagram, as an example for illustrating XMI.

503

life cycle of a product, independent of any particular system. The nature of this
description makes it suitable not only for neutral file exchange but also as a basis
for implementing and sharing product databases and archiving.

 Application Protocol 233 (AP233) is a STEP-based data exchange standard tar-
geted to support the needs of the systems engineering community; it is consistent
with emerging standards in CAD; structural, electrical, and engineering analysis;
and support domains. SysML was developed in coordination with the develop-
ment of the AP233 standard, which has resulted in shared systems engineering
domain concepts. It is anticipated that over time SysML tools will be able to lever-
age AP233 as a neutral format for exchanging SysML models.

 Diagram Interchange Standards
 An important distinction is made between data interchange and diagram inter-
change. The preceding standards can exchange model data, but do not explicitly
exchange diagram layout information in terms of where the symbols belong and
where they appear on a diagram. There is a diagram interchange standard specifi-
cation from the OMG [42], but it is not widely used. However, if the model infor-
mation is exchanged and the tool repository is populated with the data, some
tools provide a capability to autogenerate the diagram from the model repository.
The resultant diagram will not reflect the original diagram layout because that
information is not part of the exchange.

 Model Transformation
 There are clearly many different modeling languages for systems, hardware, and
software development as well as domain-specific languages for real-time analysis,

-�ownedMember xmi:type�"uml:Package" xmi:id�"ID0" name�"Parent" visibility�"public"�
 -�ownedMember xmi:type�"uml:Class" xmi:id�"ID1" name�"Block1" visibility�"public"�
 �ownedAttribute xmi:type�"uml:Property" xmi:id�"ID2" name�"Property1" visibility�"private" /�
 �ownedAttribute xmi:type�"uml:Property" xmi:id�"ID3" name�"b2" visibility�"private"
 aggregation�"composite" type�"ID5" association�"ID4" /�
 �/ownedMember�
 -�ownedMember xmi:type�"uml:Class" xmi:id�"ID5" name�"Block2" visibility�"public"�
 �ownedAttribute xmi:type�"uml:Property" xmi:id�"ID6" name�"Property2" visibility�"private" /�
 �/ownedMember�
 -�ownedMember xmi:type�"uml:Association" xmi:id�"ID4" visibility�"public"�
 �memberEnd xmi:idref�"ID3" /�
 �memberEnd xmi:idref�"ID7" /�
 �ownedEnd xmi:type�"uml:Property" xmi:id�"ID7" visibility�"private" type�"ID1" association�"ID4" /�
 �/ownedMember�
�/ownedMember�
…
�SysML:Block xmi:id�"ID8" base_Class�"ID1" /�
�SysML:Block xmi:id�"ID9" base_Class�"ID5" /�
�SysML:BlockProperty xmi:id�"ID10" base_Property�"ID2" /�
�SysML:BlockProperty xmi:id�"ID11" base_Property�"ID3" /�
�SysML:BlockProperty xmi:id�"ID12" base_Property�"ID6" /�

 FIGURE 17.12

 Equivalent XMI (fragment) for Figure 17.11 .

17.3 Data Exchange Mechanisms

504 CHAPTER 17 Integrating SysML into a Systems Development Environment

business process modeling, and so on. When the desire is to move data from one
modeling language to another, a model transformation is required; this involves
mapping of the concepts from one language to the concepts in another language.
The transformation may result in data loss or ambiguity. There are standards
based on the OMG Meta Object Facility [20] that provide a foundation for these
transformations if the metamodel for the language is expressed in a standard MOF
format. There are many other approaches to model transformation, and this area
will become increasingly important as model-based approaches and domain-
specific languages are used more often.

 17.4 Selecting a System Modeling Tool
 This section focuses on selection of a SysML modeling tool for the systems devel-
opment environment. A system modeling tool may support SysML to a greater or
lesser extent, in accordance with the strengths and weaknesses offered by the
tool.

 17.4.1 Tool Selection Criteria
 The following criteria can form the basis for evaluating and selecting a SysML
modeling tool:

 ■ Conformance to SysML specifi cation (latest version)
 ■ Usability
 ■ Document generation capability
 ■ Model execution capability
 ■ Conformance to XMI
 ■ Conformance to AP233
 ■ Integration with other engineering tools (including legacy tools within an

existing system development environment)
 – Requirements management
 – Confi guration management
 – Engineering analysis tools
 – Performance simulation tools
 – Software modeling tool
 – Electrical modeling tool
 – Mechanical CAD tool
 – Testing and verifi cation tool
– Project management tools

 ■ Performance (maximum number of users, model size)
 ■ Model checking to verify model conformance (well-formedness rules)
 ■ Training, online help, and support
 ■ Availability of model libraries (e.g., SI units)
 ■ Life-cycle cost (acquisition, training, support)
 ■ Vendor viability

505

 ■ Previous experience with the tool
 ■ Support for selected model-based method (e.g., scripts that automate cer-

tain parts of the method, standard reports, etc.)

 17.4.2 Specifi c Tool Support for the MBSE Method
 The specific MBSE method employed may leverage specific SysML features but
may not require other features. It is appropriate to ask the following questions to
emphasize the features of SysML that a successful tool deployment will need to
support.

■ Which behavior representations are the most important? Activity diagrams?
State machines? Sequence diagrams?

■ Will there be a need for item flow representation?

■ What kind of need will there be for detailed performance analysis and para-
metric modeling? Expression of mathematical equations relating parameters of
system elements may be a very important part of the system development process
and/or method employed.

■ Will there be a need for algorithm specification and development? It may be
important to express information processing algorithms explicitly in mathematical
form, using constraint blocks and eventually relating them to specific blocks
representing software code.

■ Which architecting principles need to be supported by the tool?

■ How will allocation be used? The manner in which allocation is used to guide
the development process may dictate a set of constraints and rules associated
with allocation relationships. By enforcing or enabling these rules, a tool set
can improve the efficiency of the modeling process.

 17.4.3 SysML Compliance
 According to the SysML specification, a tool can claim its compliance with SysML
in terms of compliance to the common subset of UML and the language exten-
sions described by the SysML profile, as described in Chapter 4. Table 17.1
contains an example of a compliance matrix for a notional SysML tool, the form
of which is defined in the SysML specification.

 This matrix can be used by modeling tool vendors and others to defi ne a given
tool’s level of compliance with the standard. For each unit of the language, com-
pliance with abstract syntax—underlying language constructs, like metaclasses,
stereotypes, constraints, and ability to generate XMI—and compliance with con-
crete syntax (e.g., graphical notation) are stated.

 UML4SysML is the portion of UML that is reused in SysML. The three levels
referenced are described in Table 17.2 . The matrix can be used as part of the
tool-selection process to determine whether critical SysML features and capabili-
ties are included in the tool. For example, if activity modeling with probability

17.4 Selecting a System Modeling Tool

506 CHAPTER 17 Integrating SysML into a Systems Development Environment

Table 17.1 Example SysML Compliance Matrix Summary for a Notional Tool

 Compliance Level Abstract Syntax Concrete Syntax

 UML4SysML Level 1 YES YES

 UML4SysML Level 2 PARTIAL YES

 UML4SysML Level 3 NO NO

 Activities (without Probability) YES YES

 Activities (with Probability) NO NO

 Allocations PARTIAL PARTIAL

 Blocks YES YES

 Constraint Blocks YES YES

 Model Elements (without Views) YES YES

 Model Elements (with Views) NO NO

 Ports and Flows (without Item Flow) YES YES

 Ports and Flows (with Item Flow) NO NO

 Requirements YES YES

 Source: OMG Systems Modeling Language (OMG SysML), V1.0, OMG document number formal/2007-09-01,
Table 5.5.

Table 17.2 UML4SysML Compliance

 SysML Package UML4SysML Compliance Level

 Activities (without Probability) Level 2

 Activities (with Probability) Level 3

 Allocations Level 2

 Blocks Level 2

 Constraint Blocks Level 2

 Model Elements (without View) Level 1

 Model Elements (with View) Level 3

 Ports and Flows (without Item Flow) Level 2

 Ports and Flows (with Item Flow) Level 3

 Requirements Level 1

 Source: OMG SysML, V1.0, OMG document number formal/2007-09-01, Table 5.5.

is important to a user’s systems engineering approach, along with the ability to
export the resulting model in XMI format, then the system modeling tool selected
should demonstrate full UML4SysML compliance at Level 3 and activities (with
probability) both for abstract and concrete syntax.

507

 After understanding the language features needed and comparing vendors ’
self-evaluation of their tools compliance with SysML, an evaluation of the tool
should be performed based on actual usage. The tool features should be evalu-
ated in the systems development environment envisioned using the methods on
typical problems relevant to the domain.

 17.5 Summary
 Integrating SysML into a systems development environment includes some of the
following considerations.

■ The system model in SysML is an integral part of the overall system development
used to relate text requirements to the design, provide design information
needed to support the analysis, serve as a specification for the subsystem and
component design models, and provide the test case information needed to
support verification.

■ System modeling tools do not stand alone but must be integrated into a system
development environment that includes many other tools that support require-
ments management, engineering analysis, hardware and software development,
verification, configuration management, and project management.

■ A systems engineering approach should be applied to specify the requirements
and interfaces for the integrated system development environment .

■ Data exchange between tools can be accomplished by manual, file-based,
interaction-based, and repository-based mechanisms.

■ A standards approach to data and model interchange is the preferred approach
to reduce the cost and improve the quality of the data exchange. XMI is a
primary data exchange mechanism, but this does not include diagram layout
information.

■ SysML tool selection should be based on an evaluation against a defined set of
criteria that includes both review of vendor information and hands-on use of the
tool in the expected environment. Tool compliance to the SysML standard is
one critical criterion.

 17.6 Questions
 1. Why does SysML facilitate establishing a model-based system development

environment?
 2. Describe how XMI and AP233 are used with SysML.
 3. What are fi ve criteria for selecting a SysML tool?
 4. What conditions might lead someone to choose a SysML tool with strong struc-

tural modeling capability and internal consistency checking over one with
probabilistic activity modeling capability? Which level of UML4SysML compli-
ance (Level 1, Level 2, or Level 3) would this preferred tool exhibit?

17.6 Questions

508 CHAPTER 17 Integrating SysML into a Systems Development Environment

 5. Under which conditions would a tool’s capability to model ports, fl ows, and
item fl ows be important? Which level of UML4SysML compliance (Level 1,
Level 2, or Level 3) would this tool exhibit?

 6. What can a person do to limit the impact of future tool changes or upgrades
on the cost of their system development environment?

 Discussion Topics
 Describe the role of the system model in the system development environment.

 Describe the meaning of the term “executable model ” and two different purposes
for developing executable models.

 Describe how the use of a system model can potentially increase the effective-
ness of a system development environment.

 Build a matrix listing eight types of tools that can benefit from sharing data with
a system modeling tool. In one column, list beneficial information that can flow
from the system modeling tool, and in another list information that can flow to
the system modeling tool.

 Describe four different ways of exchanging data between tools in a system
development environment. For each method, describe when it might be most
appropriate.

 Introducing the use of SysML to an organization and projects should be planned as
part of an improvement initiative that addresses the impact on the systems engineer-
ing process, methods, tools, and training. This chapter describes how to implement
an improvement process to facilitate a smooth and successful transition to SysML.

 18.1 Improvement Process
 Introducing any significant change into an organization requires a well–thought
out plan and disciplined implementation to be successful. The introduction of
SysML is part of a model-based systems engineering (MBSE) approach. The change
to SysML should be implemented using the organization’s improvement proc-
ess that includes changes to the model-based method, tools, and training. Clear
responsibility for the improvement should be established, and the expected ben-
efits of the change should be understood and agreed on with stakeholders.

 A typical improvement process is shown in Figure 18.1 . The process includes
monitoring and assessing projects to determine issues and improvement goals;
developing the improvement plan; defi ning proposed changes to the process,
methods, tools, and training; piloting the approach; and incrementally deploying
the improvement. The process should be applied in increments to improve the
organization’s capability. The steps to implement SysML as part of an improvement
initiative are described next.

 18.1.1 Monitor and Assess
 To introduce a change to improve the organization’s capability, a baseline for
measuring the improvement should be established. In particular, with respect
to introducing SysML and MBSE, the organization should establish how systems
engineering is currently being practiced and identify the issues and improvement
goals expected from transitioning to SysML/MBSE. The MBSE benefits described
in Chapter 2 represent possible motivations for the change. The issues to be
addressed and the improvement goals can be used to derive metrics that can be

 Deploying SysML into
an Organization 18

CHAPTER

510 CHAPTER 18 Deploying SysML into an Organization

monitored over time. Metrics in turn can be used to determine the effectiveness
of the change and to provide an input for follow-up improvement planning.

 The maturity of MBSE will vary from project to project in a large organization;
it may range from a totally document-based approach on some projects, to some
limited use of functional analysis, architecture, and performance simulation mod-
eling on other projects, to pockets of advanced systems modeling that may be
integrated across the project. The state-of-practice assessment can provide infor-
mation about what is working and what is not. The assessment results can be
used to identify preferred practices to be shared, and the issues to be addressed
by the improvement plan. The results can also be used to identify and select can-
didate pilot projects and potential target projects for deployment.

 An assessment questionnaire can be prepared to support the assessment
and may include questions regarding the purpose and scope of MBSE on proj-
ects, methods, tools, and training that are being used; how well they are work-
ing; and issues and lessons learned. The questionnaire can be administered to
organizational and project representatives remotely or through face-to-face meet-
ings. Representation from multiple projects and disciplines should be suffi ciently
diverse to provide a comprehensive assessment.

 Metrics are defi ned to measure how broadly SysML/MBSE is deployed, and the
effectiveness of the improvement. The deployment metrics can include the number
and percentage of people trained in SysML/MBSE and the number and type of target
projects that are applying SysML/MBSE. The effectiveness metrics measure progress
against expected benefi ts and improvement goals, and how well the issues are being
addressed. They should provide quantitative data to help assess the MBSE benefi ts and
the impact on productivity, quality, innovation, and other business objectives.

 18.1.2 Plan the Improvement
 The improvement plan defines how to accomplish the improvement goals. It should
include the activities from the improvement process in Figure 18.1 and a phased
approach to develop and deploy changes incrementally into the organization.

Plan the
Improvement

Pilot the
Approach

Monitor
and Assess

Define the
Changes

Incrementally
Deploy the Changes

 FIGURE 18.1

 Improvement process for deploying SysML.

511

The plan should detail the necessary resources and schedule and a commitment
to provide the resources.

 As with any plan, stakeholder participation is essential in both its formulation
and its execution. The stakeholders for MBSE include members of the improve-
ment team responsible for defi ning the change, as well as the project stakeholders
who are expected to implement SysML/MBSE. The stakeholders representation
should come from project management, systems engineering, and the develop-
ment teams including software, hardware, and testing; this group could also
include customers and subcontractors. It is important to get representation from
all the “communities” early in the process to ensure that their concerns are being
addressed, and that there is buy-in to the improvement goals and plan.

 18.1.3 Defi ne Changes to Process, Methods, Tools,
Metrics, and Training

 The improvement will require changes to the organization’s process, meth-
ods, tools, metrics, and training. The changes should be defined, documented,
reviewed, and approved by the affected stakeholders to ensure that the change is
implementable and will achieve the desired results.

 Process Changes
 It is assumed that the baseline systems engineering process for the organization
and/or project is defined. If not, establishing a baseline that reflects the current
process is an important first step. The process standards referred to in Chapter 1
provide a starting point for defining the systems engineering process. Sometimes
there is a significant disparity between the documented processes for an organi-
zation and the way that processes are actually implemented on projects. This is a
separate issue that should be addressed, but it is not the focus for this discussion.

 The systems engineering processes should be evaluated to determine the impact
of SysML/MBSE. This includes impact on both the technical processes and the
management processes such as confi guration management, review processes, and
measurement.

 Method Changes
 An MBSE method should be evaluated and selected to support the technical proc-
esses. There may be methods that are practiced internal to the organization as well
as others that are available across industry, as described in Chapter 2. Two example
methods are described in Chapters 15 and 16. The criteria for selecting a method
may include how well it addresses the concerns of the project, the level of tool
support, and the training requirements. The methods should be documented along
with an example problem to show how it is applied. The documentation should
also include general modeling conventions (e.g., naming conventions and style
guidelines) and recommended model organization (refer to Chapter 5 and the
examples in Chapters 15 and 16).

 Tool Changes
 The MBSE tools also need to be evaluated and selected. Criteria for SysML tool
selection are included in Chapter 17. The evaluation should also include trial use

18.1 Improvement Process

512 CHAPTER 18 Deploying SysML into an Organization

of the tool to see how well it addresses the criteria. Documentation should be pro-
vided for how the tools are acquired, installed, configured, used, and maintained.

 The documentation of the MBSE method should be updated to provide tool-
specifi c guidance on how the selected method is used with the selected tools.
This may include general information on the how to create the modeling artifacts
in the tool, as well as very detailed practices such as how to specify an interface.

 MBSE Metrics
 The MBSE metrics should be defined to support the overall goals of the project,
as described in Chapter 2. The data-collection approach and reporting should also
be defined.

 Training Changes
 Training is needed to support the language, method, and tools and may require
different training courses. SysML training should focus on the language concepts
described in Part II. The method documentation referred to earlier can be used to
support the method training with examples included such as those in Part III. The
introductory tool training may best be provided by the tool vendor to show how
the tool is used. However, this may be augmented to include additional training
on how the tool is used with the selected method and as part of the specific tool
environment, as discussed in Chapter 17.

 18.1.4 Pilot the Approach
 As with any significant change, the recommendation is to walk before you run.
This involves piloting the changes described earlier to validate and refine the
approach. Undoubtedly, there will be modifications to the approach based on the
results of the pilot project.

 A pilot project also requires careful planning, willing participants, neces-
sary resources, and management support. A typical plan for a pilot includes the
following:

 ■ Pilot objectives and metrics
 ■ Pilot scope
 ■ Pilot deliverables
 ■ Pilot schedule
 ■ Responsibilities and staffi ng
 ■ Process and method guidance

 – High-level process fl ow
 – Model artifact checklist
– Tool-specifi c guidance

 ■ Tool support
 ■ Training

 The pilot’s objectives may include validating that the proposed MBSE method,
tools, and training meet the needs of the organization and projects. The scope of

513

a pilot should support these objectives. A small team should be identified to work
on the pilot with a team lead. It is important to maintain continuity among the
team members as they work through the pilot.

 The selected tools must be acquired, installed, and confi gured. The pilot team
should receive training in the language, method, and tools. The documented
method and tool guidance should be provided to the team. In addition, it is pref-
erable that the pilot team includes a member who is skilled in the method and/or
tools to provide guidance to other team members.

 The pilot project should adequately exercise the method and tools. It is often
useful to select a thread through the system and generate at least one artifact for
each of the artifacts in the method. The pilot schedule should include milestones
for creating the modeling artifacts. The team should also establish a peer-review
process to review the artifacts and propose changes to the method, and then use
this to help refi ne the MBSE approach.

 The results are captured in a report that includes how well the pilot achieved
the objectives, what modifi cations were made to the proposed approach, and les-
sons learned, including quantitative data where practical. The OOSEM method
described in Chapter 16 was piloted and documented in a reference paper [38]
and provides an example of how a pilot was conducted and its results.

 Based on a pilot’s results, the process, methods, tools, metrics, and train-
ing should be updated to refl ect the new baseline MBSE approach. The results
can serve as training material to be used as part of the broader SysML/MBSE roll-
out. Some pilot participants can become advocates to help deploy the change to
projects.

 18.1.5 Deploy Changes Incrementally
 The pilot results help to determine the requirements for deploying the SysML/
MBSE capability on projects. The pilot provides a more realistic assessment of the
type of training required, how long it takes for people to get up to speed, experi-
ence in adapting the method and tools, and more realistic expectations of the
modeling results.

 Project-selection criteria should be established to select a project or projects
targeted for the deployment. The criteria may include the project’s phase, longev-
ity, size, level of internal and customer support, and the extent to which MBSE
benefi ts can provide recognized value to the project. In addition, the state-of-
practice assessment should have helped to identify potential opportunities based
on business need and other considerations. Different projects may introduce dif-
ferent scopes for MBSE depending on their current state of practice, their experi-
ence level in modeling, and the particular project needs. Ideally, SysML/MBSE is
introduced at the start-up phase of a project or at a point in its life cycle that is
appropriate to introduce change, for example, at the start of a new development
increment. It is important for the project’s leadership and customers to be willing
advocates for the change.

 Realistic expectations should be established in terms of the time, effort, deliv-
erables, and expected results from the modeling effort. The purpose and scope of

18.1 Improvement Process

514 CHAPTER 18 Deploying SysML into an Organization

the effort should be defi ned and balanced with project resources, as described in
Chapter 2. The MBSE deliverables should be refl ected in the project plan, along
with milestones for establishing the MBSE infrastructure, including documenta-
tion, tools, staffi ng, and training.

 MBSE metrics should be identifi ed to support project objectives. The MBSE
metrics in Chapter 2 can serve as a guide along with the lessons learned from
the pilot. The approach for data collection should also be defi ned, including how
the data are to be captured from the tools. The reporting of the metrics should
be detailed in the project plan, including which metrics, how often they are col-
lected, and how they are used.

 The selected tools are acquired, installed, and confi gured for use. On a
larger project, the tools will need to be confi gured for a multiuser environment.
Additional levels of tool integration may be required, as described in Chapter 17.
The confi guration management approach for controlling a model baseline will
need to be clearly defi ned. The right expertise should be made available to help
establish and maintain this environment.

 The deployment should include start-up training in the process, methods, and
tools. The training should encompass SysML training, MBSE method training, and
tool training. The training should use the pilot’s documentation and results as part
of the training material. Different levels of training may be appropriate for differ-
ent stakeholders. For example, some of the systems engineering team, which is
designated as the core modeling team, may require detailed SysML, MBSE meth-
ods, and tool training, whereas other systems engineers and some hardware and
software developers may require limited SysML training, which includes the
impact on their particular tasks or methods. For example, some of the testers
may need to understand how to derive detailed test cases from the model, or the
individual who is responsible for requirements management will need to under-
stand how the SysML modeling tool is used with the requirements management
tool.

 A successful deployment will also require ongoing support from individuals
who have expertise in the methods and tools. The improvement metrics should
be monitored to assess the MBSE effort. Lessons learned should be captured
to further refi ne the process, methods, and tools and to help further drive the
improvement process.

 18.2 Summary
 SysML is deployed as part of an MBSE approach using the organization’s improve-
ment process. Deploying SysML as part of MBSE should consider impacts on the
systems engineering process, methods, tools, and training. A successful deploy-
ment must be planned, piloted, and incrementally deployed. The success is a key
ingredient to motivate other projects to follow. The results should be quantified,
where practical, and used as a basis for future improvements.

515

 18.3 Questions
 1. When SysML is being deployed, which other aspects of MBSE should be

considered?
 2. What are the activities in the improvement process?
 3. Who are some of the stakeholders in the improvement process?
 4. What is the purpose of the monitor and assessment activity?
 5. What is the purpose of piloting the MBSE approach?
 6. What are some of the up-front project activities that must be planned when

deploying SysML to a project?

18.3 Questions

This page intentionally left blank

 A.1 Overview
 This appendix provides a reference guide to the graphical notation for SysML as
a set of notation tables. It is organized by diagram kind in the following order:

 ■ Package Diagram
 ■ Block Defi nition Diagram
 ■ Internal Block Diagram
 ■ Parametric Diagram
 ■ Activity Diagram
 ■ Sequence Diagram
 ■ State Machine Diagram
 ■ Use Case Diagram
 ■ Requirement Diagram

 There are also notation tables for the use of allocations and stereotypes, which are
used across a number of different diagrams.

 It is recommended that you read Section 4.3 in Chapter 4 for an overview of
SysML diagrams and their contents before reading this appendix.

 A.2 Notational Conventions
 Each diagram is described by at least one notation table. For diagrams with many
symbols, there are separate tables for nodes and paths, where node symbols are
typically rectangles and ovals and path symbols are lines. Package diagrams and
block definition diagrams have several subsections to describe different uses
of the diagram with corresponding notation tables. The rows in each table are
ordered so that their references are encountered in ascending order within the
relevant chapter or chapters.

 SysML Reference Guide

APPENDIX

518 APPPENDIX SysML Reference Guide

 The notation tables have four columns:

 ■ Diagram Element—the name of the diagram element represented in this
row, generally identifi ed as a node or path. The term symbol is used when it
is neither a node nor a path, such as a text expression in brackets.

 ■ Notation—the graphical notation for the diagram element.

 ■ Description—a description of the SysML concept represented by the dia-
gram element.

 ■ Section—a reference to the section(s) in Part II that contains further expla-
nation of the relevant SysML concept.

 The following conventions are used in the tables:

 ■ � Name � —the name of the model element represented by the symbol.

 ■ � Element � —the name of some model element.

 ■ � Type � —the name of some type (Block, ValueType, etc.).

 ■ � String � —any arbitrary text string.

 ■ � Expression � , � ValueSpecifi cation � —a text string intended to represent
some kind of regular expression.

 ■ � ElementType � —the keyword representing some kind of model element.

 ■ � Multiplicity � —a representation of multiplicity, thus: � LowerBound �. . .
�UpperBound � , where LowerBound is any natural number and UpperBound
is any natural number or “ *. ”

 The names inside the angled brackets are intended to be self-explanatory refer-
ences to SysML model elements, but occasionally extra explanation is provided in
the Description column of a symbol.

 It should be noted that various parts of the graphical and textual notation may
be elided by a modeler, and the tables do not provide guidance on what can be
elided and when. In addition, certain model elements have additional keywords
and properties that are listed in the Description column of the relevant symbol.

519

 Table A.1 Package Diagram Nodes and Paths

Section
Diagram
Element

Notation Description

Package
Node

Containment
Path

Model Node

Packageable
Element
Node

Viewpoint
Node

View Node

Import Path

Dependency
Path

A package is a container for other model elements.
Any model element is contained in exactly one
container, and when that container is deleted or
copied, the contained model element is deleted or
copied along with it.

5.3

A model in SysML is a top-level package in a nested
package hierarchy. In a package hierarchy, models
may contain other models, packages, and views.

5.3

Model elements that can be contained in packages
are called packageable elements and include blocks,
activities, and value types among others.

5.5

A view is a type of package that conforms to a
viewpoint. The view imports a set of model
elements according to the viewpoint methods and is
expressed in the viewpoint languages to present the
relevant information to its stakeholders.

A viewpoint describes a perspective of interest to a
set of stakeholders that is used to specify a view of
a model.

The containment relationship relates parents to
children within a package hierarchy.

An import relationship is used to bring an element
or collection of elements into a namespace. Private
import is marked by the keyword «access».

A dependency relationship indicates that a change to
the supplier (arrow) end of the dependency may
result in a change to the other end of the dependency.

5.9

5.7

5.9

5.4

5.8

Conform
Path

Used to assert that a view conforms to a
viewpoint.

5.9

<Name>

<Name>

<Name>

<Name>

«<ElementType>»
<Name>

«view»
{viewpoint=<Viewpoint>}

<Name>

«view»
{viewpoint=<Viewpoint>}

<Name>

stakeholders=<String>
purpose=<String>
languages=<String>
methods=<String>
concerns=<String>

«viewpoint»
<Name>

«access»

«import»

«<ElementType>»

«conform»

A.3 Package Diagram

 A.3 Package Diagram
 Package diagrams are used principally to describe model organization. They are
also used to define SysML language extensions called profiles.

520 APPPENDIX SysML Reference Guide

 Table A.2 Notation for Describing SysML Extensions on Package Diagrams

Section
Diagram
Element

Notation Description

«metamodel»
<Name>

«metamodel»
<Name>

Metamodel
Node

A metamodel describes the concepts in a modeling
language, their characteristics and interrelationships.

4.2.2,
14.1.1

«metaclass»
<Name>

Metaclass
Node

The individual concepts in a metamodel are described
by metaclasses.

4.2.2,
14.1.1

«modelLibrary»
<Name>

«modelLibrary»
<Name>

Model
Library Node

A model library is a special type of package that is
intended to contain a set of reusable model elements
for a given domain.

14.2

<Property>:<Type>=<Expression>

constraints

{<Constraint>}

«stereotype»
<Name>

Stereotype
Node

Stereotypes are used to add new language concepts,
typically in support of a specific system engineering
domain.

14.3

«profile»
<Name>

«profile»
<Name>

Profile Node A profile is a kind of package used as the container
for set of stereotypes and supporting definitions.

14.4

<Multiplicity>
{required}

<Multiplicity>Extension
Path

The relationship between the metaclass and the
stereotype is called an extension, and is a kind of
association.

14.3

Profile
Application
Path

<End><End>

<Multiplicity> <Multiplicity>

<Name>

«reference»

«apply» {strict}

Association
Path

Stereotype properties can be defined using
associations.

14.3.1

Reference
Path

A reference is special type of import relationship,
used to import the metaclasses required by a
profile.

A profile is applied to a model or package using a
profile application relationship.

14.4.1

14.5

<GeneralizationSet><GeneralizationSet>

Generalization
Path

A stereotype can be defined by specializing an
existing stereotype or stereotypes, using the
generalization mechanism.

14.3

521

 A.4 Block Defi nition Diagram
 The block definition diagram is used to define the characteristics of blocks in
terms of structural and behavioral features, and the relationships between the
blocks, such as their hierarchical relationship. Extensions to the block definition
diagram are used to define parametric constraints and also to show a hierarchical
view of activities.

receptions

operations

values

references

parts

«signal»<Signal>(<Parameter>,..)

<Operation>(<Parameter>,…):<Type>

<ValueProperty>:<ValueType>=<ValueExpression>

<Reference>:<Block>[<Multiplicity>]

<Part>:<Block>[<Multiplicity>]

«block»
<Name>

operations

dimension=<Dimension>
unit=<Unit>

<Operation>(<Parameter>,…):<Type>

values
<ValueProperty>:<ValueType>=<ValueExpression>

«valueType»
<Name>

<EnumerationLiteral>

«enumeration»
<Name>

The block is the fundamental modular unit for
describing system structure in SysML.

Compartments are used to show structural features
(parts, references, values) and behavioral features
(operations, receptions) of the block. See the following
tables in this section for more block compartments.

Additional properties on blocks are {encapsulated,
abstract}. Abstract may also be indicated by
italicizing the <Name>.

Additional properties on structural features
include: {ordered, unordered, unique, nonunique,
subsets <Property>, redefines <Property>}.

A forward slash (/) before a property name
indicates that it is derived.

Section
Diagram
Element

Notation Description

Block Node 6.2, 6.3,
6.5.2

dimension =<Dimension>

«unit»
<Name> «dimension»

<Name>

Dimension
and Unit
Nodes

A dimension identifies a physical quantity such as
length, whose value may be stated in terms of defined
units, such as meters or feet. A unit must always be
related to a dimension.

6.3.3

Value Type
Node

A value type is used to provide a uniform definition
of a quantity with units that can be shared by many
value properties.

6.3.3

Enumeration
Node

An enumeration defines a set of named values called
literals.

6.3.3

«actor»
<Name>

<Name>

Actor Node An actor is used represent the role of a human, an
organization, or any external system that participates
in the use of some system being investigated.

11.3

A.4 Block Defi nition Diagram

 Table A.3 Block Defi nition Diagram Nodes for Representing Block Structure and Values

522 APPPENDIX SysML Reference Guide

 Blocks have two additional compartments:

 ■ Structure, which has the same symbols as an internal block diagram.
 ■ Namespace, which has the same symbols as a block defi nition diagram.

 Table A.4 Block Defi nition Diagram Nodes for Representing Interfaces

receptions

operations

«signal»<Signal>(<Parameter>,…)

<Operation>(<Parameters>,…):<Type>

«interface»
<Name>

An interface is used to specify the set of behavioral
features either required or provided by a standard
(service-based) port.

Interface
Node

6.5.3

flowProperties
<Direction> <FlowProperty>:<Item>

«flowSpecification»
<Name>

Flow
Specification
Node

A flow specification defines the set of input and/or
output flows for a noncomposite flow port.
<Direction> may be one of: in, out, or inout.

6.4.3

Section
Diagram
Element

Notation Description

flowPorts

standardPorts

<Direction> <Port>:<Type>

<Port>:<Interface>

«block»
<Name>

Port
Compartments
for Block
Node

Ports can be shown in separate compartments
labeled flow ports and standard ports.

<Direction> may be one of: in, out, or inout. Non-
atomic flow ports do not have a direction but may
have the keyword {conjugated}.

6.4.3, 6.5.2

Interface
Realization
Path

A realization dependency asserts that a block will
declare a behavioral feature for each behavioral
feature in an interface.

6.5.3

<Name>[<Multiplicity>]<Interface>

<Interface> <Name>[<Multiplicity>]

Standard Port
Node

A standard port defines the service-based interaction
points on the interface to a block. The shape of the
<Interface> symbol indicates whether services are
required (socket) by or provided by (ball) the block.

6.5.2

<Name>:<Item>[<Multiplicity>]

<Name>:<Item>[<Multiplicity>]

<Name>:<Item>[<Multiplicity>]

Atomic Flow
Port Node

An atomic flow port describes an interaction point
where an item can flow into or out of a block, or
both, as indicated by the direction of the arrow in the
Atomic Flow Port Node.

6.4.3

<Name>:<FlowSpecification>[<Multiplicity>]

<Name>:<FlowSpecification>[<Multiplicity>]

Nonatomic
Flow Port
Node

A nonatomic flow port describes an interaction point
where multiple different items may flow into or out
of a block. A shaded symbol implies a conjugate port.

6.4.3

Usage
Dependency
Path

A uses dependency asserts that a block requires a
set of behavioral features defined by an interface.

6.5.3

523

 Table A.5 Block Defi nition Diagram Paths

<Reference><Reference>

<Multiplicity> <Multiplicity>

«participant»{end=<Reference>}<Participant>: <Block>

<Name>

An association block, as the name implies, is a
combination of an association and a block, so it
can relate two blocks together but can also have
internal structure and other features of its own.

Participants are placeholders that represent the
blocks at each end of the association block, and
are used when it is desired to decompose a
connector.

Association
Block Path and
Node

6.3.2

Generalization
Path

A generalization describes the relationship
between the general classifier and specialized
classifier. A set of generalizations may either be
{disjoint} or {overlapping}. They may also be
{complete} or {incomplete}.

6.6

<GeneralizationSet><GeneralizationSet>

A reference association can be used to specify a
relationship between two blocks. A reference
association can specify a reference property on
the blocks at one or both ends.

The white diamond is the same as no diamond,
but profiles can be used to differentiate them by
specifying additional constraints.

Reference
Association
Path

6.3.2

<Reference>
<Multiplicity>

<End>
<Multiplicity>

<Reference>
<Multiplicity>

<Reference>

<Reference><End>

<Multiplicity> <Multiplicity>
<Name>

<Reference><Reference>

<Multiplicity> <Multiplicity>
<Name>

<Reference><End>

<Multiplicity> <Multiplicity>
<Name>

<Reference>

<Multiplicity> <Multiplicity>
<Name>

Section
Diagram
Element

Notation Description

Composite
Association
Path

Where there is no arrow on the nondiamond end
of the association it also specifies a reference
property to the whole in the part (indicated by
<Reference>).

Otherwise when there is an arrow, the name at
the whole end simply gives a name to the associ-
ation end (indicated by <End>).

A composite association relates a whole to its
parts showing the relative multiplicity at both
whole and part ends. A composite association
always defines a part property in the whole
(indicated by <Part>).

6.3.1

<Reference>
<Multiplicity>

<End>
<Multiplicity>

<Reference>
<Multiplicity>

<Reference>

<Multiplicity>

<Part>

<Multiplicity>

<Name>

<End>

<Multiplicity>

<Part>

<Multiplicity>

<Name>

A.4 Block Defi nition Diagram

524 APPPENDIX SysML Reference Guide

 Table A.6 Additional Notation to Defi ne Parametric Models on Block Defi nition Diagrams

parameters

constraints
{{<Language>}<Constraint>}
<ConstraintProperty>:<ConstraintBlock>[<Multiplicity>]

<Parameter>:<Type>[<Multiplicity>]=<ValueExpression>

«constraint»
<Name>

constraints
{{<Language>}<Constraint>}

«block»
<Name>

The constraints on a block can be shown in a
special compartment labeled constraints.

<Constraint> contains an expression preceded by
an indication of the language used to express the
constraint.

Section
Diagram
Element

Notation Description

Block Node
with
Constraint
Compartment

7.2

Constraint
Block Node

A constraint block encapsulates a constraint to
enable it to be defined once and then used in
different contexts.

7.3

 Table A.7 Additional Notation to Defi ne Activity Models on Block Defi nition Diagrams

«activity»
<Name>

<Action>
<Multiplicity>

<End>
<Multiplicity>

<End>

<Multiplicity>

<Action>

<Multiplicity>

<Name>

<ObjectNode>
<Multiplicity>

<End>
<Multiplicity>

<End>

<Multiplicity>

<ObjectNode>

<Multiplicity>

<Name>

<End>

<Multiplicity>

<ObjectNode>

<Multiplicity>

<Name>

Parameters and other object nodes can also be represented on
the block definition diagram. By convention, the relationship
from activities to object nodes is represented with a reference
association.

Object Node
Composition
Path

8.10.2

Invocation of activities via call behavior actions is modeled
using the standard composition association where the calling
activity is shown at the black diamond end and the called
activity is at the other end of the association.

Activity
Composition
Path

8.10.1

Section
Diagram
Element

Notation Description

Activity Node On a block definition diagram, activities are shown using a
block symbol with the keyword “activity.”

8.10.1

525

 A.5 Internal Block Diagram
 The internal block diagram is used to describe the internal structure of a block in
terms of how its parts are interconnected.

A standard port describes a service-based
interaction point on a block. A standard port is
defined by its interface. The shape of the
<Interface> symbol indicates whether services
are required by or provided by the block.

initialValues

<Name>:[<Block>][<Multiplicity>]

<Multiplicity>

<Property>=<ValueExpression> Note that a Part Node may have the same
compartments as a Block Node. [<Block>]
represents a property-specific type.

A part is a property of an owning block that is
defined (typed) by another block. The part
represents a usage of the defined block in the
context of the owning block.

Section
Diagram
Element

Notation Description

Part Node 6.3.1, 6.6.5

<Name>:<Actor>[<Multiplicity>]

Actor Part
Node

An actor part is a property of a owning block that
is defined (typed) by an actor.

11.5

initialValues

<Name>:[<Block>][<Multiplicity>]

<Multiplicity>

<Property>=<ValueExpression>

Reference
Node

Note that a Reference Property Node may have
the same compartments as a Block Node.
[<Block>] represents a property-specific type.

A reference property of a block is a reference to
another block.

6.3.2

<Name>:<Item>[<Multiplicity>]

<Name>:<Item>[<Multiplicity>]

<Name>:<Item>[<Multiplicity>]

Atomic Flow
Port Node

An atomic flow port describes an interaction
point where an item can flow into or out of a
block, or both, as indicated by the direction of
the arrow in the Atomic Flow Port Node.

6.4.3

<Name>:<FlowSpecification>[<Multiplicity>]

<Name>:<FlowSpecification>[<Multiplicity>]

Nonatomic
Flow Port
Node

A nonatomic flow port describes an interaction
point that allows multiple different items to
flow into or out of a block. A nonatomic flow
port is typed by a flow specification. A shaded
symbol implies a conjugate port that reverses the
items’ allowable in and out flow direction.

6.4.3

initialValues
<Property>=<ValueExpression>

<Name>:[<ValueType>][<Multiplicity>]=<Expression>
Value
Property Node

Note that a Value Property Node may have the
same compartments as a Value Type Node.
[<ValueType>] represents a property-specific type.

A value property describes the quantitative
characteristics of a block.

6.3.3

«participant»
{end=<Reference>}

<Participant>:<Block>

Participant
Property
Node

A participant property represents one end of an
association block. Using a participant property, a
modeler can show the relationship between the
internal structure of the association block and the
internal structure of its related ends.

6.3.2

<Name>[<Multiplicity>]<Interface>

<Interface> <Name>[<Multiplicity>]

Standard Port
Node

6.5.3

A.5 Internal Block Diagram

 Table A.8 Internal Block Diagram Nodes

526 APPPENDIX SysML Reference Guide

 Table A.9 Internal Block Diagram Paths

<Name>:<Item>, ...

<Name>:<Item>, ...

An item flow is used to specify the items that flow
across a connector in a particular context. An item
flow specifies the type of the item that is flowing
and the direction of flow. It may also be associated
to a property, called an item property, of the
enclosing block to identify a specific usage of an
item in the context of the enclosing block.

Item Flow
Node

6.4.2

<End>

<Multiplicity>

<End>

<Multiplicity>

<Name>:<Association>

More detail can be specified for connectors by
typing them with association blocks. An association
block, as the name implies, is a combination of an
association and a block, so it can relate two blocks
together but can also have internal structure and
other features of its own.

Connector
Property Path
and Node

6.3.2

<End>

<Multiplicity>

<End>

<Multiplicity>

<Name>:<Association>

<End>

<Multiplicity>

<End>

<Multiplicity>

<Name>:<Association>

Section
Diagram
Element

Notation Description

Connector
Path

A connector is used to bind two parts (or ports) and
provides the opportunity for those parts to interact,
although the connector says nothing about the nature
of the interaction.

6.3.1

 A.6 Parametric Diagram
 Parametric diagrams are used to create systems of equations that can be used to
constrain the properties of blocks.

 Table A.10 Parametric Diagram Notation

<Multiplicity><Multiplicity> «equal»

<Multiplicity><Multiplicity> Binding connectors connect constraint parameters
to each other and to value properties. They
express an equality relationship between their
bound elements.

Value Binding
Path

7.5

«constraint»
<Name>:<ConstraintBlock>[<Multiplicity>]

{<Constraint>}

<Name>:<ConstraintBlock>[<Multiplicity>]
{<Constraint>}

Constraint properties are defined by constraint
blocks and used to bind (i.e., connect) parameters.
This enables complex systems of equations to be
composed from more primitive equations, and
for the parameters of the equations to explicilty
constrain properties of blocks.

Constraint
Property Node

7.4

<Name>: <Type>[<Multiplicity>]

Section
Diagram
Element

Notation Description

Constraint
Parameter
Node

A constraint parameter is a special kind of
property that is used in the constraint expression
of a constraint block. Constraint parameters do
not have direction.

7.3

527

 A.7 Activity Diagram
 The activity diagram is used to model behavior in terms of the flow of inputs,
outputs, and control. An activity diagram is similar to a traditional functional flow
diagram.

(<Partition>,..)

<Name>:<Behavior>

An alternative representation for an activity
partition for call actions is to include the name of
the partition or partitions in parentheses inside the
node above the action name. This can make the
activity easier to layout than when using the
swimlane notation.

Activity
Partition in
Action Node

8.9.1

An interruptible region groups a subset of the
actions within an activity and includes a
mechanism for stopping their execution. Stopping
the execution of these actions does not effect other
actions in the activity.

Interruptible
Region Node

8.8.1

<Partition>

<
P

ar
tit

io
n>

A set of activity nodes can be grouped into an
activity partition (also known as a swimlane) that
is used to indicate responsibility for execution of
those nodes. <Partition> may be the name of a
block or name and type of a part/reference.
Partitions may overlap in a grid pattern.

Activity
Partition Node

8.9.1

Activity parameter node symbols are rectangles
that straddle the boundary of the activity frame.

Other annotations include: «noBuffer»,
«optional», «overwrite», «continuous», «discrete»,
{rate=<Expression>}.

Parameters can be organized into parameter sets,
indicated by a bounding box around the
parameters in the set. Parameter sets may overlap,
and may have an annotation:
{probability=<Expression>}.

act <Activity>

<Parameter>:<Type>:<Multiplicity>

<Parameter>:<Type>:<Multiplicity>

Section
Diagram
Element

Notation Description

Activity
Parameter
Node

8.4.1

A.7 Activity Diagram

 Table A.11 Activity Diagram Structural Nodes

528 APPPENDIX SysML Reference Guide

 Table A.12 Activity Diagram Control Nodes

A fork node has one input flow and multiple output
flows—it replicates every input token it receives onto each
of its output flows. The tokens on each output flow may be
handled independently and concurrently.

Fork Node 8.5.1,
8.6.1

When an activity starts executing a control token is placed
on each initial node in the activity. The token can then
trigger the execution of an action via an outgoing control
flow.

Initial Node 8.6.1

When a control or object token reaches an activity final
node during the execution of an activity, the execution
terminates.

Activity Final
Node

8.6.1

Control or object tokens received at a flow final node are
consumed but have no effect on the execution of the
enclosing activity. Typically they are used to terminate a
particular sequence of actions without terminating an
activity.

Flow Final
Node

8.6.1

«decisionInput»
<Behavior>

[<Expression>]

[<Expression>]

[<Expression>]

A decision node has one input flow and multiple output
flows—an input token can only traverse one output flow.
The output flow is typically established by placing mutually
exclusive guards on all outgoing flows and offering the
token to the flow whose guard expression is satisfied. A
decision node can have an accompanying decision input
behavior, which is used to evaluate each incoming object
token and whose result can be used in guard expressions.

Decision
Node

8.5.1,
8.6.1

{join-spec=
<Expression>}

A join node has one output flow and multiple input
flows—it has the important characteristic of synchronizing
the flow of tokens from many sources. Its default behavior
can be overridden by providing a join specification, which
can specify additional control logic.

Join Node 8.5.1,
8.6.1

A merge node has one output flow and multiple input
flows—it routes each input token received on any input
flow to its output flow. Unlike a join node, a merge node
does not require tokens on all its input flows before
offering them on its output flow. Rather it offers tokens
on its output flow as soon as it receives them.

Section
Diagram
Element

Notation Description

Merge Node 8.5.1,
8.6.1

529

 Table A.13 Activity Diagram Object and Action Nodes

«controlOperator»
<Name>:<ControlOperator>

{control}

A control operator produces control
values on an output parameter, and is able
to accept a control value on an input
parameter (treated as an object token). It
is used to specify logic for enabling and
disabling other actions.

Control
Operator
Action Node

8.6.2

<Event>,. . .

An activity can accept events using an
accept event action. The action has
(sometimes hidden) output pins for
received data.

Accept Event
Action Node

8.7

<TimeExpression>
A time event corresponds to an expiration
of an (implicit) timer. In this case the
action has a single (typically hidden)
output pin that outputs a token containing
the time of the accepted event occurrence.

Accept Time
Event Node

8.7

<Signal>
target

signal
An activity can send signals using a send
signal action. It typically has pins
corresponding to the signal data to be
sent and the target for the signal.

Send Signal
Action

8.7

«centralBufferNode»
<Name>:<Type>

[<State>,. . .]

A central buffer node provides a store for
object tokens outside of pins and
parameter nodes. Tokens flow into a
central buffer node and are stored there
until they flow out again.

Central Buffer
Node

8.5.3

«dataStore»
<Name>:<Type>

[<State>,. . .]

A datastore node provides a copy of a
stored token rather than the original.
When an input token represents an object
that is already in the store, it overwrites
the previous token.

Datastore
Node

8.5.3

<Name>:<Behavior>
<Name>:<Type>[<State>,. . .]

<Name>:<Operation>

target
«localPrecondition»
<Constraint>
«localPostcondition»
<Constraint>

Call actions can invoke other behaviors
either directly or through an operation, and
are referred to as call behavior actions and
call operation actions, respectively. A call
action must own a set of pins that match in
number and type of the parameters of the
invoked behavior/operation. A called
operation requires a target.
Streaming pins may be marked as {stream}
or filled (as shown).
Where the parameters of the called entity
are grouped into sets, the corresponding
pins are as well. Pre- and postconditions
can be specified that constrain the action
such that it cannot begin to execute unless
the precondition is satisfied, and must
satisfy the postcondition to successfully
complete execution.

Section
Diagram
Element

Notation Description

Call Action
Node

8.1, 8.3,
8.4.2

«<ActionType>»
<Expression>

Primitive actions include: object access/
update/manipulation actions, which
involve properties and variables, and value
actions, which allow the specification of
values. The <Expression> will depend on
the nature of the action.

Primitive
Action Node

8.12.1

A.7 Activity Diagram

530 APPPENDIX SysML Reference Guide

 Table A.14 Activity Diagram Paths

[<Expression>]

[<Expression>]

An interrupting edge interrupts the execution of
the actions in an interruptible region. Its source is
a node inside the region and its destination is a
node outside it.

Interrupting
Edge Path

8.8.1

[<Expression>] Additional annotations include «continuous»,
«discrete», {rate=<Expression>},
{probability=<Expression>}.

Object flows connect inputs and outputs. Object Flow
Path

8.1, 8.5

Section
Diagram
Element

Notation Description

[<Expression>]

[<Expression>]

Control Flow
Path

Control flows provide constraints on when, and in
what order, the actions within an activity will
execute. A control flow can be represented using a
solid line, or using a dashed line to more clearly
distinguish it from object flow.

8.1, 8.6

<Name>:<Type>
[<State>,...]

When an object flow is between two pins that
have the same characteristics, an alternative
notation can be used where the pin symbols are
elided and replaced by a single rectangular symbol
called an object node symbol.

Object Flow
Node

8.5

531

 A.8 Sequence Diagram
 The sequence diagram is used to represent the interaction between structural ele-
ments of a block, as a sequence of message exchanges.

Two combined fragments have operators with a
compartment per operand, shown as <N-aryOp>. These are
par and alt.

The lifelines that participate in the fragment overlay on top
of the fragment (i.e., are visible) and lifelines that don’t
particiapte are obscured behind the fragment. (Note: This is
also true of Single-Compartment Fragment Nodes.)

[<Constraint>]

[<Constraint>]

<N-aryOp>Multi-
compartment
Fragment
Node

9.7.1

<FilterOp> {<Message>,...} There are two combined fragments with filter operators:
consider and ignore, shown as <FilterOp>. Inside such a
construct, messages that have been explicitly ignored (or not
considered) may be interleaved with valid traces.

Filtering
Fragment
Node

9.7.2

<State>

{<Constraint>}

A state invariant on a lifeline is used to add a constraint on
the required state of a lifeline at a given point in a sequence
of event occurrences. The invariant constraint can include
the values of properties or parameters, or the state of a state
machine.

State
Invariant
Symbol

9.7.3

ref
<Interaction>

An interaction use allows one interaction to reference
another as part of its definition. The lifelines that participate
in the interaction are obscured behind the fragment, and
lifelines that don’t participate overlay on top of the
fragement (i.e., are visible).

Interaction
Use Node

9.8

<UnaryOp>

[<Constraint>]

A combined fragment can be used to model complex
sequences of messages. A number of combined fragments
have operators with only a single compartment for all
operands, shown as <UnaryOp>. These are: seq, opt, break,
strict, loop, neg, assert, critical.

Single-
compartment
Fragment
Node

9.7.1,
9.7.2

<Name>:<Type>
[<ValueSpecification>]

ref <Interaction>

Section
Diagram
Element

Notation Description

Lifeline
Node

A lifeline represents the relevant lifetime of an instance that
is part of the interaction’s owning block, which will either
be represented by a part property or a reference property.

9.4

A.8 Sequence Diagram

 Table A.15 Sequence Diagram Structural Nodes

532 APPPENDIX SysML Reference Guide

 Table A.16 Sequence Diagram Paths and Activation Nodes

<Attribute>=<Name>
(<Attribute>=<Argument>,. . .)
:<Argument>

A reply message shows a reply to a synchronous
operation call, together with any return arguments.

Reply
Message

9.5.1

<Name>(<Argument>,. . .)
A lost message describes the case where there is sending
event for the message but no receiving event.

Lost
Message
Path

9.5.2

<Name>(<Argument>,. . .)
Asynchronous messages correspond to either the sending
of a signal or to an asynchronous invocation (or call) of
an operation, and do not require a reply message.

Asynchronous
Message

9.5.1

<Name>

Focus of control bars or activations are overlaid on
lifelines and correspond to executions; they begin at the
execution's start event, and end at the execution's end
event. When executions are nested, the focus of control
bars are stacked from left to right. An alternate notation
for activations is a box symbol overlaid on the lifeline with
the name of the behavior or action inside.

Focus of
Control
(Activation)
Node

9.5.4

<Name>(<Argument>,. . .) The creation of an instance is indicated by the receipt of a
create message.

Create
Message
Path

9.5.5

An instance's destruction is indicated by the ocurrence of
a destroy event.

Destroy
Event Node

9.5.5

Within a coregion, there is no implied order between any
messages sent or received by the lifeline.

Coregion
Symbol

9.7.1

<Name>(<Argument>,. . .)
A found message describes the case where there is
receiving event for the message but no sending event.

Found
Message
Path

9.5.2

<Name>(<Argument>,. . .)

Section
Diagram
Element

Notation Description

Synchronous
Message

A synchronous message corresponds to the synchronous
invocation of an operation, and is generally accompanied
by a reply message.

9.5.1

533

 Table A.17 Sequence Diagram Temporal Observation and Constraint Nodes

<Name>=<TimeExpression> A time observation is used to note the time at some
instant during the execution of an interaction.

Time
Observation
Symbol

9.6

{<TimeConstraint>} A time constraint identifies a constraint that
applies to the time of occurrence of a single event
in the interaction execution. A time constraint can
use a time observation in its definition.

Time
Constraint
Symbol

9.6

{<DurationConstraint>}

{<DurationConstraint>}

{<DurationConstraint>}

A duration constraint identifies two events, called
the start and end events, and expresses a constraint
on the duration between them. A duration constraint
can use a duration observation in its definition.

Duration
Constraint
Symbol

9.6

<Name>=<DurationExpression>

<Name>=<DurationExpression>

Section
Diagram
Element

Notation Description

Duration
Observation
Symbol

A duration observation can be used to note the time
taken between two instants that represent the
occurrence of events during the execution of an
interaction.

9.6

A.8 Sequence Diagram

534 APPPENDIX SysML Reference Guide

 A.9 State Machine Diagram
 State machine diagram are used in SysML to describe the state-dependent behav-
ior of a block throughout its life cycle in terms of its states and the transitions
between them.

<State>

<Name>

<Name>

<Name>

<Name>

A composite state is a state with nested regions;
the most common case is a single region. A
composite state may have entry- and exit-point
pseudostates that act like junction pseudostates.
Entry points have incoming transitions from
outside the state and exit points have the opposite.

Composite
State with
Entry- and
Exit-Point
Pseudostate
Nodes

10.6.1

<State>:<StateMachine>

<Name> <Name>

A state machine may be reused using a kind of
state called a submachine state. A transition
ending on a submachine state will start its
referenced state machine. Transitions may also be
connected to connection points on the boundary
of the state.

Sub–
State Machine
Node with
Connection
Points

10.6.5

<State><State>
A composite state may have many regions, which
may each contain substates. These regions are
orthogonal to each other and so a composite state
with more than one region is sometimes called an
orthogonal composite state.

Composite
State Node
with Multiple
Regions

10.6.2

Entry/<Behavior>
Exit/<Behavior>
Do/<Behavior>
<Event>[<Constraint>]/<Behavior>
<Event>/defer

<State>

A state represents some significant condition in
the life of a block, typically because it represents
some change in how the block responds to events.
Each state may have entry and exit behaviors that
are performed whenever the state is entered or
exited, respectively. In addition, the state may
perform a do activity that executes once the entry
behavior has completed and continues to execute
until it completes or the state is exited.

Atomic State
Node

10.3

stm <StateMachine>

Section
Diagram
Element

Notation Description

State Machine
with Entry-
and Exit-Point
Pseudostate
Nodes

A state machine may have entry- and exit-point
pseudostates, which are similar to junctions. On
state machines, entry-point pseudostates can only
have outgoing transitions and exit-point
pseudostates can only have incoming transitions.

10.6.5

 Table A.18 State Machine Diagram State Nodes

535

 Table A.19 State Machine Diagram Pseudostate and Transition Nodes

The final state indicates that a region has completed execution.Final State
Node

10.3

The outgoing transitions of a choice pseudostate are evaluated once it has
been reached.

Choice
Pseudostate
Node

10.4.2

An initial pseudostate specifies the initial state of a region.Initial
Pseudostate
Node

10.3

<Event>,. . . [<Constraint>]
This node represents all the transition’s triggers, with the descriptions of
the triggering events and the transition guard inside the symbol.

Trigger Node 10.4.3

<EffectExpression>
<EffectExpression> describes the effect of the transition, either the name
of a behavior or the body of an opaque behavior.

Action Node 10.4.3

A junction pseudostate is used to construct a compound transition path
between states.

Junction
Pseudostate
Node

10.4.2

A join pseudostate has a single outgoing transition and many incoming
transitions. When all of the incoming transitions can be taken, and the
join’s outgoing transition is valid, then all the transitions happen.

Join
Pseudostate
Node

10.6.2

A fork pseudostate has a single incoming transition and many outgoing
transitions. When an incoming transition is taken to the fork pseudostate,
all of the outgoing transitions are taken.

Fork
Pseudostate
Node

10.6.2

<Signal>(<Argument>,. . .)
This node represents a send signal action. The signal’s name, together
with any arguments that are being sent, are shown within the symbol.

Send Signal
Node

10.4.3

H*H
A history pseudostate represents the last state of its owning region, and a
transition ending on a history pseudostate has the effect of returning the
region to the state it was last in.

History
Pseudostate
Node

10.6.4

Section
Diagram
Element

Notation Description

Terminate
Pseudostate
Node

If a terminate pseudostate is reached, then the behavior of the state
machine terminates.

10.3

A.9 State Machine Diagram

536 APPPENDIX SysML Reference Guide

 Table A.20 State Machine Diagram Paths

<Operation>(<Attribute>, . . .)[<Constraint>]/<Behavior>

Call events indicate that an operation on the state
machine’s owning block has been requested. A call
event may also be accompanied by a number of
arguments, which may be assigned to attributes.
The transition can also include a guard and effect.

Call Event
Transition
Path

10.5

when <Expression>[<Constraint>]/<Behavior>

Change events indicate that some condition has
been satisfied (normally that some specific set of
attribute values hold). The transition can also
include a guard and behavior/effect.

Change Event
Transition
Path

10.7

<Signal>(<Attribute>, . . .)[<Constraint>]/<Behavior>

Signal events indicate that a new asynchronous
message has arrived. A signal event may be
accompanied by a number of arguments, which
may be assigned to attributes. The transition can
also include a guard and effect.

Signal Event
Transition
Path

10.4.1

after <TimeExpression>[<Constraint>]/<Behavior>

at <TimeExpression>[<Constraint>]/<Behavior>

Section
Diagram
Element

Notation Description

Time Event
Transition
Path

Time events indicate either that a given time
interval has passed since the current state was
entered (after), or that a given instant of time has
been reached (at). The transition can also include
a guard and effect.

10.4.1

537

 A.10 Use Case Diagram
 The use case diagram is used to model the relationships between the system
under consideration or subject, its actors, and use cases.

«include»

The inclusion relationship allows a base use case to
include the functionality of an included use case as part of
its functionality. The included use case is always performed
when the base use case is performed. The arrow end of the
include relationship points to the included use case.

Inclusion Path 11.4.1

<GeneralizationSet><GeneralizationSet>

Use cases and actors can be classified using the
generalization relationships. Scenarios and actor
associations from the general use case are inherited by
the specialized use case.

Generalization
Path

11.4.1

The extending use case is a fragment of functionality that
extends the base use case and is not considered part of the
normal base use case functionality. It often describes some
exceptional behavior in the interaction between subject and
actors, such as error handling, which does not contribute
directly to the goal of the base use case. The arrow end of
the extension relationship points to the base use case that is
extended.

<Name>

<Use Case>

The entity that provides functionality in support of the
use cases is called the system under consideration, or
subject, and is represented by a rectangle. It often
represents a system that is being developed.

Subject Node 11.4

<End><End>

<Multiplicity> <Multiplicity>

<Name>

Actors are related to use cases by associations. The
multiplicity at the actor end describes the number of
actors involved, and the multiplicity at the use case end
describes the number of instances in which the actor or
actors can be involved.

Association
Path

11.4

Condition: {<Constraint>}
extension points: <ExtensionPoint>,...

«extend»

Extension Path 11.4.1

<Name>

extension points

<ExtensionPoint>,...

Use cases describe the functionality of some system in
terms of how its users use that system to achieve their
goals. A use case may define a set of extension points,
that represent places where it can be extended.

Use Case
Node

11.1, 11.4

«actor»
<Name>

<Name>

Section
Diagram
Element

Notation Description

Actor Node The users and other external participants in an interaction
with a subject are described by actors. An actor represents
the role of a human, an organization, or any external
system that participates in the use of some subject. Actors
may interact directly with the suject or indirectly with the
system through other actors.

11.1, 11.3

A.10 Use Case Diagram

 Table A.21 Use Case Diagram Notation

538 APPPENDIX SysML Reference Guide

 A.11 Requirement Diagram
 The requirement diagram is used to graphically depict hierarchies of require-
ments or to depict an individual requirement and its relationship to other model
elements.

 Table A.22 Requirement Diagram Nodes

tracedTo
«ElementType»<Element>

tracedFrom
«ElementType»<Element>

The trace relationship can be shown using
compartment notation when the requirements and
related model elements do not appear on the same
diagram.

Trace
Compartment

12.5,
12.14

<Name>

<Name>

Requirements can be organized into a package
structure. Each package within this package
structure may correspond to a different
specification, each containing the text-based
requirements for that specification.

Package
Node

12.8

verifies
«requirement»<Requirement>

«testCase»
<Name>

A test case can represent any method for
performing the verification, including the
standard verification methods of inspection,
analysis, demonstration, and testing.

Test Case
Node

12.12

satisfies
«requirement»<Requirement>

refines
«requirement»<Requirement>

«<ElementType>»
<Name>

Requirements can be related to model elements
that may appear in different hierarchies or on
different diagrams. These relationships can be
shown using the compartment notation when the
requirements and related model elements do not
appear on the same diagram.

Requirement
Related–Type
Node

12.5,
12.11,
12.13

verifiedBy

master

refinedBy

derivedfrom

derived

satsifiedBy

«<testCase>»<TestCase>

«requirement»<Requirement>

«ElementType»<Element>

«requirement»<Requirement>

«requirement»<Requirement>

«<ElementType>»<Element>

id = “<String>”
text = “<String>”

«requirement»
<Name>

Section
Diagram
Element

Notation Description

Requirement
Node

A requirement specifies a capability or condition
that must (or should) be satisfied, a function that
a system must perform, or a performance
condition a system must achieve. Each
requirement includes predefined properties for
its identification and textual description. SysML
includes specific relationships to relate
requirements to other requirements as well as to
other model elements, which include deriving
requirements, satisfying requirements, verifying
requirements, refining requirements, and copying
requirements. The compartment notation is one
method for displaying a requirement relationship
between a requirement and another model
element.

12.1, 12.3,
12.4,
12.5.2

539

 Table A.23 Requirement Diagram Paths

«satisfy»
A satisfy relationship is used to assert that a model element
corresponding to the design or implementation satisfies a particular
requirement.

Satisfaction
Path

12.11

«verify»
A verify relationship is used between a requirement and a test case or
other named element to indicate how to verify that the requirement is
satisfied.

Verification
Path

12.12

«deriveReqt» A derive relationship occurs between a source requirement and a derived
requirement, based on analysis of the source requirement.

Derivation
Path

12.10

«trace»
A trace relationship is a general-purpose way to relate a requirement and
any other model element, useful for relating requirements to documents,
etc.

Trace Path 12.14

«copy» The copy relationship relates a copy of a requirement to the original
requirement, to support reuse of requirements.

Copy Path 12.14.1

«refine» The refine relationship is used to reduce ambiguity in a requirement by
relating it to another model element that clarifies the requirement.

Refinement
Path

12.13

Section
Diagram
Element

Notation Description

Containment
Path The containment relationship is used to represent how requirements are

contained in specifications (packages), or how a complex requirement
can be partitioned into a set of simpler requirements without adding or
changing their meaning.

12.9

A.11 Requirement Diagram

540 APPPENDIX SysML Reference Guide

 Table A.24 Requirement Diagram Callouts

verifiedBy
«testCase»<TestCase>

verifies
«requirement»<Requirement>

This callout notation is an alternative notation for
depicting verify relationships.

Verification
Callout

12.5.3,
12.12

satisfies
«requirement»<Requirement>

satisfiedBy
«<ElementType>»<Element>

This callout notation is an alternative notation for
depicting satisfy relationships.

Satisfaction
Callout

12.5.3,
12.11

refinedBy
«<ElementType>»<Element>

refines
«requirement»<Requirement>

This callout notation is an alternative notation for
depicting refine relationships.

Refinement
Callout

12.5.3,
12.13

master
«requirement»<Requirement>

This callout notation is an alternative notation for
depicting copy relationships.

Master
Requirement
Callout

12.5.3,
12.14.1

«rationale»
<Text>

A rationale is typically associated with either a
requirement, or a relationship between requirements.
It can also be applied throughout the model to capture
the reason for any type of decision.

Rationale
Callout

12.6

«problem»
<Text>

A problem is a particular kind of comment used to
identify or flag design issues in the model.

Problem
Callout

12.6

derivedFrom
«requirement»<Requirement>

derived
«requirement»<Requirement>

This callout notation is an alternative notation for
depicting derive relationships.

Derivation
Callout

12.5.3,
12.11

tracedFrom
«<ElementType>»<Element>

tracedTo
«<ElementType>»<Element>

Section
Diagram
Element

Notation Description

Trace
Callout

This callout notation is an alternative notation for
depicting trace relationships. It is the least restrictive
notation in that it can be used to represent a
relationship between any requirement and any other
model element on any diagram type.

12.5.3,
12.14

541

 A.12 Allocation
 SysML includes several notational options to provide flexibility for representing
allocations of model elements across the system model. The graphical representa-
tions are similar to those used for relating requirements to other model elements.

allocatedTo

allocatedFrom

«block»
<Name>

The compartment notation identifies the element at the opposite end of
the allocation relationship in a compartment of the model element. When
used on a block, it explicitly indicates allocation of definition to/from the
block.

Block Node
with
Allocation
Compartments

13.3

allocatedTo

allocatedFrom

<Name>:<Block>[<Multiplicity>]
The compartment notation identifies the element at the opposite end of
the allocation relationship in a compartment of the model element. When
used on a part, it explicitly indicates allocation of usage to/from the part.
An inferred allocation (part typed by a block, which in turn has an
activity allocated to it) should not be depicted by a compartment on
the part.

Part Node
with
Allocation
Compartments

13.3

<Name>:<Behavior>

allocatedFrom

allocatedTo

«<ElementType>»<Element>

«<ElementType>»<Element>

«<ElementType>»<Element>

«<ElementType>»<Element>

«<ElementType>»<Element>

«<ElementType>»<Element>

When an allocation compartment is used on an action, it explicitly
indicates allocation of usage to/from the action. An inferred allocation
(action typed by an activity, which in turn is allocated to a block) should
not be depicted by a compartment on the action.

Call Action
Node with
Allocated To
Compartment

13.3

«allocate»
This allocation relationship can be depicted directly when both ends of
the allocation relationship are shown on the same diagram. The
arrowhead represents the “allocatedTo” end.

Allocation
Path

13.3

«allocate»
<Partition>

The presence of an allocate activity partition on an activity diagram
implies an allocate relationship between any action node within the
partition and the part represented by the partition. This provides
allocation of usage (action to part), but not allocation of definition
(activity to block). The alternative activity partition notation (Activity
Partition in Action Node in Table A.11) can also be used.

Allocate
Activity
Partition Node

13.7

allocatedFrom
«<ElementType>»<Element>

The callout notation can be used to represent the opposite end of the
allocation relationship for any model element. In this case the callout
box is anchored to an element that is allocated from the element name in
the callout box.

Allocated
From Callout

13.3

allocatedTo
«<ElementType>»<Element>

Section
Diagram
Element

Notation Description

Allocated To
Callout

The callout notation can be used to represent the opposite end of the
allocation relationship for any model element. In this case the callout
box is anchored to an element that is allocated to the element name in
the callout box.

13.3

A.12 Allocation

 Table A.25 Notation for Allocations

542 APPPENDIX SysML Reference Guide

 A.13 Stereotypes
 Stereotypes may be applied to elements on any diagram, and SysML has a generic
notation across all diagrams. Information about applied stereotypes can be shown
either inside node symbols, as part of name strings, or using callout notation.

 Table A.26 Notation for Stereotyped Elements

«<Stereotype>»{<Property>=<Value>,. . .}<Name>

label

If the model element is represented by path
symbol (e.g., a line), the stereotype name and
properties are shown in a label next to the line and
before the name of the element.

Stereotype keywords and properties can also be
shown for elements in compartments, when they are
shown before the element name.

Name
String with
Keywords and
Properties

14.6

<Property>=<Value>
...

Irrespective of the symbol representing a model
element, the values for applied stereotypes properties
can always be shown using callout notation. Property
values from multiple sterotypes can be shown in a
single note symbol.

Stereotype
Callout

14.6

«<Stereotype>,...»
<Name>

Where a symbol supports compartments, the values
for the properties of an applied stereotype can be
shown in a compartment specific to that stereotype.

Node with
Stereotype
Compartment

14.6

«<Stereotype>,. . .»
<Name>

If no stereotype properties are shown, then multiple
stereotype names can appear in a comma-separated
list within one set of guillemets.

Name
Compartment
with
Keywords

14.6

«<Stereotype>»

<Name>

<Stereotype>»{<Property>=<Value>,. . .}<Name>
...

{<Property>=<Value>,. . .}

Section
Diagram
Element

Notation Description

Name
Compartment
with
Keywords and
Properties

A stereotyped model element is shown with the name
of the stereotype in guillemets, followed by any
values for the stereotypes properties and then the
name of the model element. Multiple stereotypes and
their properties may be shown before the model
element name.

14.6

«<Stereotype>»

<Property>=<Value>
...

«<Stereotype>»

 References

 [1] Object Management Group, OMG Systems Modeling Language (OMG SysML™),
V1.0, OMG document number formal/2007-09-01, September 2007; available at
 http://www.omgsysml.org.

 [2] ANSI/EIA 632, Processes for Engineering a System, American National Standards
Institute/Electronic Industries Alliance, 1999.

 [3] IEEE Standard 1220-1998, IEEE Standard for Application and Management of the
Systems Engineering Process, Institute for Electrical and Electronic Engineers,
December 8, 1998.

 [4] ISO/IEC 15288:2002, Systems Engineering—System Life Cycle Processes, International
Organization for Standardization/International Electrotechnical Commission, November
15, 2003.

 [5] Estefan, Jeff, Survey of Candidate Model-Based Systems Engineering (MBSE)
Methodologies, Rev. A, May 25, 2007.

 [6] Douglass, Bruce P., The Harmony Process, I-Logix Inc. white paper, March 25, 2005.

 [7] Hoffmann, Hans-Peter, Harmony-SE/SysML Deskbook: Model-Based Systems Engineering
with Rhapsody, Rev. 1.51, Telelogic/I-Logix white paper, Telelogic AB, May 24, 2006.

 [8] Lykins, Friedenthal, Meilich, Adapting UML for an Object-Oriented Systems Engineering
Method (OOSEM), Proceedings of the INCOSE International Symposium. Minneapolis,
July 15–20, 2000.

 [9] Cantor, Murray, RUP SE: The Rational Unifi ed Process for Systems Engineering, The
Rational Edge, Rational Software, November 2001.

 [10] Cantor, Murray, Rational Unifi ed Process ® for Systems Engineering, RUP SE Version 2.0,
IBM Rational Software white paper, IBM Corporation, May 8, 2003.

 [11] Ingham , Michel D. , Rasmussen , Robert D. , Bennett , Matthew B. , and Moncada , Alex C. ,
 Generating Requirements for Complex Embedded Systems Using State Analysis , Acta
Astronautica , 58 (12) : 648 – 661 , June 2006 .

 [12] Long , James E. , Systems Engineering (SE) 101, CORE ® : Product & Process Engineering
Solutions , Vitech training materials, Vitech Corporation , Vienna, VA, 2000 .

 [13] Zachman , John A. , A Framework for Information Systems Architecture , IBM Systems
Journal , 26 (3) :276 – 292 , 1987 .

 [14] C4I Architecture Working Group, C4ISR Architecture Framework Version 2.0,
December 18, 1997.

 [15] U.S. Department of Defense, DoD Architecture Framework (DoDAF), Version 1.5, April 23,
2007; available at http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_II.pdf.

 [16] Ministry of Defence, Architecture Framework (MODAF), Version 1.1, June 4, 2007.

 [17] ANSI/IEEE Std. 1471–2000, IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems, American National Standards Institute/Institute for Electrical
and Electronic Engineers, September 21, 2000.

 [18] The Open Group, The Open Group Architecture Framework (TOGAF), Version 8.1.1,
Enterprise Edition. New York: VanHaren, 2007; available at http://www.opengroup.org/
bookstore/catalog/g063v.htm.

 [19] Standard for Integration Defi nition for Function Modeling (IDEF0), Draft Federal Infor-
mation Processing Standards, Publication 183, December 21, 1993.

 [20] Object Management Group, Meta Object Facility Core Specifi cation, Version 2.0, OMG
document number formal/06-01-01, January 2006.

544 References

 [21] Object Management Group, MOF 2.0/XMI Mapping XMI Metadata Interchange
Specifi cation, Version 2.1.1, OMG document number formal/2007-12-10, December 2007.

 [22] ISO TC-184 (Technical Committee on Industrial Automation Systems and Integration),
SC4 (Subcommittee on Industrial Data Standards), ISO 10303-233 STEP AP233 ; available
at http://www.ap233.org/ap233-public-information.

 [23] Object Management Group, Model-Driven Architecture (MDA) Guide, v1.01, June 12,
2003; available at http://www.omg.org/mda/ .

 [24] Wymore , W. , Model-Based Systems Engineering . Boca Raton, FL : CRC Press , 1993 .

 [25] International Council on Systems Engineering (INCOSE), Systems Engineering Vision
2020, Version 2.03, TP-2004-004-02, September 2007.

 [26] Object Management Group, Object Constraint Language (OCL), Version 2.0, OMG docu-
ment number formal/06-05-01, May 2006.

 [27] Object Management Group, UML for Systems Engineering RFP, OMG document number
ad/03-03-41, March 28, 2003.

 [28] Object Management Group, Unifi ed Modeling Language (OMG UML): Superstructure, v.
2.1.2, OMG Available Specifi cation, OMG document formal/2007-11-02, November 2007.

 [29] Object Management Group, OMG SysML™ Requirements Traceability Matrix, OMG
document number ptc/2007-03-09, March 2007.

 [30] Haskins, Cecilia (ed.), INCOSE Systems Engineering Handbook: A Guide for System Life
Cycle Processes and Activities, v. 3.1, INCOSE-TP-2003-002-03.1, International Council on
Systems Engineering, August 2007.

 [31] Reisig, Wolfgang, A Primer in Petri Net Design . New York: Springer-Verlag.

 [32] Wagenhals , Haider , and Levis , Synthesizing Executable Models of Object Oriented Archi-
tectures, Journal of International Council of Systems Engineering , 6 (4) : 266 – 300 , 2003 .

 [33] Bock , Conrad , SysML and UML 2.0 Support for Activity Modeling , Journal of Interna-
tional Council of Systems Engineering , 9 (2) : 160 – 186 , 2006 .

 [34] Cockburn , Alistair , Writing Effective Use Cases . Boston : Addison-Wesley , 2000 .

 [35] Object Management Group, UML Testing Profi le, v. 1.0, OMG document number
formal/05-07-07, July 2005.

 [36] Friedenthal , Sanford , Object Oriented Systems Engineering, in Process Integration for
2000 and Beyond: Systems Engineering and Software Symposium . New Orleans : Lock-
heed Martin Corporation , May 1998 .

 [37] Meilich, Abe, and Rickels, Michael, An Application of Object-Oriented Systems Engineer-
ing to an Army Command and Control System: A New Approach to Integration of Systems
and Software Requirements and Design, Proceedings of the INCOSE International
Symposium, Brighton, England, June 6–11, 1999.

 [38] Steiner, Rick, Friedenthal, Sanford, Oesterheld, Jerry, and Thaker, Guatam, Pilot Applica-
tion of the OOSEM Using Rational Rose Real Time to the Navy CC & D Program,
Proceedings of the INCOSE International Symposium, Melbourne, July 1–4, 2001.

 [39] Rose , Susan , Finneran , Lisa , Friedenthal , Sanford , Lykins , Howard , and Scott , Peter ,
Integrated Systems and Software Engineering Process . Herndon, VA : Software
Productivity Consortium , 1996 .

 [40] Forsberg, Kevin, and Mooz, Harold, Application of the “ Vee ” to Incremental and Evolu-
tionary Development, Proceedings of the Fifth Annual International Symposium of the
National Council on Systems Engineering, St. Louis, July 1995.

 [41] Izumi, L., Friedenthal, S., and Meilich, A., Object-Oriented Systems Engineering Method
(OOSEM) Applied to Joint Force Projection (JPF), a Lockheed Martin Integrating Concept
(LMIC), Proceedings of the INCOSE International Symposium, June 2007.

 [42] Object Management Group, Diagram Interchange, v. 1.0, OMG document number
formal/06-04-04, April 2006.

 Note: Page numbers followed by f denote fi gures; those followed by t denote tables

 Index

 A
 Abstract syntax , 63 , 66–67 , 337 , 505
Accept event action

 description of , 191–192 , 209
 node , 529 f

 Accept signal action , 191 , 193
 Accept time action node , 529 f
 Action(s)

accept event . See Accept event action
 accept signal , 191 , 193
 call . See Call actions
 control operators used to enable and disable ,

 189–191
defi nition of , 171 , 174
 example of , 175
 node for , 535 f
 with nonstreaming input and output , 189
 primitive , 209–210 , 210 f
 requirements for , 175–176
 send signal , 191–192 , 209 , 220 , 252 , 529 f
tokens created by , 171 , 174–175

 Action pins , 326
 Activations , 224 , 224 f
 Activities

behavior depicted by , 172
as block behaviors , 203–204
 in block context , 202–206
communicating between , 172
continuous, 210–211
 control fl ow in . See Control fl ow
defi nition of , 171
do, 206 , 245
 executing , 208–211
 function of , 128 , 171, 176
invocation, composite associations used

to model , 206
 as methods , 204–205
 node , 524 f
signals used to communicate between , 192 f
 use case with , 276

 Activity composition node , 524 f
 Activity diagram

 allocation on , 309 f
 automobile system application of , 41–42 ,

47, 48 f
defi nition of , 171–172
 description of , 30 , 30 f

 example of , 173 f
 frame label for , 173
invocation actions on , 180 f
 nodes , 527–529 f
 paths , 530 f
 purpose of , 527
 residential security system , 436–437 f ,

456–457f
 use case and , 279–280
 water distiller case study of , 367–368 , 368 f

 Activity fi nal node , 188 , 528 f
 Activity fl ow , 204 f
 Activity hierarchy

 block defi nition diagrams used to model ,
 206–208

 description of , 174 , 174 f
 Activity parameters

 description of , 176–178
 nodes , 177 , 179 , 186 , 527 f

 Activity partitions
 allocate , 322–323 , 375 f , 376
 description of , 41 , 200–202 , 201 f , 279
 node , 527 f

 Actor
 associations used with , 272
 defi nition of , 269–270
 node , 521 f , 537 f
 system users represented using , 270–271

 Actor part node , 525 f
 Actual gates , 234
 Alias , 88
 Allocate activity partitions , 322–323 , 375 f , 376
 Allocation

 asymmetric , 316
of behavior , 312
behavioral , 307
 of defi nition . See Allocation of defi nition
 defi nition of , 307
evaluation of, across user model , 331–332
 of fl ow . See Flow allocation
 of function . See Functional allocation
 functional , 307
 between independent structural hierarchies ,

 327–329
 inferred , 320
logical–physical , 312 , 448
 notation for , 308–311 , 541 f

546 Index

 Allocation (continued)
 of properties , 313
 reference property relationships shown

through , 108
 of requirements , 311
software–hardware , 312
 of structure . See Structural allocation
 water distiller case study of . See Water distiller

system, allocation
 Allocation matrix , 325
 Allocation of defi nition

 description of , 308 , 314–317 , 315 f , 316 t
 functional , 318 , 320–322 , 321 f
 structural , 329

 Allocation of usage
 description of , 308 , 315 f , 315–316 , 316 t
 functional , 318 , 319 f
 structural , 327–328

 Allocation relationship
 balance of , 332
 in callout notation , 310 , 310 f
 in compartment notation , 310
 completeness and consistency

evaluations , 332
 creation of , 308
 description of , 307
 in matrix format , 311 , 311 f

 Alt/else , 229–230
 Analysis context

 defi nition of , 169
 description of , 163–165
 trade study as , 167

 Analysis models , 164
 Analytic model , 491
 Application programming interface , 501
 Application Protocol , 233 , 503
 Architectural frameworks , 12–13
 Architecture Team , 10
 Assembly connector , 126
 Assert , 232
 Assessment questionnaire , 510
 Association(s)

 with actors , 272
 composite . See Composite associations
 defi nition of , 110
 reference . See Reference associations

 Association blocks
 description of , 112–113
 node , 523 f
 path , 523 f

 Association path , 520 f , 537 f
 Asymmetric allocation , 316
Asynchronous digital subscriber line

connection , 111
 Asynchronous message , 220–222 , 532 f

 Asynchronous requests , 204
 Atomic fl ow ports

 description of , 122–123
 node , 522 f , 525 f

 Atomic state node , 534 f
 Automobile design

 activity diagram , 41–42 , 47 , 48 f
block defi nition diagram , 34, 36f , 37, 45,

46f , 56
 internal block diagram , 43–45 , 47 , 49 f , 50
 parametric diagram , 52–53 , 53 f
 requirement diagram , 34 , 35 f , 58 f
 sequence diagram , 39 , 40 f
 state machine diagram , 42–43
systems engineering application to , 5–9
 use case diagram , 37–39

 B
 Base use case , 273
Behavior

 classifi er , 128–129
 description of , 203–204
 entry , 206
 execution of , 223–225
 exit , 206
 main , 128–129
 opaque , 128
 state machine , 241
 use cases elaborated with , 276–281

Behavioral allocation
 description of , 307 , 312
 to structure , 317–323

Behavioral features
 block response to request for , 144
 classifi cation and , 135 , 143–144
 description of , 129–130

Behavior port , 126 , 131
 Binding connectors , 52 , 156
 Black-box interaction , 235
 Black-box specifi cation , 425–427 , 426 f , 499
 Block

 association . See Association blocks
behavioral features of , 129–130
 constraint . See Constraint block
 defi nition of , 34 , 95 , 97
 example of , 97
 properties of , 52
 structural elements of , 215
 symbol for , 97 , 99
 value properties , 116–117 , 159
 whole–part relationship for , 101

 Block composition hierarchy
 on block defi nition diagram , 103 f
 part properties used to model , 100–108

 Block confi gurations , 141–143 , 142 f , 159–161

547Index

 Block defi nition diagram
 activity hierarchies , 174 f , 206–208
 airplane example application of , 68
 allocation on , 309 f
 association blocks on , 112
 automobile system application of , 34 , 36 f , 37 ,

 45 , 46 f , 56
 block composition hierarchy on , 103 f
block confi guration modeled on ,141–143,142f
 classifi cation hierarchy on , 137 f
 compartments , 522
 constraint blocks on , 149–150 , 150 f
 description of , 30 , 30 f
 example of , 96 f
 generalization set on , 138 f
 header of , 96
model library components represented on , 340
 names on , 99
 nodes , 521–522 f , 524 f
 object nodes modeled using , 206 , 208
 parameters modeled using , 206 , 208 , 524 f
 part properties on , 103 f
 purpose of , 95–96 , 521
 reference association on , 108–109 , 109 f
 residential security system , 438 f , 454–455 f ,

 460–462 f , 465 f , 467–469 f , 485 f
 value types modeled on , 113 , 115–116
 variant confi gurations modeled on , 139 f
 water distiller case study of , 376–377

 Block node , 521 f , 524 f
 Break , 232
 Bridge , 501

 C
 Call actions

 description of , 171 , 209
 node , 529 f

Call behavior actions
control operator invoked by , 190–191
defi nition of , 178
 function of , 176
 name strings of , 185
 pins , 178–179

Call events
 description of , 246 , 252–253
 transition path , 536 f

 Call operation action , 205 , 220
 Callout notation

 for allocation relationships , 310 , 310 f
 for requirements relationship , 291 , 291 f

 Causal analysis , 409–410 , 412–413
 Central buffer nodes , 186 , 529 f
Change events

 description of , 192 , 246–247 , 263
 transition path , 536 f

 Child elements , 79
 Choice pseudostate

 description of , 250 , 251
 node , 535 f

 C4ISR standards framework , 12
 Classifi cation

behavioral features and , 135 , 143–144
 of block , 136
 hierarchies of , 134–144
 overlapping, generalization sets for modeling

of , 136–138
 for reuse , 134
 variants modeled using , 138–139

 Classifi er behavior , 128–129 , 202
 Classifi ers , 134
 Clock , 136 , 227
Clock skew , 162
 Cohesion metrics , 25–26
 Collaboration artifacts , 434 , 453
 Combined fragments

 defi nition of , 216 , 229
 interaction operators , 229–233 , 231 f

 Compartment notation
 for allocation relationships , 308 , 310 f
 for requirements relationships ,

290, 291 f
Completion events , 246
 Compliance matrix , 505 , 506 f
 Component Design, Implementation, and

Test , 9
Component developers , 17
 Components package , 85
 Component specifi cations , 284
 Composite associations

 defi nition of , 102
 description of , 164 , 174 , 206
 part properties , 102–104
 path , 523 f
 symbol for , 102

 Composite state
 defi nition of , 254
 node , 534 f
 orthogonal , 255
 with single region , 254–255

 Compound transition , 250
 Concept of operations

 description of , 12
document-based systems engineering use

of , 16
 Concrete syntax , 63 , 505
 Confi guration management tools , 493 ,

496–497
 Conform path , 519 f
 Conjugate port , 123
 Connection points , 261

548 Index

 Connector(s)
 assembly , 126
 associations used to defi ne features of , 110
 defi nition of , 105
 delegation , 126
 modeling of , 106–107
 parts connected on internal block diagram

using , 105–106 , 106 f
 path , 526 f

 Connector allocation , 323–325 , 324 f
 Connector property node , 526 f
 Connector property path , 526 f
 Consider , 232
 Constraint

 defi nition of , 149
 duration , 226–227
 encapsulation of, in constraint blocks ,

 152–154 , 168
 state , 198
 stereotypes with , 342–346
 summary of , 168
 time , 226–227
 time-dependent , 161
 value properties of block , 159

 Constraint block
 analysis models , 164
 on block defi nition , 149–150 , 150 f
 composite associations between , 154
 composition used to build , 154–155
 constraints encapsulated in , 152–154 , 168
 defi nition of , 149 , 156
 description of , 51
 features of , 149
 item fl ows constrained using , 163
 libraries of , 164
 node , 524 f
 parametric diagram , 150–151 , 155–159
 value properties of block constrained

using , 159
 Constraint expression , 149 , 151–153
 Constraint parameters

 binding of, using parametric diagram , 155–159
 characteristics of , 153–154
 defi nition of , 152
 derived , 153
 node , 526 f
 ordered , 153
 unique , 153

 Constraint properties
 description of , 152 , 156 , 163 , 169
 node , 526 f

Constructive Systems Engineering Cost Model , 26
 Contained elements , 79
 Containment hierarchy , 84 , 93 , 284 , 294–295
 Containment path , 519 f , 539 f

 Containment relationship , 83 , 86 , 294–295
 Context diagram , 44 , 277 , 277 f
Continuous activities , 210–211
Continuous fl ow , 171 , 194 , 371 , 373 f
Continuous state , 263–264
 Control fl ow

 allocation of, to connectors , 323 , 325
 description of , 172
 order of action execution specifi ed using ,

 187–191
 path , 530 f
 schematic diagram of , 189 f

 Control nodes
control logic depicted with , 188–189
 description of , 171–172

 Control operators
 action node , 529 f
description of , 189–191

Control tokens , 172 , 187
 ControlValue , 190
Copy path , 539 f
Copy relationship , 303 , 304 f
Coregion

 defi nition of , 229
 symbol for , 532 f

 Cost function , 166
 COSYSMO . See Constructive Systems

Engineering Cost Model
 Coverage property , 138
 Create messages

 description of , 225
 path , 532 f

 Creation occurrence , 225
 Critical , 232
 Criticality property of requirement , 286
 Critical performance requirements , 424–425
 Cross-cutting relationships , 289–291

 D
 Data architecture , 465–466
 Data exchange

 mechanisms of , 500–501
 standards for , 13 , 501–504

 Data interchange standards , 13
 Data management tools , 493
 Data store nodes , 186 , 529 f
 Decision node , 182–183 , 528 f
 Decomposition of lifelines , 235–238
 Deep history pseudostate , 259
 Default value , 118
 Defi nition, allocation of

 description of , 308 , 314–317 , 315 f , 316 t
 functional , 318 , 320–322 , 321 f
 structural , 329

 Delegation connector , 126

549Index

 Delegation port , 126 , 127 f
 Department of Defense Architecture

Framework , 12
 Dependencies , 89–90 , 93
 Dependency path , 519 f
Deployment, 509–514
 Derivation callout , 540 f
 Derivation path , 539 f
 Derived property , 100 , 117–118
 Derive relationship , 296
 Design constraints , 7–8 , 429 , 448
Destroy event node , 532 f
Destroy messages , 225
Destroy occurrence , 225
Development tools , 499
 Diagram(s) . See also specifi c diagram

 interchange standards for , 503
 UML , 69

 Diagram content , 33 , 73–75
 Diagram description , 72
 Diagram frames , 33 , 70–71
 Diagram header , 33 , 71–72
 Diagram kind , 71
 Diagram name , 72
 Diagram usage , 72
 Dimensions

defi nition of , 116
 nodes , 521 f

 Direct notation , 290
 Discrete rate , 194
 Discrete state , 263–264
 Do activity , 206 , 245
 Documentation , 512
 Document-based approach

 characteristics of , 15
 MBSE vs. , 15–16
 specifi cation tree , 16

Document-based systems engineering
 concept of operations document used in , 16
 limitations of , 16

 Document generation tools , 493 , 495–496
 Domain-specifi c language , 346
 Duration constraint

 description of , 226–227
 symbol for , 533 f

 Duration observation
 description of , 226
 symbol for , 533 f

 Dynamic system model , 491

 E
 EIA 632 , 12
Electrical engineering , 16–17
 Element import , 87
 Elements . See Model elements

 Enabling systems , 483–485
End event , 226
Engineering analysis tools , 493 , 495
 Enhanced Functional Flow Block Diagrams , 172 ,

 208 , 367
 Enterprise use cases , 417–418
Entry behavior , 206
 Entry point pseudostate , 242 , 259 , 261 f
Enumeration node , 521 f
 Events

 call , 246 , 252–253 , 536 f
 change , 246–247 , 536 f
 completion , 246
defi nition of , 219
 end , 226
 receive message , 221
 send message , 221
 signal , 246–247 , 536 f
 start , 226
 time . See Time events

 Exception use cases , 418
Executable specifi cation , 208
Executable system model , 490
Executions, 223–225
Exit behavior , 206
 Exit point pseudostate , 242
 Extension , 341
 Extension path , 520 f , 537 f
 Extension points , 273
 Extension relationships

 for stereotype , 349
 for use case , 273–274

 External transition , 247

 F
 File-based data exchange , 500
 Filtering fragment node , 531 f
 Final state node , 535 f
 Flow(s)

continuous, 171 , 194 , 371 , 373 f
 control . See Control fl ow
 discrete , 171
 item . See Item fl ows
 object . See Object fl ows
 parallel , 371
 between ports , 127–128

 Flow allocations
behavioral , 323
 control fl ows , 323 , 325
 description of , 312 , 323
 functional , 383 f
 item fl ows , 323
 object fl ows , 323–327
 structural , 329–331
 water distiller system , 371 , 375 f , 379 , 381 f , 382

550 Index

Flow-based simulation stereotype , 344 f , 350 f
 Flow charts , 188
 Flow fi nal node , 188 , 528 f
 Flow order , 196
 Flow ports

 atomic , 122–123 , 522 f , 525 f
 connecting of, on internal block diagram ,

 124–126
 description of , 45 , 95 , 120 , 203 , 422
 nonatomic , 123–124 , 522 f , 525 f

 Flow property , 123
 Flow rates , 194 , 196
 Flow specifi cation

 defi nition of , 123
 illustration of , 124
 node , 522 f

 Focus of control bars , 224
 Focus of control node , 532 f
 Fork node , 182 , 528 f
 Fork pseudostate

 description of , 242 , 255 , 257
 node , 535 f

 Formal gates , 234
 Found messages

 description of , 222
 path , 532 f

 Functional allocation
 allocate activity partitions used to model ,

 322–323
behavior allocated to structure using , 317–323
 of defi nition , 318 , 320–322 , 321 f
 defi nition of , 307 , 312
 fl ow , 383 f
 of usage , 318 , 319 f
 water distiller case study of , 371 , 375 f

 Functional requirements , 6–7 , 200

 G
 Gates , 234
 Generalization , 134 , 341
 Generalization path , 520 f , 523 f , 537 f
 Generalization set , 138 , 138 f
 General-purpose systems modeling domain ,

 65–66
General-purpose systems modeling language , 335
 Guard , 229 , 246–247
 Guard expression on object fl ows , 182
 Guillemets , 37 , 73 , 349

 H
Hardware development tools , 493
 Harmony , 12 , 398
 Hierarchical state , 254
High-Level Architecture , 491

 History pseudostate
 description of , 258–259 , 260 f
 node , 535 f

 I
 Icon symbols , 74 , 74 f
 IEEE 1220 , 12
 IEEE 1471-2000 standard , 13 , 91
 Ignore , 232
 Import path , 519 f
 Import relationship , 87–88
 Improvement process , 509–514
 Included use case , 273
 Inclusion path , 537 f
 Inclusion relationship for use case , 273
 Initial node , 188 , 528 f
 Initial pseudostate

 description of , 244
 node , 535 f

 Instances , 97
 Integration and Test Team , 10
 Integration Defi nition for Functional

Modeling , 13
 Interaction-based data exchange , 500
 Interaction operators , 229–233 , 231 f
 Interaction references , 234–235
 Interactions

 black-box , 235
 context for , 216–218
 defi nition of , 215 , 238
 with lifelines , 219 f
 lifelines used to represent participants in .

See Lifelines
 messages connected to frame of , 235
 sequence diagram representation of , 216
 size of , 234
 use case with , 276
 weak sequencing , 222–223

 Interaction use
 description of , 234
 node , 531 f

 Interface
 adding to standard ports , 131–132
 defi nition of , 130
 modeling , 130
 node , 522 f

 Interface realization path , 522 f
 Interface taxonomy , 422
 Internal block diagram

 allocation on , 309 f
 automobile system application of , 43–45 , 47 ,

 49 f , 50
 block confi guration detailed modeled on , 143
 connecting parts on , 105–106 , 106 f
 description of , 30 , 30 f , 97

551Index

 example of , 98 f , 216–217 , 218 f
 fl ow ports connected on , 124–126
 item fl ows on , 122 f
 nested parts shown on , 106 , 107 f
 nodes , 525 f
 part properties modeled on , 104 , 105 f
 paths , 526 f
 purpose of , 97 , 525
 reference properties modeled on , 110
 residential security system , 439–440 f ,

 449–450 f , 458–459 f
 standard ports connected on , 132–133

 Internal transition , 247
 International System of Units , 116
Interruptible regions

 description of , 193–194 , 195f , 374 f
 node , 527 f

 Interrupting edge
 description of , 193
 path , 530 f

 ISO 10303 . See STEP
 ISO 15288 , 12
 Item , 120
 Item fl ows

 allocation of , 323
defi nition of , 95
 description of , 163
 function of , 121
 heat balance analysis in water distiller system ,

 382 , 384–386
 on internal block diagram , 122 f
 modeling of , 120–121
 node , 526 f
 object fl ows allocated to , 325–326
 properties associated with , 379

 Item property , 121

 J
 Join node , 182 , 188 , 528 f
 Join pseudostate

 description of , 242 , 256–257
 node , 535 f

 Join specifi cation , 182 , 183 f , 188
 Junction pseudostate

 description of , 250
 node , 535 f

 K
 Keywords , 73

 L
 Lifelines

 with activations , 224 f
 asynchronous messages exchanged

between , 222 f

 decomposition of , 235–238
 defi nition of , 218
events , 219
 executions , 223
 interaction with , 219 f
 messages exchanged between , 220 , 222 f
 nested , 237 , 238 f
 node , 531 f
 nonoverlapping , 230 f
 occurrences , 219
 overlapping , 230 f
 selector expression , 218
state invariants on , 233–234
 symbol for , 219
 synchronous messages exchanged between ,

 222f
 Links , 105
Logical architecture , 429–442
Logical connector , 328
Logical decomposition , 431–434
Logical node architecture , 444–446 , 445 f
Logical–physical allocation , 312 , 448
Logical structure , 327
 Loop , 229–230
 Lost messages

 description of , 222
 path , 532 f

 M
Main behavior , 128–129
 Master requirement callout , 540 f
 MATLAB , 152
 Matrices

 allocation relationships depicted as , 311 , 311 f
 compliance , 505 , 506 f
 description of , 75–76
 requirements relationships depicted as ,

293, 294 f
 MBSE . See Model-based systems engineering
 Measures of effectiveness , 166 , 412 , 414
 Members

 defi nition of , 87 , 93
 visibility of , 87 , 93

Merge node , 183 , 528 f
 Message(s)

 asynchronous , 220–222 , 532 f
 call and send , 221
 create , 225
destroy , 225
exchanging of, between lifelines , 220 , 222 f
 fi ltering of , 233 f
 found , 222
 lost , 222
 reply , 221
 synchronous , 220–222

552 Index

 Message overtaking , 223
 Metaclasses

 defi nition of , 66 , 338
 model elements and , 68 f
 node , 520 f
 in reference metamodel , 343
 stereotypes based on , 341 , 347

 Metamodels
 concepts associated with , 337–339
 defi nition of , 66–67 , 337
 node , 520 f
 reference , 339 , 341 , 343
 UML4SysML , 338 , 338 f , 341 , 505–506

 Meta Object Facility , 13 , 337 , 504
 Method(s)

 activities as , 204–205
defi nition of , 21 , 134 , 202 , 223
 MBSE , 21
 modeling of , 134

 Metrics
 description of , 25–27 , 497 , 514
 improvement uses of , 510

 Ministry of Defence Architectural Frame-
work , 12–13

 Model(s)
 breadth of , 23
 completeness of , 23
 consistency of , 23–24
 containment hierarchy , 84 , 93
 criteria necessary to meet purpose , 22–25
 defi nition of , 21 , 79 , 81 , 92
description of organization , 58 , 92–93
 depth of , 23
 features of , 21
 fi delity of , 23
 good , 22
 hierarchy of , 81–83
 integration with other models , 25
 interchange of , 60
organization of , 82–85, 404–408
 in package hierarchy , 81–82
 requirements representation in , 285–287
 scope of , 22–23
 self-documenting , 24–25
 stereotypes applied when building , 348–352
 in SysML , 21
 understandability of , 24
water distiller case study, organization of ,

 362–364
 Model-based metrics , 25–27
Model-based systems engineering (MBSE)

 defi nition of , 17
 description of , 3 , 15
 document-based approach vs. , 15–16
 history of , 16–17
 improvements resulting from use of , 20–21

 mathematical formalism for , 17
 method , 21
 model repository , 18–20
 purpose of , 17
steps involved in , 361–362
 SysML used in support of , 31–32
 system model . See System model
 system modeling tool for , 505
 transitioning to , 20–21
 water distiller case study application of ,

 361–362
 Model Driven Architecture , 13
 Model elements

 defi nition of , 68 , 338
 description of , 59 , 68 f
 diagrammatic representation of , 71–72
 importing of, into packages , 87–89 , 407
 packageable . See Packageable elements
 in package diagram , 80
 in package hierarchy , 91
 qualifi ed name for , 86 , 93
 stereotyped , 336 , 337 f , 349–350
 symbols , 349

 Model element type , 72
 Modeling conventions , 24
 Modeling language , 65 , 335
 Modeling standards , 13
 Modeling tools , 339
 Model libraries

 defi nition of , 81 , 335 , 339
 node , 520 f
 reusable constructs provided using , 339–340

 Model node , 519 f
 Model repository , 18–20
 Model semantics , 23, 63, 67
 Model standards , 13
 Moe , 166–167, 414–415, 452, 472–473
 MOF . See Meta Object Facility
 Multicompartment fragment node , 531 f
Multidisciplinary systems engineering team

 description of , 9–10
 schematic diagram of , 10 f

 Multiple inheritance , 136

 N
 Name clash , 87
Name compartment with keywords , 542 f
 Namespace

 defi nition of , 79 , 85 , 93 , 151
 packages as , 85–86
 purpose of , 85
target , 87
 uniqueness rules , 85

 Name string with keywords and properties , 542 f
 Neg , 232
 Nested lifelines , 237 , 238 f

553Index

 Nested packages on package diagram , 84 f , 86
 Nested requirements , 295
 Nested structures , 106–107
 Node symbols , 73 , 74 f . See also specifi c node
 Node with stereotype compartment , 542 f
 Nonatomic fl ow ports

 description of , 123–124
 node , 522 f , 525 f

 Nonfunctional requirement , 284
 Nonoverlapping lifelines , 230 f
 Nonstreaming activity parameter , 177
 Notation

 allocation , 308–311
 callout . See Callout notation
 compartment . See Compartment notation
defi nition of , 69 , 337
 direct , 290
 matrices , 75–76
requirements relationships depicted using , 290
table , 75
 transition , 247–249 , 252 , 252 f
 trees , 76

 Note symbols , 74–75 , 75 f

 O
 Object access actions , 209
 Object constraint language , 24
 Object fl ows

 allocation of
 to connector , 323–325 , 324 f
 to item fl ow , 325–326

 description of , 171
 function of , 179
 guard expression on , 182
 node , 530 f
 order of , 196
 path , 530 f
 pins and parameters connected using , 181 f
 rates of , 194 , 196
 routing , 182–186

 Objective function , 166, 415, 472–473
 Object manipulation actions , 209
 Object nodes

 activity parameter nodes , 177 , 179 , 186
 block defi nition diagram modeling of , 206 , 208
 composition path , 524 f
 connecting of , 182
 description of , 179
 pins . See Pins
 state constraint on , 198

Object-oriented systems engineering method .
See OOSEM

 Objects , 97
 Object update actions , 209
 Occurrences

 creation , 225

 defi nition of , 219
destroy , 225

 OCL , 343
 OOSEM

 description of , 12 , 397
 design process in , 397–398
development of , 398
model organization , 404–408
 package structure of , 405
 residential security example of . See Residential

security system
system development

design levels , 400
hardware components , 400
 integration , 401
 management process , 400
 overview of , 398–400
 software components , 400–401
 specifi cations , 400
verifi cation , 401

 system model , 397–398
 system requirements , 400
 system specifi cation and design process ,

401, 402 f
Opaque behavior , 128
 “ Opaque” constructs , 209
 Open Group Architecture Framework , 13
Operands , 229
 Operation , 129
 Operation calls , 252–253
 Opt , 229
 Ordered constraint parameters , 153
 Ordering property , 196
 Orthogonal composite state , 242 , 255
 Overlapping lifelines , 230 f
 Overlap property , 138

 P
 Package(s)

 components , 85
 defi nition of , 59 , 81 , 93
 dependency between , 89–90 , 93
 model elements imported into , 87–89
 as namespaces , 85–86
 nested , 84 f , 86
 node , 519 f , 538 f
top-level , 82

 Packageable elements
 defi nition of , 81
 dependencies between , 89–90 , 93
 in model library , 339–340
 node , 519 f
 on package diagram , 85

 Package diagram , 519–520 f
 dependencies on , 90
 description of , 29 , 336

554 Index

 Package diagram (continued)
 model elements contained in , 80
model library components represented on , 340
model organization represented using , 363 f
 nested packages on , 84 f , 86
 nodes , 519–520 f
 packageable elements on , 85
 packages defi ned in , 80–82
 paths , 519–520 f
 purpose of , 518
 residential security system , 464 f
 sample , 30 f , 59 f , 81 f
 stereotypes depicted on , 341 f

 Package hierarchy
 defi nition of , 92
 model elements in , 91
 model in , 81–82 , 84f
organizing of , 82–85
 purpose of , 91

 Package import , 87
Par , 229–230
 Parallel fl ow , 371
 Parameters

 for activities , 176–178
 block defi nition diagram modeling of , 206 , 208
 constraint . See Constraint parameters
 object fl ows used to connect , 181 f
 operations , 129
 optional , 176
 required , 176

 Parameter sets
 defi nition of , 185
 routing object fl ows from , 185–186

 Parametric diagram
 automobile system application of , 52–53 , 53 f
 constraint blocks , 150–151 , 155–159 , 169
 defi nition of , 150
 description of , 30 , 30 f
model organization using , 57–59
 nodes , 526 f
 power distribution equation using , 158 f
 purpose of , 526
 residential security system , 474 f

 Parametrics , 474–475
 Participant property node , 525 f
 Partitioning , 442–444
 Part node , 525 f
 Part properties

 block composition hierarchies modeled using ,
 100–108

 on block defi nition diagram , 103 f
 composite associations , 102–104
 connecting of , 105–106
 defi nition of , 95 , 100 , 218
 on internal block diagram , 104 , 105 f

 Path symbols , 73–74 , 74 f

Performance simulation model , 490–491
Performance simulation tools , 493
 Physical structure , 327–329
 Pilot project , 512–513
 Pins

 action , 326
call behavior action , 178–179
 defi nition of , 174–175
 object fl ows used to connect , 181 f

 Polymorphism , 134 , 144
Ports

behavior , 126 , 131
 conjugate , 123
 defi nition of , 95
 delegation , 126 , 127 f
 description of , 45 , 377–379
 fl ow . See Flow ports
 fl ow modeling between , 127–128
 function of , 120
 standard . See Standard port

 Postconditions , 197
 Preconditions , 197
 Primitive action node , 529 f
 Primitive actions , 209–210 , 210 f
 Probabilistic fl ow , 196–197
 Probability distribution , 118–119
 Probes , 352
 Problem callout , 291–292, 540 f
 Profi le(s)

 defi nition of , 335 , 341 , 346
 example of , 336 f
 node , 520 f
 reference metamodel for , 347
 stereotypes from , 346 , 348–349
 in UML , 67
 user model application of , 347–348
 uses of , 346

 Profi le application
 description of , 347
 path , 520 f

 Project management tools , 492 , 497–498
 Properties

 coverage , 138
 default value assigned to , 118
 defi nition of , 95 , 99
 derived , 100 , 117–118
 part . See Part properties
 purpose of , 99–100
 redefi ning , 136
 reference , 100 , 218
 value . See Value properties

 Property derivation , 100 , 117–118
 Property-specifi c type , 139–140
 Pseudostates

 choice , 250 , 251 f
 defi nition of , 242 , 244

555Index

 entry point , 242 , 259 , 261 f
 exit point , 242 , 259 , 261
fork , 242 , 255 , 257 , 535 f
 history , 258–259 , 260 f , 535 f
 initial , 244
 join , 242 , 256–257
 junction , 250
 terminate , 244
 transitions routed using , 249–251 , 251 f

 Q
 Qualifi ed name , 86 , 93

 R
 Rationale callout , 540 f
Rationale for requirements relationships , 291–292
Rational Unifi ed Process for Systems Engineering ,

 12 , 398
 Realization dependency , 90 , 131
Receive message event , 221
 Receptions , 129 , 221
 Redefi nition , 136
 Reference associations

 on block defi nition diagram , 108–109 , 109 f
defi nition of , 108–109
 path , 523 f
 symbol for , 109

 Reference clock , 162
 Referenced sequence diagram , 39–40
 Reference metamodel

defi nition of , 339 , 341 , 343
 for profi le , 347

 Reference node , 525 f
 Reference path , 520 f
 Reference properties

defi nition of , 100 , 108 , 218
 internal block diagram used to model , 110
 noncomposite relationships between blocks

modeled using , 108–113
 Reference relationship , 347
Refi ne dependency , 90
Refi nement callout , 540 f
Refi nement path , 539 f
Refi ne relationship , 300–302 , 302 f , 418
Region(s)

defi nition of , 243–244
multiple, 255–258
 single , 254–255

 Relationship
 allocation . See Allocation relationship
 containment , 294–295
 reference , 347
 requirements . See Requirements

relationships
 satisfy , 298
 verify , 298–300 , 300 f

 Reply message , 221 , 532 f
 Repository-based data exchange , 500
 Requirement(s)

 allocation of , 311
 criticality property of , 286
 deriving , 296–298
 expressing of , 283
 function of , 283
 model representation of , 285–287
 nested , 295
 nonfunctional , 284
package structure organization of , 294
 risk property of , 286
sources of , 283
 specifi cation for , 283
 stereotypes , 286–287 , 288 f
 text-based , 283
verifi cation status , 285–286
 water distiller case study , 359–360 , 364–367

 Requirement ambiguity , 298–300
 Requirement diagram

 automobile system application of , 34 , 35 f , 58 f
 callouts , 540 f
 description of , 30 , 30 f, 284–285
 example of , 286 f
 header for , 285
 nodes , 538 f
 paths , 539 f
 purpose of , 538
 residential security system , 479–480 f
 water distiller case study of , 364 , 365 f

 Requirement node , 538 f
 Requirement related type node , 538 f
 Requirements allocation , 311
 Requirements analysis , 284
 Requirements categories , 286–287
 Requirements management tools , 283–284 ,

 493–495
 Requirements relationships

 callout notation for , 291 , 291 f
 compartment notation for , 290 , 291 f
 cross-cutting , 289–291
 depiction of , 290–293
 diagram used to represent , 284
 direct notation for , 290
 matrix depiction of , 293 , 294 f
 rationale for , 291–292
refi ne , 300–302 , 302 f
 residential security system , 478 , 480
 tabular depiction of , 292–293 , 294 f
 trace , 303
 types of , 287–289
 verifying of , 298–300

 Requirements table , 292 , 293 f
 Requirements Team , 10
 Requirements traceability , 9 , 16 , 56–57 , 297

556 Index

 Requirements tree , 366
 Requirements variation analysis , 429
 Residential security system , 402–408

 activity diagram , 436–437 f , 456–457 f
 block defi nition diagrams , 438 f , 454–455 f ,

 460–462 f , 465 f , 467–469 f , 485 f
engineering analysis , 414
 internal block diagram , 439–440 f , 449–450 f ,

 458–459 f
model development , 408

 analyses , 471–474
 Analyze Stakeholder Needs activity ,

 409–418
 Analyze Systems Requirements activity ,

 418–429
 as-is system , 409–412
 black-box specifi cation , 425–427 , 426f
 causal analysis , 409–410 , 412–413
 component requirements , 467–471
 constraints , 474
 critical performance requirements ,

 424–425
 data architecture , 465–466
 Defi ne Logical Architecture activity ,

 429–442
 design constraints , 429
 enabling systems , 483–485
engineering analysis , 475
 enterprise scenarios , 418 , 420–422
 enterprise use cases , 417–418
hardware architecture , 466
 Integrate and Verify System , 481–485
logical decomposition , 431–434
logical node architecture , 444–446 , 445 f
 Manage Requirements Traceability

activity , 475–481
 measures of effectiveness , 412 , 414
 mission requirements , 414
 operational procedures , 467
 Optimize and Evaluate Alternatives

activity , 471–475
 partitioning criteria , 442–444
 physical node architecture , 446–460
 requirements relationships , 478 , 480
 Requirements Variation analysis , 429
 security architecture , 471
 software architecture , 460–465
 specifi cation tree , 476–477 , 477 f
 state machine , 427–429 , 441 f
 Synthesize Candidate Physical

Architecture activity , 442–471
 system context , 422–424
 text-based requirements , 478
 to-be domain model , 415 , 416 f
 traceability gaps , 481

 trace relationship , 477
 trade studies , 452
verifi cation procedures , 481–485

 modeling conventions and standards , 404
model organization , 404–408
 package diagram of , 408 f , 464 f
 parametric diagram , 474 f
 problem background , 402–404
 requirements diagram , 479–480 f
 sequence diagrams , 463 , 463 f
 stakeholder needs activity , 409–418
Systems Engineering Integrated Team , 403

 Risk property of requirement , 286
 Role name , 102–104
 Routing

 of object fl ows , 182–186
of transitions using pseudostates ,249–251,251f

 RUP SE . See Rational Unifi ed Process for Systems
Engineering

 S
 Satisfaction callout , 540 f
 Satisfaction path , 539 f
 Satisfy relationship , 298
 Scenarios , 272
 Selector expression , 218
 Semantics , 63 , 67
Sending event , 216
Send message event , 221
 Send signal action , 191–192 , 209 , 220 , 252 , 529 f
 Send signal node , 535 f
 Seq , 229
 Sequence diagram

 automobile system application of , 39 , 40 f
 description of , 30 , 30 f , 215
 example of , 217 f
 interaction representation by , 216
 message exchanges in , 40
 nodes , 531–532 f
 paths , 532 f
 purpose of , 531
 referenced , 39–40
 residential security system , 463 , 463 f
 time representation on , 225–228
 use case elaborated with , 277–279 , 279 f
 water distiller case study use of , 390 , 391 f

 Service-oriented approach , 215
 Shallow history pseudostate , 259
Signal events

 description of , 246–247
 transition path , 536 f

 Signals , 130 , 191–193 , 220–221
 Single compartment fragment node , 531 f
 SI units , 116 , 117 f
 Sizing parameters , 26

557Index

 Software architecture , 460–465
Software development tools , 493
Software engineering , 12
Software–hardware allocation , 312
 Specialization of stereotypes , 342 , 353–354
 Specifi cation

 component , 284
defi nition of , 283
 systems , 284

 Specifi cation tree , 16 , 284 , 294 , 476–477 , 477 f
Stakeholders

 description of , 5–9
 requirements , 359–360

 Standard ports
 connecting of, on internal block diagram ,

 132–133
defi nition of , 95 , 120
 description of , 45
 interfaces added to , 131–132
 node , 522 f , 525 f

 Standards
 architectural frameworks , 12–13
 data interchange , 13
evolution of , 11–12
 frameworks , 12
 model , 13
 modeling , 13
software engineering and , 12
systems engineering , 11–13
 taxonomy of , 11 f , 11–12

Start event , 226
 State

 composite . See Composite state
continuous, 263–264
defi nition of , 244–245
 discrete , 263–264
entry and exit behaviors , 245 , 261 , 261 f
 hierarchical , 254
 submachine , 242 , 259 , 261–263
 transitioning between . See Transition

 State analysis method , 12
 State charts , 242
 State constraint , 198
 State hierarchies

 composite states , 254–258
 description of , 254
 nested, transition fi ring order in , 257–258

State invariants
 description of , 233–234 , 234 f
 symbol for , 531 f

 State machine(s)
behavior of , 241
 description of , 43
 discrete , 264 f
 interactions between , 242

 operation calls , 252–253
 overview of , 241–242
 pseudostates . See Pseudostate
regions , 243–244
 residential security system , 427–429 , 441 f
 scenarios represented by , 280–281
 schematic diagram of , 243 f
 use case with , 276
 water distiller case study use of , 395 f

 State machine diagram
 automobile system application of , 42–43
 description of , 30 , 30 f , 242
 example of , 243 f
 frame label of , 242
 nodes , 534–535 f
 paths , 536 f
 purpose of , 534
 use case and , 280–281
water distiller case study of , 370 , 370 f

 STEP , 502–503
 Stereotype(s)

application of, during model building , 348–352
 callout , 542 f
 constraints added to , 342–346
 defi nition of , 33 , 67 , 335
 extension relationships , 349
 fl ow-based simulation , 344 f
 function of , 341
 metaclasses as basis for , 341 , 347
 model elements , 336 , 337 f , 349
 node , 520 f
 notation for , 542 f
 package diagram depiction of , 341 f
 profi le . See Profi le
 properties added to , 342–346
 requirements , 286–287 , 288 f
 specialization of , 342 , 353–354
 subclassing , 286–287
 in user model , 345

 Streaming activity parameter , 177
 Strict , 232
 Strict property of profi le application

relationship , 347
 Structural allocation

 of defi nition , 329
 description of , 312–313
 fl ow , 329–331

 Subclasses , 37 , 134
 Subject node , 537 f
 Submachine state , 242 , 259 , 261–263
 Subset , 136
 Superclass , 134
Surveillance system case study , 76

modeling conventions used in , 77
 package diagram for , 82 f

558 Index

 Swimlane , 200 , 322–323
 Symbols

 activity fi nal node , 188
 activity partition , 200
 asynchronous message , 221
call behavior action , 178
 callout , 291
 composite association , 102
 duration constraint , 227
 fl ow fi nal node , 188
fork , 183
 icon , 74 , 74 f
 initial node , 188
 join , 183
 lifeline , 219
 model element , 349
 node , 73 , 74 f
 note , 74–75 , 75 f
 path , 73–74 , 74 f
 submachine state , 261–262 , 262 f
 synchronous message , 221
 time constraint , 227
 transition , 247–249 , 252 , 252 f
 use case , 272

 Synchronous message , 220–222 , 532 f
 Synchronous requests , 204
 SysML

 automobile design application of , 32–60
 description of , 3
 representation of systems , 29

 SysML diagrams . See also specifi c diagram
 content of , 73–75
 description , 72
 frames , 33 , 70–71
 header , 33 , 71–72
 icon symbols , 74 , 74 f
keywords , 73
 name , 72
 node symbols , 73 , 74 f
 note symbols , 74–75 , 75 f
 path symbols , 73–74 , 74 f
 purpose of , 30
 summary of , 29–30
 taxonomy of , 69–70 , 70 f
 usage , 72

 SysML language
 applications of , 31–32
 architecture of , 65–69, 429–471
diagram overview, 29–31
 purpose , 29
 semantics of , 63 , 67
 specifi cation , 63–64

 SysML model
 critical properties , 25
 description of , 21

 SysML profi le , 64
 SysML specifi cation , 13
 System(s)

 complexity of , 11
 design of , 7 , 8 f , 9
 hierarchy of , 65
 requirements , 6
 use case for describing functionality of ,

 271–276
 users of , 270–271

 System boundary , 6 , 6 f
 System context , 277 , 422–424
 System Integration and Test , 4 , 4 f
 System life cycle , 5–6
 System model

 analytic , 491
 description of , 17–18 , 18–19 f
 dynamic , 491
 executable , 490
 purpose of using , 22
in systems development environment ,

 489–492
 types of , 490

 System modeling domain
 general-purpose , 65–66
 mapping between concepts in , 67

 System modeling tools
 description of , 492–494
evaluation of , 511–512
 interactions , 494–499
 selection of , 504–507

 System of systems
 allocations for modeling of , 307
 defi nition of , 3 , 11
 modeling tools for , 492
 OOSEM , 398

 Systems Analysis Team , 10
Systems development environment

 data exchange in , 500–501
 defi nition of , 489
 system model’s role in , 489–492

Systems engineering
 application of , 5–9
 automobile industry application of , 5–9
 confi guration management tool , 496–497
 defi nition of , 4
 industries that use , 4
 management plan , 16
 methods , 12
 model-based . See Model-based systems

engineering
 motivation for , 3–4
 object-oriented . See OOSEM
 process of , 4–5, 398–402
 Rational Unifi ed Process for , 12 , 398

559Index

 schematic diagram of , 4 f
 summary of , 13–14

Systems Engineering Integrated Team , 403
Systems engineering manager , 10
 System Specifi cation and Design , 4–5,

399–402
 Systems specifi cation , 284
 System under consideration , 272

 T
Tables

 description of , 75
 requirements relationships depicted in ,

 292–293 , 294 f
Target namespace , 87
 Terminate pseudostate

 description of , 244
 node , 535 f

 Test case
 description of , 299–300
 node , 538 f

 Test signal , 191
 Text-based requirements

 description of , 283
 residential security system , 478

 Time constraint
 description of , 226–227
 symbol for , 533 f

Time events
 description of , 192 , 246–247
 transition path , 536 f

 Time observation
description of , 226 , 228
 symbol for , 533 f

 Time representation using sequence diagram ,
 225–228

 Time varying properties , 161–162
Tokens

 description of , 171 , 174–175 , 193
 discarding of , 196
 overwriting of , 196

 Trace , 219
 Trace callout , 540 f
 Trace compartment , 538 f
 Trace dependency , 90
 Trace path , 539 f
 Trace relationship , 303 , 477
 Trade studies , 166–168, 452, 471–475
 Training , 512
 Transition

 compound , 250
defi nition of , 242
 external , 247
 fi ring order of, in nested state hierarchies ,

 257–258

 internal , 247
 naming of , 248
 notation for , 247–249 , 252 , 252 f
 purpose of , 245
 triggers , 246

 Transition effect , 206 , 247 , 249 f
 Transition guard , 246–247
 Trees , 76
 Trigger node , 535 f
 Triggers , 246

 U
 UML

 description of , 13 , 63–64
 diagrams , 69
 profi le in , 67
 reusable portion of , 64
 timing diagram , 53–54

 UML4SysML , 338 , 338 f , 341 , 505–506
 Unique constraint parameters , 153
 Uniqueness rules , 85
 Units

 defi nition of , 56 , 116
 nodes , 521 f

 Usage
 allocation of , 315 f , 315–316 , 316 t
 defi nition of , 101

 Usage dependency path , 522 f
 Use case(s)

 with activities , 276
 activity diagram and , 279–280
 actor . See Actor
 base , 273
behaviors added to , 276–281
 classifi cation of , 274
 context diagrams and , 277 , 277 f
 defi nition of , 271
 description of , 38–39 , 269
 enterprise , 417–418
 exception , 418
 extension relationship , 273–274
 included , 273
 inclusion relationship , 273
 with interactions , 276
 node , 537 f
 relationships , 273–274
 requirements analysis supported with , 284
 residential security system case study of ,

 417–418
 scenarios , 272
 sequence diagram and , 277–279 , 279 f
 with state machine , 276
 state machine diagram and , 280–281
 system functionality described using , 271–276

Use case description , 271–272, 275–276, 284, 418

560 Index

 Use case diagram
 automobile system application of , 37–39
 description of , 30 , 30 f , 269–270
 example of , 270 f , 274 , 275 f
 header for , 269–270
 nodes , 537 f
 paths , 537 f
 purpose of , 537
 water distiller case study use of , 390 , 390 f

 Use dependency , 90
 User model

allocation evaluation across , 331–332
 components of , 67–68
 defi nition of , 67 , 335
 profi les applied to , 347–348
 stereotypes in , 345

 Users , 270–271
 Uses dependency , 131
 Utility function , 166

 V
 Value actions , 209
 Value binding path , 526 f
 Value properties

 blocks with , 116–117
 defi nition of , 95 , 100 , 113
 description of , 152
 node , 525 f
 property-specifi c type , 139–140
 purpose of , 113
 time varying properties , 161–162

 Value types
 block defi nition diagram used to model , 113 ,

 115–116
 defi nition of , 113
 dimensions added to , 116
 node , 521 f
 units added to , 116

 Variants , 138–139
Vee development process , 398
 Verdict , 299
Verifi cation callout , 540 f
Verifi cation path , 539 f
Verifi cation status for requirement , 285–286
Verifi cation tools , 493 , 498 , 499 f
View

 description of , 92
 node , 519 f

 Viewpoint
 description of , 91–92
 node , 519 f

 Visibility of members , 87 , 93
 Vitech Model-Based Systems Engineering

Method , 12

 W
 Water distiller system

 activity diagram , 367–368 , 368 f
 allocation

 of actions , 379 , 381 f , 382
 activity partitions , 375 f , 376
 fl ow , 371 , 375 f , 379 , 381 f , 382
 functional , 371 , 375 f , 383 f
 updating , 387–390

 blocks
 block defi nition diagram of , 376–377
 internal block diagram of , 379 , 380 f
 ports on , 377–379

continuous fl ow , 371 , 373 f
 controller , 391–392 , 392–393 f
 design modifi cations , 386–394
 functional allocations , 371 , 375 f , 383 f
 functional hierarchy in , 370 f
 heat balance in , 382 , 384–386
 internal block diagram , 379 , 380 f
interruptible region , 374 f
 item fl ow heat balance analysis , 382 ,

384–386
 MBSE approach , 361–362
modeling behavior , 367–376
model organization , 362–364
 parallel fl ow , 371
 performance analysis , 382–386
 problem statement

 activity diagram depiction of , 367 , 368 f
 description of , 359–361 , 364

 requirements , 359–360 , 364–367
 sequence diagram for , 390 , 391 f
 stakeholder requirements , 359–360
 startup and shutdown , 392 , 394
 state machine diagram , 370 , 370 f
 state machine for , 395 f
 structure

 hierarchy of , 376 f , 392 f
 modeling of , 376–382
 updating of , 387–390

 use case diagram for , 390 , 390f
 user interface , 391–392 , 392–393f

 Weak sequencing , 222–223 , 229
 Whole–part relationship , 101

 X
 XMI , 13, 60, 69 , 502
 XML Metadata Interchange , 13 , 60 , 69, 502

 Z
 Zachman framework , 12

